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SUMMARY

Design synthesis is a fundamental engineering task that involves the creation of
structure from a desired functional specification; it involves both creating a system
topology as well as sizing the system’s components. Although the use of computer tools
is common throughout the design process, design synthesis is often a task left to the
designer. At the synthesis stage of the design process, designers have an extensive choice
of design alternatives that need to be considered and evaluated.

Designers can benefit from computational synthesis methods in the creative phase
of the design process. Recent increases in computational power allow automated
synthesis methods for rapidly generating a large number of design solutions. Combining
an automated synthesis method with an evaluation framework allows for a more thorough
exploration of the design space as well as for a reduction of the time and cost needed to
design a system. To facilitate computational synthesis, knowledge about feasible system
configurations must be captured. Since it is difficult to capture such synthesis knowledge
about any possible system, a design domain must be chosen. In this thesis, the design
domain is hydraulic systems.

In this thesis, Model-Driven Software Development concepts are leveraged to
create a framework to automate the synthesis of hydraulic systems will be presented and
demonstrated. This includes the presentation of a domain specific language to describe
the function and structure of hydraulic systems as well as a framework for synthesizing
hydraulic systems using graph grammars to generate system topologies. Also, a method

using graph grammars for generating analysis models from the described structural

Xiii



system representations is presented. This approach fits in the context of Model-Based
Systems Engineering where a variety of formal models are used to represent knowledge
about a system. It uses the Systems Modeling Language developed by The Object

Management Group (OMG SysML™) as a unifying language for model definition.
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CHAPTER 1

INTRODUCTION

Engineered systems are a key component of everyday life from automobiles and
aircraft to seemingly ubiquitous electronic devices. Modern systems and therefore
modern systems engineering problems are becoming increasingly complex because they
often involve the integration of multiple engineering domains, are constrained by often
competing objectives, include a multitude of stakeholders, and are inundated by large
quantities of design information [54]. Therefore, problems that are often encountered
during the system development process are generally the result of poor organization and
communication of information or poor management of problem complexity rather than
the direct technological concerns that affect individual subsystems. The presence of
multiple stakeholders also dictates that design knowledge be explicitly captured to reduce

the opportunity for miscommunication.

1.1 Managing complexity with Model-Based Systems Engineering

Some of the complexity can be managed through the formal representation of all
aspects of the system engineering problem which has begun with the adoption of a
Model-Based Systems Engineering (MBSE) [15]. In MBSE, engineers formally capture
knowledge about all aspects of a systems engineering problem in models. There is a
plethora of design knowledge that needs to be captured for MBSE. In this thesis,
synthesis knowledge is explored independent of analysis knowledge. Synthesis

knowledge is the knowledge concerning the generation of design alternatives that are



contained within a specific design space while analysis knowledge describes how the
behavior of design alternatives can be analyzed.

In support of MBSE, the Object Management Group (OMG) has developed the
Systems Modeling Language (SysML) [65] to be a general-purpose systems modeling
language that enables systems engineers to create and manage models of engineering
systems using well-defined, visual constructs. The formal capture of knowledge using a
model-based approach does have disadvantages: there is a higher level of expertise and
effort required to explicitly capture knowledge that would otherwise be assumed

implicitly.

1.2 Research Questions

To facilitate the use of MBSE, the motivating question becomes:

The Motivating Question:
How can design knowledge be captured such that it can be used effectively and

efficiently?

The shift in current industry practice suggests that this question can partially be
answered through the adoption of model-based design approaches in a shift away from
document-centric design. This shift is embodied in MBSE where models are used
throughout the design process to capture knowledge. It is important for models to be
defined unambiguously and precisely so they can be easily understood by the various
stakeholders involved throughout the design process. Also, these models need to be

reusable so that the increase in overall cost associated with formal modeling can be




partially mitigated. The MBSE approach requires the development of many different

design and analysis models. The question then becomes:

How should these models be defined so that they are unambiguous, reusable, and

precise?

To answer this question, this thesis leverages concepts from the domain of
computer science, specifically the fields of Model-Driven Architecture (MDA) or Model-
Driven Software Development (MDSD). Both involve the use of formal models
throughout the design and implementation of software solutions and it seems likely that
concepts from these fields can be applied to the domain of systems engineering. Systems
engineering shares several characteristics with software engineering most notably the
complex interactions between various components. The use of MDSD concepts can
simplify the definition and application of models by reducing the need to create problem-
specific code for a variety of applications that are discussed throughout the thesis.
Instead, computer-aided software engineering (CASE) tools, such as MOFLON [2], are
used to generate this code improving the ease of implementing languages with which
models can be defined and transformed.

The hypothesis that follows from this argument is:




Design knowledge should be effectively and efficiently captured through the application
of Model-Based Software Design concepts such as formal domain specific languages

(DSLs) and model transformations.

Although validating this hypothesis is the central motivation of this thesis, it is too
broad to be fully addressed. Instead, this thesis takes the first step in the validation

process by attempting to confirm a less expansive hypothesis:

Hypothesis:
It is feasible for design knowledge to be captured using DSLs, graph grammars, and

other concepts from MDSD.

This hypothesis is still too broad to tackle directly because there is a wide variety
of design knowledge that is present throughout the design process, and therefore a wide
variety of possible design knowledge to capture. Instead, in this thesis, design knowledge
is decomposed into three distinct categories to facilitate exploration of the problem. In

this thesis, the hypothesis is explored by decomposition into these three sub-questions:

Question 1:
Is it feasible to capture synthesis knowledge using DSLs and graph grammars to

represent and generate design alternatives?




Question 2:
Is it feasible to capture the analysis knowledge needed to generate analysis models from

representations of design alternatives using DSLs and graph grammars?

Question 3: Is it feasible to capture the analysis knowledge needed to create simulation

models from analysis models using DSLs and graph grammars?

To attempt to answer these questions, a framework that relies on the definition of
several domain specific languages (DSLs) through the use of metamodels and model
libraries to capture the design knowledge about a particular domain. A DSL is a language
that is tailored to describe a particular problem domain. In this framework, the DSL is
augmented by the specification of graph-based model transformations designed to
transform between different models present throughout the systems design process. The
use of DSLs to define the models has the advantage of providing designers, who have
expert knowledge about a particular domain, with languages that are not only
unambiguous but also easily interpretable. This is not always true of more general
languages because they are often more abstract. The use of graph-based transformations
also has the advantage of being easily visualized. These advantages will also be

thoroughly explored throughout the thesis.

1.3 A DSL-based approach for capturing design knowledge

A variety of different types of knowledge need to be represented in design and

systems engineering: requirements and objectives, functions and functional




decompositions, logical architectures, physical architectures, behavior, test-cases,
allocations, etc. Using formal models to capture all this information and knowledge
about analysis is at the foundation of MBSE. Although general purpose modeling
languages such as SysML have been defined to capture such systems engineering
knowledge, we argue in this thesis that it is often convenient (and maybe more effective)
to express this knowledge in a DSL when working in a specific domain. To facilitate
integration between the DSLs, SysML (with domain-specific profiles) could be used as
an integration framework.

In addition, as is illustrated in Figure 1.1, the concept proposed here is extend this
notion of model-based engineering to include also the transformations that occur between
the different types of models. These transformations incorporate the process knowledge
that is needed to solve design problems effectively. The transformations themselves can

again be modeled, leading us to the notion of "Model Everything!" [17].
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Figure 1.1: Model Everything! — both representations and transformations.

In this thesis, an effort is presented towards capturing design knowledge through
the use of DSLs. Formal models are used to capture knowledge about the space of system
design alternatives. This includes the formal representation of these alternatives as well
as model or graph transformations for generating instances within this design space.

In addition to the design space, one should define spaces in which the design
problem itself is defined (i.e., objectives, requirements, context, etc.), as well as spaces in
which the system is described from different viewpoints — functional, behavioral, at
different levels of abstraction, from different disciplinary perspectives, etc. An important
part of the overall vision for this research is that these different views are formally related
to each other through models or model transformations so that the views can efficiently

be updated and kept consistent.



1.4 SysML as a Unifying Language

Currently, system engineering problems are solved using a wide range of domain-
specific modeling languages and modeling tools. Unfortunately, these domain-specific
modeling languages are often implicitly defined. Moreover, it is unlikely that a single
unified modeling language will be able to model in sufficient detail the large number of
system aspects addressed by current domain-specific languages. One should not “reinvent
the wheel” by creating an all-encompassing systems engineering language capable of
modeling and simulating every aspect of a system. [28] On the other hand, managing a
large number of models in different languages also poses problems, including
communication ambiguity and the preservation of information consistency. To alleviate
these problems, formal and precise definitions of these domain-specific modeling
languages are needed to allow for the integration of these languages.

SysML can provide a foundation for this model integration because of its well-
defined yet general constructs which can be easily linked together. SysML can also be
used as a foundation for the definition of formal languages that a modeler can use to
describe the interaction between system models. There is the additional advantage of easy
integration of models in described in these formal languages with the capabilities
provided by SysML modeling tools such as the visual and formal modeling of

requirements and system behavior.



1.5 Hydraulic systems as a representative example

Since the presented approach relies on the definition of domain specific
languages, it is advantageous to choose a domain representative of complex engineered
systems. The domain chosen here is one of hydraulic systems. From a systems
engineering perspective, hydraulic systems have the interesting characteristic that they
are circuit-like; that is, they consist of discrete components that are configured or
composed into complex systems. This modularity in the physical system has been
introduced to facilitate their design and manufacture. Modular components not only
provide economies of scale in the manufacturing process, but they also simplify the
design problem by decomposing the system into functional units that have simple and
clearly defined interfaces through which they interact with each other. The hydraulic
circuits investigated throughout the thesis are similar to common hydraulic circuits found
in a wide range of application but especially common in off-road construction equipment

such as excavators or backhoes.

1.6 Thesis Structure

According to the hypothesis and related questions, the objective of the work
presented is to apply formal domain-specific language and graph grammar concepts to
capture knowledge during three distinct transformations commonly present in the design
process. Before delving into the validation of this hypothesis and the answering of the
related questions, an overview of related work is covered in Chapter 2. An overview of

important MDSD concepts is provided in Section 2.1. Standard approaches from MDSD



to performing graph transformations and defining DSLs in Sections 2.2 and 2.3
respectively. Some relevant constructs from SysML are covered in Section 2.4.

The next three chapters have similar structure: each investigates the answer to one
of the related questions. To simplify the presentation, work related specifically to the
question being addressed is contained within each chapter. In Chapter 3, an attempt is
made to answer Question 1 by providing a framework for capturing synthesis knowledge.
In Chapter 4, Question 2 is addressed by building on work by Jobe that captures analysis
knowledge in reusable containers called Multi-Aspect Component Models [25]. In
Chapter 5, Question 3 is addressed by demonstrating the approach on the generation of
Modelica continuous dynamics simulation models from the analysis models created in
Chapter 4. Modelica is used as a representative example of various simulation languages.
Chapter 5 builds strongly on the work presented by Johnson [27] where SysML models
are transformed into Modelica models. Johnson’s work is extended by applying MDSD
techniques to defining an explicit DSL for the simulation models and to defining and

implementing the transformations.

1.7 Prelimanary Reading

For readers unfamiliar with MDSD and similar topics, there are a number of
excellent seminal works in the area. For an overview of MDA concepts, an overview by
Mellor et al [34] is recommended. Many core concepts are shared between MDSD and
MDA, but for a complete guide to MDSD, work by Stahl et al [62] is an excellent

resource. For a brief review of different methods to model and execute model

10



transformations, work by Czarnecki et al [9] is recommended. A glossary of commonly

used terms can be found in Appendix A.

CHAPTER 2

RELATED WORK

This chapter covers some high-level concepts as well as related work that is

applicable throughout the thesis.

2.1 Common Model Driven Software Development Concepts

Since MDSD concepts are the foundation of the work presented in this thesis,
some relevant constructs are presented here. A more thorough examination of all the

common concepts can be found in Chapter 4 of Stahl et al [62].

211 The Domain

The starting point in MDSD is always a domain, a “bounded field of interest or

knowledge” [62].

21.2 Metamodels

Metamodels capture an ontology for the domain, that is the constructs and
relationships present independent of any particular independent representation or
encoding. Metamodels are used in MDSD to describe the structure of the domain

formally. [62] The metamodel defines the abstract syntax of the domain and is an

11



instance of a meta-metamodel. Metamodels are specified using metamodeling languages.
The relationship between models, metamodels, and metamodeling languages is shown in

Figure 2.1.

M3: Meta meta model

Class (meta language)

i —S

0 LS
=) SO ] M1: Model
wills

% a MO: “Real world” element
A

Figure 2.1 : Relationship between metamodels, metamodels and metalanguages

(language)

2.1.3  Domain-Specific Languages

A domain-specific language (DSL) is a language designed to describe a particular
problem domain. It serves the purpose of making the key aspects of a domain — although
not all conceivable content — formally expressible and modelable. [62]. A DSL possesses
a metamodel as well as a corresponding concrete syntax. The semantics of the DSL are
also required to give meaning to the constructs of the metamodel. The modeler must
know the meaning of the language elements in the DSL to be able to create reasonable
models. Also, model transformations must be able to exactly execute the semantics of the

DSL. The semantics of a DSL must be either well-documented or intuitively clear to the

12



modeler. This is made easier when the DSL adopts concepts from the problem space so
that a domain expert can easily recognize it [17, 62]. In MDSD, these domains often deal

with specific software architecture.

