
 USING DOMAIN SPECIFIC LANGUAGES TO CAPTURE DESIGN

KNOWLEDGE FOR MODEL-BASED SYSTEMS ENGINEERING

A Thesis

Presented to

The Academic Faculty

by

Aleksandr A. Kerzhner

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science in the

School of Mechanical Engineering

Georgia Institute of Technology

May, 2009

COPYRIGHT 2009 BY ALEKSANDR A. KERZHNER

http://www2.me.gatech.edu/theses/summary.asp?db=1&LASTNAME=Kerzhner&FIRSTNAME=Aleksandr
http://www2.me.gatech.edu/theses/summary.asp?db=1&LASTNAME=Kerzhner&FIRSTNAME=Aleksandr

 USING DOMAIN SPECIFIC LANGUAGES TO CAPTURE DESIGN

KNOWLEDGE FOR MODEL-BASED SYSTEMS ENGINEERING

Approved by:

Dr. Chris Paredis, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

Dr. Leon McGinnis

School of Industrial Engineering

Georgia Institute of Technology

Dr. Dirk Schaefer

School of Mechanical Engineering

Georgia Institute of Technology

Date Approved: March 18, 2009

http://www2.me.gatech.edu/theses/summary.asp?db=1&LASTNAME=Kerzhner&FIRSTNAME=Aleksandr
http://www2.me.gatech.edu/theses/summary.asp?db=1&LASTNAME=Kerzhner&FIRSTNAME=Aleksandr

iii

ACKNOWLEDGEMENTS

Few achievements come without the support of others; and I wish I could

completely capture the numerous contributions others have made to the completion of

this thesis. I know that I would not have gotten to this point without the invaluable help

of many different people.

I first must thank my family for playing a major role in my life, for always being

supportive through good times and bad. I’d especially like to thank my mom, Inna, for

her instilling in me the importance of a quality education along with a strong work ethic.

Academically speaking, I deeply wish to thank my advisor, Dr. Chris Paredis. He

has always been down to earth and willing to provide assistance; as well as being both

open minded and critical. Even though he has been in Europe for much of the writing of

this thesis, he has found time to provide timely advice. I would also like to thank my

reading committee: Dr. Leon McGinnis for always providing challenging (though

―simple‖) questions and Dr. Dirk Schaefer for his support and insight.

I also owe gratitude to my academic family in the Systems Realization Lab. I

would like to first thank Richard Malak for the valuable discussions and insightful

comments on a regular basis. I’d also like to thank Stephanie Thompson and Roxanne

Moore for their support, friendship, and insightful comments. Although I only knew both

briefly, Tommy Johnson and Jonathan Jobe provided meaningful discussion as well as

some of the ideas used throughout this thesis. Several other members of the SRL stand

out as being particularly helpful: John Reap, Aditya Shah, Benjamin Lee, Kevin Davies,

and J. Bankston.

iv

This work is funded in part by the Engineering Research Center for Compact and

Efficient Fluid Power, supported by the National Science Foundation under Grant No.

EEC-0540834. Additional funding was provided by Lockheed Martin. I would also like

to thank Andy Schürr for providing access and support for MOFLON and Roger

Burkhart at Deere & Company along with Sanford Friedenthal at Lockheed Martin for

discussions that helped crystallize the ideas presented in this thesis.

v

TABLE OF CONTENTS

Page

Acknowledgements ..iii

List of Figures .. x

Summary ...xiii

Chapter 1 Introduction .. 1

1.1 Managing complexity with Model-Based Systems Engineering 1

1.2 Research Questions ... 2

1.3 A DSL-based approach for capturing design knowledge 5

1.4 SysML as a Unifying Language ... 8

1.5 Hydraulic systems as a representative example .. 9

1.6 Thesis Structure ... 9

1.7 Prelimanary Reading ... 10

Chapter 2 Related work ... 11

2.1 Common Model Driven Software Development Concepts 11

2.1.1 The Domain ... 11

2.1.2 Metamodels ... 11

vi

2.1.3 Domain-Specific Languages .. 12

2.1.4 Transformations .. 13

2.2 Performing Model Transformations .. 13

2.3 Standard Ways to Define DSLs using UML ... 15

2.4 An introduction to SysML .. 17

2.4.1 SysML Blocks ... 17

2.4.2 SysML Flow Ports .. 17

2.4.3 UML Profile and Stereotypes... 18

Chapter 3 Capturing Synthesis Knowledge ... 19

3.1 Representing Design Alternatives using a DSL 21

3.1.1 Defining the Abstract Syntax ... 22

3.1.2 Implementing the Concrete Syntax ... 25

3.2 Generating design alternatives ... 27

3.2.1 Defining the Graph Grammar .. 27

3.2.2 Capturing Fragments in a Model Library .. 30

3.2.3 Searching the Design Space ... 32

3.3 Example: Hydraulic Circuit Generation .. 34

vii

3.3.1 Domain Specific Language .. 35

3.3.2 Graph grammar ... 36

3.3.3 Model library ... 38

3.3.4 Encoding problem specific knowledge ... 38

3.3.5 Decision graph .. 38

3.4 Results .. 39

3.5 Discussion .. 44

3.6 Summary .. 46

Chapter 4 Capturing Analysis Knowledge using MAsCoMS 47

4.1 Related Work ... 49

4.2 Representing analysis models using a DSL... 52

4.3 Capturing Reusable Analysis Knowledge in a Model Library 55

4.3.1 Multi-Aspect Component Models ... 55

4.3.2 A Library of Components... 57

4.3.3 A Library of Aspects .. 59

4.3.4 Fine-grained Design-Analysis Relationships 60

4.4 Implementation in SysML .. 61

viii

4.4.1 Defining the Language for MAsCoMs .. 61

4.4.2 Aspect Library... 62

4.4.3 Establishing Fine-Grain Mappings .. 63

4.5 Automated Composition of Analysis Models ... 65

4.5.1 Representing the Structural Model and Context 66

4.5.2 Graph Grammar .. 67

4.6 Example: Hydraulic Circuit .. 70

4.6.1 Defining the Model Libraries ... 70

4.6.2 Creating Model Contexts.. 70

4.6.3 Structural Model and Context .. 73

4.6.4 Composed Analysis Model .. 74

4.7 Discussion .. 75

4.8 Summary .. 76

Chapter 5 Generating Simulation Models from Analysis Models 77

5.1 Related Work ... 78

5.2 Domain Specific Language for describing CD Models 79

5.2.1 Abstract Syntax ... 80

ix

5.2.2 Concrete Syntax .. 81

5.2.3 Representation of Continuous Dynamics models in SysML 82

5.3 Transforming Between SysML and Modelica Models 83

5.4 Example: Hydraulic Circuit .. 84

5.4.1 Referencing models in a model library ... 85

5.4.2 Generating Modelica code from an Analysis Model 86

5.5 Summary .. 88

Chapter 6 Discussion and Closure .. 89

6.1 Review and Evaluation ... 89

6.2 Limitations ... 90

6.3 Future Work... 92

Appendix A Glossary of Terms .. 93

Appendix B Synthesis Grammar ... 96

Appendix C Analysis Model Composition Grammar............................ 103

References .. 108

x

LIST OF FIGURES

Page

Figure 1.1: Model Everything! — both representations and transformations. 7

Figure 2.1 : Relationship between metamodels, metamodels and metalanguages............. 12

Figure 2.2: The basics concept of model transformation [62]. ... 13

Figure 2.3: Relations between the QVT languages [43].. 14

Figure 2.4: A combination of UML profiles and metamodel based technologies 16

Figure 3.1: A visualization of the generic Metamodel defined using MOF. 23

Figure 3.2: Metamodel extended to capture the types of components that can exist in the

MSD system.. 24

Figure 3.3: Profile used to label SysML entities that corresponds to the abstract syntax

defined in the metamodel ... 27

Figure 3.4: Graph transformation that adds a spring in parallel with another spring to the

system.. 30

Figure 3.5: Visualization of hydraulic circuit metamodel used to define abstract syntax of

domain specific models.. 36

Figure 3.6: Graph transformation rule to add a cylinder model to the system model and

connect it to an appropriate load. .. 37

xi

Figure 3.7: Decision Graph for the hydraulic circuit example. ... 39

Figure 3.8: Simple hydraulic circuit represented using concrete syntax in SysML........... 40

Figure 3.9: Results from random synthesis of alternatives ... 42

Figure 3.10: Average progress of evolutionary program over 100 runs with average

fitness and median maximum fitness for each generation 44

Figure 4.1: Metamodel of DSL for analysis models .. 54

Figure 4.2: A portion of the library of components organized into a taxonomy................ 58

Figure 4.3: A pump at various levels of abstraction .. 59

Figure 4.4: MAsCoM Profile .. 62

Figure 4.5: Parameter map between a structural model of a translational load and an

analysis model .. 64

Figure 4.6: Interface map between a structural model of a translational load and an

analysis model .. 65

Figure 4.7: Model Context for Constant Displacement Pump Model 71

Figure 4.8: Relationship between pump structural model parameter and pump analysis

model parameter ... 72

Figure 4.9: Relationship between pump structural model interfaces and pump analysis

model interfaces.. 73

Figure 4.10: Structural model of simple hydraulic circuit... 74

xii

Figure 4.11: Composed analysis model for simple hydraulic circuit 75

Figure 5.1: Simplified Modelica metamodel represented in MOF. 81

Figure 5.2: Profile for capturing "Black Box" models... 84

Figure 5.3: Pump model from library along with abstract model of the library 86

Figure 5.4: Simulation model .. 87

Figure 5.5: Composed analysis model .. 87

Figure 5.6: Code generated from composed model ... 88

Figure B.1: Graph pattern for matching random component models in model library 97

Figure B.2: Graph transformation for adding a cylinder to the hydraulic circuit 98

Figure B.3: Graph transformation for adding a directional valve to the hydraulic circuit 99

Figure B.4: Graph transformation for adding a pump to the hydraulic circuit 100

Figure B.5: Graph transformation for adding a tank to the hydraulic circuit 101

Figure B.6: Graph transformation for connecting similar directional valves 102

Figure C.1: Partial SysML metamodel used when defining transformations 104

Figure C.2: System level transformation .. 105

Figure C.3: Component-level transformation... 106

Figure C.4: Connection-level transformation ... 107

xiii

SUMMARY

Design synthesis is a fundamental engineering task that involves the creation of

structure from a desired functional specification; it involves both creating a system

topology as well as sizing the system’s components. Although the use of computer tools

is common throughout the design process, design synthesis is often a task left to the

designer. At the synthesis stage of the design process, designers have an extensive choice

of design alternatives that need to be considered and evaluated.

