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SUMMARY 
 
 
 

Repeated measures designs are widely used in educational and psychological research 

to compare the changes exhibited in response to a treatment. Traditionally, measures of change 

are found by calculating difference scores (subtracting the observed initial score from the final 

score) for each person. However, problems such as the reliability paradox and the meaning of 

change scores arise from using simple difference scores to study change.  A new item response 

theory model will be presented that estimates latent change scores instead of difference scores, 

addresses some of the limitations of using difference scores, and provides a direct comparison 

of the mean latent changes exhibited by different groups (e.g. females versus males). A 

simulation-based test was conducted to ascertain the viability of the model and results indicate 

that parameters of the newly developed model can be estimated accurately. Two sets of 

analyses were performed on the Early Childhood Longitudinal Study-Kindergarten cohort 

(ECLS-K) to examine differential growth in math ability between 1) male and female students 

and 2) Caucasian and African American students from kindergarten through fifth grade. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
 Repeated measures designs are widely used in educational and psychological research, 

where the same subjects/individuals are repeatedly measured over time on one or more 

observed variables. The primary purpose of using repeated measures designs is to compare the 

changes over time exhibited in response to a treatment. For example, in educational research, 

this methodology is important in assessing the amount of learning (i.e. change) that results from 

teaching (i.e. treatment) over time (e.g. year, semester). Traditionally, measures of change are 

found by calculating difference scores (subtracting the observed initial score from the final 

score) for each person. However, problems such as the reliability paradox and meaning of 

difference scores (Lord, 1956 & 1958) arise from using the simple difference of successive test 

scores to study change. For example, the reliability of a difference score is near zero when 

reliabilities of pretest and posttest are both high and when a large pretest-posttest correlation 

exists (Williams & Zimmerman, 1996). In addition, score variance, score correlations, and 

reliabilities are population dependent.  Alternative methods such as residual change scores and 

multi-wave methods ( Dimitrov & Rumril, 2003; Willett, 1989b; Rogosa & Willett, 1985) have 

developed in response to these problems, but the item response models (IRT) for the analysis 

of repeated measures designs appear the most promising in circumventing some of the 

classical problems in the measurement of change (Gluck & Spiel, 1997). 

 There are three common univariate IRT approaches in the analysis of repeated 

measures: 1) separate calibration, 2) concurrent calibration and 3) fixed parameter calibration 

techniques. However, unidimensional IRT models ignore the correlations between latent trait 

scores over time, yielding less precise estimates of latent trait scores (Roberts & Ma, 2006).  

 Multidimensional IRT models, on the other hand, account for the correlation in latent trait 

scores. Andersen (1985), Embretson (1991), Roberts & Ma (2006) and others have developed 
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multidimensional IRT (MIRT) models for the analysis of repeated measures. A new MIRT model 

will be presented in this thesis that allows for the estimation of the latent change scores and 

provides a direct comparison of the mean latent changes exhibited by different groups (e.g., 

females versus males).  

 The purpose of this study is to develop a new multidimensional item response theory 

(MIRT) model for repeated measurement analysis and to apply the new model to data from the 

Early Childhood Longitudinal Study - Kindergarten Cohort (ECLS-K; Rock & Pollack, 2002). The 

new model is a three-parameter logistic model for longitudinal assessment, in which multiple 

group structure is also incorporated into the model (e.g., Caucasian versus Asians over time). 

This model can also be constrained to yield a two-parameter logistic model for those items 

where it is unnecessary to estimate the pseudo-guessing parameter and in cases where mixed 

format tests are used (e.g. both multiple choice and free response questions in one test). 

 An initial, small-scale simulation test was conducted to ascertain the viability of the 

parameter estimation with the model. Both true item parameters and the simulation design were 

based on item responses from a real testing program, namely, the Early Childhood Longitudinal 

Study - Kindergarten cohort (ECLS-K; Rock & Pollack, 2002). Responses from 2000 simulees to 

a two-stage adaptive assessment were generated for six time points. Parameters were then 

estimated using a joint Bayesian estimation technique implemented in WinBUGS (Spiegelhalter, 

Thomas, Best, & Dunn, 2007). Test results indicate the procedure can estimate the model 

parameters accurately.  

 The Early Childhood Longitudinal Study-Kindergarten cohort (ECLS-K) is an ongoing 

longitudinal study, where students are tested from kindergarten through eighth grade in the 

areas of science, mathematics, reading, and general knowledge. In each round of testing, there 

are two stages: the routing stage and second adaptive stage. In this thesis, the ECLS-K data 

are analyzed using the new model to determine if differential growth exists between 1) male and 

female students and 2) Caucasian and African American students in math ability. Item 
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parameters and differential growth estimates will be reported along with the item characteristic 

curves and test information curves derived from alternative test stages at different assessment 

times. Latent trait distributions and growth trajectories will be reported for each gender and each 

ethnicity.  
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CHAPTER 2 
 

Distinguishing between Observed, True and Difference Scores in Classical Test Theory 
 
 
 

 In classical test theory, we attempt to discern the true nature of an individual’s status 

from a fallible measure, the observed score. It is a linear combination of true score and 

measurement error. The measurement model is given as: 

nt nt ntX eξ= +        (1) 
 
Where n represents the nth individual, t is the time/occasion of test administration, ntX  is the 

observed score, ntξ is the true score, and nte  is a random variable that constitutes measurement 

error.  Note that nte  is assumed to have a population mean equal to zero. If we are interested in 

measuring the change or growth, then parallel test forms are administered, for example, at two 

different time points to the same group of individuals. The observed change is simply the 

difference between the pretest and posttest score, written as: 

 
    2 1 2 2 1 1( ) ( )ξ ξ= − = + − +n n n n n n nD X X e e     (2) 

 
   2 1 2 1( ) ( )ξ ξ= − + −n n n n nD e e       (3) 
 
   

nn nD eγγ= +         (4) 
 
 

Where nD  is the difference score for the nth individual,  nγ  is the true change score, 

and 1 2n n ne e eγ = −   is the difference in error between the two test forms.  It is important to 

differentiate between difference scores and true change scores. The true change is the 

difference between the true scores on the initial and final tests.  

 Three assumptions about the errors of measurement must be met in classical test 

theory: 1) the expected value of the error scores in the population is zero, 2) error scores are 
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uncorrelated with each other in the population, and 3) error scores are uncorrelated with true 

scores on either test in the population. Two assumptions, which are weakly met, must hold true 

for the use of parallel forms: 1) the true scores must be identical and 2) error variance must be 

the same for both tests (Lord, 1980).  Difference scores can only be infallible measures of true 

change if and only if “the tests are perfectly reliable” (Lord, 1958). For example, when the 

measurement error (
n

eγ ) is large and negative, the difference score can be negative even 

though the true change is positive (Lord, 1958).  
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CHAPTER 3 
 

THREE MAJOR ISSUES WITH USING DIFFERENCE SCORES 
 
 
 
3.1 Reliability Paradox 
 
 Difference scores are easy to calculate and an unbiased estimate of true change, but 

despite these properties, many methodologists have criticized the use of difference scores for 

several reasons, such as the reliability paradox. Reliability of a difference score is dependent on 

the correlation between the initial and final scores. The higher the correlation between the two 

test scores, the lower the reliability will be; all other things being equal. A lower correlation 

between test scores would increase the reliability of difference scores; however, we must then 

question whether the tests measure the same latent variable on the two different occasions 

(Lord, 1956; Bereiter, 1963). It would not be logical to compare the initial status to the final 

status of an individual and estimate the change if the tests are not measuring the same 

dimensions. This is true even when two identical tests are administered, where at the second 

administration the test no longer measures the same construct because the individual has 

changed so drastically (Lord, 1958).  For example, a third grader initially fails to answer an item 

correctly due to the lack of skill. Then the same individual fails the same item in seventh grade 

because now, with the gain in knowledge and understanding of concepts, over-thinks or makes 

the problem harder than it is.  

 The reliability of a difference score is the ratio of true change variance and difference 

score variance for all people in the population and is calculated as: 

 

   
2 2

2 2 2( )
γ

γ γ

γ

σ σ
ρ

σ σ σ
= =

+D e

D        (5) 
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Where ( )Dρ is the reliability of the difference score, 2
γσ  is the true change variance, 2

γ
σ e  is the 

error variance, and 2
Dσ  is the difference score variance.  From equation 5, note the connection 

between reliability and measurement error. If the random error variance is large relative to the 

inter-individual variation in true change score, the reliability is low. The reliability is high when 

random measurement error relatively smaller than the true change variation. Another way to 

examine reliability of difference scores is in terms of variances and reliabilities of constituent test 

scores, and correlations between initial and final observed scores: 

 

   1 1 2 2 1 2 1 2

1 2 1 1 2

2 2

2 2
2

2
( )

2
σ ρ σ ρ σ σ ρ

ρ
σ σ σ σ ρ

+ −
=

+ −
X X X X X X X X

X X X X X X

D     (6) 

 
 
Where 

1

2
Xσ   and 

2

2
Xσ  are variances of observed scores X1 and X2, respectively, 

1Xρ and
2Xρ are 

the reliabilities of X1 and X2, respectively, and 
1 2X Xρ  is the correlation between the two observed 

scores over all people in the population. By examining equation 6, we find the two sources of 

the reliability paradox: reliabilities of observed scores and the correlation between the initial and 

final scores. The numerator and denominator look similar; however, the numerator will always 

be less than or equal to the denominator because the variance of each observed score is 

multiplied by its respective reliability. Consequently, higher values of 
1Xρ and

2Xρ are desirable.  

