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2 at 4 Å [panels (a) and (c)] and 6 Å

separations [panels (b) and (d)]. . . . . . . . . . . . . . . . . . . . . . 66

22 Differences against EOM-IP-CCSD(3h2p) for (a) ground state energy,
(b) excitation energy, (c) ground state charge, and (d) excited state
charge in (C2H4)

+
2 . EOM-IP-CCSD/6-31+G results are shown. . . . 68

ix



SUMMARY

The following thesis focuses on two challenging areas of chemistry, π-π interactions

and radical cation dimers. Approximations to the exact solution to the Schrödinger

equation are investigated for these types of chemical systems with a variety of theo-

retical methods. The first chapter provides an introduction to the various quantum

mechanical methods used in this research. The second chapter focuses specifically

on π-π interaction. In this chapter, high quality quantum mechanical methods are

used to examine how substituents tune π-π interactions between monosubstituted

benzene dimers in parallel-displaced geometries. In addition, the role of dispersion

and coulombic interactions in these systems is investigated to determine the nature

of the substituent effect. In the third chapter radical cation dimers are investigated.

Benchmark results with full configuration interaction (FCI) and equation-of-motion

coupled-cluster for ionized systems (EOM-IP-CCSD) are presented for prototypical

charge transfer species. Conclusions regarding chapters 2 and 3 are presented in the

final chapter. This work may form the basis for improved approaches to rational drug

design, organic optical materials, and molecular electronics.

x



CHAPTER I

INTRODUCTION

Radical cation dimers and π-π interactions are interesting but challenging to study.

Numerous chemical and biochemical systems contain π-π interactions. All nucleic

acids and several amino acids have the ability to form π-π complexes. These systems

are difficult to study because the explicit interaction between electrons (rather than an

averaged or effective interaction) is necessary to obtain an accurate model. Radical

cations are interesting because of their importance in fundamental processes such

as charge transfer. These systems are challenging because routine methods fail to

describe near degeneracy of electron configurations. In this thesis, high accuracy

quantum mechanical methods are used to study these systems.

Many questions in chemistry are not easily answered with experiment alone. The

development of quantum mechanics and its incorporation into chemistry has diver-

sified the chemist’s tool box for solving scientific questions. A variety of theoretical

methods exist. Classical mechanical approaches such as molecular mechanics describe

atoms in molecules as charged spheres connected by harmonic springs. These clas-

sical methods are capable of describing a variety of systems; however, they do not

explicitly describe electrons. Therefore, classical methods can not be used to de-

scribe dispersion, the instantaneous rearrangement of electrons; charge transfer; or

radical systems because standard classical methods are not parametrized to describe

an unpaired electron. This thesis will focus on quantum mechanical approaches for

describing electrons explicitly.

In quantum mechanics, the state of a chemical system is defined by its wave-

function. The energy of a specific state can be obtained by the famous Schrödinger
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equation:

HΨ = EΨ. (1)

In this equation H represents the Hamiltonian of the system, Ψ represents the

wavefunction and E is the energy of the system. In quantum chemistry, the Hamil-

tonian represents the electrons and nuclei of a molecular system, shown in equation

(2).

H = −

(a)
︷ ︸︸ ︷
∑

i

1

2
∇2

i −

(b)
︷ ︸︸ ︷
∑

iA

ZA

riA

+

(c)
︷ ︸︸ ︷
∑

ij

1

rij

+

(d)
︷ ︸︸ ︷
∑

AB

ZAZB

RAB

−

(e)
︷ ︸︸ ︷
∑

A

1

2MA

∇2
A (2)

In the Hamiltonian above, i and j represent electrons and A and B represent

nuclei. The summations are (a) the kinetic energy of the electrons, (b) the coulombic

interaction between electrons and nuclei, (c) the coulombic interaction between two

electrons, (d) the coulombic interaction between two nuclei and (e) the kinetic energy

of the nuclei. After applying the Born-Oppenheimer Approximation, which assumes

that the electrons are moving much faster than the nuclei and the nuclei are stationary

relative to the electrons, the nuclear kinetic energy (e) becomes zero and the nuclear

repulsion energy (d) is a constant for any given configuration of nuclei.

If the Born-Oppenheimer approximation is used, an exact solution to the Schrödinger

equation is possible for one electron systems, such as the hydrogen atom, H+
2 , He+,

Li2+, etc. The solution of the wavefunction for a hydrogen-like atom leads to a series

of functions with the form shown in equation (3). In the case of the hydrogen atom,

the one-electron wavefunctions are the atomic orbitals. The exact form of the wave-

function depends on the state of the system which can be specified by the quantum

numbers n, l, and m. The first term in equation (3) is the radial function and the

second term is the spherical harmonic function. The radial function always has a e−ζr

term, where ζ is a constant proportional to the charge of the nucleus of the atom.
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Ψn,l ,m(r, θ, φ) = Rn,l(r)Yl,m(θ, φ) (3)

For polyelectronic systems the exact solution to the wavefunction is unattainable.

Slater orbitals were first used to approximate orbitals of atoms. They have the form

shown in (4). In this equation, N is the normalization constant, Yl,m is the spherical

harmonic function and ζ is a parameter.

Ψζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)rn−1e−ζr (4)

Slater orbitals are inefficient for quantum chemistry calculations because the three-

and four-center two-electron integrals cannot be computed analytically.54 These in-

tegrals arise from the electron-electron repulsion term in the Hamiltonian. A single

Slater orbital can be approximated by a linear combination of Gaussian functions.

Although more functions are involved, the calculation is faster because the Gaussian

product theorem allows for the solution of four-centered electron repulsion integrals

to be calculated analytically. In spherical coordinates, the Gaussian type orbitals

(GTOs) take on the form shown in equation (5). The GTOs can also be written in

Cartesian coordinates as shown in equation (6).54

Ψζ,n,l,m(r, θ, φ) = NYl,m(θ, φ)r(2n−2−l)e−ζr2

(5)

Ψζ,lx,ly ,lz (x, y, z) = Nxlxylyzlze−ζr2

(6)

Some of the first basis sets developed for quantum chemistry were called STO-

nG. In these Slater Type Orbitals (STOs), n represents the number of contracted

Gaussian functions used to approximate a Slater orbital. For example, STO-3G has

three Gaussian functions that are summed (or contracted) to represent one function

for each orbital. The name is somewhat a misnomer, because the functions in the

3



basis set are actually Gaussian functions not Slater functions. These basis sets are

also know as minimal basis sets, because they contain a single STO for each occupied

orbital in the molecule. Other basis sets add additional orbitals on each atom and

allow for a greater amount of flexibility in the wavefunction.

Other basis sets have been developed by Pople, Dunning, and others. The Pople

style basis sets have the general form a-bcd+G(d,p). In this basis set, the a represents

the number of primitive Gaussian functions used for each core orbital, and b, c and d

represent the number of contracted Gaussian functions used for each valence orbital.

The + sign signifies the addition of a set of diffuse s and p functions on heavy

atoms, i.e. atoms other than hydrogen, and (d,p) represent polarization functions.

Specifically, (d,p) adds higher d -angular momentum functions on heavy atoms and

p-angular momentum functions on hydrogen atoms.

A minimal basis set does not describe the molecular orbitals well enough. Split

valence basis sets allow a better description of valence orbitals that are involved in

bonding. These basis sets describe core orbitals with a single linear combination of

Gaussian functions (with fixed weights), but describe valence orbitals as a combina-

tion of sets of Gaussian basis functions. This allows the orbitals involved in bonding

to better adapt to their electronic environment. Adding more basis functions to the

valence orbitals is not always enough to obtain an good approximation to the wave-

function. As a classic example, ammonia will optimize to a more planar than trigonal

pyramidal structure if additional polarization functions are not added to the basis

set.31 Higher angular momentum polarization functions on the nitrogen provide the

system with enough flexibility to mimic the lone pair orbital above the nitrogen atom

and an SO3 character of the atomic bonding. Diffuse functions have been found to

be critical in appropriately modeling anions and noncovalently bonded systems.

Dunning style basis sets have the general form aug-cc-pVNZ. The N represents

the number of split valences in the basis set. N can take on values of D (double), T

4



(triple), Q (quadruple), 5, 6, etc. Each time another set of orbitals and an additional

set of higher angular momentum functions are added to the basis set. The aug prefix

denotes an additional set of diffuse orbitals of each angular momentum in the basis

set.

In quantum chemistry, a level of theory must be selected. A level of theory con-

sists of a method and a basis sets. It is important that the level of theory accurately

describes the problem being studied. This is done by choosing a method with the ap-

propriate physics for the problem and a basis set that is flexible enough to accurately

describe the wavefunction of the system.

The exact solution to the Schrödinger equation cannot be obtained for systems

with more than one electron. However, Hartree-Fock theory provides a method for

approximating the energy of a molecule by neglecting the instantaneous interaction

of two electrons. In Hartree-Fock theory the wavefunction is constructed from a set

of basis functions and a Slater determinant. An example Slater determinant for an

N electron system is shown in equation (7). In this equation, χi(n) represents the

position of electron n in molecular orbital i. The molecular orbitals are functions that

describe the position of electrons in a molecule.

Ψ(1, 2, . . . , N) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)

. . . . . .
. . . . . .

χ1(N) χ2(N) · · · χN(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(7)

The determinant is a convenient way of expressing the wavefunction as a sum

of the products of the molecular orbitals. Expressing the wavefunction in this way

requires it to obey the antisymmetry principle of quantum mechanics. An example

two-electron wavefunction is shown in equation (8). Swapping electron one and two

changes the sign of the wavefunction, as should occur for fermions.
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Ψ(1, 2) =

∣
∣
∣
∣
∣
∣
∣

χ1(1) χ2(1)

χ1(2) χ2(2)

∣
∣
∣
∣
∣
∣
∣

= χ1(1)χ2(2) − χ2(1)χ1(2) (8)

As shown in equation (9), the molecular orbitals (χ) are formed from a linear

combination of basis functions (φµ) in the basis set. Roothaan showed that this

representation of the orbitals generates a set of algebraic equations that can be solved

using matrix algebra.132 The coefficients, cµi, are optimized to find the lowest energy

solution.

χi =
∑

µ

cµiφµ (9)

The variational theorem, shown in equation (10), states that if a normalized trial

wavefunction, Φ̃ is used, then the expectation value of the Hamiltonian is always

greater than or equal to the true ground state energy.

〈Φ̃|H|Φ̃〉 ≥ E0 (10)

In Hartree-Fock Theory, the solution to the energy is determined by arriving

at a self-consistent field solution. The major approximation of the Hartree-Fock

method is that each electron only feels the average field of all the other electrons. The

instantaneous interaction between two electrons is not considered, and the movement

of electrons is not correlated. Therefore, Hartree-Fock theory does not describe the

phenomenon of dispersion. Other methods in quantum chemistry aim at improving

upon Hartree-Fock theory by providing a better description of the correlation energy.

Perturbation theory can be used to improve upon Hartree-Fock theory. One of

the more common methods is second order Møller-Plesset perturbation theory (MP2).

The drawback to increased accuracy is increased computational cost. Hartree-Fock

theory formally scales as O(N4), whereas, MP2 theory scales as O(N5).
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The Hamiltonian used in perturbation theory is a sum of a zeroth-order Hamilto-

nian (H0) and a parameter (λ) times a perturbation operator (V ), shown in equation

(11). The wavefunction and the energy become a summation, as shown in equations

(12) and (13) respectively.

H = H0 + λV (11)

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i + · · · =

∑

n=0

λnΨ
(n)
i (12)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · =

∑

n=0

λnE
(n)
i (13)

The parameter λ formally ranges from 0 to 1 but in practice is set to 1. The

perturbation operator is the difference between the Hartree-Fock Hamiltonian and

the exact Hamiltonian. The sum of the zeroth and first order energy is the Hartree-

Fock energy. Improvement on Hartree-Fock theory is obtained when the second order

energy is included. The second order energy is shown in equation (14). The wave-

function Ψrs
ab represents double excitations, or promotion of electrons from occupied

orbitals a and b to unoccupied orbitals r and s.

E
(2)
0 =

∑

a<b,r<s

|〈Ψ0|
∑

i<j
1

rij
|Ψrs

ab〉|
2

ǫa + ǫb − ǫr − ǫs

(14)

Perturbation theory is an improvement on Hartree-Fock theory, however, it is

not without its own flaws. Including corrections greater than second order does

not guarantee greater accuracy, because Møller-Plesset theory is not a variational

method. In addition, MP2 will fail if there are near degeneracies in the molecular

orbitals. By looking at the denominator in equation (14) one can see that if the

sum of the eigenvalues of ǫa and ǫb is equal to the sum of the eigenvalues ǫr and ǫs,

then the equation is undefined due to division by zero. MP2 theory is known to fail

7



due to degeneracies and multireference character of the system. Bond breaking is

an example where more than one reference state is required to properly describe the

system. This multireference character of the system occurs because orbitals become

nearly degenerate.

One way to improve upon perturbation theory is with configuration interaction

(CI). In configuration interaction, the wavefunction is expressed as a linear combi-

nation of Slater determinants. The general CI wavefunction is shown in equation

(15). In this equation ΦSCF is the original Hartree-Fock Slater determinant. The

other determinants ΦN are formed from exciting electrons from occupied orbitals to

unoccupied orbitals to form a different electronic configuration. For example, ΦS is

a Slater determinant with a single electron moved from an occupied orbital in the

reference wavefunction (ΦSCF ) to an unoccupied orbital, ΦD represents a double ex-

citation or the simultaneous excitation of two electrons from occupied orbitals to

unoccupied orbitals, ΦT is a triple excitation, and so on.