Designers can benefit from computational synthesis methods in the creative phase

of the design process. Recent increases in computational power allow automated

synthesis methods for rapidly generating a large number of design solutions. Combining

an automated synthesis method with an evaluation framework allows for a more thorough

exploration of the design space as well as for a reduction of the time and cost needed to

design a system. To facilitate computational synthesis, knowledge about feasible system

configurations must be captured. Since it is difficult to capture such synthesis knowledge

about any possible system, a design domain must be chosen. In this thesis, the design

domain is hydraulic systems.

In this thesis, Model-Driven Software Development concepts are leveraged to

create a framework to automate the synthesis of hydraulic systems will be presented and

demonstrated. This includes the presentation of a domain specific language to describe

the function and structure of hydraulic systems as well as a framework for synthesizing

hydraulic systems using graph grammars to generate system topologies. Also, a method

using graph grammars for generating analysis models from the described structural

xiv

system representations is presented. This approach fits in the context of Model-Based

Systems Engineering where a variety of formal models are used to represent knowledge

about a system. It uses the Systems Modeling Language developed by The Object

Management Group (OMG SysML™) as a unifying language for model definition.

1

CHAPTER 1

INTRODUCTION

Engineered systems are a key component of everyday life from automobiles and

aircraft to seemingly ubiquitous electronic devices. Modern systems and therefore

modern systems engineering problems are becoming increasingly complex because they

often involve the integration of multiple engineering domains, are constrained by often

competing objectives, include a multitude of stakeholders, and are inundated by large

quantities of design information [54]. Therefore, problems that are often encountered

during the system development process are generally the result of poor organization and

communication of information or poor management of problem complexity rather than

the direct technological concerns that affect individual subsystems. The presence of

multiple stakeholders also dictates that design knowledge be explicitly captured to reduce

the opportunity for miscommunication.

1.1 Managing complexity with Model-Based Systems Engineering

Some of the complexity can be managed through the formal representation of all

aspects of the system engineering problem which has begun with the adoption of a

Model-Based Systems Engineering (MBSE) [15]. In MBSE, engineers formally capture

knowledge about all aspects of a systems engineering problem in models. There is a

plethora of design knowledge that needs to be captured for MBSE. In this thesis,

synthesis knowledge is explored independent of analysis knowledge. Synthesis

knowledge is the knowledge concerning the generation of design alternatives that are

2

contained within a specific design space while analysis knowledge describes how the

behavior of design alternatives can be analyzed.

In support of MBSE, the Object Management Group (OMG) has developed the

Systems Modeling Language (SysML) [65] to be a general-purpose systems modeling

language that enables systems engineers to create and manage models of engineering

systems using well-defined, visual constructs. The formal capture of knowledge using a

model-based approach does have disadvantages: there is a higher level of expertise and

effort required to explicitly capture knowledge that would otherwise be assumed

implicitly.

1.2 Research Questions

To facilitate the use of MBSE, the motivating question becomes:

The Motivating Question:

How can design knowledge be captured such that it can be used effectively and

efficiently?

The shift in current industry practice suggests that this question can partially be

answered through the adoption of model-based design approaches in a shift away from

document-centric design. This shift is embodied in MBSE where models are used

throughout the design process to capture knowledge. It is important for models to be

defined unambiguously and precisely so they can be easily understood by the various

stakeholders involved throughout the design process. Also, these models need to be

reusable so that the increase in overall cost associated with formal modeling can be

3

partially mitigated. The MBSE approach requires the development of many different

design and analysis models. The question then becomes:

How should these models be defined so that they are unambiguous, reusable, and

precise?

To answer this question, this thesis leverages concepts from the domain of

computer science, specifically the fields of Model-Driven Architecture (MDA) or Model-

Driven Software Development (MDSD). Both involve the use of formal models

throughout the design and implementation of software solutions and it seems likely that

concepts from these fields can be applied to the domain of systems engineering. Systems

engineering shares several characteristics with software engineering most notably the

complex interactions between various components. The use of MDSD concepts can

simplify the definition and application of models by reducing the need to create problem-

specific code for a variety of applications that are discussed throughout the thesis.

Instead, computer-aided software engineering (CASE) tools, such as MOFLON [2], are

used to generate this code improving the ease of implementing languages with which

models can be defined and transformed.

The hypothesis that follows from this argument is:

4

Design knowledge should be effectively and efficiently captured through the application

of Model-Based Software Design concepts such as formal domain specific languages

(DSLs) and model transformations.

Although validating this hypothesis is the central motivation of this thesis, it is too

broad to be fully addressed. Instead, this thesis takes the first step in the validation

process by attempting to confirm a less expansive hypothesis:

Hypothesis:

It is feasible for design knowledge to be captured using DSLs, graph grammars, and

other concepts from MDSD.

This hypothesis is still too broad to tackle directly because there is a wide variety

of design knowledge that is present throughout the design process, and therefore a wide

variety of possible design knowledge to capture. Instead, in this thesis, design knowledge

is decomposed into three distinct categories to facilitate exploration of the problem. In

this thesis, the hypothesis is explored by decomposition into these three sub-questions:

Question 1:

Is it feasible to capture synthesis knowledge using DSLs and graph grammars to

represent and generate design alternatives?

5

Question 2:

Is it feasible to capture the analysis knowledge needed to generate analysis models from

representations of design alternatives using DSLs and graph grammars?

Question 3: Is it feasible to capture the analysis knowledge needed to create simulation

models from analysis models using DSLs and graph grammars?

To attempt to answer these questions, a framework that relies on the definition of

several domain specific languages (DSLs) through the use of metamodels and model

libraries to capture the design knowledge about a particular domain. A DSL is a language

that is tailored to describe a particular problem domain. In this framework, the DSL is

augmented by the specification of graph-based model transformations designed to

transform between different models present throughout the systems design process. The

use of DSLs to define the models has the advantage of providing designers, who have

expert knowledge about a particular domain, with languages that are not only

unambiguous but also easily interpretable. This is not always true of more general

languages because they are often more abstract. The use of graph-based transformations

also has the advantage of being easily visualized. These advantages will also be

thoroughly explored throughout the thesis.

1.3 A DSL-based approach for capturing design knowledge

A variety of different types of knowledge need to be represented in design and

systems engineering: requirements and objectives, functions and functional

6

decompositions, logical architectures, physical architectures, behavior, test-cases,

allocations, etc. Using formal models to capture all this information and knowledge

about analysis is at the foundation of MBSE. Although general purpose modeling

languages such as SysML have been defined to capture such systems engineering

knowledge, we argue in this thesis that it is often convenient (and maybe more effective)

to express this knowledge in a DSL when working in a specific domain. To facilitate

integration between the DSLs, SysML (with domain-specific profiles) could be used as

an integration framework.

In addition, as is illustrated in Figure 1.1, the concept proposed here is extend this

notion of model-based engineering to include also the transformations that occur between

the different types of models. These transformations incorporate the process knowledge

that is needed to solve design problems effectively. The transformations themselves can

again be modeled, leading us to the notion of "Model Everything!" [17].

7

Figure 1.1: Model Everything! — both representations and transformations.

In this thesis, an effort is presented towards capturing design knowledge through

the use of DSLs. Formal models are used to capture knowledge about the space of system

design alternatives. This includes the formal representation of these alternatives as well

as model or graph transformations for generating instances within this design space.

In addition to the design space, one should define spaces in which the design

problem itself is defined (i.e., objectives, requirements, context, etc.), as well as spaces in

which the system is described from different viewpoints — functional, behavioral, at

different levels of abstraction, from different disciplinary perspectives, etc. An important

part of the overall vision for this research is that these different views are formally related

to each other through models or model transformations so that the views can efficiently

be updated and kept consistent.

8

1.4 SysML as a Unifying Language

Currently, system engineering problems are solved using a wide range of domain-

specific modeling languages and modeling tools. Unfortunately, these domain-specific

modeling languages are often implicitly defined. Moreover, it is unlikely that a single

unified modeling language will be able to model in sufficient detail the large number of

system aspects addressed by current domain-specific languages. One should not ―reinvent

the wheel‖ by creating an all-encompassing systems engineering language capable of

modeling and simulating every aspect of a system. [28] On the other hand, managing a

large number of models in different languages also poses problems, including

communication ambiguity and the preservation of information consistency. To alleviate

these problems, formal and precise definitions of these domain-specific modeling

languages are needed to allow for the integration of these languages.

SysML can provide a foundation for this model integration because of its well-

defined yet general constructs which can be easily linked together. SysML can also be

used as a foundation for the definition of formal languages that a modeler can use to

describe the interaction between system models. There is the additional advantage of easy

integration of models in described in these formal languages with the capabilities

provided by SysML modeling tools such as the visual and formal modeling of

requirements and system behavior.

9

1.5 Hydraulic systems as a representative example

Since the presented approach relies on the definition of domain specific

languages, it is advantageous to choose a domain representative of complex engineered

systems. The domain chosen here is one of hydraulic systems. From a systems

engineering perspective, hydraulic systems have the interesting characteristic that they

are circuit-like; that is, they consist of discrete components that are configured or

composed into complex systems. This modularity in the physical system has been

introduced to facilitate their design and manufacture. Modular components not only

provide economies of scale in the manufacturing process, but they also simplify the

design problem by decomposing the system into functional units that have simple and

clearly defined interfaces through which they interact with each other. The hydraulic

circuits investigated throughout the thesis are similar to common hydraulic circuits found

in a wide range of application but especially common in off-road construction equipment

such as excavators or backhoes.

1.6 Thesis Structure

According to the hypothesis and related questions, the objective of the work

presented is to apply formal domain-specific language and graph grammar concepts to

capture knowledge during three distinct transformations commonly present in the design

process. Before delving into the validation of this hypothesis and the answering of the

related questions, an overview of related work is covered in Chapter 2. An overview of

important MDSD concepts is provided in Section 2.1. Standard approaches from MDSD

10

to performing graph transformations and defining DSLs in Sections 2.2 and 2.3

respectively. Some relevant constructs from SysML are covered in Section 2.4.

The next three chapters have similar structure: each investigates the answer to one

of the related questions. To simplify the presentation, work related specifically to the

question being addressed is contained within each chapter. In Chapter 3, an attempt is

made to answer Question 1 by providing a framework for capturing synthesis knowledge.

In Chapter 4, Question 2 is addressed by building on work by Jobe that captures analysis

knowledge in reusable containers called Multi-Aspect Component Models [25]. In

Chapter 5, Question 3 is addressed by demonstrating the approach on the generation of

Modelica continuous dynamics simulation models from the analysis models created in

Chapter 4. Modelica is used as a representative example of various simulation languages.