Reliability of the difference score is also a function of the correlation between the initial and final 

scores such that, for a given level of constituent test reliability less than one, a higher correlation 

between test scores decreases the reliability of the difference score.  However, researchers 

generally desire a high value for this correlation to ensure construct validity (Rogosa & Willett, 

1985). Correlations between the initial and final observed scores will be high only when most of 

the individuals in the group are changing at approximately the same rate, maintaining the rank 

order (Rogosa & Willett, 1985; Willet, 1985). Under such conditions, the reliability of the 
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difference score is lowered due to the low variation of true change scores, making it is harder to 

distinguish between the individuals. In addition, if reliability of the difference score is low, then it 

is not appropriate to correlate the difference score with other variables in the population 

(Mellenbergh, 1999). Rogosa and Willett (1985) argue that different individuals change at 

different rates; therefore, their trajectories may crisscross and the rank ordering of the 

individuals will fluctuate naturally as time passes. This lowers the correlation but increases the 

reliability of difference scores, so they conclude that 
1 2X Xρ should not be used as an index of 

construct validity but rather a measure of heterogeneity in change.  

3.2 Correlations between the initial and change score 
 
 Another major criticism regarding difference scores is the negative correlation between 

the initial score and change score. Thorndike (1924) first noted the spurious negative 

correlation, also known as the Law of Initial Values (Rogosa & Willett, 1985), which implies 

individuals with low scores on the initial test will change faster or gain more than those with high 

initial scores. This may be true, but Lord also suggests an alternative reason for this occurrence: 

regression towards the mean. Given the effects of measurement error, for example, those with 

high initial status may have had a large measurement error in their score, but they were not as 

“lucky” on the second test administration, reducing their average score (Lord, 1958).  Linn and 

Slinde (1977) pointed out that if the change score is not independent of initial status, then the 

measure of change should be considered unfair because it gives “an advantage to persons with 

certain values of the pretest scores.”  However, Willett (1989) disagrees and questions: “Why 

should change and status be unrelated?” He argues that we are a product of past change and 

that current changes influence our future status. Therefore, the correlation between our status 

and change is unavoidable. 
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 3.3 Meaning of change scores 

 Only when initial and final measurements are perfectly reliable can difference scores 

provide infallible estimates of change. So how do we interpret difference scores when they are 

not?  Sometimes we are interested in differences between individuals in addition to changes 

within an individual. Interpreting gain scores is relatively easy when comparing individuals with 

the same starting ability. However, a problem arises when attempting to compare individuals 

who start at different initial abilities. When a negative correlation between the initial status and 

the change score exists, high ability individuals gain less numerically than individuals of lesser 

ability (Lord, 1958). However, a small difference score for an individual with high initial status 

can actually represent greater true change than a comparable difference score for an individual 

with an average initial status (Lord, 1958; Embretson & Reise, 2000; Bereiter, 1963). If the 

distribution of initial test scores is normal or unimodal and intervention/treatment produces a 

negatively skewed distribution of posttest scores, then a ceiling effect occurs because the 

scores at the higher end are truncated (Williams & Zimmerman, 1996). With this compression at 

the upper end of the scale, even if these individuals change drastically, it would be “physically 

impossible for them to show any sizable gain on the post-test” (Lord, 1958). While people 

erroneously suggest that the scale is interval in nature, it cannot be assumed to possess 

numerically equal intervals unless empirically proven otherwise (Fischer, 2003; Lord, 1958), so 

lesser gains for high status individuals may actually represent greater gains than those made by 

individuals of moderate status (e.g. one point versus five points, respectively) (Embretson & 

Reise, 2000; Bereiter, 1963). Thus, gain scores have meaning only when comparing individuals 

who start at comparable initial status positions.  
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CHAPTER 4 
 

ITEM REPONSE THEORY AS AN ALTERNATIVE TO THE USE OF DIFFERENCE SCORES  
 

 
 
 With these criticisms of difference scores, their usefulness has been and should be 

seriously questioned. Item response theory (IRT) models provide benefits and deal with some of 

the limitations of using difference scores when the models fit the data well. First, parallel tests, 

whose assumptions are rarely met, are not necessary (i.e. the true scores and standard 

deviations of the pretest and posttest do not have to be same). Embretson and Reise (2000) 

and Feldt and Brennan (1989) considered it more realistic to assume parallel tests for profile 

settings than in growth settings, where standard deviations of test scores are likely to vary due 

to treatment. Second, the precision of the IRT model parameters is calculated instead of the 

reliability of test scores, and so the reliability paradox is a moot issue in item response theory. 

Third, when the model fits the data, then interpretations of item parameters are not dependent 

on the characteristics of the examinees (i.e. they are invariant to the latent trait distribution in the 

population), and the interpretations of person parameters are not dependent on the particular 

characteristics of the administered items (i.e. they are invariant to the distribution of items). 

These last two properties make it possible to obtain similar item parameter estimates even 

when the items are administered to different sets of individuals. Additionally, the similar person 

estimates can be obtained when different sets of items are administered, respectively. Another 

advantage is that IRT methods place scores on a common measurement scale and permit the 

legitimate comparison of latent change over time. Therefore, it is not necessary for individuals to 

have similar initial status points in order to make comparisons. 

4.1 Univariate approaches to repeated measures using IRT 
 
 Whenever different forms of the same test are administered (e.g., for test security, to 

reduce practice effects, for repeated measurement analysis), it becomes necessary to obtain a 

common metric for the IRT parameters underlying these test forms.  By linking the metric of IRT 
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parameters across test forms, the item parameter scales are corrected for any differences that 

may arise due to alternative choices for an arbitrary origin and scale unit (Jodoin, Keller, & 

Swaminathan, 2003).  Three common methods for obtaining a common metric are the separate 

calibration, the concurrent calibration, and the fixed parameter calibration methods. In the 

separate calibration technique, parameter estimates are first estimated separately for each test, 

after which, anchor items (i.e. items common in both tests) serve as the basis for the scale 

transformation to a common metric. However, common items may exhibit drift – a situation 

where item parameter estimates change in difficulty or discriminating power over time due to 

outside factors such as increased exposure of the topic (Donoghue & Isham, 1998). In the 

concurrent calibration process, item parameters are estimated simultaneously by using all 

responses from the different test forms. Items that are not taken by an examinee are coded as 

missing. Test forms are linked through the incorporation of anchor items, and the item 

characteristics of anchor items are assumed to be constant across forms.  Ability distributions 

are allowed to differ in the populations of respondents who receive different test forms (Kim & 

Cohen, 1998). The fixed parameter calibration method is a variation of concurrent calibration 

technique; however, the parameters of the common items are treated as known and not 

estimated. Instead, the item parameters of the remaining items are forced onto the same scale 

as the common items. Concurrent calibration is the most attractive of the three because it 

utilizes more information with the potential to provide more accurate estimates (Jodoin, Keller, & 

Swaminathan, 2003). Regardless, the three methods discussed (as with any unidimensional 

approach in assessing change) ignore the correlations between latent trait(s) over time, 

resulting in less precise measurements, especially when tests are short (Wang, Chen, & Cheng, 

2004).  
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4.2 Multivariate Item Response Theory Models for Repeated Measurements 
 
 Multidimensional item response theory (MIRT) models have a major advantage over 

unidimensional item response models for repeated measurements. The estimates of the 

parameters are more realistic because MIRT models account for the correlations between 

multiple measures of the latent trait(s) for the same individuals across time.  Some suggest 

(Wang, Chen & Cheng, 2004; Roberts & Ma, 2006) that model parameter estimation is 

improved when simultaneously calibrating all test items and using these correlations. However, 

the univariate IRT approaches discussed above ignore such correlations.  

4.3 Multidimensional Rasch Model for Learning and Change 

 Embretson’s Multidimensional Rasch Model for Learning and Change (MRMLC; 1991) is 

a multidimensional IRT model based on a Wiener simplex pattern, where the simplex structure 

links item responses to an initial ability and one or more modifiabilites that represent the latent 

changes of individuals between two successive occasions (Embretson, 1991). Belonging to the 

family of Rasch models, the item discrimination parameter is constrained to one for all items. 

