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SUMMARY 

Continuous Descent Arrival (CDA) procedures have been shown to minimize the 

thrust required during landing, thereby reducing noise, emissions, and fuel usage for 

commercial aircraft.  Thus, implementation of CDA at Atlanta’s Hartsfield-Jackson 

International Airport, the world’s busiest airport, would result in significant reductions in 

environmental impact and airline operating costs.  The Air Transportation Laboratory at 

Georgia Tech, Delta Air Lines, and the local FAA facilities (Atlanta Center and Atlanta 

TRACON) collaborated to design CDA procedures for early morning arrivals from the 

west coast.  Using the Tool for Analysis of Separation and Throughput (TASAT), we 

analyzed the performance of various aircraft types over a wide range of weights and wind 

conditions to determine the optimum descent profile parameters and to find the required 

spacing between aircraft types at a fixed metering point to implement the procedure.  

However, to see the full benefits of CDA, these spacing targets must be adhered, lest 

there will be a loss in capacity or negation of the noise, emissions, and fuel savings 

benefits.  Thus a method was developed to determine adjustments to cruise speeds while 

aircraft are still en route, to achieve these spacing targets and to optimize fleet wide fuel 

burn increase. The tool in development, En route Speed Change Optimization Relay Tool 

(ESCORT), has been shown to solve the speed change problem quickly, incorporating 

aircraft fuel burn information and dividing the speed changes fairly across multiple 

airlines.  The details of this tool will be explained in this thesis defense.  Flight tests were 

conducted in April-May of 2007, where it was observed that the spacing targets 

developed by TASAT were accurate but that delivery of these aircraft to the metering 

point with the desired spacing targets was very challenging without automation.  Thus, 
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further flight tests will be conducted in 2008 using the en route spacing tool described 

above to validate the improvement it provides in terms of accurately delivering aircraft to 

the metering point.
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CHAPTER 1: INTRODUCTION 

The number of domestic airport operations in 2006 in the United States was 

recorded as 15.4 million; and by 2025 this number is expected to increase to 23.8 million, 

an increase of over 150% [18]. However, with only three airports to be built to alleviate 

these busy hubs in the next 10 years, increased airport operations will most likely occur at 

the same busy airports [16]. With this increased number of operations, there are a number 

of issues to consider, particularly the issue of noise from increased operations on the 

same runways, and additional noise and emissions from the operations on newly created 

runways [6].   

Studies show increased noise pollution (aircraft noise levels above 50 dB) 

deteriorates general health, increases the risk of cardiovascular disease, is associated with 

the intake of non-prescribed sleep medication [19], and lowers property values of the 

surrounding communities [14].  In addition to contributing to noise pollution, expanding 

airports also increase emissions close to the airport.  Extraneous CO2, N2, H2O, SOX, and 

ozone-depleting NOX emissions close to populated areas affect respiratory health and 

increase greenhouse effects [3].  These noise and emissions pollution concerns predicate 

a need to reduce the noise and emissions from aircraft close to the airport in the terminal 

descent area.   

Yet another concern for air transportation expansion is the rising cost of fuel and 

its contribution to an airline’s costs.  Although future fuel prices cannot be estimated with 

much accuracy, fuel currently comprises 27% of airline operating costs [23].  As the 

second largest operating cost (and sometimes the largest depending on the airline), there 

is significant incentive for fuel efficiency.   
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Currently, there exists a procedure, among many other research efforts, that meets 

all of these goals—reducing noise and emissions in the terminal area, and reducing the 

fuel consumed during the descent of each flight.  This procedure is continuous descent 

arrival (CDA).  Continuous descent arrival is a procedure for both approach and arrival 

where an aircraft flies a higher altitude and lower thrust, eliminating the need for level 

flight segments for air traffic control spacing purposes prior to the aircraft aligning with 

the glide slope.  The idea of CDA has been common pilot knowledge for a long time, and 

the first formal introductions for a widespread procedure in busy areas began in the 

1960’s and 1970’s at NASA, Lufthansa, and British Airways [12, 31, 13]. These initial 

studies created the formal definition of CDA as a descent from 6000 ft to the interception 

of the glide slope that contains no or at most one level segment not longer than 2 NM 

[26].  However, it was not until the advent of modern avionics technologies such as the 

Flight Management System (FMS) and Instrument Landing System (ILS) that CDA 

could be considered seriously. These improvements in navigation technologies have 

extended CDA to begin even further from the runway.  The modern CDA starts at cruise 

altitude tens of thousands of feet above the original 6000 ft definition.  The phrase CDA 

in this report will refer to arrival (outside of the terminal area) and approach (inside the 

terminal area) procedures beginning from the cruise altitude. 
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CDA solves a number of problems in the ever-expanding air transportation 

system.  Clarke et al. demonstrated a reduction of fuel consumed by 400-500 lb per flight, 

and 3.9 to 6.5 dBA reductions in the peak noise level along some portions of the flight 

path in a 2004 CDA flight test [10].  Both are promising results; in addition, CDA 

allowed select aircraft to reduce their standard arrival procedure flight time by up to 147 

seconds.  However, to ensure that aircraft meet FAR separation constraints throughout 

the CDA, their separation prior to, and thus time passing, the descent fix must be 

controlled.  This task lies outside the realm of normal air traffic control duties, as it 

requires detailed knowledge about an aircraft’s trajectory, i.e. both an aircraft’s three 

dimensional path and accurate time trajectory, as well as relative timing between aircraft.   

Clarke et al. reports, “One of the key issues preventing widespread 

implementation of [CDA] procedures is the inability of air traffic controllers to predict 

the future trajectory of aircraft with enough accuracy and confidence that they would use 

these procedures during periods of high-density traffic... This suggests that an appropriate 

 
Figure 1.1: Comparison between a CDA and a conventional approach [14] 
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solution for the system would be to provide a tool that will translate the predicted 

trajectory of each aircraft into a form that controllers can easily monitor and use to 

predict future separation” [10]. The issue in expanding CDA does not lie in an aircraft’s 

ability to fly the procedure; rather, the limiting factor of CDA expansion is the spacing of 

the aircraft prior to descent and how to implement that information.  The excerpt from 

Clarke et al.’s paper states that the future trajectories of the aircraft participating in the 

CDA is not known with enough precision to implement CDA during periods of high-

density traffic.   

This limitation in CDA implementation can be divided into three main areas— 

knowing how far apart aircraft must be spaced prior to the top of descent in order to 

maintain separation requirements close to the runway, knowing the precise time at which 

an aircraft will arrive at a given point, and how to arrange aircraft to achieve the 

necessary spacing during the en route portion of flight while being fair to the airlines 

involved.  The combination of these three limitations has not been addressed with a 

unified effort until now.  Although this thesis details the solution to the third problem, 

that of arranging en route aircraft with the proper spacing, for this project to be 

completely successful in expanding the implementation of CDA’s, the other two pieces 

must be solved as well. 

The first piece, knowing how far apart aircraft must be spaced prior to beginning 

the CDA, has previously been addressed.  The Tool for the Analysis of Separation and 

Throughput (TASAT) is a fast-time aircraft simulator which runs a variety of aircraft 

types, weights, and wind conditions for a given area and determines what the minimum 

time spacing for two aircraft flying a CDA should be.  The output to TASAT gives this 
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time separation based on the desired percentage controller involvement in spacing the 

aircraft is desired to occur.  Although no controller involvement for 100% of the flights is 

desirable, a reduction in this non-involvement number is more practical to decrease the 

separation time required [C].  TASAT provides a concrete time separation number 

necessary for flights to fly a CDA. 

The second limitation of CDA, knowing the precise time at which an aircraft will 

arrive at a metering point, is a separate project from this thesis.  However, a developing 

solution for an improved ETA tool (IET) and trajectory predictor is explained in Section 

3.3.  The exact ETA is an important piece of CDA implementation because if the 

separation required by TASAT is known, but the time at which the aircraft arrive at a 

metering point is unknown ahead of time, there can be no prior planning to achieve this 

separation.  As the intended expansion of CDA depends on all three pieces working 

concurrently, this thesis work has been developed with the functioning of the IET in 

mind.   

The last piece of the puzzle, the ability to calculate en route trajectory changes so 

that the TASAT-calculated separation can be achieved, is the subject of this thesis.  

Figure 1.2 is an image taken from Delta’s Operational Control Center (OCC) during a 

CDA flight test [11].  The difficulty of arranging flights flying a CDA at ATL is apparent 

from this diagram.  For the fifteen flights involved, all must arrive at the same point  with 

the spacing calculated by TASAT.  However, there are several factors to consider to 

achieve this spacing: the minimum speed change necessary for each aircraft, the 

minimum fuel burn increase to achieve the spacing so that the benefits of these aircraft 

flying the CDA are not negated, how to be fair to the different airlines operating the 
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aircraft if speed changes are necessary, minimizing the delay incurred by the necessary 

speed changes, and determining the landing sequence of the aircraft which will achieve 

the lowest net fuel burn increase while achieving the TASAT-calculated separation.   

These five concerns are the guiding principles for this thesis work and the 

creation of The En route Speed Change Optimization Relay Tool (ESCORT).  Combined 

with TASAT and the IET, ESCORT aims to eliminate the difficulties previously 

experienced in implementing CDA because of the lack of information for necessary 

initial separations of CDA aircraft, and how to achieve these separations once they are 

known.  ESCORT has been designed for either air traffic controllers or airline dispatchers 

to use while communicating with aircraft in the en route environment. 

 
Figure 1.2: Aircraft trajectories to a metering point prior to descent during a 2007 CDA flight test 
[11] 
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CHAPTER 2: CURRENT STATE OF THE ART FOR CDA & 

PROJECT GOALS 

2.1 CURRENT STATE OF THE ART FOR CDA 

 Researchers in the past few years have studied the problem of modifying the 

trajectories of aircraft along a route to have a more exact spacing for increased arrival 

efficiency, or for CDA implementation, but there are a number of key differences 

between those studies and the work to be presented here.   

In several studies [33,6], 4D trajectories (spatial trajectory plus temporal) have 

been used to issue speed changes along the aircraft flight route in order to effect better 

spacing without vectoring or holding patterns at a fix, or prior to the runway.  Some of 

these studies have assumed that the aircraft in question will be ADS-B in and ADS-B out 

equipped.  ADS-B, or Automatic Dependent Surveillance Broadcast allows pilots and 

controllers to see radar-like displays with traffic data, without depending on radar.  These 

displays also will give pilots access to weather services, terrain maps and flight 

information services.  This improved situational awareness will allow pilots to fly at safe 

distances from one another with less assistance from air traffic controllers [17].  

For United Parcel Service (UPS) aircraft (used for many CDA flight tests), which 

are all ADS-B equipped, such an assumption is not an issue.  However, with plans to 

equip commercial aircraft with ADS-B-out technology up until 2020, ADS-B is many 

years away from practical implementation in conjunction with CDA [22].  Thus, to 

implement CDA on a wide level using aircraft with varying levels of equipage, assuming 

ADS-B capabilities sets back the implementation possibilities several years. The plan for 

this research is to develop a spacing tool that can be tested at Delta’s OCC within the 
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next six months and flight-tested within the next nine months without the necessity of 

ADS-B equipped aircraft.  

A similar study for “trajectory-oriented time-based arrival operations” used an 

additional assumption that is not met by this thesis’ near-term implementation goal [28].  