ΨCI = a0ΦSCF +
∑

S

aSΦS +
∑

D

aDΦD +
∑

T

aTΦT + · · · (15)

Full configuration interaction (Full CI) includes all possible electronic configu-

rations or Slater determinants for a given set of molecular orbitals. Although the

exact solution to the Schrödinger equation can only be determined for one electron

systems, full CI provides the exact solution to any N -electron wavefunction within

a given basis set. If an appropriate basis set is used, then full CI is the most accu-

rate method in quantum chemistry. The problem is full CI is only possible for small

systems and small basis sets. Increasing the number of electrons or valence orbitals

greatly increases the computational cost. Full CI scales factorially with respect to

system size.

One can achieve better scaling if the number of configurations is truncated. Any

of the configurations can be included, but typically the wavefunction is truncated
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at some order of excitation. For example, CID would include only the reference

determinant and all doubly excited determinants; whereas, CISD includes all singly

and doubly excited determinants. Truncation from full CI to CISD greatly decrease

the scaling of the method from O(N !) to O(N6). The main flaw in truncation of the

CI wavefunction is the method is no longer size-extensive or size-consistent.

For a method to be size-extensive, the energy of system should scale linearly with

the number of particles. A size-consistent method is one where the sum of the energy

of two non-interacting particles is the same as the energy of including both particles

in the same calculation. For example a size-consistent method, the energy of n non-

interacting water molecules is equal to n times the energy of a single water molecule.

Configuration interaction scales poorly with respect to system size and suffers

from the being neither size-consistent or size-extensive. Coupled cluster (CC) the-

ory is a method that is both size-consistent and size-extensive. More importantly,

coupled cluster theory can achieve increased accuracy at similar cost to configuration

interaction for a given excitation order.

In coupled cluster theory, equation (16), an exponential operator generates excited

determinants from a reference wavefunction (Ψ0). The reference wavefunction is

often the original Hartree-Fock wavefunction. The operator T is a sum of excitation

operators TN , equation (17). The T1 operator acts on the reference wavefunction

to form singly excited determinants Φa
i (where the electron in orbital i is promoted

to orbital a) multiplied by the coefficient tai . This is analogous to the singly excited

determinants ΦS in configuration interaction. Similarly, T2 acts on the reference

wavefunction to form double excited determinants Φab
ij multiplied by the coefficient

taij, as shown in equation (19).

HeTΨ0 = ECCΨCC (16)
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T = T1 + T2 + T3 + · · · + TN (17)

T1Φ0 =
occ∑

i

vir∑

a

tai Φ
a
i (18)

T2Φ0 =
occ∑

i<j

vir∑

a<b

tab
ij Φab

ij (19)

A Taylor series expansion can be used to represent the exponential operator as an

infinite sum, equation (20). The T operator, equation (17), is substituted into this

infinite sum and terms are collected based on there order of excitation as shown in

equation (21). The term (T2 + 1
2
T2

1) is the sum of true connected double excitation

and the product of two single disconnected excitation. The term disconnected refers

to the fact that the two single excited electrons are non-interacting.

eT = 1 + T +
1

2
T2 +

1

6
T3 + · · · (20)

eT = 1 + T1 + (T2 +
1

2
T2

1) + (T3 + T2T1 +
1

6
T3

1) + · · · (21)

In the limit that all possible excitations are included coupled cluster theory is

equivalent to full configuration interaction. However this is only feasible for small

systems. Therefore, the T operator is typically truncated at some order of N. For

example, if the operator is truncated at T1 + T2, then the method is coupled cluster

with single and double excitations (CCSD). The truncated exponential operator is

shown in equation (22).

eT1+T2 = 1 + T1 + (T2 +
1

2
T2

1) + (T2T1 +
1

6
T3

1) + · · · (22)
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CCSD formally scales the same of CISD as O(N6); however, CCSD is more ac-

curate because higher-order excitations are introduced by the product of lower exci-

tations. These states do not appear in configuration interaction and are considered

disconnected excitations. For example, quadruple excitations are included through

the product of two double excitation operators, even though there are no explicit

quadruples parameters to solve for. In addition, truncated coupled cluster theory

does not suffer from the size-extensive problem of truncated configuration interac-

tion.

In many chemical systems, the correlation energy is not converged by including

only singly and doubly excited determinants. For these cases, triple and higher-

order excitations need to be included. CCSD with perturbative triples, CCSD(T), is

referred to in the literature as the gold standard of quantum chemistry. The CCSD(T)

method uses perturbation theory to approximate the triple excitations. The triples

step of the calculation scales as O(N7)

Over the next two following chapters, noncovalent ionized dimers and substituent

effects in parallel displaced π-π interactions will be discussed. The work in the next

chapter has been previously published in the journal Physical Chemistry Chemi-

cal Physics.6 In this chapter high quality quantum mechanical methods, including

CCSD(T) are used to examine how substituents tune π-π interactions between mono-

substituted benzene dimers in parallel-displaced geometries. In the following chap-

ter, benchmark full configuration interaction (FCI) and equation-of-motion coupled-

cluster model with single and double substitutions for ionized systems (EOM-IP-

CCSD) results are presented for prototypical charge transfer species. This work has

been previously published in the Journal of Chemical Physics.95
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CHAPTER II

SUBSTITUENT EFFECTS IN PARALLEL-DISPLACED

π-π INTERACTIONS

Noncovalent π-π interactions are of fundamental importance for understanding chemi-

cal and biochemical systems.83 These types of interactions are of biological importance

in protein side-chain interactions,14 nucleobase stacking,110 and drug intercalation in

DNA and RNA.113 In addition, π-π interactions are found in organic crystals24 and

organic semiconductors.105 Much of the theoretical work on understanding the na-

ture of π-π interactions has focused on the benzene dimer.50,53,119,121,122,127,134–136

A limited number of experimental and theoretical studies have gone on to examine

how substituents may tune π-π interactions. These studies have focused primarily on

substituent effects in edge-to-face (T-shaped) and face-to-face (sandwich) configura-

tions.2,17,25–27,59,68,93,97,102,103,118,120 Even fewer studies have focused on substituent

effects in parallel-displaced configurations.21,22,46,69,99,133

Of the studies concerned primarily with parallel-displaced configurations, Hunter

and co-workers studied substituent effects on the free energies of interaction of molec-

ular zipper complexes using the double mutant cycle method.21,22 That study eval-

uated the ∆∆G of 24 different aromatic stacking interactions in a fixed geometry.

The authors concluded that the electrostatic nature of the ring dominates the in-

teraction energy, but that direct electrostatic interactions between substituents are

also important. In another study by Rashkin and Waters, substituent effects in offset

π-π interactions were observed by comparing rotational barriers in N-benzyl-2-(2-

fluorophenyl)-pyridinium bromides using NMR techniques.99 The authors observed

that the electron-withdrawing substituents increase the magnitude of the rotational
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barrier and propose that this is due to a decreased electron density of the π-clouds,

leading to a reduced electrostatic repulsion between the negatively charged π-clouds.

This finding appears to be consistent with NMR experiments on syn/anti conform-

ers of substituted triptycene derivatives carried out by Gung et al.47 It should be

noted that Rashkin and Waters also observed an increased rotational barrier in meta-

substituents versus para-substituents and proposed that this is due to interactions

between the substituent and hydrogen atoms on the other ring.

Gung and Amicangelo have studied substituent effects in complexes of hexafluo-

robenzene with benzene using the MP2/fug-cc-pVDZ level of theory.46 They observed

that the complex binds more strongly when the substituent on benzene is displaced

away from the hexafluorobenzene ring, rather than on top of the ring. A parallel dis-

placed orientation was also found to be a minimum in the benzene-hexafluorobenzene

complex, in contrast to the sandwich structure that might be expected considering

only electrostatics. The authors concluded that electron donating groups on ben-

zene increase the interaction energy in benzene-hexafluorobenzene, whereas electron-

withdrawing groups decrease the interaction energy. The authors noted that elec-

trostatic effects are very significant but are not the only cause for binding in these

complexes.

A recent study by Kim, Hobza, and co-workers has examined aromatic interactions

in substituted benzene-benzene systems.69 The study compares geometries and single

point energy computations with the CCSD(T) method. Their study concludes that

substituents tend to increase the stability of displaced stacked structures over the

T-shaped configurations. In contrast to the substituted benzene-hexafluorobenzene

study of Gung and Amicangelo,46 the substituted benzene complexes considered have

an enhanced binding regardless of the electron donating nature of the substituent. In

addition, these authors conclude that the dispersion and exchange-repulsion mostly

cancel at equilibrium geometries and that electrostatics are the dominant contribution
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to the relative energy.

While previous studies have focused on geometries and energies near the optimum

intermolecular distances, the present work seeks to understand how substituents tune

π-π interactions in parallel-displaced configurations across entire potential energy

curves. This is particularly relevant for better understanding complex biochemical

systems, where competing interactions or steric constraints may prevent a particu-

lar π-π interaction from achieving what would be the ideal geometry in an isolated

bimolecular complex (see also the recent work of Bickelhaupt and co-workers131 for

a study of interaction energies in stacked nucleobases as a function of twist angle).

While we present quantitatively reliable potential energies in the course of our study,

the emphasis is on an understanding of how parallel-displaced π-π interactions are

best understood qualitatively. We also examine both how a substituent affects the

ring-ring interactions, as well as how a substituent interacts directly with another

ring. Results are analyzed in terms of fundamental electrostatic, exchange-repulsion,

induction, and dispersion interactions with the aid of symmetry-adapted perturbation

theory.55

2.1 Theoretical Methods

Computations were performed using Dunning’s augmented correlation-consistent po-

larized valence basis sets of double-ζ (aug-cc-pVDZ) and triple-ζ (aug-cc-pVTZ) qual-

ity.58 The aug prefix denotes the addition of a set of diffuse functions for each angular

momentum in the basis set. For brevity, we will often refer to the aug-cc-pVXZ re-

sults by the shorthand notation AXZ. In addition to the standard augmented basis

sets, we employed a truncated aug-cc-pVDZ basis, denoted aug-cc-pVDZ′, which re-

moves diffuse functions from hydrogen and diffuse d functions from all heavier atoms.

The smaller aug-cc-pVDZ′ basis set was helpful in making the symmetry-adapted

perturbation theory (SAPT)55,143 computations more tractable.

14



Second-order Møller-Plesset perturbation theory (MP2) was used initially to scan

the potential energy surface of all systems studied. High level coupled-cluster theory

with single and double excitations and perturbative treatment of triples [CCSD(T)]98

was used where feasible to obtain highly accurate binding energies. Estimated CCSD(T)/aug-

cc-pVTZ values were obtained by adding a ∆CCSD(T) correction, Equation (23), to

MP2/aug-cc-pVTZ values.

∆CCSD(T ) = Eaug−cc−pV DZ
CCSD(T ) − Eaug−cc−pV DZ

MP2 (23)

We found this additive scheme effective in previous work.119

In addition to MP2 and CCSD(T), the spin component scaled MP2 (SCS-MP2)44

method was explored. The SCS-MP2 method scales the MP2 parallel-spin and

antiparallel-spin correlation energies with different scaling factors to obtain more

accurate energies at the same computational cost as standard MP2. We used the

scaling factors of Grimme (SCS-MP2)44 and also those of Hill and Platts (SCSN-

MP2).49 The SC-MP2 scaling factors are 6/5 and 1/3 for the same spin and opposite

spin correlation energies, respectively. The SCSN-MP2 scales the opposite spin cor-

relation energy by 1.76 and does not include the same spin correlation in the total

correlation energy (i.e., a scaling factor equal to 0). Density fitting (DF)4,141 was used

in all SCS and SCSN calculations. Density fitting greatly speeds up the computation

with very little loss of accuracy in binding energies.

Second-order symmetry-adapted perturbation theory (SAPT2)55,143 was used to

obtain components of the interaction energy, such as electrostatic, dispersion, induc-

tion and exchange energies. The SAPT200213 and SAPT200612 packages were used

in the present study. All SAPT2 results were computed with the aug-cc-pVDZ′ ba-

sis. SAPT divides the Hamiltonian (H) into a Fock Operator (F), an intermolecular

operator (V), and an intramonomer operator (W),

H = F + V + W. (24)
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The SAPT interaction energy is divided into interactions at the Hartree-Fock level

(EHF
int ) and the correlated component of the interaction energy (ECORR

int ),

ESAPT
int = EHF

int + ECORR
int . (25)

These components of the interaction energy can be further decomposed into various

electrostatic (elst), exchange (exch), induction (ind) and dispersion (disp) energies,

as shown in Equations (26) and (27).