The MRMLC incorporates the correlations among latent traits between occasions. Additionally, 

the model directly parameterizes individual change at the latent level.     

 The MRMLC is given as: 

*

1* *
( ) 1

*

1

exp
( 1 ,..., , )

1 exp

t

nq i
q

ni t n nT i t

nq i
q

b
P X b

b

θ
θ θ

θ

=

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠= =
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

∑

∑
 

 
 where: 
 
bi is the difficulty parameter for the ith item; 

*
1nθ is the initial latent trait (at occasion t=1) for the nth individual; 

*
2nθ  is the latent modifiability for the nth individual at occasion 2; 

*
ntθ  is the latent modifiability for the nth individual at occasion t where 2<t<T; 
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      T is the total number of occasions; 

Xni(t)  is the nth individual’s response to the ith item if and when that item is administered    

        at occasion t with xni(t) = 0, 1. 

 
 Under condition t, the latent trait is comprised of the initial ability and t-1 modifiabilities. 

To estimate the modifiability associated with condition t, item responses across conditions must 

be combined. The MRMLC model decomposes the ability into an initial latent trait and change in 

the latent trait across occasions (e.g., θ2
* represents the change in the latent trait from time 1 to 

time 2).  The use of the model is appropriate when the same items are used across occasions. 

Different items may also be used across occasions as long as there are some common items 

across occasions to maintain the metric of the latent trait scale.  The MRMLC has been 

generalized to situations in which a graded polytomous response is obtained.  For example, 

Wang, Wilson, and Adams (1998) developed a partial credit model for repeated measures 

applications using the same basic idea of parameterizing change as an initial latent trait level 

and a series of latent change scores.  A similar generalized partial credit model for repeated 

measures (GPCM-RM) was developed by Roberts and Ma (2006).   
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CHAPTER 5 

A NEW IRT MODEL FOR MEASURING CHANGE 

 

  A new item response theory model will be presented that allows for the estimation of the 

latent change scores instead of difference scores, addresses some of the limitations of using 

difference scores, and provides a direct comparison of the mean latent changes exhibited by 

different groups (e.g. females versus males). The new item response theory (IRT) model is a 

multidimensional IRT model that directly parameterizes changes in the latent variable. It 

generalizes Embretson’s (1991) multidimensional Rasch model for learning and change 

(MRMLC) by allowing item discrimination parameters to vary across items and by estimating a 

pseudo-guessing parameter for multiple choice items. The model is a type of three-parameter 

logistic model and can be used with binary data.  

 The item characteristic function is written as: 
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 where: 
 
ai is the discrimination parameter for the ith item; 

bi is the difficulty parameter for the ith item; 

ci is the pseudo-guessing parameter for the ith item; 
*
1 1n nθ θ=  is the initial (i.e., time 1) latent trait level for the nth individual; 

*
2 2 1θ θ θ= −n n n  is the change in the latent trait from time 1 to time 2 for the nth individual; 

*
( 1)nt nt n tθ θ θ −= −  is the change in the latent trait from time t-1 to time t for the nth individual;  

Xni(t)  is the response of the nth individual to the ith item if it is administered at time t with  

        Xni(t) = 0, 1; 
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5.1 HYPERPARAMETERS 

The *
ntθ variables are assumed to follow a multivariate normal distribution in which two 

hyperparameters are directly estimated: 1) the centroid and 2) the variance-covariance matrix. 

The centroid of the *
ntθ  parameters is denoted as: 

 
 

* * *
1 2

[ , ,..., ]
Tθ θ θ

μ μ μ μ=  

 

and represents the population mean of each latent variable.  The first element of the 

centroid, *
1θ

μ , is the average initial status on the latent trait in the population from which the 

respondents were sampled.  Subsequent elements of the centroid provide population averages 

for the corresponding latent change variables (i.e., the 
2

* *,...,
Tθ θθ θ  variables).  When one of these 

mean values is close to zero, then one concludes that there has been little change between the 

corresponding assessment points.  On the other hand, values that are substantially positive or 

negative are indicative of growth or decline between the corresponding assessment points, 

respectively.   

The second hyperparameter is the variance-covariance matrix associated with the *
ntθ  

variables.  As was the case with the centroid, the variance-covariance matrix is estimated 

simultaneously and directly with the item and person parameters in the model.   

The variance-covariance matrix for *
ntθ  is denoted as: 

 

* * *
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* * *
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The main diagonal of the variance-covariance matrix contains the variance parameters, *
2

tθ
σ , that 

represent variability of the corresponding latent variable.  Thus, *
1

2
θ

σ  represents the variability of 

the initial latent scores, whereas *
2

2
θ

σ , …, *
2

Tθ
σ  represent variances of subsequent latent change 

scores. The off-diagonal elements contain the covariance parameters for each pair of latent 

variables. Of particular interest are the off-diagonal elements of the first row (or column) of this 

matrix in that they represent the linear relationship between initial latent status and latent 

change between subsequent pairs of assessment points.   For example, the literature would 

predict that *
12θ

σ should be negative in that individuals who are above the mean initial status level 

are expected to exhibit negative latent change at the second assessment point whereas those 

who are below the mean initial status level are expected to have positive latent change.   

 If we are interested in examining whether group differences exist in the rate of change, 

the new model can also be used to estimate the mean latent change trajectory for each group 

separately. Specifically, the centroid and the variance-covariance matrix associated with the *
ntθ  

parameters can be estimated separately for each group of interest in a given analysis.  By doing 

so, the new model can be considered a multiple groups model where individuals are from more 

than one independent population, and group differences in growth trajectories can be 

statistically tested (e.g. “Do girls learn more algebra than boys during the year on average?”.  

 This newly developed model is considered multidimensional in form because item 

responses at later time points depend on more than one latent trait parameter (i.e., an initial 

latent trait and subsequent latent change variables). However, within any occasion, it is 

unidimensional in nature because only a single construct is being measured and item response 

probabilities are given by a unidimensional model for that construct.   
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5.2 Parameter Estimation and Program Testing 
 
 A simulation-based test was conducted to assess the viability of the model parameter 

estimation.  Item response data were generated to mimic the assessment design of the Early 

Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) for the mathematics subject area 

only.   (This design is thoroughly explained in the following sections of this paper)  The ECLS-K 

is a longitudinal assessment where children are given a two-stage adaptive test at each 

assessment time (Rock & Pollack, 2002).  The assessment design and true item parameters 

used to simulate item responses were based on previous unidimensional analyses of the ECLS-

K mathematics data.  The parameters of the new model were estimated using a joint Bayesian 

solution implemented in the WinBUGS computer program (Speigelhalter et al., 2007).  

WinBUGS provides a means to conduct Markov Chain Monte Carlo (MCMC) estimation of 

parameters from a wide variety of models.  Because the solutions implemented in WinBUGS 

are fully Bayesian, prior distributions must be specified for every estimated parameter. The 

following prior distributions were used for all unconstrained items: 1) log normal (0, .25) 

distribution of  for the discrimination parameters; 2) normal (0, 4) distribution  for the difficulty 

parameters, and 3) beta (6, 16) distribution for the pseudo-guessing parameter. A multivariate 

normal distribution was used as a prior distribution for *
ntθ  parameters.  The hyperparameters of 

this distribution (i.e., µ and Σ) were also estimated.  A  normal (.001, 100) distribution was used 

to model independently each element of the centroid.  A Wishart (I, T) prior distribution was 

used to estimate elements of Σ, where T is the total number of testing occasions and I is a TxT 

identity matrix.  Spiegelhalter et al. (2007) suggest that this prior distribution is relatively 

uninformative.  The item location and discrimination parameters of one common item were fixed 

at values reported by NCES (2002) to resolve the indeterminacies in the origin and unit of the 

latent trait scale.  For the initial verification of this estimation strategy, two-stage test data for six 

assessment points were generated and subsequently analyzed. Ten thousand total MCMC 
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iterations were performed.  Of these iterations, the first 9000 “burn-in” iterations were discarded 

and the remaining 1000 samples were used to develop expected a posteriori (EAP) estimates of 

model parameters.  The large number of burn-ins was necessary to ensure convergence. 