This study assumed the spacing tool will be managed by air traffic controllers.  Thus, 

workload becomes a greater consideration, as they have a number of other tasks to 

perform.  In addition, controllers speak with the pilot only through radio communication; 

ESCORT aims to uplink speed changes to the aircraft directly via ACARS, saving time 

and possible confusion with misunderstood oral commands.  Yet, there was some 

relevant information gained from the study for this thesis.  Prevot et al. asked the 

controllers to rank the tools that were most useful to them in modifying the aircraft’s 

trajectories.  The final list was stated as: “timeline, speed info block, speed advisories, 

trajectory preview, route modification tool, color coding, and a conflict list.”  The 

controllers themselves, put in a similar situation with what this thesis aims to do, said that 

having an accurate time line, accurate speed information, and then the ability to issue 

speed advisories are the most important components of an ETA trajectory modification 

tool [28].  ESCORT will incorporate this core functionality and will automatically 

provide the conflict list.  However, ESCORT will not allow for route modification, as 

only minimal speed adjustments will be made.  With ESCORT, air traffic controllers will 

perform their normal duties, with speed changes so small that ATC does not need to be 

asked for approval.  By limiting the speed change to a 0.02 Mach increase or decrease 

from the flight plan cruise speed, airline operations control centers (AOC) can bypass air 

traffic control and issue the speed changes directly to the planes.  By focusing on an 
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AOC, the requirements of the regulatory environment of ATC can be met within the 

operation so that testing and implementing the speed change solution can occur on a 

much faster time scale. 

 

2.2 SIMILAR TOOLS 

Currently, there are a number of similar tools in development.  The differences in 

assumptions for previous research have been explained in the previous section.  However, 

it is worth naming and describing similar tools that have been developed, or are under 

development.  As part of the Airline-Based en Route Sequencing and Spacing (ABESS) 

Table 2.1: Summary of literature review 
Authors 

 
Year 

 
Key Findings 

 
Limitations 

 
Wichman et 

al. 
 

2001 
 

-Used a Required Time of Arrival (RTA) 
capable aircraft to prove that RTA 

capability could place an aircraft at a way-
point with an accuracy of 7 seconds 

 

-Limited to RTA-equipped 
aircraft 

-Single B737-600 tested 
 

Prevot et al. 
 

2003 
 

-Potential benefits in throughput, 
efficiency, and workload shown for a 

trajectory-oriented approach for ATC 
-Can be used in conjunction with relative 

operations 
 

-Full benefits of study require 
ADS-B equipped aircraft 

 

Weitz et al. 
 

2005 
 

-Simulation results show Airborne 
Precision Spacing tool capable of reducing 

inter-aircraft spacing errors for CDA 
 

-Limited to one aircraft type 
-Speed changes made during 

descent 
 

Baxley et al. 
 

2006 
 

-Use a ground ATC tool to separate 
aircraft prior to a metering fix 

-Incorporates an on-aircraft system to 
make frequent minor speed adjustments 

to increase timing precision 
 

-Frequent minor speed 
changes issued 

-Optimization component for 
fuel and airline schedule not 

included 
-Assumes ADS-B aircraft 
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program, the NASA Ames-developed Cruise Speed Calculator (CRZ) uses flight closure 

rates to a common fix for speed advisory calculation.  This tool allows for both speed-ups 

and slow-downs.  However, limited flight plan and wind information is taken into 

account with this basic tool.   

Another tool that is a part of ABESS is the Self-Managed Arrival Resequencing 

Tool (SMART), developed by MITRE.  This is a more sophisticated tool, utilizing both 

flight plan and wind data to not only calculate necessary speed changes, but also to 

sequence and merge the aircraft while ensuring an appropriate time interval between each 

aircraft. A display from SMART is shown in Figure 2.1.  One can see a sequence of 

flights organized by arrival time, with space for a displayed speed advisory.  The 

capabilities of SMART are exactly what ESCORT aims to emulate.  Although the details 

of SMART—exactly how the calculations are performed and calculated—are not known 

at this point, ESCORT will have the same functionality in addition to a key added 

component, that of minimizing the overall fuel consumption for en route aircraft flying a 

CDA.  This minimization will be discussed in following sections.  In addition, the 

spacing to be achieved with ESCORT will be determined by the Tool for the Analysis of 

Separation and Throughput (TASAT) developed in support of previous CDA flight tests.  

This tool ensures that, for a given leading and following aircraft pair, their spacing will 

allow them to fly a CDA without encroaching on each other.  
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 2.3 ESCORT CORE CAPABILITIES  

Each of these tools, SMART and CRZ, calculates the minimum speed change to 

reach a desired speed change at a metering fix.  In contrast, ESCORT will calculate a 

limited number of speed changes.  Both one speed change and two speed change 

formulations have been examined, each occurring no earlier than three hours prior to the 

aircraft’s initial ETA at the metering fix. This discreet number of speed changes will be 

easier to implement by the pilots, although more speed changes may be necessary during 

the course of the flight.  If such is the case, ESCORT could be run multiple times with 

updated information.  With ADS-B spacing, previous studies encountered issues of 

issuing speed changes so frequently that it required constant adjustment by the pilot [6].   

The most important difference between ESCORT and the previous en route 

spacing prior to a fix tools is the inclusion of an optimization component in ESCORT.  

ESCORT is designed to not only calculate the minimum speed change necessary to 

achieve the desired spacing; it will also include fuel burn as a consideration for aircraft 

participating in the CDA program.  While all aircraft flying a CDA are capable of 

 
   Figure 2.1: SMART display 
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speeding up and slowing down, the flight plan cruise Mach number is often designed to 

be close to the minimum fuel burn rate for that particular aircraft. 

 

Figure 2.2 shows the minimum fuel burn as a function of Mach for a commercial 

wide body aircraft at 37,000 ft.  A speed change increasing the cruise speed by 0.02 

Mach, corresponds to increased fuel consumption, depending on the initial cruise speed 

of the aircraft.  Since one of the goals of the CDA program is to reduce an aircraft’s fuel 

burn, it would not make sense to increase the fuel burn (if it can be avoided) during the 

cruise portion only to save fuel during the descent.  By considering fuel burn over both 

the cruise phase and CDA, an additional fuel savings may be attained. 

 
Figure 2.2: Fuel burn rate vs. Mach, for a commercial wide body jet 
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CHAPTER 3: RELEVANT SUPPORTING CONCEPTS 

3.1 REVIEW OF LINEAR OPTIMIZATION TECHNIQUES 

3.1.1 CPLEX Branch and Cut Overview 

CPLEX, the linear optimization solver used in the implementation of ESCORT 

was created by ILOG to solve many types of linear programming problems.  The problem 

type of interest in the current setting is a mixed integer program (MIP), or more 

specifically, a mixed integer linear program (MILP), a problem class where there are no 

quadratic, or higher order, terms in the objective function.  As MILP’s are a subset of the 

more general MIP, a brief description of how CPLEX solves MIP problems will be given 

here.   

As stated in the CPLEX user’s manual, CPLEX solves a series of continuous sub 

problems as a part of the branch and cut (also referred to as branch and bound) algorithm 

[24].  To manage those sub problems efficiently, CPLEX builds a tree in which each sub 

problem is a node.  The root of the tree is the continuous relaxation of the original MIP 

problem and is first solved with relaxed integer constraints using the simplex method. If 

the solution satisfies the integer conditions, the process stops.  However, if the solution to 

the relaxation has one or more fractional variables, CPLEX will select some integer 

variable zk whose value zk0 in the continuous solution is not integer.  To bring zk to an 

integer value, there are two necessary constraints, zk ! [zk0] and he second, zk " [zk0] + 1, 

with the brackets indicating, “the integer part of.”  These constraints are then attached to 

two sides of the previous continuous problem, creating the branches.  These problems are 

then solved by the simplex method, and if either problem is infeasible, that branch is 

excluded from further consideration.  For the feasible solutions, in a minimization 
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problem, if the objective function value is less than the value of previously known integer 

solutions, then that branch is added to an active consideration list.  If the objective 

function is larger, then that branch is bounded (cut), and eliminated from continued 

consideration [20].   

For the problems remaining in the active problem list, the one with the lowest 

objective function is selected.  If its solution satisfies the integer constraints, then it is 

optimal.  However, if this is not the case, an integer variable that has a fractional value is 

selected (usually the one with the largest fraction) and the branching process described 

above is repeated.  The steps are repeated, with feasible problems being added to the 

active list, and objective values compared to the best-known integer solution.  This 

process exhausts all possibilities, and eventually selects the optimal integer value. 

For the problem relevant to ESCORT, the integer constraints are the binary 

variables described in Section 4.4.2, as well as the binary variables described in Section 

4.3 necessary to modify the objective function.  In addition, the possibility of using 

integer variables to limit the Mach changes to discrete, rather than continuous, decimal 

values were considered in Section 4.4.3.  CPLEX was used in all instances of ESCORT 

to solve the optimization using its MIP solvers.   

 

3.2 REVIEW OF AIRCRAFT PERFORMANCE CHARACTERISTICS 

For steady, level flight, a force balance on an aircraft in motion yields information 

necessary to determine the fuel use rate for the aircraft.  In Figure 3.2.1, the force balance 

is displayed [1]. 
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In ESCORT, the data relating to aircraft’s performance comes from TASAT’s 

aircraft dynamics model [29].  As such, the lift and drag forces in Figure 4.1 are written 

as [2] 

 L =
1

2
!V

r

2
SC

l , (3.2.1) 

 D =
1

2
!V

r

2
SC

d , and (3.2.2) 

 W = mg, with (3.2.3) 

 m = ! f . (3.2.4) 

However, the derivative of aircraft mass was only used to compute the 

instantaneous aircraft mass, meaning the aircraft mass was assumed static. 

Examining Figure 4.1, we see that to find the thrust, T, we need an equation for the drag, 

D: 

 F
x
= T !D" = 0 . (3.2.5) 

In order to solve for D, it was assumed that in cruise 

 
Figure 3.1: Aircraft in steady, level flight 
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, (3.2.6) 

with k0, k1, and k2, being drag polar parameters.  Using this equation in 

conjunction with the basic lift and drag force equations yields an equation for the thrust,  

 T =
1

2
!Vr

2
Sk

0
+ mgk

1
+
2(mg)

2

!Vr

2
S
k
2 . (3.2.7) 

Knowing the thrust specific fuel consumption ! and a fuel correction factor Cf 

would then yield the fuel burn rate for a given weight and altitude 

 
f =!TC f . (3.2.8) 

However, TASAT uses specific collected aircraft performance data to supplement 

the above calculation.  The fuel burn rate curves used in ESCORT and described in the 

remaining document were derived using TASAT simulations of each of the aircraft flying 

at 37,000 ft with a specified weight [29].  In TASAT, corrected engine fuel flow was 

represented as a lookup table given fuel flow as a function of corrected thrust and Mach 

number at different altitudes.  In addition, TASAT calculates thrust as corrected net thrust 

per engine, defined as net thrust per engine Fn divided by the ambient pressure ratio ", 

with E being the number of engines, 

 T = E!
F
n

!

" 

# 
$ 

% 

& 
' . (3.2.9) 

An operational version of ESCORT will use fuel burn values calculated by 

TASAT for the given flight levels and aircraft weights using the aircraft performance 

data in the lookup tables.  In the remainder of this report, fuel burn curves are used 

assuming 37,000 ft flight level and an average aircraft weight for the given aircraft type. 
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3.3 REVIEW OF ETA TECHNIQUES 

To meet separation constraints during all portions of a CDA, aircraft must be 

accurately and sufficiently spaced at the metering point at or before the top of the descent 

portion of the flight.  By ensuring that flights are a certain distance, or time apart, both 

wake vortex and trailing rule restrictions can be satisfied.  Traditionally, air traffic control 

has used relative operations, meaning spacing aircraft with respect to one another (for 

example, a miles-in-trail requirement), as opposed to absolute operations, where aircraft 

are directed to be in a certain place at a certain time on the same time scale. Yet, with 

relative operations, air traffic controllers are not accustomed to sequencing aircraft 

coming to a point from different directions.  It is much easier to direct aircraft that are 

traveling on the same trajectory (same straight line) using miles in trail requirements, 

than to visualize and detect the spacing of aircraft traveling to the same point from 

multiple directions.   