2.1.4  Transformations

Model transformations in MDSD are always based on a metamodel. It is common
to distinguish between model-to-model transformations where the transformation creates
a new model typically based on a new metamodel and model-to-platform or model-to-

code transformations where code is generated that fits into the existing framework. [62]

2.2 Performing Model Transformations

Model transformations, as conceptualized in the graph depicted in Figure 2.2, are

anticipated to play a major role in future MBSE endeavors [62].

refers to - . refers to
Source Metamodel Transformation Specification Target Metamodel
conforms to executes conforms to
reads - - writes
Source Model Transformation Engine Target Model

Figure 2.2: The basics concept of model transformation [62].

Generally, model transformations are performed by transformation engines that
can read a source model conforming to a source metamodel and execute a transformation
specification to produce a target model conforming to a target metamodel. Current
applications of model transformations include model synchronization and the generation

of low-level models/code from high-level models.

13



Many methods exist for completing model transformations between two or more
modeling languages (metamodels). Two common transformation tools are OMG’s
Queries/Views/Transformations (QVT) [43] and Triple Graph Grammars (TGGs) [58].

The QVT specification provides a set of languages for querying a source model
that complies with a source metamodel and transforming it into a target model that
complies with a target metamodel. Two QVT languages, Relations and Core, are used to
model declaratively the relationships between source and target metamodels at different
levels of fidelity. The Operational Mappings language is then used to perform
imperative transformations based on the relationships depicted in the Core or Relations

languages. The relations between the QVT languages are depicted in Figure 2.3.

Relations

RelationsToCore

Operational Transformation
Mappings
Core

Figure 2.3: Relations between the QVT languages [43].

Overall, QVT is a powerful and widely accepted model transformation tool;
however, the imperative nature of the Operational Mappings language hampers
bidirectional transformations.

TGGs are similar to QVT in intent but are declarative by nature. Accordingly,
TGGs are particularly useful for completing complex, bidirectional model
transformations; however, others have shown that QVT is equally expressive and capable
[19]. In a TGG, two modeling languages (metamodels) are defined as graphs. The

mapping between the two metamodels is then represented by an intermediary graph
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called the correspondence metamodel. This third graph is essential for defining graph
transformation rules and maintaining traceability links between the two models. A

practical implementation of TGGs is also demonstrated extensively by Konigs [29].

2.3 Standard Ways to Define DSLs using UML

DSLs are a major part of the work presented in this thesis; several methods to
formally define DSLs are presented in this section. There are several standard ways that
DSLs are defined in MDSD and the software development process. [71]. OMG has
introduced profiles as a light-weight mechanism to extend UML. Also, OMG provides
the Meta Object Facility (MOF) [43] as a metamodeling language for the definition of
domain-specific languages.

When combined with constraint languages, profiles provide extensive
expressivity. Also, they are widely supported by current UML tools. Unfortunately, in
general constraint languages are difficult to use because there is ambiguities concerning
inheritance between stereotypes and also validation of constraints does not work properly
in general[71].

UML can also be extended through the use of a MOF tool and the merge concept
from the UML Infrastructure [23]. This allows more expressivity than simply using a
UML profile but is not widely supported by UML tools.

Finally, a totally new metamodel can be defined for the DSL using a MOF tool.
This has the advantage of being the most expressive and flexible method to defining a
DSL. Unfortunately, additional steps need to be taken to implement the concrete syntax

of the DSL.
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An approach to combining the definition of the metamodel for the DSL with
adaption of existing tools to use the DSL is also presented by [71]. This approach is

illustrated in Figure 2.4.

Graph

SysML Profile
Y Transformations

MOF Metamodel

extends defines defines
Standard Translator Implemented
SysML Tool g Metamodel
L translates translates

Figure 2.4: A combination of UML profiles and metamodel based technologies

The general steps taken are:
1. The abstract syntax of a DSL is defined in a MOF-compliant metamodeling tool.
2. A UML Profile is sued to define the concrete syntax of the new language with
constructs similar to those used by UML.
3. An implementation of QVT based on TGGs is used to translate the stereotyped
UML model into an instance of the metamodel.
This approach has the benefit of being both expressive and quickly implementable to
provide tool support. In this thesis, this approach is extended with the use of SysML

instead of UML.
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2.4 An introduction to SysML

SysML is used extensively in this thesis as a foundation for the concrete syntax of
DSLs. SysML is an extension of the Unified Modeling Language (UML) [23]. UML is
standardized by the OMG and which is currently commonly used in software engineering
practice. This section provides a brief introduction to some of the entities from SysML

used throughout this thesis.

24.1  SysML Blocks

The primary modeling unit in SysML is the block. A block is a modular unit of a
system description. [42], a block is a modular unit of a system description. A block can
represent anything, whether tangible or intangible, that describes a system. For instance, a
block could model a system, process, function, or context. When combined together,
blocks define a collection of features that describe a system or other object of interest.
Hence, blocks provide a means for an engineer to represent a system by decomposing it

into a collection of interrelated objects.

24.2  SysML Flow Ports

A block’s interfaces are commonly defined through the use of flow ports. A flow
port specifies the input and output items that may flow between a block and its
environment. [42] Flow ports are interaction points through which data, material, or
energy can enter or leave the owning block. The specification of what can flow is

achieved by typing the flow port with a specification of things that flow.
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2.4.3  UML Profile and Stereotypes

A stereotype is a UML construct used to create customized classifications of
modeling elements. Stereotypes are commonly organized within profiles. Profiles are a
feature that SysML shares with UML; they allow users to specify constructs that are less
abstract and more precise by specializing existing SysML entities. Stereotypes are

defined by keywords that appear inside of guillemets (e.g., “<<Block>>").
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CHAPTER 3

CAPTURING SYNTHESIS KNOWLEDGE

This section presents a framework for the systematic encoding of synthesis
knowledge and the application of this synthesis knowledge to generate design alternatives
in an effort to answer Question 1 presented in the introduction. The use of formal models
provides an unambiguous and common protocol for communicating design information
among various stakeholders. It also facilitates the storage of design information in a form
that is computer interpretable making it possible to leverage related work in computer
science. It also promotes traceability throughout the design process by employing models
as a form of documentation.

This framework relies on the definition of several domain specific languages (DSLS)
through the use of metamodels and model libraries to capture the synthesis knowledge
about a particular domain. A DSL is a language that is tailored to describe a particular
problem domain. In this approach, the language is augmented by the specification of
graph-based model transformations designed to transform models of a systems
engineering problem into models of a specific design alternative. Specific design
alternatives are automatically generated by applying these graph-based model
transformations to models also defined by the same DSL. The use of DSLs to define the
models has the advantage of providing designers, who have expert knowledge about a
particular domain, with languages that are not only unambiguous but also easily

interpretable. This is not always true of more general languages because they are often
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more abstract. The use of graph-based transformations also has the advantage of being
easily visualized.

Various methods are presented in the literature for using design grammars to provide
automated synthesis to explore the design space of a particular problem [6, 7, 11, 56].
Although graph-based synthesis methods have been shown to be capable of finding an
optimal or near-optimal design solution [56] within a given design space, how to specify
this design space is taken largely for granted or defined in an ad hoc manner. The
representation of structures used in design generation and evolution using formal
languages and graph-grammar concepts has been explored [1, 63], although through the
use of global formalisms and languages. Global languages have the disadvantages of
being less precise and more ambiguous because they need to have the flexibility of
defining structures in a nearly infinite number of possible domains.

Instead, the approach of defining languages that are domain specific is taken. These
languages can be more precise because they only need to capture a small number of
coupled domains. The disadvantage of a DSL is the additional effort required to define
and implement the language. To mitigate this disadvantage, the thesis explores
implementing these DSLs using concepts applied from Model-Driven Software
Development (MDSD) which allow for the automated generation of computer code [62],
reducing the expense.

Also, many of the previously mentioned approaches require problem-specific
computer code for the generation and execution of analysis models. Instead, by capturing
possible design alternatives in formal models, the creation of corresponding analysis

models can be automated [27].
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The formal capture of synthesis knowledge using a model-based approach does have
disadvantages: there is a higher level of expertise and effort required to explicitly capture
knowledge that would otherwise be assumed implicitly. In this thesis, it is explored how
this disadvantage can be offset by employing concepts of modularity and composition. A
modular modeling approach is taken to describe synthesis knowledge as a set of the
possible modular components that may appear within a system and the possible
connections between those components. Port-based models [45] are used to describe the
possible components; these models are then integrated into more complex systems by
creating connections between well defined interfaces. This fits naturally with current
systems engineering practice which relies on composition and integration to manage
complexity by decomposing complex systems into modular chunks that can be easily

reused and reconfigured.

3.1 Representing Design Alternatives using a DSL

In this chapter, the approach is presented to capturing synthesis knowledge
through the use of formal models and how design alternatives can be generated from this
knowledge. Specifically, the synthesis knowledge that is captured describes how to
define a design space and generate possible design alternatives. The design spaces of
interest stem from a large number of systems engineering problems involving the
composition of well-defined components into more complex systems. This definition is
derived from the view of common systems engineering problems. When the design space
is described in this manner there are several pieces of knowledge that naturally appear

necessary to formally capture:
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e What are these well-defined components? What are their functions and interfaces?
e How can these components be connected together? How does the designer combine
these components to generate meaningful design alternatives?

A formal DSL must be defined before these aspects can be formally captured in
models. There are several standards-compliant ways to define DSLs [71] but, in general,
an abstract and concrete syntax need to be defined. The next section describes the
definition of the abstract syntax through a metamodel followed by the definition of the

concrete syntax by extending SysML with a profile.

3.1.1  Defining the Abstract Syntax

The initial step to defining a DSL is creating a metamodel. A metamodel defines
the abstract syntax of a domain specific language; it defines in an abstract way the
constructs of the language and their relationships. A metamodel represents the structure
of the language independent of any particular representation or encoding. Every model
described by the DSL is an instance of the DSL’s metamodel; a metamodel describes a
model just as a model describes a “real world” element [15].

Metamodels are defined through the use of a metamodeling language; this
metamodeling language is in turn defined by a meta-meta-model. Although this meta-
hierarchy could continue ad infinitum, practically speaking metamodeling languages
describe themselves through meta-circularity [17]. The metamodeling language used in
this thesis is OMG’s Meta-Object Facility (MOF), a language designed by OMG for

Model-Driven Architecture (MDA) [43].
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Metamodels need to be formal and unambiguous by having a unique and precise
meaning that is defined by a mapping from the metamodel into a semantic domain. This
semantic domain is the design space of a particular systems engineering problem. A
generic metamodel can be specified; because a systems engineering based approach is
taken, this space is spanned by systems, each system containing at least one component.
The approach to modeling components is port-based; this is reflected by defining that
each component can have any number of ports. These ports can be connected to each
other; sometimes more specifically one port can be connected to exactly one other port.
Generally each component is part of only one system and each port is only owned by one
component. The metamodel analogous to the description just provided is shown in Figure

3.1.

System owns Component

awns : Componert [*] = * |has: Port[*] =

has
1

connectedTao
Port

connectedTo : Port =

Figure 3.1: A visualization of the generic Metamodel defined using MOF.

Once this generic metamodel is defined it is extended to more precisely capture
the domain of interest. The types of systems, components, ports, and connectors that
appear in the design space are defined using specialization relationships. For example, a
specific type of component is a specialization of the generic component. If the systems

engineering problem was the design of a mass-spring-damper (MSD) system then the
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metamodel is extended to include constructs for defining a spring, a mass, and a damper.
This is shown in Figure 3.2. The specialization relationships are illustrated as a solid line
with a hollow arrowhead. In this example, the spring is a specialization of the generic
class of components. These new constructs can be more precisely defined by further

specifying the types of relationships that may exist between them.

Mass Spring Damper
System Component
oawns
owns : Component [*] = has : Port [*] =

1

connectedTo
Port

connectedTo: Part (=

Figure 3.2: Metamodel extended to capture the types of components that can exist
in the MSD system
The metamodel can be validated by using its terminology in all discussions with
domain experts and stakeholders [13]. It can be considered as a grammar for building
valid sentences in the respective domain. Several sentences fall naturally from the
definition of the metamodel in Figure 3.2:
e A component has any number of ports.
e There can be three types of components in this system: masses, springs, and dampers.
e Each port can be connected to exactly one other port. (This final consideration may
not be applicable for all systems. In the example, an entity is created for connectors

that facilitate the connection of any number of ports to each other.)
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If a valid design alternative in the design space cannot be precisely expressed
using this metamodel then the metamodel is imprecise and needs to be extended. The
abstract syntax only defines the “essence” of the domain specific language: the available
constructs and their relationships. To use the DSL to define models a concrete syntax is

also needed.