However, the necessary number of burn-in iterations was dependent on whether the variance-

covariance matrix was allowed to differ across groups. For example, only 9,000 burn-in 

iterations were necessary when the variance-covariance matrix was constrained to be the same 

for both groups, while 13,000 burn-ins were necessary when the variance-covariance matrix 

was allowed to differ between the groups. The test results indicate parameters were estimated 

accurately using the new model.  To ensure convergence with real data, 20,000 burn-ins were 

used for estimating the parameters in this study, regardless of whether they were constrained or 

not across gender.  
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CHAPTER 6 
 

EARLY CHILDHOOD LONGITUDINAL STUDY- KINDERGARTEN COHORT (ECLS-K) 
 
 
 
6.1 Description 
 
 The Early Childhood Longitudinal Study- Kindergarten Cohort (ECLS-K) is an ongoing 

longitudinal study conducted by the National Center for Educational Statistics, where students 

are tested from kindergarten through eighth grade in the areas of science, mathematics, 

reading, and general knowledge. For this study, the data only include six rounds of testing 

administered in the fall and spring of kindergarten, fall and spring of first grade, spring of third 

grade and spring of fifth grade, and only the responses to the mathematical portion were 

analyzed.  For rounds 1-4 (spring and fall of kindergarten and first grade), only one routing form 

was administered. This form contained 17 items administered to every student. For rounds 5 

and 6 (spring of third and fifth grade), two separate routing forms with more difficult items were 

administered. The forms contained 17 and 18 items, respectively. These three alternate forms 

contained common items to allow for the establishment of a common metric. 

 Each round of testing had a two-stage adaptive design. In the first stage, every student 

was administered the same test form (or routing test). After determining the student’s routing 

test score, he/she was administered the second stage form immediately. The student was given 

one of three second-stage test forms that were low, moderate, or high in difficulty depending on 

his /her routing tests score, and some items overlapped between the second-stage forms. The 

overlap mitigated the emergence of floor or ceiling effects even if a student was placed into the 

wrong second-stage level. In both stages, the test forms contained common linking items 

between adjacent testing rounds (Rock & Pollack, 2002). This two-stage adaptive approach 

allowed for better assessment of both the extent of and variability in growth.  
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6.2 Mathematical Criterion-Referenced Item Clusters  
 
 The math test specifications used in ECLS-K are based on the Mathematical Framework 

for the 1996 National Assessment of Educational Progress (NAEP; Rock & Pollack, 2002). The 

specifications are 1) number sense, properties, and operations, 2) measurement, 3) geometry 

and spatial sense, 4) data analysis, statistics, and probability, and 5) patterns, algebra, and 

functions. Five specification clusters, assumed to follow a Guttman scale, were developed to 

identify learning milestones in mathematics by curriculum specialists (Rock & Pollack, 2002). 

Each cluster contains four items, and a student is considered proficient at any one level if he or 

she passes any three out of four items. By the eight grade, all clusters were administered to 

each student.      

6.3 Distribution and Number of Items for Each Round of Testing 
 
 Table 1 summarizes the number of items for each round of testing for both stages. Some 

routing and second stage items are common between rounds (See Table 2).  For example, four 

items from the 3rd grade routing test can also be found on the kindergarten/1st grade routing test, 

and seven items from the 3rd grade routing test are also on the 5th grade low level 2nd stage test. 

Unique items are those only administered on a specific test form. These items will not be found 

anywhere else.  
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Table 1 
 
 Total Number of Items in Each Stage for Each Round.  
 

1st Stage 2nd Stage 
Administered Routing Low 

Level 
Moderate 

Level 
High 
Level 

Kindergarten & 1st 
grade 

[Rounds 1-4] 
17  18 23 31 

3rd grade 
[Round 5] 17 25 21 24 

5th grade 
[Round 6] 18 18 19 24 
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Table 2 
  
Distribution of Common Items in Other Testing Rounds.  
 

Note: Common items are those found in more than one test form. The number of common routing items found in other test rounds is  
          given in parenthesis.  
  
 

Kindergarten & 1st grade 3rd grade 5th grade Rounds 
Route Low Mod High Route Low Mod High Route Low Mod  High

Routing 4 3  -  - - 4 -  -  
Low - - - - - - - - 
Moderate - 1 - - - - - - 

Kindergarten & 
1st grade 

(8) 
 

Rounds 1-4 High   1 5 - - - - - - 

Routing 4  -  - 1 2 7 2 -  
Low 3 - 1 5 2 - - - 
Moderate - - - - 5 6 2 - 

3rd grade  
(11) 

 
Round 5 

High - - - -   6 3 4 5 

Routing - - - - 2 2 5 6 
Low 4 - - - 7  - 6 3 
Moderate - - - - 2  - 2 4 

5th grade 
(11) 

 
Round 6 

High - - - -  -  - -  5   

22 
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CHAPTER 7 
 

METHOD 
 
 
 
7.1 Participants  

In the first part of this study, analyses were performed to examine differential growth 

between 1000 male and 1000 female randomly selected students. Only 2,000 of the 22,000 

students were selected for two reasons. First, only those students with complete data across all 

6 rounds were included in this research project. This sample constraint seemed prudent given 

the desire to avoid mischaracterizations of the model at this early stage of model development. 

When considering only those students with complete data, the effective respondent pool 

decreased to approximately 2,500 individuals. The sample size used in this part of the study 

was further reduced to 2000 due to the computational limitations of WinBUGS, such as 

processing speed and limited memory capacity. In the second part of this study, analyses were 

performed to examine differential growth in mathematical ability between 1,443 Caucasians and 

282 African American students. The sample size was smaller than the gender analysis, and 

group sizes were not equal because in addition to taking all six rounds of testing, ethnicities had 

to be reported.  

7.2 Model variations 
 
 Six variations of the model were investigated by modifying the constraints placed on Σθ, 

μ, or both. Table 3 summarizes the different models that were studied. Each model was run 

using responses from 2,000 students in the gender analyses and 1,725 students for the 

ethnicity analyses. Models 1, 3, and 5 are similar in that Σθ is constrained to be equal across 

groups, but the models differ with regard to the constraints placed on the centroid. In model 1 

the centroid is constrained to be equal across groups whereas in model 5 the centroids are 

estimated separately for each group. In model 3 the centroids are free to differ at baseline but 

constrained to be equal across groups for subsequent time points. Models 2, 4, and 6 are 
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similar in that Σθ is estimated separately for each group but differ on the constraints placed on 

the centroid. The same constraints placed on the centroid for models 1, 3, and 5 are placed on 

models 2, 4, and 6, respectively.   

 
Table 3 
 
 Variations of the New IRTMmodel 
 

Variations of the Model Σθ constrained to be equal 
across groups 

Σθ estimated for both groups 
separately 

Centroid constrained to be 
equal across groups Model 1 Model 2 

Centroid allowed to differ at 
baseline but constrained to 

be equal afterwards 
Model 3 Model 4 

Centroid estimated for both 
groups separately Model 5 Model 6 

 
 
7.3 Convergence and model selection using deviance information criterion (DIC) 
 
 Twenty-one thousand iterations were used to ensure convergence, where 20,000 

iterations served as burn-in and the last 1,000 iterations were used to develop EAP estimates of 

model parameters. Additionally, trace plots of all item parameters and hyperparameters were 

also examined to ensure all variations of the model converged (see Figures 15-16). Evidence 

for convergence is provided when segments of the trace plot for a parameter traverse the same 

parts of the sample space and no clear pattern is found (e.g. always decreasing) (Sinharay, 

2003). The trace plots of centroid parameters for both gender and ethnicity results can be seen 

in figures 15 and 16, respectively. The deviance information criterion (DIC; Speigelhalter, Best, 

Carlin & Van der Linden, 2002) was then used to select the model that best fit the ECLS-K data. 

The DIC takes into account the model fit and the complexity of the model which is measured by 

the effective number of parameters that are estimated. As the number of parameters increases 

the DIC value also increases. Models with smaller DIC values are favored. The DIC values were 

very similar for all six models; however, the smallest DIC value (DIC= 414,000 and 
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DIC=356,942 for gender and ethnicities, respectively) resulted when Σθ and μ were not 

constrained (i.e., when both sets of parameters were estimated separately in each group). 

Therefore, model 6 was selected for both the gender and ethnicity analyses. Table 4 and Table 

5 summarize the DIC for each variation of the model for the gender and ethnicity results, 

respectively. 

Table 4 

Gender:  DIC Values for Each Variation of the Model 

Variations of the Model Σθ constrained to be equal 
across groups 

Σθ estimated for both groups 
separately 

Centroid constrained to be 
equal across groups 414,026 414,014 

Centroid allowed to differ at 
baseline but constrained to 

be equal afterwards 
414,062 414,055 

Centroid estimated for both 
groups separately 414,040 414,000 

 

Table 5 

 Ethnicity: DIC Values for Each Variation of the Model 

Variations of the Model Σθ constrained to be equal 
across groups 

Σθ estimated for both groups 
separately 

Centroid constrained to be 
equal across groups 357,037 356,991 

Centroid allowed to differ at 
baseline but constrained to 

be equal afterwards 
356,948 356,992 

Centroid estimated for both 
groups separately 356,978 356,942 

 

7.4 Item fit  

Item responses and item parameter estimates were used to plot mean observed versus 

expected proportions within homogeneous θ groups. Correlations between the average 

observed and average expected values for each item were also calculated. Using θ estimates 
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obtained from model 6, respondents were sorted and homogeneous groups of approximately 

equal size (N≈50) were formed.  Within each group, the average θ, the average observed 

proportion of examinees who answered a given item correctly, and the expected proportion of 

correct responses were calculated. These mean observed and expected responses were then 

plotted by average θ and also correlated across θ groups.  The correlation can be used as a 

measure of item fit that is sensitive to the scatter of observed data relative to its expected value 

(It is less sensitive to misfitting trend).  For binary data, experience suggests that correlations 

less than .9 are indicative of items with too much scatter. All items were examined graphically to 

assess the fit of the model separately for gender and ethnicity.  Most items had high correlations 

(r >.90) and were well-fitting. Therefore, only items with extremely high correlations and items 

suspect of misfit with respect to either trend or scatter are depicted here to conserve space. In 

each of the figures that follow, the top panel illustrates a well-fitting item, whereas the bottom 

panel depicts the most misfitting item within an item set of interest.  