Chapter 5 builds strongly on the work presented by Johnson [27] where SysML models

are transformed into Modelica models. Johnson’s work is extended by applying MDSD

techniques to defining an explicit DSL for the simulation models and to defining and

implementing the transformations.

1.7 Prelimanary Reading

For readers unfamiliar with MDSD and similar topics, there are a number of

excellent seminal works in the area. For an overview of MDA concepts, an overview by

Mellor et al [34] is recommended. Many core concepts are shared between MDSD and

MDA, but for a complete guide to MDSD, work by Stahl et al [62] is an excellent

resource. For a brief review of different methods to model and execute model

11

transformations, work by Czarnecki et al [9] is recommended. A glossary of commonly

used terms can be found in Appendix A.

CHAPTER 2

RELATED WORK

This chapter covers some high-level concepts as well as related work that is

applicable throughout the thesis.

2.1 Common Model Driven Software Development Concepts

Since MDSD concepts are the foundation of the work presented in this thesis,

some relevant constructs are presented here. A more thorough examination of all the

common concepts can be found in Chapter 4 of Stahl et al [62].

2.1.1 The Domain

The starting point in MDSD is always a domain, a ―bounded field of interest or

knowledge‖ [62].

2.1.2 Metamodels

Metamodels capture an ontology for the domain, that is the constructs and

relationships present independent of any particular independent representation or

encoding. Metamodels are used in MDSD to describe the structure of the domain

formally. [62] The metamodel defines the abstract syntax of the domain and is an

12

instance of a meta-metamodel. Metamodels are specified using metamodeling languages.

The relationship between models, metamodels, and metamodeling languages is shown in

Figure 2.1.

Figure 2.1 : Relationship between metamodels, metamodels and metalanguages

2.1.3 Domain-Specific Languages

A domain-specific language (DSL) is a language designed to describe a particular

problem domain. It serves the purpose of making the key aspects of a domain – although

not all conceivable content – formally expressible and modelable. [62]. A DSL possesses

a metamodel as well as a corresponding concrete syntax. The semantics of the DSL are

also required to give meaning to the constructs of the metamodel. The modeler must

know the meaning of the language elements in the DSL to be able to create reasonable

models. Also, model transformations must be able to exactly execute the semantics of the

DSL. The semantics of a DSL must be either well-documented or intuitively clear to the

M0: “Real world” element

M3: Meta meta model

(meta language)

M2: Metamodel

(language)

M1: Model

Class

Pump Valve

13

modeler. This is made easier when the DSL adopts concepts from the problem space so

that a domain expert can easily recognize it [17, 62]. In MDSD, these domains often deal

with specific software architecture.

2.1.4 Transformations

Model transformations in MDSD are always based on a metamodel. It is common

to distinguish between model-to-model transformations where the transformation creates

a new model typically based on a new metamodel and model-to-platform or model-to-

code transformations where code is generated that fits into the existing framework. [62]

2.2 Performing Model Transformations

Model transformations, as conceptualized in the graph depicted in Figure 2.2, are

anticipated to play a major role in future MBSE endeavors [62].

Generally, model transformations are performed by transformation engines that

can read a source model conforming to a source metamodel and execute a transformation

specification to produce a target model conforming to a target metamodel. Current

applications of model transformations include model synchronization and the generation

of low-level models/code from high-level models.

Figure 2.2: The basics concept of model transformation [62].

Source Metamodel

Source Model

Target Metamodel

Target Model

conforms to conforms to

Transformation Specification

Transformation Engine
reads writes

refers to refers to

executes

14

Many methods exist for completing model transformations between two or more

modeling languages (metamodels). Two common transformation tools are OMG’s

Queries/Views/Transformations (QVT) [43] and Triple Graph Grammars (TGGs) [58].

The QVT specification provides a set of languages for querying a source model

that complies with a source metamodel and transforming it into a target model that

complies with a target metamodel. Two QVT languages, Relations and Core, are used to

model declaratively the relationships between source and target metamodels at different

levels of fidelity. The Operational Mappings language is then used to perform

imperative transformations based on the relationships depicted in the Core or Relations

languages. The relations between the QVT languages are depicted in Figure 2.3.

Overall, QVT is a powerful and widely accepted model transformation tool;

however, the imperative nature of the Operational Mappings language hampers

bidirectional transformations.

 TGGs are similar to QVT in intent but are declarative by nature. Accordingly,

TGGs are particularly useful for completing complex, bidirectional model

transformations; however, others have shown that QVT is equally expressive and capable

[19]. In a TGG, two modeling languages (metamodels) are defined as graphs. The

mapping between the two metamodels is then represented by an intermediary graph

Figure 2.3: Relations between the QVT languages [43].

Operational

Mappings

Black

Box

Relations

Core

RelationsToCore

Transformation

15

called the correspondence metamodel. This third graph is essential for defining graph

transformation rules and maintaining traceability links between the two models. A

practical implementation of TGGs is also demonstrated extensively by Königs [29].

2.3 Standard Ways to Define DSLs using UML

DSLs are a major part of the work presented in this thesis; several methods to

formally define DSLs are presented in this section. There are several standard ways that

DSLs are defined in MDSD and the software development process. [71]. OMG has

introduced profiles as a light-weight mechanism to extend UML. Also, OMG provides

the Meta Object Facility (MOF) [43] as a metamodeling language for the definition of

domain-specific languages.

When combined with constraint languages, profiles provide extensive

expressivity. Also, they are widely supported by current UML tools. Unfortunately, in

general constraint languages are difficult to use because there is ambiguities concerning

inheritance between stereotypes and also validation of constraints does not work properly

in general[71].

UML can also be extended through the use of a MOF tool and the merge concept

from the UML Infrastructure [23]. This allows more expressivity than simply using a

UML profile but is not widely supported by UML tools.

Finally, a totally new metamodel can be defined for the DSL using a MOF tool.

This has the advantage of being the most expressive and flexible method to defining a

DSL. Unfortunately, additional steps need to be taken to implement the concrete syntax

of the DSL.

16

An approach to combining the definition of the metamodel for the DSL with

adaption of existing tools to use the DSL is also presented by [71]. This approach is

illustrated in Figure 2.4.

Figure 2.4: A combination of UML profiles and metamodel based technologies

The general steps taken are:

1. The abstract syntax of a DSL is defined in a MOF-compliant metamodeling tool.

2. A UML Profile is sued to define the concrete syntax of the new language with

constructs similar to those used by UML.

3. An implementation of QVT based on TGGs is used to translate the stereotyped

UML model into an instance of the metamodel.

This approach has the benefit of being both expressive and quickly implementable to

provide tool support. In this thesis, this approach is extended with the use of SysML

instead of UML.

17

2.4 An introduction to SysML

SysML is used extensively in this thesis as a foundation for the concrete syntax of

DSLs. SysML is an extension of the Unified Modeling Language (UML) [23]. UML is

standardized by the OMG and which is currently commonly used in software engineering

practice. This section provides a brief introduction to some of the entities from SysML

used throughout this thesis.

2.4.1 SysML Blocks

The primary modeling unit in SysML is the block. A block is a modular unit of a

system description. [42], a block is a modular unit of a system description. A block can

represent anything, whether tangible or intangible, that describes a system. For instance, a

block could model a system, process, function, or context. When combined together,

blocks define a collection of features that describe a system or other object of interest.

Hence, blocks provide a means for an engineer to represent a system by decomposing it

into a collection of interrelated objects.

2.4.2 SysML Flow Ports

A block’s interfaces are commonly defined through the use of flow ports. A flow

port specifies the input and output items that may flow between a block and its

environment. [42] Flow ports are interaction points through which data, material, or

energy can enter or leave the owning block. The specification of what can flow is

achieved by typing the flow port with a specification of things that flow.

18

2.4.3 UML Profile and Stereotypes

A stereotype is a UML construct used to create customized classifications of

modeling elements. Stereotypes are commonly organized within profiles. Profiles are a

feature that SysML shares with UML; they allow users to specify constructs that are less

abstract and more precise by specializing existing SysML entities. Stereotypes are

defined by keywords that appear inside of guillemets (e.g., ―<<Block>>‖).

19

CHAPTER 3

CAPTURING SYNTHESIS KNOWLEDGE

This section presents a framework for the systematic encoding of synthesis

knowledge and the application of this synthesis knowledge to generate design alternatives

in an effort to answer Question 1 presented in the introduction. The use of formal models

provides an unambiguous and common protocol for communicating design information

among various stakeholders. It also facilitates the storage of design information in a form

that is computer interpretable making it possible to leverage related work in computer

science. It also promotes traceability throughout the design process by employing models

as a form of documentation.

This framework relies on the definition of several domain specific languages (DSLs)

through the use of metamodels and model libraries to capture the synthesis knowledge

about a particular domain. A DSL is a language that is tailored to describe a particular

problem domain. In this approach, the language is augmented by the specification of

graph-based model transformations designed to transform models of a systems

engineering problem into models of a specific design alternative. Specific design

alternatives are automatically generated by applying these graph-based model

transformations to models also defined by the same DSL. The use of DSLs to define the

models has the advantage of providing designers, who have expert knowledge about a

particular domain, with languages that are not only unambiguous but also easily

interpretable. This is not always true of more general languages because they are often

20

more abstract. The use of graph-based transformations also has the advantage of being

easily visualized.

Various methods are presented in the literature for using design grammars to provide

automated synthesis to explore the design space of a particular problem [6, 7, 11, 56].

Although graph-based synthesis methods have been shown to be capable of finding an

optimal or near-optimal design solution [56] within a given design space, how to specify

this design space is taken largely for granted or defined in an ad hoc manner. The

representation of structures used in design generation and evolution using formal

languages and graph-grammar concepts has been explored [1, 63], although through the

use of global formalisms and languages. Global languages have the disadvantages of

being less precise and more ambiguous because they need to have the flexibility of

defining structures in a nearly infinite number of possible domains.

Instead, the approach of defining languages that are domain specific is taken. These

languages can be more precise because they only need to capture a small number of

coupled domains. The disadvantage of a DSL is the additional effort required to define

and implement the language. To mitigate this disadvantage, the thesis explores

implementing these DSLs using concepts applied from Model-Driven Software

Development (MDSD) which allow for the automated generation of computer code [62],

reducing the expense.

Also, many of the previously mentioned approaches require problem-specific

computer code for the generation and execution of analysis models. Instead, by capturing

possible design alternatives in formal models, the creation of corresponding analysis

models can be automated [27].