3.1.2  Implementing the Concrete Syntax

After the metamodel is defined, the DSL is implemented by defining the concrete
syntax. The concrete syntax is the textual or graphical constructs with which the
modeling is done. SysML is used to provide the foundation for the concrete syntax. It
was developed by OMG to support MBSE; it is a general-purpose systems modeling
language that enables the creation and management of models of engineered systems
using well-defined visual constructs.

The constructs provided by SysML are extended through the use of a profile.
SysML is an extension of the Unified Modeling Language (UML) [23], which has been
standardized by the OMG and which is currently commonly used in software engineering
practice. Profiles are a feature that SysML shares with UML,; they allow users to specify
constructs that are less abstract and more precise by specializing existing SysML entities.
The profile is defined by extending the block construct of SysML. The block is the
primary modeling construct of SysML; it can represent anything, whether tangible or
intangible, that describes a system.

There are several further steps taken to implement a DSL derived from [71] by

adapting an existing SysML modeling tool:
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1. The abstract syntax of the domain specific language is captured in a MOF-compliant
metamodeling tool as described in the previous section. In this case, the chose is
MOFLON [2] as the meta-modeling tool because of its code generation capabilities.

2. A SysML profile is defined within the SysML modeling tool. This profile has a one to
one mapping to the specified metamodel and can be used to stereotype a particular
SysML model. For example, the profile of the metamodel for the MSD system
described in the previous section is shown in Figure 3.3.

3. MOFLON is used to generate Java Metadata Interface (JMI) based code that
implements the metamodel.

4. Query/View/Transformation (QVT) based transformation rules are also defined in
MOFLON to map between the stereotyped SysML profile and a specific instance of
the metamodel. This serves the role of a translator or compiler between the concrete
syntax and the abstract syntax.

5. MOFLON is used to generate JMI code that implements these transformations.

6. The code generated by MOFLON is combined with a JMI-compliant SysML tool.
This extends the tool to provide the capability of authoring models defined by the
DSL.

A SysML model is stereotyped using the profile. It is then translated into an
abstract representation by executing the JMI code. This abstract representation is an
abstract syntax graph; this graph is the abstract representation of the defined model.
Graph transformations are then applied to this abstract syntax to generate design

alternatives.
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pkg [Profile] MSD[ MSD]J

<<stereotype>> [
Block
[Class]

-isEncapsulated : Boolean

i
|

<<stereotype>>
component system

[Class] [Class]
<<stereotype>> <<stereotype>>
spring mass damper
[Class] [Class] [Class]

Figure 3.3: Profile used to label SysML entities that corresponds to the abstract

syntax defined in the metamodel

3.2 Generating design alternatives

3.2.1  Defining the Graph Grammar

The metamodel defines the space of design alternatives; this section addresses
how to create possible instances in this space. As previously mentioned, the goal is to
provide domain experts with a framework to express their knowledge that leads to
unambiguous definition of potential design solutions as well as effective application of
that knowledge using search algorithms.

The metamodel as presented only captures the syntax of the domain specific
language: an unambiguous way to define potential solutions. It is extended to further
capture how design alternatives can be generated. This is accomplished effectively
through the use of a graph grammar which provides a structured representation of

knowledge using rule-based techniques [40, 53]. A graph grammar consists of a set of
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graph transformations; in this case, the graph transformations applied in sequence
generate a possible model conforming to the metamodel.

These graph transformations have a left-hand side, the pattern of a graph that is
matched and a right-hand side, the replacement graph. They are also defined using the
abstract syntax provided by the previously discussed metamodel along with the QVT
transformation standard.

The transformations are applied in certain sequences result in models that
conform to the metamodel. In order to generate all of these possible models, one must
traverse every possible sequence of transformation rules. These transformations are
generative; they involve the incremental specification of a design alternative.

The transformations model the addition of components to the system along with
the valid ways that components are connected. Although the transformations presented in
this thesis do not take into account sizing, similar attribute grammars can be used to
capture how components are sized and configured [53].

The transformations match a portion of the model/graph and create new instances
of the component types. Although these transformations are defined at the metamodel
level, they are executed on instances of the model. Also, use of a domain specific
metamodel which involve constructs that designers should be familiar with reduces
ambiguity.

Previous work has illustrated the advantage of using visual graph transformations
as a guide to generating code [57]. Because these transformations are modeled formally

using the QVT standard, MDSD concepts are used to automate the generation of code to
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execute these transformations on models described by the JMI implementations described
in the previous section.

Returning to the MSD system example, there are several transformations that
specify a valid instance of the system. One possible transformation instantiates a model
of a spring and connects it in parallel with another spring in the system. This
transformation is shown in Figure 3.4. It takes in the system model as an input. The left-
hand side of this transformation is the fragment of a model consisting of a spring with
two ports which are unconnected. The right-hand side is the addition of a second spring
to the model in parallel with the first.

A number of such transformations exist for the MSD system: the instantiation of
dampers in series and parallel, springs in parallel, and the instantiation of masses. By
applying these transformations in one of many possible random sequences, an instance of
the MSD system metamodel is generated.

The specification of these transformations at random is sufficient to generate
instances of the metamodel, but simply executing the transformations at random is often
inefficient in generating alternatives. To further model the order in which these
transformations are applied, the “good” orders are modeled through the use of a decision
graph. This decision graph is a very simple model of the process a designer goes through
to define a design alternative.

A decision graph is an extension of the hierarchical decision tree presented in
[39]; unlike a tree, a graph can contain loops. Decisions that a designer makes when

creating a design alternative are modeled as nodes; they are connected by edges that
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describe the order in which the decisions are made. Each node is mapped to the

representative model transformation.

Transformer: :addspringInParallel (system: System)
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Figure 3.4: Graph transformation that adds a spring in parallel with another spring

to the system.
By traversing the decision graph and executing the corresponding
transformations, a complete model of a design alternative is created. This alternative is
also represented using the abstract syntax and can be translated into a concrete

representation or a corresponding analysis model.

3.2.2 Capturing Fragments in a Model Library

The language is further defined by enumerating exactly which instances appear
by capturing them within a model library. A model library contains useful fragments
which can be composed into more complex models. The metamodel is only a definition

of the types of constructs and relationships that appear in a DSL: the types of physical
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structures that appear within the domain specific design space. This model library is the
vocabulary of the DSL: the models of physical structures that can be combined to create
valid design alternatives.

To fit within common and current systems design practice, the majority of models
appearing in the model library are the modular components (or subsystems) that need to
be integrated. These models are port-based; they clearly capture the interfaces that can be
used to connect one model to another. Also each model that appears within the model
library should have a corresponding type definition in the metamodel. The models are
created within a SysML authoring tool using the concrete syntax previously defined.

Along with the interfaces, compatibility between components is also explicitly
captured. Models of components that are compatible are organized into sets. This
addresses the case when compatibility cannot be determined simply by examining the
interfaces of a component. A fairly strong assumption is made when grouping
components into these sets: any component within the set is compatible with all of other
components within the set. For the examples presented in this thesis this assumption
holds, but further investigation is needed to test if this approach is truly sufficient.

The model library needs to be validated through discussion with stakeholders and
domain experts just as the metamodel is validated. The library is organized into a
component taxonomy to facilitate exploration by designers and stakeholders.

The knowledge contained in appropriate models from this library is transferred to
the new model instances created during the generative model transformations. For
example, when a model of the spring is instantiated knowledge from a spring model in

the library is also associated with it. If there are multiple appropriate models (multiple
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instances of the same component type), one can be selected at random from the library or

the metamodel can be extended to characterize each instance with a separate component

type.

3.2.3  Searching the Design Space

In this section, a method is presented to search the design space defined by the
DSL through the use of an evolutionary program [32, 35]. One goal of capturing
synthesis knowledge is automating the design process by applying a search algorithm to
the design space. An evolutionary program is a global stochastic optimization technique
that has the advantage of being largely problem independent. It can be used on design
spaces without well-defined distance metrics, although a fitness function is needed to
compare solutions. They are similar to genetic algorithms [18, 21] but involve the use of
problem-specific data structures. In this case, these data structures are models defined by
the DSL.

Evolutionary programs are designed to mimic the evolutionary process: a
population of solutions is iteratively modified over multiple generations with the goal of
increasing the population fitness and the quality of individual solutions. Evolutionary
programs maintain a population of possible solutions; an initial population is generated at
random. Naturally, for design synthesis the population consists of design alternatives. An
initial population is created by synthesizing several design alternatives from the captured
knowledge. Each possible solution is evaluated using a fitness function. The next
population is created by modifying selected possible solutions from the previous

population. There are several selection techniques, but a fitness proportionate selection
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[32] scheme is used here where solutions with higher fitness have a higher probability of
being selected. These solutions are modified using either crossover or mutation
operations: in a crossover operation characteristics from two possible solutions merged
into single solution; in a mutation operation one solution is modified into a new solution.

So far, the captured synthesis knowledge has been problem independent. To
generate design alternatives that are specific to a given problem, an embryonic model
[31] is used. This model is an incomplete instance of the DSL, it is fragment of a
potential design alternative which is required for the design alternative to be applicable to
the specific problem. Model transformations are applied to this embryonic model until a
design alternative is fully specified. The order of these model transformations is
determined by the selection of a path of nodes from the decision graph; this is analogous
to the process a designer would use to create an alternative. Every model transformation
adds instances from the model library; these instances match the types defined in the
transformations but are chosen at random. To uniquely define a single alternative, the
path taken through the design graph and the random instances added by the
transformations are required.

One convenient aspect of using a sequence of transformations is that one is able to
serialize the graph representation by simply capturing this sequence of transformations
applied. This allows the modification of possible design alternatives without needing to
specify additional model transformations. Using a standard evolutionary approach,
standard mutation and crossover operators are applied to these serialized representations

to modify the design alternative and search the space.
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To implement the optimization algorithm, an efficient way to represent each
design alternative is needed. Since each design alternative is represented as a sequence of
transformations, the design alternatives are represented as a set of numbers that reflects
the sequence. For each node in the classic mutation and crossover operators are applied to
this set of numbers resulting in modifications to the design alternatives. For the mutation
operator, instead of simply fitting a bit, a new random number of the sequence is
generated. Although this is inefficient, this allows the maintenance of the probabilities in
the design graph. After the set of numbers is modified, the transformations are applied in
the new sequence. To insure the specified design alternative is completely specified, the
sequence of numbers must result in a sequence of transformations that terminates at the
end node of the decision graph. If the set of numbers specified a sequence that terminates
prematurely, additional transformations are applied until the end node is reached. The
sequence of these transformations is added to the set of numbers describing the design

alternative. This method is applied on the hydraulic circuit example in Section 3.4.

3.3 Example: Hydraulic Circuit Generation

The synthesis approach is applied to the design of a generic hydraulic circuit.
From a systems engineering perspective, hydraulic systems have the interesting
characteristic that they are circuit-like; that is, they consist of discrete components that
are configured or composed into complex systems. This modularity in the physical
system has been introduced to facilitate their design and manufacture. Modular

components not only provide economies of scale in the manufacturing process, but they
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also simplify the design problem by decomposing the system into functional units that
have simple and clearly defined interfaces through which they interact with each other.
The hydraulic circuit provided in this example is similar to circuits common in

off-road equipment. The requirement placed on possible circuits is that they must actuate

exactly four loads. These loads are an abstraction of the mechanical structure of a

possible piece of equipment. An assumption made by the problem formulation is that the

directional valves being modeled have common valves bundled with them. Several

additional constraints are assumed from the problem formulation:

e Every port must be connected to at least one other port.

e There is at most one pump connected to one valve.

e Every actuator is connected to exactly one valve.

e Each load has exactly one actuator.

e Each directional valve must receive hydraulic flow from a suitable pump. (Namely,
closed-centered load sensing valves must be connected to a variable displacement

pump and open-centered valves must be connected to fixed displacement pump.)

3.3.1  Domain Specific Language

To start, a DSL for capturing possible hydraulic circuit topologies is created. The
abstract syntax of this language is specified in a MOF-compliant manner with the
MOFLON tool. This new metamodel is an extension of the generic meta-model presented
earlier in Figure 3.1. Several entities are created to capture different component-types that
are commonly found in a hydraulic system: entities for labeling pumps, cylinders,

directional valves, tanks, relief valves, and boundary components. Boundary components
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include anything initially specified in the embryonic model; the “boundary” of the circuit.
That includes the number of loads that must be actuated and the number of power sources
that can be used to drive the pumps. This metamodel is shown in Figure 3.5; it is not
inclusive but can be extended to apply to more complex problems. The abstract syntax is
implemented through the automatic generation of code from MOFLON. A concrete
syntax is defined in a SysML tool using a profile. The code to translate between the

concrete syntax and an abstract representation is also automatically generated.

BasicConnector

t ——{ circuit : Circuit

name : String = port : Port [*] =

Circuit
component : Component [*1

connector : BasicConnectar [*] — Component Port

FPElement

circuit : Circut component : Component
port : Part [*] = connector : BasicConnactor [*] =

<]

BoundaryComponent <7 A A

DirectionalVatve

Figure 3.5: Visualization of hydraulic circuit metamodel used to define abstract

syntax of domain specific models.