EHF
int = E

(10)
elst + E

(10)
exch + E

(20)
ind,resp + E

(20)
exch−ind,resp + δEHF

int,resp (26)

ECORR
int = E

(12)
elst,resp + E

(11)
exch + E

(12)
exch +t E

(22)
ind +t E22

exch−ind + E
(20)
disp + E

(20)
exch−disp (27)

The superscript (ab) represents the order of the perturbation for operators V and W

respectively. The components of the interaction energy may be collected as

Eelst = E
(10)
elst + E

(12)
elst,resp, (28)

Eexch = E
(10)
exch + E

(11)
exch + E

(12)
exch, (29)

Eind = E
(20)
ind,resp + E

(20)
exch−ind,resp + δEHF

int,resp +t E
(22)
ind +t E22

exch−ind, (30)

Edisp = E
(20)
disp + E

(20)
exch−disp. (31)

For present purposes we have decided to classify the cross terms exchange-induction

and exchange-dispersion as induction and dispersion, respectively.120

Potential energy surfaces (PES) were studied for four complexes in parallel-displaced

orientations: benzene dimer, fluorobenzene-benzene, benzonitrile-benzene and phenol-

benzene. The monomer geometries were obtained from MP2/aug-cc-pVDZ geometry

optimization with the QCHEM package61 and held at this rigid geometry in fur-

ther calculations of the complexes. Potential energy surfaces of four complexes were

scanned over three geometric parameters: the vertical interplanar distance (R1), the

parallel displacement over a vertex (R2), and the parallel edgewise displacement (R3),

as shown in Figure 1. All single point energy calculations were performed with the
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X

X

Figure 1: Substituted benzene-benzene complexes in (a) parallel-displaced over a
vertex and (b) parallel-displaced edgewise orientations. X = H, F, CN, and OH

MOLPRO package.140 All binding energies reported are corrected for basis set super-

position error using the counterpoise method of Boys and Bernardi.11 Core orbitals

were constrained to be doubly occupied in all correlated computations.

2.2 Results and Discussion

Various levels of theory have been explored to determine a good balance between

computational cost and accuracy. After justifying the use of the SCS-MP2/ATZ

level of theory, more complete potential energy surfaces will be analyzed to deter-

mine how substituents and geometry affect the interaction energies of substituted

benzene dimers in parallel-displaced configurations. Finally, SAPT analyses of se-

lected orientations are used to elucidate the physical nature of the substituent effect

by determining the components of the interaction energy.

The vertical displacement (R1), parallel displacement over a vertex (R2), and

parallel displacement edgewise (R3) were systematically varied to sample different

possible configurations (see Figure 1). The vertical displacement (R1) is defined as

the distance from the center of the benzene ring to the plane of the ring below. An R2

or R3 displacement of 0.0 Å corresponds to the sandwich configuration, in which the

geometric centers of the two rings are on top of one another. For the benzene dimer,

the PES is symmetric about zero for R2 and R3. For the substituted complexes, neg-

ative R2 displacements move the substituent away from the other ring, and positive

R2 displacements move the substituent over the other ring. Fluorobenzene-benzene

and benzonitrile-benzene are symmetric about zero for edgewise displacements (R3).
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Figure 2: Interaction energy of benzene dimer parallel-displaced edgewise for various
levels of theory. R1=3.3 Å.

However, this is not the case for phenol-benzene; negative R3 displacements point the

hydrogen atom on the rigid hydroxyl group away from the benzene ring, and positive

R3 displacements point this atom toward the benzene ring.

Figure 2 shows the performance of a variety of levels of theory for benzene dimer

parallel-displaced edgewise. The estimated CCSD(T)/ATZ results are the most re-

liable of those considered here. CCSD(T)/ADZ underestimates the total interaction

energy due to basis set incompleteness. The MP2/ADZ and MP2/ATZ levels of

theory always overbind the dimer due to an incomplete description of electron cor-

relation. The MP2/ADZ′ approach provides reasonably accurate results compared

to the estimated CCSD(T)/ATZ benchmarks due to fortuitous cancellations of error

from basis set incompleteness and an incomplete description of electron correlation.

The SCS-MP2 and SCSN-MP2 methods perform well across the potential energy

surface. SCSN-MP2 performs better around R2 values of zero, whereas SCS-MP2

performs better on average across the PES. It is interesting to note that MP2 with

18



-5

-4

-3

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
R2 Displacement (Angstroms)

In
te

ra
ct

io
n

 E
n

er
g

y 
(k

ca
l/m

o
l)

est. CCSD(T)/ATZ
CCSD(T)/ADZ
SCS-MP2/ATZ
SCSN-MP2/ATZ
MP2/ADZ
MP2/ATZ
MP2/ADZ'

Figure 3: Interaction energy of benzene dimer displaced over a vertex for various
levels of theory. R1=3.3 Å.

the truncated ADZ′ basis set does better than SCSN-MP2 on average. The max-

imum deviation for the SCS-MP2 method is smaller than the maximum deviation

for SCSN-MP2. The maximum deviations occur at the sandwich configuration for

SCS-MP2 and at the local minimum of the PES for SCSN-MP2.

In addition to the edgewise displacements it is important to determine how each

method performs for parallel displacements over a vertex. As anticipated the methods

behave similarly for benzene dimer parallel-displaced over a vertex, shown in Figure

3. SCSN-MP2 matches the estimated CCSD(T)/ATZ level of theory better than

SCS-MP2 near the sandwich configuration. However, SCS-MP2 matches the curve

better on average and has a smaller maximum deviation.

The SCS-MP2 method performs well for the substituted complexes fluorobenzene-

benzene and benzonitrile-benzene, as shown in Figures 4 and 5 respectively. The

MP2/ADZ and MP2/ATZ levels of theory overbind the substituted complexes; how-

ever, they have been removed from the figures to allow closer examination of the
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Figure 4: Interaction energy of fluorobenzene-benzene displaced over a vertex at
various levels of theory. R1=3.3 Å.

other curves. For fluorobenzene-benzene, the SCSN-MP2 method performs better

than SCS-MP2 near the sandwich configuration; however, on average SCS-MP2 out-

performs SCSN-MP2. For benzonitrile-benzene, SCS-MP2 is closer to the estimated

CCSD(T)/ATZ curve than SCSN-MP2 at all values of R2 except for R2=5.0 Å; how-

ever, at this point the two methods differ by less than 0.01 kcal mol−1. Also in figures

4 and 5, SAPT2/ADZ′ is shown in comparison to the other levels of theory studied.

SAPT/ADZ′ does a good job of staying parallel to the estimated CCSD(T)/ATZ

curves, but it overbinds by several tenths of a kcal mol−1 for small R2 displacements.

Due to the high computational cost, estimated CCSD(T)/ATZ PES’s were not

computed for phenol-benzene or for benzonitrile-benzene and fluorobenzene-benzene

in parallel-displaced edgewise orientations. However, SCS-MP2/ATZ PES’s are al-

ways within 0.35 kcal/mol of the estimated CCSD(T)/ATZ potential energy surface

for the systems where it was computed, strongly suggesting that this level of theory

is appropriate for the other systems which are similar.
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Figure 5: Interaction energy of benzonitrile-benzene displaced over a vertex at var-
ious levels of theory. R1=3.3 Å.

Figures 6 and 7 present SCS-MP2/ATZ results for parallel displacements over a

vertex and over an edge, respectively. Optimal displacement sizes and interaction

energies for our constrained potential surface scans are presented in Table 1. As indi-

cated by the table, a single substituent can strengthen the binding by several tenths

of a kcal mol−1 up to 1.5 kcal mol−1 in the case of benzonitrile-benzene. However,

even though the potential surfaces are fairly flat, all of the substituted heterodimers

have similar equilibrium geometries, with identical vertical displacements and hori-

zontal displacements differing by no more than 0.2 Å from those in the parent benzene

dimer.

In Figure 6 the substituent effect for the parallel-displaced over a vertex orientation

is studied at three vertical separations. As previously observed,118,120 all substituted

complexes bind better than benzene dimer in the sandwich configuration. At a vertical
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Table 1: Interaction energies (in kcal mol−1) for the C6H6-C6H5X complexes at the
SCS-MP2/aug-cc-pVTZ level of theory.a

Displaced Over a Vertex
X R1 R2 ∆E
H 3.5 1.7 -2.7
F 3.5 -1.6 -3.0
CN 3.5 1.5 -4.2
OH 3.5 1.5 -3.0
Displaced Edgewise
X R1 R3 ∆E
H 3.5 1.7 -2.7
F 3.5 1.6 -3.2
CN 3.5 1.5 -4.0
OH 3.5 1.6 -3.2

aOptimal displacements for constrained potential energy surface scans using parallel,
rigid monomers with energies evaluated every 0.1 Å.

displacement of 3.3 Å (Figure 6a), fluorobenzene-benzene, phenol-benzene and ben-

zene dimer have very similar binding energies for negative R2 displacements. Specifi-

cally, fluorobenzene-benzene binds slightly stronger than benzene dimer at all negative

R2 displacements except those beyond -5.5 Å. Phenol-benzene binds more strongly

than benzene dimer at small negative displacements, but binds slightly weaker than

benzene dimer for R2 displacements between -2 and -5.5 Å. Benzonitrile-benzene

always binds more strongly than benzene dimer except for positive displacements

greater than 4.0 Å. For positive displacements of R2 (where the substituent crosses

above the other ring), substituents cause stronger binding than in benzene dimer until

a certain point along the potential energy surface. For fluorobenzene-benzene, this

occurs early at 1.5 Å. For phenol-benzene and benzonitrile-benzene, this occurs at

4.0 Å. The origin of this behavior will be examined below using SAPT. However, we

note that at shorter displacements, phenol-benzene and benzonitrile-benzene show

a marked preference for having the substituent cross over the other ring (positive

displacements) rather than to move away from it (negative displacements). This
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preference can be as large as several tenths of one kcal mol−1 in some cases. On the

other hand, except at very short displacements, in fluorobenzene-benzene the fluorine

prefers to move away from the other ring rather than over it.

As the vertical displacement increases from 3.3 Å (Figure 6a) to 3.5 Å (Figure

6b), a few areas of the potential energy surface show significant change. For one, the

interaction energy at the sandwich configuration decreases. This is not surprising,

as the significant steric repulsion in the sandwich configuration will decrease signifi-

cantly at the larger intermonomer distance. Next, the binding energies at the local

minima decrease very slightly. However, the general trends of the substituent effect

relative to benzene dimer stay consistent. In Figure 6c the vertical displacement is

increased further to 3.7 Å. At this vertical displacement, the interaction energy at

the sandwich configuration decreases further, but the general effect of the substituent

stays consistent.

In Figure 7 the substituent effect for the parallel-displaced edgewise orientation is

studied at three vertical separations. In general, the substituent does not dramatically

affect the shape of the curve, except to enhance the binding relative to benzene dimer.

Benzonitrile-benzene always binds more strongly than any of the complexes studied.

Fluorobenzene-benzene and phenol-benzene bind more strongly than benzene dimer

and have approximately the same interaction energy. All of the curves are symmetric

about R3=0.0 Å except for phenol-benzene. For phenol-benzene the complex prefers

positive R3 displacements where the hydrogen atom on the hydroxyl group points in

the direction of the benzene molecule.

In order to gain more insight into the nature of the substituent effect in the com-

plexes studied, we used SAPT to evaluate the electrostatic, dispersion, induction

and exchange-repulsion components of the interaction energy across the entire po-

tential energy curves for the configurations displaced over a vertex (Figure 1a). Due

to their decreased symmetry (and concomitant increased computational costs), the
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Figure 6: Comparison of substituents displaced over a vertex with SCS-MP2/ATZ.
a) R1=3.3 b) R1=3.5 c) R1=3.7 Å.
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Figure 7: Comparison of substituents displaced edgewise with SCS-MP2/ATZ. a)
R1=3.3 b) R1=3.5 c) R1=3.7 Å.
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Figure 8: Components of the SAPT2 interaction energy for benzene dimer parallel-
displaced over a vertex. R1=3.3 Å.

SAPT curves were not generated for the displaced edgewise complexes (Figure 1b).

However, the binding of the displaced edgewise complexes is easier to explain, be-

cause the energy is dominated by ring-ring interactions that can be understood from

computations at the sandwich configuration.

The components of the SAPT interaction energy are shown for the benzene dimer

as a function of the displacement over a vertex in Figure 8. At the sandwich con-

figuration (R2=0) exchange repulsion is at a maximum, whereas dispersion and elec-

trostatics are at a minimum. The magnitude of the dispersion interaction is at a

maximum at the sandwich configuration because the two monomers are the closest

in this position. As the R2 displacement increases, the dispersive interactions be-

come less attractive because the molecules are moving farther apart. Conversely,

the exchange-repulsion component of the interaction energy is at maximum for the

sandwich configuration because it has the greatest overlap between electron densities
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Figure 9: Components of the SAPT2 interaction energy for benzonitrile-benzene
parallel-displaced over a vertex. R1=3.3 Å.

of the monomers. As the molecules move away from each other, the charge den-

sity overlap is reduced and the exchange-repulsion decreases. In general, induction

does not contribute substantially to the total interaction energy; however, it is of

interest to note that the induction is slightly less favorable at the sandwich config-

uration and obtains a local minimum near the local minimum of the total energy.

The electrostatic component of the interaction energy is a minimum at the sandwich

configuration. This may be something of a surprise if one considers that this config-

uration has the greatest overlap between the negative π clouds and places partially

positive hydrogen atoms directly on top of each other. However, the π electron clouds

interpenetrate and thus create an overall attractive electrostatic force. As the two

molecules move apart, their electrostatic interaction decreases. The total interaction

energy for benzene dimer as a function of the displacement over a vertex is deter-

mined by dispersion, exchange and electrostatics. A parallel-displaced configuration

is preferred over the sandwich configuration because the electrostatic and dispersion
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terms remain favorable for moderate horizontal displacements while the unfavorable

exchange repulsion term decreases rapidly in magnitude.

