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SUMMARY 

 

 Driven by the need to increase the system functionality and concomitant decrease 

in the feature size, the International Technology Roadmap for Semi-conductors (ITRS) 

has predicted that integrated chip (IC) packages will have interconnections with I/O pitch 

of 90 nm by the year 2018.  Lead-based solder materials that have been used for many 

decades as interconnections in flip chip technology will not be able to satisfy the thermal 

mechanical requirements of these fine pitch electronic packages. Of all the known 

interconnect technologies, interconnects such as those made from nanocrystalline copper 

are the most promising for meeting the high mechanical and electrical performance 

requirements of next generation devices. However, there is a need to understand their 

properties of these materials such as deformation mechanisms and microstructural 

stability.  Accordingly, the goal of this research is to study the mechanical strength and 

fatigue behavior of nanocrystalline copper using atomistic simulations and to evaluate 

their performance as nanostructured interconnect materials. Mechanical behavior 

simulations were conducted for single crystal nano-rods and for nano grain size 

polycrystals.  

  The results from the crack growth analysis indicate that nanocrystalline copper is 

in fact a suitable candidate for ultra-fine pitch interconnects applications. This study also 

predicts that crack growth is a relatively small portion of the total fatigue life of 
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interconnects under low cycle fatigue (LCF) conditions. Hence, crack initiation life is the 

main factor in determining the fatigue life of interconnects 

 The results of simulations conducted on the single crystal nano- rods of copper 

show that the nucleation stress for dislocation is dependent on temperature but insensitive 

to strain rate.  The limiting deformation mechanism in this case is the nucleation of 

dislocations. 

 In the case of nanocrystalline copper, material properties such as elastic modulus 

and yield strength have been found to be dependent on the grain size. The Hall-Petch and 

inverse Hall-Petch relationships have been investigated in this research and the highest 

yield strength of 1.93GPa has been found to be for copper with average grain size of 

15nm. Dislocation activity has been found to be the primary deformation mechanism for 

nanocrystalline copper in the Hall-Petch region with some or minimal grain rotation.  On 

the other hand, simulation results of this research have shown that higher amounts of 

grain rotation that require grain boundaries sliding is the dominant deformation 

mechanism in the inverse Hall-Petch regime.  Hence, it is shown that there is competition 

between the dislocation activity and grain boundary sliding as the main deformation 

mode in nanocrystalline materials and the grain size is extremely important in 

determining the dominant mode. 

 This research has also shown that stress induced grain coarsening is the main 

reason for loss of mechanical performance of nanocrystalline copper during cyclic 

loading. Further, the simulation results have shown that grain growth during fatigue 

loading is assisted by the dislocation activity and grain boundary migration. A fatigue 
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model for nanostructured interconnects has been developed in this research using the 

above observations. Comparisons between simulation results and experimental results 

from the literature are used to validate the behavior predicted from the computer 

simulations based on molecular dynamics (MD). 

 Lastly, simulation results have shown that addition of the antimony into 

nanocrystalline copper that readily segregates to the grain boundary will not only increase 

the microstructure stability during cyclic loading, it will also increase its strength.  It is 

shown that the strength in nanocrystalline copper can be increased by as much as 8% by 

adding 1.2% atomic fraction of antimony in nanocrystalline copper. 
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CHAPTER 1 

INTRODUCTION 

 

In the past, the primary function of micro-systems packaging was to interconnect, power, 

cool and protect integrated circuits (ICs). It has been assumed that this focus will lead to systems 

as the IC integration progresses to SOC or system–on-Chip. But SOC has not materialized and a 

variety of new directions are currently emerging to achieve systems. One such approach is a 

concept called SOP or system-on-package ,the end goal of which is  a highly miniaturized 

system with  two components-- device  component and system component and the system is 

achieved by interconnecting, powering ,cooling and protecting both such components [1]. A very 

important part of this approach, therefore, is to design and fabricate interconnections that meet 

electrical pitch and reliability requirements. This thesis addresses this need by a new and unique 

approach to interconnections. It is referred to as nano-interconnections.  

Currently, there are three main approaches to achieving these convergent systems, 

namely the system-on-chip (SOC), system-in-package with stacked ICs and Packages (SIP) and 

system on package (SOP). SOC seeks to integrate numerous system functions on one silicon chip.  

However, this approach has numerous fundamental and economical limitations which include 

high fabrication costs and integration limits on wireless communications, which due to inherent 

losses of silicon and size restriction. SIP is a 3-D packaging approach, where vertical stacking of 

multi-chip modules is employed. Since all of the ICs in the stack are still limited to CMOS IC 

processing, the fundamental integration limitation of the SOC still remains.  SOP on the other 
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hand, seeks to achieve a highly integrated microminiaturized system on the package using silicon 

for transistor integration and package for RF, digital and optical integration [1]. IC packaging is 

one of the key enabling technologies for microprocessor performance. As performance increases, 

technical challenges increase in the areas of power delivery, heat removal, I/O density and 

thermo-mechanical reliability. These are the most difficult challenges for improving performance 

and increasing integration, along with decreasing manufacturing cost. 

Chip-to-package interconnections in microsystems packages serve as electrical 

interconnections but often fail by mechanisms such as fatigue and creep.  Furthermore, driven by 

the need for increase in the system functionality and decrease in the feature size, the International 

Technology Roadmap for Semi-conductors (ITRS) has predicted that integrated chip (IC) 

packages will have interconnections with I/O pitch of 90 nm by the year 2018 [2].  Lead-based 

solder materials have been used for interconnections in flip chip technology and the surface 

mount technology for many decades. 

 The traditional lead-based and lead-free solder bumps will not satisfy the thermal 

mechanical requirement of these fine pitch interconnects. These electronic packages, even under 

normal operating conditions, can reach a temperature as high as 150°C.  Due to differences in the 

coefficient of thermal expansion of the materials in an IC package, the packages will experience 

significant thermal strains due to the mismatch, which in turn will cause lead-free solder 

interconnections to fail prematurely. 

Aggarwal et al [3] had modeled the stress experienced by chip to package interconnect. 

In his work, he developed interconnects with a height of 15 to 50µm on different substrate using 
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classical beam theory. Figure 1 shows the schematic of his model and a summary of some of his 

results.  
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Figure 1.1: Effect of interconnect pitch and substrate properties on the stress experienced by 

outer most interconnection in peripheral arrary packages. 

 

As shown in Figure 1.1, the shear stress in the joints exceeds the lead-free solders’ tensile 

strength of 26 MPa. 

Although compliant interconnects could reduce the stress experienced by the 

interconnects, it is still insufficient.  Chng et al. [4] performed a parametric study on the fatigue 

life of a solder column for a pitch of 100µm using a macro-micro approach. In her work, she 

developed models of a solder column/bump with a pad size of 50µm and heights of 50 µm to 200 

µm. Table 1.1 shows a summary of some of her results.  
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Table 1.1: Fatigue life estimation of solder column 

chip thickness (µm) 250 640 640 640 

board CTE (ppm/K) 18 18 10 5 

solder column height 

(µm) 
Fatigue life estimation/cycle) 

50 81 N.A 171 3237 

100 150 27 276 3124 

150 134 31 518 4405 

200 74 38 273 5772 

 

 

It can be seen from Table 1.1 that the fatigue lives of all solder columns are extremely 

short except for the 5ppm/K board where there is excellent CTE matching. The largest fatigue 

life of the solder column is only about 518 cycles. As expected, the fatigue life increases 

significantly when the board CTE decreases from 18ppm/K to 10ppm/K and as the height 

increases from 50µm to 200µm.This is mainly due to the large strain induced by the thermal 

mismatch as shown in Figure 1.2. The maximum inelastic principal strain was about 0.16 which 

exceeds the maximum strain that the material can support. Although the fatigue life of the chip to 

package interconnection can be increased by increasing the interconnect height, it will not be 

able to meet the high frequency electrical requirements of the future ICs where they need to be 

operating at a high frequencies of 10-20 GHz and a signal bandwidth of 20 Gbps,  
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Figure 1.2: Distribution of maximum principal inelastic strain of a 200µm interconnect on a 

package with substrate CTE of 18 ppm and chip thickness 640µm [4] 

 

 The Microsystems Packaging Research Center at Georgia institute of Technology is 

proposing re-workable nano-interconnections as a new interconnection paradigm, as shown in 

Figure 1.3,  for future low-cost, high performance and high reliability packages [1]. The idea is 

to use nano-crystalline (nc) copper as interconnection material due to its excellent mechanical 

and electrical properties.   
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Figure 1.3: The new proposed re-workable nano-interconnections as a new interconnection 

paradigm [5] 

 

 By definition, nanocrystalline materials are materials that have grain sizes less than 

100nm and these materials are not new since nanocrystalline materials have been observed in 

several naturally-occurring specimens including seashells, bone, and tooth enamel [6, 7].  

Recently, the nanocrystalline materials have been attracting a lot of research interest due to their 

superior mechanical and electrical properties as compared to their coarse-grained counterparts.  

For example, the nano-crystalline copper has about 6 times the strength of bulk copper [8]. The 

improvement in the mechanical properties due to the reduction in grain size has been well-

documented. Increase in strength due to the reduction in grain-size is predicted by the Hall-Petch 

relationship which has also been confirmed numerically by Van Swygenhoven et al [9] and was 

first demonstrated experimentally by Weertman [10]. 

 The insertion of nanocrystalline copper as an interconnect material also seems to be 

feasible from the processing viewpoint. Copper has been used as an interconnect materials since 

1989 whereas nano-copper has also been widely processed using electroplating and other severe 
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plastic deformation techniques in the past few years. For instance, Lu et al. [11] have reported 

electroplating of nano-copper with grain size less than 100 nm and electrical conductivity 

comparable to microcrystalline copper. Furthermore, Aggarwal et al [12] have demonstrated the 

feasibility of using electrolytic plating processes to deposit nanocrystalline nickel as a back-end 

wafer compatible process. However, several challenges still remain prior to the use of 

nanocrystalline copper as interconnects materials. 

 As discussed above, nanocrystalline copper has a high potential of being used as the next 

generation interconnect for electronic packaging. However, it is vital to understand their material 

properties, deformation mechanisms and microstructural stability. Although the increase in 

strength due to the Hall-Petch relationship which has also been confirmed numerically and 

experimentally by Weertman [10], the improvement in the fatigue properties is not well 

documented and no model has been established to predict/characterize these nano materials in 

interconnection application; conflicting results regarding the fatigue properties have also been 

reported.  Kumar et al [13] reported that for nano-crystalline and ultra-fine crystalline Ni, 

although there is an increase in tensile stress range and the endurance limit, the crack growth rate 

also increases. However, Bansal et al. [8] reported that with decreasing grain size, the tensile 

stress range increases but the crack growth rate decreases substantially at the same cyclic stress 

intensity range.  Thus, nanostructured materials can potentially provide a solution for the 

reliability of low pitch interconnections. However, the fatigue resistance of nanostructured 

interconnections needs to be further investigated.  

 Since grain boundaries in polycrystalline material increases the total energy of the system 

as compared to a single crystal, it will result in a driving force to reduce the overall grain 

boundary area by increasing the average grain size. In the case of nanocrystalline materials 
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which have a high volume fraction of grain boundaries, there is a significant driving force for the 

grains to grow and this presents a significant obstacle to the processing and use of 

nanocrystalline copper for interconnect applications. Millet et al [14] have shown, through a 

series of systematic molecular dynamics simulations, grain growth in bulk nanocrystalline 

copper during annealing at constant temperature of 800K can be impeded with dopants 

segregated in the grain boundary regions. However, it has been observed that stress can trigger 

grain growth in nanocrystalline materials [15] and there is no literature available on impeding 

stress assisted grain growth. There is an impending need to investigate the impediment to grain 

growth caused by the dopant during fatigue/stress assisted grain growth 

 

 

1.2 Dissertation Objectives  

The goal of present project is to develop a model for the fatigue resistance of 

nanocrystalline-materials that have been shown to have superior fatigue resistance. Accordingly, 

the following research objectives are proposed. 

• Develop a model for predicting fatigue life of nanostructured chip-to-package 

copper interconnections 

• Develop  fundamental understanding on the fatigue behavior of nanocrystalline 

copper for interconnect application 

• Develop an understanding of the stability of nanocrystalline materials undergoing 

cyclic loading 
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1.3 Overview of the Thesis 

 The thesis is organized so that past research on nanocrystalline materials forms the basis 

of the understanding and new knowledge discovered in this research. Chapter 2 reviews much of 

the pertinent literature regarding nanocrystalline materials, including synthesis, deformation 

mechanisms, and grain growth. Chapter 3 describes a detailed overview of the technical aspects 

of the molecular dynamics simulation method including inter-atomic potentials, time integration 

algorithms, the isobaric ensembles, isochoric ensembles and modified isobaric ensembles for 

constant strain rate, as well as periodic boundary conditions and neighbor lists. Chapter 4 

describes the simulation procedure designed to investigate and develop the long crack growth 

analysis. The results of the long crack growth analysis will be presented at the end of Chapter 4. 

Chapter 5 presents the results and discussion on mechanical behavior of  single and 

nanocrystalline copper subjected to monotonic and cyclic loading whereas Chapter 6 presents the 

results and discussion on the impediment to grain growth caused by the dopants during 

fatigue/stress assisted grain growth. Finally, conclusions and recommendations for future work 

are presented in Chapter 7. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

 This chapter offers an expanded summary of the literature published on the topics of 

fabrication methods, characterization, and properties of nanocrystalline materials in addition to 

a description of existing interconnect technology. 

 

2.1 Off-Chip Interconnect Technologies 

 Chip-to-package interconnections in microsystems packages serve as electrical 

interconnections but they often fail by mechanisms such as fatigue and creep.  Furthermore, 

driven by the need for increasing  system functionality and decreasing feature size, the 

International Technology Roadmap for Semi-conductors (ITRS) has predicted that 

interconnections of integrated chip (IC) packages will have a I/O pitch of 90 nm by the year 

2018 [2].  This is a roadmap that semiconductor industry follows closely for projecting their 

technology needs over several generations. This section reviews some of the current 

interconnect technology. 

 Wire bonding [16] as shown in Figure 2.1, is generally considered as one of the most 

simple, cost-effective and flexible interconnect technology. The devices on the silicon die are 

(gold or aluminum) wire bonded to electrically connect from the chip to the wire bond pads on 

the periphery. However, the disadvantages of wire bonding are the slow rate, large pitch and 

long interconnect length and hence this will not be suitable for high I/O applications. 

 



 

11 
 

 

Figure 2.1: Schematic of wire bonding [17] 

 

 Instead of wires in the wire bonding, tape automated bonding (TAB) is an interconnect 

technology using a prefabricated perforated polyimide film, with copper leads between chip and 

substrate.  The advantage of this technology is the high throughput and the high lead count. 

However, it is limited by the high initial costs of tooling.  

 

 

Figure 2.2: Schematic of tape automated bonding [17] 

 

 An alternative to peripheral interconnect technology is the area-array solution, as shown 

in Figure 2.3, that accesses the unused area by using the area under the chip. In area-array 

packaging, the chip has an array of solder bumps that are joined to a substrate. Under-fill is used 

to fill the gap between the chip and substrate to enhance mechanical adhesion. This technology 

gives the highest packaging density and best electrical characteristics of all the available 

interconnection technologies. However, not only is its initial cost high, it also requires 
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demanding technology to set up. Furthermore, reliability may be a concern due to the non-

compliance of the solder ball. 

  

 

Figure 2.3: Schematic of tape flip chip 

 

 With the need for higher I/O density, compliant interconnects have been developed to 

satisfy the mechanical requirements of high performance micron sized interconnects. The basic 

idea is to reduce shear stress experienced by the interconnects by increasing their height or 

decreasing the shear modulus (i.e. increasing their compliance) and hence the name compliant 

interconnects. Some of the recent research in compliant interconnects includes Tessera’s Wide 

Area Vertical Expansion, Form Factor’s Wire on Wafer and Georgia Institute of Technology’s 

Helix interconnects [18-20] as shown in Figure 2.4. Although compliant interconnects can solve 

the problem of mechanical reliability, it is accomplished at the expense of electrical performance 

because there is a need to  also decrease line delays  by reducing  electrical connection length to 

increase the system working frequency. Hence, compliant interconnects may not meet the high 

electrical frequency requirements of future devices. 
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Figure 2.4: (a) Wide Area Vertical Expansion, (b) Wire on Wafer and (c) G-Helix [18-20] 

 

 Lead and lead-free solders typically fail mechanically due to their low strength  when 

scaled down to less than to a pitch of 100 µm and as argued earlier compliant interconnections 

do not meet the high frequency electrical requirements. The Microsystems Packaging Research 

Center at Georgia institute of Technology has demonstrated the feasibility of using re-workable 

nanostructured interconnections. Aggarwal et al [21] have shown that nanostructured nickel 

interconnections, through a Flip Chip test vehicle, were able to improve the mechanical 

reliability while maintaining the shortest electrical connection length. However, the main 

disadvantages of this method were the significant signal loss at high frequency signal of 

nanocrystalline nickel [22].    
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Figure 2.5: Nanostructured nickel interconnections using (a) thin conductive adhesives, (b) 

solder [21] 

 

 As discussed above, nanostructured interconnects technology is the most promising 

interconnect technology to meet the stringent mechanical and electrical requirements of the next 

generation devices.  Consequently, there is need for alternate materials and nanocrystalline 

copper because of its high strength and superior electrical conductivity is an excellent candidate.  

However, due to a tendency for grain growth in nanocrystalline copper under the operating 

conditions of these packages, there is a major concern about its microstructural stability before 

using it in interconnects applications. 

 

2.2 Nanocrystalline Materials 

 Nanocrystalline materials are polycrystalline materials with an average grain size of less 

than 100 nm [23]. Over the past decade, new nanocrystalline or nanostructured materials with 

key microstructural length scales on the order of a few tens of nanometers have gained 

considerable interest among materials scientists and engineers.  This is mainly due to their 

unique and superior properties, such as increased strength [23] and wear resistance [24], 
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compared to their microcrystalline counterparts. These unique properties are primarily due to the 

large volume fraction of atoms located at or near the grain boundaries so the properties are 

representative of both the grain boundary surface characteristics and the grain. In the case of 

nanocrystalline metals, the high strength is derived from the small grain size but the high grain 

boundary mobility leading to microstructural instability occurs due to large number of atoms 

being placed in the grain boundary region. Thus, in order to take full advantage of the enhanced 

properties, the microstructural instability must be overcome. 

  

2.2.1 Synthesis of Nanocrystalline Materials 

 Recent advances in synthesis and processing methodology for producing nanocrystalline 

materials such as inert gas condensation [25], mechanical milling [26, 27], electro-deposition 

[28], and severe plastic deformation [29] have made it possible to produce sufficient quantities of 

nanocrystalline materials for small scale application. 

 Inert gas condensation, the first method used to synthesize bulk nanocrystalline metals 

[30], consists of evaporating the metal inside a high-vacuum chamber and then backfilling the 

chamber with inert gas [31]. These evaporated metal atoms would then collide with the gas 

atoms, causing them to lose kinetic energy and condense into a powder of small nano-crystals. 

The powder is then compacted under high pressure and vacuum into nearly fully dense 

nanocrystalline solids. The grain size distribution obtained from this method is usually very 

narrow. However, the major draw backs of this method are its high porosity levels and other 

sintering defects. Grain coarsening also occurs due to the high temperature during the 

compaction stage [32].   
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 Mechanical milling consists of heavy cyclic deformation of powders until the final 

composition of the powder corresponds to a certain percentages of the respective initial 

constituents [26, 27]. A wide grain size distribution is obtained by this method. This technique is 

a popular method to prepare nanocrystalline materials because of its applicability to any material 

and simplicity. However, it’s main drawback includes contamination and grain coarsening 

during the consolidation stage.  

 Electro-deposition consists of using electrical current to reduce cations of a desired 

material from an electrolyte solution and coating a conductive object on the substrate. Electro-

deposition has many advantages over other processing techniques and this includes its 

applicability to a wide variety of materials, low initial capital investment requirements and 

porosity-free finished products without a need for consolidation processing [28]. Furthermore, 

Shen et al. [33] and Lu et al[34] had recently showed  that the right electro-deposition condition 

can produce a highly twinned structure which will lead to enhanced ductility. The main 

drawback of this method is the difficulty to achieve high purity.  