However, time-based techniques utilizing ETA and flight path information are 

becoming more commonplace, as traffic flow tools aim to maximize airport and 

TRACON capacity without compromising safety.  One such tool is Traffic Management 

Advisory, a system using ETA, flight path, and capacity information for airports, sectors, 

fixes, and runways to schedule and sequence flights for a given sector.  Time-based 

techniques like this one are developing, but their usefulness and accuracy remains to be 

tested [34].  

In addition, in the future, if aircraft are to self-merge and self-space, the aircraft 

are limited by range relevant technologies such as traffic collision avoidance systems, 
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automatic dependent surveillance broadcast systems, or traffic information services 

broadcast systems. This equipment also provides a limited size of the displays in the 

cockpit.  In order to merge behind or follow another aircraft, flight crews need to be able 

to identify traffic and they need to be in a position close to the time or distance interval 

target [28]. 

Using an absolute time scale to examine spacing as opposed to using relative 

spacing will help to ensure the flyability of CDA during busy operations. ESCORT 

functionality will depend on accurate estimated time of arrivals (ETA) and flight plan 

information to have an initial sequencing of the aircraft.  An accurate ETA is crucial to 

the success of ESCORT, as a flight test at Delta’s AOC in May 2007 demonstrated [11].  

While currently airlines have an ETA for all of their flights, these estimates change 

significantly during the course of the flight.  An example of this variation is shown in 

Figure 3.2 for a sample of Delta aircraft reporting FMS information during the May flight 

test.   The graph demonstrates that, for each flight, the ETA deviates 5-15 minutes from 

the final reported ETA.  This inaccuracy means that, if someone were trying to sequence 

the flights, he or she would have to account for a possible fifteen minute ETA deviation.  

When small speed changes are desired, accounting for a possible fifteen-minute leeway 

means making much more drastic speed change decisions and changing the sequencing 

significantly as the flights near their destination.   
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ESCORT works in conjunction with an improved ETA tool (IET) that was 

developed separately, which will take into account real-time wind information, flight plan 

information, and probabilities of trajectory disturbance.  Researchers in the Air 

Transportation Laboratory have developed a prototype IET which has a basic trajectory 

predictor, incorporating forecast information from the National Oceanic and Atmospheric 

Administration’s (NOAA) Rapid Update Cycle (RUC) model and flight plan information 

to give an ETA.  The development of this tool has shown that the RUC data provides 

unbiased forecast information for forecasts up to five hours.  Since current FMS 

computers onboard aircraft only use weather information that is a 6 hour forecast, using 

the RUC data will allow greater accuracy for the trajectory predictor.  In addition, the 

trajectory predictor incorporates meteorological data provided by the Aircraft 

Communications Addressing and Reporting System (ACARS).  Aircraft in flight record 

 
Figure 3.2: ETA variation vs. report time for a May 2007 flight test 
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the actual wind velocities along their flight path and report this information to other 

aircraft and to NOAA archives in a telex-based system.  By incorporating both of these 

data sources, the trajectory predictor is expected to make use of better information to 

provide a more accurate ETA.   

In addition, it is recognized that an ETA is not a deterministic calculation.  In 

every estimate, there is likely be some expected variation.  Yet, this variation can be 

quantified, and it is the goal of the IET to incorporate this variance by including a 

confidence interval on the final ETA calculations.  By determining how forecast data is 

correlated between adjacent ACARS data points and historical data, the exact correlation 

of the data can be determined.  Once this correlation is known, the IET will use this 

information to provide confidence intervals on the ETA estimate [32]. The simplified 

trajectory predictor architecture is shown in Figure 3.3. 

 

The IET is being developed simultaneously with ESCORT so that both tools 

function together.  Starting from the ETA estimation provided by IET, ESCORT will 

optimally pick up to two speed changes for each flight, making allowances for the 

 
Figure 3.3: Simplified IET/Trajectory Predictor Architecture 
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necessary spacing, and sequence the aircraft, while minimizing the net fuel burn for the 

aircraft involved.   

 

3.4 FAIRNESS IN THE CONTEXT OF EN ROUTE SPEED ADJUSTMENT 

Fairness is an important aspect of CDA, because for CDA to have the most effect, 

as many pilots and airlines must agree to perform the procedure as possible.  If each party 

knows that fuel burn and schedules of participating flights are all being altered as fairly 

as possible, it is assumed that more parties will be willing to participate.    

In determining a quantifiable measure for fairness, there were five traits 

identified, as explained in [7] and [8]. The measurement should be population size 

independent, the unit of measure for the resource should not matter, the measure should 

be on a set scale varying from 0 to 1 (or 0 to 100 if a percentage), the measure should 

exhibit continuity—reflecting any change in the resource allocation (i.e. not a minimum 

or a maximum), and the fairness measure should be able to be tracked instantaneously, as 

well as on an extended time scale.  In addition, a fairness measurement should satisfy five 

criteria for a concrete definition of fairness.  These five criteria are described below. 

3.4.1 Fairness Criteria 

3.4.1.1 Proportionality  

According to Aristotle, goods should be divided in proportion to each claimant’s 

contribution.  This characteristic means that if there are three parties, but party 1 

contributes 20% of the resources for the construction of a good, party 2 contributes 30% 

of the resources, and party 3 contributes 50% of the resources, then a proportional 

division would allocate 20% of the divisible good to party one, 30% to party 2, and 50% 
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to party 3.  This portion of the fairness definition is seen to be inherent as a part of envy-

free division. 

3.4.1.2 Envy-freeness 

 No party is willing to give up the portion it receives in exchange for the portion 

someone else receives, meaning that no party envies any other party.  An envy-free 

division is always proportional, because each party does not want anything from the other 

parties involved, meaning that the resource is divided proportionally (at least in the eyes 

of the resource division participants).  Strategies that the other players select cannot 

prevent you from obtaining a portion that you think is the largest or most valuable.  

3.4.1.3 Equitability 

All parties think they receive the same fraction of the total, as each of them values 

the different resources. A difficult issue of how to measure whether both parties are 

equally happy is solved using a point-allocation system.  In such a system, each party 

assigns points to the things being divided, and if when divided, the parties receive items 

with equal point values for the respective parties’ scale, then the division is equitable.  In 

the case of dividing en route airspace, dividing fuel burn may be a starting point for a 

measure of equitability. 

3.4.1.4 Efficiency 

A division is efficient when there is no other allocation of the system that would 

raise the allocation for the participant with the minimum allocation without decreasing 

the other participants’ allocations.   In other words, all users would benefit from a more 

efficient distribution.  When such a possibility no longer exists, then the division is 
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efficient.  This efficiency will come from the general optimization algorithm being 

developed. 

3.4.1.5 Truthfulness  

For the conditions such as envy-freeness and equitability to be met, the 

individuals involved in the ‘bargaining’ must have their true intentions and desires known 

to all other parties.  For a fair division, one party cannot try and “play the game,” saying 

that one resource allocation scheme would be more desirable to his own party than 

another in hopes that another party will change their resource allocation preference, 

eventually helping the first airline.  This condition, sometimes not included in fairness 

measurement and evaluation schemes, may be the most important, as an incentive to tell 

the truth must be inherent in any resource allocation in order for the allocation algorithm 

to be effective.   

3.4.2 Suggested Fairness Measurement 

The suggestion for a fairness measurement to allocate en route speed adjustment 

is to divide equally possible percent increase in fuel burn among different aircraft (or 

aircraft groups). Each airline seeks to operate their aircraft at, or close to the minimum 

fuel burn, reducing costs and maximizing aircraft range.  By identifying the type of 

aircraft involved in the optimization calculation, the fuel burn characteristics are known 

for each aircraft. Then, a constraint is needed so that the percent fuel burn increase is 

equalized for all the aircraft involved. Such constraints are: 

 Pfi
=

f i
M d

f 


!   (3.4.1) 
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" $%&'()*+' . (3.4.2) 

Equation 3.4.1 is an expression for the percentage fuel burn, and Equation 3.4.2 

ensures that consecutive airplanes in the CDA sequence have equivalent percentage fuel 

burn increases to within some tolerance (i.e. 0.01%).   

An example fuel burn curve is shown in Fig. 3.4. The highlighted area shows an 

example of a range of possible values, centering on the initial cruise Mach of the aircraft 

(indicated by the green circle).  The percentage deviation from the gray triangle, the fuel 

burn minimum, to the red square will be equalized for each flight in the CDA-performing 

fleet.   These constraints can be included as a part of the optimization model so that each 

aircraft, or groups of aircraft belonging to separate airlines, has the same percentage 

increase in fuel burn for their re-routings.  

 

 
Figure 3.4: Chart showing the minimum fuel burn rate with the percentage difference between the initial fuel 
burn rate and the fuel burn rate at the decision Mach number compared to the fuel burn rate wanting to be 
minimized in order to account for fairness (values not shown because it is proprietary information) 
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An examination of the fairness constraint shows that it meets five of the five 

fairness criteria described in section 3.4.1, as well as the five necessary measurement 

traits.  For a more complete literature review and explanation of fairness in the context of 

traffic flow management, please refer to Appendix A. 

Proportionality- The contribution of differing aircraft performance is taken into account 

with the fact that different aircraft types are assigned different fuel burns, so that using a 

percentage, fuel inefficient aircraft would still have the same percentage fuel burn 

increase compared to efficient aircraft.  The fuel burn increase would be proportional, 

since it is a percent, increasing or decreasing for the number of aircraft an airline 

operates. 

Envy-freeness- Envy-freeness may be the toughest characteristic to meet.  However, it 

can be implied that if all airlines lose the same amount of increased fuel use, there is no 

more enviable package among the different participants.  The only envy that would be 

created would come from airlines using different aircraft with different minimum cruise 

fuel burns, but the fuel burn is already taken into account in the purchase of an aircraft.   

Equitability- The equitability constraint requires different airlines creating different 

scales to measure the usefulness of the resource divided.  It is assumed that airlines all 

want to reduce fuel use, and thereby operating costs, making equitable divisions a purely 

economic concern.  This fairness constraint takes this equitability criterion into account, 

although a bidding process could be more effective in the future. 

Efficiency- Since this fairness measure would be an additional constraint of the overall 

optimization algorithm; the efficient division of the airspace will indeed be possible with 

the suggested fairness measure. 
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Truthfulness- Truthfulness will also be met with the suggested fuel burn equalization 

fairness measure since the measurement is unbiased as it is simply a function of aircraft 

performance.  Airlines will not be able to lie about their desired minimum fuel burn rate, 

because this data can be checked with other airlines and with the aircraft manufacturer. 
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CHAPTER 4: FORMULATION DESCRIPTION 

4.1 MACH-TIME DERIVATION 

The most important constraint in the problem formulation is the constraint 

relating the change in velocity to the change in time.  This section describes the 

assumptions and derivation leading to the relatively simple equation 4.1.13.  The 

derivation begins with the common equation distance equals rate times time, and 

develops from there.   

We assume the speed adjustment is implemented at initial point at t0, the time to 

travel from initial point to the virtual metering point is T, the original ETA at the virtual 

metering point is ti, and the absolute value of the ETA adjustment is !t. The positive 

sense of the adjustment !t is an advance. The relationship between these parameters is 

shown in Figure 4.1 for an advance with a value of !t.  For n aircraft, we can assume 

that, although the initial ETA provides a sequence for the aircraft, this sequence is 

capable of being altered. The necessary separation for all possible aircraft following 

combinations is determined from TASAT analysis, and is the difference between the 

initial ETA tinit and the desired time, tf, to meet separation requirements.   