The other complexes studied with SAPT have very similar trends in their compo-

nents of the interaction energy. The most notable differences are observed for positive

R2 displacements where direct substituent-π interactions are found. One example is

shown for benzonitrile-benzene in Figure 9. This example is shown because it deviates

to the largest extent from benzene dimer. It is interesting to note that the shape of

the curve looks very similar to benzene dimer for negative R2 displacements. In order

to determine the direct substituent effect, the components of the benzonitrile-benzene

interaction energy relative to benzene dimer are shown in Figure 10b.

For Figure 10 we will first focus on the positive R2 displacements where direct

substituent-ring interactions are found. The components of the interaction energy

of fluorobenzene-benzene relative to benzene dimer are shown in Figure 10a. In

general the induction and dispersion interactions are approximately the same in

fluorobenzene-benzene and benzene dimer. One might have expected the disper-

sion interaction to be larger in fluorobenzene-benzene (due to the larger number of

electrons on fluorine versus hydrogen), but apparently the very electronegative nature

of fluorine keeps it from being very polarizable. The exchange repulsion and electro-

static terms dominate the relative interaction energy. There is a dip in the relative

exchange-repulsion term around R2 = 3 Å, when the fluorine is approximately above

the middle of the other ring. For very small positive displacements R2, the electro-

static term is more favorable for fluorobenzene-benzene than for the benzene dimer

primarily for two reasons. First, there is a favorable electrostatic interaction between

the partial-negative fluorine atom and the partial-positive hydrogen from the other

ring below it. Second, the ring-ring interaction is more favorable because fluorine has

reduced the amount of negative π density in the ring, so there is less negative charge
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Figure 10: Components of the SAPT2 interaction energy relative to benzene dimer
for a) fluorobenzene-benzene, b) benzonitrile-benzene, and c) phenol-benzene parallel-
displaced over a vertex. R1=3.3 Å.

29



to interact with the negatively charged π ring of benzene below.118,120 As the sub-

stituent starts to cross above the benzene ring below it, the electrostatic interaction

becomes unfavorable relative to benzene dimer. This is mainly due to the repulsive

interaction between the negative substituent and the π cloud. Once the aromatic

rings are no longer overlapping (around displacements of 6 Å and larger), one might

suppose the electrostatic term would become more favorable than that in the ben-

zene dimer because of favorable interactions between a partial-negative fluorine on

fluorobenzene and a partial-positive hydrogen on benzene. However, although these

atoms are the ones in closest contact, the next-nearest atoms cannot be ignored. The

C–F and C–H bonds in closest contact form bond dipoles which interact unfavorably

because they point in the same direction.

The benzonitrile-benzene complex binds more strongly than benzene dimer for all

R2 displacements less than 4.0 Å, as shown in Figure 10b. At the sandwich configura-

tion, the electrostatic and dispersive forces are more attractive in benzonitrile-benzene

than benzene dimer. The larger dispersion interaction is not surprising given that

the nitrile group will be more polarizable than a hydrogen atom. The nitrile group

is also strongly electron-withdrawing, leading to a reduced negative charge for the π-

cloud.118,120 This also leads to reduced steric repulsion between the two π-clouds, as

evidenced by a less repulsive exchange term. As the nitrile group is moved across the

face of the other ring (positive R2 displacements), the direct substituent-ring interac-

tion has a very significant effect and large differences are observed in the components

of the interaction energy relative to benzene dimer. The only exception is the induc-

tion component which is only slightly more attractive in benzonitrile-benzene than in

benzene dimer. One would expect the induction term in benzonitrile-benzene to be

more favorable than in benzene dimer because benzonitrile has a permanent electric

dipole moment; the only surprise is perhaps how little this improves the induction

term. As the nitrile substituent displaces across the other ring, dispersive interactions

30



become much more favorable because nitrile is larger and more polarizable than the

hydrogen it replaces in the parent benzene dimer. On the other hand, the exchange

interaction becomes more repulsive.

The electrostatic interaction remains more favorable than in benzene dimer for

modest displacements R2, with the most improvement occurring near R2 = 1.5 Å. At

this point, the partially positive carbon of the nitrile substituent is vertically aligned

with a partially negative carbon of benzene, and the partially negative nitrogen is

aligned with a partially positive hydrogen of benzene, leading to an enhancement

of about 1.5 kcal mol−1 for the electrostatic attraction. As one continues toward

larger displacements R2, this improvement in the electrostatic interaction compared

to benzene dimer becomes smaller. At large displacements, the electrostatic interac-

tion becomes less favorable than benzene dimer (just as for fluorobenzene-benzene)

because the nitrile C–N and benzene C–H bond dipoles are aligned in the same di-

rection.

The SAPT interaction energies for phenol-benzene are shown relative to ben-

zene dimer in Figure 10c). At the sandwich configuration, all of the components of

the interaction energy are more favorable than in benzene dimer. For positive R2

displacements, dispersion and exchange have a large effect on the relative binding

energies. The exchange-repulsion term is less favorable for phenol-benzene compared

to benzene dimer, primarily due to greater steric repulsion with the π-cloud below

for hydroxyl than for a hydrogen. There is a dip in the relative exchange contri-

bution around 3 Å, when the hydroxyl is above the middle of the other ring. The

large difference in the dispersion term between phenol-benzene and benzene dimer

is attributed to both a larger number of electrons and a more polarizable hydroxyl

group in phenol-benzene. Dispersion is not as important for the relative binding of

phenol-benzene as it is for benzonitrile-benzene, but it is much more important than

in fluorobenzene-benzene; overall, dispersion can favor phenol-benzene over benzene
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dimer by several tenths of one kcal mol−1. Electrostatically, even though hydroxyl is

a strongly electron donating substituent in contexts like electrophilic aromatic substi-

tution reactions, it has remarkably little effect on the π-cloud density of an unreacting

phenyl ring.118,120 Consistent with this observation, the electrostatic contribution in

phenol-benzene is rather similar to that in the benzene dimer near the sandwich

configuration. It remains similar for larger positive displacements R2, perhaps be-

cause direct ring-substituent interactions may be rather similar in size but opposite

in magnitude for the partial-positive hydrogen and the partial-negative oxygen of the

hydroxyl group.

In contrast to the positive displacements over a vertex, negative displacements

have a smaller effect on the components of the interaction energy and are similar

for the different substituents. For negative displacements the interaction energy is

predominantly determined by ring-ring interactions and the effect of the substituent

on the electronic structure of the ring (as opposed to direct ring-substituent inter-

actions as found in positive R2 displacements). For negative R2 displacements of

fluorobenzene-benzene (Figure 10a), the induction and dispersion energies are slightly

less favorable (by about 0.1 kcal mol−1 or less) than in the benzene dimer. The

electron-withdrawing fluorine atom decreases the electron density of the ring of fluo-

robenzene and the very electronegative nature of the fluorine atom cause it to hold

tightly to the extra electrons in the system, leading to a less favorable dispersive

energy as compared to benzene dimer. At negative displacements, fluorobenzene-

benzene is more favorable electrostatically than benzene dimer because the electron-

withdrawing fluorine causes the fluorobenzene ring to be slightly more positive elec-

trostatically and increases the electrostatic ring-ring attraction. Additionally, the

reduced π-electron density in fluorobenzene leads to a substantially reduced exchange-

repulsion interaction between the two molecules.
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For negative R2 displacements of benzonitrile-benzene, the dispersion, electro-

static, and exchange-repulsion are all more favorable than benzene dimer (Figure

10b). Just as in fluorobenzene-benzene, although to a greater degree, the electron-

withdrawing substituent causes the π-cloud in benzonitrile to be less negative than

the π-cloud of benzene.118,120 This leads to an enhanced electrostatic attraction in the

complex at negative displacements. In addition, the substituent removes electron den-

sity from the ring causing the exchange component to be less repulsive in benzonitrile-

benzene than benzene dimer. The dispersion is slightly larger in benzonitrile-benzene

because of the larger number of electrons participating in the interaction. This dis-

persive attraction decreases as the substituent moves away from the benzene ring and

becomes nearly identical to benzene dimer for displacements less than -2.0 Å.

For negative displacements of phenol-benzene, the relative components of the

interaction energy are very similar to benzene dimer (Figure 10c). The total en-

ergy of phenol-benzene relative to benzene dimer is predominantly controlled by the

exchange-repulsion. At small negative displacements, the electrostatic and dispersion

energies are slightly more favorable.

Finally, the substituent effects for edgewise displacements, shown in Figure 7, are

very similar to the displacements over a vertex when the substituent is pulled away

from the other ring (negative R2 values in Figure 1a). The effect of the substituent

is felt primarily through its influence on the electronic structure of the ring to which

it is bonded, leading to modified ring-ring interactions just as in the negative R2

over-vertex displacements just discussed. Comparing the edgewise displacements in

Figure 7 to the negative R2 over-vertex displacements in Figure 6, the edgewise

displacements are somewhat more favorable, particularly for benzene-benzonitrile.
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2.3 Conclusions

The effect of substituents on parallel-displaced π-π interactions has been explored as

a function of vertical and horizontal displacements of the rings. The present results

have allowed for a deeper understanding of both direct substituent-ring interactions

and the effect of the substituent on the π-π interaction in a variety of geometries.

Substituents have a complicated effect on the potential energy surface that can be

favorable or unfavorable. At short horizontal displacements, substituents tend to en-

hance π-π interactions through a mixture of electrostatic, dispersion, and exchange-

repulsion terms, as discussed in previous work on sandwich dimers.120,121 However,

at larger horizontal displacements over a vertex, direct interactions between the sub-

stituent and the ring below it can diminish the interaction energy, particularly for

substituents like fluorine with significant partial negative charges. Strongly polar-

izable substituents, such as hydroxyl, can lead to overall favorable substituent-ring

interactions, in this case mainly due to enhancement of the dispersion interaction.

At large horizontal displacements over a vertex, the biggest net effect relative to ben-

zene dimer seems to be the electrostatic interaction between the bond dipoles of the

closest interacting bonds, i.e., the C–H bond of benzene and the nearest bond of the

substituent. This interaction is unfavorable for fluorine and nitrile substituents.
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CHAPTER III

BENCHMARK FULL CONFIGURATION INTERACTION

AND EOM-IP-CCSD RESULTS FOR PROTOTYPICAL

CHARGE TRANSFER SYSTEMS: NONCOVALENT

IONIZED DIMERS

Ionized noncovalent dimers are relevant in electron/hole transfer (E/HT) processes

ubiquitous in biophysics and molecular electronics,5,39,42,86 and are described by open-

shell doublet wave functions. Solvents used in radioactive element separation are sus-

ceptible to radiation induced ionization, which in the case of neat aromatic liquids

leads to the initial formation of aromatic cations and dimer cations like (C6H6)
+
2 and

(C5H5N)+
2 .40,52,90 Knowledge of the cation potential energy surface (PES) is needed

in the interpretation of photoelectron spectra of neutral dimer species.1,45,63 (O2)
+
2

is an intermediate in the formation of protonated water clusters in the lower iono-

sphere.41,73,100 Cation dimers of polyaromatic hydrocarbons are suspected to be the

source of broad extended interstellar emission.101 However, even in the case of sim-

ple isolated systems, like (O2)
+
2 , (CO2)

+
2 , (C6H6)

+
2 and (H2O)+

2 , the structure and

properties have long eluded both theorists and experimentalists alike.30,48,51,89,114,126

For condensed phase problems Marcus theory78–80 provides the relationship be-

tween the kinetics of the E/HT transfer processes and the electronic coupling between

localized donor and acceptor sites. Often donor or acceptor sites are made up of dimer

or multimeric cores, for example the special pair of bacteriochlorophylls which serves

as the electron donor in the photosynthetic reaction center.88,147 In cytochrome c of

bacterium Schewanellaoneidensis MR-1 several heme groups acting concertedly are

implicated in the reduction process, and, consequently, make the ET process more
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efficient. This efficiency, referred to as ‘electron harvesting’, has been attributed to

the closely packed arrangement of the heme groups.72,125 Oxidative damage on DNA

leads to facile hole transfer between stacked aromatic bases.32

To explain and understand the function of these important biological systems,

as well as to engineer new compounds, one must obtain knowledge of the energetics

and properties of the states involved. Especially vital is the value of the diabatic

coupling between the donor and acceptor moieties, which should be calculated with

an accuracy independent of relative orientations and distance between the two.

Several problems arise in approximate electronic structure calculations of doublet

systems. Single reference approaches based on an open-shell doublet reference are

plagued by symmetry breaking,29,107 even when highly correlated wave functions are

used. Typically, the initial and final states involved in the hole/electron transfer

process are nearly degenerate, and the wave functions acquire a considerable multi-

determinantal character. To this end multireference (MR) approaches have been

used;16,19,104 however, artificial symmetry breaking can occur for MR wave functions

as well.36 Moreover, it requires the choice of an active space and may lead to un-

balanced description of electronic states along the CT path. Recently, the spin-flip

(SF) approach64,65,70 based on the quartet reference has been tested.146 Although SF

wave functions include all the leading electronic configurations, the quartet reference

exhibits instability, which affects the quality of the PES.