7.4.1 Gender: common items 

 Four items common across rounds 1-6 and nine items common across rounds 1-4 and 

round 5 have high correlations ranging from .95 to .99, and no items exhibited problems with 

misfitting trend or scatter. Items 15 (r = .995) and 13 (r = .990) represent the best and worst 

fitting items, respectively, among the four common items across rounds 1-6 (see Figure 17). 

Items 8 (r = .993) and 48 (r = .950) represent the best and worst fitting items, respectively, 

among the nine items common across rounds 1-4 and round 5 (see Figure 18). Though 

considered the worst fitting items, both items 13 and 48 have reasonably good fit. Twenty-seven 

common items were administered in round 5 and round 6, and correlations ranged from .85 to 

.98. Item 73 had the highest correlation (r = .993) and is depicted in the top panel of Figure 19. 

The fit of item 122 (r = .85) was suspicious due to its low correlation (see Figure 19-bottom 

panel); however, a closer inspection revealed only a slight problem with scatter.    
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7.4.2 Gender: unique items 

 Fifty-one unique items were administered during rounds 1-4, and only three items had 

correlations less than .90.  Item 4 and item 18 had the highest (r = .990) and lowest correlation   

(r = .67), respectively (see Figure 20). Though the correlation is low, scatter does not appear to 

be a problem for item 18. Instead, attenuation of the correlation appears to result from a lack of 

response variability for this item (i.e., a ceiling effect). Thirty-four and twenty-nine unique items 

were administered during round 5 and round 6, respectively, and most items had high 

correlations. The two of the best fitting items were item 77 (r = .989) and item 22 (r = .988) for 

round 5 and round 6, respectively (see top panels of Figures 21 and 22). Upon inspection of the 

eight suspicious items in round 5 and two suspicious items in round 6, all but two items 

appeared to fit visually and did not exhibit obvious misfitting trend or extreme scatter. Item 117 

(r = .68) and item 205 (r = .85) exhibited more pronounced scatter (see bottom panels of Figure 

21 and Figure 22). 

7.4.3 Ethnicity: common items 

 The four items administered in the six rounds of testing and seven of the nine items 

administered during rounds 1-4 and round 6 had extremely high correlations (r > .98); while the 

remaining two items common across rounds 1-4 and round 6 have high correlations (r=.96). 

Among the four common items across rounds 1-6, the best and worst fitting items were item 15 

(r = .995) and item 13 (r = .989), respectively (see Figure 23). Among the nine items common 

across rounds 1-4 and round 6, item 52 (r = .990) and item 48 (r = .958) had the highest and 

lowest correlations, respectively (see Figure 24). Of the twenty-seven items common across 

round 5 and round 6, seven items had correlations lower than .90 but most items did not exhibit 

obvious scatter. Item 73 had the highest correlation of .983, and item 116 had the lowest 

correlation and a closer inspection revealed a problem with scatter (see Figure 25).    
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7.4.4 Ethnicity: unique items 

One hundred fourteen unique items were administered in rounds 1-6, and most items 

had high correlations. Items 7 (r = .99), 74 (r = .983) and 178 (r = .986) had the highest 

correlations among the unique items in rounds 1-4, round 5, and round 6, respectively (see top 

panels of Figures 26-28). Upon inspection of the seven suspicious items from rounds 1-4, eight 

suspicious items in round 5, and five suspicious items in round 6, all items appeared to fit 

visually and did not exhibit obvious misfitting trend or scatter. The following items were suspect 

of scatter but appear to fit visually: Item 18    (r = .66), item 117 (r = .70), and item 205 (r = .872) 

from rounds 1-4, round 5, and round 6, respectively, can be seen in the bottom panels of 

Figures 26-28. 

These initial analyses suggest the model fits both the gender and ethnicity data. 
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CHAPTER 8 

RESULTS/ DISCUSSION 

 

8.1 Gender: Item parameter estimates 
 
 A total of 153 unique items were administered across all six rounds; however, the 

number of item responses to the repeated assessments varied given the nature of the two-stage 

adaptive testing design.  Recall that the same test forms were administered for rounds 1 

through 4. The parameters (b=.35; a=1.8) of item 13 were constrained to resolve the 

indeterminacies in the origin and unit of the latent trait scale, and this item was common across 

all six rounds. Appendix A lists the item discrimination (ai), item difficulty (bi), and pseudo-

guessing parameter (ci) estimates for the common items. The estimated parameters for the 

unique items for rounds 1-4, round 5, and round 6 are listed in Appendices B-D, respectively. 

Unique items from rounds 1-4 had extremely low difficulty parameter estimates ranging from -

5.07 to -8.62 (see Appendix B). Upon examination, four of these items were found to be low 2nd 

stage test items from rounds 1-4 and the remaining item was the easiest routing item for those 

rounds.  Ignoring these five items, item difficulty estimates ranged from -4.58 to+ 2.588 for 

rounds 1-4. Item difficulty estimates for round 5 and round 6 unique items ranged from -2.024 to 

+3.400 and +1.413 to +4.383, respectively,(see Appendices C-D). Most items had moderate to 

high levels of discrimination, and 15 items had low levels of discrimination where ai was less 

than one. Ten of these items were administered during rounds 1-4, where items were generally 

easier, making it harder to discriminate among the individuals.  The remaining five items were 

administered during round 5. All items in round 6 had discrimination parameters greater than 

1.3, Of the 34 pseudo-guessing parameters estimated for the multiple choice items, only one 

item from round 6 had a pseudo-guessing parameter estimate less than 0.1.  Thus, the results 

indicated that a three-parameter model was necessary for multiple choice items in this dataset.   
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The average item parameter estimates and standard deviations for each round and 

stage of testing are reported in Table 6. The average difficulty increased across the second 

stages within each round of testing as well as among rounds. The average discrimination levels 

increased across each round of testing; however, within each round, no general trend was 

found. The average pseudo-guessing parameter estimates decreased across and within each 

round testing.  

Table 6 

Gender: Average Item Parameter Estimates and Standard Deviations for Each Round  and 
Stage of Testing 

 
ai bi ci 

Round Stage 
Level Mean STD Mean 

(std) STD Mean 
(std) STD 

Routing 1.616 0.435 -1.876 2.147 0.212 0.069
Low 1.137 0.377 -3.599 1.944 0.284 0.086
Moderate 1.518 0.868 -1.830 1.264 0.212 0.062

1-4 

High 1.665 0.419 -0.267 1.603 0.184 0.060
Routing 2.007 0.362 1.423 0.696 0.127 0.011
Low 1.712 0.733 0.208 1.012 0.218 0.033
Moderate 1.906 0.735 1.362 0.717 0.182 0.050

5 

High 1.876 0.552 2.539 0.681 0.139 0.035
Routing 2.191 0.583 2.249 0.762 0.165 0.059
Low 1.821 0.621 1.321 0.698 0.147 0.051
Moderate 1.788 0.579 2.506 0.695 0.143 0.059

6 

High 2.039 0.481 3.346 0.558 0.127 0.025
  

The item characteristic curves (ICC) of four common items and 9 unique second stage 

low, moderate, and high difficulty level items for each round of testing are portrayed in figures 1-

4, respectively. Items representative of the typical item parameter estimates for each round and 

stage of testing were chosen to display here. The ICC portrays the probability of correctly 

responding to that item as a function of the composite theta (θnt). In Figures 2-4 note that as the 
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item difficulty increases, discrimination also increases (i.e., the curves shift to the right and the 

slopes get steeper). 