 
Figure 4.1: Diagram of formulation variables 
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Assuming the ground speed of the aircraft is V, the distance D traversed by the 

aircraft during time T can be obtained as 

   
D ! Vdt

t0

ti

!  (4.1.1) 

Assuming the ground speed is increased by a constant value !V to achieve a time 

advance of !t, the distance traversed by the aircraft during time t - !t remains the same 

   
D = (V + !V)dt

t0

ti "!t
# = (V + !V)dt

t0

ti

# " (V + !V)dt
ti "dt

ti

#  (4.1.2) 
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t
0
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! # Vdt
ti #"t
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! # "Vdt
ti #"t

ti

! = D+ "V $T # Vdt
ti #"t

ti

! #"V $ "t  (4.1.3) 

Assuming further that the ground speed V during time period [ti - "t, ti] remains 

the same, i.e. V = V1 (corresponding to the original mach number) for this time period. 

Thus, we have 

 !V "T #V
1
" !t #!V " !t = 0  (4.1.4) 

This gives 

 T =
(V
1
+ !V ) " !t

!V  (4.1.5) 

This is to say, given ground speed at the virtual metering point, the time duration 

T needed to achieve a time advance of !t for a selected speed increase !V can be 

obtained or vice versa.   

To determine the final M
d ,i

, it is necessary to examine the vector relationship 

between ground speed and true airspeed and winds.  This relationship is shown in Figure 

4.2. 
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Wh and Wc denote head wind and cross wind components respectively. In vector 

form, we have: 

 WVV += r . (4.1.6) 

This gives 

 hcr WWVV !!=
22

. (4.1.7) 

The increase in ground speed is then 
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 (4.1.8) 

Using Taylor expansion and ignoring higher order small terms, we have 

 !V "
V
r

V
r

2
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c

2

!V
r (4.1.9) 

If the cross wind component is relatively small comparing to the true airspeed, 

then 

 !V " !V
r  (4.1.10) 

With the true air speed change known, the Mach number change, dependent on 

true airspeed and altitude can be found: 

 
 
 
 

 
 
 

 
Figure 4.2: Diagram of wind vectors 
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 !M i =
!V

i

ai

. (4.1.11) 

Where ai is the speed of sound at the cruise altitude of aircraft i.  Similarly,  

 M
i
=
V
i

a
i

. (4.1.12) 

Since it is assumed that the initial cruise speed Minit and final cruise speed Md 

occur at the same altitude for each flight, the speed of sound for each speed change 

calculation is constant, meaning that Equation 4.1.5 above can be written as 

 T =
(M

imit
+ !M) " !t

!M . (4.1.13) 

However, when expanded, this equation gives a nonlinear problem, with bilinear 

unknowns, !M*!t.  Yet, further simplification is possible, assuming that the change in 

Mach is much smaller than the initial Mach number.  If the initial Mach is assumed to be 

close to 0.8, and the maximum change in Mach is 0.02, this assumption introduces a 

2.5% error.  With desired accuracy on the order of seconds for separation, a 2.5% error 

added to !t’s that are at most 300 seconds, would introduce an error of +/- 8 seconds.   

This introduced error may prove to be significant during flight trials that require drastic 

repositioning of flights, but for the cases observed during the April-May 2007 flight test 

[11], !t’s on the order of 120-180 seconds were common.  In these cases, an error of 3-

4.5 seconds is less significant.  If, during the next flight test testing of this algorithm, this 

introduced error is an issue, this simplification must be addressed again.  For now, it is 

assumed that the simplified equation, assuming !M in the numerator of Equation 4.1.13 

goes to zero (!M << M), gives the final Mach-time relationship for each flight i: 
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i

!M
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i

. (4.1.14) 

And finally, we have the final Mach number: 

 M
d ,i
= M

init ,i
+ !M i . (4.1.15) 

 

4.2 FUEL BURN LINEARIZATION 

As explained in Section 2.3, it is possible to derive the fuel burn rate as a function 

of Mach number.  Once this curve is known, it is then possible to approximate the fuel 

curve into a series of linear segments.  However, in this case, the fuel burn rate vs. Mach 

number for each aircraft was given as a series of distinct points.  With such information, 

it was then possible to treat each data point as the end points of a series of lines that 

spanned the range of fuel burn rates for the given aircraft.  Figure 4.3 demonstrates this 

process.   

Each blue line in the figure denotes a constraint in the form 

   
Figure 4.3: Fuel burn rate vs. Mach for a commercial wide body jet 
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f = a M + b , (4.2.1) 

where f is the fuel burn rate, a the slope of the line, and b is the y-intercept for that line.  

As will be explained later, the problem will be solved in order to minimize the fuel burn 

experienced during the speed change.  Because this problem is a minimization problem, 

the above graph can be approximated with the following series of constraints: 

 

  

f M d i
! a

iMd i + b
i

f M d i
! a

iMd i + b
i

M

f M d i
! amiMd i + bmi

. (4.2.2-4.2.4) 

For each aircraft i, there are m lines connecting the fuel burn rate data points.  By 

writing each line in slope-intercept form, the Mach number selected, Md,i , will be forced 

to the correct line, because the overall goal is to minimize the fuel burn.  In this manner, 

the fuel burn characteristics of the aircraft intending to fly the CDA are taken into 

account in the optimization problem.  It is important to note that this fuel burn rate 

calculation is altitude-specific, and for any flight scenario, the appropriate fuel burn 

information must be acquired.    

 

4.3 THE OBJECTIVE FUNCTION 

4.3.1 Minimizing Fuel Burn Only 

As explained in the introduction, the overall goal of this thesis is to provide a tool 

that enables closely spaced flights to be arranged so that minimum spacing necessary to 

fly a CDA is achieved.  As one of CDA’s main benefits is fuel reduction for each landing 

flight, setting flights up to enable CDA should likewise avoid increased fuel burn.  With 
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this goal in mind, an obvious objective function for the linear program was one that 

minimized the fuel burn for the time period during which the speed change occurred.    

Since we are assuming a speed change (for the one speed change solution) to take place 

at known time duration prior to the aircraft’s initial ETA, this minimization objective 

translates to  

 minZ =  f i
M di

Ti

! 

" 
# 

$ 

% 
& 

i=1

N

' . (4.3.1) 

In other words, for each aircraft i, the fuel burn rate for the decision (final) Mach 

number is multiplied by the fixed time during which the speed change takes place, and 

this quantity is summed for the N aircraft involved.   

 

4.3.2 Minimizing Fuel Burn in Conjunction with Delay 

However, this objective function does not take into account the fact that, if there 

is a speed change for each aircraft, the time duration during which the speed change 

occurs is no longer fixed.  The previous objective function amounts to finding the speed 

change for each aircraft which brings it as close as possible to the aircraft’s maximum 

endurance cruise speed.  While this objective function would seem to reduce the overall 

fuel burn, as explained by Abad, “Further consider that the coupling between fuel burn 

and flight time is complex due to the occasional trade-off in optimizing for one at the 

expense of the other.  This coupling is obvious when considering the causality of flight 

time upon fuel burn: a longer flight time necessitates a greater fuel burn” [1]. This 

scenario is exactly the case in the present problem.   
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If the flights in question all had initial cruise speeds below the speed of minimum 

fuel burn rate, the above objective function would be adequate.  The flights would all 

increase speed by some amount so that they reach the required separation, the flights 

would arrive earlier, and fuel would be saved during the en route segment of the flight, as 

well as during the CDA.  However, this is not the reality.  Most flights during the 2007 

flight test [11] were cruising above the maximum endurance speed, at the cruise speed for 

maximum range.  Since this higher cruise speed was the observed scenario, the above 

objective function decreased the speed of each flight, actually resulting in increased fuel 

burn for each flight.  These results are presented in Chapter Eight.  With this result, the 

objective function was reexamined, and it was necessary to include the time change in the 

objective function as well.  A simple addition to the above function is: 

 minZ =  f i
M di

Ti !"ti( )
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$ 
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i=1
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) . (4.3.2) 

While this addition of !t is straightforward in terms of logic, the resulting math is 

not as simple.  Including two unknowns in the objective function when multiplied create 

a nonconvex problem.  Fortunately, the problem has been encountered previously, and 

Babayev [4] has provided a way to deal with such a situation by adding additional 

constraints as follows.  

 The approximation method is equivalent to creating a new variable that replaces 

the nonlinear terms, 

 ri =
f 

M di

!ti . (4.3.3) 

The following approximations create a series of planes outlining the values of the 

function.  It is then necessary to create a grid for the possible values of ri.  These grid 
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points are denoted by !
kl
i

, with each ! being a grid point for a specific ri value.  

Specifically,  

 !
kl
i

" F
k
#T

l , (4.3.4) 

with k and l being the number of grid points in the fuel burn and time ranges respectively. 

In this case, the range of possible fuel burn rate values are needed, as well as the range of 

"t’s.  To keep the calculation capable of being solved in a reasonable amount of time, a 

small range of "t’s are used.  It is assumed that the maximum range for "t is within ten 

minutes of the original ETA, meaning the range of "t is -300 seconds < "t < 300 seconds. 

By summing these grid values, and enforcing the condition that at most four !’s 

are nonzero (by SOS2 variables), the appropriate portion of the function can be 

approximated.  In mathematical terms, these constraints are as follows.  
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 ri ! free (4.3.14)  

 

4.4 ADDITIONAL CONSTRAINTS 

4.4.1 Variable Sequence Constraints  

It was initially thought that keeping a fixed sequence of aircraft, based on the 

initial ETA’s of the aircraft group, would help to simplify the optimization problem; the 

results derived from a keeping a fixed aircraft sequence are presented in Section 6.1.  By 

keeping a fixed sequence, it is only necessary to know the required separation between 

pairs of leading and following aircraft.  These n-1 constraints are easy to work with, and 

minimal coordination with TASAT is necessary, since only a few combinations of 

leading and following aircraft are needed. 

However, by freezing the sequence of the aircraft, improved aircraft ordering are 

ignored, and the solution giving the lowest possible increase in fuel burn may be missed 

entirely.  In addition, for terminal area landing scenarios where there is limited time to set 

up aircraft with a necessary separation, enabling a variable sequence in the formulation is 

even more important.   

The easiest way to see how a series of variable sequence constraints can be 

implemented can be seen by examining just three aircraft with a separation distance for 

each leading and following scenario. The conditions to be satisfied are:  
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with alpha being the required separation distance based on aircraft type.  Here, the 

separation time is written as being the same regardless of the aircraft order, but there will 

be a different !i,j value depending on the order of the aircraft.  For example, the 

separation time for a B767-300 following a B737-800 would be significant lower than for 

the case where the B737-800 follows the B767-300, due to the size difference of the 

aircraft.   

However, absolute values create a non-convex problem and these constraints must 

be rewritten as  
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according to Hillier and Lieberman [21], with z1, z2, and z3 binary variables, and P 

sufficiently large so that one constraint is made invalid (~10000).  In addition, the 

different separation time for the reciprocal aircraft orders are indicated by !i,j and !j,i for 

each pair of constraints.  Only one separation constraint will be active because of the 

binary variables and large value of P. 
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For multiple aircraft, determining all possible combinations of orders and the 

necessary separation adds many constraints, but does not change the solution time of the 

problem significantly.  For n aircraft, it is necessary to have i

1

N

!  constraints (3 aircraft 

necessitates 6 constraints, 5 aircraft necessitates 15 constraints, 16 aircraft necessitates 

120 constraints, etc.).   