3.3.2  Graph grammar

Graph transformations are defined to capture common connectivity between
component-types; the set of these transformations make up the grammar. These
transformations are also defined within MOFLON using the abstract syntax. These
transformations reflect actions designers might take to create a hydraulic system. Graph
transformations are defined to:

e Add an instance of a cylinder to the circuit and configure it to actuate a load.

e Add an instance of a directional valve to the circuit to control a cylinder.
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e Add an instance of a pump to the circuit to provide flow to the directional
valve.
e Add an instance of a tank to the circuit to provide flow to instances of pumps.
The overall structure of these transformations is similar. For example, the
transformation defined to add a cylinder to the circuit is shown in Figure 3.6. The
complete set of transformations are included in Appendix B. The left-hand side of the
transformation is a boundary component that owns an unconnected port of the
appropriate type. The right-hand side of the transformation is the new actuator and
connectors. The transformations are designed to maintain the first three constraints

specified by the problem formulation.
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Figure 3.6: Graph transformation rule to add a cylinder model to the system
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model and connect it to an appropriate load.

3.3.3  Model library

In this example, the enumerated number of possible components remains small.
This is because of the chosen abstraction level: each component has an implied structure
but not sizing parameters. The use of port-based models meshes with the modeling of
hydraulic components because it reflects the true nature of the system. The models are
broken into two compatibility groups: one for components that can be connected to
closed-center valves and one for components that can be connected to open-center valves.
Modeling these compatibility groups allows the last constraint of the problem

formulation to be met.

3.3.4  Encoding problem specific knowledge

The problem specific knowledge is encoded in an embryonic model. In this
example, the problem specific knowledge is the number of loads to be actuated. If the
circuit cannot actuate these loads, it is invalid and is not considered because considering
impossible solutions is inefficient. Therefore, the embryonic circuit contains four loads.
Random instances are generated when the set of graph transformations are applied to this

embryonic model and all of these instances will actuate exactly four loads.

3.3.5  Decision graph

The possible sequences of transformations are represented in a decision graph.

This graph is shown in Figure 3.7. Each node of this graph corresponds to a previously
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defined transformation. Probabilities are assigned to the edges of the graph to increase the
chances of certain transformation sequences.

The overall layout of the graph is based on one possible sequence of decisions a
designer might make to design a single circuit. The graph is represented using a
formalism similar to flow charts. Each edge has a probability associated with it; by
adjusting these probabilities the likelihood is changed that specific sets of graph

transformations are used to generate a design alternative.

. [success]

Add Cylinder [failure]

[success]
{probability =".7" }
Add Directional

Valve [failure]

[success]
{probability =".3" }

[success]
{probability =".7" }

Add Pump Y

uccess]
Pl Y [failure]

Figure 3.7: Decision Graph for the hydraulic circuit example.
Each node is tied to a graph transformation and each edge has probabilities

associated with it.
3.4 Results

There are several considerations when exploring the effectiveness of generating
alternatives from the captured synthesis knowledge: Are the generated design alternatives
valid? Do these alternatives span the space uniformly? And, how well does a search

algorithm perform when searching through the space?
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The approach is first tested by generating a basic hydraulic circuit: one that needs
to actuate only a single load. The initial embryonic model includes a single load and
single power source. The graph transformations described earlier are applied to the
circuit. The result is shown in Figure 3.8. The circuit is one with a single variable
displacement pump connected to a closed-center directional valve. As mentioned
previously, the directional valves modeled include common valves such as relief valves
from high pressure to low pressure flow. The circuit is valid: all the hydraulic ports are
connected, the variable displacement pump and closed-center valve are compatible, and
one cylinder to actuate the load. A large number of more complex circuits have also been

generated; all the generated circuits satisfy the prescribed constraints.

ibd [Block] Circuit[ Circuitu

<<block>> =

: EnFi_nle
{

powerOut : Flange

: HighPressure :E{otational : Flange
t )

LLd Ly |

: LowPressure
: VariableDisplacementPump
[1]

: ControlPressure

| ?

v | L
<<directionalValve>>

: 6Way3PosClosedCenter

~ ™1

FlowPort

: FlowPort : LowPressure : LowPressure
<<tank>>
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<<cylinder>>
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j: : Flange
N : Flange
=

: Load

Figure 3.8: Simple hydraulic circuit represented using concrete syntax in
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SysML

The next consideration is whether the alternatives span the design space. To test
this in the example problem, a number of random design alternatives are generated and
characterized based on their topologies. The requirement of the circuit actuating four
loads along with the assumed constraints implies that each circuit should have between
one and four pumps. The number of pumps is also a characteristic of the circuits that is
unambiguous and easy to measure. The number of pumps per alternative for 1200
random design alternatives is shown in Figure 3.9. The first 600 design alternatives are
generated using the decision graph in Figure 3.7 where the probabilities are labeled along
the edges. The probabilities in the decision graph bias the generation process towards the
generation of alternatives with fewer pumps because it is more common to find fewer
pumps in real world systems, specifically the edges leaving the “Add Directional Valve”
node. When evaluating these edges there is a probability of .70 that an additional
directional valve will be added to the circuit and connected in series with other valves if
possible whereas there is only a probability of .30 that an additional pump will be added.
The next 600 design alternatives are generating using a decision graph further biased to
generate alternatives with fewer pumps by adjusting the previously mentioned
probabilities from .70 and .30 to .90 and .10 respectively. These 600 alternatives on
average have fewer pumps than the first 600.There are simply more possible
configurations with two pumps than the fairly limited number of one pump

configurations.
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Figure 3.9: Results from random synthesis of alternatives

To test the performance of the evolutionary search algorithm described in Section
3.2.3, it isused to find certain prescribed topologies. In particular, the topology of interest
is the rarest topology generated during the previous experiment: a circuit with four
closed-centered valves each connected to exactly one pump. The fitness function used to
evaluate the design alternatives based on the number of pumps and closed-centered
valves is shown in Equation 1:

fitness = (# of pumps) + 3 x (# of closed -centered valves ) (1)

An arbitrary weight is placed on the number of closed-centered valves. This is a
crude approximation of the preferences, i.e. that a circuit with 4 closed-centered valves
and 3 pumps is closer to the true solution than one with 4 pumps but only 3 closed-
centered valves. Clearly, for the four actuator case the maximum possible fitness is 16.

Also, each population consists of exactly ten circuits.

42



In general, the overall fitness of the population improves as the algorithm
progresses. Because the evolutionary program is a stochastic process every run does not
return the same result. The average progress of 100 runs of the evolutionary algorithm is
shown in Figure 3.10. The median maximum fitness and average fitness are shown along
with 25" and 75" bounds for the maximum fitness. In general, all the runs converge to
the maximum possible fitness, usually over a relatively small number of generations. One
aspect of future work is to characterize the performance of the search algorithm if a
behavioral-based fitness function is used instead of a topology-based function. In order to
accomplish this, simulation models need to be created from structural representations to

analyze the behavior of the topologies.
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Figure 3.10: Average progress of evolutionary program over 100 runs with

average fitness and median maximum fitness for each generation

3.5 Discussion

The approach to generating design alternatives is based on the definition and
application of a set of graph transformations (the graph grammar). These graph
transformations are a part of the DSL’s metamodel. This approach is taken because
design alternatives can be efficiently generated through the application of these graph
transformations. Many of the constraints placed on the design alternatives are therefore

implicitly encoded in these transformations.
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An alternative approach is to define the metamodel with these constraints
explicitly captured through the use of a constraint language (e.g.; the Object Constraint
Language (OCL) [59] that is used to describe constraints that apply to UML). This
approach may be advantageous because the metamodel may be simpler to formulate. The
difficulty becomes finding models that satisfy these constraints and applying search
techniques to these models to explore the design space. New modeling tools, such as
Alloy [24], can instantiate some or all models that correspond to a metamodel defined by
a set of constraints but leave open the question of how search techniques can be applied
to these models.

It is often the case that when there are two possible approaches, a hybrid of these
two approaches can stress individual advantages while negating disadvantages. Whether
this is the case here deserves further investigation, although currently a clear method to
combine the two approaches beneficially is not available. Constraints could be encoded
both implicitly within graph transformations as well as explicitly in a constraint language,
but the advantages of such a hybrid approach needs further exploration.

Also, the level of abstraction of the design alternatives being generated deserves
further consideration. In the example, the circuit topologies generated are at a very high
level of abstraction. Clearly models can be captured in the library at different levels of
abstraction. Also, the circuits generated can be less abstract (containing information
about specific off the shelf components, not instances of a generic type of component.)
Future work will extend the presented approach to use attribute grammars [53] to size the

components. Many systems also require the design of controllers to fit with each

topology.
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The automated generation of analysis models and simulations for the structural
models of the design alternatives also deserves further investigation. Graph

transformations have been used to accomplish this sort of model integration.

3.6 Summary

In this section, a method has been presented to define DSLs and generate design
alternatives from the knowledge captured within them. The abstract syntax of a DSL was
defined using a formal metamodel specified using the MOF metamodeling language. A
process was also shown for defining the concrete syntax by extending SysML. It is also
shown that graph grammar can be defined using the abstract syntax of the DSL to
generate design alternatives. The method was demonstrated on the generation of simple

hydraulic circuits.
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CHAPTER 4

CAPTURING ANALYSIS KNOWLEDGE USING MASCOMS!

This section specifically focuses on the capture of analysis knowledge, the
knowledge used to create analysis models from the structural representation of a system.
Analysis models are ubiquitous in current systems engineering practice; they are used for
predicting the behavior of components and systems from different viewpoints. They are
interesting from a reuse perspective because they can be reused not only from one design
problem to the next, but also in multiple design iterations within a single design problem.

One goal of this section is to shift the cost-benefit balance in favor of formal
modeling by reducing the modeling costs. In this chapter, how the use of the concepts of
modularity, reuse, and composition can shift the cost-benefit balance in favor of formal
modeling by reducing the modeling costs is explored. By reusing the models, certain
costs are incurred only once at the time the model is initially formulated and can then be
amortized over multiple reuses of the model.

Common systems engineering problems involve the configuration of well-defined
components into more complex systems. In particular, this chapter focuses on capturing
the analysis knowledge needed to create a system-level analysis model for such a

composed system.

! Based on work by Jonathan Jobe [25]

2 Based on work by Tommy Johnson [28]
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It is interesting to note that while model reuse can enable the cost effective
generation of formal systems engineering models, model reuse itself must rely on formal
modeling: One can only enable reuse by formally capturing the model, its characteristics,
and the contexts in which it can be used.

This section presents a framework for the systematic encoding of analysis
knowledge and the application of this analysis knowledge to generate system-level
analysis models from system-level structural representations. The use of formal models
provides an unambiguous and common protocol for communicating design information
among various stakeholders. It also facilitates the storage of design information in a form
that is computer interpretable making it possible to leverage related work in computer
science. It also promotes traceability throughout the design process by employing models
as a form of documentation.

This framework relies on the definition of several domain specific languages
(DSLs) through the use of metamodels and model libraries to capture the analysis
knowledge about a particular domain. The model libraries are composed of containers
called Multi-Aspect Component Models (MAsCoMs) described in Section 4.3.1. A DSL
is a language that is tailored to describe a particular problem domain. In the approach,
this language is augmented by the specification of graph-based model transformations
designed to transform models of a system-level structural representation into models of a
system-level analysis model. The use of DSLs to define the models has the advantage of
providing designers, who have expert knowledge about a particular domain, with

languages that are not only unambiguous but also easily interpretable. This is not always
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true of more general languages because they are often more abstract. The use of graph-

based transformations also has the advantage of being easily visualized.

4.1 Related Work

The reuse of modular design elements has been addressed by many. Baldwin and
Clark [5] consider the use of a design structure matrix, task structure matrix, and modular
operators to capture modularity in a design. Eppinger et al. [12] also consider that
systems can be decomposed into modules, but note that some systems are integrative in
nature. Integrative systems avoid the overhead of modular interfaces and can therefore
achieve higher utilities [68] but are much less likely to have reusable elements. These
systems are therefore not considered for the direct application of MAsCoMs. Gershenson
et al. [16] take the perspective of modularity as it applies to the entire life-cycle of a
product design. They claim that all components that are of the same modular form (based
on function and interface) will undergo the same life-cycle processes. Using component
trees to decompose structure, the level of the component being viewed and its level of
abstraction have an effect on the view of the modularity of a process in the life-cycle.
This also holds true for the selection of a modular equation model to predict the behavior
of a piece of structure in a component tree. Although MAsCoMs are also mapped to
component structures and processes (defined by aspects), such models of modules must
still be stored for reuse.

The idea of reusing design knowledge by storing the knowledge in a repository
has been proposed in the past. The NIST Design Repository [66] was one of the first

efforts in this area. Further development of the knowledge representation underlying the
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NIST Repository resulted in the Core Product Model (CPM) [14]. The CPM is a high-
level meta-model in which the core elements for representing products in design (i.e.,
form, function, and behavior) are identified and related to each other. The goal of the
CPM is to provide a common foundation for product representation that can then be
further refined as needed, e.g., for engineering analysis [49], for manufacturing process
planning, for functional decomposition [30, 64], or for assembly planning [52].
Similarly, the models developed in this section follow the core relationships defined in
the CPM, but refine them with more specific constructs for system behavior. Here,
behavior is to be interpreted as any type of characteristic that can be predicted based on
the form, distinguishable by many behavioral aspects, including function.