 Severe plastic deformation, such as high-pressure torsion, equal channel angular 

extrusion (ECAE), continuous confined shear straining and accumulative roll-bonding,  uses 

extreme plastic straining to produce nanocrystalline materials by mechanisms such as grain 

fragmentation, dynamic recovery, and geometric re-crystallization [35]. It is the only technology 

that transforms conventional macro-grained metals directly into nanocrystalline materials 

without the need for potentially hazardous nano-sized powders. This is achieved by introducing 

very high shear deformations into the material under superimposed hydrostatic pressure. Two of 

the most commonly used methods are high-pressure torsion and ECAE [36].  In the study of the 

effect of ECAE on the microstructure of nanocrystalline copper, Dalla Torre et al [37]  observed 
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that the grains become more equi-axial and randomly orientated as the number of passes 

increases, as shown in Figure 2.6. 

. 

Figure 2.6: Microstructure of ECAE copper subjected to (a) 1 passes (b) 2 passes (c) 4 passes (d) 

8 passes (e) 12 passes and (f) 16 passes [37] 
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2.2.2 Mechanical Behavior of Nanocrystalline Materials 

 Due to its small grain size and high volume fraction of grain boundaries, nanocrystalline 

materials exhibit significantly different properties and behavior as compared to their 

microcrystalline counterparts. The structure and mechanical behavior of nanocrystalline 

materials has been the subject of considerable interest recently, both experimentally [38-44] and 

theoretically [45-51]. This section reviews the principal mechanical properties and behavior of 

nanocrystalline materials.   

 

2.2.2.1 Strength and ductility 

 Recent studies have shown that metals have five to ten times the strength and hardness 

compared to their microcrystalline state [8, 37, 38, 52, 53]. This increase in the strength is due to 

the presence of grain boundaries impeding the nucleation and movement of dislocations. Since 

decreasing grain size increases the number of barriers and thus the applied stress necessary to 

move dislocations across grain boundaries, this result in much higher yield strength. The inverse 

relationship between grain size and strength is characterized by the Hall-Petch relationship [54, 

55] as shown in equation (2.1).  

         Eq (2.1) 

 

In equation (2.1), σ is the yield strength, k is a material constant and d is the average grain size. 

Hence, nanocrystalline materials are expected to exhibit higher strength as compared to their 
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microcrystalline counterpart. Figure 2.7 and Figure 2.8 show the summary of hardness and yield 

strength from tensile test that are reported in the literature.  Indeed, hardness and yield strength 

of copper with a grain size of 10nm (3GPa) can be one order higher than their microcrystalline 

counterpart.  

 

Figure 2.7: Summary of the experimental data from the literature on grain size dependence of 

copper specimen’s nano-hardness [52, 56-59]  
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Figure 2.8: Summary of the experimental data from the literature on grain size dependence of 

copper specimen’s yield strength [32, 57, 60-64] 

 

 

 As shown in Figure 2.7 and Figure 2.8, there is a significant scatter in the data from the 

literature with more deviation at smaller grain size.  One of the reasons could be the significantly 

different processing routes used in the various studies.  For example, nanocrystalline and ultra 

fine grain materials produced from severe plastic deformation have additional barriers to motion 

of dislocation due to the formation of dislocation walls, cells and sub-grain boundaries.   

Furthermore, smaller specimen will normally show higher strength as compared to the larger 

specimens.  The specimens in Agnew et al [32] were much larger than that of Nieman et al [57] 

and this increased the possibility of  larger interior and surfaces flaw for the latter and hence 

resulting in a lower strength for the latter.  
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 Derivation from Hall-Petch relationship begins  as the grain size approaches 30nm where 

the stresses needed to activate the dislocation multiplication via Frank-Read sources within the 

grains are too high and the plastic deformation is instead accommodated by grain boundaries 

sliding and migration [13]. Furthermore, as the grain size reduces, the volume fraction of the 

grain boundaries and the triple points increases. Material properties will  be more representative 

of the grain boundary activity [65] and this will result the strength to be inversely proportional to 

grain size instead of square roots of the grain size as predicted by Hall- Petch relation [66].  

Further reduction in the grain size will result in grain boundary processes controlling the plastic 

deformation and reverse Hall-Petch effect, where the materials soften, will take place. The earlier 

experimental observation of reverse Hall-Petch effect[25] was confirmed by  Van Swygenhoven 

et al [67] and Schiotz et al [48], using molecular dynamics simulations Their results showed that 

nanocrystalline copper had the highest strength (about 2.3GPa ) at a grain size of 8nm and 10-

15nm, respectively.  Conrad et al [68] pointed out that below this critical grain size, the 

mechanisms shifted to grain boundary–mediated from dislocation-mediated plasticity and this 

causes the material to become dependent on strain rate, temperature, Taylor orientation factor 

and the type of dislocation. 

 Figure 2.9 shows a summary of strain rate sensitivity m as a function of grain size for 

copper specimens in the literature [52, 69-71].  The strain rate sensitivity, m, in equation 2.2 is an 

engineering parameter which measures the dependency of the strain rate. From figure 2.8, it was 

observed that yield stress of nanocrystalline copper was highly sensitive to strain rate even 

though it is a FCC material. This was due to the high localized dislocation activities at the grain 

boundaries which results in enhanced strain rate sensitivities especially for materials with a grain 

size below 0.1 µm.   
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       (2.2) 

 

 

Figure 2.9: Summary of room temperature strain rate sensitivity m as a function of grain size [52, 

69-71] 

 

 Room temperature strain rate sensitivity was found to dependent on dislocation activities 

and grain boundaries diffusion [53, 72, 73].  Due to the negligible lattice diffusion at room 

temperature, the rate controlling process for microcrystalline copper was the gliding dislocation 

cutting through forest dislocations, resulting in low strain rate sensitivities.  However, due to the 

increasing presence of obstacles such as grain boundaries for nanocrystalline materials, the rate 

controlling process for smaller grain size shifted to the interaction of dislocation and the grain 

boundaries, a process that is strain rate and temperature dependent.  By considering the length 
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scale of the dislocation and grain boundaries interaction, Cheng et al [53] proposed the following 

model for strain rate sensitivities. 

.       (2.3) 

 

In equation 2.3, ζ  is the distance swept by the dislocation during activation, ρ is the dislocation 

density and a, α and β are the proportional factors. With this model, they were able to predict 

higher strain rate sensitivities for nanocrystalline material produced by severe plastic 

deformation as compared to other techniques.  Since the twin boundaries in nanocrystalline or 

ultra fine grain copper served as  barriers for dislocation motion and nucleation which in turn led 

to highly localized dislocations near the twin boundaries, the strain rate sensitivity of copper with 

high density of coherent twin boundaries was found to be higher than those without any twin 

boundaries [34].  Lastly, the increase enhanced strain rate sensitivity in nanocrystalline copper 

had been credited for it increases in strength and ductility. For example, Valiev et al [61] credited 

the enhanced strain rate sensitivity of 0.16 for the high ductility.  

 In addition to a strong dependency on the strain rate, strength in nanocrystalline materials 

was also highly dependent on temperature. Wang et al [74] observed that the yield strength for 

ultra fine grain copper with a grain size of 300nm  increased from approximately 370MPa to 

500MPa when the temperature reduced from room temperature to 77K.  The authors attributed 

this phenomenon of increase yield strength due to the absence of additional thermal deformation 

processes at 77K.  This is consistent with Huang et al [75] observation where an increase in 

hardness of nanocrystalline copper with a decreased the temperature was noted 
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 Ductility is another important characteristic of nanocrystalline materials. In 

microcrystalline materials, a reduction in grain size will increase the ductility due to the presence 

of grain boundaries acting as effective barriers to the propagation of micro-cracks [76]. However, 

this is not true for nanocrystalline copper as they had showed a lower strain to failure than that of 

their microcrystalline counterparts. This reduced ductility was attributed to the presence of 

processing defects [77]. Recent advanced in processing of nanocrystalline materials offer 

materials with fairly good ductility in addition to ultra-high strength. Although Basal [8] had 

reported only about 2% elongation to failure in her ECAE copper, Lu et al [11] reported that 

nanocrystalline copper with minimal flaw produced via electro-deposition had an elongation to 

fracture of 30%. Furthermore, Youssef et al [78] observed a 15.5% elongation to failure for 

defect free nanocrystalline copper produced via mechanical milling. Hence, it was possible for 

nanocrystalline copper to be both strong and ductile if the processing artifacts are minimized.  

 Noting the failure morphology of nanocrystalline materials usually consists of dimples 

several times larger than their grain size, Kumar et al [79] presented the following model as 

shown in Figure 2.9 for initiation and hence the eventual failure of nanocrystalline materials. In 

another studies, noting the ratio of strain hardening rate to prevailing stress in nanocrystalline 

materials, shear localization was found to be responsible for the presence of shear region [80, 81].  
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Figure 2.10: Schematic illustration of fracture in nanocrystalline material postulated by Kumar et 

al [79] 
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2.2.2.2 Creep in Nanocrystalline Materials 

 Nanocrystalline materials are expected to creep at temperatures much below the creep 

temperatures associated with their microcrystalline parts. Due to the higher fraction of grain 

boundaries and triple junctions, self diffusivity of nanocrystalline copper had been shown to 

increase by factor of three as compared to microcrystalline copper [82].  Since creep behavior is 

dependent on both the grain size and diffusivity, with creep rate increases with an increase in 

diffusivity or a decrease in grain size, the creeping temperature for nanocrystalline copper was 

known to reduce to a smaller fraction of melting temperature (about 0.22 of its melting point in 

degrees Kelvin).  Furthermore, since creep had always been cited as one of the reason for grain 

size softening and grain growth in nanocrystalline materials, it has gained considerable attention 

from researchers. 

 Due to the high volume fraction of grain boundaries and enhanced diffusivity rate, 

diffusion creep is considered to be dominant.  In general, the steady state creep rate of 

microcrystalline materials at high temperature was described by Bird-Dorn Mukherjee equation 

[83] 
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where ε&  is the strain rate, A is a dimensionless constant, G is the shear modulus, b is the 

magnitude of Burgers vector, k is Boltzmann’s constant, R the gas constant, T is the absolute 

temperature and p is the inverse grain size exponent. The stress exponent n will give an 

indication of the type of creep mechanism (for example, a value 4-5 for will represent dislocation 
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climb). Two of the more established creep models that showed linear dependence on stress were 

the Nabarro-Herring model and the Coble creep model.  In Nabarro-Herring model, the creep 

rate is inversely proportional to the square of the average grain whereas in the case of coble 

creep model where grain boundaries sliding was the main mechanisms, the creep rate depends on 

the cube of its average grain size as shown in equation 2.5 and 2.6 respectively. 
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where Dgb is the grain boundary diffusion coefficient, Ω is the activation volume and δ is the 

grain boundaries thickness,  

 As discussed above, nanocrystalline copper at room temperature was expected to creep 

due to its smaller grain size and enhanced diffusivity rate.  However, some of the experimental 

results had been contradicting. Using equation 2.6 and parameters from Cai et al [84], the Coble 

creep rate should be in the order of 1x10-6/s for a effective stress of 25MPa and a temperature of 

373K. However, Sanders et al [85] observed that the creep rates for nanocrystalline copper, over 

a range of temperature and stress, was two to four orders lower than that predicted by Coble 

creep model. Neiman et al [86] reported the same trend at room temperature for nanocrystalline 



 

28 
 

copper produced by inert gas condensation. Since low angle grain boundaries is known to resist 

grain boundary sliding and inhibit vacancy diffusion, they had concluded that the lower creep 

rate can be due to the presence of low angle grain boundaries. Lastly, the twin boundaries and 

the small grain size was cited as the other two main reasons for the lower creep rate since they 

had been found to act as inhibition to dislocation activities. 

 Bansal et al [8] showed that the creep rates of nanocrystalline copper produced by ECAE 

was in the order of 1x10-9/s. Although this was a few orders higher than grain boundaries 

diffusion predicted by Nabarro-Herring model, it was still three to four orders lower than that 

predicted by Coble creep model. Furthermore, by comparing the activation energy to that of the 

grain boundaries diffusion activation energy, she had concluded that creep in nanocrystalline 

materials was associated with grain boundary diffusion. The existence of a threshold stress below 

which the steady- state creep rate was negligible showed that the grain boundaries do not act as 

perfect sources and sinks. Lastly, stress assisted grain growth was also observed in her ECAE 

copper. 

 On the other hand, Cai et al [84] showed the creep rate for electrodeposited 

nanocrystalline copper, at a temperature from 0.22 to 0.24 of the melting temperature, was found 

to be the similar to that predicted by Coble creep model  even though nanocrystalline copper 

produced by this methods had significant number of  low angle grain boundaries. Furthermore, 

no grain growth had been detected for these temperatures.  Similar observation was made by 

Grabovetskaya et al [87] using nanostructure copper produced by severe plastic deformation with 

a grain size from 100nm to 300nm  Figure 2.11 shows the summary of the experimental data 

from the literature on creep rates of nanocrystalline copper.  
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Figure 2.11: Summary of the experimental data from the literature on creep rates of 

nanocrystalline copper 

 

 One of the reasons for the discrepancy in the creep rate could be that none of the 

mechanisms were the dominant mechanisms. Valiev et al [88] showed that the grain boundary 

sliding contributions about 15-20% of the overall deformation of nanocrystalline copper with the 

rest by intra-granular slip.  Since different grain size was found to have different dominant 

mechanism and due to the widely different grain size distribution of nanocrystalline copper, it 

was then suggested that the creep rate could be a composite of all the mechanisms. Lastly, 

another source of discrepancy on the computation of creep rate and activation energy was the 

lack of experimental data on the actual grain boundary thickness and its diffusion coefficient.   

This will result in more scattering in the literature data. 
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 Yamakov et al. [89] using fully 3D molecular simulation showed that, under high tensile 

stresses, nanocrystalline palladium exhibits steady-state diffusion creep that could be described 

by the Coble-creep model. Furthermore, they found that when the grain boundary width was 

comparable with grain diameter, the creep mechanism changed from Nabarro-Herring creep to 

Coble creep. Furthermore, the first observation of Lifshitz sliding, an accommodation 

mechanism for the Coble-creep, had also been observed in that study.  Haslam et al. [90] using 

molecular dynamics simulation showed that at the onset of grain growth, Coble creep was the 

mechanism for deformation. Furthermore, the enhanced creep rate, arising from topological 

changes during the initial growth phases, was reported to enhance both the stress-induced grain 

boundary diffusion fluxes and grain boundary sliding. 

 

2.2.2.3 Fatigue 

 It has long been known that grain refinement improved the fatigue and fracture resistance 

of metals. For microcrystalline materials, reducing the grain size increases the fatigue endurance    

damage tolerance due to decreases in fracture toughness [91]. However, it may not be as straight 

forward in nanocrystalline materials because fatigue and fracture resistance of these materials are 

not well understood. This was mainly due to the limited studies conducted on the fatigue of 

nanocrystalline material. 

 Witney et al [92] conducted one of the earliest fatigue studies with 97.4–99.3% dense 

nanocrystalline materials.  The nanocrystalline copper samples in their study with  maximum 

stress amplitudes of 50% to 80% of the yield stress and a minimum of 10MPa,  showed stress 

assisted grain growth, with  the grain having grown by  as much as 34% compared its original 
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grain size, had also been observed after a few hundred thousand cycles. The cyclic deformation 

was reported to be elastic. Furthermore, they had also observed parallel micrometer size 

extrusion on the surface of the specimen. Similar observation was reported by the work of Bansal 

et al [8] with ECAE nanocrystalline copper. In that study, she had showed that the average grain 

grew from 45 nm to 56nm for 1% total strain range and to 72nm for 1.5% total strain range. 

Similarly, she had also reported the formation persistence slip bands in the form of extrusions/ 

intrusions. 

Hanlon et al [93], using electrodeposited nanocrystalline nickel (with average grain size 

of 20 to 40nm), showed that nanocrystalline nickel not only had a higher endurance limited as 

compared to their microcrystalline counterpart, it had also showed a significantly higher fatigue 

crack growth resistance. However, subsequent studies conducted by the same authors showed 

significantly lower fatigue crack growth resistance for a wide range of load ratios [94]. Figure 

2.12 shows the summary of range of stress intensity factors required for a growth rate of 10-

6mm/cycle in ultra fine grain nickels as a function of the maximum stress intensity factor Kmax 
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Figure 2.12: Summary of range of stress intensity factors required for growth rate of 10-6 

mm/cycle in ultra fine grain and nanocrystalline nickels as a function of the maximum stress 

intensity factor Kmax [94] 

 

 

Due to the lack of literature data on fatigue life of nanocrystalline materials, ultrafine 

grain materials had also been studied to understand the mechanisms of grain refinement and 

grain growth but even these results were very scattered.  Agnews et al [95] had observed cyclic 

softening for ultrafine grain copper, produced by severe plastic deformation, whereas 

Vinogradov et al [96] did not observed any cyclic softening in their 200nm ultra fine grain 

copper which was also produced by severe plastic deformation. Furthermore, Hashimoto et al 

[97] observed grain hardening in equi-axial microstructure but grain softening in elongated 

grains. Mughrabi et al. [98] observed that a much improved high cycle fatigue life for ultrafine-

grained copper produced by severe plastic deformation but low cycle fatigue life was shown to be 

worse than coarse-grained copper  
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Since the hardness of the cycled ultra fine grain copper did not scale with the inverse of 

the square root of the grain size, Agnews et al [95] suggested that the cyclic softening was 

caused by the decrease in the overall defect density and the changes in the mis-orientation. 

However, noting a smaller magnitude of cyclic softening and grain coarsening of a -50°C  test to 

that obtained from a room temperature test, Hoppel et al [99] deduced that dynamic cyclic 

recrystallization process was responsible for the cyclic softening after comparing the 

microstructure. This prompted them to subject the ultrafine-grained (UFG) copper to recovery 

heat treatment which resulted in an enhanced fatigue life.  

.   

In order to have a better understanding of fatigue behavior of nanocrystalline materials, 

molecular dynamics simulations have also been employed to model the fatigue behavior. Using a 

model with 960 atoms, Chang et al [100, 101]  conducted an investigation on the influence of 

temperature and vacancy on the fatigue properties of nano-scale copper undergoing tension-

compression loading.  Due to a higher allowable strain at higher temperature, the fatigue stresses 

increases with temperature. Figure 2.13 shows a summary of their results. Furthermore, they had 

observed that the failure transitions from a brittle failure at high stresses to a ductile failure as the 

number of cycles to failure increases. Figure 2.14 show that the fatigue endurance limited 

increases as volume fraction of vacancies decreases.  
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Figure 2.13: The relationship of cyclic stress as a function of the number of cyclic to 

failure for nanoscale copper at various temperatures [100, 101] 

 

 

Figure 2.14: The relationship of cyclic stress as a function of the number of cyclic to 

failure and the volume fraction of vacancies. 
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In order to investigate the fatigue crack growth mechanisms in nanoscale copper, Farkas 

et al [102] used molecular dynamics to simulate crack propagation in nanocrystalline nickel with 

a grain size of 10nm. In that study, they had showed that fatigue crack growth mechanisms of 

nanoscale copper involved the emission of dislocation from the crack tips and the formation of 

the nano-voids ahead of the main crack. Although emission of Shockley partials from the grain 

boundaries and triple points, due to the high stress concentration, were observed, emission of 

unit dislocations was not observed. Furthermore, Farkas et al [103] showed in a parallel study 

that  the predicted crack growth rates was dependent on the stress intensity amplitude and this 

appeared to be consistent with experimental results as shown in Figure 2.15 

 

 

Figure 2.15: Comparison of crack growth rate from both experimental and simulation results 

 

 

Nishimura et al [104] performed MD simulations on α-Fe undergoing cyclic loading and 

they had observed that the fatigue crack growth was due to the coalescence of cracks and 
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vacancies. Furthermore, a phase change from body center cubic to hexagonal close pack was also 

observed.  

 

2.2.2.4 Deformation mechanisms 

 Experimental and computational results had shown that the strength of nanocrystalline 

metals and alloys increases with decreasing grain size. However, the actual mechanisms 

responsible for the observed behavior of nanocrystalline materials were not established until 

recently. Computational simulations and electron microscopy had been performed to understand 

the deformation mechanisms. Dislocation activities were quoted as the primary deformation 

mode for materials up to certain critical grain size, with the critical grain size depending on the 

stacking fault energy. Below this critical grain size, grain boundary sliding, grain rotation and 

Coble creep have been postulated to operate with dislocation activities. In this section, recent 

studies aimed at uncovering the deformation mechanisms will be presented. 