The symmetry breaking problem is most readily manifested in the case of open-

shell symmetric dimers, i.e., when the donor and acceptor moieties are indistinguish-

able. In this case, there are two Hartree-Fock (HF) solutions: the delocalized wave

function, which has a correct symmetry, and a lower-energy symmetry-broken one.

The energetic difference persists even at correlated levels of theory and vanishes only

in the full configuration interaction (FCI) limit, where the correct symmetry is re-

stored. For example, in the case of the ethylene dimer cation studied herein the
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difference between the symmetric and symmetry-broken HF solutions is 0.2 eV. One

thus faces a dilemma of which solution to choose.74 The symmetric, charge delocalized

solution has the correct symmetry at the symmetric nuclear configuration, but it may

not be the best solution in a variational sense. On the other hand, the lower-energy

solution does not exhibit the proper symmetry of the molecule at the symmetric

nuclear configuration, and can therefore exhibit unphysical properties (such as ar-

tificially nonzero dipole moments). Moreover, from a practical point of view, the

presence of these two different solutions can cause severe difficulties. Straightforward

application of electronic structure programs will typically lead to the lower-energy,

symmetry-broken solution being found at nonsymmetric geometries, and the higher-

energy, symmetric solution being found at the symmetric geometry. This would lead

to an undesirable and artificial discontinuity in the potential energy surface. Vibra-

tional frequencies can be adversely affected no matter which solution is chosen.23

CT systems also pose challenges to density functional theory (DFT) due to self-

interaction error (SIE), of which the H+
2 dissociation curve is the most striking ex-

ample.7 SIE, which is present in many functionals, causes artificial stabilization of

delocalized charge,75,137,148 which spoils the description of Rydberg and CT excited

states (see, for example, Refs.34 and35), vibronic interactions,124,138 and charge distri-

bution in the ground-state CT systems.75

This work presents FCI calculations of PESs and properties and demonstrates how

to alleviate the problems mentioned above using single-reference equation-of-motion

coupled-cluster model for ionized systems (EOM-IP-CC) methodology. A suitable ref-

erence in this case is the neutral HF wave function, which does not suffer from the in-

stability problems as all the electrons are paired. The ionic wave functions are derived

by removing an electron. Implementation of this Koopmans-like idea within coupled-

cluster (CC) framework is the essence of the EOM-IP-CC method.20,92,116,117,129,130

This method has been applied earlier by Hsu to a series of alkyl compounds and
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ethylene dimer, but no extensive testing was performed.144 A similar approach, albeit

based on the truncated configuration interaction (CI) method, has been developed

by Simons for the calculation of ionization energies and electron affinities.115 Similar

ideas are exploited by related symmetry-adapted cluster CI family of methods.84,85

Here, EOM-IP-CCSD and FCI results for open-shell dimer cation species are com-

pared. To the best of our knowledge there are no previous full CI benchmarks ana-

lyzing symmetry breaking in radical cations of van der Waals dimers. The evaluated

quantities pertain to charge transfer states, i.e. charge localized on either fragment.

We compute the absolute energy, permanent dipole, transition dipole and electronic

coupling. The coupling is evaluated using the Generalized Mulliken-Hush18,19 (GMH)

model. Instead of the permanent dipole, which is origin-dependent for a charged sys-

tem, we report the charge on the more positive molecule. This is also a measure of

the weight of a particular diabatic (defined as a charge-localized state) state in the

wave function:

qA = 〈aΨA+B + bΨAB+|q̂A|aΨA+B + bΨAB+〉 = |a|2 (32)

where qA is the charge on fragment A and q̂A is the associated operator.

The next section describes theoretical methods (EOM-CC approach to open-shell

doublet wave functions and generalized Mulliken-Hush diabatization scheme) and

computational details. Results for the selected benchmark systems are give in Section

3.2. The studied systems are: He+
2 , (H2)

+
2 , (BH-H2)

+, (Be-BH)+, and (LiH)+
2 . They

were chosen based on the feasibility of FCI calculations and the difference of IEs.

Finally, the EOM-IP-CCSD methodology is applied to the ethylene dimer, an often

studied model system for polymer conduction and π interactions.56,77,104,144,146 Our

final remarks are given in Section 3.3.
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3.1 Methodology

3.1.1 EOM-CC approach to open-shell and electronically excited species

The EOM approach9,37,43,70,106,111,128 allows one to describe many multi-configurational

wave functions within a single-reference formalism.8 Conceptually, EOM is similar to

CI: target EOM states are found by diagonalizing the so-called similarity transformed

Hamiltonian H̄ ≡ e−T HeT :

H̄R = ER, (33)

where T and R are general excitation operators with respect to the reference deter-

minant |Φ0〉. Operator T describes the dynamical correlation, while R allows one to

access a variety of multideterminantal target states. Regardless of the choice of T , the

spectrum of H̄ is exactly the same as that of the original Hamiltonian H. Thus, in

the limit of the complete many-electron basis set, EOM is identical to FCI. In a more

practical case of a truncated basis, e.g., when T and R are truncated at single and

double excitations, the EOM models are numerically superior to the corresponding CI

models,91 because correlation effects are “folded in” in the transformed Hamiltonian,

while the computational scaling remains the same. Moreover, the truncated EOM

models are rigorously size-consistent (or, more precisely, size intensive),65,82 provided

that the amplitudes T satisfy the CC equations for the reference state |Φ0〉 and are

truncated at sufficiently high level of excitation consistent with that of R as follows:

〈Φµ|H̄|Φ0〉, (34)

where Φµ denotes µ-tuply excited determinants, e.g., {Φa
i , Φ

ab
ij } in the case of CCSD.

By combining different types of excitation operators and references |Φ0〉, open-

shell doublet states can be accessed in different ways, as explained in Figure 11.

For example, we may use the open-shell doublet reference and operators R that

conserve the number of electrons and a total spin.60,111,128 In this case, one CT state

will be described at the CC level, while the other one at the equation-of-motion
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Figure 11: Open-shell doublet wave functions can be described by several EOM
approaches using different references/excitation operators. The EOM-IP method em-
ploys a well-behaved closed-shell reference.

coupled-cluster for excitation energies (EOM-EE-CC) level. Problems arise due to

the instability of the reference and unbalanced description of the two states. Inclusion

of higher excitations, e.g., within EOM-CCSDT or EOM-CCSDt schemes62,108 will of

course improve the description, but at the price of increased computational costs.

The ionized/electron attached EOM models,87,92,116,117,129,130 which employ op-

erators R that are not electron conserving (i.e., include different number of creation

and annihilation operators), describe ground and excited states of doublet radicals

on equal footing. In our case, we start with a neutral reference and treat both CT

states as ionized states. The truncation of EOM-IP operators deserves additional

comments. For CCSD references, i.e., when operator T includes single and double

excitations, the most common strategy is to retain only 1h and 2h1p operators as
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follows:

RIP =
∑

rii +
∑

ra
ija

+ji, (35)

which gives rise to the EOM-IP-CCSD method. However, one may consider including

3h2p operators as well, as in EOM-IP-CC(2,3).57,109 As demonstrated by Piecuch and

Bartlett, this does not break the size consistency of the resulting EOM-IP method,94

in contrast to EOM-EE,123 thus justifying such a truncation scheme.

Finally, the EOM-SF method,64,65,70 in which the excitation operators include

spin-flip, allows one to access diradicals, triradicals, and bond-breaking without using

spin- and symmetry-broken unrestricted HF (UHF) references. In our cases quartet

reference would be used, as first proposed by You et al.146 The obtained set of deter-

minants is appropriate for the description of CT states, but the reference still exhibits

instability.

To summarize, the EOM-IP method avoids the HF instability problems and de-

scribes problematic open-shell doublet states in a single reference formalism.

3.1.2 Generalized Mulliken-Hush model

Figure 12 presents the PESs along the CT reaction coordinate. The solid lines rep-

resent the adiabatic energies, i.e., the eigenvalues of the electronic Hamiltonian. The

dotted lines are the diabatic energies. The corresponding wave functions depend only

weakly on nuclear configuration and describe the charge-localized states, i.e., A+B

and AB+. The magnitude of the electronic coupling between these wave functions

determines the kinetics of the process within Marcus theory. Note that electronic

structure packages yield adiabatic energies and wave functions.

The transformation between the two basis sets is not straightforward because

diabatic states are not rigorously defined in a general case.81 We employed the GMH

method developed by Robert Cave and Marshall Newton to compute the diabatic-

adiabatic transformation matrix and the coupling elements. The method is based
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Figure 12: Diabatic (dashed line) and adiabatic potential energy surfaces for electron
transfer reactions. Diabatic states correspond to reactant and product electronic wave
functions, i.e. the charge fully localized on one of the species, while adiabatic states
are eigenfunctions of the electronic Hamiltonian. Marcus theory relates the coupling
between diabatic states to the rate of electron/hole transfer process.

on the assumption that there is no dipole moment coupling between the diabatic

states, and thus the dipole moment matrix is diagonal in this representation. This

corresponds to the two states with the largest charge separation, i.e. charge localized

on the reactants and products. The so-defined transformation matrix can hence

be applied to the Hamiltonian matrix in the adiabatic representation yielding the

coupling as the off-diagonal element. This leads to the following expression:

hab =
µ12∆Eab

∆µab

=
µ12∆E12

[(∆µ12)2 + 4(µ12)2]1/2
(36)

The letter and number subscripts refer to diabatic and adiabatic quantities, re-

spectively. µ12 is the transition dipole moment and ∆µ12 is the difference between
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the permanent dipole moments. Components of each vector in the direction defined

by the permanent dipole difference vector for the initial and final adiabatic states are

used. In the case of a charged system the definition of the dipole moment depends

on the origin. However, the diagonalization matrix depends on the difference rather

than the values itself and thus is origin independent.

The main forte of the GMH model is its simplicity and a wide range of applica-

bility. It can be applied both to the ground state and excited state at any nuclear

configuration. Furthermore, the only required quantities are adiabatic, and thus easily

available using standard electronic structure software.

Similar diabatization schemes exploiting differences in molecular properties of the

diabatic states have been explored in other applications as well.3,15,33,76,142,145

3.1.3 The CT reaction coordinates

The two important coordinates for CT processes are the intermolecular separation

and the intramolecular CT coordinate described below. In the charge transfer pro-

cesses (Figure 12) the reactants correspond to an electron/hole localized on one of the

moieties, e.g. A+-B. At infinite separation, the geometry of A is that of the cation,

whereas the geometry of B is that of its neutral. The reaction corresponds to the

positive charge moving from A to B and the nuclei rearranging such that A has the

geometry of the neutral form and B has a cation-like geometry. At smaller interfrag-

ment separations, the geometries of the fragments along the reaction coordinate may

differ from that simple picture. In principle, the geometries along this path can be

calculated by following the energy minimum, i.e., conducting constrained optimiza-

tion at each point along A+B → AB+. Alternatively, a CT reaction coordinate can

be approximated by arithmetic averaging of the Cartesian monomer coordinates:

QR1 = (1 − R) · Q1 + R · Q2

QR2 = R · Q1 + (1 − R) · Q2

(37)
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where Q1 is the geometry of the neutral and Q2 is the geometry of the cation. The

averaging is done with the rotation axes and the centers of mass aligned. When R=0,

A has its cation geometry, whereas B has its neutral geometry. At R=0.5 the geometry

of each species is a simple average of the cation and neutral forms. Finally, at R=1

the geometry of A is that of the neutral, and that of B corresponds to the cation

form. This approach merely ensures a smooth interpolation between the initial and

final geometries and should not be taken as the path followed in a physical situation.

3.1.4 Computational details

Configuration-interaction singles (CIS), EOM-IP-CCSD (IP-CCSD/2h1p), EOM-IP-

CC(2,3) (IP-CCSD/3h2p), and EOM-CCSD for excitation energies (EOM-EE-CCSD)

calculations as well as all geometry optimizations were performed using the QCHEM

ab initio package.112 FCI calculations employed the PSI3 package.28 Multireference

configuration interaction (MRCI) calculations were performed using MOLPRO.140 All

basis sets were obtained from the EMSL repository.38

The charge localized on the monomers was computed assuming that charges on

individual fragments are point charges located at the center of mass of individual

fragments. Only the component of the total dipole moment in this direction is con-

sidered. Charge qA is localized on fragment A at position rA, while charge (1− qa) is

on fragment B localized at rB. This yields the following expression for the charge:

qA =
−µ + rB

rB − rA

, (38)

where the dipole moment vector µ is defined to point towards the positive charge.

Vector quantities are computed relative to the center of mass of the system.

Spin-restricted references were used in EOM-IP-CC and FCI calculations. EOM-

EE-CCSD calculations were based on spin-unrestricted references for H2 dimer. Oth-

erwise, spin-restricted open-shell references (ROHF) were employed. For ethylene

dimer, we considered both ROHF and UHF doublet references. CCSD energies were
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converged to 10−10 hartree. Davidson iteration in EOM calculations were considered

converged when the residue of the excited state vectors was below 10−10. EOM-IP-

CC(2,3) dipole moments for (C2H4)
+
2 were computed via finite differences using field

values of ±0.00001 a.u.