 

4.4.2 Speed Change Limitation Constraint 

A constraint is needed to limit speed changes to at most one speed change per 

aircraft: 

 !
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 (4.4.10) 
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In Equation 4.4.10, !i is a binary variable.  By setting !i = 0, an aircraft that is for 

some reason is unable to fly a CDA would be eliminated from the speed change 

calculation but still considered in the spacing requirements for the remaining aircraft.   

In order to implement these constraints in CPLEX, absolute values had to be 

accounted for differently in order to avoid a nonconvex problem.  By creating a new 

variable, zi, this nonconvexity can be avoided.  Equations 4.4.13-4.4.16 replace equations 

4.4.10 and 4.4.11 above: 
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In these equations, M is a very large number, from the “big-M method” [21] so that each 

constraint can be active at all times. 

In addition, the maximum number of aircraft to which speed changes can be 

issued is specified with the following constraint: 

 !i " j
j=1

J

# ,  (4.4.17) 

with j most likely being the total number of aircraft flying the CDA.  However, an airline 

may only want a maximum number of flights per day making a speed change.  This 

maximum number could be adjusted here.   

4.4.3 Integer Constraints for a Discrete Mach Change 

Since only one or two speed changes are possible in versions of ESCORT, an 

important assumption is how well aircraft are able to hold a chosen Mach, and the 

accuracy with which a cruise Mach number can be chosen.  Based on observations for the 

2007 flight test [11], it was seen that aircraft could hold Mach numbers up to the 

thousandth place.  In order to include a discrete Mach change in the formulation, an 

additional constraint was needed: 

 cc
i
=1000!M

i (4.4.18) 

 cc
i  integer, free (4.4.19) 
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While this constraint allowed for the calculation of a discrete Mach change, as will be 

seen in Chapter 6, the inclusion of this constraint in various ESCORT algorithms created 

solutions with very high solution times.  In these cases, this constraint was removed and 

the solution gave Mach changes up to 16 decimal places.  The results in these cases 

would be rounded to the nearest thousandth to achieve the same discrete calculation as if 

4.4.18 and 4.4.19 were included.  However, rounding may increase the optimality gap of 

the solution. 

4.5 CODING PROCEDURES IN MATLAB & CPLEX 

Figure 4.4 shows the program’s flow as currently implemented in Matlab and 

CPLEX.  The four shades of green correspond to different sections of the code—

initialization, problem creation, problem solution, and post-processing.   
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4.5.1 Initialization 

The first section, initialization, is where the relevant data files are loaded.  The 

program requires a table for each aircraft that provides a schedule of fuel burn rate for the 

range of cruise speeds possible.  In addition, the separation requirements for that day’s 

flights must be loaded from TASAT.  All possible leading and following combinations 

for the day’s aircraft must be extracted at this point. 

4.5.2 Problem Creation 

The second group of functions is the problem creation steps.  These three 

blocks—calculate spacing matrix for all leading and following possibilities, find 

linearized fuel equations, and write objective function—are the sub-steps to this portion 

of the algorithm.  While the data from TASAT was loaded in the previous program 

 
Figure 4.4- ESCORT Program Flow 
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section, the possible leading and following combinations for each flight combination are 

enumerated here.  This process creates a matrix of all the flight numbers as seen in Table 

4.1: 

 

 

Writing out the possible separation constraints for each possible leading and 

following combinations gives i

i=1

N

!  constraints, as described in Section 4.4.1.  Care is 

taken not to write repeat constraints. 

The next block, that of finding the linearized fuel equations is explained in detail 

in Section 4.2.  By taking two consecutive points, and calculating the line that connects 

them in slope-intercept form (y = mx+b), these linearized fuel equations are derived.  In 

addition, at this point if the value of !t is included in the objective function for the given 

algorithm, the grid of possible values for ri is created.  As described in Section 6.1.6, high 

grid resolutions for the problem’s sample space are possible but drastically affect the 

solution time of the problem.  In practice, a grid with 3 – 5 points will be the most likely 

for running ESCORT. The objective function is then written, using the initial fuel burn 

rate values found from these linear equations and the initial Mach number and including 

each ri variable. 

Table 4.1: Sample separation constraints  
Flight Number 940 788 780 1002 752 
940 - 131.1 131.1 135 135 
788 115 - 107.2 115 115 
780 115 107.2 - 115 115 
1002 135 131.1 131.1 - 135 
752 135 131.1 131.1 135 - 
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Following the writing of the objective function, the constraints described in 

Sections 4.1 -4.4 are written in full.  This requires using the separation table created in 

the previous step as well as using the grid values in Eq. 4.3.3 to 4.3.14. 

4.5.3 Problem Solution 

Once the objective function and constraints are written, the full linear program 

formulation is saved in an .lp file format.  In addition, files are created in which the 

solutions and run time will be recorded.  Using the command  

 
run_command=['!ILOG_LICENSE_FILE=/u1/ilog/meta/access.ilm 
/u1/ilog/cplex101/bin/x86-64_RHEL3.0_3.2/cplex < ' cplex_commands]; 

 

CPLEX is called directly from Matlab, so long as Matlab is running from the Air 

Transportation Laboratory’s computational cluster called Ironman.  Using this command, 

CPLEX runs and reads the solution progress directly to Matlab’s command window.  If 

the problem is infeasible or unreadable, this information will be displayed at this time.  

However, if the problem is feasible, solutions are written to a file entitled sols_out. 

 

4.5.4 Post Processing 

In this series of steps, the CPLEX sols_out file is transformed to a long text file 

detailing each constraint and variable’s solution to results that are more useful to 

ESCORT users.  A Matlab function was created to read the sols_out file and save only 

the important variable solution values into a .mat matrix entitled all_data.mat.  This 

matrix contains all of the initial flight information provided to ESCORT, as well as the 

fuel burn rate at the initial Mach, the decision Mach number, fuel burn rate at this Mach, 
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final arrival time, net fuel burn difference for each flight, the time at which the Mach 

change is made, and, if two speed changes are possible, the time at which the aircraft 

returns to its original cruise Mach.  This data is also saved to a CSV file if later analysis 

is desired. 

A series of graphs is produced from this data.  In future versions of ESCORT, 

there will be more of a graphical user interface to input the initial information and display 

the final information.  It is assumed that this GUI will be designed in Matlab for initial 

use and later transferred for development in another language once the layout is finalized.  

The types of graphs generated are shown in Chapter 6.  The graphs include a comparison 

of the initial and final separation times for each aircraft, a bar chart displaying the Mach 

change for each aircraft, a graph displaying the time at which the Mach change is made (a 

trajectory chart), and a final graph showing the net fuel burn difference compared to the 

fuel used had the aircraft remained at its initial Mach for each aircraft.  Although the 

input and output features of ESCORT are rudimentary at this time, the purpose of this 

thesis is to show that the equations behind the program serve their intended purpose, and 

user-friendly GUI’s can be developed as the program progresses.   
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CHAPTER 5: FLIGHT TEST SCENARIO & SAMPLE DATA 

During the April-May 2007 flight test, CDA operations were observed for a 

period of 4 weeks [11].  During this time, 31 days of flights flying early morning 

operations from the west coast were observed to fly a CDA path shown Figure 5.1.  

While the fuel savings and noise data are still currently unavailable for these flights, this 

flight scenario provides a range of sample scenarios for late night CDA operations.  A 

range of aircraft—B737-800, B757-200, B767-300, and B767-400—were involved in the 

flight tests, as well as a range of wind conditions for each night.  The information 

collected from each day’s flight test was the date, flight number, tail number, origin 

airport of the flight, whether the plane flew the CDA or not, the runway to which the 

flight was directed, cruising altitude, cruising Mach, takeoff weight, required time of 

arrival at the metering point RMG, the actual time of arrival at RMG, the scheduled 

arrival time for the destination (ATL), the ATA at ATL, and wheels on time at ATL.   

This information provided cases to test ESCORT.  On one day, due to the tight 

initial spacing of the flights (among other factors not recorded), 10 of the 16 flights were 

unable to fly the CDA.  A key usefulness test for this thesis is to show the ease and 

elegance with which ESCORT provides a solution to previous problems encountered, and 

  
Figure 5.1: Delta’s Operational Control Center and Graphical Flight Following display [11] 
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also to show that more complex can also be handled.  On this sample, worst-case scenario 

day, there were 15 flights, all scheduled to arrive over the metering point RMG between 

9:06 AM and 11:40 AM.  While on that night care was taken to space these flights as 

well as possible, increasing and decreasing the speeds of the flights without creating new 

separation conflicts was beyond the capacity of myself and the other flight test 

researchers present without the air of ESCORT. 

The details of this difficult May 22, 2007 scenario are given in Table 5.1.   

 

Table 5.1. Sample initial conditions for a CDA scenario, taken from May 22, 2007 

Flight 
Number 

Aircraft 
Type 

Initial 
Mach 

Flight 
Departure 
Time  

Initial 
ETA 

Required 
Sep. (s) 

Initial 
Sep. 
(s) 

940 752 0.78 3:35 AM 9:05 AM 131.1 240 
788 763 0.785 3:39 AM 9:09 AM 107.2 720 
780 763 0.785 3:51 AM 9:21 AM 115 240 
1002 752 0.78 3:55 AM 9:25 AM 135 60 
752 752 0.78 3:56 AM 9:26 AM 131.1 1080 
1478 763 0.785 4:14 AM 9:44 AM 115 180 
716 752 0.78 4:17 AM 9:47 AM 135 0 
1076 752 0.775 4:17 AM 9:47 AM 107.2 300 
1282 764 0.79 4:22 AM 9:52 AM 107.2 60 
480 763 0.785 4:23 AM 9:53 AM 115 180 
1642 752 0.78 4:26 AM 9:56 AM 135 2400 
714 752 0.78 6:06 AM 10:36 AM 131.1 780 
806 763 0.78 6:19 AM 10:49 AM 115 540 
898 752 0.775 6:28 AM 10:58 AM 135 1020 
816 752 0.78 6:45 AM 11:15 AM 135 1500 
636 752 0.78 7:10 AM 11:40 AM     
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CHAPTER 6: RESULTS 

6.1 DETERMINING THE BEST ESCORT ALGORITHMS 

As described in Chapter 4, there were many variations of ESCORT as the 

program developed.  It is the intention of this section to provide data to determine the 

most meaningful and time-sensitive constraints to include in the final version of 

ESCORT.  The possible variations in the code include the inclusion/exclusion of fairness, 

having a fixed vs. variable sequence, the inclusion/exclusion of arrival time deviation in 

the objective function, the time prior to the metering point ETA at which the speed 

change is made, including an integer constraint for the final Mach number (keeping the 

final Mach value discrete), a one, or two speed change formulation, and how the time 

deviation solutions perform with some constraints relaxed.   

Equations 6.1.1 – 6.1.27 below present the baseline formulation in its entirety.  In 

order to examine how varying each of the above parameters affects ESCORT’s results, 

each variation will be compared to this baseline formulation.  The metrics used to 

evaluate the choice of algorithm will be the solution time, objection function values, net 

fuel burn difference, and the optimality gap.  The value of these metrics for each 

algorithm will be based on the sample scenario described in Chapter 5.  The baseline 

formulation is as follows: 
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 Tj !Ti +" i, j # Pzi$i % N, j % N | i & j  (6.1.19) 
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In order to summarize these results, a series of sample cases are presented for 

many combinations of the above variables.  While it would be arduous to examine the 

details of each solution, by examining the solution time, objection function values, and 

net fuel burn difference for the sample cases, the most promising solutions will be 

identified with these parameters and these solutions will then be examined in greater 

detail in Section 6.2.   