 

 

2.2.2.4.1 TEM studies on deformation mechanisms 

 Kumar et al  [79] used ex situ TEM technique to observe deformation of nanocrystalline 

nickel with a average grain size of 30nm. In that study, dislocation-mediated plasticity was found 

to be the dominant deformation mechanism with nucleation of voids at grain boundaries and 

triple junctions caused by the dislocation emission at grain boundaries.  Furthermore, intra-

granular slip and grain boundary sliding was found to be responsible for the nucleation of voids. 

However, the density of the dislocation observed cannot account for the high level of imposed 

plastic strain as shown in Figure 2.16. Hugo et al. [105] had the same observation on the lack of 



 

37 
 

debris with their magnetron sputtered nickel thin film. This lack of debris could be explained by 

molecular dynamics simulation studies on aluminum by Derlet et al [106]: after a partial 

dislocation was emitted from one side of the grain, it will travel across the grain and then 

absorbed on  the other side of the grain, leaving behind very little debris in their path. 

Furthermore, after the stress had been removed, dislocation might relax and this will cause these 

dislocations being absorbed by the other grain.  The presence of deformation twins and stacking 

faults  found in deformed nanocrystalline copper also suggest that the presence of the partial 

dislocation mediated processes as one of the deformation mechanisms in nanocrystalline 

materials [107].  This was confirmed by the work of Wu et al [108] where they observed the 

partial-dislocation mediated processes during uniaxial tension when the tests are carried out at 

liquid nitrogen temperature and under high flow stresses.  Furthermore, Youngdahl et al [109] 

observed dislocation pile up at the grain boundaries for nanocrystalline copper of up to 30nm 

grain size and Wu et al [108] in the study of tensile deformation of nanocrystalline nickel at 

room temperature, was able to image a full dislocation in 20nm nanocrystalline nickel. Hence, 

this showed that dislocation activities were still active at that grain size. Furthermore, by 

showing dislocation storage during liquid nitrogen temperature but not at room temperature, they 

had shown that the propagation and de-pinning of dislocations were thermally activated and this 

was consistent with the results from molecular dynamic simulations [110].   However, Ke et al 

[111] had observed grain rotation of up to 15° in the study on the 10nm grain size gold. This is 

consistent with Shan et al [112] observation where grain rotation in 10nm nanocrystalline nickel 

during straining was reported.  
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Figure 2.16: Top left and right: bright field-dark field pair showing no indication of dislocation 

in the grain and (Bottom) another grain that contains a twin, a single dislocation at the boundary 

and a small dislocation loop [79] 

 

 

 Even though experimental observations have noted isolated dislocation activity, grain 

boundary sliding and grain rotation is considered to be the main deformation mechanisms for 
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nanocrystalline materials, there is ample evidence to the contrary. For example,  Ke et al [111] 

have observed grain rotation of up to 15° and no dislocation activity during the deformation of 

nanocrystalline gold with a grain size of 10nm using in-situ TEM, stress relaxation tests on 30nm 

grain size nanocrystalline nickel conducted by Wang et al [113] over a range of deformation 

temperatures (77-373K) have shown that boundary diffusion process such as Coble creep and 

grain boundary sliding are not the dominant deformation mechanisms. Instead they found that 

the deformation kinetics was all dominated by dislocation processes.  

 

 

2.2.2.4.2 Molecular Simulation 

 In addition to the results from TEM studies, large scale molecular dynamics had also 

provided insight to the deformation mechanisms in nanocrystalline materials. Room temperature 

3D simulation of 30nm nanocrystalline copper and nickel have demonstrated that the 

nanocrystalline materials accommodated the external applied deformation through grain 

boundary sliding and emission of partial dislocations [106, 114, 115]. Furthermore, the 

interaction of these two mechanisms would induce the formation of shear planes where grains 

with small mis-orientation will coalesce to form a larger grain.  Van Swygenhoven et al [116] 

have identified the ratio of the energy associated with an unstable stacking fault to the stacking 

fault energy as a criterion for the nucleation of full dislocation: if this ratio was closer to unity, it 

would be easier for a full dislocation to be nucleated. Hence, this is the reason why only partial 

dislocations were observed in simulation of nanocrystalline copper in which this ratio is 7.81.   
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 Molecular dynamics simulation have also shown that atomic shuffling, involving short-

range atomic motion, in conjunction with emission of partial dislocations as another mechanism 

for triggering grain boundary sliding and dislocation plasticity. Atomic shuffling not only caused 

a local change in the grain boundary structure , it will also cause a redistribution of the peak 

stress [106].  Derlet et al [106] showed that the “effective stacking fault energy” reduced up to 

50% through structural relaxation after the emission of partial dislocations  from the grain 

boundaries.   

 Molecular dynamics simulations conducted at a much higher temperature had identified 

Coble creep mechanism with grain boundary sliding as accommodation mechanism known as 

Litshitz sliding [89]. However, extrapolation of Coble creep mechanisms to room temperature 

may not be justifiable as there was no reason to assume that the same rate controlling processes 

to be dominant at both high temperature and room temperature.    

 

2.2.2.4.3 Theoretical Model  

 With the insight on the deformation mechanism of nanocrystalline materials gained from 

both the TEM and molecular simulation studies, constitutive models which could accurately 

predict the deformation behavior have become available. The only known constitutive models 

found in the literature was developed by Zhu et al. [117] using crystal plasticity theory and 

assuming that the grain interiors to be deformed by the emission of perfect or partial dislocations 

and grain boundary sliding. Since experimental and simulation results identified emission of 

partial and full dislocations and grain boundaries sliding as the three main deformation 

mechanisms in nanocrystalline materials, they have developed a physics based model which took 
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into account of these mechanisms. To account for slip rate caused by the emission of partial 

dislocation, the following laws were applied. 

   if  >0     (2.7) 

      Where  

 

In equation 2.7,  is the pre-exponential constant,  is the stacking fault energy per unit area and 

is the equilibrium spacing.  Furthermore, in order to account for slip rate caused by the 

emission of full dislocation, following laws proposed by Asaro et al was used 

        (2.8) 

 

Lastly, for grain boundary sliding, following law proposed by Conrad et al can been used:- 

      (2.9) 

 

 In equation 2.9, υD is the frequency of lattice vibration, v is an atomic volume and ∆F is the 

activation energy for lattice/grain boundary diffusion. Figure 2.17 the computed strains using 

their model compared pretty well to their computational results. 
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2.17: (a) Comparison between the computed stress-strain response to their simulation results and 

(b) comparison of the contribution of each of the deformation mechanisms to the accumulated 

shear strain 

 

 

 Although there are only these constitutive models currently available in the literature, 

more realistic mechanisms based models will be available as more insight is gained from the 

experimental and simulation results.  

 

 

2.2.3 Grain Growth 

 Since grain boundaries in nanocrystalline materials increase the total energy of the 

system, there is a driving force to reduce grain boundaries by increasing the average grain size. 

This presents a significant obstacle to the processing and use of nanocrystalline materials for 

engineering applications. In order to overcome this obstacle, it is important to understand the 

underlying mechanisms of grain growth in nanocrystalline materials. However, accurate grain 

(b)(a) 
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growth studies in nanocrystalline materials are difficult to conduct due to the difficulty of 

accurately determining the grain size.  Nevertheless, some studies have been conducted by 

measuring the grain size through direct electron microscopic techniques or through the X-ray 

diffraction peak broadening values size. However, it is important to note that X-ray diffraction 

may underestimate the grain size and the small thickness required for TEM may enhance the 

grain growth rate. 

  One of the main mechanism for grain growth in micro-crystalline materials is curvature-

driven grain boundary migration in which the the grain boundaries move towards the center of 

their curvature [118].  This curvature in the grain boundaries which is on  the order of the inverse 

of the grain size,  arises from the angular equilibrium requirement of triple junctions and this is 

known as the Herring relation [119]. Due to the high volume fraction of the triple points in 

nanocrystalline materials, they are especially unstable against grain growth and this will cause 

grain growth to occur even at a relatively low temperatures.  Simulation work by Haslam el al. 

[120] has identified  grain rotation and coalescence as another mechanism for grain growth in 

nanocrystalline materials. Grain rotation and coalescence is the elimination of the grain 

boundaries between two grains through grain rotation, leaving behind two highly curved grain 

boundaries which then further promote rapid grain growth by grain boundaries migration.  

 Considering the non conservative dislocation motion due to unbalanced forces at the 

triple points at grain boundaries and using Read-Shockley model for the dependence of grain 

boundary energy during mis-orientation at low angle and sub-grain boundaries, Li [121] 

formulated the rate of grain rotation in terms of evolution of inter-dislocation spacing via non 

conservative dislocation motion. However, this mechanism of grain coarsening is only possible 

in nanocrystalline materials due to the need for rotational mobility. Furthermore, recent studies 
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[15, 122, 123] have shown that this mechanism for grain growth can be accelerated considerably 

by externally-applied stress. 

 

2.2.3.1 Temperature Driven Grain Growth. 

 Due to the high driving force for grain growth through grain boundary migration and 

grain rotation for nanocrystalline materials, many nanocrystalline materials including iron[124], 

copper [125-127], aluminum [128], gold [129] and palladium [25] was found to undergo 

microstructural coarsening at room temperature. Figure 2.18 shows an example of grain growth 

in nanocrystalline copper.  

 

 

Figure 2.18: FIB images of a nanocrystalline Cu film (a) immediately after processing (b) after 

storage for three months at RT. The size of the marker is 1 µm. 
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 One of the factors affecting the stability of the grain was identified to be the volume 

fraction of the low angle grain boundaries. A room temperature grain growth study conducted by 

Pantleon et al [130] revealed that electrodeposited nanocrystalline copper has greater thermal 

stability for thin films due to the higher fraction of low angle grain boundaries. Recent molecular 

dynamics simulations by Spearot et al. [131] verified that low angle grain boundaries had lower 

energy configurations thus they are not as susceptible to mobility and growth. However, it is also 

important to note that several high-angle boundaries, such as the M3 (111) symmetric tilt 

interface, may have very low energies as well.  

 Another factor affecting the stability of the grain was identified to be the activation 

energy of grain boundary diffusion. Thermal stability studies conducted by Bansal et al [132], on 

ECAE nanocrystalline copper and nickel, had shown that nickel was stable at 250°C whereas 

considerable grain growth was observed in copper at temperatures even as low as  100°C. In that 

study, the activation energy for grain growth of copper and nickel were calculated to be 33 

kJ/mol and 55 kJ/mol, respectively. This apparent activation energy for grain boundary mobility 

in nanocrystalline copper was much lower than the activation energy of 80-100 kJ/mol for grain 

growth  in microcrystalline copper [133, 134].  Noting that  the   activation energies for lattice 

diffusion and grain boundary diffusion  for copper  are 100 kJ/mol and 49 kJ/mol[135] 

respectively, she concluded that the underlying mechanism for grain growth in nanocrystalline 

copper was dominated by the grain boundary diffusion.  Similar observation of the lower 

activation energy for grain growth in nanocrystalline materials and  attributing it to the lower 

activation energy of diffusion of atoms along the grain boundary had been made by Natter et al 

[136].   
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 The processing route has been identified as another factor that will affect grain growth in 

nanocrystalline materials. In the thermal stability studies on ECAE copper conducted by 

Molodova et al. [137], the grain growth rate and their activation energy had been found to be a 

function of both the grain size and number of passes during ECAE. They had observed that grain 

growth will occur at lower temperatures for materials with smaller grain size and higher number 

of ECAE passes.  

Furthermore, Gertsman et al. [125] had also showed that the density of the 

nanocrystalline copper will have some detrimental effect on the grain growth of nanocrystalline 

copper at room temperature. In their thermal stability studies on ECAE copper, they had 

observed that grain growth will occur more readily for less dense samples as shown in Figure 

2.19. The reason being that the pores in the samples increase self-diffusion in the grains and 

hence creating greater instability by acting as paths for surface diffusion [138]. 

 

 

Figure 2.19: Effect of sample density [125] on grain growth of copper at room temperature 
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2.2.3.2 Stress Driven Grain Growth. 

 Recent observations on indentation creep experiment in high purity nanocrystalline 

copper conducted by Zhang et al [15, 139] pointed the possibility of stress induced grain 

coarsening in nanocrystalline copper.  This is because grain growth was observed even though 

Zhang et al [15, 139] performed these indentations at cryogenic temperatures where thermal and 

diffusion effects were suppressed.  Further confirmation of stress assisted grain growth was 

provided by the work of Zhu et al [140].  By taking into the account of the effects of the grain 

growth, they could accurately predict the rapid decrease in hardness during dwell time observed 

in Zhang et al [15, 139] experiment. Furthermore, stress assisted grain growth has also been 

observed in nanocrystalline materials during fatigue loading. Bansal et al [132] observed grain 

growth in nanocrystalline copper during low cycle fatigue tests with a strain ratio of -1. The 

average grain size increased from 45 nm to 58.5 nm and 72.0 nm at strains of 1.0% and 1.5%, 

respectively, indicating stress driven grain growth. In addition, Bansal et al [132] observed that a 

threshold stress was required for grains to grow at a given temperature in the creep experiments 

conducted using ECAE nanocrystalline copper. 

 Since understanding the phenomenon of stress induced grain growth is very important for 

the application of nanocrystalline materials in engineering applications, there is a need to 

understand the mechanisms for stress induced grain coarsening.  Using molecular dynamics 

simulations, Schoitz [123] was able to simulate stress assisted grain growth of nanocrystalline 

copper under cyclic loading. In that study, he had identified grain rotation and coalescence as the 

mechanisms for stress assisted grain growth during severe plastic deformation. Furthermore,  

Zhang et al [15] concluded that grain rotation and coalescence were the primary grain growth 

mechanism given the large number of low angle grain boundaries in the vicinity of indentations. 



 

48 
 

Gai et al [141] had arrived at the same conclusion when they had observed the increased  number 

of small angle grain boundaries as the dwell times increased.   

 More grain growth studies using molecular dynamics have been conducted by Haslam et 

al [122] on nanocrystalline palladium under the influence of stress at 1200K . In that study, they 

had observed grain growth under the influence of stress due to increased diffusion of atoms at the 

grain boundary. The underlying mechanism for the observed stress induced grain growth was 

then identified to be mainly due to curvature driven grain boundary migration and grain rotation-

induced grain coalescence. Multi-scale simulations of nano-indentation tests conducted at a 

temperature of 0 K  arrived at the same conclusion that  grain growth mechanisms in 

nanocrystalline materials are primarily due to the migration of unstable grain boundaries and 

grain rotation and coalescence [142]. 

 It was suggested that stress induced grain growth facilitated by grain boundary migration 

required the presence of extrinsic grain boundary dislocations [26] and the emission of free 

dislocations from the interface [32].  Hence, nanocrystalline materials with high energy non-

equilibrium grain boundaries were more susceptible to stress assisted grain growth.  Recent 

studies by Lu et al. [33] provided the experimental verification of this argument.   By comparing 

the final micro-strain and grain size from both electrodeposited and cold-rolled nanocrystalline 

copper, they observed that grain growth occurred at the same temperature at which the internal 

micro-strain was relieved. This result confirmed the relationship between internal micro-strain 

and grain growth.    

 A  full understanding of grain boundaries migration and grain rotation will require more 

in-depth studies and no model has been established to describe the phenomenon of stress induced 
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grain growth. However, for simple geometry such as a tilt boundaries, Gutkin et al [143] have 

developed a model to describe stress driven grain boundaries migration as a special mode of 

rotational plastic deformation by taking the account of declination of uncompensated ground 

boundary junction.   

            2.10  

 

In equation (2.10), critical shear stress for boundary motion, w is the tilt angle, b is the length 

of the declination dipole and d is separation of the dipole.  Equation 2.10 showed that the critical 

shear stress of the range of only 20-300MPa will be sufficient to cause the migration of the grain 

boundaries for grain between 10nm to 30nm in size and with a misorientation angle of 5° to 30°. 

Ovid’ko et al [144] then extended this model (equation 2.11) to take into the account of 

formation of immobile declinations, whose strength gradually increases as a result of grain 

boundaries sliding and diffusion. 

    (2.11) 

 

2.2.3.1 Grain Growth Retardation 

 A number of factors, for example solute drag and chemical drag, can be used to influence 

grain boundary mobility and hence grain growth [145]. Since the grain boundary migration rate, 

V, depends on the driving force, P, and intrinsic mobility, it is possible to reduce grain growth 

through reducing the driving force, decreases grain boundaries diffusion [146]. 
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=      (2.12) 

 

In equation 2.12, a is the lattice constant, Dgb is the grain boundary diffusion, k is the 

Boltzmann’s constant and T is the absolute temperature.  The presence of dopant at the grain 

boundaries, which will create a solute drag effect, is one of the ways to reduce grain growth 

through reducing driving force of the grain boundary mobility. This is one of the reasons for 

observing limited grain growth in several nanocrystalline solid alloy solution when the solute 

atom have segregated to the grain boundaries [124, 147].   

 Furthermore, the presence of dopant atoms at the grain boundaries will pin the free 

dislocation at the grain boundaries and reduce stress induced grain growth.   Li et al [121], 

through theoretical calculation, indicated that metastable or high energy grain boundary structure 

and high purity material were the two main conditions required for stress induced grain growth.  

Figure 2.20 showed that the number of free dislocations in the homogenous grain boundaries 

reduces the shear stress required for their emission. In Figure 2.20, x is the distance of free 

dislocation from center of grain boundary and h is the spacing between dislocations. Hence, 

pinning the free dislocation using dopant will reduce stress induced grain growth. 
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Figure 2.20: Decrease in shear stress required with increasing number of free dislocations at a tilt 

grain boundary. Thermal effects are not considered in this model  

 

 Nanocrystalline materials were more susceptible to grain growth as compared to their 

micro-crystalline counterparts due to the higher volume fraction of high energy grain boundary 

atoms. Hence, by introducing solute segregation at the grain boundaries [35], it may be possible 

to eliminate the thermodynamic driving force for grain growth by reducing the excess grain 

boundary energy to zero [34]  

 γ = γo – Xβ ∆Hseg      (2.13) 

 

 In equation 2.13, γo is the specific grain boundary energy of the sample; Xβ is the dopant 

concentration at the interface.  ∆Hseg is the enthalpy of segregation and this is the excess energy 

for introducing a foreign atom in the materials.  Equation 2.13 showed that it was possible to 
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decrease the grain boundary energy γ by introducing a large ∆Hseg.  By doing so, the total Gibbs 

free energy would be smaller than the Gibbs free energy of the single crystal solid solution and 

this will eliminate the driving force for grain growth.  However, this is only true if the dopants 

segregate to the grain boundary and do not form precipitates. Although there is still no 

convincing experimental evidence to support this yet,  some promising observations with doped 

samples of Pd1-x Zrx [147] and Y1-xFex [124] have shown that by increasing x, grain growth was 

suppressed until higher temperatures. Furthermore, recent molecular dynamics simulations by 

Millett et al. [14, 148, 149] have shown that the driving force can be driven to zero with the 

presence of sufficient dopants atom content at the grain boundaries, and hence eliminating grain 

growth. Furthermore, Millett et al [14, 148, 149] have found that the concentration of dopants 

needed to prevent grain growth depends on the relative size of dopant atoms. 

 

 

2.2.4 Electrical Properties 

 Due to the increased volume fraction of the grain boundaries in nanocrystalline materials, 

their electrical resistivity was found to be higher than that of their microcrystalline counterparts. 

This was due to increased grain boundary scattering activities.  Figure 2.21 [28, 60] showed that 

at constant temperature, the electrical resistivity increased with a decrease in grain size whereas 

the electrical resistivity increases as  the temperature increases at a given grain size.  Since  these 

observations are consistent with the theoretical analysis of grain boundary scattering of electrons 

[7], they provided strong experimental evidence for this reasoning. Lastly, Bakonyi et al [150] 

have shown that the electrical resistance is also a function of imperfection and residual stress 

introduced by synthesis process 
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.   

Figure 2.21: Comparisons of resistivity of nanocrystalline and micro-crystalline nickel and 

copper [28, 60] 

 

2.3 Summary of Literature Survey 

 In summary, we have outlined the fabrication methods for chip to package 

interconnection. Nanostructure interconnects technology is the most promising interconnect 

technology to meet the high mechanical and electrical requirements of next generation devices. 