21

The formal capture of synthesis knowledge using a model-based approach does have

disadvantages: there is a higher level of expertise and effort required to explicitly capture

knowledge that would otherwise be assumed implicitly. In this thesis, it is explored how

this disadvantage can be offset by employing concepts of modularity and composition. A

modular modeling approach is taken to describe synthesis knowledge as a set of the

possible modular components that may appear within a system and the possible

connections between those components. Port-based models [45] are used to describe the

possible components; these models are then integrated into more complex systems by

creating connections between well defined interfaces. This fits naturally with current

systems engineering practice which relies on composition and integration to manage

complexity by decomposing complex systems into modular chunks that can be easily

reused and reconfigured.

3.1 Representing Design Alternatives using a DSL

In this chapter, the approach is presented to capturing synthesis knowledge

through the use of formal models and how design alternatives can be generated from this

knowledge. Specifically, the synthesis knowledge that is captured describes how to

define a design space and generate possible design alternatives. The design spaces of

interest stem from a large number of systems engineering problems involving the

composition of well-defined components into more complex systems. This definition is

derived from the view of common systems engineering problems. When the design space

is described in this manner there are several pieces of knowledge that naturally appear

necessary to formally capture:

22

 What are these well-defined components? What are their functions and interfaces?

 How can these components be connected together? How does the designer combine

these components to generate meaningful design alternatives?

A formal DSL must be defined before these aspects can be formally captured in

models. There are several standards-compliant ways to define DSLs [71] but, in general,

an abstract and concrete syntax need to be defined. The next section describes the

definition of the abstract syntax through a metamodel followed by the definition of the

concrete syntax by extending SysML with a profile.

3.1.1 Defining the Abstract Syntax

The initial step to defining a DSL is creating a metamodel. A metamodel defines

the abstract syntax of a domain specific language; it defines in an abstract way the

constructs of the language and their relationships. A metamodel represents the structure

of the language independent of any particular representation or encoding. Every model

described by the DSL is an instance of the DSL’s metamodel; a metamodel describes a

model just as a model describes a ―real world‖ element [15].

Metamodels are defined through the use of a metamodeling language; this

metamodeling language is in turn defined by a meta-meta-model. Although this meta-

hierarchy could continue ad infinitum, practically speaking metamodeling languages

describe themselves through meta-circularity [17]. The metamodeling language used in

this thesis is OMG’s Meta-Object Facility (MOF), a language designed by OMG for

Model-Driven Architecture (MDA) [43].

23

Metamodels need to be formal and unambiguous by having a unique and precise

meaning that is defined by a mapping from the metamodel into a semantic domain. This

semantic domain is the design space of a particular systems engineering problem. A

generic metamodel can be specified; because a systems engineering based approach is

taken, this space is spanned by systems, each system containing at least one component.

The approach to modeling components is port-based; this is reflected by defining that

each component can have any number of ports. These ports can be connected to each

other; sometimes more specifically one port can be connected to exactly one other port.

Generally each component is part of only one system and each port is only owned by one

component. The metamodel analogous to the description just provided is shown in Figure

3.1.

Figure 3.1: A visualization of the generic Metamodel defined using MOF.

Once this generic metamodel is defined it is extended to more precisely capture

the domain of interest. The types of systems, components, ports, and connectors that

appear in the design space are defined using specialization relationships. For example, a

specific type of component is a specialization of the generic component. If the systems

engineering problem was the design of a mass-spring-damper (MSD) system then the

24

metamodel is extended to include constructs for defining a spring, a mass, and a damper.

This is shown in Figure 3.2. The specialization relationships are illustrated as a solid line

with a hollow arrowhead. In this example, the spring is a specialization of the generic

class of components. These new constructs can be more precisely defined by further

specifying the types of relationships that may exist between them.

Figure 3.2: Metamodel extended to capture the types of components that can exist

in the MSD system

The metamodel can be validated by using its terminology in all discussions with

domain experts and stakeholders [13]. It can be considered as a grammar for building

valid sentences in the respective domain. Several sentences fall naturally from the

definition of the metamodel in Figure 3.2:

 A component has any number of ports.

 There can be three types of components in this system: masses, springs, and dampers.

 Each port can be connected to exactly one other port. (This final consideration may

not be applicable for all systems. In the example, an entity is created for connectors

that facilitate the connection of any number of ports to each other.)

25

If a valid design alternative in the design space cannot be precisely expressed

using this metamodel then the metamodel is imprecise and needs to be extended. The

abstract syntax only defines the ―essence‖ of the domain specific language: the available

constructs and their relationships. To use the DSL to define models a concrete syntax is

also needed.

3.1.2 Implementing the Concrete Syntax

After the metamodel is defined, the DSL is implemented by defining the concrete

syntax. The concrete syntax is the textual or graphical constructs with which the

modeling is done. SysML is used to provide the foundation for the concrete syntax. It

was developed by OMG to support MBSE; it is a general-purpose systems modeling

language that enables the creation and management of models of engineered systems

using well-defined visual constructs.

The constructs provided by SysML are extended through the use of a profile.

SysML is an extension of the Unified Modeling Language (UML) [23], which has been

standardized by the OMG and which is currently commonly used in software engineering

practice. Profiles are a feature that SysML shares with UML; they allow users to specify

constructs that are less abstract and more precise by specializing existing SysML entities.

The profile is defined by extending the block construct of SysML. The block is the

primary modeling construct of SysML; it can represent anything, whether tangible or

intangible, that describes a system.

There are several further steps taken to implement a DSL derived from [71] by

adapting an existing SysML modeling tool:

26

1. The abstract syntax of the domain specific language is captured in a MOF-compliant

metamodeling tool as described in the previous section. In this case, the chose is

MOFLON [2] as the meta-modeling tool because of its code generation capabilities.

2. A SysML profile is defined within the SysML modeling tool. This profile has a one to

one mapping to the specified metamodel and can be used to stereotype a particular

SysML model. For example, the profile of the metamodel for the MSD system

described in the previous section is shown in Figure 3.3.

3. MOFLON is used to generate Java Metadata Interface (JMI) based code that

implements the metamodel.

4. Query/View/Transformation (QVT) based transformation rules are also defined in

MOFLON to map between the stereotyped SysML profile and a specific instance of

the metamodel. This serves the role of a translator or compiler between the concrete

syntax and the abstract syntax.

5. MOFLON is used to generate JMI code that implements these transformations.

6. The code generated by MOFLON is combined with a JMI-compliant SysML tool.

This extends the tool to provide the capability of authoring models defined by the

DSL.

A SysML model is stereotyped using the profile. It is then translated into an

abstract representation by executing the JMI code. This abstract representation is an

abstract syntax graph; this graph is the abstract representation of the defined model.

Graph transformations are then applied to this abstract syntax to generate design

alternatives.

27

Figure 3.3: Profile used to label SysML entities that corresponds to the abstract

syntax defined in the metamodel

3.2 Generating design alternatives

3.2.1 Defining the Graph Grammar

The metamodel defines the space of design alternatives; this section addresses

how to create possible instances in this space. As previously mentioned, the goal is to

provide domain experts with a framework to express their knowledge that leads to

unambiguous definition of potential design solutions as well as effective application of

that knowledge using search algorithms.

The metamodel as presented only captures the syntax of the domain specific

language: an unambiguous way to define potential solutions. It is extended to further

capture how design alternatives can be generated. This is accomplished effectively

through the use of a graph grammar which provides a structured representation of

knowledge using rule-based techniques [40, 53]. A graph grammar consists of a set of

[Profile] pkg MSD MSD[]

-isEncapsulated : Boolean

<<stereotype>>

Block

[Class]

< < s t e r e o t y p e > >

system

[Class]

< < s t e r e o t y p e > >

mass

[Class]

<<stereotype>>

spring

[Class]

<<stereotype>>

damper

[Class]

<<stereotype>>

component

[Class]

28

graph transformations; in this case, the graph transformations applied in sequence

generate a possible model conforming to the metamodel.

These graph transformations have a left-hand side, the pattern of a graph that is

matched and a right-hand side, the replacement graph. They are also defined using the

abstract syntax provided by the previously discussed metamodel along with the QVT

transformation standard.

The transformations are applied in certain sequences result in models that

conform to the metamodel. In order to generate all of these possible models, one must

traverse every possible sequence of transformation rules. These transformations are

generative; they involve the incremental specification of a design alternative.

The transformations model the addition of components to the system along with

the valid ways that components are connected. Although the transformations presented in

this thesis do not take into account sizing, similar attribute grammars can be used to

capture how components are sized and configured [53].

The transformations match a portion of the model/graph and create new instances

of the component types. Although these transformations are defined at the metamodel

level, they are executed on instances of the model. Also, use of a domain specific

metamodel which involve constructs that designers should be familiar with reduces

ambiguity.

Previous work has illustrated the advantage of using visual graph transformations

as a guide to generating code [57]. Because these transformations are modeled formally

using the QVT standard, MDSD concepts are used to automate the generation of code to

29

execute these transformations on models described by the JMI implementations described

in the previous section.

Returning to the MSD system example, there are several transformations that

specify a valid instance of the system. One possible transformation instantiates a model

of a spring and connects it in parallel with another spring in the system. This

transformation is shown in Figure 3.4. It takes in the system model as an input. The left-

hand side of this transformation is the fragment of a model consisting of a spring with

two ports which are unconnected. The right-hand side is the addition of a second spring

to the model in parallel with the first.

A number of such transformations exist for the MSD system: the instantiation of

dampers in series and parallel, springs in parallel, and the instantiation of masses. By

applying these transformations in one of many possible random sequences, an instance of

the MSD system metamodel is generated.

The specification of these transformations at random is sufficient to generate

instances of the metamodel, but simply executing the transformations at random is often

inefficient in generating alternatives. To further model the order in which these

transformations are applied, the ―good‖ orders are modeled through the use of a decision

graph. This decision graph is a very simple model of the process a designer goes through

to define a design alternative.

A decision graph is an extension of the hierarchical decision tree presented in

[39]; unlike a tree, a graph can contain loops. Decisions that a designer makes when

creating a design alternative are modeled as nodes; they are connected by edges that

30

describe the order in which the decisions are made. Each node is mapped to the

representative model transformation.

Figure 3.4: Graph transformation that adds a spring in parallel with another spring

to the system.

 By traversing the decision graph and executing the corresponding

transformations, a complete model of a design alternative is created. This alternative is

also represented using the abstract syntax and can be translated into a concrete

representation or a corresponding analysis model.

3.2.2 Capturing Fragments in a Model Library

The language is further defined by enumerating exactly which instances appear

by capturing them within a model library. A model library contains useful fragments

which can be composed into more complex models. The metamodel is only a definition

of the types of constructs and relationships that appear in a DSL: the types of physical

31

structures that appear within the domain specific design space. This model library is the

vocabulary of the DSL: the models of physical structures that can be combined to create

valid design alternatives.