All electrons were active in EOM calculations. EOM dipole moments were calcu-

lated using fully relaxed one-particle density matrices, that is, including the amplitude

and orbital response contributions,71 while transition dipoles were computed as ”ex-

pectation values”, that is, using unrelaxed density matrices of the right-hand and

left-hand eigenvectors.128

FCI properties were computed using unrelaxed density matrices. Orbital response

terms are not needed in FCI property computations because the FCI properties are

invariant to unitary transformations of the active orbitals; the exception occurs when

some orbitals are frozen in the correlated computation, as was the case here for the

1s-like orbitals for Be and B atoms. However, limited tests indicate that these core-

active orbital rotations did not contribute significantly for the cases considered.

MRCI calculations employ the state-averaged complete active space self-consistent

field (SA-CASSCF) reference and include all single and double excitations from the

reference (MR-CISD).139 To correct for the lack of size extensivity, the resulting MR-

CISD energies are augmented by the Davidson correction67 and are denoted as MR-

CISD+Q. Unfortunately, no analog of the Davidson correction for properties is avail-

able. The active space consisted of the ethylene π and π∗ orbitals. The SA-CASSCF

computations include the ground state and the first excited state with equal weights.

The four 1s carbon orbitals were restricted in CASSCF calculations and frozen in

MR-CISD.

Geometries of H2, BH, and LiH were optimized using CCSD(T) and the aug-

cc-pVTV basis set. C2H4 and C2H
+
4 structures were obtained using DFT with the

B3LYP10 functional and the 6-311+G∗ basis set.
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Figure 13: Electronic coupling in the helium dimer as a function of distance using
FCI.

3.2 Results and discussion

3.2.1 (He2)
+ dimer

Our first benchmark system is the helium dimer cation. Due to symmetry, the lower

and upper charge transfer states, Σ+
u and Σ+

g , feature the charge equally distributed

between the helium atoms, and the coupling is simply half of the energy splitting

between the two states. The energies and transition dipole moments were computed

at intermolecular separations ranging from 2.5 to 6.0 Å. EOM-IP-CCSD and FCI

results are presented in Tables 2 and 3, respectively. Figure 13 shows the distance

dependence of the FCI coupling. Only basis sets with diffuse functions reproduced

the correct exponential decay of the coupling. Without diffuse functions the coupling

decays too fast. The magnitude of the coupling is nearly converged at the aug-cc-

pVTZ basis.

The convergence of the coupling as a function of the method and the distance

is shown in Figure 14. The behavior of the two theoretical methods is essentially

46



Table 2: Total energy (hartree), energy splitting (cm−1) between Σ+
u and Σ+

g states,
and the transition dipole moment (au) for He+

2 calculated by EOM-IP-CCSD

2.50 Å 3.00 Å 4.00 Å 5.00 Å 6.00 Å

cc-pVDZ
E, hartree -4.8881821 -4.8832535 -4.8813531 -4.8812386 -4.8812275
∆E, cm−1 2929.0 824.5 38.73 0.585 0.0026

µtr 2.348 2.825 3.774 4.721 5.667

aug-cc-pVDZ
E, hartree -4.8923633 -4.8868412 -4.8843081 -4.8840117 -4.8839517
∆E, cm−1 3182.2 990.3 83.2 8.73 0.83

µtr 2.306 2.795 3.758 4.711 5.660

cc-pVTZ
E, hartree -4.9066004 -4.9015533 -4.8994189 -4.8992016 -4.8991721
∆E, cm−1 3023.5 915.9 74.78 4.30 0.12

µtr 2.332 2.815 3.769 4.718 5.664

aug-cc-pVTZ
E, hartree -4.9077994 -4.9023528 -4.8999136 -4.8996131 -4.8995577
∆E, cm−1 3125.9 966.7 87.4 7.01 0.70

µtr 2.307 2.796 3.758 4.711 5.660

d-aug-cc-pVTZ
E, hartree -4.9078230 -4.9023713 -4.8999328 -4.8996265 -4.8995691
∆E, cm−1 3125.1 966.3 87.9 7.33 0.74

µtr 2.307 2.796 3.758 4.711 5.660

aug-cc-pVQZ
E, hartree -4.9106093 -4.9051660 -4.9027398 -4.9024400 -4.9023808
∆E, cm−1 3117.8 962.8 87.45 7.41 -0.60

µtr 2.307 2.796 3.758 4.711 5.660

aug-cc-pV5Z
E, hartree -4.9114110 -4.9059611 -4.9035383 -4.9032394 -4.9031826
∆E, cm−1 3115.2 960.8 87.30 7.59 0.60

µtr 2.307 2.796 3.758 4.711 5.660

identical. Adding the first set of diffuse functions increases the coupling and the

magnitude of this effect increases with distance. Further basis set expansion, e.g.

adding another set of diffuse or valence functions, have smaller effects. The difference

between double-ζ and triple-ζ is significant, but less important than the presence of

diffuse functions. One aspect is very interesting — the error of the EOM-IP-CCSD

versus FCI decreases at larger distances. We attribute this effect to larger dynamical

correlation at shorter distances, i.e., when the distance between electrons is smaller

on average. In He+
2 at large separations, only two electrons need to be correlated
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Table 3: Total energy (hartree), energy splitting (cm−1) between Σ+
u and Σ+

g states,
and the transition dipole moment (au) for He+

2 calculated by FCI

2.50 Å 3.00 Å 4.00 Å 5.00 Å 6.00 Å

cc-pVDZ
E, hartree -4.8882148 -4.8832621 -4.8813536 -4.8812386 -4.8812274
∆E, cm−1 2939.5 827.5 38.85 0.587 0.0027

µtr 2.347 2.825 3.774 4.721 5.667

aug-cc-pVDZ
E, hartree -4.8926114 -4.8869566 -4.8843362 -4.8840218 -4.8839563
∆E, cm−1 3219.8 1005.9 85.25 9.04 0.87

µtr 2.298 2.790 3.755 4.709 5.659

cc-pVTZ
E, hartree -4.9066819 -4.9015843 -4.8994248 -4.8992035 -4.8991729
∆E, cm−1 3039.7 921.6 75.27 4.33 0.12

µtr 2.330 2.814 3.768 4.717 5.664

aug-cc-pVTZ
E, hartree -4.9080572 -4.9024762 -4.8999443 -4.8996242 -4.8995631
∆E, cm−1 3160.6 981.0 89.02 7.15 0.72

µtr 2.299 2.790 3.755 4.709 5.658

d-aug-cc-pVTZ
E, hartree -4.9080815 -4.9024964 -4.8999652 -4.8996381 -4.8995744
∆E, cm−1 3159.7 980.9 89.78 7.55 0.77

µtr 2.299 2.790 3.755 4.709 5.658

aug-cc-pVQZ
E, hartree -4.9108665 -4.9052897 -4.9027716 -4.9024514 -4.9023889
∆E, cm−1 3150.8 976.6 89.17 7.58 0.62

µtr 2.299 2.790 3.755 4.709 5.658

aug-cc-pV5Z
E, hartree -4.9116664 -4.9060840 -4.9035703 -4.9032510 -4.9031878
∆E, cm−1 3147.5 974.3 89.04 7.77 0.62

µtr 2.299 2.790 3.755 4.709 5.658

for a good description of dynamical correlation. A similar trend was observed in

bond breaking applications of CASSCF and valence optimized orbital coupled cluster

doubles (VOO-CCD) methods.66 Similar trends are observed for the transition dipole

moment, as shown in Figure 15. At least a single set of diffuse functions is needed

and the values converge at the aug-cc-pVDZ basis set.

For this small benchmark system, we also investigated the performance of methods

based on the doublet reference using the aug-cc-pVTZ basis set. These results are

given in Table 4. UHF-CIS gives qualitatively incorrect results, i.e. it places the
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(a)

(b)

Figure 14: Electronic coupling in He+
2 at 2.5 Å (a) and 5.0 Å (b) calculated by FCI

(squares) and EOM-IP-CCSD (diamonds).
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(a)

(b)

Figure 15: The transition dipole moment in He+
2 at 2.5 Å (a) and 5.0 Å (b) calculated

by FCI (squares) and EOM-IP-CCSD (diamonds).
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Table 4: Total energy (hartree), energy splitting (cm−1) between Σ+
u and Σ+

g states,
and the transition dipole moment (au) for He+

2 using open-shell reference

2.50 Å 3.00 Å 4.00 Å 5.00 Å 6.00 Å

HF/CIS spatial symmetry restricted UHF reference
E, hartree -4.8461270 -4.8401184 -4.8373567 -4.8370249 -4.8369709
∆E, cm−1 -1105.15 -3569.53 -4623.83 -4724.96 -4732.74

µtr 2.297 2.781 3.735 4.680 5.622

HF/CIS broken spatial symmetry UHF reference
E, hartree -4.8619655 -4.8608400 -4.8603142 -4.8601885 -4.8601448
∆E, cm−1 21159.45 21201.56 21086.06 21051.22 21039.11

µtr 0.384 0.150 0.019 0.002 0.0003
qgr, e 0.019 0.008 0.003 0.002 0.001
qex, e 1.025 0.994 0.996 0.998 0.999

CCSD/EOM-EE-CCSD spatial symmetry restricted UHF reference
E, hartree -4.9077180 -4.9021320 -4.8995985 -4.8992786 -4.8992177
∆E, cm−1 3007.56 825.27 -66.65 -148.21 -154.48

µtr 2.299 2.790 3.755 4.709 5.659

CCSD/EOM-EE-CCSD broken spatial symmetry UHF reference
E, hartree -4.9064033 -4.9011883 -4.8997508 -4.8996079 -4.8995614
∆E, cm−1 3185.51 1365.05 988.34 981.14 979.84

µtr 2.154 1.995 0.343 0.035 0.004
qgr, e 0.387 0.158 0.005 0.002 0.001
qex, e 0.686 0.876 0.995 0.998 0.999

excited state below the ground state, and the level splitting does not decay to zero

at large distances. This behavior is not rectified by including electron correlation,

even at the EOM-EE-CCSD level. The ordering is only correct at small distances;

however, the asymptotic distance behavior is still lacking, which is quite unexpected

for this 3-electron system.

3.2.2 (H2)
+
2 dimer

The hydrogen dimer cation is isoelectronic with He+
2 ; however, due to the additional

nuclear degree of freedom the molecular fragments no longer have to be identical, and

the charge can be localized. From several possible orientations of the two fragments,

we chose a C2v symmetry configuration in which the two molecules are parallel. EOM-

IP-CCSD, CCSD/EOM-EE-CCSD, and FCI calculations in the aug-cc-pVTZ basis

were performed at reaction coordinate values of 0.0, 0.2, 0.4, 0.45 and 0.5 at 3.0 and
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Table 5: Total energy (hartree), energy splitting (cm−1), transition dipole moment
(au), ground and excited state charge (au), coupling (cm−1) calculated for (H2)

+
2 at

3.0 Å separation in aug-cc-pVTZ basis set.

0.0 0.2 0.4 0.45 0.5

FCI
E, hartree -1.779004 -1.777154 -1.771929 -1.770939 -1.770563
∆E, cm−1 15193 9720 5236 4601 4369

µtr 0.758 1.194 2.226 2.534 2.669
qgr,e 0.957 0.924 0.761 0.648 0.500
qex, e 0.0540 0.0822 0.241 0.353 0.500

hab, cm−1 2156.2 2174.4 2183.5 2184.4 2184.7

EOM-IP-CCSD
E, hartree -1.778861 -1.777017 -1.771813 -1.770830 -1.770456
∆E, cm−1 15187 9723 5252 4620 4389

µtr 0.767 1.207 2.243 2.551 2.685
qgr,e 0.957 0.924 0.760 0.648 0.500
qex, e 0.0549 0.0831 0.242 0.354 0.500

hab, cm−1 2182.4 2196.5 2197.7 2195.7 2194.6

EOM-EE-CCSD
E, hartree -1.778942 -1.777015 -1.771434 -1.770244 -1.770200
∆E, cm−1 15891 10303 5500 4695 4264

µtr 0.730 1.131 2.077 2.375 2.670
qgr,e 0.958 0.930 0.787 0.681 0.500
qex, e 0.04984 0.06830 0.24243 0.35356 0.500

hab, cm−1 2167.3 2165.3 2206.5 2186.6 2132.2

5.0 Å separations. The data are summarized in Tables 5 and 6 and the error plots

are given in Figure 16 and 17. The EOM-IP-CCSD/aug-cc-pVTZ ionization energies

(IEs) are 16.398 and 14.544 eV at neutral and cation geometries, respectively.

A brief explanation of the plots is in order. The errors are calculated as the

difference between the approximate value and the exact FCI result. Negative values

mean the given quantity is underestimated, while positive values mean the opposite.

If the curve is parallel to the x axis, it means that the error is constant throughout

the reaction coordinate space, a highly desirable feature. A slope, on the other hand,

denotes a change in the quality of description and a non-parallelity error (NPE). The

absolute values of the total energy are not important, and only NPEs are of interest

— the error for the total energy of the ground state is arbitrarily set to 0 at R=0.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: Error in (a) ground state energy, (b) excitation energy, (c) ground
state charge, (d) excited state charge, (e) transition dipole moment, and (f) diabatic
coupling in (H2)

+ dimer at 3.0 Å separation. EOM-IP-CCSD/aug-cc-pVTZ (solid
line) and EOM-EE-CCSD/aug-cc-pVTZ (dotted line) results are shown.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Error in (a) ground state energy, (b) excitation energy, (c) ground
state charge, (d) excited state charge, (e) transition dipole moment, and (f) diabatic
coupling in (H2)

+ at 5.0 Å separation. EOM-IP-CCSD/aug-cc-pVTZ (solid line) and
EOM-EE-CCSD/aug-cc-pVTZ (dotted line) results are shown.
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Table 6: Total energy (hartree), energy splitting (cm−1), transition dipole moment
(au), ground and excited state charge (au), coupling (cm−1) calculated for (H2)

+
2 at

5.0 Å separation in aug-cc-pVTZ basis set.