Both the CPM and this section fit into a broader group of research efforts in
which the goal is to define an ontology for design. An ontology is a formal data model
for the concepts and the relationships between these concepts in a certain domain of
discourse — the domain of design in this case. Most of the research in this area shares
the perspective that at the foundation, one should distinguish between form, function and
behavior. Examples include the work by Umeda et al. [69], Kitamura and Mizoguchi
[55], and Horvath et al. [22]. However, system behavior has been the focus of
investigation in only a few previous publications.

The most extensive previous research on characterizing behavior in engineering
analyses was performed by Grosse and coauthors [20]. They organize the knowledge
about engineering analyses models into an ontology, which includes both meta-data (e.g.,
author, documentation, etc. — similar to the Dublin Core [51]) and meta-knowledge,

such as model idealizations and the corresponding justifications. A similar, although less
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extensive, meta-model for engineering analysis models has been developed by Mocko et
al. [37].

Jobe [25] expands this past work to enable reuse of engineering analyses in the
context of large systems engineering efforts. In this respect, two extensions are
important: First, the engineering analyses need to be related to the form (e.g., component
geometry or system architecture) at a fine-grained level [47]. Second, the analysis
models for components and subsystems must be formulated in a fashion that allows for
composition so that a large number of different system topologies can be explored
quickly [45].

Relating analysis models to form has been addressed previously in work on
Design-Analysis Integration (DAI) [47]. Peak et al. relate the parameters of analysis
models to parameters of design models in a declarative, reusable fashion using Constraint
Objects (COBs) or, more recently, using SysML parametric diagrams [49 ]. In this
section, this approach is adopted but only at the level of individual components (see
section on Fine-Grained Design-Analysis Relationships). By establishing the
relationships between design and analysis models at the component level, the
relationships are maintained even when the components are composed into larger
systems, thus further promoting model reuse. To enable composition, additional
knowledge is needed both about the model interfaces and about the composition process,
as is further explained in Section 5. Wallace et al. [70] also consider composable models.
They note that a modular, composable analysis approach allows multi-disciplinary
problems to be broken down into modules that can be assigned to specialized teams—a

benefit of modularity that is also exploited by MAsCoMs.
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4.2 Representing analysis models using a DSL

In this section, a formal language is defined to describe the space of analysis
models that are of interest. As mentioned previously, the view of systems engineering
problems is taken as involving the composition of well-defined components into more
complex systems. Since current practice in systems design relies mostly on integration of
modular components and subsystems, our system-level analysis models are viewed as
models composed of well-defined component models. These component models are
connected through well-defined interfaces. When the space of interest of analysis models
is described in this fashion, several pieces of knowledge appear necessary to formally
capture:

e What are these well-defined analysis models? Which components do
they represent? What are their interfaces?

e Which analysis models are meaningful to connect together? And how
can they be connected together?

A formal DSL needs to be defined to capture these aspects formally in models.
The same approach is taken to defining this DSL as in Section 3.1; an abstract syntax and
concrete syntax are defined to describe this language. The rest of this section describes
the definition of this abstract syntax through the use of a metamodel.

The initial step to defining this domain specific language is defining a metamodel.
A metamodel defines the abstract syntax of a domain specific language; it defines in an
abstract way the constructs of the language and their relationships. It represents the

structure of the language independent of any particular representation or encoding.
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Metamodels need to be formal and unambiguous by having a unique and precise
meaning that is defined by a mapping from the metamodel in a semantic domain. In this
case, this semantic domain is the space of system-level composed analysis models.
Similar to the generic metamodel specified in Figure 3.1, the space of analysis models is
spanned by system-level models composed of component-level analysis models; each
such system-level model containing at least one component-level model. The component-
level models are assumed to be port-based (as previously described they have well-
defined interfaces, or ports); therefore the metamodel is defined to show that each
component-level model can contain any number of ports.

This metamodel is formally expressed using OMG’s MOF similar to the domain
specific metamodel described in Section 3.1.1. A visualization of this metamodel is
shown in Figure 4.1. This metamodel can be extended to more precisely capture different
classes of analysis models, but for the analysis-models presented in this work the

provided metamodel is sufficient.
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Figure 4.1: Metamodel of DSL for analysis models
Defining a DSL also has the advantage of simplifying the specification of graph
transformations because it provides part of the unambiguous language for their
expression. Although system-level analysis models as described can be captured using
purely SysML concrete and abstract syntax, using a DSL has the advantage of expressing

these models in a manner that more concise and often less ambiguous.
The implementation of the concrete syntax is similar to the approach taken in
Section 3.1.2 and further described in Appendix. The metamodel and concrete syntax

only capture the types of constructs and relationships that appear in the space of interest,
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the next section describes how knowledge about particular instances is captured through

the use of a model library containing MAsCoMs.

4.3 Capturing Reusable Analysis Knowledge in a Model Library

4.3.1  Multi-Aspect Component Models

A model library contains useful model fragments and information which can be
composed into more complex models. In this case, the model library contains knowledge
at an instance level about the well-defined analysis models. The multi-aspect component
model (MAsCoM) framework introduced by Jobe [25] is used as the basis for the
specification and organization of this model library.

Several key pieces of knowledge are captured in this model library:

1. An enumeration of the available analysis models.

2. A mapping between the available analysis models and models of the
structural components they model.

3. How the analysis models model the structural components and which
analysis models can be connected together.

The organization of this library takes into account the general view of systems
engineering problems previously presented. Analysis models are organized by component
type because it follows naturally from the definition of a systems engineering problem
and also allows designers to conveniently view and review the library. Whenever a
particular component is chosen, a designer will immediately be able to identify all the

analysis models that have been previously used to analyze that component or describe its
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behavior in a larger system. The components themselves are organized in a taxonomy so
that the user can easily browse from general classes down to very specific instances of
components. At each level, the component model is linked to all the relevant engineering
analysis models.

However, the number of such models could be very large, so that an additional
method of organization is desirable. To facilitate the task of selecting and composing
analysis models further, the analysis models are characterized based on one or more
aspects. In Aspect-Oriented Software Development [67] modularity is achieved by
implementing cross-cutting concerns separately so that they can be woven into a variety
of different software classes. In the context of modeling, rather than weaving models
together, what is important is that one can identify which models are compatible with
each other so that they can be composed into system-level models. To be compatible,
models must characterize the components in a system from a similar perspective, in a
compatible mathematical formalism and in the same executable language. By using a
formal taxonomy of aspects, the semantics of the individual analysis models are defined
in a computer interpretable and searchable fashion.

In the remainder of this section, the details are provided for how analysis models
are organized into MAsCoMs. In addition to discussing taxonomies of components and
aspects, it is explained in detail how the analysis models are tightly linked to each other

through components at a very fine-grained level.
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4.3.2  ALibrary of Components

In design, components or subsystem are selected and defined in an iterative
fashion. First, a functional architecture is defined after which functions are assigned to
components in a physical architecture [54] (or, equivalently working principles and
working structures are identified [44]). The focus is initially on the selection of broad
classes of components that share the same functionality. For instance, to implement the
function of converting electrical to mechanical energy, the broad class of motors could be
identified. In subsequent iterations, this broad class of components is gradually refined
until a particular component from a particular company has been identified. At each step
along the way, analysis models at different levels of abstraction could be used. As the
definition of the components still under consideration becomes more and more detailed,
the corresponding analysis models also need to become more detailed such that the
selection can continue to be narrowed down further.

To support such successive refinement of classes of components down to very
specific individual components, it is meaningful to organize the components in a
taxonomy. Organizing components into a taxonomy has the additional benefit that one
can take advantage of an inheritance mechanism to efficiently associate analysis models
with components. For example, in the taxonomy analysis models associated with parents
would apply also to children. This raises questions of selecting models of appropriate
fidelity and abstraction which are left for Section 6.2.

For the purposes of this thesis, this library of possible components is the same

library as in Section 3.2.2. This library organized into a taxonomy is shown in Figure 4.2.
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One branch of the taxonomy is illustrated in Figure 4.3 for a pump at various levels at

abstraction.

bdd [Package] Component @ ComponentTaxonomyU

<<block>> ]
Hydraulic
raY
= | <<block>>
Pump <<block>>] Tank Cylinder =
Displacement Valve Volume

T A T
<<block>> =

VariableDisplacementPump <<block>> ] <<block>> | <<block>> =]
PressureMargin CheckValve 6Way3PosOpenCenter DoubleActingCylinder
pay
<<block>> = <<block>> =
6Way3PosOCParallel 6Way3PosOCSeries

Figure 4.2: A portion of the library of components organized into a taxonomy
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bdd [Block] Properties [ E} Component_Structural_Knowledge ])

==hlock=>
HydraulicComponent

ZL ==hlock== =

Pump

suction : FluidPort
discharge : FluidPort
inputShaft : Shaft
housing : Mount

==hlock=>
Fixed_Displacement_Pump

ratedPressure | Pressure [N/m*2]

displacement : Displacement [ccirey]
speedAtRatedPressure : AngularVelocity [rad/s)
cost : Currency [Dollar]

mass : Mass [kg)

ZL ==hlock=> =
Vendor_OTS_Pump

parthumber : string = AXD123

ratedPressure : Pressure [Nim*2] = 1E5

displacement : Displacement [ccirev] = 100

speedAtRatedPressure | Angularelocity [rad/s] = 210

cost : Currency [Dollar] = 350
mass : Mass [kg] =10

Figure 4.3: A pump at various levels of abstraction

4.3.3 ALibrary of Aspects

When reusing a model, one needs to recognize which model is needed from
among the many models that may be associated with a particular component. To help the
designer do this, models are characterized using aspects. Since there are a large number
of potential aspects, it is helpful to organize them also in a taxonomy. The taxonomy also
emphasizes that the aspects represent independent directions along which a model can be
characterized. As a result, a model is typically characterized by multiple aspects
simultaneously. For example, a pump model could be characterized simultaneously by

the hydraulic and mechanical engineering disciplines, by the continuous time
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discretization aspect, by the DAE mathematical formalism, and by the Modelica
representation syntax. Therefore it should be composed with valve and cylinder models
sharing the same aspects.

These aspects formally characterize a model and thus succinctly provide the
designer or analyst with the basic information needed to select an appropriate model.
Additional information about the model can be defined as meta-data that is less
structured, such as model documentation, development history, or prior usage scenarios.
Based on the aspects, a designer can be efficiently search or browse through a model
repository to identify the model that is most appropriate for a particular design context.
In addition, when composing multiple component models into a system-level model, the
aspects provide necessary information to determine compatibility between models. For
instance, to be composed, models need to be expressed in compatible mathematical
formalisms and levels of discretization—it is not meaningful to combine a discrete event
simulation model with a partial differential equation model. Having formal
representations of these different aspects available is particularly important when

automating the composition process.

4.3.4  Fine-grained Design-Analysis Relationships

The additional knowledge necessary to capture the relationship between the
parameters and interfaces of analysis models and the parameters and interfaces of the
structural representations in a context-specific instantiation is incorporated in MAsCoMs

with two additional constructs: parameter maps and interface maps.
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Parameter maps bind the parameter values in analysis models to the related
parameters in the corresponding component’s structure model. In the context of systems
engineering, the values for the parameters need to be related to the properties of the
system alternative that is currently being analyzed. Since analysis models have been
associated with components in the component taxonomy, it becomes possible to establish
these relationships also in a reusable fashion.

In addition to parameter maps, MAsCoMs also include interface maps. Interface
maps support the configuration of analysis models for individual components into
system-level analysis models. Similar to the composition of structure models into a
system schematic, analysis models can be configured into networks through well-defined
port-based interfaces [45], as is implemented in tools such as Simulink™ [61], and in
languages such as Modelica [38]. Recently, the ability to compose analysis models has
even become feasible for finite element models [3, 60]. In order to configure the analysis
models, one needs to define how the ports of the analysis models relate to the ports in the
structure models. This is accomplished through interface maps as is further explained in

the next section.
4.4 Implementation in SysML
4.4.1  Defining the Language for MAsCoMs

To make the MAsCoMs outlined in Section useful in the context of systems
engineering, all the concepts and relationships have been defined in the Systems

Modeling Language (OMG SysML™) [65]. Since SysML has been defined specifically
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to support systems engineering, it includes modeling constructs that directly support the
definition of physical architectures and engineering analyses—the main focus of

MAsSCoMSs.