However, there is need for an alternate material with high strength material and superior 

electrical conductivity.   

 Furthermore, this chapter reviews the mechanical and electrical properties of 

nanocrystalline materials. Indeed, nanocrystalline materials have impressive mechanical 

properties which will enhance the reliability of the nanostructure chip to packages interconnects. 

They include a five to ten fold increases in strength and hardness as compared to their 
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microcrystalline state, relatively good ductility and enhanced fatigue endurance limit. 

Furthermore, the conductivity of nanocrystalline copper although lower than that of its 

microcrystalline counterpart, it was still much higher than the current interconnects materials that 

are alternative to copper. 

 However, more studies are still needed to fully understand the deformation and fracture 

and fatigue mechanisms for the nanocrystalline materials. Furthermore, the improvement in the 

fatigue properties is not well documented and no model has been established to 

predict/characterize these nano materials in interconnection application; conflicting results 

regarding the fatigue properties have also been reported. Hence, various studies on the fatigue 

properties of nanocrystalline materials are needed so as to assess the feasibility of using 

nanocrystalline materials as interconnects materials.   Lastly, there is also a need to fully 

understand and retard the grain growth phenomenon during deformation since grain growth 

during application may hinder the usefulness of nanocrystalline materials.   
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Chapter 3 

Atomistic Simulation of Material Behavior 

 

3.1 Introduction 

 Since nanocrystalline materials exhibit significantly superior properties as compared to 

their microcrystalline counterpart, the behavior of nanocrystalline materials has been the subject 

of extensive research in the recent past. In spite of that, as mentioned in Chapter 2, the 

deformation mechanisms in nanocrystalline materials are still not well understood. This is due to 

the difficulty in synthesizing high purity, defect free nanocrystalline material in large enough 

quantity to conduct mechanical characterization tests. Furthermore, studying the deformation 

mechanisms experimentally is difficult due to a variety of reasons. For example, accurate grain 

growth studies are difficult to conduct due to problems in accurately measuring the grain size; X-

ray diffraction techniques tend to underestimate the grain size due to the presence of mechanical 

twins whereas the small thickness requirement for TEM tends to results in growing the grain size 

during testing. Hence, in conjunction with experimental studies, atomistic simulation, either 

classical or quantum mechanical, have been employed in the hope of gaining better insights into 

the atomistic processes and behavior of nanostructured materials. The two types of atomistic 

simulations used in this work are molecular dynamics and molecular statics. Molecular statics is 

a computational technique which utilizes numerical optimization techniques to minimize the 

potential energy of the system whereas molecular dynamics simulates the motion and 

interactions between a system of N atoms or molecules throughout time by solving a system of 
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equations based on the Newton’s second law in an iterative manner. An overview of molecular 

statics, molecular dynamics, inter-atomic potentials, time integration algorithms, the isothermal-

isobaric ensembles, the isothermal-isochoric ensembles and the modified isothermal-isobaric 

ensembles for constant strain rate, periodic boundary conditions neighbor lists as well as post 

processing technique will be presented in this chapter. A more comprehensive review of 

atomistic simulation can be found in Allen and Tildesley [151], Frenkel and Smit [152] and 

Haile [153].   

 

3.2 Molecular Statics 

 Molecular statics is used in this research to compute the initial atomic configuration prior 

to deformation.  It is important to describe this initial configuration accurately in order to draw 

relevant conclusions regarding the roles of the grain boundaries in the deformation process. This 

method consists of computing the minimum energy interface structures through minimization of 

the system’s total potential energy at a 0K.   Although there is no optimization method that will 

definitely determined the global minimum energy configuration, established methodologies such 

as Monte Carlo [154], Metropolis sampling [155], steepest decent and conjugate gradient 

methods [156] are known to work with some success. Monte Carlo [154] and Metropolis 

sampling [155] method rely on iterative random sampling within an acceptance criterion to 

search for the configuration with minimum energy where steepest decent and conjugate gradient 

method determine the  specific configuration of atoms and follows the direction  of the largest 

gradient on the potential energy function.  In this project, nonlinear conjugate gradient is used to 

obtain the initial microstructural configuration. Furthermore, secant method and Polak Ribière 

formulation [157] was used to determine the step sizes and search direction, respectively. More 
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in-depth reviews of the conjugate gradient method can be found in Shewchuk [157] and Spearot 

et al [158].  

Conjugate gradient method solves a sparse system of equations using an iterative method. 

Since the force on any atom is related to the interatomic potential through the gradient operator 

as shown in equation 3.1, the minimum potential energy can be found by setting these forces as 

the residual of the potential energy and solving equation 3.1.   

             (3.1) 

 

In equation 3.1, the parameter Fi is the force on a given atom, rN is the atomic position 

vector for a system of N atoms and ri is the atomic position vector for the ith atom respectively. 

The parameter U is the inter-atomic potential energy. The atomic position vectors is updated 

using an iterative process as described by equation 3.2 

            (3.2) 

 

In equation 3.2, αm is a proportional factor that minimizes the potential energy in the search 

direction whereas dm is the search direction.  Since the potential energy at rm+1 is orthogonal to 

the search direction, as shown in equation 3.4, a line search algorithm, such as Secant method as 

shown in equation 3.4, is used to approximate the second derivative of the potential energy to 

determine αm 

      (3.3) 

 

     (3.4) 
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In equation 3.4,  µ is the scalar number for the conjugate gradient method. Furthermore, the 

search direction in the conjugate gradient method is also determined using iterative processes as 

depicted in equation 3.5 

           (3.5) 

 

The residual gm+1 is computed by equation 3.6 whereas the constant β was determined using 

Polak Ribière formulation which forces the successive search direction to be conjugate. 

           (3.6) 

     (3.7) 

 

 

3.3 Molecular dynamics 

3.3.1 Governing Equation 

 Molecular dynamics (MD) is used in this research to simulate the deformation of 

nanocrystalline materials. In MD, the motion and interaction of atoms or molecules in the system 

is simulated by solving a system of equations based on Newton’s second law [152]. 

       (3.8) 
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In equation 3.8, m is the atomic mass, ai is the acceleration of the ith atom and Fi is the total 

resultant force on ith atom and it is the sum of all the forces due to its surrounding neighboring 

atoms.  In short, molecular dynamics uses equation 3.1, equation 3.8 and finite difference 

methods to discretize time into a specific time step ∆t, so as to compute the subsequent time step 

evolution using position and velocity from the previous time step. 

   

 

3.3.2 Time Integration Technique 

 One of the most commonly utilized time integration methods for molecular dynamics is 

the velocity Verlet algorithm. In addition to the avoidance of the computationally intensive 

iterative correction steps, this algorithm offers conservation of the total energy, Helmholtz free 

energy and Gibbs free energy during integration over a long period of simulation time for NVE, 

NVT and NPT ensemble, respectively. Hence, this technique offers   much better simulation time 

stability and efficiency as compared to other integration techniques [159].  Since this research 

only utilizes the velocity Verlet algorithm with a time step of 1 fs, the readers are encouraged to 

read the reviews on other methods such as Verlet, leap frog algorithm elsewhere such as by  

Frenkel and Smit [152]. The approach in the velocity Verlet algorithm is to use the velocity for 

the present time step the computed velocity at half a time step forward as  as described in 

equation 3.9 [160].  

        (3.9) 
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In equation 3.9, vi is the atom’s velocity and m is the mass of the atoms. Furthermore, using 

equation 3.10 and the velocity computed from equation 3.9, the atomic position at the next time 

step is computed.  

    (3.10) 

 

After updating the forces with the newly computed atomic position, the velocity in the next time 

can then be found using equation 3.11  

    (3.11) 

 

3.3.3 Periodic Boundaries Condition 

 In order to mimic the behavior of bulk nanocrystalline materials, periodic boundary 

condition, which simulates an infinite system by replicating the simulation cell in all directions, 

is often employed in MD simulations.  Figure 3.1 show a schematic of a periodic boundaries 

condition.  
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Figure 3.1: Schematic of a simulation cell with periodic boundary condition in 2d space. The cell 

with solid border is the primitive cell whereas the surrounding cells with dashed borders are the 

image cells  

 

The original cell is known as the primitive cell whereas the image cells are the 

replications as shown in Figure 3.1.  In a way, periodic boundary conditions work in the same 

configuration as some video games; in other words, the atoms reappear on the opposite side of 

the primitive cell with the same velocity after it has crossed the boundaries of the primitive cell. 

In this way, the atoms near the surface in the primitive cell interact with the atoms in the image 

cell thus avoiding the feeling of a  free surface and hence reducing surface effects. This is 

especially important considering the fact that the number of atoms in the continuum sample is 

much larger than the model in the largest molecular dynamics simulation and hence causing the 
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molecular simulation model to have significantly higher number of atoms near the surface.  It is 

also important to note that periodic boundary conditions will conserve the linear momentum of 

the system but not the angular momentum since the periodic boundary conditions do not rotate 

symmetrically.  

 Although periodic boundary conditions are useful for simulating bulk material behavior 

with no free surface, modified periodic boundary conditions known as the slab boundary 

condition, where the periodic boundary condition is removed in one of the directions, can be 

enforced to simulation a thin film or any instances where there is a need for a free surface. 

 

3.3.4 Neighbor Lists: 

 At each time step in molecular simulation, computation of force on the atoms requires a 

calculation of a total of   pair-wise interactions for a system with N atoms and hence that 

is one of the most computationally expensive step. In order to speed up the computation of forces, 

the concept of cut off radius rcut has been introduced. Since the contributions from long range 

interaction of atoms are negligible, all interaction of the atoms outside of rcut are assumed to be 

negligible. Hence, by constructing the neighbor lists which stores all the atoms within rcut and a 

buffer length rbuffer and only computing the interactions of these atoms for the calculation of the 

force on the ith atom, the computational time and effort can be significantly reduced. Furthermore, 

due to the motion of the atoms, it is important to update the neighbor list at every nth time step. 

Hence, with the implementation of neighbor list, computation times will be significantly reduced, 

without any loss of accuracy, as the computation time now scales with an order of N3/2 instead of 

N2 initially. 
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 However, even with this improvement, only extremely short time duration and very small 

specimens are possible in the molecular simulation due to the computation intensive nature of 

molecular dynamics. For example, using a 1.7 GHz Pentium processor, there is a need for 

9.38x10-6s of computation simulation time per atom per time-step for an EAM potential and a 

4.5510-6 s simulation time per atom per time-step for Lennard Jones potential [161]. Bear in 

mind that the molecular dynamics models usually requires more than 100000 atoms to simulate a 

nano-crystalline microstructure. 

 

3.3.5 Ensembles 

 The discussion in the previous section on molecular dynamics revolves only around 

Equation 3.1, which is actually the most basic form of molecular dynamics ensembles known as 

the microcanonical or NVE ensemble (which maintains constant number of atoms, volume and 

total energy throughout the simulation). This ensemble is also commonly known as equilibrium 

molecular dynamics since it simulates the material behavior in an isolated system.  However, the 

vast majorities of the mechanics and materials systems are not in isolation and will interact with 

their environment. Hence, a special class of molecular dynamics that corresponds to statistical 

mechanics’ canonical ensemble is needed.  This class of molecular dynamics is known as non-

equilibrium molecular dynamics and it uses use additional differential equations to accurately 

model the interaction between the systems and its environment. 

 

3.3.4.1 Isothermal-Isochoric ensemble (NVT) 
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 Instead of an isolation system as in the NVE ensemble, the NVT ensemble allows the 

system to interact with the environment. In NVT ensemble, the temperature of the system is 

allowed to fluctuate about the desired temperature while maintain the simulation cell’s size and 

the number of atoms in the simulation cell. Hence, NVT ensemble will represent closely the 

displacement control in the normal experimental set up. 

One of the methods used to control its temperature during simulation is through the ah-

hoc velocity scaling as shown in equation 3.12 [152]. 

     (3.12) 

 

In equation 3.12,  is the velocity of the ith atoms at the mth time step, TD is the desired 

temperature and Tm is the temperature of the system at the mth time step. This is, however, a 

crude method of controlling temperature as it will only reproduce the canonical distribution for 

the specific constraint. 

 A more appropriate way of controlling temperature will be the extension system method 

where frictional/damping coefficient ζ is incorporated into the equation of motion to couple the 

system’s dynamics to the desire temperature. Hoover et al  [162] were able to formulate the 

equation of motion for a NVT ensemble as given in equation 3.12 to equation 3.15 

      (3.12) 

      (3.13) 



 

65 
 

      (3.14) 

       (3.15) 

 

In equation 3.12 to equation 3.15,  is the position of the ith atoms, kB is the Boltzmann’s 

constant, TD is the desired temperature and s the scaling factor.  The parameter Q in equation 

3.15 is the mass of the thermostat and it will act as a damping factor.  The lower the value of Q, 

the higher is the temperature fluctuation about the mean desired temperature. A value of 20 is 

used in the present calculations.  

 

3.3.5.2 Isothermal-Isobaric ensemble (NPT) 

 The main difference between the NVT and the NPT ensemble is that the NPT ensemble 

allows the simulation cell’s to change its cell size in response to its surrounding pressure and 

hence simulating the load control scenarios in the conventional experimental set-up. Hence, 

using the same rationale for changing the simulation cell size according to the imbalance 

between the internal and desired pressure, a number of extended system methodologies for NPT 

ensemble such as by Parrinello et al [163], by Nosé  et al [164] and by Hoover et al [162] have 

been developed: Parrinello et al [163] methodology for  the extension to incorporate anisotropic 

response through the change in the simulation cell size and shape whereas Hoover et al [162] 

methodology for its ease of  implementing them into molecular dynamics code. 
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 As mentioned in the previous section, the equation of motion for NPT formulation by 

Hoover et al [162] is one of the more popular methodologies due to the ease of  implementing 

them into the molecular dynamics codes.  However, Melchionna et al [165], noting that Hoover  

et al equation of motion for NPT ensemble does not model the NPT ensemble precisely due to 

the volumetric scaling of the atom positions,  modified the original Hoover’s NPT ensemble to 

obtain the correct NPT equation of motion. Their equations of motion for NPT ensemble are 

shown in equations 3.16 to 3.20 [165] 

       (3.16) 

      (3.17) 

      (3.18) 

       (3.19) 

      (3.20) 

 

In equation 3.16-3.20, η is the isobaric friction coefficient, PD is the desire pressure, νp is the 

constant pressure damping coefficient and h is a set of vectors that define the boundaries of the 

simulation cell.  

 

3.3.5.3  Modified Isothermal-Isobaric Ensemble for Constant Strain Rate 
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 One of the main disadvantages of NPT ensemble is that the external pressure must be 

inputand hence strain rate is not controlled. Since the equation of the motion adjusts the 

simulation cell size based on the imbalance between the internal and desired pressure, it is not 

possible for the strain rate for to remain constant. Furthermore, Yamakov et al [166]had showed 

that the type of deformation mechanism depends greatly on the direction of the external pressure 

and there is a need to modify the NPT ensemble to allow constant applied strain rate.   

Hence, Spearot et al [167] modified the Melchionna et al [165] equation of motion to 

allow the prescription of the rate of the change of the simulation cell size. i.e a constant applied 

strain rate. In order to maintain a constant strain rate, he incorporated an additional damping term 

γη into equation 3.19 while maintaining the other equations in Melchionna’s [165] equation of 

motion in NPT ensemble. His equations of motions are as described: 

          (3.21) 

      (3.22) 

      (3.23) 

       (3.24) 

      (3.25) 

 

In equation 3.23, the additional term γη is the additional damping term needed to maintain the 

smooth motion of the simulation cell size. By prescribing the rate of change of  in equation 3.25 
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in the uniaxial loading direction and allowing the two other sides of the simulation cell to move 

according with the equation of motion for NPT ensemble, the applied strain rate in the loading 

direction can be enforced. 

   

3.3.6 Computing Physical Quantities 

 In order to quantify the deformation of the nanocrystalline materials throughout the 

molecular simulation, computational techniques need to be developed to measure and track some 

of the important physical quantities. One of these physical quantities is the total energy of the 

system which is the sum of both the potential energy and the kinetic energy of the system.  The 

potential energy is the sum of the contribution of all the pairwise interaction   as shown in 

equation 3.26 whereas the kinetic energy term in the time average of the instantaneous kinetic 

energies K(t)   

     (3.26) 

 

In equation 3.22, rij is the distance between the ith atom and  jth atom. i.e 

 rij= ri- rj.        (3.27) 

 

The instantaneous kinetic energies K(t)  can be computed as  follows: 

       (3.28) 
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In equation 3.28, ,  , and   is the ith atom’s velocity in the x , y and z direction respectively. 

 The most common method to compute internal pressure P and stress is by the virial 

theorem as shown in equation 3.29 and 3.30 [151] 

           (3.29)  

  

In equation 3.29, U’ is the first derivative of the potential energy.  

        (3.30)  

 

 In equation 3.30, is the stress tensor and the subscript α and β  denotes α and β 

components.  Although equation 3.30 has been used commonly to compute the mechanical stress, 

Zhou et al [168]  had shown that this virial stress formulation not only cannot account for rigid 

body motion, the kinetic energy calculation had also violated the conservation of momentum. 

Hence, virial stress is not exactly equivalent to the mechanical stress.  Zhou et al [168] observed 

that the force term had already accounted for the kinetic energy contribution and he pointed out 

the system stress should be calculated without the contribution from the kinetic energy term, as 

shown in equation 3.31, so as to ensure the equivalency of the virial stress and the mechanical 

stress. 

         (3.31) 
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In equation 3.31,  is the force between ith and jth atoms.  However, the magnitude of the 

kinetic energy terms for solid materials is very small as compared to the contribution for the 

inter-atomic forces and since the computation of stress in this research requires the stress to be 

average over a relatively large volume, the fluctuation of the virial stress will be further reduced 

[169]. Hence, this research opts to keep the kinetic contribution in the calculation of mechanical 

stresses. 

 

3.3.7 Inter-Atomic Potentials 

 Choosing the right inter-atomic potential function that can accurately describe the nature 

of the atomic bond is the one of the most important if not the most important decision in 

molecular simulations. Even though a wide variety of the potentials that have been developed to 

model the physics of different types of materials, these inter-atomic potentials can be basically 

divided into four major classes or combinations of these four major classes. They are the pair 

potentials, cluster potential, pair functional potentials and the cluster functional potentials [170]. 

Pair potentials are a function of only the separation distance between two atoms whereas the 

cluster potential depends on both the distance and the angles between the two atoms.  Since the 

Lennard-Jones potential, which is a type of pair potential, and the embedded atom method 

potential, which a combination of pair potential and pair functional potential are used in this  

reserach, only these two potential types will be discussed in detail. More detailed information on 

other classes of potentials can be found in Carlsson et al [170]. 
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3.3.7.1 Lennard-Jones Potential  

Although pair potential cannot reproduce the properties of the transition metals 

accurately due to its inability to account for the intra-molecular forces, it can be easily 

implemented into molecular dynamics code due to its same simplistic nature. Hence, it has been 

successfully employed to model metallic glasses and inert gas behavior [171, 172] and to 

investigate fundamental issues such as grain growth phenomenon in nanocrystalline metals.  One 

of the most common pair potential is the Lennard-Jones potential as shown in the following 

expression [173]:- 

      (3.32) 

  

In equation 3.32, σ is the atomic spacing at zero potential energy and ε is the energy at 

equilibrium spacing. Since the r–12 term accounts for the repulsive forces whereas the r–6 term 

accounts for attractive forces, Lennard-Jones potential is attractive at large distance of  but 

reaches a minimum and becomes strongly repulsive. Furthermore, equilibrium spacing, , 

between two atoms, where the potential energy is at the minimum, can be computed easily as 

follows 

  = 21/6σ       (3.33)  
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Using copper as an example, Figure 3.2 shows the profile of the Lennard-Jones potential and its 

force derivative and Table 3.1 provides a compilation of these parameters for found in the 

literature. 

 

 

Figure 3.2: The Lennard-Jones potential and its force derivative of copper 

 

Table 3.1: Lennard-Jones Parameters compiled from the literature [174] 

Element σ(A) ε(j) 

Aluminum 2.62 6.281E-20 

Gold 2.637 7.066E-20 

Lead 3.197 3.781E-20 

Nickel 2.282 8.331E-20 

Palladium 2.52 6.841E-20 

Silver 2.644 5.528E-20 

σ 

ε
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Copper 2.338 6.553E-20 

Iron 2.321 8.427E-20 

Tungsten 2.562 1.711E-19 

 

 

According to equation 3.1, calculation of force requires taking the derivative of inter-

atomic potential with respect to .  Since the derivative of equation 3.32 produced a closed 

form solution as shown in equation 3.34, the force calculation using Lennard-Jones is 

computationally inexpensive.  