6.1.1 Baseline Algorithm 

The Baseline Algorithm has the following characteristics: 



 50 

• No fairness constraints 

• Variable Sequence 

• !t inclusion in the objective function (Eq. 4.3.2 as opposed to Eq. 4.3.1) 

• Full SOS2 Constraints (referring to Eq. 6.1.21 and 6.1.22) 

• 4 grid points 

• Speed change made 2 hours prior to arriving at the metering point 

• No integer constraints to ensure a discrete decision Mach number 

calculation 

The following sections will describe how varying each of these characteristics 

affects the performance metrics for ESCORT—the objective function value, solution run 

time, and overall net fuel burn.  Table 6.1 gives the baseline performance metric values 

for the Baseline solution. 

 

6.1.2 Fairness Inclusion 

Including the fairness constraints (Eq. 3.4.1 and 3.4.2) in the formulation with the 

baseline algorithm is the algorithm that will be referred to as Baseline with Fairness from 

here on.  Table 6.2 shows the difference in performance metrics for the Baseline and 

Baseline with Fairness Algorithms.   

Table 6.1: Baseline algorithm performance metrics 

Algorithm 
Description 

Objective 
Function 

value (kg) 
CPLEX 

runtime (s) 

Net Fuel Burn 
Difference 

(kg) 
Optimality 
Gap (%) 

BASELINE 108951 0.4 -117 0.01 
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For the inclusion of fairness, in this case, it is assumed that each of the sixteen 

flights in the sample case belongs to a different airline.  In such a case, the percentage 

increase in fuel burn would be equalized for each flight.  This case is the worst-case 

scenario for sixteen flights, because it is more likely that groups of aircraft would belong 

to one airline, and that entire aircraft group could have the same percentage fuel burn 

increase as other participating groups.  From these results, it is apparent that although 

more airlines may be more likely to participate in CDA knowing that the penalty of 

increased fuel burn will be shared, including fairness creates a net increase in fuel burn 

that would not be present otherwise.  Only if there are multiple airlines involved should 

fairness be included. 

6.1.3 Variable Sequence 

Section 4.4.1 detailed the variable sequence constraints.  Had the sequence 

remained fixed, equations 6.1.28 would have been used in place of Eq. 6.1.19 and 6.1.20. 

 (t
i+1 !"ti+1) ! (ti !"ti) # Si,i+1 (6.1.28) 

By assuming a fixed sequence, the number of constraints in the problem is reduced from  

i

i=1

N

!  constraints to n-1 constraints.  The effect of this reduced number of constraints 

shows in the CPLEX runtime column of Table 6.3.   

Table 6.2: Comparison of Baseline and Baseline with Fairness Algorithms 
 

Objective 
Function 

value (kg) 

CPLEX 
runtime 

(s) 

Net Fuel 
Burn 

Difference 
(kg) 

Optimality 
Gap (%) 

BASELINE 108951 0.4 -117 0.01 
BASELINE 
w/ Fairness 109636 1.1 476 0.01 
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While there is a faster runtime compared to the Baseline Algorithm, the net fuel burn 

difference is significantly higher (by 114 kg), and the time difference achieved by the 

reduced number of constraints is not seen to be sufficient to have a fixed, instead of a 

variable, aircraft sequence. 

 

6.1.4 !t Inclusion in the Objective Function  

As described in Section 4.3, there were two possible objective functions considered in 

ESCORT.  Here, it will be shown that while not including a time difference between 

initial ETA and calculated ETA term (!t) in the objective function reduces the objective 

function value, the net fuel burn increase is the real metric of usefulness.  Table 6.4 gives 

the comparison between the Baseline algorithm and one that does not include !t in the 

objective function. 

Table 6.3: Comparison of Baseline and fixed sequence algorithms 
 

Objective 
Function 

value (kg) 
CPLEX 

runtime (s) 

Net Fuel Burn 
Difference 

(kg) 
Optimality 
Gap (%) 

BASELINE 
 108951 0.4 -117 0.01 

FIXED 
SEQUENCE 

 109057 0.3 -3 0.01 

Table 6.4: Comparison of Baseline and no !t inclusion algorithms 
 

Objective 
Function 

value 
CPLEX 

runtime (s) 

Net Fuel Burn 
Difference 

(kg) 
Optimality 
Gap (%) 

BASELINE 
 108951 0.4 -117 0.01 

NO DT 
Inclusion 

 107622 0.1 658 0.05 
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While the objective function value is lower (the sum of fuel burn for the duration of the 

speed change), in the case of no !t inclusion, including !t would actually be an increase 

to the time during which the speed change takes place, so that the objective function is 

deceptive in showing a lower total fuel burn.  However, by comparing the fuel burn of 

flights making a speed change to the fuel burn had the speed change not taken place and 

summing this difference, the net fuel burn difference gives a good measure of the 

usefulness of the different algorithms.  Although the no !t inclusion algorithm has a 

faster run time, the net fuel burn difference is significantly higher (775 kg) for this 

algorithm, and the reduced solution time does not compensate for the increase in fuel 

burn that would be observed. 

6.1.5 Relaxed SOS2 Constraints 

While including !t in the objective function is beneficial in reducing the net fuel burn 

difference, it is possible to relax some of the constraints in the formulation, particularly 

the SOS2 constraints, Eq.6.1.21 and 6.1.22.  Relaxing these constraints still gives feasible 

solutions, although all of the vertices of the linear program may not be fully examined.  

Yet, this relaxation reduces the solution run time and achieves only a marginally higher 

net fuel burn difference, as shown in Table 6.5.  However, the decreased run time is still 

not enough to replace the utility of the Baseline Algorithm. 
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6.1.6 Number of Grid Points Variation 

Another parameter that can be varied if Eq. 4.3.2 is used as the objective function 

is the number of grid points.  This number has the most drastic effect on the solution time 

out of any algorithm parameter.  In addition, the net fuel burn difference also depends 

heavily on the number of grid points.  The selection for the Baseline algorithm to use four 

grid points was a tradeoff between a low solution run time and a low net fuel burn 

difference.   

The Baseline Algorithm was chosen to be the lowest sum of solution time and net fuel 

burn, which occurs with four grid points.  In Figure 6.1, the bar corresponding to four 

Table 6.5: Comparison of Baseline and relaxed SOS2 algorithms 
 

Objective 
Function 

value (kg) 
CPLEX 

runtime (s) 

Net Fuel Burn 
Difference 

(kg) 
Optimality 
Gap (%) 

BASELINE 
 108951 0.4 -117 0.01 

SOS2 
Relaxed 

 107812 0.1 -93 0.01 

  
Figure 6.1: Net fuel burn and solution run time vs. number of grid points 
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grid points clear has the lowest (most negative) bar.  It should be noted that 1 grid point 

gives an infeasible solution, and 6 grid points gives solution run times upwards of two 

hours (not displayed in Figure 6.1).  The data in table 6.5 gives a summary of the 

algorithm performance metrics for varying numbers of grid points. 

6.1.6 Altered Speed Change Duration with and without Fairness 

 The way the formulation has been written, the time at which a speed change is 

made must be fixed.  For the Baseline Algorithm, it is assumed that the speed change for 

each aircraft is made two hours prior to the aircraft’s initial ETA to the metering point.  

While further fuel savings may be gained by making the speed change earlier in the 

aircraft’s flight plan, the speed change must also me made as late in the flight as possible 

so that the most accurate weather information can be used in the IET trajectory predictor.  

Figure 6.2 shows the additional benefits making a speed change further in advance would 

have for algorithms that do not include fairness.  In addition, for the given scenario, 

Table 6.6: Baseline algorithm compared to varying numbers of grid points 
 

Objective 
Function 
value (kg) 

CPLEX 
runtime (s) 

Net Fuel Burn 
Difference 
(kg) 

Optimality 
Gap (%) 

BASELINE 
 108951 0.4 -117 0.01 

1 Grid   
Point Infeasible Infeasible Infeasible Infeasible 
2 Grid 
Points 107799 0.0 -96 0.04 
3 Grid 
Points 108941 56.5 57 0.01 
4 Grid 
Points 

(Baseline) 108951 0.4 -117 0.01 
5 Grid 
Points 109123 363.2 -88 0.01 
6 Grid 
Points 109196 6962.2 -121 0.01 
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making a speed change later than 44 minutes (0.73 hours) creates an infeasible problem, 

and the solution run time increases in an almost linear relationship with the Mach change 

duration greater than 2 hours.  

 For algorithms including fairness, the benefits of choosing a greater Mach change 

duration are not apparent.  In fact, a Mach change duration of 1 hour gives a lower net 

fuel burn difference than the 2 hour mach change duration.  Because this low net fuel 

difference with a short Mach change duration is such an interesting result, this algorithm 

will be examined further in Section 6.2.  This algorithm will be referred to as the Quick 

Mach Duration Algorithm. 

  
Figures 6.2.A and 6.2.B: Solution run time and net fuel burn difference vs. Mach change duration, no 
fairness 
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6.1.7 Discrete Mach Number Integer Constraints 

The last parameter varied in the algorithms was the inclusion of integer constraints to 

make the decision Mach a discrete value.  While the inclusion of these constraints makes 

the solution output easier to relay to the pilots, it was found that compared to the Baseline 

Algorithm, incorporating these integer constraints vastly increased the solution run time.  

In addition, the optimality gap was the largest of any of the other solutions if integer 

constraints were included.  While certain combinations of the algorithms, such as 

including integer constraints but relaxing the SOS2 constraints, may have a reduced run 

time, the benefit of having discrete Mach changes did not outweigh the impracticality of 

a solution that that takes two hours to compute.  Table 6.6 details these results. 

 

  
Figures 6.3.A and 6.3.B: Solution run time and net fuel burn difference vs. Mach change duration, no 
fairness 

Table 6.7: Discrete mach number integer constraints compared to Baseline Algorithm 
 

Objective 
Function 

value (kg) 

CPLEX 
runtime 

(s) 

Net Fuel 
Burn 

Difference 
(kg) 

Optimality 
Gap (%) 

BASELINE 108951 0.4 -117 0.01 
Integer 

Constraint 109140 7250.8 -71 1.19 
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6.2 EXAMINING ESCORT’S SOLUTIONS 

The results of the three algorithms presented in this section are those 

corresponding to the Baseline, Baseline with Fairness and Quick Mach Duration 

Algorithms.  The Baseline Algorithm assumes one speed change, with full SOS2 

constraints for the inclusion of the altered arrival time in the objective function, solving 

for four grid points, making the speed change 2 hours prior to the aircraft’s initial ETA at 

the fix, and not including integer constraints on the final Mach number.  The Baseline 

Algorithm with Fairness has all of the same characteristics, except it includes fairness 

constraints.  Lastly, the differences for the Quick Mach Duration Algorithm are that it is 

solved assuming a speed change made one hour prior to the initial metering fix ETA.  As 

stated previously, these Algorithms were selected for further examination, because the 

Baseline Algorithm and the Baseline Algorithm with Fairness corresponded to the pair 

with the lowest net fuel burn values for an assumed speed change two hours from the fix 

for basic constraints and fairness constraints, respectively.  The Quick Mach Change 

Algorithm gave the lowest net fuel burn for any algorithm including fairness. 
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The first results to be examined are those showing the initial and final ETA 

separation calculated by ESCORT in Figures 6.4 – 6.6.   