To fit within common and current systems design practice, the majority of models

appearing in the model library are the modular components (or subsystems) that need to

be integrated. These models are port-based; they clearly capture the interfaces that can be

used to connect one model to another. Also each model that appears within the model

library should have a corresponding type definition in the metamodel. The models are

created within a SysML authoring tool using the concrete syntax previously defined.

Along with the interfaces, compatibility between components is also explicitly

captured. Models of components that are compatible are organized into sets. This

addresses the case when compatibility cannot be determined simply by examining the

interfaces of a component. A fairly strong assumption is made when grouping

components into these sets: any component within the set is compatible with all of other

components within the set. For the examples presented in this thesis this assumption

holds, but further investigation is needed to test if this approach is truly sufficient.

The model library needs to be validated through discussion with stakeholders and

domain experts just as the metamodel is validated. The library is organized into a

component taxonomy to facilitate exploration by designers and stakeholders.

The knowledge contained in appropriate models from this library is transferred to

the new model instances created during the generative model transformations. For

example, when a model of the spring is instantiated knowledge from a spring model in

the library is also associated with it. If there are multiple appropriate models (multiple

32

instances of the same component type), one can be selected at random from the library or

the metamodel can be extended to characterize each instance with a separate component

type.

3.2.3 Searching the Design Space

In this section, a method is presented to search the design space defined by the

DSL through the use of an evolutionary program [32, 35]. One goal of capturing

synthesis knowledge is automating the design process by applying a search algorithm to

the design space. An evolutionary program is a global stochastic optimization technique

that has the advantage of being largely problem independent. It can be used on design

spaces without well-defined distance metrics, although a fitness function is needed to

compare solutions. They are similar to genetic algorithms [18, 21] but involve the use of

problem-specific data structures. In this case, these data structures are models defined by

the DSL.

Evolutionary programs are designed to mimic the evolutionary process: a

population of solutions is iteratively modified over multiple generations with the goal of

increasing the population fitness and the quality of individual solutions. Evolutionary

programs maintain a population of possible solutions; an initial population is generated at

random. Naturally, for design synthesis the population consists of design alternatives. An

initial population is created by synthesizing several design alternatives from the captured

knowledge. Each possible solution is evaluated using a fitness function. The next

population is created by modifying selected possible solutions from the previous

population. There are several selection techniques, but a fitness proportionate selection

33

[32] scheme is used here where solutions with higher fitness have a higher probability of

being selected. These solutions are modified using either crossover or mutation

operations: in a crossover operation characteristics from two possible solutions merged

into single solution; in a mutation operation one solution is modified into a new solution.

So far, the captured synthesis knowledge has been problem independent. To

generate design alternatives that are specific to a given problem, an embryonic model

[31] is used. This model is an incomplete instance of the DSL, it is fragment of a

potential design alternative which is required for the design alternative to be applicable to

the specific problem. Model transformations are applied to this embryonic model until a

design alternative is fully specified. The order of these model transformations is

determined by the selection of a path of nodes from the decision graph; this is analogous

to the process a designer would use to create an alternative. Every model transformation

adds instances from the model library; these instances match the types defined in the

transformations but are chosen at random. To uniquely define a single alternative, the

path taken through the design graph and the random instances added by the

transformations are required.

One convenient aspect of using a sequence of transformations is that one is able to

serialize the graph representation by simply capturing this sequence of transformations

applied. This allows the modification of possible design alternatives without needing to

specify additional model transformations. Using a standard evolutionary approach,

standard mutation and crossover operators are applied to these serialized representations

to modify the design alternative and search the space.

34

To implement the optimization algorithm, an efficient way to represent each

design alternative is needed. Since each design alternative is represented as a sequence of

transformations, the design alternatives are represented as a set of numbers that reflects

the sequence. For each node in the classic mutation and crossover operators are applied to

this set of numbers resulting in modifications to the design alternatives. For the mutation

operator, instead of simply fitting a bit, a new random number of the sequence is

generated. Although this is inefficient, this allows the maintenance of the probabilities in

the design graph. After the set of numbers is modified, the transformations are applied in

the new sequence. To insure the specified design alternative is completely specified, the

sequence of numbers must result in a sequence of transformations that terminates at the

end node of the decision graph. If the set of numbers specified a sequence that terminates

prematurely, additional transformations are applied until the end node is reached. The

sequence of these transformations is added to the set of numbers describing the design

alternative. This method is applied on the hydraulic circuit example in Section 3.4.

3.3 Example: Hydraulic Circuit Generation

The synthesis approach is applied to the design of a generic hydraulic circuit.

From a systems engineering perspective, hydraulic systems have the interesting

characteristic that they are circuit-like; that is, they consist of discrete components that

are configured or composed into complex systems. This modularity in the physical

system has been introduced to facilitate their design and manufacture. Modular

components not only provide economies of scale in the manufacturing process, but they

35

also simplify the design problem by decomposing the system into functional units that

have simple and clearly defined interfaces through which they interact with each other.

The hydraulic circuit provided in this example is similar to circuits common in

off-road equipment. The requirement placed on possible circuits is that they must actuate

exactly four loads. These loads are an abstraction of the mechanical structure of a

possible piece of equipment. An assumption made by the problem formulation is that the

directional valves being modeled have common valves bundled with them. Several

additional constraints are assumed from the problem formulation:

 Every port must be connected to at least one other port.

 There is at most one pump connected to one valve.

 Every actuator is connected to exactly one valve.

 Each load has exactly one actuator.

 Each directional valve must receive hydraulic flow from a suitable pump. (Namely,

closed-centered load sensing valves must be connected to a variable displacement

pump and open-centered valves must be connected to fixed displacement pump.)

3.3.1 Domain Specific Language

To start, a DSL for capturing possible hydraulic circuit topologies is created. The

abstract syntax of this language is specified in a MOF-compliant manner with the

MOFLON tool. This new metamodel is an extension of the generic meta-model presented

earlier in Figure 3.1. Several entities are created to capture different component-types that

are commonly found in a hydraulic system: entities for labeling pumps, cylinders,

directional valves, tanks, relief valves, and boundary components. Boundary components

36

include anything initially specified in the embryonic model; the ―boundary‖ of the circuit.

That includes the number of loads that must be actuated and the number of power sources

that can be used to drive the pumps. This metamodel is shown in Figure 3.5; it is not

inclusive but can be extended to apply to more complex problems. The abstract syntax is

implemented through the automatic generation of code from MOFLON. A concrete

syntax is defined in a SysML tool using a profile. The code to translate between the

concrete syntax and an abstract representation is also automatically generated.

Figure 3.5: Visualization of hydraulic circuit metamodel used to define abstract

syntax of domain specific models.

3.3.2 Graph grammar

Graph transformations are defined to capture common connectivity between

component-types; the set of these transformations make up the grammar. These

transformations are also defined within MOFLON using the abstract syntax. These

transformations reflect actions designers might take to create a hydraulic system. Graph

transformations are defined to:

 Add an instance of a cylinder to the circuit and configure it to actuate a load.

 Add an instance of a directional valve to the circuit to control a cylinder.

37

 Add an instance of a pump to the circuit to provide flow to the directional

valve.

 Add an instance of a tank to the circuit to provide flow to instances of pumps.

The overall structure of these transformations is similar. For example, the

transformation defined to add a cylinder to the circuit is shown in Figure 3.6. The

complete set of transformations are included in Appendix B. The left-hand side of the

transformation is a boundary component that owns an unconnected port of the

appropriate type. The right-hand side of the transformation is the new actuator and

connectors. The transformations are designed to maintain the first three constraints

specified by the problem formulation.

Figure 3.6: Graph transformation rule to add a cylinder model to the system

38

model and connect it to an appropriate load.

3.3.3 Model library

In this example, the enumerated number of possible components remains small.

This is because of the chosen abstraction level: each component has an implied structure

but not sizing parameters. The use of port-based models meshes with the modeling of

hydraulic components because it reflects the true nature of the system. The models are

broken into two compatibility groups: one for components that can be connected to

closed-center valves and one for components that can be connected to open-center valves.

Modeling these compatibility groups allows the last constraint of the problem

formulation to be met.

3.3.4 Encoding problem specific knowledge

The problem specific knowledge is encoded in an embryonic model. In this

example, the problem specific knowledge is the number of loads to be actuated. If the

circuit cannot actuate these loads, it is invalid and is not considered because considering

impossible solutions is inefficient. Therefore, the embryonic circuit contains four loads.

Random instances are generated when the set of graph transformations are applied to this

embryonic model and all of these instances will actuate exactly four loads.

3.3.5 Decision graph

The possible sequences of transformations are represented in a decision graph.

This graph is shown in Figure 3.7. Each node of this graph corresponds to a previously

39

defined transformation. Probabilities are assigned to the edges of the graph to increase the

chances of certain transformation sequences.

The overall layout of the graph is based on one possible sequence of decisions a

designer might make to design a single circuit. The graph is represented using a

formalism similar to flow charts. Each edge has a probability associated with it; by

adjusting these probabilities the likelihood is changed that specific sets of graph

transformations are used to generate a design alternative.

Figure 3.7: Decision Graph for the hydraulic circuit example.

Each node is tied to a graph transformation and each edge has probabilities

associated with it.

3.4 Results

There are several considerations when exploring the effectiveness of generating

alternatives from the captured synthesis knowledge: Are the generated design alternatives

valid? Do these alternatives span the space uniformly? And, how well does a search

algorithm perform when searching through the space?

Add Cylinder

Add Directional
Valve

Add Tank

Add Pump

 [success]

 [failure]

{probability = ".3" }

 [success]

{probability = ".7" }

 [success]

 [failure]

{probability = ".7" }

 [success]

{probability = ".3" }
 [success]

 [failure]

40

The approach is first tested by generating a basic hydraulic circuit: one that needs

to actuate only a single load. The initial embryonic model includes a single load and

single power source. The graph transformations described earlier are applied to the

circuit. The result is shown in Figure 3.8. The circuit is one with a single variable

displacement pump connected to a closed-center directional valve. As mentioned

previously, the directional valves modeled include common valves such as relief valves

from high pressure to low pressure flow. The circuit is valid: all the hydraulic ports are

connected, the variable displacement pump and closed-center valve are compatible, and

one cylinder to actuate the load. A large number of more complex circuits have also been

generated; all the generated circuits satisfy the prescribed constraints.