       (3.34) 

 

Further reduction in the computational time and effort can be achieved through reduced 

or non-dimensional units when modeled with Lennard-Jones potentials. Using  σ and ε as the 

normalizing parameters and assuming unit mass, the following dimensionless parameters can be 

used:- 

Table 3.2: Reduce Lennard Jones units [174] 

Properties Dimensionless LJ unit 

Length σ 

Energy ε 

Time 
ε

σ m  
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Force 
σ
ε  

Pressure 3σ
ε  

Temperature 
Bk

ε  

    

 

 An inspection of Table 3.1 shows the lack of Lennard-Jone parameters for antimony. 

Since one of the main objectives of this research is to develop an understanding of the 

enhancement in grain stability due to the addition of antimony in nanocrystalline copper during 

fatigue loading, these parameters are needed for antimony.   Even though Chang et al [175] had 

developed a Johnson’s pair potential for antimony, the heat of mixing for copper antimony 

interaction was found to be off by a few orders.   Hence, a new antimony potential based upon 

the Lennard-Jones potential formulation has been developed in our group. Through the 

calculation of the heat of mixing and the strain field generated by a single antimony impurity in 

single crystal copper, as shown in Figure 3.3, Rajgarhia  et al [176] were able to develop this 

antimony inter-atomic potential which provides a better correlation with the magnitude of the 

strain field around the antimony atoms. Hence, their values for antimony of σ=3.15Åm and 

 ε=0.079 eV will be used through this research to model antimony response. 
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Figure 3.3: Correlation between Lennard-Jones parameters for antimony [176] 

 

 In order to model the deformation of the antimony doped copper, the interactions 

between the two types of materials must also be considered. However, the Lennard-Jones 

parameters listed in Table 3.2 and Figure 3.3 are all formulated for single component systems 

and it is necessary to know parameters for the interspecies interactions ( and ) as well as 

Lennard’s Jones parameter for each material. Hence, the interspecies interactions need to be 

estimated[177] using Lorentz-Berthelot combination rules, as shown in equation 3.35 and 3.36,  

and the parameters from Table 3.2 and Figure 3.3  

       (3.35) 
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      (3.36) 

 

Here, are the Lennard-Jones parameters for interspecies interaction whereas 

 denotes the parameters for atom type α and β. 

 

3.3.7.2 Embedded Atom Method (EAM) 

 One of the main limitations of Lennard- Jones potentials is its inability to model 

transition metals accurately. Hence, Daw et al [178] developed the EAM potential from the 

density functional theory in the quasi-atom [179] and effective-medium theory [180] in order to 

accurately model the metallic bonding in FCC metals.  The EAM potential computes the 

potential energy of a system as the sum of energy of the pair interaction in the systems as well as 

the energy required to embed an atom into a lattice site under the influence of the average 

electron density. Hence, the total energy for EAM formulation is given by equation 3.37 

     (3.37) 

 

In equation 3.37,  is the pair potential representing the cation-cation repulsion in the 

lattice whereas  is the embedding energy required when ith atom is placed in a lattice site 

with an a average background electron density, . The background electron density is then the 

sum of all the electron density from its neighboring atoms as shown in equation 3.38 
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      (3.38) 

 

In equation 3.38, the function ρ(rij) is a measure of the decay of the electron density and only the 

atom within the cut off distance is considered in the computation of average background electron 

density in this summation. Taking the derivation of equation 3.37 to determine the force of ith 

atom gives the following expression, 

    (3.39) 

 

As shown in equation 3.39, the calculation of EAM forces is computational more intensive as 

compared to the calculation of Lennard-Jones forces and it requires two stages of computation. 

The first is to calculate the embedding functions by summing all the ρ(rij) term and the second is 

to compute the remaining term in equation 3.39. 

 By fitting several key parameters empirically (such as lattice constant, elastic constant, 

heat of solution etc) , Foiles et al [181] show that EAM potential can model several properties of 

pure metals such as lattice constant, formation volume and migration energy of vacancies and 

self-interstitials, surface energy and energy of segregation of substitutional impurities, accurately. 

Hence, the EAM potential by Foiles et al [181] is used to model the nanocrystalline copper 

throughout this research.      

However, EAM potentials cannot be used for some metals, where directional bonding is 

important such as BCC crystal structure, HCP crystal structure and even certain FCC metals. 

This is due to the assumption of the spherically distributed background electron density during 
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its derivation. This restricts the use of EAM potentials to only certain FCC crystal structures in 

which the bond orientation is not important.  In order to overcome this limitation, Baskes et al 

[182], using the same EAM formulation, had developed the modified embedded atoms method 

(MEAM) to account for the bond directionality and thus they could reproduce several accurate 

results in BCC crystal structure and non-metallic systems. 

Even though EAM potential formulation requires a regression step with experimental 

data to give the correct physical properties, it is still critical to show that the inter-atomic 

potentials used in this work are appropriate and they can accurately model the deformation of 

FCC metals. Recent simulations have stressed the important of the chosen inter-atomic 

potential’s ability to reproduce the entire stacking fault energy curve accurately [183]. As shown 

in Figure 3.4, the unstable stacking fault γusf is the magnitude of the peak of the generalized 

stacking fault curve where the stacking fault energy is the magnitude of the energy at its first 

minimum when shearing occurs between two {111} planes in the <112> direction.    The stable 

stacking fault energy is important for molecular simulation as it will determine the dislocation 

disassociation width in FCC metals [184] whereas the unstable stacking fault energy will 

determine the characteristic of the dislocation nucleated [185]. Furthermore, recent simulation 

work by Van Swygenhoven et al [116] further stressed the importance of both the unstable 

stacking fault energy and the stable stacking fault energy in modeling grain boundary structure 

and dislocation nucleation. As mention in Chapter 2, they proposed that the transition from the 

emission of partial dislocation to the emission of full dislocation depended on the ratio of the 

stacking fault energy to that of the unstable stacking fault energy.    
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Figure 3.4: Schematic of the generalized stacking fault energy 

 

 

 3.3.8 Visualization of Atoms 

 Since the simulation cell usually consists of thousands and millions of atoms, molecular 

dynamics will generally generate huge amount of data. Hence, visualization technique is often 

needed during post post-processing to derive meaning in these data in order to have a better 

understanding of the dislocation activity during deformation processes. These visualization 

techniques include the centro-symmetry [186], energy, common neighbor analysis [187], slip 

vectors [188] or coordination numbers[189]. Examples of some of the visualization tools are 

illustrated in Figure 3.5. In this research, common neighbor analysis is used to visualize 

microstructure and dislocation activities for the single crystal analysis. However, due to the 
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computational intensive nature of the common neighbor analysis and the large number of atoms 

in the nanocrystalline models, centro-symmetry and energy are used instead to visualize 

microstructure and dislocation activity in nanocrystalline materials. 

  

Figure 3.5: Visualization technique in molecular simulation: (a) Centro-symmetry 

parameters[186] (b) slip vector parameter [188] (c) coordination number [189]  and common 

neighbor analysis[45] (reproduced from [190] 
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 Since each atom has their own set of nearest neighbors, common neighbor analysis 

characterizes the type of bonding the atom had with their nearest neighbor by specifying three 

indexes i, j and k after analyzing their common share neighbors: index i accounts the total 

number of common neighbors, index j accounts for the total number of bonds between atoms in 

the common neighbor and index k accounts the number of bonds in the longest continuous chain 

between the common neighbor. For example, the common neighbor analysis index of FCC 

crystal structure is 421 since it has four common neighbors, two disjointed bonds among those 

common neighbors and the largest chain of bond is one. 

Although common neighbor analysis gives more insight to the bonding between atoms, 

centro-symmetry and energy are used instead throughout this project for the visualization of 

deformation in nanocrystalline copper due to the computational intensive nature of the common 

neighbor analysis and the large number of atoms needed in the nanocrystalline models.  The 

centro-symmetry parameter, which is defined as follows, characterizes the symmetric inversion 

of the neighbor atoms.   

 

      (3.39) 

          

 

In equation 3.39, ri and rj+6 are the displacement vectors corresponding to the six pairs of 

opposite neighbors nearest in the FCC lattice. The centro-symmetry parameter uses the fact that 

each atom in FCC crystal structure maintains an equal and opposite bonds to its surrounding 

neighbors even during deformation. Hence, the magnitude of centro-symmetry parameters for 

any atom in the regular FCC configuration will remain zero or a very low value whereas the 
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parameters for free surface, grain boundaries, dislocation and other lattice defects will induce a 

positive value.  

 

3.4 Nanostructures 

3.4.1 Nanocrystalline Structure 

As mention in Chapter 2, a nanocrystalline structure produced by a severe deformation 

process such as ECAE usually consists of multiple randomly distributed and oriented grains 

bound by a network of grain boundaries. The most common technique to construct this type of 

nanocrystalline structure for molecular dynamics simulation is the Voronoi Tessellation 

method[191]. In this technique,   the simulation cell is subdivided into arbitrary numbers of 

nearly uniform sub-volumes or Voronoi regions. Given a set of N grain center and orientation, 

which is determined by the grain size, each Voronoi region is defined as all points that is closer 

to its grain center than any particular grain centers [10]. Figure 3.6 shows a schematic of Voronoi 

decomposition and the nanocrystalline copper constructed using Voronoi Tessellation 

methodology.  
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Figure 3.6: Schematic of Voronoi decomposition and the resulting nanocrystalline copper 

constructed using Voronoi Tessellation methodology [174] 

 

In Figure 3.4a, each dot represents a grain center, which is almost randomly distributed in 

the simulation cell. It is not exactly random because one of the grain centers will be removed and 

re-generated again randomly if two centers are found to be too close to each other. This step is to 

generate a realistic nanocrystalline structure.  Then a FCC lattice with the correct orientations is 

placed in each grain centers within the simulation cell and a check is performed under periodic 

boundaries conditions in which the atoms will be discarded if it is closer to other grain center. 

Molecular statics is the performed to relax all locally high potential configurations. Lastly, 20 to 

200ps of NPT ensemble is performed to locally equilibrate the microstructure to obtained a stress 

free nanocrystalline materials.  
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CHAPTER 4  

CRACK GROWTH ANALYSIS 

 
 In this chapter, numerical analysis using the stress intensity parameter ,K, and the J-

integral, in conjunction with known experimental fatigue crack growth data has been employed 

to study the semi-elliptical crack growth and shape evolution in nanostructured interconnects 

subject to uniaxial fatigue loading.  Closed form solutions for the computation of J integral 

developed in this research will also be discussed. 3D-nonlinear finite element analysis has been 

used to verify the Newman and Raju solutions for the computation of the elastic portion of J-

integral.  Molecular dynamics in conjunction to phase mixture model has been employed to 

determine the elastic modulus of nanocrystalline copper needed to conduct the crack growth 

analysis. This method establishes (a) the validity of the fracture mechanics approach in 

estimating the crack growth life of interconnects and (b) the relative contribution of the crack 

growth life to the overall fatigue life of nanostructured copper interconnects. 

 

4.1 Proposed Methodology for Crack Growth Analysis 

Finite element analysis is one of the most common methods used to computing stress 

intensity factors ∆K. However, implementing it to study crack evolution during fatigue cycle is a 

very time consuming process since a new model and analysis is needed for each fatigue cycle 

which could run up to thousands of cycles before failure.  Hence, in order to avoid the vast 

number of finite element experiments needed to simulate the observed crack growth and shape 
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evolution in experiments; close form solutions for stress intensity factor have been developed in 

this research.  

Due to the large strain experienced by the copper interconnects, the remaining ligament 

around the semi-elliptical cracks undergoes elastic plastic deformation for microcrystalline 

copper interconnects and may be the same for nanostructured interconnects. Hence, in this 

chapter we develop the capability to estimate crack growth fatigue life in small interconnects.  

Under the circumstances, it is more appropriate to use J integral, as shown in equation 4.1 

instead of limiting oneself to the stress intensity factor ∆K. 

       (4.1) 

 

In equation 4.1, the parameter Keqv is the equivalent stress intensive factor corrected for 

plastic deformation in the ligament around the cracked section.   The parameter, Je is the elastic 

potion of J-integral whereas Jp is the plastic potion of J-integral. The elastic portion Je can be 

calculated using equation 4.2 [192] 

           (4.2) 

 

In equation 4.2,  and  is the yield stress and yield strain respectively. Fe is the linear 

elastic geometry correction, a is the crack depth whereas P and P0 are the applied load and limit 

load respectively.   
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Furthermore, the elastic portion Je can also be estimated using Newman and Raju’s 

geometric function [193]. In fact, this function is one of the most frequently used closed form 

solution to calculate linear elastic stress intensity factors of semi-elliptical surface cracks Their 

formula, as shown in equation 4.3, is appropriate for tensile and bending components but only 

tensile component will be considered in this research. Figure 4.1 is a schematic of the parameters 

for the semi-elliptical cracks. 

 

Figure 4.1: Parameters for the semi elliptical cracks 

     (4.3) 

  

In equation 4.3, K is the stress intensity factor, σ is the remote applied stress, ε is the applied 

strain, E is the modulus, Q is the shape factor given by equation 4.4 and F is as given by 

equation 4.5,  is the parameter that accounts for the effect of the depth, width and aspect ratio.  

     (4.4) 

    (4.5) 
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In equation 4.2, M1, M2, M3 and g are the fitting constant and they are described by equation 4.6 

to equation 4.9 respectively. The angular function f φ and finite width correction fw in equation 

4.5 can be described by equation 4.10 and 4.11 respectively. 

     (4.6) 

     (4.7) 

    (4.8) 

      (4.9) 

         (4.10) 

     (4.10) 

 

Since Equation 4.2 and 4.3 are equivalent, combining both equations will produce the following 

relationship for computation for Fe. 

      (4.11) 

 

Similarly, the plastic component, Jp, can be computed using the reference stress approach [194], 
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   (4.12) 

 

In equation 4.12,  is the plastic strain rate, a is the crack size, D is the diameter of the rod, E 

is the elastic modulus and α’ and m is the hardening parameters.  F1 is the geometric correction 

factors which can be describe by Figure 4.2 [193] 

 

Figure 4.2: Plot of the correction factor, F1, versus a/c [193] 

 

Hence, by using equation 4.1 to equation 4.12 in addition to the known crack growth data, the 

crack evolution analysis can be performed using the following methodology.  
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1. The grain size dependent material properties for the particular grain size are 

computed using molecular dynamics 

2. The equivalent stress intensity factor Keqv is computed using equation 4.1 to 4.12  

3. The  crack sizes and shapes at the end of each cycle is computed using the 

experimental result from Bansal et al[8], 

4. Step 2 and step 3 are repeated until the crack growth becomes unstable. 

 

 

4.2 Model Verification  

 As shown in Figure 4.1, Newman and Raju solution [193] was formulated for an elliptical 

crack inside a rectangular plate, whereas copper interconnect is in the form of a cylindrical bar as 

shown in Figure 4.3. There is a need for finite element analysis validation on the applicability of 

this equation for our analysis. Furthermore, Nickel Based super-alloy RENE88, instead of copper, 

is used in this verification since fatigue striations mark can be easily observed in RENE88. 
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Figure 4.3: Copper interconnects measuring 25 µm wide and 20 µm tall [195] 

 

 For this verification run, finite element models simulating the experimental low cycle 

fatigue conditions were developed using ABAQUS, commercial finite element software. This is 

to measure the stress intensity values around the crack front needed for predicting crack growth 

and shape evolution. Due to the symmetry in a round bar in the fatigue specimens, only half of 

the 6.35 mm diameter round bar is modeled in this research using 20 nodes quadratic and 

isoparametric elements as shown in Figure 4.4. Linear elastic material constants are input into 

ABAQUS as material properties. Furthermore, in order to simulate the experimental condition, 

this model is subjected to a tension load of 1240MPa. 

 

Figure 4.4: Finite element model of a semi-elliptical crack in a round bar used in this analysis 
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The value of the J-integral is then computed around the crack tips using only the loading 

portion of the fatigue cycle, where total stress range, ∆σ, is a monotonic function of only the 

total strain range, ∆ε [196]. Furthermore, since the value of J is calculated from the energy within 

a remote boundaries consisting of the crack tip, it is not necessary to account for the stress 

singularly at the cracks tip through the use of the quarter node element.  A matrix of finite 

element simulations with different crack geometry is conducted in order to obtain J as a function 

of its geometry.  

Figure 4.5 shows the comparison between the values of J obtained from Newman and 

Raju solution, and linear elastic finite element analyses conducted in this research. Only values 

of J at crack angle φ=0° and  φ=60° is computed. 

 

Figure 4.5: Comparison between the J-integral results obtained from Newman and Raju, 

and finite element analyses in this research [197] 
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Figure 4.5 shows that Newman and Raju solution can predict the finite element results very well 

even though the solution is for a semi-elliptical crack in a rectangular bar. Hence Newman and 

Raju solutions can be used to computed the value of Fe in this research.  

There is also a need to investigate the accuracy of finite element/Newman-Raju results.  

Since fatigue striation marks track the evolution of the crack on the fatigue specimen, it is the 

best methods for validation of the crack evolution calculation in finite element analysis. Hence, it 

is advantage to use RENE88 as the benchmark material for validation, instead of copper, since 

fatigue crack striations can be observed easily on RENE88 as shown in Figure 4.6. These 

striation marks will provide a few valuable experimental verification data points.   

 

Figure 4.6: Fatigue crack striations marking on RENE88 [197] 

 

 Again, the commercial finite element software ABAQUS will be used in this verification 

exercise. In order to accurately describe the material response, Ramberg–Osgood plastic 

hardening relationship [198] as shown in equation 4.13 are input into the finite element software. 
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The Ramberg-Osgood constants in Equation 4.13 can be computed by regressing with ∆σ versus 

∆ε curve obtained from the loading potion of low cycle fatigue experiments. 

      (4.13) 

 

In equation 4.13,  α’ and m are Ramberg–Osgood plastic hardening constants for fatigue loading, 

 is the cyclic yield stress and E is the elastic modulus. 

 The hardening constant for RENE88 are calculated to be as follows [194] 

 

 

 

 

Finite element analysis in addition to the crack growth data found in Findley[197] is used 

to perform the crack growth evolution analysis. Figure 4.7 shows the comparison of both the 

experimental results and the finite element results.  Although Figure 4.7 shows that finite 

element predicted a slightly higher crack evolution rate, both results were comparable.  [197] 
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Figure 4.7: Comparison of experimental measured aspect ratio evolution with respect to the finite 

element solution 

 

Since Figure 4.5 shows close agreement between finite element analysis and Newman 

and Raju formulation whereas Figure 4.7 shows closed agreement between experimental and 

finite element results, Newman and Raju formulation is assumed to accurately compute the value 

of Fe for an elliptical crack in a cylindrical bar.  

 

4.3 Material Properties for Crack Growth Analysis of Interconnects 

The finite element analysis calculation by Bansal et al [8] had showed that a 50 µm pitch 

microcrystalline copper interconnects would experience a cyclic stress range of 200MPa and a 

cyclic plastic strain range of 0.0635 during operation. At this stress level, the microcrystalline 
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copper interconnect will experience plastic deformation whereas the nanocrystalline copper 

interconnect will only experience largely elastic deformation due to its enhanced strength. In any 

case, in order to model the correct material response, elastic modulus and Ramberg–Osgood 

plastic hardening relationships are needed to fully account for elastic and plastic contributions to 

the crack driving force in the analysis of  nanocrystalline copper and  microcrystalline copper. 

 

4.3.1 Nanocrystalline Material 

As discussed above, there is a need to accurately characterize the elastic modulus of 

nanocrystalline copper. However, due to the difficulty in controlling the grain size of 

nanocrystalline copper during material processing as compared to the ease of controlling grain 

size in simulation, molecular simulation is used to characterize the elastic modulus for different 

grain sizes in this research.  

LaMMPS [199], a molecular dynamics code developed by Plimpton and his coworkers at 

Sandia National Laboratories, is used.  Furthermore, domain decomposition technique using MPI 

message passing libraries to perform parallel calculation is also implemented in this code.  The 

material response in this research will be modeled using the EAM potential formulated by Folies 

et al [181]. The verification of this potential will be discussed in Chapter 5. 