 

 
Figure 6.4: Initial and final ETA separation of Baseline Algorithm  

Figure 6.5: Initial and final ETA separation of Baseline Algorithm with Fairness 
 
 

 
Figure 6.6: Initial and final ETA separation of Quick Mach Duration Algorithm 
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Although these figures appear similar, there are important features to note.  While 

it is necessary for aircraft in each Algorithm to make a speed change to meet the 

separation constraints provided by TASAT, the Baseline Algorithm provides a solution 

offering little deviation from the aircraft’s initial cruise speed.  However, because the 

Baseline Algorithm with Fairness endeavors to fairly divide the increased fuel usage 

among the sixteen aircraft, treating each aircraft as if it were operated by a separate 

airline, more movement is necessary to still meet the separation requirements.  Finally, in 

the Quick Mach Duration Algorithm, because the speed change is assumed to be made so 

much closer to the arrival time, more drastic speed changes are necessary indicated by the 

slopes of the lines from initial to final ETA.  While more speed changes are needed for a 

solution one hour prior to the aircraft’s arrival at the metering fix, the problem still 

remains a feasible one. 

Figures 6.7, 6.8, and 6.9 further demonstrate the difference in speed change 

calculations, showing a trajectory of the Mach change for each aircraft plotted against 

flight time, in hours.  With these graphs, it is straightforward to observe the relative 

complexities of each solution.  In the Baseline Algorithm, it is worth noting that five 

flights do not need to alter their speeds at all, demonstrating that care is taken by the 

airline to select a cruise speed that is optimal in terms of fuel burn and schedule.  The 

other flights are made to change speeds because of the CDA separation constraints in 

place.  In future versions of ESCORT, it may be practical to have a constraint indicating 

that if a flight is not in conflict, it should not be made to change speeds.  However, as 

seen in the Baseline Algorithm, such a constraint may not be necessary, as a third of the 

flights already remain at the same cruise speed.   Yet for small speed changes, it may be 
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better for practical reasons to avoid requesting a very small (0.001 Mach or less) speed 

change. 

 

 

Figure 6.7: Mach trajectory for Baseline Algorithm   
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Figure 6.8: Mach trajectory for Baseline Algorithm with Fairness  

 
Figure 6.9: Mach trajectory for Quick Mach Duration Algorithm 
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The remaining graphical results (Figures 6.10-6.12) show the difference in fuel 

burn for each algorithm.  As with the summing of the net fuel burn metric described in 

Section 6.1, ESCORT calculates net fuel burn for each aircraft.  This calculation 

compares the fuel used throughout the duration of the speed change to the fuel which 

would have been used had the aircraft remained at its initial cruise speed.   

The key result from this series of figures is the Baseline Algorithm calculates a 

potential fuel savings for a group of aircraft assigned to fly a CDA, so long as they all 

belong to the same airline looking for an overall net benefit.  The Baseline Algorithm 

calculates a potential fuel savings of 117 kg for the sixteen combined aircraft.  While this 

a best-case scenario, the net sum fuel burn for the Baseline Algorithm with Fairness is a 

fuel penalty of 476 kg and is the worst-case scenario, with each flight belonging to a 

separate airline.  It will most likely be the case that a series of CDA flights will belong to 

groups of different airlines, and the fuel penalty (or savings) will lie somewhere within 

this range (-117 kg to 467 kg).  Much of the savings will depend on the particular 

combination of flight paths and fleet mix for the given day’s CDA grouping.   

The large value of fuel burn difference for flights 716 and 1076 in the Baseline 

Algorithm with Fairness and the Quick Mach Duration Algorithm, respectively, is due to 

these aircraft being scheduled to arrive at the same time.  Even if these aircraft were not 

flying the CDA, a rerouting by air traffic control would be likely with the ETA’s of each 

aircraft being so close.  In this case, the fuel burn difference between the calculated route 

for CDA spacing and the conventional route may be less than what is indicated in these 

figures.   
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In addition, the Quick Mach Duration Algorithm actually gives a net fuel burn 

increase lower than that found with the Baseline Algorithm with Fairness.  This result is 

surprising, because the Quick Mach Duration Algorithm assumes a speed change being 

made an hour prior to the aircraft’s arrival at a metering fix, whereas the Baseline 

Algorithm with Fairness assumes a change two hours prior to arrival.  Yet, while this 

lower net fuel burn for a speed change made closer to the aircraft’s arrival time does not 

make intuitive sense, fixing the point at which the speed change is made keeps the 

problem solvable with fast solution times.  Future ESCORT versions may want to run 

multiple cases to determine what is the optimal time at which the speed change should be 

made.  

 

 
Figure 6.10: Fuel burn difference for en route flight segment for the Baseline Algorithm 
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Figure 6.11: Fuel burn difference for en route flight segment for the Baseline Algorithm with 
Fairness 

 
Figure 6.12: Fuel burn difference for en route flight segment for the Quick Mach Duration 
Algorithm 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

This thesis aimed to provide a tool for near-term CDA expansion so that further 

fuel and emissions savings could be achieved by the nation’s airports.  The limitations to 

CDA expansion were described as threefold—knowing how far apart aircraft should be 

spaced prior to beginning the CDA, knowing exactly when aircraft will arrive at a 

metering point prior to their arrival, and knowing the optimal way to set up the aircraft’s 

necessary spacing at a metering point prior to CDA so that the fuel savings inherent in the 

CDA are maintained.  ESCORT functions with two other tools—TASAT, to calculate the 

necessary separations, and the IET, to provide an accurate ETA—to advance CDA’s 

implementation.  By incorporating fuel burn information based on aircraft type and 

fairness constraints in a mixed integer linear programming problem, ESCORT goes 

beyond the current state of the art in CDA trajectory tools to provide a tool for speed 

calculation for en route flights flying a CDA. 

7.1 FUTURE WORK 

While ESCORT, which is an en route speed change program to implement CDA, 

has addressed many concerns, such as fairness, maintaining linearity, and giving logical 

results, there are areas in which more work needs to be completed. For example, it was 

assumed that the ETA was an absolute discrete time.  However, observations during the 

2007 flight test showed that a constant ETA is not nearly the case, and these estimations 

could vary widely during the course of a flight, as shown in Figure 2.4.1.  ESCORT is 

being developed concurrently with an improved ETA estimator at Georgia Tech so that 

the ETA variation can be minimized.  Future versions of the en route speed change tool 



 67 

must handle ETA’s as a mean arrival time with a probability distribution as opposed to 

the current discrete ETA assumption.   

In addition, the sample case presented here assumed the first speed change being 

made two hours prior to arrival at the metering point.  This was done to ensure feasibility 

of the solution in all formulations and was a fairly realistic assumption.  However, a more 

realistic time to make the first speed change will depend on the flight scenario for that 

day.  Future versions of this code must work iteratively from a two-hour speed change 

solution to one that begins prior, with the output being the solution that gives the lowest 

net fuel burn.  This inclusion will need to be an iterative procedure outside of the 

optimization itself. 

Another extension to this project involves testing ESCORT’s results in a real-time 

flight scenario.  Before this can happen, user-friendly graphical user interfaces must be 

developed so that the flight information for that day is simple and intuitive to enter.  The 

end goal of this relay tool is to interface directly with ACARS once the speed change 

schedule is calculated.  In this final version, the information would then be uploaded to 

the relevant aircraft for the pilot to observe and execute the speed change advisory.   

Yet before this tool can be taken to that level of automation, it will be important 

to test its accuracy.  A testing procedure for ESCORT before actually giving speed 

changes to the aircraft is to observe a series of flights similar to the previous CDA 

situations observed during 2007. While observing these flights from an AOC, the IET 

would be tested concurrently, entering the flight path and wind information for that day 

and calculating the ETA for each flight.  At the same time, a sample speed change 

schedule would be created using ESCORT.  Assuming that the IET provides accurate 
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ETA’s for the flights on that night, the speed change schedule from ESCORT would be 

entered into the IET to observe the final separation of the aircraft had they actually 

executed the speed changes.  If successful, a flight test using the IET and ESCORT, while 

actually requesting aircraft to make these speed changes, would follow.  In this case, the 

fuel savings information from the actual CDA portion and the estimated fuel difference 

for the en route portion with and without speed changes issued could be compared.   

There are clearly many directions where this initial research can be applied, and 

this thesis will be the basis for that future work. 

 

7.2 CONCLUSION  

The motivation for this project is to automate the separation of CDA flights so 

that more parties can experience the fuel, cost, and noise savings of CDA.  The 

formulations presented for the ESCORT (En route Speed Change Optimization Relay 

Tool) program above are a large first step in meeting this goal, with sample results using 

initial conditions from a May 2007 CDA flight test validating the solution procedures.   

There are two main strengths to this en route speed optimization calculation.  The 

first is a fast solution time.  By keeping the optimization problem linear (a mixed integer 

linear programming problem) for all three of the formulations—the Baseline Algorithm, 

the Baseline Algorithm with Fairness, and the Quick Mach Duration Algorithm—the 

combined MATLAB and CPLEX code was able to solve the sample problem in less than 

two seconds.  The fast-solving formulations therefore will expand well to CDA scenarios 

where more than 16 flights are involved, while still being able to be run in real time.  The 

end goal of the en route speed change program is to calculate a Mach trajectory for each 
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aircraft, relay this information to the aircraft’s airline operations center (AOC), and then 

have the AOC dispatchers transmit the Mach schedule to the pilots while in the air.  A 

fast solution time ensures that this end capability is feasible.   

A second strength of the current program is that the results found so far are in line 

with expectations.  For example, although the fairness formulation is more “expensive,” 

in terms of fuel burn increase, the cost is shared among all aircraft, which should be 

pleasing to the different airlines involved.  While this cost is shared, the upper range of 

the combined fuel penalty was on the order of 450 kg.  The CDA fuel benefits would 

likely offset this fuel penalty, and these numbers do not bring into play the added noise 

reductions that are one of the main motivations for CDA. Another example of the 

program meeting expectations is that the spacing constraints are met with all 

formulations, with the two speed-change solutions being more accurate.  As two speed-

changes allow for greater flexibility, this result makes sense.   

 Although there are many future steps to full-scale implementation of this en route 

speed change program to implement CDA, the groundwork has been laid.  Development 

of the speed change will continue with real time data being tested in an airline’s AOC, as 

well as a future flight test using the program in 2008.  This tool will go a long way 

toward expanding the cost, fuel, and emissions savings of CDA to many more air 

transportation parties once the current limitations have been addressed. 
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APPENDIX A 

FAIRNESS IN THE CONTEXT OF EN ROUTE SPEED OPTIMIZATION 

A.1 Conditions of Fairness 

The qualities of fairness can be divided into five distinct categories.  The 

combination of these five distinctions has been seen by those in the field of negotiations 

to make up the fairest allocation possible. Although en route airspace is not a settlement, 

its allocation is similar, as there is no Best Alternative to a Negotiated Agreement 

(BATNA), because the involved parties cannot simply walk away from the ‘table.’  If all 

of these five criteria are met, described in Brams’ and Taylor’s The Win-Win Solution [8], 

and Fair Division [7], then the solution found is as close to fair as possible. 

A.1.1 Proportionality  

According to Aristotle, goods should be divided in proportion to each claimant’s 

contribution.  This characteristic means that if there are three parties, but party 1 

contributes 20% of the resources for the construction of a good, party 2 contributes 30% 

of the resources, and party 3 contributes 50% of the resources, then a proportional 

division would allocate 20% of the divisible good to party one, 30% to party 2, and 50% 

to party 3.  This portion of the fairness definition is seen to be inherent as a part of envy-

free division. 

A.1.2 Envy-freeness 

 No party is willing to give up the portion it receives in exchange for the portion 

someone else receives, meaning that no party envies any other party.  An envy-free 

division is always proportional, because each party does not want anything from the other 



 71 

parties involved, meaning that the resource is divided proportionally (at least in the eyes 

of the resource division participants).  Strategies that the other players select cannot 

prevent you from obtaining a portion that you think is the largest or most valuable. 