Figure 3.8: Simple hydraulic circuit represented using concrete syntax in

[Block] Circuit Circuitibd []

<<directionalValve>>

 : 6Way3PosClosedCenter

 : FlowPort
 : L o w P r e s s u r e

 : H i g h P r e s s u r e

 : F l o w P o r t

 : C o n t r o l P r e s s u r e

< < p u m p > >

 : VariableDisplacementPump

 : ControlPressure

 : LowPressure

Rotational : Flange : HighPressure

<<tank>>

 : Tank

 : LowPressure : LowPressure

<<cylinder>>

 : Cylinder

 : Flange

 : FlowPort : FlowPort

<<block>>

 : Engine

powerOut : Flange

< < b l o c k > >

 : Load

 : Flange

41

SysML

The next consideration is whether the alternatives span the design space. To test

this in the example problem, a number of random design alternatives are generated and

characterized based on their topologies. The requirement of the circuit actuating four

loads along with the assumed constraints implies that each circuit should have between

one and four pumps. The number of pumps is also a characteristic of the circuits that is

unambiguous and easy to measure. The number of pumps per alternative for 1200

random design alternatives is shown in Figure 3.9. The first 600 design alternatives are

generated using the decision graph in Figure 3.7 where the probabilities are labeled along

the edges. The probabilities in the decision graph bias the generation process towards the

generation of alternatives with fewer pumps because it is more common to find fewer

pumps in real world systems, specifically the edges leaving the ―Add Directional Valve‖

node. When evaluating these edges there is a probability of .70 that an additional

directional valve will be added to the circuit and connected in series with other valves if

possible whereas there is only a probability of .30 that an additional pump will be added.

The next 600 design alternatives are generating using a decision graph further biased to

generate alternatives with fewer pumps by adjusting the previously mentioned

probabilities from .70 and .30 to .90 and .10 respectively. These 600 alternatives on

average have fewer pumps than the first 600.There are simply more possible

configurations with two pumps than the fairly limited number of one pump

configurations.

42

Figure 3.9: Results from random synthesis of alternatives

To test the performance of the evolutionary search algorithm described in Section

3.2.3, it is used to find certain prescribed topologies. In particular, the topology of interest

is the rarest topology generated during the previous experiment: a circuit with four

closed-centered valves each connected to exactly one pump. The fitness function used to

evaluate the design alternatives based on the number of pumps and closed-centered

valves is shown in Equation 1:

 fitness = (# of pumps) + 3 × (# of closed -centered valves) (1)

An arbitrary weight is placed on the number of closed-centered valves. This is a

crude approximation of the preferences, i.e. that a circuit with 4 closed-centered valves

and 3 pumps is closer to the true solution than one with 4 pumps but only 3 closed-

centered valves. Clearly, for the four actuator case the maximum possible fitness is 16.

Also, each population consists of exactly ten circuits.

62

375

146

17

94

433

71

2
0

50

100

150

200

250

300

350

400

450

500

1 2 3 4

O
cc

u
re

n
ce

s

of pumps

Run 1 Run 2

43

 In general, the overall fitness of the population improves as the algorithm

progresses. Because the evolutionary program is a stochastic process every run does not

return the same result. The average progress of 100 runs of the evolutionary algorithm is

shown in Figure 3.10. The median maximum fitness and average fitness are shown along

with 25
th

 and 75
th

 bounds for the maximum fitness. In general, all the runs converge to

the maximum possible fitness, usually over a relatively small number of generations. One

aspect of future work is to characterize the performance of the search algorithm if a

behavioral-based fitness function is used instead of a topology-based function. In order to

accomplish this, simulation models need to be created from structural representations to

analyze the behavior of the topologies.

44

Figure 3.10: Average progress of evolutionary program over 100 runs with

average fitness and median maximum fitness for each generation

3.5 Discussion

The approach to generating design alternatives is based on the definition and

application of a set of graph transformations (the graph grammar). These graph

transformations are a part of the DSL’s metamodel. This approach is taken because

design alternatives can be efficiently generated through the application of these graph

transformations. Many of the constraints placed on the design alternatives are therefore

implicitly encoded in these transformations.

0 100 200 300 400 500 600
7

8

9

10

11

12

13

14

15

16

17

Generation

F
it
n
e
s
s

75th

Median

25th

Avg Fitness

45

An alternative approach is to define the metamodel with these constraints

explicitly captured through the use of a constraint language (e.g.; the Object Constraint

Language (OCL) [59] that is used to describe constraints that apply to UML). This

approach may be advantageous because the metamodel may be simpler to formulate. The

difficulty becomes finding models that satisfy these constraints and applying search

techniques to these models to explore the design space. New modeling tools, such as

Alloy [24], can instantiate some or all models that correspond to a metamodel defined by

a set of constraints but leave open the question of how search techniques can be applied

to these models.

It is often the case that when there are two possible approaches, a hybrid of these

two approaches can stress individual advantages while negating disadvantages. Whether

this is the case here deserves further investigation, although currently a clear method to

combine the two approaches beneficially is not available. Constraints could be encoded

both implicitly within graph transformations as well as explicitly in a constraint language,

but the advantages of such a hybrid approach needs further exploration.

Also, the level of abstraction of the design alternatives being generated deserves

further consideration. In the example, the circuit topologies generated are at a very high

level of abstraction. Clearly models can be captured in the library at different levels of

abstraction. Also, the circuits generated can be less abstract (containing information

about specific off the shelf components, not instances of a generic type of component.)

Future work will extend the presented approach to use attribute grammars [53] to size the

components. Many systems also require the design of controllers to fit with each

topology.

46

The automated generation of analysis models and simulations for the structural

models of the design alternatives also deserves further investigation. Graph

transformations have been used to accomplish this sort of model integration.

3.6 Summary

In this section, a method has been presented to define DSLs and generate design

alternatives from the knowledge captured within them. The abstract syntax of a DSL was

defined using a formal metamodel specified using the MOF metamodeling language. A

process was also shown for defining the concrete syntax by extending SysML. It is also

shown that graph grammar can be defined using the abstract syntax of the DSL to

generate design alternatives. The method was demonstrated on the generation of simple

hydraulic circuits.

47

CHAPTER 4

CAPTURING ANALYSIS KNOWLEDGE USING MASCOMS
1

This section specifically focuses on the capture of analysis knowledge, the

knowledge used to create analysis models from the structural representation of a system.

Analysis models are ubiquitous in current systems engineering practice; they are used for

predicting the behavior of components and systems from different viewpoints. They are

interesting from a reuse perspective because they can be reused not only from one design

problem to the next, but also in multiple design iterations within a single design problem.

One goal of this section is to shift the cost-benefit balance in favor of formal

modeling by reducing the modeling costs. In this chapter, how the use of the concepts of

modularity, reuse, and composition can shift the cost-benefit balance in favor of formal

modeling by reducing the modeling costs is explored. By reusing the models, certain

costs are incurred only once at the time the model is initially formulated and can then be

amortized over multiple reuses of the model.

Common systems engineering problems involve the configuration of well-defined

components into more complex systems. In particular, this chapter focuses on capturing

the analysis knowledge needed to create a system-level analysis model for such a

composed system.

1
 Based on work by Jonathan Jobe [25]

2
 Based on work by Tommy Johnson [28]

48

It is interesting to note that while model reuse can enable the cost effective

generation of formal systems engineering models, model reuse itself must rely on formal

modeling: One can only enable reuse by formally capturing the model, its characteristics,

and the contexts in which it can be used.

This section presents a framework for the systematic encoding of analysis

knowledge and the application of this analysis knowledge to generate system-level

analysis models from system-level structural representations. The use of formal models

provides an unambiguous and common protocol for communicating design information

among various stakeholders. It also facilitates the storage of design information in a form

that is computer interpretable making it possible to leverage related work in computer

science. It also promotes traceability throughout the design process by employing models

as a form of documentation.

This framework relies on the definition of several domain specific languages

(DSLs) through the use of metamodels and model libraries to capture the analysis

knowledge about a particular domain. The model libraries are composed of containers

called Multi-Aspect Component Models (MAsCoMs) described in Section 4.3.1. A DSL

is a language that is tailored to describe a particular problem domain. In the approach,

this language is augmented by the specification of graph-based model transformations

designed to transform models of a system-level structural representation into models of a

system-level analysis model. The use of DSLs to define the models has the advantage of

providing designers, who have expert knowledge about a particular domain, with

languages that are not only unambiguous but also easily interpretable. This is not always

49

true of more general languages because they are often more abstract. The use of graph-

based transformations also has the advantage of being easily visualized.

4.1 Related Work

The reuse of modular design elements has been addressed by many. Baldwin and

Clark [5] consider the use of a design structure matrix, task structure matrix, and modular

operators to capture modularity in a design. Eppinger et al. [12] also consider that

systems can be decomposed into modules, but note that some systems are integrative in

nature. Integrative systems avoid the overhead of modular interfaces and can therefore

achieve higher utilities [68] but are much less likely to have reusable elements. These

systems are therefore not considered for the direct application of MAsCoMs. Gershenson

et al. [16] take the perspective of modularity as it applies to the entire life-cycle of a

product design. They claim that all components that are of the same modular form (based

on function and interface) will undergo the same life-cycle processes. Using component

trees to decompose structure, the level of the component being viewed and its level of

abstraction have an effect on the view of the modularity of a process in the life-cycle.

This also holds true for the selection of a modular equation model to predict the behavior

of a piece of structure in a component tree. Although MAsCoMs are also mapped to

component structures and processes (defined by aspects), such models of modules must

still be stored for reuse.

The idea of reusing design knowledge by storing the knowledge in a repository

has been proposed in the past. The NIST Design Repository [66] was one of the first

efforts in this area. Further development of the knowledge representation underlying the

50

NIST Repository resulted in the Core Product Model (CPM) [14]. The CPM is a high-

level meta-model in which the core elements for representing products in design (i.e.,

form, function, and behavior) are identified and related to each other. The goal of the

CPM is to provide a common foundation for product representation that can then be

further refined as needed, e.g., for engineering analysis [49], for manufacturing process

planning, for functional decomposition [30, 64], or for assembly planning [52].

Similarly, the models developed in this section follow the core relationships defined in

the CPM, but refine them with more specific constructs for system behavior. Here,

behavior is to be interpreted as any type of characteristic that can be predicted based on

the form, distinguishable by many behavioral aspects, including function.

Both the CPM and this section fit into a broader group of research efforts in

which the goal is to define an ontology for design. An ontology is a formal data model

for the concepts and the relationships between these concepts in a certain domain of

discourse — the domain of design in this case. Most of the research in this area shares

the perspective that at the foundation, one should distinguish between form, function and

behavior. Examples include the work by Umeda et al. [69], Kitamura and Mizoguchi

[55], and Horváth et al. [22]. However, system behavior has been the focus of

investigation in only a few previous publications.