SysML is the modeling language used to represent MAsCoMs. It is a general
purpose language. It provides well-defined visual constructs for modeling system
engineering problems. A profile is used to extend SysML to provide additional
unambiguous syntax for capturing several unique features of MAsCoMs. This profile is

shown in Figure 4.4.

pkg [Profile] MASCoM[ Profileu

<<stereotype>> [
Block
[Class]

-isEncapsulated : Boolean

T
| |

<<stereotype>>
Binding Aspect ModelContext
[Dependency] [Class] [Class]

Figure 4.4: MAsCoM Profile

4.4.2  Aspect Library

The aspects are represented using SysML blocks that are stereotyped using the
<<Aspect>> stereotype from the SysML profile. The library is organized using SysML
packages to group related aspects by type. Additionally, SysML specialization

relationships are used to order the aspects from most abstract to least abstract.
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443  Establishing Fine-Grain Mappings

To describe how a specific analysis model relates to a component structure model,
a Model Context is defined. The knowledge captured by fine-grain mappings is encoded
in this Model Context. Just like aspects, Model Contexts are also stereotyped with the
<<Model Context>> stereotype from the MAsSCoM profile making them easy to
recognize and computer interpretable. A different model context is needed between every
corresponding component and analysis model.

The idea of mapping analysis models to structure models in a specific context was
developed previously by Peak et al. [4]. They introduced Context Based Analysis
Models (CBAM) to bind the parameters of an analysis model to values in a structural
model in the context of a specific analysis. If the analysis model is defined to be
sufficiently general, it can be reused in multiple contexts. Here, it is recognized that, for
a particular component, such bindings between analysis models and structure models
often remain the same irrespective of how the component is used within a larger system.
It therefore makes sense to establish these bindings at the component level so that the

mapping becomes reusable.

Parameter Maps

Model parameters from the component model are linked to parameters of
the analysis model using bindings that are captured on a parameter map. These bindings
are made using binding connectors which are a standard construct of the SysML
language. They can be combined with SysML parametrics and constraints to capture

algebraic relationships between the parameters. An example of a parameter map is shown
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in Figure 4.5. In this parameter map, the parameter describing the mass of a structural

load is mapped to a corresponding mass parameter in a corresponding analysis model.

par [Block] ModelContex{ ModelContextU

____________ <<block>>
| <<block>> _ [ <<external>> = [
| componentModel : TranslationalLoad | analysisModel : SlidingMass |

|| <<Dimension>>

<<Dim ensi0n>>|E |
I mass : Mass i

m : Mass |

Figure 4.5: Parameter map between a structural model of a translational load and an

analysis model

Interface Maps

Just as parameter maps bind model parameters, interface maps are used to capture
the mapping between the interfaces of the component and analysis models. The mapping
between individual interfaces is captured using stereotyped SysML dependencies. An

example of an interface map is shown in Figure 4.6.
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ibd [Block] ModelContext] ModelContextU
—
<<block>> |
l componentModel : TranslationalLoad [
r =]
flange : Flange
I
| <<Binding>>
|
I
flange_a : Flange_a
e .
[ <<block>> = |
<<external>> flange_b : Flange_b
| analysisModel : SlidingMass

Figure 4.6: Interface map between a structural model of a translational load and an

analysis model

4.5 Automated Composition of Analysis Models

In this section, an approach is presented for composing analysis models with
appropriate aspects from a representative model of the systems structure along with the
knowledge captured within MAsCoMs. The approach relies on the use of graph
transformations applied to the structural model to generate an appropriate analysis model.

To simplify this process, the graph transformations use the abstract syntax defined
by the domain specific language defined in Section 4.2 to capture these composed
system-level analysis models. The abstract syntax of this language is defined by the

languages formal metamodel.
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451 Representing the Structural Model and Context

The system-level structural model is represented using SysML. As mentioned
previously, the structural model is a system composed of modular component (or
subsystem) models. These component models are specializations of models in the
component library. To capture this relationship, SysML blocks representing the
component models are linked to models in the taxonomy using SysML specialization
relationships.

The system-specific component models inherit the appropriate interfaces from the
models in the component taxonomy. These models are connected via these appropriate
interfaces; these connections are maintained when the corresponding analysis model is
generated.

It is also important to capture exactly which analysis model should be composed
from the defined structural model. In general, a single structural model may translate to a
large number of possible analysis models. To capture this relationship between the
structural model and the desired analysis model, an analysis context is used. An analysis
context consists of a set of aspects as well as a simulation template. These aspects are the
MASsCoM aspects organized in the aspect taxonomy; when the corresponding system-
level analysis model is composed; component-level models classified with the
appropriate aspects are used.

The simulation template prescribes the simulation parameters and specifies the
variables of interest. The simulation template contains the information needed to execute

the analysis model such as simulation time and solver information.
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45.2  Graph Grammar

In order to automatically create an appropriate system-level analysis model, a
graph transformations is used to transform from a system-level structural model.

This graph grammar is composed of two distinct sets of transformations; the first
set maps from the structural model to the domain specific abstract representation of the
analysis models. The second set maps from this abstract representation back to a concrete
representation of the analysis model in SysML. The first set is described in this section,
while the second set is presented in the following section.

The first set of transformations captures the relationship between the system-
specific structural models, the appropriate MAsSCoMs, and the corresponding analysis
model. In part, this first set can be thought of as also capturing the composition
relationships present between analysis models.

To simplify the presentation, this first set from the grammar is decomposed into
three distinct transformations each applied to a different level of the structural model. The
first transformation creates a new system-level analysis model that is consistent at the
system level with the original structural model; i.e., the transformation creates a system-
level analysis model that is composed of the models with the same component types
present in the structural model. The second transformation maintains consistency at the
component level; it creates the parameters and interfaces for each analysis model. The
third transformation creates the appropriate connections between interfaces. These three

transformations are illustrated in Appendix C.
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A triple-graph grammar (TGG) styled approach is taken to defining theses
transformations using OMG’s Query/View/Transform (QVT) standard. TGGs and QVT
standard have been shown to be equally expressive [19]. A correspondence metamodel is
used to capture the mapping between the domain specific MOF metamodel, that defines
the language for our analysis models, and entities from the SysML metamodel. More
precisely, instances of this correspondence metamodel (correspondence graphs) define a
mapping between representations of structural models in SysML’s concrete syntax and
representations of analysis models in our domain specific abstract syntax.

Graph transformations are classically defined using a pre-condition, the part of the
graph that is matched, and a post-condition, the replacement graph. The knowledge
captured within MAsCoMs provides a component of both the pre-condition and post-
condition.

For the system-level transformation, the pre-condition is the structural model and
its simulation context along with the appropriate MAsCoM templates. For each
component within the structural representation, a matching analysis model is instantiated
within the system-level analysis model. The appropriate analysis model is determined by
comparing the aspects of the simulation context with the aspects classifying each analysis
model. Currently, graph-based pattern matching is also used to compare these two sets of
aspects although this is likely not the most efficient implementation.

The component-level transformation insures consistency of component model
parameters and interfaces. Therefore the component-level transformation, the interface
and parameter maps provide the majority of the information. The appropriate model

context has already been selected in the system-level transformation so the necessary
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interfaces and parameters are generated using the interface and parameter maps as
templates. This is first accomplished by replicating the parameters and interfaces of the
analysis model in the library. The library models interfaces along with the previously
mentioned parameter maps provide the templates for this transformation.

The last transformation is at the connection-level; it generates the connections
between interfaces of the component-level analysis models based on the connections
between the interfaces of the component models in the structural representation.
Currently only a single component-level transformation is defined, but in general a large
number are needed to capture the vast differences in connections between different
analysis models.

There are several considerations when defining compositions between interfaces.
In general, we assume that structural interfaces connected using SysML connectors
correspond to connecting the interfaces of the analysis model with connectors. But, for
several types of analyses this assumption does not hold. Simpler cases are easily included
in this presented definition. For example, if the analysis models being composed require
only information about a models position or no connectivity information at all (for
example mass, moment of inertia) this is easily captured using the presented framework.
Capturing compositions where additional structure is required, such as replacing
connection configurations that result in interfaces having cardinality not equal to one with
nodes forcing the interfaces to have a cardinality of one, is more difficult because these
unique compositions need to be captured unambiguously. It is likely that such
compositions can also be captured in the form of templates and graph transformations

similar to the implementation for interface and parameter maps.
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Currently these transformations are applied in a batch-type operation; an entire
system-level analysis model is composed through the application of the transformations.
Future work will investigate how the use of correspondence objects will allow
incremental updates of the system-level analysis model from modifications to the

structural model.

4.6 Example: Hydraulic Circuit

In this section, the approach presented in this chapter will be applied to the hydraulic
circuit example. A structural representation of the hydraulic circuit is transformed into
analysis model. In this case, the analysis model is a Modelica continuous dynamics
model. The analysis model is represented in SysML similar to the structural

representation; this representation is solver-independent.

4.6.1  Defining the Model Libraries

Defining the structural model library is discussed in Section 3.3.3; it consists of
common hydraulic components organized into a taxonomy. The analysis model library
contains references into Modelica models that can be composed together and simulated to
model the behavior of a hydraulic circuit. The creation of the analysis model library is

discussed in more detail in Section 5.4.1.

4.6.2  Creating Model Contexts and Establishing Fine-grain Relationships

Before a composed analysis model can be created, fine-grain relationships must

be established between the structural models and analysis models. This is accomplished
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using Model Contexts along with interface and parameter maps as discussed in Section
4.3.4. For each analysis model of interest, a Model Context is created. Within this Model
Context, each analysis model is linked to a corresponding structural component model.
Also, each analysis model is related to aspects from the aspect library using dependency
relationships. The Model Context for the “ConstantDisplacementPump” analysis model is
shown in QQ. The analysis model is related to the structural representation for a Fixed
Displacement Pump. In this example, the ConstantDisplacementPump analysis model is
labeled with the aspects “Dynamic”, “DAE”, and “Modelica.” This characterizes the
analysis model as dealing with the dynamic behavior, being defined using differential -

algebraic equation, and in the Modelica language.

bdd [Package] FixedDisplacementPumjj ModelComext]J
<<block>> =
<<ModelContext>>
ModelContext
<<block>> ]
<<Aspect>>
Dynamic
+analysisiMode -
<<block>> -
<<external>>
ConstantDisplacementPump
<<block>>
T e <<Aspect>>
=
\ DAE
AN
b
N
A
<<block>>
<<Aspect>>
Modelica

Figure 4.7: Model Context for Constant Displacement Pump Model
After the Model Context has been created, a parameter and interface map is

created to capture the fine-grain relationships. The parameter map for the
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ConstantDisplacementPump analysis model is shown in Figure 4.5. The “Dconst”
parameter of the analysis model is linked to the displacement of the fixed displacement
pump. The interface map is shown in Figure 4.6. The interfaces of the analysis model are

linked to the interfaces of the fixed displacement pump.

par [Block] ModelContext] ModelContext]J

O —

<<block=>> |
componentModel : FixedDisplacementPump

I
[
- <<block>>
| Displacement | <<Aspect>> =
L

e | : Dynamic
=7
-
P
-
-
-

| <<block>> = I <<<7-\bs|°:§t>>>> =
| <<external>> [ — = .m Z Ii
| analysisModel : ConstantDisplacementPump - s Modelica

<<Dimension>> =
| Dconst : Volume

- . <<block>>
| ______________ <<Aspect>> g
: DAE

Figure 4.8: Relationship between pump structural model parameter and pump analysis

model parameter
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ibd [Block] ModelContext ModeIContextU

I <<block>> = |
<<external>>

| analysisModel : ConstantDisplacementPump |
ry ry ry
tonge o Fhange.s portt Eldaport ponp Ehicpart
[ I |
| <<Binding>> | <<Binding=> | <<Binding>>
I I I
I

|
. . LowPressureFlowPort
: Flange

: HighPressureFlowPort

| <<block>> '
| componentModel : FixedDisplacementPump |

Figure 4.9: Relationship between pump structural model interfaces and pump analysis

model interfaces

4.6.3  Structural Model and Context

Once each of the analysis models has been captured in an appropriate Model
Context, the captured knowledge is reused to automatically transform from structural
representations into analysis models. First, a structural representation of the system needs
to be defined. Here, a model of the structural representation of a random hydraulic circuit
generated using the synthesis method presented in Chapter 3. This circuit is shown in
Figure 4.10. A context is also defined; it captures that the structural model of interest is
the hydraulic circuit and the composed analysis model should have certain aspects,

namely the “Dynamic”, “Modelica”, and “DAE” aspects.
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ibd [Block] Circuit] Circuitu

<<block>>
: ConstantSpeed
(]

powerOut : Flange
: Flange

<<block>>

: FixedDisplacementPump
1]

I_—,_

: 6Way3PosOCTan

: Tank

dem
A

-+ FlowB : FlowPort

: DoubleActingCylinder
0]

Lv | Lv |

IPower : Flange
i

L |
: Loadl

Figure 4.10: Structural model of simple hydraulic circuit.

4.6.4

Once the structural representation and context have been defined, a composed
analysis model is generated. This composed model is shown in Figure 4.11. The
composed analysis model has the same layout as the structural representation. All of the
structural models of the components have been replaced with appropriate analysis
models. Then the interfaces are connected in appropriate fashion. Although not shown,
the parameters are also appropriate mapped. This composed analysis model can be

transformed into a simulation model and simulation; this will be covered in the next

chapter.