A.1.3 Equitability 

All parties think they receive the same fraction of the total, as each of them values 

the different resources. A difficult issue of how to measure whether both parties are 

equally happy is solved using a point-allocation system.  In such a system, each party 

assigns points to the things being divided, and if when divided, the parties receive items 

with equal point values for the respective parties’ scale, then the division is equitable.  In 

the case of dividing en route airspace, dividing fuel burn may be a starting point for a 

measure of equitability. 

A.1.4 Efficiency 

A division is efficient when there is no other allocation of the system that would 

raise the allocation for the participant with the minimum allocation without decreasing 

the other participants’ allocations.   In other words, all users would benefit from a more 

efficient distribution.  When such a possibility no longer exists, then the division is 

efficient.  This efficiency will come from the general optimization algorithm being 

developed. 

A.1.5 Truthfulness  

For the conditions such as envy-freeness and equitability to be met, the 

individuals involved in the ‘bargaining’ must have their true intentions and desires known 

to all other parties.  For a fair division, one party cannot try and ‘play the game,’ saying 
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that one resource allocation scheme would be more desirable to his own party than 

another in hopes that another party will change their resource allocation preference, 

eventually helping the first airline.  This condition, sometimes not included in fairness 

measurement and evaluation schemes, may be the most important, as an incentive to tell 

the truth must be inherent in any resource allocation in order for the allocation algorithm 

to be effective.   

Proportionality is inherent in envy-freeness, so there are really four criteria to 

consider when making a fair division.  The next questions to answer, obviously are how 

can this definition of fairness be allocated, implemented and measured effectively? 

A.2 Means of Allocation 

A study of fairness would not be complete without including different methods of 

allocating resources with fairness in mind.  For fair allocation, it may be necessary to 

couple the means of allocating the resource with different ways of measuring fairness and 

the optimization algorithm.  The means of allocation are presented separately from 

fairness in order to give a clear distinction. 

A.2.1 Random/Lotteries 

For a random allocation of airspace re-routings, it will be assumed that a history 

of all re-routings of an airline’s aircraft can be maintained. If a set of aircraft with 

conflicting flight paths is redirected, there will always be an aircraft that has the worst 

redirection penalty (fuel use increase).  If the worst redirection penalty, for example can 

be assigned to different aircraft at random, then for a large enough time period, t, airlines 

will have a proportional distribution of worst rerouting penalties based on the number 

aircraft they operate.  Keeping track of the random re-routings for a long enough time 
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span will create a proportional, envy-free, and efficient allocation scheme.  However, 

airlines may judge that certain re-routings may be more advantageous at certain times 

than at others.  Airlines may not be satisfied with a static random distribution system 

when compromise between airlines may be possible for a given situation.  In this sense, a 

random distribution is not equitable.   

A.2.2 First-Come, First-Served 

The method of first-come first-served, or Grover Jack, has long been in place in 

the Air Traffic system when dealing with aircraft arrivals.  However, this allocation of the 

landing resource, or in the en route case, the original intended flight path of the airline, 

will not meet the fairness constraint of envy-freeness.  In the en route situation, the point 

to which the first to arrive (first-come) is measured from is arbitrarily defined.  Since 

aircraft are flying on different trajectories, there can be no set point where they are 

‘arriving,’ so the first-come first-served allocation is an arbitrary decision, which will 

always create a situation of envy.  In addition, Grover Jack had consistent problems of 

airlines giving false information [5], exacerbating delay problems and making fair 

allocation impossible by violating the fifth fairness constraint of truthfulness above. 

A.2.3 Auctions/Sealed Bidding 

Auctions are an efficient mechanism to assigning a nominal value on a scarce 

resource and are implemented when the seller does not know the bidders' willingness to 

pay for an item for which there is no well-functioning market (find source).  In the En 

Route case, bundles of flight path re-routings would be auctioned in a real-time situation 

so that the equitability characteristic lacking in a random allocation could be addressed.  

Outlining the details of an auction is a fitting forward-thinking solution that will be 
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invaluable in presenting a best-case scenario report for en route airspace optimization.  

Auctioning airspace and landing slots has been considered as an alternative to dividing 

NAS resources, but has many auction details to address before its implementation is 

possible.   

Ball and Donahue have presented a possible auctioning scheme for landing and 

takeoff slots, assuming that a simultaneous multiple round ascending bid combinatorial 

auction (combinatorial auction is one in which combinations of items are bid for at once) 

would be the model auction to pursue.  The idea is attractive as it shows strong promise 

for improving the safety, delay performance and economic efficiency of the NAS [5]. 

However, before such an auction scheme could be implemented, auction concerns 

involving bidding activity, bidding language, bidding aid tools, pricing of all items, 

winner determination calculations, bidding increment, and stopping rules would all have 

to be addressed.  In addition, developing an auction system for relatively minor speed 

adjustments most likely will induce a greater cost than the small fuel savings being 

divided. 

A.2.4 Collaborative Decision Making and Collaborative Routing 

Collaborative decision making is the process in which airlines communicate with 

the FAA in order to provide real time information to Air Traffic Management personnel 

so that they can ration arrival and departure slots based on the airlines' schedules instead 

of the traditional Grover Jack first come, first serve method.  Flights are then filled into 

openings created by the Ration by Schedule (RBS) method in order to fill all slots.  

CDM, in conjunction with RBS and compression have been seen to be effective in 

allocating scarce airport slots.  According to the FAA, the implementation of CDM 
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solutions in GDPs saved more than four million minutes of scheduled ground delay 

between September 1998 and December 1999 [25].  

Collaborative routing uses an idea similar to CDM, where airlines coordinate with 

the FAA and Traffic Flow Management personnel to assign flight paths [9].  

Collaborative Routing is the domain in which the En Route Optimization algorithm will 

function so an entire airspace sector's flights will be redirected slightly so that the en 

route airspace can allow more flights at a single time.  While collaborative routing is not 

inherently fair, it meets the restraint of meeting efficiency, and fairness can be 

implemented from this baseline fairness condition.  Any of the allocation methods 

described here are a form of collaborative routing, because it will be necessary to obtain 

the intended flight paths from the airlines and then display to them the optimized re-

routings.  From here, the Collaborative Routing will diverge into random allocation, 

auctioning methods, or a fair allocation inherent in the optimization algorithm, which will 

use a fair division measure, discussed in section 5.4. 

A.2.5 Ultimatum Bargaining and Divide-and-Choose 

The allocation methods of ultimatum bargaining and divide-and-choose are 

classic game theory methods.  In the first, two or more users are involved. The first user 

divides the pie, and the user either accepts the division, or rejects the division and neither 

user receives anything.  Divide-and-choose is similar in that an individual partitions the 

desired resource and the remaining user picks the half he wants.  Both allocation methods 

can be extended to more than two users, but in the allocation of airspace in a dynamic 

situation, there is no real equivalent to cutting airspace and asking for users to either 

accept or reject it.  In the ultimatum case, neither user has the capacity to refuse anything, 
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and for the Divide-and-choose case, the airspace is not readily divisible, and there is no 

equivalent to the knife to divide the pie in the airspace application.   

 

A.3 Possible traits for a Fairness Measure 

The following characteristics would create an ideal metric to measure fairness.   

A.3.1 Population Size Independence 

The amount of fairness should not depend on the number of individuals present 

among whom the resource is to be divided. 

A.3.2 Scale and Metric Independence 

The unit of measure for the resource should not matter 

A.3.3 Boundedness (Vary from 0-1) 

In order to compare fairness measures, there needs to be a set range of values, and 

fairness ranging from 0 to 1 provides a readily-understandable scale, with 0 being 

completely unfair, and 1 being completely fair. 

A.3.4 Continuity 

Any change in the resource allocation should reflect in the index, meaning that the 

fairness metric cannot just measure minimum and maximum resource allocations. 

A.3.5 Individual Characterization 

Since individuals will come to the ‘bargaining table’ with varied backgrounds, 

these backgrounds must be able to be accounted for, necessary for any envy-free or 

equitability factor to be taken into account in the fairness measure.  
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A.3.6 Adequate Timescale 

A fairness measure should be able to track fairness both for an instantaneous case 

and for a given time scale, keeping track of important quantities for the fairness to be 

measured. 

 

A.4 Proposed Fairness Criterion 

The suggestion for a fairness criterion to allocate en route speed adjustment is to 

divide equally possible percent increase in fuel burn among different aircraft (or aircraft 

groups).  Fairness is an important aspect of CDA because for CDA to have the most 

effect, as many pilots and airlines must agree to perform the procedure as possible.  If 

each party knows that fuel burn and schedules of participating flights are all being altered 

as fairly as possible, it is assumed that more parties will be willing to participate.   Each 

airline seeks to operate their aircraft at, or close to the minimum fuel burn, reducing costs 

and maximizing aircraft range.  By identifying the type of aircraft involved in the 

optimization calculation, the fuel burn characteristics are known for each aircraft. Then, a 

constraint is needed so that the percent fuel burn increase is equalized for all the aircraft 

involved. Such constraints are 
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The first constraint is simply an expression for the percentage fuel burn, and the 

second equation ensures that consecutive airplanes in the CDA sequence have equivalent 

percentage fuel burn increases to within some tolerance (i.e. 0.01%).   

An example fuel burn curve is shown in Fig. A.1. The highlighted area (between 

the triangle and circle) shows an example of a range of possible values, centering on the 

initial cruise Mach of the aircraft (indicated by the green circle).  The percentage 

deviation from the gray triangle, the fuel burn minimum to the red square will be 

equalized for each flight in the CDA-performing fleet.   These constraints are a part of the 

 

 
Figure A.1: Chart showing the minimum fuel burn rate with the percentage difference between the initial fuel 
burn rate and the fuel burn rate at the decision Mach number compared to the fuel burn rate wanting to be 
minimized in order to account for fairness (values not shown because it is proprietary information).  
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optimization model so that each aircraft has the same percentage increase in fuel burn for 

their re-routings.  

An examination of this fairness criteria shows that it meets four of the five 

fairness characteristics.  In addition, as a fairness measure, all six fairness measure traits 

are satisfied. 

Proportionality- The contribution of differing aircraft performance would be taken 

into account with the fact that different aircraft types would be assigned different fuel 

burns, so that using a percentage, gas guzzling aircraft would still have the same 

percentage fuel burn increase compared to efficient aircraft.  The fuel burn increase 

would be proportional, since it is a percent, increasing or decreasing for the number of 

aircraft an airline operates. 

Envy-freeness- Envy-freeness may be the toughest characteristic to meet.  

However, it can be implied that if all airlines lose the same amount of increased fuel use, 

there is no more enviable package among the different participants.  The only envy that 

would be created would come from airlines using different aircraft with different 

minimum cruise fuel burns, but the fuel burn is already taken into account in the purchase 

of an aircraft.  More work in speaking with actual airline representatives is necessary to 

see if the envy-free characteristic is met from their perspective. 

Equitability- The equitability constraint requires different airlines creating 

different scales to measure the usefulness of the resource divided.  It is assumed that 

airlines all want to reduce fuel use, and thereby operating costs, making equitable 

divisions a purely economic concern.  This fairness constraint takes this equitability 

criterion into account, although a bidding process could be more effective in the future. 
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Efficiency- Since this fairness measure would be an additional constraint of the 

overall optimization algorithm; the efficient division of the airspace will indeed be 

possible with the suggested fairness measure. 

Truthfulness- Truthfulness will also be met with the suggested fuel burn 

equalization fairness measure since the measurement is unbiased as it is simply a function 

of aircraft performance.  Airlines will not be able to lie about their desired minimum fuel 

burn rate, because this data can be checked with other airlines and with the aircraft 

manufacturer. 
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