In order to investigate the effect of the grain size on the evolution of the crack, Voronoi 

tessellation methodology [191] is used to construct bulk nanocrystalline copper with a grain size 

of 5nm, 10nm and 15nm respectively. Figure 4.8 shows a typical nanocrystalline microstructure 

used in this project. The verification of the nanocrystalline microstructure simulated using this 

method will be discussed later in Chapter 5.  In order to minimize the computational effort while 
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still maintaining a realistic microstructure model, a 20nm by 20nm by 20nm simulation cell size 

consisting of about 70,000 atoms is constructed. 3D periodic boundary conditions are also 

enforced throughout this work so as to minimize the surface effect.  

 

Figure 4.8: A typical nanocrystalline microstructure constructed using Voronoi method 

 

Figure 4.8 shows one of the nanocrystalline microstructure used in this project. For this 

model, the average grain size is about 5nm and this value of average grain size is estimated 

through computing the volume of each unit cell and keeping track of the number of atoms in 

each grain. The whole simulation cells consist of 123 individual grains with random orientation.  

In order to generate a realistic initial microstructure with no residual stresses; the microstructure 

is subjected to molecular statics and NPT equilibration at ambient condition (300K at 

atmospheric pressure) for 50ps. The parameter centro-symmetry is also used during post-

processing to distinguish the atoms at the grain boundaries from the atoms in the crystal interior. 
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Using a value of less than 0.1 for atoms at the grain boundaries, the volume fraction of grain 

boundaries as a function of grain size is computed as shown in Figure 4.9. 

 

Figure 4.9: Computed grain boundaries volume fraction as a function of grain size 

 

As shown in Figure 4.9, the expression for volume fraction as a function of grain size is given by  

     (4.11) 

 

In equation 4.11, fv is the volume fraction of the grain boundary atoms whereas D is the average 

grain size of nanocrystalline copper. Figure 4.9 also shows that the volume fraction of grain 

boundaries increases significantly for grain size is smaller than 100nm (100nm length scale is 

often used to formally define nanocrystalline materials).  It also emphasizes the importance of 

grain boundary effects in nanocrystalline copper.   
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After characterizing the volume fraction of grain boundaries with respect to the grain size, 

deformation of nanocrystalline materials is then performed at a constant strain rate of 1ps-1 in the 

y-direction for each simulation using the equations of motion for the NEPT ensemble. 

Mechanical stress is computed by the virial theorem as was shown earlier in equation 3.30 

whereas the normal strain will be computed as follows:- 

)ln(
0L

L
=ε

   

    (4.12) 

 

In equation 4.12, L is the instantaneous length in the y-direction and L0 is its initial length in the 

y-direction. Hence, the stress–strain curve can be computed using equations (3.30) and (4.12) 

and the elastic modulus is determined from the linear regression analysis of the stress-strain 

points obtained from the initial portion of the stress-strain curve. Since the rule of mixtures is 

elected to explain the dependency of the grain size, the modulus will be regressed with a linear 

relationship as shown in Figure 4.10. 
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Figure 4.10: The function of elastic modulus as a function of grain boundaries volume fraction 

 

As shown in Figure 4.10, the expression for volume fraction as a function of grain size is given 

by  

     (4.13) 

 

Using the rule of mixtures, the elastic modulus for grain boundary free copper is computed to be 

112GPa whereas the modulus of grain boundary modulus is computed to be 12GPa. The 

modulus of 112GPa is consistent with 110GPa [11] commonly used for microcrystalline copper 

where the volume fraction of grain boundaries is negligible. Furthermore, the elastic modulus for 

a 50nm nanocrystalline copper, computed using equation 4.10 and equation 4.1, is found to be 

100.4 MPa whereas the elastic modulus of a 50nm ECAE copper is characterized experimentally 

to be 100MPa. This will again validate the accuracy of equation 4.10 and 4.11. Hence, the 

modulus of the nanocrystalline materials has been accurately characterized for this analysis. 
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4.3.2 Microcrystalline Copper 

As mentioned in section 4.3, Ramberg–Osgood plastic hardening parameter in addition to 

the elastic modulus needs to be characterized in order to model the correct material response for 

microcrystalline copper. The Ramberg-Osgood constants is obtained  from the regression 

analysis of stress strain data in Bansal et al [8] in conjunction with the modulus of 112GPa 

computed in section 4.3.1, as shown in Figure 4.11.  

 

Figure 4.11: Regression of experimental data with Ramberg–Osgood relationship for 

microcrystalline copper 

 

The hardening parameters are as follows 

0.000817 
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Hence, the material properties needed for the crack evolution analysis had been characterized. 

 

 

4.4 Crack Growth Analysis 

As discussed earlier, finite element analysis calculation by Bansal [8] showed that the 50 

µm pitch microcrystalline copper interconnects experienced a cyclic stress range of 200MPa and 

a cyclic plastic strain range of 0.0635 during operation. Hence, this loading condition will be 

used in this research. Since nanocrystalline copper will experience only linear elastic response 

under these conditions, only linear elastic portion of J-integral will be needed for the analysis of 

crack growth in nanocrystalline copper interconnects.  

 

Figure 4.12: da/dN- ∆K behavior for nanocrystalline and microcrystalline copper [8] 
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Since the failure morphology of nanocrystalline materials usually consists of dimples 

several times larger than their grain size [13], the initial crack length is assumed to be 4 times the 

average grain size in this research. Using the diameter of copper interconnects to be 25 µm and 

the crack growth data, as shown in Figure 4.12, found in the literature, the crack evolution of 

microcrystalline copper interconnect and nanocrystalline copper interconnect subjected to fatigue 

loading is computed as shown in Figure 4.12. Even though Figure 4.12 shows that 

nanocrystalline copper has a much lower da/dN- ∆K rate, this is not true at lower  ∆K as shown 

in Figure 4.13 with the change over at ∆K value of 0.463 MPa*m0.5. 

 

Figure 4.13: da/dN- ∆K behavior for nanocrystalline and microcrystalline copper at lower ∆K 

values 
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Even though Figure 4.13 shows that nanocrystalline copper has a much lower da/dN- ∆K rate, 

the crack evolution analysis in Figure 4.14 shows that the unstable crack growth for 

microcrystalline copper is found to have occurred at a much earlier stage as compared to the 

nanocrystalline copper. Unstable crack growth occurs at around 3000 cycles for microcrystalline 

copper whereas it is expected to occur at around 4000 cycles in nanocrystalline copper for this 

particular loading condition. This is a 33.3% increase in the crack growth life for nanocrystalline 

copper. The reason for this enhanced fatigue life of nanocrystalline copper is due to its enhanced 

strength and fatigue crack growth resistance. Since nanocrystalline copper is still in the elastic 

regime for this loading condition, less damage will be induced during each cycle. Thus, 

nanocrystalline copper is a much better candidate for the application of interconnects for high 

pitch applications.  

 

 

Figure 4.14: Crack evolution of nanocrystalline copper and microcrystalline copper. 
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Furthermore, Bansal et al [8] had showed that the total cycle to failure for a 50µm pitch 

nanostructure interconnects subjected to a loading condition of 400MPa was 2634 cycles. Hence, 

the same loading condition is applied to our analysis on nanocrystalline copper to determine the 

significance of the crack growth life as compare to total fatigue life. Microcrystalline copper is 

not investigated for this analysis as they will not be able to withstand such a high load.  Figure 

4.15 shows the computed crack growth evolution for two aspect ratio of a/c. 

 
 
 

Figure 4.15: Crack growth evolution for nano-crystalline copper with different initial a/c ratio. 

 

Figure 4.15 shows that the unstable crack growth for nanocrystalline copper occurs at 

around 600-700 cycles whereas Bansal et al[8]  had predicted the total cycle to failure for 

nanostructured-interconnects to be 2634 cycles. Hence, the crack propagation is only one fifth of 

the total life. This leads to the conclusion that the long crack growth accounts for a relatively 



 

105 
 

small portion of the total fatigue life of the material for the experimental LCF conditions. Hence, 

initiation of the cracks in the interconnection is the main criterion used to predict its fatigue life. 

 

4.5 Conclusions from Crack Growth Analysis 

In conclusion, an accurate closed form solution, for studying 3-D semi-elliptical crack 

growth in round bars subject to uniaxial fatigue loading in both linear-elastic and elastic–plastic 

low cycle fatigue (LCF) condition, has been developed in this research. Furthermore, finite 

element analysis using the stress intensity parameter, J-integral, was used to validate the 

Newman and Raju solution for the computation of the value of Fe. The applicability of these 

solutions was also validated by experimental data on Rene’ 88 Nickel base alloy in a separate 

study very pertinent to our work here.  Furthermore, molecular dynamics was employed in 

conjunction to the rule of mixtures to characterize the modulus for nanocrystalline materials as a 

function of grain size that is needed for the crack growth analysis. 

The results indicate that nanocrystalline copper is in fact a suitable candidate for ultra-

fine pitch interconnects applications. . This study also predicts that crack growth is a relatively 

small portion of the total fatigue life of interconnects under LCF conditions. Hence, crack 

initiation life is the main factor in determining the fatigue life of interconnects. 
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CHAPTER 5 

MOLECULAR SIMULATION OF MECHANICAL BEHAVIOR OF SINGLE 

CRYSTAL AND NANOCRYSTALLINE COPPER 

 

5.1 Introduction 

As discussed in Chapter 2 and Chapter 4, one of the potential solutions to dramatically 

increase the density of electrical interconnections is to use nanocrystalline copper as the 

interconnection material because of its superior strength and fatigue properties and its electrical 

conductivity.  However, more studies are still needed to fully understand the deformation, 

fracture and fatigue mechanisms for the nanocrystalline materials. Molecular dynamics 

simulations are an effective substitute for conducting difficult experimental measurements of 

properties to enhance our understanding of phenomena at the nanometer length scales. However, 

as discussed in Chapter 2, it will be critical to first validate the inter-atomic potential and the 

techniques for generating the correct nanostructures used in these computations. The 

nanostructures must be representative of the interconnect whose behavior we are attempting to 

simulate. Hence, in this chapter, verification studies on the inter-atomic potential and initial 

microstructure used in this research will be discussed first. Subsequently, this chapter will also 

present the results of the atomistic simulations of the behavior of single crystalline copper nano-

rods and bulk nanocrystalline copper subjected to monotonic and cyclic loading. Their ability to 

withstand the high mechanical requirements for interconnects will be assessed.   
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5.2 Single Crystal Analysis 

 This section describes the atomistic simulation results on the behavior of single 

crystalline copper nano-rods subjected to monotonic and cyclic loading.  Since pair- potential is 

known for its inability to accurately reproduce the material properties of some of the metals, a 

verification study on the Lennard-Jones potential used in this single crystal study will be 

conducted by calculating the elastic modulus in the [100] and [110] crystallographic directions 

and comparing them with experimental values. Furthermore, systematic atomistic simulations 

have been conducted on the crystallographic effect on the deformation mechanisms for single 

crystals with crystallographic orientation <100> and <110>.  The strain rate sensitivity and 

temperature dependency on the nucleation stress on single crystal copper nano-rod has also been 

investigated. Hence, this study on single crystals will be an effort to establish some base line 

behavior. 

For this study, a molecular dynamics code, using only single processor, developed as part 

of this study will be used.  Furthermore, the atomistic interactions will be described by the 

widely used Lennard-Jones potentials. The Lennard-Jones parameters σ and ε in in these 

simulations are chosen to be 2.3377Åm and 0.4093eV respectively [174].  

 

5.2.1 Verification of the Model Used. 

For the validation run, perfect single crystal copper nano-rod with a cubic simulation size 

of 4 x 4 x 15 lattice unit as shown in Figure 5.1 was used as a model for computational efficiency. 

Furthermore, in order to achieve a stress free initial microstructure, this nano-rod is subjected to 

NPT equilibration at 300K and atmospheric pressure for 20ps. Furthermore, the common 
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neighbor analysis is used during post-processing to determine the type of bonding between each 

atom.  

 

Figure 5.1: Initial microstructure with <100> and <110> crystal orientation. 

 

The equation of motion for NVT ensemble with enforced 3D periodic boundary 

conditions is used extensively to simulate the deformation of the single crystal study. The loads 

on this model are applied by changing the size of the simulation according to the displacement 

given by linear elasticity. The stress–strain curve can be computed using equations (3.30) and 

(4.12) and the elastic modulus is determined from the linear regression analysis of the stress-

strain points obtained from the initial portion of the stress-strain curve. 

The elastic moduli for single crystal copper deformed at 300K along the crystallographic 

orientation <100> and <110> is computed to be 110GPa and 150GPa respectively. These 

computed moduli are comparable in the value, as shown in Table 5.1,  obtained experimentally 

using bulge test from the work of Xiang et al [200].   The largest deviation between simulation 

and experimental values of the Young’s modulus is in the [110] orientation and it is 
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approximately 5%. Hence, Lennard-Jones potential used in this research can model the material 

properties of single crystal copper quite accurately. 

Table 5.1: Summary of the elastic modulus values from experiments[200] 

Crystal orientation <111> <110> <100> <112> <023> 

Elastic modulus 
(GPa) 158.2 143.9 106.2 135.2 114.5 

 

 

5.2.2  Microstructural Evolution 

 Figure 5.2 shows the evolution of the microstructure of single crystal nano-rod as it is 

subjected to uniaxial tensile loading. Homogenous nucleation of dislocation occurs at the onset 

of yielding as shown in Figure 5.2b.  Furthermore, distortion from the regular FCC structure is 

observed around the nucleation site suggesting the need for cooperative atomic shuffling of 

atoms in order for nucleation of partial dislocations.  The magnitude of the tensile stress required 

for the nucleation of the first partial dislocation is calculated to be 8.0GPa for <100> and 4.0GPa 

for <110>. This is slightly higher than or equal to the result for 0.2% yield strength result which 

is 5GPa and 4GPa respectively. Furthermore, the ab initio calculations of Ogata et al [201] had 

shown that stress components acting normal to the slip plane can affect the critical resolved shear 

stress in copper for dislocation nucleation. This is consistent to the molecular dynamics results 

from this study in which  the computed critical resolved shear stress (CRSS)  is 2.4GPa and 

1.836GPa for crystallographic direction of <100> and <110> , respectively [202]. this is within 

15% of the CRSS calculated in the molecular dynamics study conducted by Tschopp et al [202]. 
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The difference is due to the inability for Lennard-Jones potential to accurately simulate the 

nucleation of dislocations in certain metals. 

 

Figure 5.2: Evolution of the microstructure during tensile loading 

 

Figure 5.2c shows the propagation of these partial dislocations as the straining increases. 

Further straining of the nano-rod causes more dislocations to be nucleated until the formation of 

alternate intrinsic stacking fault as shown in Figure 5.2d. This is consistent with the experimental 

observation at some region of necking. Further straining causes the grain to rotate to a more 

favorable orientation and formation of vein like wall-structure as shown in Figure 5.2e. Lastly, 

fracture occurs at these veins as shown in Figure 5.2f.   

 

 

(a) 

() 
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5.2.3 Temperature and Strain Rate Effects 

 In order to investigate the relationship between temperature and strain rate and the 

nucleation of dislocations in a single crystal nano-rod, a matrix of conditions for the atomistic 

simulations consisting of 3 different strain rates and 4 different temperatures was selected. The 

strain rates chosen were 1.4x108s-1, 2.3x108s-1 and 4.5 x108s-1 and temperatures selected were 

30K, 157K, 300K and 500K respectively.   

 Figure 5.3 shows the influence of temperature on the stress required for dislocation 

nucleation in single crystal copper nano-rod. Since thermal energy aids the dislocation nucleation 

process, the peak stress decreases with increasing temperature as expected. Similar thermally 

activated dislocation process appears to be dominant at all three strain rates as seen Figure 5.3. 

The exponential constants are approximately 30J /mol.K for all the three strain rates.    

 

Figure 5.3: Influence of the temperature with different loading rate 

 



 

112 
 

Similarly, Figure 5.4 explores the influence of strain rate on the stress required for 

dislocation nucleation in single crystal copper at various temperatures.. 

 

Figure 5.4: Relationship of the influence of the strain rate on nucleation stress  

 

Extrapolating the data shown in Figure 5.4 to the experimental loading rate predicts the 

insensitiveness of the stress required to nucleate dislocations to the applied strain rate which 

agrees with the experimentally observed behavior..  This observation can be reinforced by the 

comparison of the computed strain rate sensitive m with the experimental results [203].  

))(ln(
))(ln(

γ
σ
&∂

∂
=m         (5.1) 

 

Figure 5.5 shows that the computed strain rate sensitivity is comparable to that of  coarse grain 

copper where the volume fraction of atoms that lie on the grain boundaries is negligible. This is 
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important to note that the slightly higher value of strain rate sensitivity predicted by the 

numerical model is due to the smaller activation volume resulting from the 3D boundary 

condition and the relatively small number of atoms considered in the model.. 

. 

Figure 5.5: Comparison of computed m with experimental result obtained from Wang et 

al. [203] 

 

As discussed above, the nucleation stress is dependent on both the strain rate and the 

temperature at which the deformation occurs. Noting the trend in Figure 5.3 and Figure 5.4 and 

performing regression of these data, the nucleation stress can be computed from equation 5.2. 

 

     (5.2) 
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In equation 5.2,   is the nucleation stress, G is the shear modulus, R is the molar gas constant,  

is the strain rate and T is the temperature in Kelvin. Figure 5.6 shows the close agreement 

between regressed value and the molecular dynamics experiment values 

 

Figure 5.6: Close agreement between the regressed values and the molecular dynamics 

values 

 

In order to identify the dominant controlling mechanism in single crystal nano-rods, the 

activation volume V as a function of the temperature is computed and is shown in Figure 5.7.  

The activation volume is obtained from the following equation [113] 

     (5.3) 

 

In equation 5.3, k is the Boltzmann’s constant,  is the yield stress and  is the strain rate 
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Figure 5.7: The relationship of activation volume as a function of temperature 

 

 The magnitude of the activation volume for cutting through the forest dislocations in the 

lattice is of the order of several hundred to a thousand times of the cube of burgers vector i.e. 

~100-1000b3 whereas the magnitude of the activation for nucleation of partial dislocation is of 

the order of ~3-10b3 [204]. Since the activation volume as shown in Figure 5.7 is in the orders 

~b3, the controlling mechanism in this single crystal nano-rod must be the nucleation of 

dislocation. This discrepancy between the computed value and the experimental values is due to 

the small length scale of the model used in this research (on the order of only nanometers) in 

addition to the 3D boundary condition enforced in the model:  due to the 3D periodic boundary 

condition and the small length scale of this model, any dislocation nucleated will induce 8 other 

image dislocations nucleated within the length of 3nm inclusive of the image cells. Although this 

will underestimate the magnitude of the activation volume, the conclusion for the controlling 

mechanism in the deformation in this nano-rod will be unaffected and must be the nucleation of 

dislocation. 
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5.2.4 Cyclic loading 

 Since the main objective of this research is to investigate and understand the fatigue 

resistance of nanocrystalline-materials, there is a need for a base line study on the fatigue 

behavior of microcrystalline copper. However, it will be computational too expensive to model 

microcrystalline copper so the fatigue behavior of single crystals will be used instead to establish 

some base line behavior. For this study, the same single crystal nano-rod copper model as used in 

the monotonic loading is employed. Furthermore, R-ratio equal of zero will be applied through 

updating the size of the simulation according to the dislocation given by linear elasticity. The 

single crystal nano-rod will be considered to have failed if it has lost 50% of its peak load 

carrying capability. Because cyclic loading is so computationally intensive, only room 

temperature simulations will be performed. 

Figure 5.8 compares the fatigue life of single crystal copper to the fatigue life of coarse 

grain copper where grain boundaries are negligible. It has been observed that the fatigue of the 

single crystal nano-rod is slightly shorter than that of microcrystalline copper. Again, the slightly 

shorter life in the single crystal nano-rod is due to the small length scale of the model and the 

prescribed 3D boundary conditions which tend to over-estimate the deterioration of the sample. 
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Figure 5.8: Comparison of the computed fatigue life of single crystal and experimental fatigue 

life of microcrystalline copper 

 

5.3 Nanocrystalline Copper 

  As discussed in Chapter 2, it will be critical to first verify the ability of the inter-atomic 

potential used in this work to accurately model the deformation of copper. Hence, a verification 

study on the EAM potential used in this research is conducted by calculating the stacking fault 

energy and comparing with established results. Then, since grain boundary structure at the 

atomic level of the grain boundary plays a major role in the deformation process, it is critical to 

model the grain boundaries and the grains as realistically as possible in order reasonable 

conclusions from this study. As discussed in Chapter 2,  the grains of ECAE copper are more 

equi-axial and randomly orientated as the number of passes increases [37]. Therefore, there is 

need to verify that the grains in the model used in this research are also equi-axial and randomly 

orientated.  