The most extensive previous research on characterizing behavior in engineering

analyses was performed by Grosse and coauthors [20]. They organize the knowledge

about engineering analyses models into an ontology, which includes both meta-data (e.g.,

author, documentation, etc. — similar to the Dublin Core [51]) and meta-knowledge,

such as model idealizations and the corresponding justifications. A similar, although less

51

extensive, meta-model for engineering analysis models has been developed by Mocko et

al. [37].

Jobe [25] expands this past work to enable reuse of engineering analyses in the

context of large systems engineering efforts. In this respect, two extensions are

important: First, the engineering analyses need to be related to the form (e.g., component

geometry or system architecture) at a fine-grained level [47]. Second, the analysis

models for components and subsystems must be formulated in a fashion that allows for

composition so that a large number of different system topologies can be explored

quickly [45].

Relating analysis models to form has been addressed previously in work on

Design-Analysis Integration (DAI) [47]. Peak et al. relate the parameters of analysis

models to parameters of design models in a declarative, reusable fashion using Constraint

Objects (COBs) or, more recently, using SysML parametric diagrams [49]. In this

section, this approach is adopted but only at the level of individual components (see

section on Fine-Grained Design-Analysis Relationships). By establishing the

relationships between design and analysis models at the component level, the

relationships are maintained even when the components are composed into larger

systems, thus further promoting model reuse. To enable composition, additional

knowledge is needed both about the model interfaces and about the composition process,

as is further explained in Section 5. Wallace et al. [70] also consider composable models.

They note that a modular, composable analysis approach allows multi-disciplinary

problems to be broken down into modules that can be assigned to specialized teams—a

benefit of modularity that is also exploited by MAsCoMs.

52

4.2 Representing analysis models using a DSL

In this section, a formal language is defined to describe the space of analysis

models that are of interest. As mentioned previously, the view of systems engineering

problems is taken as involving the composition of well-defined components into more

complex systems. Since current practice in systems design relies mostly on integration of

modular components and subsystems, our system-level analysis models are viewed as

models composed of well-defined component models. These component models are

connected through well-defined interfaces. When the space of interest of analysis models

is described in this fashion, several pieces of knowledge appear necessary to formally

capture:

 What are these well-defined analysis models? Which components do

they represent? What are their interfaces?

 Which analysis models are meaningful to connect together? And how

can they be connected together?

A formal DSL needs to be defined to capture these aspects formally in models.

The same approach is taken to defining this DSL as in Section 3.1; an abstract syntax and

concrete syntax are defined to describe this language. The rest of this section describes

the definition of this abstract syntax through the use of a metamodel.

The initial step to defining this domain specific language is defining a metamodel.

A metamodel defines the abstract syntax of a domain specific language; it defines in an

abstract way the constructs of the language and their relationships. It represents the

structure of the language independent of any particular representation or encoding.

53

Metamodels need to be formal and unambiguous by having a unique and precise

meaning that is defined by a mapping from the metamodel in a semantic domain. In this

case, this semantic domain is the space of system-level composed analysis models.

Similar to the generic metamodel specified in Figure 3.1, the space of analysis models is

spanned by system-level models composed of component-level analysis models; each

such system-level model containing at least one component-level model. The component-

level models are assumed to be port-based (as previously described they have well-

defined interfaces, or ports); therefore the metamodel is defined to show that each

component-level model can contain any number of ports.

This metamodel is formally expressed using OMG’s MOF similar to the domain

specific metamodel described in Section 3.1.1. A visualization of this metamodel is

shown in Figure 4.1. This metamodel can be extended to more precisely capture different

classes of analysis models, but for the analysis-models presented in this work the

provided metamodel is sufficient.

54

Figure 4.1: Metamodel of DSL for analysis models

Defining a DSL also has the advantage of simplifying the specification of graph

transformations because it provides part of the unambiguous language for their

expression. Although system-level analysis models as described can be captured using

purely SysML concrete and abstract syntax, using a DSL has the advantage of expressing

these models in a manner that more concise and often less ambiguous.

The implementation of the concrete syntax is similar to the approach taken in

Section 3.1.2 and further described in Appendix. The metamodel and concrete syntax

only capture the types of constructs and relationships that appear in the space of interest,

55

the next section describes how knowledge about particular instances is captured through

the use of a model library containing MAsCoMs.

4.3 Capturing Reusable Analysis Knowledge in a Model Library

4.3.1 Multi-Aspect Component Models

A model library contains useful model fragments and information which can be

composed into more complex models. In this case, the model library contains knowledge

at an instance level about the well-defined analysis models. The multi-aspect component

model (MAsCoM) framework introduced by Jobe [25] is used as the basis for the

specification and organization of this model library.

Several key pieces of knowledge are captured in this model library:

1. An enumeration of the available analysis models.

2. A mapping between the available analysis models and models of the

structural components they model.

3. How the analysis models model the structural components and which

analysis models can be connected together.

The organization of this library takes into account the general view of systems

engineering problems previously presented. Analysis models are organized by component

type because it follows naturally from the definition of a systems engineering problem

and also allows designers to conveniently view and review the library. Whenever a

particular component is chosen, a designer will immediately be able to identify all the

analysis models that have been previously used to analyze that component or describe its

56

behavior in a larger system. The components themselves are organized in a taxonomy so

that the user can easily browse from general classes down to very specific instances of

components. At each level, the component model is linked to all the relevant engineering

analysis models.

However, the number of such models could be very large, so that an additional

method of organization is desirable. To facilitate the task of selecting and composing

analysis models further, the analysis models are characterized based on one or more

aspects. In Aspect-Oriented Software Development [67] modularity is achieved by

implementing cross-cutting concerns separately so that they can be woven into a variety

of different software classes. In the context of modeling, rather than weaving models

together, what is important is that one can identify which models are compatible with

each other so that they can be composed into system-level models. To be compatible,

models must characterize the components in a system from a similar perspective, in a

compatible mathematical formalism and in the same executable language. By using a

formal taxonomy of aspects, the semantics of the individual analysis models are defined

in a computer interpretable and searchable fashion.

In the remainder of this section, the details are provided for how analysis models

are organized into MAsCoMs. In addition to discussing taxonomies of components and

aspects, it is explained in detail how the analysis models are tightly linked to each other

through components at a very fine-grained level.

57

4.3.2 A Library of Components

In design, components or subsystem are selected and defined in an iterative

fashion. First, a functional architecture is defined after which functions are assigned to

components in a physical architecture [54] (or, equivalently working principles and

working structures are identified [44]). The focus is initially on the selection of broad

classes of components that share the same functionality. For instance, to implement the

function of converting electrical to mechanical energy, the broad class of motors could be

identified. In subsequent iterations, this broad class of components is gradually refined

until a particular component from a particular company has been identified. At each step

along the way, analysis models at different levels of abstraction could be used. As the

definition of the components still under consideration becomes more and more detailed,

the corresponding analysis models also need to become more detailed such that the

selection can continue to be narrowed down further.

To support such successive refinement of classes of components down to very

specific individual components, it is meaningful to organize the components in a

taxonomy. Organizing components into a taxonomy has the additional benefit that one

can take advantage of an inheritance mechanism to efficiently associate analysis models

with components. For example, in the taxonomy analysis models associated with parents

would apply also to children. This raises questions of selecting models of appropriate

fidelity and abstraction which are left for Section 6.2.

For the purposes of this thesis, this library of possible components is the same

library as in Section 3.2.2. This library organized into a taxonomy is shown in Figure 4.2.

58

One branch of the taxonomy is illustrated in Figure 4.3 for a pump at various levels at

abstraction.

Figure 4.2: A portion of the library of components organized into a taxonomy

ComponentTaxonomyComponent[Package] bdd []

PressureMargin

<<block>>

VariableDisplacementPump <<block>>

6Way3PosOpenCenter

<<block>>

6Way3PosOCParallel

<<block>>

DoubleActingCylinder

<<block>>

6Way3PosOCSeries

<<block>>

CheckValve

Displacement

< < b l o c k > >

Pump
<<block>>

Cylinder

<<block>>

Hydraulic

<<block>>

Valve
Volume

< < b l o c k > >

Tank

59

Figure 4.3: A pump at various levels of abstraction

4.3.3 A Library of Aspects

When reusing a model, one needs to recognize which model is needed from

among the many models that may be associated with a particular component. To help the

designer do this, models are characterized using aspects. Since there are a large number

of potential aspects, it is helpful to organize them also in a taxonomy. The taxonomy also

emphasizes that the aspects represent independent directions along which a model can be

characterized. As a result, a model is typically characterized by multiple aspects

simultaneously. For example, a pump model could be characterized simultaneously by

the hydraulic and mechanical engineering disciplines, by the continuous time

60

discretization aspect, by the DAE mathematical formalism, and by the Modelica

representation syntax. Therefore it should be composed with valve and cylinder models

sharing the same aspects.

These aspects formally characterize a model and thus succinctly provide the

designer or analyst with the basic information needed to select an appropriate model.

Additional information about the model can be defined as meta-data that is less

structured, such as model documentation, development history, or prior usage scenarios.

Based on the aspects, a designer can be efficiently search or browse through a model

repository to identify the model that is most appropriate for a particular design context.

In addition, when composing multiple component models into a system-level model, the

aspects provide necessary information to determine compatibility between models. For

instance, to be composed, models need to be expressed in compatible mathematical

formalisms and levels of discretization—it is not meaningful to combine a discrete event

simulation model with a partial differential equation model. Having formal

representations of these different aspects available is particularly important when

automating the composition process.

4.3.4 Fine-grained Design-Analysis Relationships

 The additional knowledge necessary to capture the relationship between the

parameters and interfaces of analysis models and the parameters and interfaces of the

structural representations in a context-specific instantiation is incorporated in MAsCoMs

with two additional constructs: parameter maps and interface maps.

61

Parameter maps bind the parameter values in analysis models to the related

parameters in the corresponding component’s structure model. In the context of systems

engineering, the values for the parameters need to be related to the properties of the

system alternative that is currently being analyzed. Since analysis models have been

associated with components in the component taxonomy, it becomes possible to establish

these relationships also in a reusable fashion.

In addition to parameter maps, MAsCoMs also include interface maps. Interface

maps support the configuration of analysis models for individual components into

system-level analysis models. Similar to the composition of structure models into a

system schematic, analysis models can be configured into networks through well-defined

port-based interfaces [45], as is implemented in tools such as Simulink
TM

 [61], and in

languages such as Modelica [38]. Recently, the ability to compose analysis models has

even become feasible for finite element models [3, 60]. In order to configure the analysis

models, one needs to define how the ports of the analysis models relate to the ports in the

structure models. This is accomplished through interface maps as is further explained in

the next section.