Composed Analysis Model
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ibd [Block] Circuit] Circuit]J

=
: SV6_30CTandem

v

=

valve
A

: ConstantSpeed
M
flange : Flange_b

flange_a : Flange_a port_b : FluidPort

A
L] <<block>>
<<external>>
: ConstantDisplacementPump
2]

<<block>>
<<external>>

: DoubleActingCylinder
i

uidPort flange_a : Flange_a

=

port_a : F

Lv ]

=

: SlidingMass

: CircuitTank

Figure 4.11: Composed analysis model for simple hydraulic circuit

4.7 Discussion

The approach presented uses a graph grammar to capture the composition rules
needed to connect together component-level analysis models. Several assumptions are
made during this process. Several of these assumptions are implicitly captured within the
graph grammar; also the grammar can be extended remove or change some of these
assumptions. In the example, assigning causality to the model is left to an analysis or
simulation tool. This is not true of all such tools and the graph grammar could be
extended to implement a causality assignment algorithm.

A more difficult assumption to relax is that each component of the composed

analysis model must be classified with the same aspects. This assumption is valid in the
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example presented, but for federated analysis models it is not applicable. Federated
models may need to be executed by multiple simulation tools. How to capture possible
exceptions deserves further investigation. Also, currently the aspect matching algorithm
is implemented using simple graph pattern matching. For more complex model libraries,
this method will likely become inefficient and improved implementation is worth
considering. Also, for federated analysis models an execution manager is required,

although several such tools exist (e.g. ModelCenter [33]).

4.8 Summary

In this section, the feasibility of capturing analysis knowledge using DSLs and
graph grammars is addressed. The definition a DSL for describing composed-analysis
models is described. Reusable model fragments are captured within contained called
MAsCoMs and placed into model libraries. Graph grammars are defined to compose
analysis models from structural representations. The method is then demonstrated on a
simple example involving the generation of an analysis model from a structural

representation of a hydraulic circuit
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CHAPTER S
GENERATING SIMULATION MODELS FROM ANALYSIS

MODELS?

This section describes an approach to generating Modelica simulation models
from analysis models in SysML. Modelica simulation models are used as a representative
example for simulation models in general. When creating a formal approach for
representing continuous dynamics (CD) in SysML, Modelica provides a strong
foundation. Modelica has emerged as the language of choice for expressing continuous
dynamic system behavior. It is better structured and more expressive than most
alternatives such as VHDL-AMS [8] or ACSL [36]. In addition, both SysML and
Modelica are similar in that they use base modeling elements that adhere to the principles
of object-oriented modeling. Both languages also encourage model reuse through acausal
equation-based modeling. Unfortunately, enough differences exist such that a direct one-
to-one mapping is not possible. Since SysML is intended to be a general modeling
language, some of the specialized semantics of Modelica do not have a direct equivalent
in SysML. To overcome these differences, our approach has been to find a good balance
between converting some implicit Modelica semantics into explicit constraints in SysML

or, when that is not possible, extending the SysML constructs through stereotypes.

2 Based on work by Tommy Johnson [28]
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While SysML is a valuable integration tool, much of that value could be detracted
if engineers must manually transform domain-specific models into SysML and vice-
versa. In the case of continuous dynamics models, an approach is needed for
accomplishing automated, bidirectional transformations between the SysML and

Modelica languages.

5.1 Related Work

The need to describe system behavior in terms of equations or constraints has been
previously recognized in the work on Constrained Objects (COBs) [48, 49]. COBs
provide both a graphical and lexical representation of algebraic relationships that can be
used to tie design models to analysis models in a parametric fashion. These COBs
recently served as the basis for the development of the SysML parametric diagrams [42].
By establishing a mapping between COBs and SysML, the integration and execution of
engineering analyses (such as structural finite element analyses) within the context of
SysML has been demonstrated [46]. This section extends this past work on COBs by
focusing on the modeling and simulation of the continuous dynamics of systems as
defined in Modelica models.

Recently, Fritzson and Pop [50] have worked on the integration of UML/SysML
and Modelica to provide support for modeling and simulating continuous dynamics.
They have created a UML profile called ModelicaML that enables users to depict a
Modelica simulation model graphically alongside UML/SysML information models. The

ModelicaML profile reuses several UML and SysML constructs, but also introduces
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completely new language constructs. Such constructs are the Modelica class diagram, the
equation diagram, and the simulation diagram.

Nytsch-Geusen [41] developed a specialized version of UML called UML". This
version is used in the graphical description and model-based development of hybrid
systems in Modelica. The author presents hybrid system models as Modelica models that
are based on DAEs combined with discrete state transitions modeled with the Modelica
statechart extension. Using a UML" editor and a Modelica tool that supports code
generation, Modelica stubs can be automatically generated from UML" diagrams so that
the user must only insert the equation-based behavior of the system in question. In this
chapter, the capabilities of ModelicaML and UML" are further extended by
demonstrating the integration of continuous dynamics models with other SysML
constructs for requirements, structure, and design objectives, and by demonstrating the

translation between SysML and Modelica through the use of TGGs.

5.2 Domain Specific Language for describing CD Models

In order to transform between the system-level analysis models described in
SysML and models that can be simulated described in the Modelica simulation language,
a DSL approach is once again taken. This transformation can be viewed as taking models
described by different concrete syntaxes but similar abstract syntax. The essence of the
two models is the same; from the stand point of a domain-specific language both capture
the same pieces of knowledge.

By explicitly capturing the mapping between the concrete and abstract syntaxes,

model-driven software development methods are used to simplify the creation of
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computer-code to execute the transformation. The same approach as in Section x is taken
to map between the concrete syntax in SysML into an abstract syntax defined by the
explicit metamodel. A tool integrator is then implemented to generate code in the
Modelica textual language. This step would not be necessary if a Modelica tool was

capable of simply executing the abstract syntax.

5.2.1  Abstract Syntax

To define the abstract syntax of this domain specific language, the Modelica
metamodel is formally and explicitly defined using assumptions about the structure of the
implicitly implemented metamodel from Modelica tools as a guide. (In this thesis, the
Modelica tool of chose is Dymola [10]). For the purposes of simply demonstrating the
feasibility and applicability of the presented method, the explicitly defined metamodel
remains fairly simple and does not exhaustively cover every construct in the Modelica
language. This metamodel is once against specified in MOF; a simplified visual

illustration is shown in Figure 5.1.
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Figure 5.1: Simplified Modelica metamodel represented in MOF.

5.2.2 Concret

e Syntax

As in the previously defined DSLs, a concrete syntax is needed to completely

specify the DSL. In this case, there are two separate concrete syntaxes: one defined using

the graphical constructs of SysML as a foundation and the other being the Modelica

textual language. The Modelica language is specifically designed for representing

continuous dynamics models so a clear mapping exists between it and the defined

abstract syntax. This is not the case for SysML because SysML is a more general purpose

language.
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5.2.3  Representation of Continuous Dynamics models in SysML

When defining the concrete syntax for representing continuous dynamics in
SysML, Modelica is used as the foundation because of its well defined structure and sue
of object-oriented modeling concepts. Although there is argument over exactly which
SysML constructs best fit the description of continuous dynamics systems, blocks are
chosen here to represent Modelica models as in [26]. SysML ports are used to describe
the interfaces of the model and SysML value properties

Because the DSL approach facilitates the formal modeling of the mapping
between the abstract syntax and possible concrete syntaxes, the particular chose of
SysML constructs is unambiguously defined as well as easy to adjust.

Johnson also shows how the majority of the constructs present in Modelica can be
analogously represented in SysML to allow for the creation of fully detailed “white box”
continuous dynamics models as well as “black box” models which act as references for
existing, external Modelica models. The approach of using “black box” models is taken
here because it is sufficient for the examples presented. In the “black box” approach
models in SysML that relate to fully specified models defined using the textual Modelica
language. These models can be thought of as pre-specified library models which are a

common feature of most domain-specific simulation tools.
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5.3 Transforming Between SysML and Modelica Models

Many methods exist for implementing transformations between various modeling

languages such as the use of the QVT or TGG standard as mentioned in Section 2.2. An

approach similar to Section 3.1.2 is taken here:

1.

The abstract syntax of the domain specific language is captured in a MOF-
compliant metamodeling tool as described in the previous section.
MOFLON is used as the meta-modeling tool because of its code
generation capabilities.

A SysML profile is defined within the SysML modeling tool. In this case,
the profile is specifically designed to facilitate the representation of “black
box” models in SysML. This profile is shown in Figure 5.2. Stereotypes
are also defined to capture references to a particular external model
library.

MOFLON is used to generate Java Metadata Interface (JMI) based code
that implements the metamodel.

Query/View/Transformation (QVT) based transformation rules are also
defined in MOFLON to map between the stereotyped SysML profile and a
specific instance of the metamodel. This serves the role of a translator or
compiler between the concrete syntax and the abstract syntax.

MOFLON is used to generate JMI code that implements these

transformations.
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6. The code generated by MOFLON is combined with a JMI-compliant
SysML tool. This extends the tool to provide the capability of authoring
models defined by the DSL.
7. A tool integrator is implemented to create Modelica textual code from the
abstract syntax.
A SysML model is stereotyped using the profile. It is then translated into an
abstract representation by executing the JMI code. This abstract representation is an

abstract syntax graph; this graph is the abstract representation of the defined model.

pkg [Profile] Modelica[ [ Library ]J
=
Block
[Class]
<<stereotype>> <<stereotype>>
external simulation
[Class] ib [Class]
- ibrary ; —
+ref : String [1 +startTime [1] = 0
+url ; String H [Class] +stopTime [1] = 10
+library : Block [1] +analysis : Block

Figure 5.2: Profile for capturing "Black Box" models

5.4 Example: Hydraulic Circuit

This section describes the creation of a simulation model that can be compiled

and executed by a Modelica simulation tool such as Dymola.
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5.4.1 Referencing models in a model library

As described earlier, useful Modelica models are captured in a model library
described in SysML. Each model in the model library is a “black box” model; it
references an existing model outside of the SysML tool. In order to create a “black box”
model and therefore reference an external model, several pieces of information are
needed. These are captured within the <<Library>> and <<External>> stereotypes. The
<<Library>> stereotype requires the “url” tag where information pointing to the location
of the library is stored. The <<External>> stereotype requires the “ref” tag which stores
information about the location of that particular model within the library. The stereotype
also needs either the “library” tag which points to the associated library or a “url” tag.

A SysML block representing the fluid power library and a SysML block
representing the “ConstantDisplacementPump” model is shown in Figure 5.3. The fluid
power library block has a “url” tag pointing to the location of the library. The
“ConstantDisplacementPump” model uses the “ref” tag to describe the location of that

model within the fluid power library.
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bdd [Package] Modelica[ @ Untitledl4u

<<block>> —
<<library>>

FluidPowerLibrary

<<library>>
url = "C:\...\Dymola\FluidPower\package.mo"

ConstantDisplacementPump
<<external>>

library = =]

Dconst : Volume = 1le-5

Figure 5.3: Pump model from library along with abstract model of the library

5.4.2  Generating Modelica code from an Analysis Model

The composed analysis model used as an example is the one created in the
previous chapter. This model is shown in Figure 5.4. To create a simulation model from
this model, some additional knowledge is required. In this case, because it is a dynamic
simulation, the start and stop time is required. This is captured in a SysML block
modeling the simulation. This is shown in Figure 5.5. The resulting code is shown in

Figure 5.6.
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bdd [Package] Analysis [ @ sim bddu

<<simulation>> N
<<block>>

Simulation
<<simulation>>

analysis = =]

Figure 5.4: Simulation model

ibd [Block] Circuit] Circuit]J

=

=

valve : SV6 30CTandem

v

: ConstantSpeed
(V]
flange : Flange_b

port_b : FluidPort
o]
<<block>>
<<external>> =
: DoubleActingCylinder
i

flange_a : Flange_a
A
Ll <<block>> =
<<external>>

. ConstantDisplacementPump
4]

port_a : FluidPort flange_a : Flange_a
A
Lv |
O =
: CircuitTank o SIS

Figure 5.5: Composed analysis model
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class Circuit
Modelicae Mechenics. Translaetional . 5lidingMass slidingMasas;
Modelice.Mechenics.Rotetional .ConstantSpeed constantSpeed;
FluidPower.Components.Cylinders . DoubklefctingCylinder doublelctingCyl;
FluidPower.Components.Valves DirectionalValves.5Ve 30{Tandem své_octandem;
FluidPower.Components . MotorsPumps. ConstantDisplacementPurnp conDisp;
FluidPower . Components . Volumes  CircuitTank circuitTank;
equation
nnect (doublelotingCyl _flange_a, slidingMass.flange_a);

connect (ave_octandem B, doubleleotingCyl_port b):
connect (ave_octandem B, doubleleotingCyl_port a);
connect (avé_octandem.PZ2 in, conDiap.portD);
connect (avé_octandem.Pl_in, conDiap.portD);
connect (constantSpeed._flange, conbDisp.flange_a);
connect (conDisp.portl, circuitTank.port_a);
connect (3vé_octandem.Tl out, circuitTank.port _b);

end Circuit;

Figure 5.6: Code generated from composed model

5.5 Summary

In this section, the feasibility of capturing creating simulation models from
analysis models is addressed. Modelica is used as the representative language. A DSL is
defined to capture the simulation models. Reusable model fragments are referenced from
external libraries. The method is demonstrated with the generation of Modelica code

from an analysis model of a hydraulic circuit in SysML.