0.0 0.2 0.4 0.45 0.5

FCI
E, hartree -1.775487 -1.772451 -1.763942 -1.761042 -1.758121
∆E, cm−1 14882 8883 2956 1482 133.3

µtr 0.0412 0.0696 0.210 0.419 4.661
qgr,e 0.995 0.994 0.993 0.991 0.500
qex, e 0.00784 0.00742 0.00739 0.00877 0.500

hab, cm−1 65.76 66.33 66.60 66.63 66.64

EOM-IP-CCSD
E, hartree -1.775475 -1.772442 -1.763936 -1.761037 -1.757504
∆E, cm−1 14876 8880 2955 1482 135.9

µtr 0.0422 0.0712 0.215 0.428 4.667
qgr,e 0.995 0.994 0.993 0.991 0.500
qex, e 0.00807 0.00758 0.00751 0.00894 0.50000

hab, cm−1 67.4 67.8 68.0 68.0 67.9

EOM-EE-CCSD
E, hartree -1.775487 -1.772451 -1.763940 -1.761038 -1.757750
∆E, cm−1 15630 9587 3620 2137 20.7

µtr 0.040 0.066 0.174 0.295 4.662
qgr,e 0.995 0.994 0.993 0.992 0.500
qex, e 0.00804 0.00764 0.00741 0.00775 0.500

hab, cm−1 66.9 67.4 67.6 67.5 10.3

For the ground state charge, if the error is positive it signifies that there is excessive

charge separation, i.e., the state is overpolarized. Overpolarization of the excited

state is manifested by a negative error.

Panels (a) and (b) in Figures 16 and 17 show the error in the ground state total

energy and excitation energy, respectively. At small values of R, i.e., when there is

large difference between the geometries of the two fragments both methods perform

similarly. As the bond lengths become more similar the discrepancy between EOM-

EE-CCSD and FCI becomes more significant. Finally, at R=0.5 the doublet HF wave

function becomes unstable yielding a cusp on the PES. It is manifested as a large

jump on all the plots. Meanwhile the error for EOM-IP-CCSD curves remains small.

At 5.0 Å separation and excluding the R=0.5 point, the EOM-EE-CCSD error in
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excitation energy ranges between 750 and 650 cm−1. The EOM-IP-CCSD error is

confined to the 6 - 0 cm−1 range. Similar behavior is observed at 3.0 Å separation.

In other words, the EOM-EE-CCSD NPE is high and the description is not uniform

throughout the reaction coordinate space.

An important property of a CT system is its charge distribution. Panels (c) and (d)

of Figures 16 and 17 show the ground and excited state charge of the more positively

charged fragment (in the ground state) at the two interfragment separations. In

both cases the EOM-IP-CCSD and FCI results are essentially identical, and the

NPE is small. The quality of CCSD/EOM-EE-CCSD description degrades towards

R=0.5. Both the ground and excited state become overpolarized as a consequence

of the charge-localized character of the UHF doublet reference. The incorrect charge

distribution in turn affects the transition dipole moment (Figure 16e, 17e). Again,

the EOM-IP-CCSD description is uniform and accurate throughout, while EOM-EE-

CCSD underestimates this property.

The calculated couplings depend on the energy splitting, transition and perma-

nent dipole moment of the two states. The values are plotted in panel (f) of Figures

16 and 17. The most striking feature is the cusp of the EOM-EE-CCSD curve at the

transition state. It originates from the CCSD PES cusp, as the coupling at this point

is equal to half the energy splitting between the two states. EOM-IP-CCSD system-

atically overestimates the coupling, due to the error in the transition dipole. The

coupling weakly depends on the reaction coordinate, in agreement with the Condon

approximation, i.e. the coupling only depends on the molecular coordinates that do

not affect the effective donor-acceptor distance.

3.2.3 (Be-BH)+ dimer

The (Be-BH)+ dimer cation was studied in a linear configuration, with the beryllium

atom located on the boron side. aug-cc-pVDZ basis set was used in the calculations.
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The data are presented in Table 7 and the error plots are shown in Figure 18. The

BH distance was scanned from its cation geometry (R=0) to the neutral geometry

(R=1). The distance between the center of mass of both fragments was kept constant

at 5.0 Å. EOM-IP-CCSD/aug-cc-pVDZ vertical IE of beryllium is 9.234 eV, while

that of BH decreases from 9.687 to 9.679 eV as the bond length increases from the

cation to the neutral geometry. The fact that the IE of BH at the cation geometry is

larger than at the neutral geometry is due to the fact that the equilibrium bond length

were optimized at a different level of theory. It is not a problem in other systems

due to larger geometric change. Due to the small changes in the relative energies of

both species only subtle changes are expected along the reaction coordinate. Before

delving into the details note that both CCSD/EOM-EE-CCSD and EOM-IP-CCSD

(in all cases except the ground state energy) capture the trends in properties along

the reaction coordinate. The NPE is smaller for EOM-IP-CCSD indicating a more

uniform description throughout the reaction coordinate space.

The IEs of both fragments are very close, thus we expect an appreciable extent

of charge delocalization. In the ground state roughly 86% of the hole is located on

Be, while only 6% in the excited state. Both EOM-IP-CCSD and CCSD predict

a slightly more localized structure than FCI, in both states. This in turn affects

the transition dipole moment, which decreases as follows: FCI > EOM-IP-CCSD >

EOM-EE-CCSD. Clearly, the more charge localized the state is, the lower the transi-

tion dipole moment is. The inverse is true for the excitation energies: FCI values are

lower than EOM-EE-CCSD, while EOM-IP-CCSD is in-between. Lastly, let us look

at the diabatic coupling, which is a cumulative property. Unexpectedly, all methods

are in very good accord, within 5%. The agreement for EOM-IP is only slightly infe-

rior than for EOM-EE-CCSD. This is very interesting, as both methods give slightly

different picture of the states. In case of EOM-EE-CCSD, the increased transition
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Error in (a) ground state energy, (b) excitation energy, (c) ground
state charge, (d) excited state charge, (e) transition dipole moment, and (f) dia-
batic coupling in (Be-BH)+. EOM-IP-CCSD/aug-cc-pVDZ (solid line) and EOM-
EE-CCSD/aug-cc-pVDZ (dotted line) results are shown. The charge pertains to the
Be fragment.
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Table 7: Total energy (hartree), energy splitting (cm−1), transition dipole moment
(au), ground and excited state charge (au), coupling (cm−1) calculated for linear (Be-
BH)+ at 5.0 Å separation in aug-cc-pVDZ basis set. The charge pertains to the Be
fragment.

0.0 0.5 1.0

FCI
E, hartree -39.505862 -39.505843 -39.505790
∆E, cm−1 5295.0 5282.9 5270.6

µtr, au 1.643 1.647 1.648
qgr,e 0.8648 0.8639 0.8630
qex, e 0.0629 0.0634 0.0639

hab, cm−1 1053.1 1053.8 1054.5

EOM-IP-CCSD
E, hartree -39.506545 -39.506542 -39.506503
∆E, cm−1 5903.8 5889.0 5873.8

µtr, au 1.522 1.527 1.528
qgr,e 0.8737 0.8728 0.8719
qex, e 0.0640 0.0645 0.0650

hab, cm−1 1091.6 1092.3 1093.0

EOM-EE-CCSD
E, hartree -39.505518 -39.505513 -39.505472
∆E, cm−1 6878.9 6861.8 6844.4

µtr, au 1.310 1.313 1.315
qgr,e 0.8788 0.8780 0.8771
qex, e 0.0451 0.0455 0.0459

hab, cm−1 1085.4 1085.9 1086.4

energy is compensated by the decreased transition dipole. In the denominator the in-

creased difference in permanent dipole moments compensates for the underestimated

transition dipole, see Eq. (36).

3.2.4 (BH-H2)
+ dimer

The BH-H2 system is an example complementary to Be-BH. The difference in vertical

ionization energies is approximately 6 eV, much larger than 0.5 eV in Be-BH. At the

cation geometry, the EOM-IP-CCSD/aug-cc-pVDZ IEs of BH and H2 are 9.687 eV

and 14.460 eV, respectively; values at neutral geometries are 9.679 and 16.288 eV.

We studied the system in a t-shaped configuration: the H2 molecule constitutes the

top, while BH (boron atom closer to H2) is the stem. At R=0, H2 is at its neutral
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geometry while BH is at its cation geometry. At R=1, BH is at its neutral geometry,

while H2 is at the cation geometry. The distance between the centers of mass is kept

fixed at 3.0 Å. The data are listed in Table 8 and error plots are given in Figure 19.

The aug-cc-pVDZ basis set was used in the calculations.

Table 8: Total energy (hartree), energy splitting (cm−1), transition dipole moment
(au), ground and excited state charge (au), coupling (cm−1) calculated for t-shaped
(BH-H2)

+ at 3.0 Å separation in aug-cc-pVDZ basis set. The charge pertains to the
BH fragment.

0.0 0.25 0.5 0.75 1.0

FCI
E, hartree -26.030624 -26.029212 -26.022318 -26.012228 -26.000430
∆E, cm−1 48228 44230 40742 37712 35094

µtr, au 0.6300 0.6842 0.7457 0.8105 0.8761
qgr,e 0.998 0.993 0.987 0.981 0.975
qex, e 0.222 0.220 0.221 0.223 0.226

hab, cm−1 6643 6592 6612 6652 6694

EOM-IP-CCSD
E, hartree -26.028457 -26.027055 -26.020179 -26.010118 -25.998359
∆E, cm−1 47467 43465 39984 36969 34373

µtr, au 0.6469 0.7070 0.7733 0.8425 0.9124
qgr,e 0.995 0.990 0.984 0.977 0.970
qex, e 0.214 0.214 0.216 0.219 0.223

hab, cm−1 6654 6651 6692 6745 6797

EOM-EE-CCSD
E, hartree -26.030734 -26.029311 -26.022403 -26.012297 -26.000479
∆E, cm−1 49088 45053 41523 38448 35783

µtr, au 0.6273 0.6785 0.7375 0.7998 0.8630
qgr,e 0.997 0.992 0.987 0.982 0.976
qex, e 0.224 0.220 0.219 0.220 0.222

hab, cm−1 6754 6669 6663 6679 6695

The performance of EOM-IP-CCSD and CCSD/EOM-EE-CCSD is very similar.

The errors are smaller for the latter, but the difference is not significant compared

to the quantities involved. For instance, at R=0.5 the former underestimates the

excitation energy by 750 cm−1, while the latter overestimates it by the same amount.

The value of the excitation energy is approximately 40,000 cm −1 using all methods.

With increased R the energy spacing decreases and CCSD/EOM-EE-CCSD tends to

overpolarize both states while EOM-IP-CCSD underpolarizes them. Nonetheless, all
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(a) (b)

(c) (d)

(e) (f)

Figure 19: Error in (a) ground state energy, (b) excitation energy, (c) ground
state charge, (d) excited state charge, (e) transition dipole moment, and (f) dia-
batic coupling in (BH-H2)

+. EOM-IP-CCSD/aug-cc-pVDZ (solid line) and EOM-
EE-CCSD/aug-cc-pVDZ (dotted line) results are shown. The charge pertains to the
BH fragment.
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methods predict the hole to be almost entirely located on BH in the ground state,

and on H2 in the excited state. This is in agreement with the difference of IEs, and

according to Eq. 32 signifies a very similar character of diabatic and adiabatic wave

functions. Another way of understanding it is by comparing the diabatic coupling

with the energy difference between the adiabatic levels. Consider a two-level coupled

system. If the two levels are degenerate, they will split by twice the amount for

the coupling. In the case, when they are non-degenerate, the amount of splitting

induced by the coupling will be less than twice its value. Thus, in (BH-H2)
+ dimer

diabatic coupling can account for utmost 13,000 cm−1 of adiabatic state separation.

The smallest difference between them occurs at R=1, and is equal to 35,000 cm−1.

The difference, 22,000 cm−1, is the difference between energies of the diabatic states.

Since it is significantly larger than the coupling, the adiabatic states will be very

similar to the diabatic states. This is additionally confirmed by good agreement of

transition dipoles between EOM-IP-CCSD and EOM-EE-CCSD. For this molecular

system both methods perform similarly and other than the computational cost there

is no preference for either one.

3.2.5 (LiH)+
2 dimer

The LiH dimer cation cation was studied in an stacked antiparallel configuration. The

separation between the center of mass was held fixed at 4.0 Å. The monomer state

considered here corresponds to ionization from the σ bonding orbital of the monomer.