 
8.2 Gender: Test Information Function 
  
 Figures 5-8 illustrate the test information function (TIF) for rounds 1-4, round 5 and 

round 6 items, respectively, for each stage and form of testing. The curves portray test 

information as a function of the composite theta (θnt). In Figure 5, the routing test for rounds 1-4 

provided the most information (i.e., precision for estimating ability)  at θnt =  0.15, while the low 

level test form of the second stage provided the most amount of information at θnt =  -4.48. Note 

that the TIF curve of the low test form is very flat relative to the other curves in the figure, and 

among all test forms at a given stage (except for Round 6), its maximum TIF is the smallest (see 

Table 7). This can be expected due to the extremely low level of difficulty (i.e., the easiest of all 

test forms) and the low discriminating power of the items which makes it harder to differentiate 

among the moderate to high ability levels. Generally, across and within each round of testing 

(see Figures 5-7), the maximum TIF and the location of maximum information (θnt) increase with 

test difficulty due to the increase in the number of more discriminating items; however, for round 

5 there were more discriminating items on the moderately difficult test form than the high 

difficulty test form, resulting in a higher maximum TIF than on the high difficulty test form.  Also, 

this trend is not true for round 6, probably due to the lower number of discriminating items on 

the moderately difficult test form as compared to the low difficultly and high difficulty test forms.  

Table 7 summarizes the values and locations of the maximum test information function for all 

rounds of testing. 
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Table 7 
 
Gender: Location of Maximum Test Information Function. 
 

1st Stage 2nd Stage 

Routing Low Difficulty  Moderate Difficulty High Difficulty Administered 
# of 

items θnt TIF # of 
items θnt TIF # of 

items θnt TIF # of 
items θnt TIF 

Kindergarten & 
1st grade 

[Rounds 1-4] 
17 0.15 4.94 18 -4.48 2.51 23 -1.61 13.05 31 0.53 14.01

3rd grade 
[Round 5] 17 1.31 12.59 22 1.09 13.60 24 1.36 20.02 23 2.3 14.51

5th grade 
[Round 6] 18 2.12 13.69 18 1.5 11.74 19 2.28 9.84 20 3.39 15.52
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8.3 Gender: Centroid 
 

Direct estimates of the centroid (population mean for each *
ntθ )  for both groups were 

obtained using the model. Recall that *
1nθ  is the initial mathematical ability of each student in the 

fall of kindergarten and subsequent *
ntθ  elements represent the change (or growth) in 

mathematical ability from one assessment period to the next. The average baseline ability for 

the population is represented by 1μ̂  and found to be -2.724 and          -2.573 for females and 

males, respectively. These baseline ability estimates were standardized to center the scale at 0 

by subtracting the combined average of the two groups and then dividing by the pooled variance 

calculated from the latent trait estimates within each group. Estimated mean levels of change 

are reported in Table 8, and these estimates were standardized to the same baseline metric. 

The standardized estimates for 1μ̂  were -.06 and .07 for females and males, respectively, and a 

two-tailed t-test was conducted to test for group differences and found to be statistically 

significant (t= -2.60, p<.05). However, the difference between the two groups was only a .13 

standard deviation of the initial mathematical ability level and may be too small to have 

pragmatic implications for practitioners. 

The standardized estimated mean levels of change in mathematical ability from fall to 

spring of kindergarten ( 2μ̂ =1.04) and from spring of kindergarten to fall of 1st grade ( 3μ̂ =.51) 

were equal for both groups and nearly equal for Round 4 from fall to spring of 1st grade. For the 

first two years of education, the largest amount of growth occurred between fall and spring of 

each year and growth rates were nearly identical for male and females. Differences in growth 

between the two groups were not found until the spring of 3rd grade and the spring of 5th grade, 

where 5μ̂ was equal to 1.14 and 1.20 and 6μ̂  was equal to 0.72 and 0.75 for females and males, 

respectively. Though there was only a .06 standard deviation difference between the groups, 

5μ̂  was found to be statistically different (t= -2.48, p<.05) between males and females but such 
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a small difference may have little substantive meaning.  No statistical differences were found for 

round 6 (t= -1.10, p>.05). 

Table 8 
 
Gender: Estimated Mean Levels of Change in Mathematical Ability. 
 

 Unstandardized  Standardized 

 Females Males Females Males 
 
 
(baseline) 

-2.72 -2.57 -0.06 0.07 

 1.19 1.19 1.04 1.04 
 0.59 0.58 0.51 0.51 

 1.16 1.15 1.01 1.00 

 1.31 1.38 1.14 1.20 

 0.82 0.86 0.72 0.75 

 
 
8.4 Gender: Variance-covariance matrix 
 

Using the model, direct estimates of the variance-covariance matrix for *
ntθ  measures 

were obtained to examine variability in baseline ability and growth for both groups. Recall that 

the first element in the main diagonal of ∑ represents the variability in mathematical ability at 

baseline, and the subsequent main diagonal elements represent the variability of change in 

ability. Only elements from the main diagonal of ∑ (i.e., *
2
θ

σ  ) are reported in Table 9 for each 

group:  

1μ̂

2μ̂

3μ̂

4μ̂

5μ̂

6μ̂
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Table 9 
 
Variability in Baseline Ability and Growth for Females and Males. 

 

 

 

 

 

 

 

 

 

 Females and males have similar variability in baseline ability and growth, and the largest 

difference between the two groups was only .059. The variability of growth fluctuated, 

decreasing and increasing, between assessment points until the spring of 5th grade where the 

variability was only .099 and .097 for females and males, respectively; indicating the variability 

in growth rate was similar for these two groups.   

The estimated variance-covariance matrix for *
ntθ   were converted into a correlation 

matrix for each group: 

 

*

1.00 .45 .23 .46 .10 .21
.45 1.00 .21 .03 .02 .02
.23 .21 1.00 .19 .02 .08ˆ
.46 .03 .19 1.00 .28 .08
.10 .02 .02 .28 1.00 .13

.21 .02 .08 .08 .13 1.00

Females
P
θ

− − − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− − − − −

= ⎜ ⎟
− − − −⎜ ⎟
⎜ ⎟− − − −
⎜ ⎟⎜ ⎟− − − −⎝ ⎠

 

 

 Females Males 

*
1

2
θ

σ  

(baseline)
1.382 1.441 

*
2

2
θ

σ  0.243 0.290 

*
3

2
θ

σ  0.179 0.207 

*
4

2
θ

σ  0.251 0.259 

*
5

2
θ

σ  0.183 0.225 

*
6

2
θ

σ  0.099 0.097 
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*

1.00 .41 .14 .45 .22 .06
.41 1.00 .26 .07 .01 .01
.14 .26 1.00 .22 .00 .01ˆ
.45 .07 .22 1.00 .25 .04
.22 .01 .00 .25 1.00 .15

.06 .01 .01 .04 .15 1.00

Males
P
θ

− − − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− − −

= ⎜ ⎟
− − −⎜ ⎟
⎜ ⎟− − −
⎜ ⎟⎜ ⎟− −⎝ ⎠

 

The off-diagonal elements on the first row of both matrices indicated that there was a low 

to moderate negative correlation between initial ability and subsequent changes except in round 

6 where there was a slight positive correlation. This suggested that, on average, individuals who 

were below the mean at baseline experienced positive growth (relative to the mean) until the 

spring of fifth grade where they experienced negative growth (i.e., the amount of change was 

below the mean of the group). 

 
8.5 Ethnicity: Item parameters estimates 
 
 The estimated item parameters were similar to those of the gender results (see Table 

10). Within each round of testing, the average item difficulty levels increased with each 

secondary stage of testing (i.e., low, moderate, and high), and in general, the average 

discrimination levels also increased; however, in round 6, the average discrimination level was 

lower for the moderately difficult test form than the low difficulty test form.  
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Table 10 

Ethnicity: Average Item Parameter Estimates and Standard Deviations for Each Round  and 
Stage of Testing 

 
ai bi ci 

Round Stage 
Level Mean STD Mean 

(std) STD Mean 
(std) STD 

Routing 1.546 0.417 -2.013 2.268 0.214 0.059
Low 1.070 0.326 -3.809 2.138 0.296 0.089
Moderate 1.513 0.847 -1.878 1.319 0.230 0.056

1-4 

High 1.651 0.419 -0.291 1.646 0.214 0.084
Routing 1.945 0.342 1.399 0.699 0.133 0.021
Low 1.690 0.729 0.119 1.047 0.225 0.034
Moderate 1.835 0.734 1.302 0.843 0.176 0.048

5 

High 1.847 0.563 2.550 0.708 0.135 0.039
Routing 2.149 0.575 2.251 0.778 0.171 0.071
Low 1.785 0.599 1.303 0.680 0.143 0.073
Moderate 1.747 0.580 2.491 0.695 0.129 0.058

6 

High 2.019 0.503 3.361 0.592 0.128 0.032
 

The item characteristic curves (ICC) of nine second stage low, moderate, and high 

difficulty level items for each round of testing are portrayed in figures 8-10, respectively. These 

nine items represent the prototypical item parameter estimates for each round and stage of 

testing. Note that as the item difficulty increases across the rounds, discrimination also 

increases (i.e., the curves shift to the right and the slope becomes steeper). This is most 

noticeable when contrasting Rounds 1-4 with later rounds. 