 

118 
 

 After the discussion of the verification results on both the inter-atomic potential and the 

microstructure used in this research, the mechanical properties and the behavior of 

nanocrystalline materials will be discussed. This includes the Young modulus, yield strength and 

the deformation mechanism followed by the results on the fatigue behavior.  

Due to the large number of atoms necessary to describe a realistic grain structure, there is 

a need for an efficient and massively parallel implementation of the dynamics which places a 

high demand on computing hardware stability during the simulations. LaMMPS [199], a 

molecular dynamics code developed by Plimpton and his coworkers at Sandia National 

Laboratories, is used for the study of the nanocrystalline copper. One of the main advantages of 

LaMMPS is its ability to perform parallel calculations through the implementation of domain 

decomposition technique using MPI message passing libraries. Furthermore, copper EAM 

potential formulated by Folies et al [181] will be used to model  the material response in this 

study on the nanocrystalline copper. Due to the large simulation cell in the nanocrystalline 

copper, centro-symmetry, instead of common neighbor analysis, will be used during post-

processing to distinguish the atoms at the grain boundaries from the atoms in the crystal interior. 

 

5.3.1 Stacking Fault Energy 

 As discusses earlier, it is critical to demonstrate the accuracy of inter-atomic potential in 

modeling the deformation of FCC metals. This research repeats the calculation of the generalized 

stacking fault energy outlined by the work of Zimmerman et al [183] with the copper EAM 

interatomic potential. The computed result is then compared with the results for stacking fault 

energies reported by other researchers to validate the accuracy of the potential used.  
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   A simulation cell with orientation  and  in the x, y and z direction 

respectively has been constructed for this run. The size of the simulation cell is 10x40x10 lattice 

units on each side. Furthermore, the simulation cell is then sectioned into two blocks by cutting 

along the {1 1 1} plane as shown in Figure 5.9.   

 

 

Figure 5.9: Schematic of the model used to reproduced the generalized stacking fault curve 

 

 In order to eliminate the influence of the free surface in the calculation of the stacking 

fault energy, periodic boundary conditions are enforced in the x and y direction. A uniform shear 

motion is applied to the top block in the simulation whereas the bottom block is kept stationary. 

The equation of motion for NVE ensemble is then used to perform the shear calculation at 0 K. 

The generalized stacking fault energy is then computed by monitoring the energy of each atom 

near the area where the fault is created. The value of unstable stacking fault energy γusf and the 

 

Stationary block 

Shearing in   
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stacking fault energy γsf is calculated as the energy difference between the deformed and 

undeformed state at the critical point along the generalized stacking fault curve.    

 Figure 5.10 shows the generalized stacking fault curve of copper from three EAM 

potential from the literature.  

 

Figure 5.10: Generalized stacking fault curve of copper from three EAM potential from the 

literature review[116, 167] 

 

 All three inter-atomic potentials show very similar profiles for the generalized stacking 

fault energy. The stacking fault energy and unstable stacking fault energy computed by the 

copper EAM potentials used in this project are 20mJ/m2 and 180mJ/m2 respectively which 

compare very well with the data in Figure 5.9.  Although the EAM potentials used in this 

research are not as close to the value of 45mJ/m2 [205] predicted by both experimental result and 

Mishin et al [206] for copper, this EAM potential performed pretty well as compared to the other 

inter-atomic potentials. Furthermore, the stable and unstable stacking fault energy calculations 

are consistent with the tight-binding calculation of 162mJ/m2 and 18.2mJ/m2 respectively. Hence, 
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the EAM potential used in this research is adequate for accurately modeling the deformation 

mechanism of copper. 

 

5.3.2 Simulation Model     

Since grain boundary structure on the atomic level of the grain boundary plays a major 

role in the deformation process, it will be critical to model realistic grain boundaries and grain 

structure so as to draw realistic conclusions from these simulation experiments. Since the grains 

of ECAE copper become more equi-axial and randomly orientated as the number of passes 

increases [37], the grain in the simulation model constructed  in this research should be equi-

axial and randomly orientated.  For this research, fully dense nanocrystalline copper is 

constructed using Voronoi Tessellation methodology describes in Section 3.4.1.   The initial 

sample is shown in Figure 5.11.  

 

Figure 5.11: Initial nanocrystalline microstructure of copper 
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The size of the simulation cell for nanocrystalline copper with a 20nm grain size is measured to 

be 25nm x 25nm x 25nm whereas size of the simulation cells for nanocrystalline copper with a 

grain size of 5nm, 10nm and 15nm are 20nm x 20nm x 20nm. The larger simulation size of 

nanocrystalline copper with an average grain size of 20nm is needed in order to accommodate 

the larger grain. Again, 3D periodic boundary condition is enforced in order to model bulk 

nanocrystalline copper. In order to generate a realistic initial microstructure with no residual 

stresses, the simulation cell is first subjected to an energy minimization routine using a Polak-

Ribière nonlinear conjugate gradient routine at a temperature of 0 K before it is subjected to NPT 

equilibration at ambient condition (300K at atmospheric pressure) for 50ps. As mentioned, 

centro-symmetry is used during post-processing to distinguish the atoms at the grain boundaries 

from the atoms in the crystal interior. 

In order to validate the microstructure used in this research, the average grain size and 

grain size distribution is computed and compared to the characteristics of the actual 

microstructures described in the literature [37]. For this benchmark, the nanocrystalline copper 

with a grain size of 5nm grain is used.  The volume of each grain can be computed by product of 

the number of unit cells needed to make up each grain and the volume of each unit cells. Using 

the computed volume, the grain size can be then computed by assuming these grains to be 

spherical in shape and suing the formula to compute a volume of a sphere. Table 3 summarizes 

the number of grains and the average grain size for each model.  
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Table 5.2 Summary of the number of grains and the average grain size for each model  

 Number of grains  Grain size Computed (nm)  Grain size (nm) 

4 17.6 20.0 

4 13.0 15.0 

17 9.3 10.0 

123 4.96 5 

 

 

Even though the error increases as the number of grains in each model decrease, the largest 

difference is only 13% for 15nm. Hence, Voronoi methodology is able to model the average 

grain size accurately.  

 

Figure 5.12: Grain size distribution for nanocrystalline copper with 5 nm grain size  
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Even though Figure 5.12 shows only the grain size distribution for nanocrystalline copper 

with a 5nm grain size constructed using the Voronoi Tessellation methodology, it is 

representative of the other microstructures constructed using this methods, Since the grain size 

distribution of copper has been shown experimentally to follows a log-normal distribution, 

Figure 5.12 also compared the estimated grain size distribution from this research with the 

theoretical log-normal distribution [207, 208]  

       (5.4) 

 

The parameter x in equation 5.4 is the equivalent grain diameter, σ is the natural logarithm of the 

standard deviation and µ is natural logarithm of the mean of the log-normal distribution. Since 

Figure 5.12 shows that the grain size distribution follows a log-normal distribution with the value 

of µ and σ computed to be 3.92 and 0.065, the microstructure created in this study appears to 

represent a realistic grain size distribution. The expected grain size predicted by the log-normal 

distribution is 5.07nm.  Hence, the Voronoi Tessellation methodology employed in this research 

can be used to produce microstructure with log-normal distribution and the required average 

grain size. 

As discussed earlier, the texture of ECAE copper is that of a random, single-phase poly-

crystal, so there is a need to ensure the randomness of the grain orientation. Unlike the one-

dimensional orientations (only [001] tilt boundaries) where the grain disorientation density 

function is uniform, the disorientation angle of the 3D crystallography is a result of the 

convolution of two random three-dimensional variables where it is easiest to achieve 
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misorientations near some mean angles. Furthermore, by considering the cubic symmetry of the 

orientation space, it has been found that Mackenzie distribution function described in 

equation 5.5 [209] could be used to quantify the randomness of the grain disorientation angle. 

Thus, grain disorientations distribution of the initial structures created in this research can now 

be benchmarked with the Mackenzie distribution function so as to determine the texture of our 

microstructure. 

   

   

      (5.5) 

 

In equation 5.5,  is the disorientation function and the parameter X and Y are given by 

equation 5.6 and equation 5.7.  

     (5.6) 

     (5.7) 

 

Figure 5.13 compares grain disorientation distribution of the initial structures created in 

this study with the Mackenzie distribution function. The Mackenzie distribution will only 
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describe a randomly distributed texture if the mean , the standard deviation  and the mean 

 has the following values:- 

 

 

 

 

 

Figure 5.13: Comparison of the grain disorientation density function of the microstructure 

created in this research with the Mackenzie distribution function. 

 

Figure 5.13 shows that the computed values of the mean , the standard deviation  and 

the mean  for our microstructure is as following   
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Hence, the Voronoi Tessellation methodology employed in this  study can be used to 

model randomly textured, single-phase poly-crystalline copper.  

 

5.3.3 Monotonic Loading  

5.3.3.1 Mechanical Properties and Deformation Mechanism 

In order to investigate the relationship between grain size and the room temperature 

stress-strain constitutive behavior, a matrix of atomistic simulations were performed on 

nanocrystalline copper with grain sizes of 5nm, 10nm, 15nm and 20nm grain size. After the 

construction of the nanocrystalline structure using the model discussed earlier, samples were 

uniaxially strained at a constant strain rate of 109/s at 300 K using the equation of motion for 

NEPT ensemble. During deformation, stress-strain are calculated using equation 3.30 and 

equation 4.12, respectively. The resulting stress-strain curves from these simulations are shown 

in Figure 5.14.  
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Figure 5.14: Stress strain constitutive relationship as a function of grain size 

 

5.3.3.1.1 Young’s Modulus 

Although the relationship of the Young’s modulus with respect to the grain size have 

been discussed in section 4.3.1, important observation on the effect of grain size on the modulus 

will be repeated here for completeness.  

Due to the higher volume fraction of grain boundary atoms for smaller grain size, 

Young’s modulus dependency on the grain size can be explained using and the rules of mixture 

as previously shown in Figures 4.9 and 4.10. 

 

5.3.3.1.2 Yield Strength 

 Up to certain critical grain size, experimental and computational results have consistently 

shown that the strength of nanocrystalline metals and alloys increases with decreasing grain size. 
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However, the actual mechanisms responsible for the observed behavior of nanocrystalline 

materials were not well understood. 

 In order to fully understand the relationship between grain size and yield strength, the 

yield strength of each grain size is computed and plotted in Figure 5.15. The experimental value 

of Bansal et al is also plotted in Figure 5.15 so as to benchmark against the simulation results. 

 

Figure 5.15: The relationship between grain size and yield strength. 

 

Figure 5.15 shows that the computed yield stress is higher than the yield stress obtained by 

Bansal et al [1] experimentally. This is firstly due to the short time scale in molecular dynamics 

simulations where there is a need to deform the specimen at a very high strain rate. Furthermore, 

mirco-voids and porosity normally found in experimental specimens are known to decrease the 

strength of materials. Since the nanocrystalline copper in molecular simulation is free of these 

defects, it is expected for the computed yield stress to be higher than the one obtained 
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experimentally. It should be noted though, that the experimental results cited above were 

obtained on ECAE processed material that is known to be defect-free. Another reason for the 

discrepancy could be related to the presence of small angle grain boundaries in real materials that 

are not as effective in enhancing strength. The simulations do not include such boundaries. A yet 

another reason can be the structure of the actual grain boundaries that can vary between the 

simulations from those actually present in the real materials.  Nevertheless, Figure 5.15 shows 

that for grain size larger than 15nm, including Bansal et al experimental data, the strength of 

nanocrystalline copper follows the Hall-Petch relationship where the yield strength is an inverse 

function of the square root of its grain size. However, the yield strength reaches a maximum 

value of about 1.93GPa at a grain size of 15nm and then on the yield stress decreases for grain 

sizes below 15 nm. This deviation from Hall-Petch effect is known as the reverse Hall-Petch 

effect, and has also been observed in experiments. Unlike most of the experimental observations 

of a reverse Hall-Petch effect in nanocrystalline metals where the decreases in strength have been 

found to be a result of poor sample quality, the simulation model in this research is free from 

defects and hence the observed reverse Hall Petch effect in this research is solely due to the 

reduction of the grain size. Thus, there is indeed an existence of a ‘strongest grain size’ at about 

15nm where nanocrystalline copper has the highest resistance to plastic deformation. Further, the 

reverse Hall- Petch relationship for nanocrystalline copper is characterized by the following 

equation:  

      (5.8) 
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In equation 5.8,  is the yield strength and d is the grain size in nanometers. Lastly, by 

extrapolating Figure 5.15 to a grain size of 0nm, this figure shows that the yield strength of 

amorphous copper has been found to be about 0.8GPa.  

 

5.3.3.1.3 Deformation Mechanisms 

 The actual mechanisms responsible for the observed relationship between grain size and 

yield strength of nanocrystalline materials discussed in the previous sections are not well 

established. Dislocation activities were quoted as the primary deformation mode for materials up 

to certain critical grain size. However, below this critical grain size, the mechanism is not very 

well understood and many different models have been proposed to explain the reverse Hall-Petch 

effect such as grain boundary sliding, grain rotation and Coble creep. There is a need to 

investigate the deformation mechanisms in these regions. Since copper with grain sizes of 10nm, 

15nm and 20nm include the regions of the inverse Hall- Petch region, the region with the 

strongest strength and the Hall-Petch region, the dislocation activities, grain boundary sliding 

and migration  and the grain boundary rotations are investigated using the simulations conducted 

for these grain sizes. 

As discussed above, the dislocation activities were quoted as one of the primary 

deformation modes for nanocrystalline materials. Hence, the dislocation activities in each region 

are investigated first. Unlike the common neighbor analysis in single crystal analysis, centro-

symmetry parameters only keep track of the symmetry of the surrounding atoms in FCC 

materials. Hence, in order to track the evolution of dislocation activity, an approximate method 

of counting the number of disordered atoms is used as an indicator of dislocation density 
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evolution. Figure 5.16 shows the volume fraction of disordered atoms as nanocrystalline copper 

with different grain size is deformed. 

 

Figure 5.16: Evolution of the volume fraction of disorder atoms as nanocrystalline copper 

is deformed 

 

The initial increase in the volume fraction of the disorder atoms shown in Figure 5.15 are 

mainly due to the distortion near the grain boundaries during straining. At about 3.0% to 3.5% 

strain for copper with 15nm and 20nm grain size, the nucleation of numerous dislocations is 

found to have occurred as indicated by the sudden increase in the volume fraction of disorder 

atoms.  Figure 5.16 also shows that the nanocrystalline copper with a grain size of 15nm had the 

largest volume fraction of disorder atoms and hence dislocation activity. This is then followed by 

copper with 20nm grain size and 10 nm grain sizes. Since the yield strength shown in Figure 

5.15 follows the same trend, this may indicate that increase in strength in nanocrystalline copper 

for the three regions is due to the increases in the dislocation activities.   
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Since grain boundary sliding and grain rotation were quoted as one of the primary 

deformation mode for nanocrystalline materials, the grain rotation of each region is investigated 

in this research as shown in Figure 5.17.   

 

Figure 5.17: Evolution of grain rotation as nanocrystalline copper is deformed  

 

 Figure 5.17 shows that grain boundary sliding gradually sets in as the stress builds up for 

copper with 10nm and 15nm grain size. There is significantly less grain rotation for samples with 

20nm grain size, as expected. This is mainly because as grain size increases, it becomes 

increasingly more difficult for the grains to rotate since grain rotation requires an 

accommodation mechanism [210] to ensure continuous deformability while avoiding micro-

cracking. 

 Figure 5.17 also shows a sudden increase of the magnitude of grain rotation at a strain of 

about 4.5% to 5% for both 10nm and 15nm copper. Since Figure 5.15 shows that the softening of 
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nanocrystalline copper occurs at 4% strain, it appears that resulting stress buildup is relieved 

through grain rotation facilitated by sliding and dislocation activity. 

 Since room temperature strain rate sensitivity m, computed using equation 5.1, will also 

provide some insight into the deformation mechanism in nanocrystalline copper, the relationship 

between strain rate sensitivity and grain size is also investigated in this research. Figure 5.18 and 

Figure 5.19 show the room temperature strain rate sensitivity m as a function of grain size for 

nanocrystalline copper. Furthermore, the experimental results from the work of Wang et al 

[203]and the single crystal calculation are also included in Figure 5.18 for comparison purposes.  

 

Figure 5.18: Comparison of strain rate sensitivities with experimental result and single crystal 

results 
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Figure 5.19: Summary of the room temperature strain rate sensitivity m as a function of grain 

size for nanocrystalline copper 

 

Figures 5.18 and Figure 5.19 reveal very low strain rate sensitivities for single crystal 

copper with its value increasing as the grain size decrease. Furthermore, Figure 5.19 shows that 

the value of strain rate sensitivity finally takes-off when a grain size becomes smaller than 

100nm. Since plastic deformation process controlled by grain boundary sliding has a strain rate 

sensitivity of 0.5 [80], this indicates that the rate controlling process shifts from the gliding 

dislocations cutting through forest dislocations at the larger grain size to the interaction between 

dislocations and the grain boundaries, and ultimately to extensive grain boundary sliding 

enabling rotation , as the grain size decreases further. 

It can be concluded from the above discussion that the dislocation activity is the primary 

deformation mechanism for nanocrystalline copper in the Hall-Petch region with some or 

minimal grain rotation.  The simulation results in this study also indicate that a higher amount of 
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grain rotation occurs and it becomes an increasingly important deformation mechanism with 

decreasing grain size and ultimately leads to the region of inverse Hall-Petch region.  Hence, this 

shows that there is a competition between the dislocation activity and grain boundary sliding as 

the main deformation mode.  

 

5.3.4 Cyclic Loading 

As discussed earlier, nanocrystalline copper has a high potential of being used as the next 

generation interconnect for electronic packaging. However, their fatigue properties are not well 

documented and no model has been established to predict/characterize these nano materials in 

interconnection application. Since it is important to predict the performance of nanocrystalline 

copper during service, this section will discuss the results on this study that has attempted to 

model fatigue properties of the nanocrystalline copper. Since the results in Chapter 4 indicate 

that the crack initiation life is the main factor in determining the fatigue life of interconnects, 

crack growth will be not simulated in this research.  

A matrix of atomistic simulation on nanocrystalline copper with a grain size of 5nm, 

10nm, 15nm grain size and 20nm grain size have been constructed to investigate the fatigue 

behavior of nanocrystalline copper under cyclic loading. These nanocrystalline coppers are 

uniaxially strained with a constant strain rate of strain rate of 109/s at 300 K using the equation of 

motion for NEPT ensemble As in the study on single crystal copper, R-ratio is maintained at zero 

throughout cyclic loading  
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5.3.4.1 Failure Criterion 

Figure 5.20 investigates the fatigue life of nanocrystalline copper that is subjected to 10% 

total strain rate. It shows that copper with 5nm grain size had the longest life before it loses about 

50% of its load carrying capability.  This follows by 10nm, 15nm and 20nm nanocrystalline 

copper. Comparing the fatigue life and the volume fraction of disorder atoms of nanocrystalline 

copper with average grain sizes of 10nm, 15nm and 20nm at 10% strain (Figure 5.16) shows that 

both results exhibited the same trends: 10nm and 15nm nanocrystalline copper having about the 

same volume fraction of disorder atoms and fatigue life whereas 20nm nanocrystalline copper 

having less dislocation activity and a shorter fatigue life. Hence, this may indicate that fatigue 

life is dependent on the dislocation activity that is dependent on the grain size. 

 

Figure 5.20: Fatigue life for different grain sizes 
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 However, Figure 5.20 also indicates that the nanocrystalline copper loses its load carrying 

capability quickly at about 20-40 cycles depending on the grain size. The degradation of the 

nanocrystalline copper stops almost as quickly. This indicates that the loss in load carrying 

capability of these nanocrystalline copper is not due to the formation of micro-voids. This type of 

load profile is more consistent with stress relief during annealing as shown in Figure 5.21[11]. 