88



CHAPTER 6

DISCUSSION AND CLOSURE

In this thesis, the Model-Driven Software Development concepts of formal DSLs
and model transformations are applied to the capture of design knowledge. This final
chapter reviews the overall approach, discusses limitations, and highlights possible future

work.

6.1 Review and Evaluation

The motivation behind this thesis is an open-ended question concerning the
efficient representation of design knowledge. Throughout this thesis, concepts from
Model-Driven Software Development, mainly the use of domain specific languages and
graph-based model transformations, have been used to capture various pieces of design
knowledge. The examples of design knowledge used throughout are representative;
therefore it is likely that the prescribed approach can be applied to a wider range of
problems (not just the design of toy examples or hydraulic circuits). But from the work
presented here, it would be bold to claim that all types of design knowledge could be
formally captured in this manner.

The use of formal models represented using formal domain specific languages
throughout the design process promotes traceability, transparency, consistency, and
automated transformation. The presented approach facilitates the definition of domain
specific languages and therefore likely better enables designers to apply MBSE to

complex systems. The major problem with the work presented in this thesis, however, is
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that it has not been tested on the target audience: systems and disciplinary engineers
working in a variety of domains. One can assume that through improvement of
implementation details this approach to specify DSLs could be valuable for the target
audience; however, that value has yet to be confirmed.

The effectiveness of the presented approach in capturing the prescribed design
knowledge about the example problem is encouraging. Although there are clearly
limitations, as discussed in each chapter and further addressed in the next section, none
seem to be the results of an inherent and fundamental flaw in the approach. Therefore, it
seems reasonable to claim that using such an approach to capture design knowledge is

generally feasible.

6.2 Limitations

The limitations of the presented approaches to capturing specific design
knowledge have been presented in each individual chapter. This section discusses high-

level limitations to capturing design knowledge in general using the presented approach.

Expressivity of the Metamodels

Throughout this thesis, the metamodeling language used is OMG’s MOF; MOF is
designed to be an effective meta-language for models that are inherently object-oriented
or are based on object-oriented principles. The DSLs introduced throughout have been of
an object-oriented nature, but this may not be the case to capture knowledge in certain

domains. But since the trend in systems engineering is towards modularity and other
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object-oriented concepts in designed systems, a majority of languages for describing

aspects of these systems are also objected-oriented in nature.

Ease of Using Graph Grammars

Graph grammars are used throughout this work to capture knowledge. One
weakness of this approach is that some of the knowledge being captured within the graph
grammars is implicit. A particular modification rule might be designed to insure a certain
component is also connected to another component, but it does not explicitly capture, for
example, whether these two components must always be connected. Also, creating
transformations rules that implicitly capture certain knowledge can become tedious and
difficult. How this complexity presents itself deserves further consideration, although
graph grammars have been used for a wide variety of applications as mentioned

throughout the thesis.

Fidelity/Abstraction

Also, throughout this thesis models are assumed to be at an “appropriate” level of
abstraction or fidelity when being composed. It is also not clear if is possible to rate a

model’s “fidelity” or “level of abstraction” using an absolute and unambiguous scale.

Scalability

Applying graph transformations to increasingly complex systems models can
become very computational expensive. There have been a number of case-studies using
graph transformations applied to very complex software systems, and in this thesis this

computational expense never presented a problem.

91



6.3 Future Work

Obviously, it would be prudent for future work to focus on addressing the
limitations presented in the previous section. Also, the work presented here has only
attempted to establish the feasibility of using the presented methods .One obvious
extension is the comparison of the work presented here with other approaches to capture
design knowledge. Such a rigorous comparison is likely to shed more light on the
question of how should design knowledge be captured, versus simply how it can be
captured.

Throughout the work presented in this thesis, only a single application domain is
considered. Transformations are used to transformation from one DSL to another, but
interactions between models represented using different DSLs is not considered. Also,
interactions with other domains are largely abstracted. For example, the interaction
between the hydraulic circuit and the corresponding mechanical structure is significantly
simplified. With the DSL approach, it is likely that both of these domains would be
described using different DSLs. How models represented using such DSLs would interact
deserves consideration.

Also, completing the loop shown in the high-level view on Figure 1.1 by using an
optimization algorithm is left for future work. The use of an evolutionary program with
the synthesis approach is demonstrated in this thesis but to truly complete the loop an
attribute grammar [53] or similar method is needed to provide appropriate initial sizing to
the components. Else, the applied optimization algorithm may generate hydraulic circuits

with very poor parameters which become difficult to simulate.

92



APPENDIX A

GLOSSARY OF TERMS

Abstract syntax — describes the “essence” of the model; the abstract syntax

representation is independent of any particular concrete representation

Concrete syntax — describes how a model can be represented concretely. For
example, with programming languages the concrete syntax includes punctuation, etc. that

is not included in the abstract syntax. A concrete syntax can be either textual or visual.

Domain-Specific language — a language specifically designed for describing a
particular problem domain. Defined by an abstract syntax as well as at least one concrete
syntax. In general, a domain-specific language is mapped to a specific domain to give it

semantic meaning.

Graph — A collection of nodes and edges. For the purpose of this thesis, the nodes

and edges are generally labeled. Also, the edges are directed.

Metalanguage — a language for describing a metamodel, just as a metamodel

describes a model.
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Metamodel — language for defining models, a metamodel provides the available
constructs and relationships that can be used to describe a model. A particular model is an

instance of its metamodel.

Meta-circularity — the use of a metalanguage to define itself. This allows the

practical definition of metalanguages.

Model-Based Systems Engineering — The use of models instead of documents to

describe all aspects of the systems engineering process.

Model-Driven Architecture — Pre-cursor to Model-Driven Software Development

in computer science; model-driven/based architecture relies on

Model-Driven Software Development — From computer science, models are used

to automate the generation of code. This is a shift from the more conventional approach

of using models to constitute documentation.

Modeling Language — any language that can be used to express information or

knowledge in a structure that is defined by consistent set of rules.

Profile — A light weight extension mechanism that SysML shares with UML; a

profile can be used to quickly extend either UML’s or SysML’s metamodel.
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SysML — Object Management Group’s Systems Modeling Language. It is a

standardized general-purpose visual modeling language for systems engineering.

Syntax — The rules and principles that govern the structure of a language

Semantics — the meaning of a language

UML - Object Management Group’s Unified Modeling Language. It is a

standardized general-purpose visual modeling language in the field of software

engineering.
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APPENDIX B

SYNTHESIS GRAMMAR

The graph grammar used to create design alternatives for the hydraulic circuit
example is presented in this appendix. As mentioned in Section 3.3.2, these
transformations reflect actions designers might take to create a hydraulic system. The
presented graph transformations:

e Select a random component from the model library
e Add an instance of a cylinder to the circuit and configure it to actuate a load.
e Add an instance of a directional valve to the circuit to control a cylinder.
e Add an instance of a pump to the circuit to provide flow to the directional
valve.
e Add an instance of a tank to the circuit to provide flow to instances of pumps.
These transformations are implemented using MOFLON and executed using an order

determined by traversing the decision graph.
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SysML2S ynthesis:: getCompanent (IbBlodk: Block, stereotype: Siring, component: Component, previousCompanent: Component): Companer
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Figure B.1: Graph pattern for matching random component models in model library
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SysML2Synthesis: :addCylinder (circuit: Creuit, libBlock: Block): Intege
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Figure B.2: Graph transformation for adding a cylinder to the hydraulic circuit
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SysML2Synthesis: :addDirecionalV alve (circuit: Circuit, libBlock: Block): Intege
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Figure B.3: Graph transformation for adding a directional valve to the hydraulic circuit
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SysML2Synthesis: :addPump (circuit: Crcut, ibBlock: Block): Intege
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Figure B.4: Graph transformation for adding a pump to the hydraulic circuit
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SysML2S ynthesis: :addTanlk (circuit: Circuit, ibBlock: Block): Intege

circuit

circuit | g
~
it it
e ~ W Edmbonert_port
4 _circu _:umpuner}\msne “Po
senent \UQ ortZ :ConnectElement
port :ConnectE lement epppatan [FSERE—
BC1:8 asicConnedor
type =="LowFressureM owPort" =

owPressureFowPort”
—out”

bype =
direction

companent

¥ A_component_port N\ &

port connechestor
~

t

LI um|
T

circuit | oo tank

cireutt companent
4_circug_componerit. A_component_pc
aonent Tweate: port

|:cn @i\ .

component
¥ A_component_port
port

port2 :ConnectE lement

nhee
cfeate

A2
cannsdgpnectst

port :ConnectE lement

ERNRRGH

type LowPressureH owPort”
direction=="out" 2

BC1:BasicConnedor

port
& A conhector_port
eannector

BC:BasicConmedor

end ]

Figure B.5: Graph transformation for adding a tank to the hydraulic circuit
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SysML2Synthesis::addConnecions (circuit: Creuit, libBlock: Block): Intege
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Figure B.6: Graph transformation for connecting similar directional valves
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APPENDIX C

ANALYSIS MODEL COMPOSITION GRAMMAR

The three graph transformations used to create a composed analysis model from a
structural representation are presented in this appendix. The first transformation creates a
new system-level analysis model that is consistent at the system level with the original
structural model; i.e., the transformation creates a system-level analysis model that is
composed of the models with the same component types present in the structural model.
The second transformation maintains consistency at the component level; it creates the
parameters and interfaces for each analysis model. The third transformation creates the

appropriate connections between interfaces.

103



ownedElement

A_ownedElement_owner

owner 1

Element
=refarence

appliedStereotypelnstance : InstanceSpecification
awnedElemert : Element [*]
owner : Elemert =

1

Generalization
areference=lT

T

definingFeature : StructuralFeature

Slot

wreferences|

value - ValueSpecification [*] =

ninginstance : Instan ion

superiflass | *

Block
wreferences|

class
superClass - Block [*] " =

Constraint
=reference

InstanceSpecification
f =0
— H™ NamedElement
_instanceValusOfinstance  Instancealue [*] zreferences
classifier : Classifier [*] e I
slot - Slot [*] - name : String \ ification
qualifiedName : String |- areference
owningProperty : Property
owningSlot : Slot = f\_}k—“ﬁ
Package TypedElement LiteralString
areferences[] W areference; zreferences]
Classifier type: Type - wvalue : String =
areferencesl
_generalizationOfGeneral - Generalization [*]
_generalizationOfSpecific : Generalization [*]
inheritedember : NamedElement [*] g
Property
Requirement areference:
cref =M
freenee A_class_superClass  |StructuralFeature default : String

zreferences

InstanceValue
areference=[T

instance : InstanceSpecification -

defauftValuz @ ValueSpecification -

zimparts

ConnectableElement
from IntemalStructures

Figure C.1: Partial SysML metamodel used when defining transformations

104




SysMLIMullifspect:imap (contextBlock: Block): Vie

A AnpeinedE|ement_owner
ownedE g MifhedElement o o -

_typedElementOfType
¥ A_type_typedElemen
type

systemBlock :Blodc

r_ingtances pecfication

st:Stereotype

="simulation' 5

name

ARG TokdtfPs

ystemBlock

name

S O onFar R

systemBlock

owiner awner
5_ownedglement_owner 4 A_owner_ownedEler
{Element ownedElzme i S(Eate

prop :Property Ewmeéhf,;mm?da% obj2:Model2Property | 1B T80 hecraat
— | —

model :Model

lementOfType
¥ A_type_typedE lemen

e type
block :Blodk

lass_superClass

cleate:

T oBlod

i it ificati
ouns BRI ement_owdmtangspreseten | ances pecification
classifier
modelProp Propert
st :Stereotype
PSSR |y iemen: | Pame=="ModeiContex’ - m2m
i)

blodk

prospedtiveBlock :Blodk

1 thislibrary2model (model

end ]

1: this.connectors2model(systemBlock

Figure C.2: System level transformation

105



‘SysML2Multispect ibrary2model (modd: Modd): Voi

obj1 :Mode2LibraryBlock LiFreh

| Mo ol
1

i

@]

dbdember

nhertech{emeber _classiter

edMember

ceaatie

obj5:PortZLibraryPort

innd yRoAiRe)

supplier
_supplierD

=3 -\
»apendency

ependency_suppller

omner

POt TR hner_bwnedElem
deste

T

madetl
acicd

craates
ortZ :MaodelP ort

name:=portlaame
{mert

_owner

block

owenet

4 A_owneddlement_owner
edElement
ownedProperty :Property

name==propnane
defaultt="" =

e

4 A_owner jownedElement

nedElement
I failure |

modelBlock

aned

ment_owner

prop Property |[¢ 3 :
obib:Property2Property ~propname
e |

velue = prop default [

we
tpedEl
. v Elemey’d ™
!ﬂ//

type

valueType DataType | M 1cs | 2014 ElementZType

end |

Figure C.3: Component-level transformation
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