According to EOM-IP-CCSD/6-31+G it requires 6.781 and 7.589 eV at the cation

and neutral geometries, respectively. The data are listed in Table 9 and error plots

are given in Figure 20. The 6-31+G basis set was used in the calculations. The

large difference between the IEs causes a significant change in the extent of charge

delocalization along the reaction coordinate. This is in stark contrast to BH. Low

coupling to Be or H2 precluded the use of LiH in the heterodimer calculations.
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(a) (b)

(c) (d)

(e) (f)

Figure 20: Error in (a) ground state energy, (b) excitation energy, (c) ground
state charge, (d) excited state charge, (e) transition dipole moment, and (f) diabatic
coupling in (LiH)+

2 . EOM-IP-CCSD/6-31+G results are shown.
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Panels (a) and (b) of Figure 20 present the error in the ground state total energy

and the excitation energy, respectively. There is a significant NPE in both. EOM-

IP-CCSD predicts a larger energy change when going from R=0 to R=0.5. At R=0

the excitation energy is overestimated by 600 cm−1, while it is underestimated by 200

cm−1 at R=0.5. These numbers do not exceed 10%. FCI yields a less polarized state

and a lower transition dipole moment. The error in the transition moment increases as

the monomers become more similar. Lastly, EOM-IP-CCSD predicts weaker diabatic

coupling than FCI. Note that the NPE is much smaller for the coupling than for the

other quantities.

Table 9: Total energy (hartree), energy splitting (cm−1), transition dipole moment
(au), ground and excited state charge (au), coupling (cm−1) calculated for (LiH)+

2 at
4.0 Å separation in 6-31+G basis set.

0.0 0.2 0.4 0.45 0.5

FCI
E, hartree -15.7422241 -15.7428853 -15.7420176 -15.7418536 -15.7417941
∆E, cm−1 6862.5 4924.4 3500.7 3333.3 3275.5

µtr 1.519 2.131 3.006 3.158 3.214
qgr,e 0.845 0.788 0.634 0.570 0.500
qex, e 0.222 0.252 0.379 0.436 0.500

hab, cm−1 1661.4 1646.9 1638.8 1638.0 1637.7

EOM-IP-CCSD
E, hartree -15.7383087 -15.7383529 -15.7367697 -15.7364888 -15.7363863
∆E, cm−1 7478.7 5141.0 3339.6 3115.0 3036.3

µtr 1.576 2.290 3.522 3.776 3.874
qgr,e 0.888 0.840 0.674 0.593 0.500
qex, e 0.141 0.178 0.332 0.410 0.500

hab, cm−1 1614.6 1584.3 1534.1 1522.7 1518.2
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Table 10: Total energy (hartree), energy splitting (cm−1), transition dipole mo-
ment (au), ground and excited state charge (au), and coupling (cm−1) calculated for
(C2H4)

+
2 at 4.0 Å separation in 6-31+G basis set.

0.0 0.2 0.4 0.45 0.5

EOM-IP-CCSD
E, hartree -156.078063 -156.079790 -156.080620 -156.080697 -156.080723
∆E, cm−1 5239 4841 4630 4609 4603

µtr, au 3.142 3.404 3.561 3.577 3.582
qgr,e 0.733 0.652 0.553 0.527 0.500
qex, e 0.277 0.355 0.450 0.475 0.500

hab, cm−1 2303.8 2302.6 2301.4 2301.3 2301.3

EOM-IP-CC(2,3)
E, hartree -156.083897 -156.085381 -156.086074 -156.086138 -156.086159
∆E, cm−1 5447 4948 4680 4654 4646

qgr,e 0.747 0.663 0.557 0.529 0.500
qex, e 0.256 0.339 0.443 0.471 0.500

MR-CISD+Q
E, hartree -156.077664 -156.079075 -156.079722 -156.079781 -156.079716
∆E, cm−1 5352 4885 4636 4612 4610

µtr, au 3.215 3.456 3.597 3.611 3.621
qgr,e 0.722 0.643 0.550 0.525 0.500
qex, e 0.285 0.362 0.452 0.476 0.500

hab, cm−1 2393.4 2334.6 2305.8 2302.9 2305.2

3.2.6 (C2H4)
+
2

The results in this section are obtained using 6-31+G basis set. The biggest difference

between the neutral and the cation geometry is the C-C bond length: 1.418 and

1.329 Å, respectively. The vertical EOM-IP-CCSD/6-31+G IE of ethylene fragment

at neutral geometry is 10.381 eV, while that at the cation geometry is 10.049 eV. We

chose the parallel stacked geometry in which the planes of the molecules are separated

by 4.0 and 6.0 Å. The results are in Table 10 and Figures 21 and 22.

Figure 21 presents the ground state PES and the charge distribution along the CT

reaction coordinate in the ethylene dimer cation are 4 and 6 Å separations. EOM-

IP-CCSD produces a smooth change in both quantities, whereas the CCSD curve

(using doublet reference) exhibits a cusp at R=0.5. Note that the cusp is present

for both UHF and ROHF based curves and is due to unbalanced description of the
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important electronic configurations by doublet-reference based CCSD rather than

spin contamination of the reference.

Figure 21: Changes in charge distribution and PES scans along the CT coordinate
in the ground state of (C2H4)

+
2 at 4 Å [panels (a) and (c)] and 6 Å separations [panels

(b) and (d)].

Since this system is beyond the reach of FCI, we compare the EOM-IP-CCSD

and CCSD/EE-CCSD results against more accurate EOM-IP-CC(2,3) (EOM-IP-

CCSD/3h2p) values, as well as MR-CISD+Q. As expected, EOM-IP-CC(2,3) and

MR-CISD+Q are in an excellent agreement. Both methods predict a deeper poten-

tial well, the difference being approximately 100 cm−1. MR-CISD+Q curve has a

small cusp due to the frozen core, e.g., the cusp disappears if the excitations from

66



core orbitals are included at MR-CISD level. Unfortunately,it was not possible to

simultaneously unfreeze the core and employ adequately large active space in MRCI

calculations.

Overall, EOM-IP-CCSD, EOM-IP-CC(2,3), and MR-CISD predict very similar,

smooth changes of the fragment charge. The degree of charge localization is exagger-

ated in CCSD calculation. This causes an unphysically abrupt change in the polarity

of the system around the transition state. Similar discrepancy between EOM-IP-

CCSD and EOM-EE-CCSD is present in the excited state.

DFT/B3LYP calculation yields qualitatively correct shapes of the PES at 4 Å;

however, the depth and the degree of charge localization are severely overestimated,

due to SIE. As the distance between the fragments increases, the R=0.5 point would

become a transition state separating to charge-localized minima. At the EOM-IP-

CCSD level, this happens at 6 Å, whereas B3LYP still predicts a potential well and

significant charge delocalization. In fact, there is only a minor change between the

B3LYP results at 4 and 6 Å. Of course, SIE-corrected functionals, e.g., long-range

corrected functionals, should be able to better describe these CT systems.

Since the density matrices at the EOM-IP-CC(2,3) level are not available, we

have restricted ourselves to the calculation of energies and permanent dipoles via

finite differences. All differences shown in Figure 22 were calculated relative to EOM-

IP-CC(2,3).

As is evident from Figure 22(a), the depth of the potential well along R is overes-

timated by EOM-IP-CCSD. The largest error is 80 cm−1 and occurs at R=0.5. This

is best compared to the excitation energy, which at this point is 4603 cm−1. The Mr-

CISD+Q/EOM-IP-CC(2,3) difference is approximately half of the EOM-IP-CCSD

error. The error in the excitation energy is shown in Figure 22(b). For EOM-IP-

CCSD it decreases toward the transition state from 200 to 50 cm−1. In other words,

the quality of the EOM-IP-CCSD wave function improves as the monomers become
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Figure 22: Differences against EOM-IP-CCSD(3h2p) for (a) ground state energy, (b)
excitation energy, (c) ground state charge, and (d) excited state charge in (C2H4)

+
2 .

EOM-IP-CCSD/6-31+G results are shown.
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more similar; however, NPE is appreciable. Figures 22(c) and 22(d) show the ground

and excited state charge. In both cases, the EOM-IP-CCSD and MR-CISD meth-

ods underpolarize the CT state relative to EOM-IP-CC(2,3). The magnitude of the

difference is small thus yielding credence to the transition dipole moment. As seen

previously, exaggerated delocalization leads to transition dipole moments that are

typically too high. The diabatic coupling varies smoothly with R. The lack of EOM-

IP-CC(2,3) transition dipole prevents us from making a direct comparison of the

diabatic coupling. In other systems studied we have witnessed a peculiar error can-

cellation between ingredients of Eq. (36), which gives us confidence in the presented

values. A comparison between MRCI and EOM-IP-CCSD is very interesting. Quan-

titatively the results are very similar. Note, however, that while EOM-IP-CCSD

coupling changes by 2 cm−1 between R=0 and R=0.5, MRCI predicts a 90 cm−1

change.

3.3 Conclusions

The presented results demonstrate that EOM-IP-CCSD is a reliable method for the

study of noncovalent ionized dimers. It yields smooth variation of energies and molec-

ular properties with nuclear coordinates. Most importantly, the cusp in the PES along

charge transfer coordinates that is associated with the open-shell reference is com-

pletely avoided. Also, the NPE is typically small. In other words, different spatial

arrangements of the fragments are described with equal accuracy. The advantages

of the EOM-IP method become even more important when the ionized states of the

monomers feature electronic degeneracies, as in benzene dimer cation.96

In cases where the difference in IEs is much larger than the coupling, EOM-

IP-CCSD and EOM-EE-CCSD perform similarly. Due to the lower computational

scaling, the former method is preferable. An argument can be made that just like
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EOM-EE-CCSD overpolarizes the states, the EOM-IP-CCSD method may apprecia-

bly underpolarize the states. In the studied systems only a small degree of underpolar-

ization has been observed. The diabatic coupling has proved to be a fairly insensitive

probe of the quality of state description. The increased polarity of EOM-EE-CCSD

states is offset by lower transition dipoles and higher excitation energies. Comparison

of transition dipole moments offers a better one-number descriptor of the quality of

the ground and excited state wave functions.

We expect that the presented results will provide useful calibration data for cal-

culation of electronic coupling elements as well as dimer properties.
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CHAPTER IV

CONCLUSION

This thesis presents two stories about exploring different chemical systems and meth-

ods in quantum mechanics. In the second chapter, substituent effects in π-π interac-

tions are studied. The third chapter is an exploration of radical cation dimers. Both

chapters involve a study of high-level quantum mechanical methods and the approx-

imations that can be made to reduce computational cost while retaining accuracy.

In chapter two, the fundamental nature of substituent interactions on π-π sys-

tems was explored. Several computational methods were compared and contrasted

before the physics behind these interactions was studied. MP2 theory overestimates

the binding energy of all the systems studied. However, when MP2 is combined with

the truncated aug-cc-pVDZ basis set (ADZ’), the cancellation of error between an in-

complete description of the wavefunction and the approximate description of electron

correlation means that this level of theory compares well with CCSD(T). It is impor-

tant to mention that MP2/ADZ’ cannot be applied reliably to all systems, because

the approximations are not guaranteed to cancel each other. The spin-component

scaled MP2 (SCS-MP2) on the other hand is a systematic approach that can be ap-

plied to other π-π systems. SCS-MP2 was found to reliably model π-π interactions

in the systems studied.

The nature of the substituent effect was studied in detail for several different types

of substituents in a variety of geometries. The binding of the dimers studied was at-

tributed to both an influence of the substituent on the electronic structure of the

benzene ring and a direct substituent-π interaction. The computations showed that
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polarizable substituents, such as cyano and hydroxyl groups, increase dispersive inter-

actions with the aromatic ring. Substituents such as fluorine decrease binding when

displaced toward an electron rich π-cloud due to unfavorable electrostatic interac-

tions. Substituents always increase the binding energy of benzene dimer in displaced

edgewise configurations.

In chapter three, the most exact theory available in quantum chemistry, full con-

figuration interaction, was applied to small radical cation dimer systems. Several

different systems were studied in a variety of orientations. These calculations where

then used to quantitatively determine the error introduced by the EOM methods.

EOM-IP-CCSD was determined to perform the most reliably among the methods

studied. The success of the EOM-IP-CCSD method is attributed to starting with a

reference wavefunction that does not suffer from symmetry breaking. The stability of

the reference wavefunction provides smooth energies and stable molecular properties

across the CT coordinate. EOM-EE-CCSD can perform similarly to EOM-IP-CCSD

if the difference in ionization energy of the two fragments is large. In this case,

EOM-IP-CCSD is preferred due to better scaling.

Future work could be done in three specific areas. An extension of the π-π study

would involve looking at additional types of substituents and multiple substituents

in parallel displaced orientations. In addition, it would be of interest to study how

different types of substituents on the same ring influence the π-π interaction. For

example, how is the π-π interaction affected by placing an electron-donating and

electron-withdrawing group on the same benzene ring? The knowledge gained from

studying π-π interactions further is essential for the development of new pharmaceu-

ticals and understanding the fundamental nature of interactions present in biochem-

istry. The radical cation study showed that EOM-IP-CCSD can be used reliably.

The EOM-IP-CCSD method could be applied to other interesting charge transfer

systems. Further studies of charge transfer in DNA base pairs could greatly enhance

72



our understanding of DNA damage repair processes. Charge transfer is a fundamen-

tal process in many molecular devices, including organic semiconductors. Studies

on polymers and organic molecules could lead to better devices for solar power and

organic light-emitting diodes. Together, the insight gained from the two studies in

this thesis could point the way to studies of substituent effects in charged π-π sys-

tems. Substituents are know to enhance π-π interactions; however, it is not known

exactly how substituents would simultaneously affect both charge transfer and the

π-π interaction.
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