8.6 Ethnicity: Test Information Function 
  
 Figures 11-13 illustrate the test information function (TIF) for Rounds 1-4, Round 5 and 

Round 6 items, respectively, for each stage and form of testing. In Figure 11 note that the TIF 

curve of the low test form in rounds 1-4 is the flattest relative to the other curves in the figure. 

Among all test forms at a given stage, its maximum TIF is the smallest but provides much more 

information in later rounds than in rounds 1-4 (see Table 11). The low discriminating power of 
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the items and the extremely low level of difficulty of the low difficulty test form make it harder to 

differentiate among the moderate to high ability levels. Generally, across and within each round 

of testing (see Figures 11-13), the maximum TIF and the location of maximum information (θnt) 

increase with test difficulty due to the increase in the number of more discriminating items; 

however, as seen with the gender results, this trend is not true for rounds 5 and 6.  There were 

more discriminating items on the moderately difficult test form than the high difficulty test form in 

round 5, resulting in a higher maximum TIF than on the high difficulty test form.  In round 6, the 

maximum TIF value may be lower due to the lower number of discriminating items on the 

moderately difficult test form as compared to the low difficultly and high difficulty test forms.  

Table 11 summarizes the values and locations of the maximum test information function for all 

rounds of testing. 
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Table 11 

Ethnicity: Location of Maximum Test Information Function. 
 

1st Stage 2nd Stage 

Routing Low Difficulty  Moderate Difficulty High Difficulty Administered 
# of 

items θnt TIF # of 
items θnt TIF # of 

items θnt TIF # of 
items θnt TIF 

Kindergarten & 
1st grade 

[Rounds 1-4] 
17 0.11 4.72 18 -4.38 1.93 23 -1.64 12.49 31 0.46 14.02

3rd grade 
[Round 5] 17 1.26 11.85 22 1.04 13.14 24 1.35 19.15 23 2.30 14.24

5th grade 
[Round 6] 18 2.07 13.41 18 1.49 11.39 19 2.22 9.50 20 3.46 15.11
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8.7 Ethnicity: Centroid 

Estimates of the centroid were obtained separately for each group, and then 

standardized in the same manner as in the gender analyses (See Table 9).  The standardized 

estimates for 1μ̂  were 0.38 and -.38 for Caucasians and African Americans, respectively, and 

these results indicate that African American students are 0.76 standard deviations behind 

Caucasians in their the initial mathematical ability level. However, African American students 

have slightly larger growth rates until spring of 5th grade but a statistical difference in θ* was 

found only at round 3 with a difference of .08 standardized deviation units between the groups. 

Substantively this difference may not be important. Growth trajectories (the accumulation of 

standardized μt) for Caucasians and African Americans were plotted (see Figure 14). It is 

apparent that large differences exist in mathematical ability in the fall of kindergarten but remain 

relatively constant over time. Growth for both groups accelerated over time except in the fall of 

first grade and spring of fifth grade, where growth was smallest, yet still quite evident. 

Table 12 
 
Ethnicity: Estimated Mean Levels of Change in Mathematical Ability. 
 

 Unstandardized  Standardized 

 African 
Americans Caucasians African 

Americans Caucasians 

 
 
(baseline) 

-3.40 -2.44 -0.38 0.38 

 1.29 1.21 1.04 0.98 
 0.67 0.57 0.54 0.46 

 1.18 1.12 0.95 0.91 

 1.37 1.34 1.10 1.08 

 0.80 0.89 0.64 0.71 

 

1μ̂

2μ̂

3μ̂

4μ̂

5μ̂

6μ̂
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8.8 Ethnicity: Variance-covariance matrix 
 

Variability in baseline ability and growth for both groups was examined using the 

variance-covariance matrix for *
ntθ  measures obtained directly by the model. The *

2
θ

σ  are 

reported in Table 13 for each group: 

Table 13 
 
Variability in Baseline Ability and Growth for African Americans and Caucasians. 

 African 
Americans Caucasians 

*
1

2
θ

σ  

(baseline)
1.454 1.304 

*
2

2
θ

σ  0.248 0.294 

*
3

2
θ

σ  0.212 0.196 

*
4

2
θ

σ  0.326 0.215 

*
5

2
θ

σ  0.227 0.191 

*
6

2
θ

σ  0.011 0.095 

 
African Americans and Caucasians had similar variability in baseline ability and growth, 

and the largest difference between the two groups was .15 at baseline. Generally, the variability 

of growth was similar for both groups and decreased over time except in the spring of 1st grade 

there was greater variability among the African American students than the Caucasian students. 

However, by the spring of 5th grade variability was very small for both groups.  

The estimated variance-covariance matrix for *
ntθ   were converted into a correlation 

matrix for each group: 
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*

1.00 .46 .28 .45 .15 .06
.46 1.00 .07 .03 .08 .18
.28 .07 1.00 .26 .10 .05ˆ
.45 .03 .26 1.00 .19 .10
.15 .08 .10 .19 1.00 .07
.06 .18 .05 .10 .07 1.00

AA
P
θ

− − − − −⎛ ⎞
⎜ ⎟− − − −⎜ ⎟
⎜ ⎟− − −

= ⎜ ⎟
− − −⎜ ⎟
⎜ ⎟− − − −
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 

*

1.00 .49 .14 .46 .16 .16
.49 1.00 .32 .15 .03 .06
.14 .32 1.00 .27 .01 .01ˆ
.46 .15 .27 1.00 .20 .05
.16 .03 .01 .20 1.00 .13

.16 .06 .01 .05 .13 1.00

Caucasians
P
θ

− − − −⎛ ⎞
⎜ ⎟− − − −⎜ ⎟
⎜ ⎟− − − −

= ⎜ ⎟
− − − −⎜ ⎟
⎜ ⎟− − − − −
⎜ ⎟⎜ ⎟− − −⎝ ⎠

 

The off-diagonal elements on the first row of the matrix indicated that there was a low to 

moderate negative correlation between initial ability and subsequent changes for African 

Americans; This suggested that, on average, individuals who were below the mean at baseline 

experienced positive growth (relative to the mean) throughout their elementary education. The 

same was true of Caucasians except in round 6 where there was a slight positive correlation. 

Thus, Caucasians who were above the mean at baseline generally experienced below average 

growth from spring of 3rd grade to spring of 5th grade. 
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CHAPTER 9 
 

CONCLUSION 
 
 
 

9.1 Gender and Ethnicity 

In educational research students are tested repeatedly to asses their level and change in 

subject area knowledge, and additionally, group differences (e.g. gender or racial differences) 

are often examined. In the education literature, the findings are inconsistent with regard to when 

gender differences manifest in mathematical ability, the magnitude of these differences and why 

they occur.  Some authors suggest that performance differences manifest as early as 

elementary school, while others suggest middle school (Hyde, Fennema, & Lamon, 1986). 

Aunola, Leskinen, Lerkkanen, and Nurmi (2004) suggest that gender differences do not exist, 

but rather it is the initial status that determines the development of mathematics proficiency, 

which may proceed in one of two ways: 1) children who start with good skills have a greater 

change  in proficiency (i.e., learn more) than those who don’t; 2) children who originally start 

with a low level of skills and related knowledge increase the speed of their development and 

catch up with those who originally have higher levels of these. In Hyde, Fennema, & Lamon’s 

(1986) meta-analysis of 100 studies, the authors concluded that gender differences in 

mathematical performances are small. Regardless of these inconsistencies, however, the 

general consensus among researchers are 1) male students outperform female students and 2) 

Caucasian students outperform African American students in mathematics. 

  A new item response theory model was used to examine differential growth in 

mathematical ability between male and female students as well as Caucasians and African 

American students from kindergarten through fifth grade. Model 6 (where Σ and μ were 

estimated separately for each group) was selected to examine differences in mean growth for 

both gender and ethnicity. The findings suggest that differential growth may not exist between 

male and female students.  Growth rates were identical for the first two years of schooling for 
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male and female students. Additionally, students experienced the largest amount of growth from 

fall of kindergarten to spring of first grade. Growth may not have been as substantially large 

between spring of kindergarten to fall of first grade due to drop in knowledge retention during 

the summer break.  Though there are statistical differences (favoring the males) in baseline 

mathematical ability and growth for one round of testing, these differences may be too small to 

have substantive meaning. Some dissimilarities were found in the variability of baseline ability 

and growth between the two groups, but again, these were not substantial. This suggests that 

the DIC can be very sensitive to detecting rather small group differences that may not 

meaningful in educational practice.  

The ethnicity findings demonstrate that growth rates were similar for Caucasians and 

African Americans; however, average baseline ability in mathematics differed substantially in 

these samples. The results indicated that as early as fall of kindergarten, African Americans are 

0.76 standard deviations behind their cohorts in their initial mathematical ability.  With such a 

gap existing at the start of kindergarten and growth being nearly equal between the groups over 

the years, achievement gaps between the groups are not reduced by elementary education. 