Hence, this provides the first evidence that the loss in load could be due to grain growth. 

Comparing the microstructure of the copper nanocrystalline copper at the 5th and 30th cycles in 

Figure 5.22 confirms that grains have indeed grown.  
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Figure 5.21: Evolution of the microstructure during stress relief 
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Figure 5.22: Evolution of the microstructure at the 5th cycles and 30th cycle 

 

 In order to investigate whether the observed grain growth in Figure 5.21 and Figure 5.22 

is the main cause for the loss in the load in nanocrystalline copper, this research compares the 

evolution of the peak stress and the evolution of microstructure for copper during fatigue cycling 

with a total strain rate of 10% and 1% as shown in Figure 5.23 and Figure 5.24 respectively. 

Since it will be important to identify the mechanism for observed grain growth, Figure 5.23 and 

Figure 5.24 also include the cyclic results for 20nm nanocrystalline copper deformed at a 

temperature of 4K and 300K. The temperature of 4K is chosen as there will be minimal or almost 

zero temperature driven grain growth at this temperature.  Furthermore, the evolution of 

microstructure for undeformed nanocrystalline copper is also included in these two figures to 

ensure that there is insignificant grain growth in the absence of any loads. 
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Figure 5.23: Comparisons of the degradation of peak stress with the evolution of microstructure 

for copper with 20nm grain size under 10% strain range. 

 

 

Figure 5.24: Comparisons of the degradation of peak stress with the evolution of microstructure 

for copper with 20nm grain size under 1% strain range. 



 

141 
 

 

 Figure 5.23 and Figure 5.24 show that the degradation of load and the decrease in the 

volume fraction of grain boundary atoms have similar trends. Furthermore, the degradation of 

load occurs at about the same cycle as the rapid decreases in the volume fraction of grain 

boundary atoms, Hence, Figure 5.23 and Figure 5.24 shows that the loss in the load carrying 

capability is indeed due to grain growth. Furthermore, since no grain growth is detected for 

undeformed nanocrystalline copper whereas significant grain growth is detected for 

nanocrystalline copper at 4K, the observed grain growth and hence the degradation of the 

nanocrystalline copper is identified to be due to  stress assisted grain coarsening. 

 

          

Figure 5.25: Evolution of the microstructure at the 5th cycles and 30th cycle 

 

 The mechanisms for the stress driven grain growth can be identified by comparing the 

microstructure at the 5th and 30th cycle. Figure 5.25 shows that the two grains in region 1 and 

Region 3 

Formation of the 
twin boundary

Region 1 

Region 2
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region 2 in the 5th cycle, that have coalescence into a single grain by the 30th cycle. Furthermore, 

the presence of the twin boundary in between the two regions strongly suggests the coalescence 

of these grains in these two regions is due to grain rotation instead of through grain boundary 

migration. Furthermore, the evidence for grain growth due to the migration of the grain 

boundaries can be observed in region 3 where the grain boundary in region 3 is seen to have 

shifted. Hence, the two potential mechanisms for stress driven grain growth is identified to be 

grain rotation and migration of the grain boundaries. 

Figure 5.26 tracks the magnitude of the grain rotation in one of the grains as the 

simulation time increases. Even though the grain rotation decreases during unloading cycle, 

Figure 5.26 still clearly shows that the angle of grain rotation increases steadily with cycles and 

it took off at around  19th cycle. This corresponds to about the same cycle at which the significant 

load drop occurs as shown in Figure 5.15. Furthermore, the gradual increase in grain rotation 

angle ceases immediately after the grain has coalesced and this is due to the inability for the 

grain to rotate once it has coalesced into a much bigger grain. Hence, it may be concluded that 

the grain rotation is the main mechanism for the stress assisted grain growth at smaller grain 

sizes whereas grain migration is the main mechanisms for the growth of larger grains.  
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Figure 5.26:  Evolution of grain rotation as the simulation times increases 

 

In conclusion, this research has shown that stress induced grain coarsening is the main 

criterion for the nanocrystalline copper to lose their mechanical performance during cyclic 

loading for smaller grains. However, the simulation results have also shown that grain growth 

during fatigue loading will be assisted by other mechanisms such as dislocation activities and 

grain boundary migration. 

 

5.3.4.1 Fatigue Modeling 

As discussed in the earlier section, the loss in load during cyclic loading is identified to 

be stress assisted grain growth due to grain rotation and coalescence. Since the grain rotation is a 

function of both the strain range and temperature, a matrix of simulation experiments are 
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repeated with different temperature and strain range as shown in Figure 5.27 and Figure 5.28 in 

order to develop a model for predicting the fatigue life of nanostructured chip to package 

interconnects.   

 

Figure 5.27: Fatigue life as a function of total strain range 

 

 

Figure 5.28: Fatigue life as a function of temperature 
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Using Figure 5.27 and Figure 5.28 and defining the failure of the nanocrystalline copper as the 

onset of rapid grain growth, the fatigue life as a function of grain size, temperature and total 

strain range is computed as shown in Figure 5.29 and Figure 5.30 respectively.  

 

Figure 5.29: Summary of the fatigue life as a function of grain size and temperature 

 

 

Figure 5.30: Summary of the fatigue life as a function of total strain range 
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As discussed in the earlier section, the loss in load carrying capability during cyclic 

loading is identified to be stress assisted grain growth due to grain rotation and coalescence. 

Since the mechanism for Coble creep is also identified to be grain rotation and grain boundary 

sliding, they should have the same stress dependency. Furthermore, due to the increasing 

difficulty for the grains to grow at low temperature, an exponential relationship is used to 

characterize the temperature dependency. Hence the proposed fatigue model for this research is  

       (5.9) 

 

In equation 5.9, N is the number of cycles to failure, T is the temperature in Kelvin,   is the 

total strain range and D is the grain size in nanometers. A, B and C are the fitting parameters. The 

value of parameters B and C is found to be 0.493 and -0.002 as shown in Figure 5.29. Using 

regression methods, the value of fitting parameter C is found to be 1466.75. Figure 5.31 

compares the simulation results and the model results. Hence, the fatigue model proposed in this 

research seems to be able to predict the fatigue life quite accurately.  
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Figure 5.31: Comparison of molecular dynamics results and fatigue model results 

 

5.4  Conclusion 

In summary, this research reported in this chapter has validated the inter-atomic potential 

used in the study and has outlined the methodology for constructing a realistic microstructure for 

atomistic simulations. Furthermore, the materials response of single crystal under monotonic and 

cyclic loading has also been investigated: systematic atomistic simulations have been conducted 

on the crystallographic orientation and temperature effects on the deformation mechanisms in 

single crystal copper with <100> and <110> orientations. This research has also shown that the 

strain rate insensitivities of single crystals and proposed a solution for the dislocation nucleation 

stress for single crystal. Furthermore, by computing the activation volumes, the controlling 

mechanism for deformation in single crystal copper is identified to be the nucleation of 

dislocation. Similarly, the material response of single crystal under monotonic and cyclic loading 

has been investigated. The relationship between yield strength, grain size and the deformation 
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mechanisms in nanocrystalline copper during monotonic loading has been investigated. A loss in 

load bearing capability in fatigue loading has been identified to be due to stress assisted grain 

coarsening caused by grain rotation and coalescence. A fatigue model has been developed to 

predict the life of the nanostructured interconnects during service like conditions for 

interconnects.  
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CHAPTER 6 

MOLECULAR SIMULATION OF GRAIN SIZE STABILIZATION DURING 

CYCLIC LOADING OF ANTIMONY DOPED NANOCRYSTALLINE COPPER 

 

6.1 Introduction 

 As also mentioned earlier in Chapters 2 and 4, of all the known interconnect technologies, 

nanostructured interconnects such as nanocrystalline copper are the most promising for meeting 

the high mechanical and electrical performance requirements of next generation devices. 

However, the simulation results in Chapter 5 show that nanocrystalline copper will experience 

stress driven grain coarsening during the service life of interconnects and it causes loss in 

strength.  

 Recent molecular dynamics simulations by Millett et al. [14, 148, 149] have shown that 

temperature assisted grain growth can be eliminated with the presence of sufficient dopant atoms 

that tend to naturally segregate the grain boundary.  However, there is no study yet on the 

retarding stress assisted grain growth and grain coarsening. Accordingly, the objective of this 

chapter is to develop an understanding of the stability of antimony doped nanocrystalline copper 

undergoing monotonic and cyclic loading.  
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6.2 Simulation Methodology 

6.2.1 Inter-Atomic Potential 

 In this research, the copper EAM potential formulated by Folies et al [181] will be used 

to model  nanocrystalline copper. As discussed in Chapter 5, this potential is able to model the 

generalized stacking fault curve quite accurately as compared to other copper EAM potentials. 

For modeling antimony, a new antimony potential based upon Lennard Jones potentials 

developed by Rajgarhia et al [176] has been  used to model the antimony interaction. Hence, for 

antimony their values of σ=3.15Åm and  ε=0.079 eV will be used throughout this research to 

model antimony deformation response. Furthermore, in order to model the interaction between 

anatomy and copper, the interspecies interactions is estimated [177] using Lorentz-Berthelot 

combination rules, as shown in equation 3.35 and 3.36 

  

6.2.2 Simulation Model 

 For this research, fully dense nanocrystalline copper is first constructed using Voronoi 

Tessellation methodology as describes in Section 3.4.1. As discussed earlier, this methodology 

will produce randomly textured, single-phase poly-crystalline copper. Similar to the pure 

nanocrystalline copper study, the size of the simulation cell for nanocrystalline copper with a 

20nm grain size is measured to be 25nm by 25nm by 25nm whereas size of the simulation cells 

for nanocrystalline copper with a grain size of 10nm is 20nm by 20nm by 20nm. Again, 3D 

periodic boundary condition is enforced in order to model bulk nanocrystalline copper. 
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Antimony atoms are then incorporated into the sample by randomly replacing a certain 

percentage of copper atoms at the grain boundaries as shown in Figure 6.1.   

 

Figure 6.1: Simulation model for 1% antimony doped copper. The red dots are the antimony 

atoms 

 

Similarly, these models are also subjected to an energy minimization routine at a temperature of 

0 K before being subjected to NPT equilibration at 300K and atmospheric pressure for 50ps. 

These doped nanocrystalline copper sample is then uniaxially strained with a constant strain rate 

of 109/s using the equation of motion for NEPT ensemble. During the elongation, the stress-

strain relationship is calculated using equation 3.30 and equation 4.12.  

 

6.3 Monotonic Loading 
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 Figure 6.2 and Figure 6.3 show the stress-strain constitutive relationship generated by 

molecular simulation of uniaxial tensile deformation of antimony doped copper with different 

average grain size of 10nm and 20nm, respectively. Firstly, Figure 6.2 shows a higher elastic 

limit for antimony doped copper as compared to the pure nanocrystalline copper. Furthermore, 

Figure 6.2 and Figure 6.3 clearly show that the strength of the nanocrystalline increases as the 

volume fraction of antimony increases from 0.5 atomic percentages to 1.0 atomic percentage 

whereas the elastic modulus remains independent to the volume fraction of antimony. This is 

consistent with the experimental work conducted by Yin et al [211, 212] in which it was shown 

that the strength of nanocrystalline nickel increases after it has been doped with either sulfur or 

boron.  

 

Figure 6.2: Stress strain constitutive relationship for antimony doped copper with a grain size of 

10nm 
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Figure 6.3: Stress strain constitutive relationship for antimony doped copper with a grain size of 

20nm 

 

 In order to investigate the optimum volume fraction of antimony to be doped in 

nanocrystalline copper to achieve the highest strength, the relationship of the volume fraction of 

antimony and the maximum strength of the doped copper is plotted in Figure 6.4. Extrapolating 

the curve in Figure 6.4 shows that the maximum strength for doped copper with a grain size of 

10nm increases gradually as the volume fraction of antimony increases until the strength is about 

2.24GPa at a volume fraction of 1.2%. Furthermore, the simulation’s result in Chapter 5 show 

that the rate controlling process for nanocrystalline copper shifts from the gliding dislocation to 

interaction of dislocation and the grain boundaries, such as grain boundary sliding, as the grain 

size decreases. This increase in strength in doped nanocrystalline copper is primarily due to 

increased resistance to grain boundary sliding created by the antimony at the grain boundary as 

shown in Figure 6.5. 
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Figure 6.4: The relationship of the ultimate tensile strength copper with a grain size of 10nm 

 

 

Figure 6.5: Comparison magnitude of grain rotation between pure nanocrystalline copper and 

nanocrystalline copper doped with 0.5% antimony 
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6.4 Cyclic loading 

 The simulation results in Chapter 5 show that nanocrystalline copper will experience 

stress driven grain coarsening during the interconnect’s service life and this will cause the loss in 

strength in the interconnects.  The mechanism for grain coarsening is identified in Chapter 5 as 

grain rotation and coalescence.  

 In Section 6.2 we showed that doped antimony at the grain boundary in nanocrystalline 

copper increases the resistance to grain boundary sliding during monotonic loading.  Grain 

coarsening during cyclic loading may also slowed down by the presence of antimony at the grain 

boundaries. Although there is no published literature on microstructure stabilization during 

cyclic loading, recent molecular dynamics simulations by Millett et al. [14, 148, 149] have 

shown that temperature assisted grain growth can be eliminated by the presence of sufficient 

dopant atom content at the grain boundary.   

 In order to investigate the effectiveness of grain stabilization through the addition of 

dopants, this research compares the evolution of microstructure of both doped and pure 

nanocrystalline copper with an average grain size of 20nm subject to fatigue cycling. The total 

strain range used in this simulation is 1%. Furthermore, the evolution of microstructure for 

undeformed nanocrystalline copper is also included in Figure 6.6 as reference. 
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Figure 6.6: Comparisons of the evolution of microstructure for pure copper and doped copper 

under a cyclic loading of 1% total strain range 

 

 By comparing the evolution of the volume fraction of grain boundary atoms as the 

number of cycles increase, Figure 6.6 shows that grain growth for doped nanocrystalline copper 

decreases to a much lower rate as compared to pure copper under the same fatigue conditions.  In 

fact, grain growth in doped nanocrystalline copper is even lower than the undeformed 

nanocrystalline copper. This is possible since Millett et al [14, 148, 149] had shown that 

temperature assisted grain growth can be eliminated with the presence of sufficient dopants atom 

contained at the grain boundary. Hence, minimum or no grain growth is detected in doped 

nanocrystalline copper. This observation can be confirmed by comparing the microstructure of 

the doped and pure copper after they had experience 100 fatigue cycle as shown in Figure 6.7. It 

can be clearly seen from Figure 6.7 that one of the grain had disappeared and the adjacent grain 
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have growth for pure nanocrystalline copper but the grain remained intact for doped 

nanocrystalline copper  

 

 

 

Figure 6.7: Comparison of the microstructures before and after fatigue cycling (a) the initial 

microstructure just before loading and (b) pure and (c) doped nanocrystalline copper after 100 

cycles.  

 

6.4 Conclusions 

Grain growth detected  Grain remain 
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 In conclusion, simulations results in this research have shown that addition of the 

antimony into nanocrystalline copper not only increases the microstructure stability during cyclic 

loading, it will also increase the strength of the nanocrystalline copper. It has been found in this 

work that the strength in nanocrystalline copper can be increased by as much as 8% by adding 

1.2% volume fraction of antimony in nanocrystalline copper. This increase in strength has been 

identified as being due to the increase resistance to grain boundary sliding by having antimony at 

the grain boundary. Furthermore, this research also demonstrates that the stabilization of grain 

size in nanocrystalline copper during cyclic loading can be achieved through the addition of 

antimony in the grain boundary. In fact, simulations in this research show that additions of 

antimony in the copper grain boundary not only reduce the stress driven grain coarsening, it will 

also reduce the temperature driven grain coarsening. This enhanced stability has again been 

attributed to the increased resistance to grain boundary sliding by antimony at the grain boundary. 

This research has demonstrated the potential for improving the existing nanostructured 

interconnects technology through addition of small percentage of antimony into nanocrystalline 

copper.  
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Chapter 7 

Conclusions and Recommendations 

 

 Of all the known interconnect technologies, nanostructured interconnects such as 

nanocrystalline copper are the most promising for meeting the high mechanical and electrical 

performance requirements of next generation devices. However, there is need to understand their 

material properties, their deformation mechanisms and their microstructural stability.  Hence, the 

mechanical and fatigue behavior of nanocrystalline copper are studied using atomistic 

simulations with the objective of understanding and evaluating their performance as 

nanostructured interconnects materials.   The conclusions of this research are listed below: 

1. The results from the crack growth analysis indicate that nanocrystalline copper is in 

fact a suitable candidate for ultra-fine pitch interconnects applications. This study also 

predicts that crack growth is a relatively small portion of the total fatigue life of 

interconnects under LCF conditions. Hence, crack initiation life is the main factor in 

determining the fatigue life of interconnects. 

 

2. The material properties of single crystal nano rods of copper have been 

computationally determined and their relationships with strain rate and temperature 

have been explored. 
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3.  The nucleation stress for single crystal copper nano rod has been found to be a 

function of temperature but insensitive to strain rate.  A close form solution for 

nucleation stress has been developed in this research as shown in equation 5.2. 

Furthermore, the controlling deformation mechanism in single crystal nano-rod has 

also been identified as the nucleation of dislocation. 

 
4.  Due to the large volume fraction of grain boundaries, the material properties of 

nanocrystalline copper such as modulus and yield strength have been found to be 

dependent on their grain size. Their modulus with respect to their average grain size 

had been characterized in this research as shown in equation 4.11 and equation 4.13. 

 
5. The Hall-Petch and reverse Hall- Petch relationships have been investigated in this 

research and the grain size that produces the highest strength in copper has been 

found to be 15nm. The highest strength has been shown to be 1.93GPa. 

 
6. Dislocation activities have been found to be the primary deformation mechanism for 

nanocrystalline copper in the Hall-Petch region with some or minimal grain rotation.  

Furthermore, the simulations performed in this research indicate that a higher amount 

of grain rotation is observed as a deformation mechanism in the reverse Hall-Petch 

region.  Hence, this shows that there is a competition between the dislocation activity 

and grain boundary sliding to be the main deformation mode. 

 
7. It is shown that stress induced grain coarsening is the main criterion for the 

nanocrystalline copper to lose its mechanical performance during cyclic loading. 

However, the simulation results have also shown that grain growth during fatigue 
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loading will be assisted by other mechanism such as dislocation activity and grain 

boundary migration. Hence, a fatigue model for nanostructured interconnects has 

been developed in this research using the above observation.  

8. Simulation results have showed that addition of the antimony into nanocrystalline 

copper will not only increase the microstructure stability during cyclic loading, it will 

also increase the strength of the nanocrystalline copper. In this work, the strength in 

nanocrystalline copper can be increase by as much as 8% by adding 1.2% volume 

fraction of antimony in nanocrystalline copper. 

 

 In conclusion, this research has provided some basic understanding of the monotonic and 

fatigue behavior of single crystal copper nano rods and nanocrystalline copper. A fatigue model 

has been developed in this research and it has also been demonstrated that a methodology to 

improve the existing nanostructured interconnects technology through addition of small 

percentage of antimony into nanocrystalline copper. New avenues for research have been opened 

such as:- 

1. Even though this research has demonstrated the feasibility of using nanocrystalline 

copper as the nanostructured interconnects, the fabrication of nanostructured 

interconnect using nanocrystalline copper still remains as an issue. There is a need to 

explored different techniques to fabricate these interconnects.  

2. The crack growth analysis presented does not consider local microstructure effects on 

the crack; the starting crack length should be large relative to its microstructure length 

scale for these predictions to be accurate. Due to the small feature size of the nano-

interconnects, there is some concern about the accuracy of the crack growth 
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calculations. Hence, in order to model the crack evolution more accurately, molecular 

dynamics should be employed instead of the continuum mechanics approach used 

previously in the estimation of crack growth life. Due to computational limitations, 

models involving only a few grains could be employed in our simulations There is a 

need to repeat these simulations with  a larger number of atoms and grains to capture 

the corrects Physics of the problem. 

3. Since stress driven grain coarsening in nanocrystalline copper is detrimental to the 

life of interconnects, a more systematic and in-depth computational study must be 

conducted on stabilizing grain growth during cyclic loading.  
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