While African Americans are making achievement gains during this period, these gains may be 

on low-level and basic mathematic skills (Tate, 1997). Additionally, mathematics is a 

hierarchically arranged subject, with each step drawing upon knowledge and skills from the 

preceding step, so differences in skill development in lower grades may set barriers to 

acquisition of more complex skills needed to succeed. It is estimated that half of the 

achievement gap between races in middle and high school can be accounted by the differences 

detected at the kindergarten level (NCES, 1995).  Given that these differences are apparent at 

the onset of formal schooling, timing of educational intervention in schools and families may 

need to occur much earlier. Programs such as Head Start attempt to address these needs for 

low-income, pre-school aged children. 
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 In studying and better understanding the changes in proficiency at the individual level 

and identifying when these changes occur, teaching practices can be targeted to foster equity in 

mathematics, or any other subject. The new model can address these issues while providing 

more precise estimates of change than those derived by NCES (2002) with a unidimensional 

model by directly comparing the mean latent changes exhibited in different groups.  

9.2 Limitations and future research 

There are several limitations to this study. First, only a subset of the entire  

ECLS-K dataset was used for three reasons: 1) WinBUGS did not have the capacity to run with 

the entire dataset, 2) WinBUGS is extremely slow, taking as long as 10 days to analyze data for 

one model using a single MCMC chain, and 3) only participants who responded during all six 

rounds of assessment were included. Second, to simplify initial model development the study 

assumed that change in mathematical ability is unidimensional. This is a common assumption 

used to measure change in mathematical ability. However, the justification for this assumption is 

an empirical issue that remains to be studied in the future. For example, Roberts and Ma (2006) 

and te Marvelde et al. (2006) have both suggested models in which general constructs like 

mathematics can change along several specific dimensions. The technical and test design 

hurdles associated with the application of these models will be quite high, but may be matched 

by improved insight about individual changes in mathematics ability. Future research is 

necessary and will attempt to address these limitations. First, model specific MCMC programs 

must be developed in a primary computing language (e.g., FORTRAN, C++) in order to increase 

the speed and efficiency of parameter estimation. Second, a new extension of this model called 

the “Sprout Model” (Roberts & Ma, 2006) is currently under development. The Sprout Model is 

designed theoretically designed to assess growth in a truly multidimensional space in which the 

existence of specific dimensions can vary somewhat over time.  
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 Appendix A 
 

Common Items  
 

Common across ALL Rounds 
Items a b c 

13 1.800 0.350 0.000
14 1.899 0.357 0.000
15 1.909 0.779 0.000
16 1.961 0.571 0.000

 
Common across Rounds 1-4 & 

Round 5 
Items a b c 

11 1.162 -1.115 0.000
38 1.673 -0.802 0.000
12 1.654 -0.678 0.000
8 1.829 -0.425 0.000

60 1.896 0.409 0.000
49 1.289 0.844 0.000
51 2.148 0.905 0.000
48 1.013 0.918 0.000
52 1.994 1.189 0.000

 
Common across Round 5 & Round 6 

Items a b c Items a b c 
116 0.624 0.334 0.000 129 1.860 2.052 0.000
113 2.085 0.933 0.000 80 2.647 2.161 0.119
107 1.954 0.990 0.000 78 1.814 2.322 0.000
70 1.746 1.069 0.000 127 2.232 2.399 0.000

106 3.143 1.358 0.000 125 1.753 2.601 0.000
108 1.012 1.390 0.000 141 2.191 2.679 0.103
102 2.538 1.402 0.000 121 0.414 2.798 0.000
73 2.296 1.483 0.000 81 2.228 2.803 0.000
76 1.664 1.487 0.000 134 1.433 2.811 0.000

118 3.062 1.532 0.000 138 2.108 3.008 0.000
115 1.822 1.555 0.000 135 0.878 3.176 0.000
120 2.406 1.739 0.116 139 1.970 3.182 0.000
122 1.827 1.995 0.000 140 1.904 4.534 0.000
126 2.414 2.023 0.000     
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Appendix B 
 

Unique Items in Rounds 1-4 Testing 
 

 
Items a b c Items a b c 

17 0.981 -8.624 0.000 26 0.898 -1.801 0.316
64 2.674 -7.740 0.000 39 3.833 -1.719 0.000
18 0.559 -6.123 0.446 42 4.311 -1.575 0.000
23 0.728 -5.882 0.322 41 1.228 -1.537 0.000
20 1.932 -5.079 0.000 30 1.018 -1.369 0.000
28 0.613 -4.583 0.000 10 1.690 -1.125 0.136
21 1.853 -4.375 0.000 40 1.686 -1.111 0.000
33 1.078 -3.925 0.000 37 1.208 -1.095 0.114
6 0.850 -3.841 0.229 36 0.919 -1.038 0.170
2 0.945 -3.722 0.000 29 1.355 -0.907 0.000
3 1.796 -3.692 0.000 43 1.686 -0.391 0.000

32 1.064 -3.595 0.000 59 2.055 -0.221 0.000
31 1.261 -3.407 0.219 58 2.178 -0.166 0.000
19 0.856 -3.131 0.000 61 1.845 -0.056 0.000
24 1.332 -2.825 0.275 47 1.742 0.072 0.000
1 1.340 -2.674 0.272 44 1.417 0.121 0.000

22 1.526 -2.652 0.000 57 1.585 0.246 0.000
25 0.949 -2.495 0.198 45 2.041 0.523 0.000
5 1.540 -2.309 0.000 62 2.160 0.541 0.000
4 1.640 -2.274 0.000 63 2.267 0.644 0.000
9 1.200 -2.204 0.000 50 2.385 0.965 0.000
7 1.575 -2.142 0.000 55 1.849 1.428 0.000

46 1.894 -2.116 0.000 54 2.180 1.519 0.000
34 1.228 -2.003 0.219 56 1.287 1.977 0.000
27 1.233 -2.002 0.000 53 1.911 2.588 0.000
35 1.363 -1.909 0.188     
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Appendix C 
 

Unique Items in Round 5 Testing 
 

Items a b c 
92 0.978 -2.024 0.000
90 1.474 -1.761 0.000
88 0.812 -0.605 0.000
83 1.223 -0.329 0.255

109 1.888 -0.271 0.000
97 0.835 0.363 0.000
98 2.018 0.400 0.199
94 0.605 0.443 0.000

110 2.020 0.552 0.000
101 1.697 0.625 0.213
95 3.039 0.879 0.000

103 1.195 0.897 0.247
105 2.430 1.015 0.177
104 2.479 1.083 0.000
114 2.412 1.104 0.000
93 2.431 1.187 0.000
72 2.539 1.188 0.000

111 2.597 1.272 0.000
71 2.044 1.273 0.000

112 2.881 1.445 0.000
75 2.355 1.530 0.000
74 2.368 1.559 0.000

119 2.038 1.606 0.000
124 1.982 1.741 0.000
117 0.779 1.811 0.000
77 1.607 1.938 0.134
79 1.253 2.134 0.000

133 1.241 2.226 0.000
131 1.770 2.292 0.000
130 2.102 2.533 0.177
123 1.245 2.575 0.159
132 2.022 2.594 0.000
137 2.024 2.898 0.000
136 2.283 3.400 0.000
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Appendix D 
 

Unique Items in Round 6 Testing 
 

Items a b c 
182 1.4310 1.4130 0.0000
203 1.3240 1.4660 0.0000
197 2.3200 1.5030 0.0000
196 2.6810 1.6130 0.0000
204 2.0830 1.7150 0.0000
193 1.6050 1.7610 0.2057
205 1.1500 1.8310 0.0000
201 1.5610 1.8890 0.0000
171 2.0190 2.1110 0.0000
177 2.5030 2.4190 0.2076
178 3.3130 2.4580 0.0000
209 1.6900 2.5820 0.0000
208 1.6020 2.7330 0.0000
206 1.2530 2.7970 0.2565
210 1.9730 2.9000 0.0000
212 1.9880 2.9000 0.0000
216 2.9980 3.0910 0.0000
180 2.5990 3.3070 0.1271
213 2.0320 3.3330 0.1545
219 2.6410 3.3810 0.1512
217 1.8740 3.3910 0.0000
218 2.4360 3.4230 0.1185
181 1.3050 3.4290 0.2216
214 2.3610 3.5790 0.1166
215 2.2020 3.6590 0.0963
226 2.7490 3.7090 0.0000
184 1.8040 3.9900 0.0000
221 1.5940 4.3320 0.0000
222 2.1170 4.3830 0.0000
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Figure 14 
 

Mathematical Ability: 
Caucasians vs African Americans
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Caucasians 0.38 1.36 1.82 2.73 3.81 4.53
Afican Americans -0.38 0.66 1.19 2.14 3.25 3.89
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(Fall)*

Kinder 
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(Fall)*
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(Spring)
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(Spring)

 
Note: * indicates statistically significant differences between the two groups. 
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Figure 15 
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Figure 16
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