4.4 Implementation in SysML

4.4.1 Defining the Language for MAsCoMs

To make the MAsCoMs outlined in Section useful in the context of systems

engineering, all the concepts and relationships have been defined in the Systems

Modeling Language (OMG SysML
TM

) [65]. Since SysML has been defined specifically

62

to support systems engineering, it includes modeling constructs that directly support the

definition of physical architectures and engineering analyses—the main focus of

MAsCoMs.

SysML is the modeling language used to represent MAsCoMs. It is a general

purpose language. It provides well-defined visual constructs for modeling system

engineering problems. A profile is used to extend SysML to provide additional

unambiguous syntax for capturing several unique features of MAsCoMs. This profile is

shown in Figure 4.4.

Figure 4.4: MAsCoM Profile

4.4.2 Aspect Library

The aspects are represented using SysML blocks that are stereotyped using the

<<Aspect>> stereotype from the SysML profile. The library is organized using SysML

packages to group related aspects by type. Additionally, SysML specialization

relationships are used to order the aspects from most abstract to least abstract.

MAsCoM[Profile] Profilepkg []

-isEncapsulated : Boolean

<<stereotype>>

Block

[Class]

< < s t e r e o t y p e > >

ModelContext

[Class]

< < s t e r e o t y p e > >

Aspect

[Class]

<<stereotype>>

Binding

[Dependency]

63

4.4.3 Establishing Fine-Grain Mappings

To describe how a specific analysis model relates to a component structure model,

a Model Context is defined. The knowledge captured by fine-grain mappings is encoded

in this Model Context. Just like aspects, Model Contexts are also stereotyped with the

<<Model Context>> stereotype from the MAsCoM profile making them easy to

recognize and computer interpretable. A different model context is needed between every

corresponding component and analysis model.

The idea of mapping analysis models to structure models in a specific context was

developed previously by Peak et al. [4]. They introduced Context Based Analysis

Models (CBAM) to bind the parameters of an analysis model to values in a structural

model in the context of a specific analysis. If the analysis model is defined to be

sufficiently general, it can be reused in multiple contexts. Here, it is recognized that, for

a particular component, such bindings between analysis models and structure models

often remain the same irrespective of how the component is used within a larger system.

It therefore makes sense to establish these bindings at the component level so that the

mapping becomes reusable.

Parameter Maps

 Model parameters from the component model are linked to parameters of

the analysis model using bindings that are captured on a parameter map. These bindings

are made using binding connectors which are a standard construct of the SysML

language. They can be combined with SysML parametrics and constraints to capture

algebraic relationships between the parameters. An example of a parameter map is shown

64

in Figure 4.5. In this parameter map, the parameter describing the mass of a structural

load is mapped to a corresponding mass parameter in a corresponding analysis model.

Figure 4.5: Parameter map between a structural model of a translational load and an

analysis model

Interface Maps

Just as parameter maps bind model parameters, interface maps are used to capture

the mapping between the interfaces of the component and analysis models. The mapping

between individual interfaces is captured using stereotyped SysML dependencies. An

example of an interface map is shown in Figure 4.6.

65

Figure 4.6: Interface map between a structural model of a translational load and an

analysis model

4.5 Automated Composition of Analysis Models

In this section, an approach is presented for composing analysis models with

appropriate aspects from a representative model of the systems structure along with the

knowledge captured within MAsCoMs. The approach relies on the use of graph

transformations applied to the structural model to generate an appropriate analysis model.

To simplify this process, the graph transformations use the abstract syntax defined

by the domain specific language defined in Section 4.2 to capture these composed

system-level analysis models. The abstract syntax of this language is defined by the

languages formal metamodel.

66

4.5.1 Representing the Structural Model and Context

The system-level structural model is represented using SysML. As mentioned

previously, the structural model is a system composed of modular component (or

subsystem) models. These component models are specializations of models in the

component library. To capture this relationship, SysML blocks representing the

component models are linked to models in the taxonomy using SysML specialization

relationships.

The system-specific component models inherit the appropriate interfaces from the

models in the component taxonomy. These models are connected via these appropriate

interfaces; these connections are maintained when the corresponding analysis model is

generated.

It is also important to capture exactly which analysis model should be composed

from the defined structural model. In general, a single structural model may translate to a

large number of possible analysis models. To capture this relationship between the

structural model and the desired analysis model, an analysis context is used. An analysis

context consists of a set of aspects as well as a simulation template. These aspects are the

MAsCoM aspects organized in the aspect taxonomy; when the corresponding system-

level analysis model is composed; component-level models classified with the

appropriate aspects are used.

The simulation template prescribes the simulation parameters and specifies the

variables of interest. The simulation template contains the information needed to execute

the analysis model such as simulation time and solver information.

67

4.5.2 Graph Grammar

In order to automatically create an appropriate system-level analysis model, a

graph transformations is used to transform from a system-level structural model.

This graph grammar is composed of two distinct sets of transformations; the first

set maps from the structural model to the domain specific abstract representation of the

analysis models. The second set maps from this abstract representation back to a concrete

representation of the analysis model in SysML. The first set is described in this section,

while the second set is presented in the following section.

The first set of transformations captures the relationship between the system-

specific structural models, the appropriate MAsCoMs, and the corresponding analysis

model. In part, this first set can be thought of as also capturing the composition

relationships present between analysis models.

To simplify the presentation, this first set from the grammar is decomposed into

three distinct transformations each applied to a different level of the structural model. The

first transformation creates a new system-level analysis model that is consistent at the

system level with the original structural model; i.e., the transformation creates a system-

level analysis model that is composed of the models with the same component types

present in the structural model. The second transformation maintains consistency at the

component level; it creates the parameters and interfaces for each analysis model. The

third transformation creates the appropriate connections between interfaces. These three

transformations are illustrated in Appendix C.

68

A triple-graph grammar (TGG) styled approach is taken to defining theses

transformations using OMG’s Query/View/Transform (QVT) standard. TGGs and QVT

standard have been shown to be equally expressive [19]. A correspondence metamodel is

used to capture the mapping between the domain specific MOF metamodel, that defines

the language for our analysis models, and entities from the SysML metamodel. More

precisely, instances of this correspondence metamodel (correspondence graphs) define a

mapping between representations of structural models in SysML’s concrete syntax and

representations of analysis models in our domain specific abstract syntax.

Graph transformations are classically defined using a pre-condition, the part of the

graph that is matched, and a post-condition, the replacement graph. The knowledge

captured within MAsCoMs provides a component of both the pre-condition and post-

condition.

For the system-level transformation, the pre-condition is the structural model and

its simulation context along with the appropriate MAsCoM templates. For each

component within the structural representation, a matching analysis model is instantiated

within the system-level analysis model. The appropriate analysis model is determined by

comparing the aspects of the simulation context with the aspects classifying each analysis

model. Currently, graph-based pattern matching is also used to compare these two sets of

aspects although this is likely not the most efficient implementation.

The component-level transformation insures consistency of component model

parameters and interfaces. Therefore the component-level transformation, the interface

and parameter maps provide the majority of the information. The appropriate model

context has already been selected in the system-level transformation so the necessary

69

interfaces and parameters are generated using the interface and parameter maps as

templates. This is first accomplished by replicating the parameters and interfaces of the

analysis model in the library. The library models interfaces along with the previously

mentioned parameter maps provide the templates for this transformation.

The last transformation is at the connection-level; it generates the connections

between interfaces of the component-level analysis models based on the connections

between the interfaces of the component models in the structural representation.

Currently only a single component-level transformation is defined, but in general a large

number are needed to capture the vast differences in connections between different

analysis models.

There are several considerations when defining compositions between interfaces.

In general, we assume that structural interfaces connected using SysML connectors

correspond to connecting the interfaces of the analysis model with connectors. But, for

several types of analyses this assumption does not hold. Simpler cases are easily included

in this presented definition. For example, if the analysis models being composed require

only information about a models position or no connectivity information at all (for

example mass, moment of inertia) this is easily captured using the presented framework.

Capturing compositions where additional structure is required, such as replacing

connection configurations that result in interfaces having cardinality not equal to one with

nodes forcing the interfaces to have a cardinality of one, is more difficult because these

unique compositions need to be captured unambiguously. It is likely that such

compositions can also be captured in the form of templates and graph transformations

similar to the implementation for interface and parameter maps.

70

Currently these transformations are applied in a batch-type operation; an entire

system-level analysis model is composed through the application of the transformations.

Future work will investigate how the use of correspondence objects will allow

incremental updates of the system-level analysis model from modifications to the

structural model.

4.6 Example: Hydraulic Circuit

In this section, the approach presented in this chapter will be applied to the hydraulic

circuit example. A structural representation of the hydraulic circuit is transformed into

analysis model. In this case, the analysis model is a Modelica continuous dynamics

model. The analysis model is represented in SysML similar to the structural

representation; this representation is solver-independent.

4.6.1 Defining the Model Libraries

Defining the structural model library is discussed in Section 3.3.3; it consists of

common hydraulic components organized into a taxonomy. The analysis model library

contains references into Modelica models that can be composed together and simulated to

model the behavior of a hydraulic circuit. The creation of the analysis model library is

discussed in more detail in Section 5.4.1.

4.6.2 Creating Model Contexts and Establishing Fine-grain Relationships

Before a composed analysis model can be created, fine-grain relationships must

be established between the structural models and analysis models. This is accomplished

71

using Model Contexts along with interface and parameter maps as discussed in Section

4.3.4. For each analysis model of interest, a Model Context is created. Within this Model

Context, each analysis model is linked to a corresponding structural component model.

Also, each analysis model is related to aspects from the aspect library using dependency

relationships. The Model Context for the ―ConstantDisplacementPump‖ analysis model is

shown in QQ. The analysis model is related to the structural representation for a Fixed

Displacement Pump. In this example, the ConstantDisplacementPump analysis model is

labeled with the aspects ―Dynamic‖, ―DAE‖, and ―Modelica.‖ This characterizes the

analysis model as dealing with the dynamic behavior, being defined using differential-

algebraic equation, and in the Modelica language.

Figure 4.7: Model Context for Constant Displacement Pump Model

After the Model Context has been created, a parameter and interface map is

created to capture the fine-grain relationships. The parameter map for the

72

ConstantDisplacementPump analysis model is shown in Figure 4.5. The ―Dconst‖

parameter of the analysis model is linked to the displacement of the fixed displacement

pump. The interface map is shown in Figure 4.6. The interfaces of the analysis model are

linked to the interfaces of the fixed displacement pump.

Figure 4.8: Relationship between pump structural model parameter and pump analysis

model parameter

73

Figure 4.9: Relationship between pump structural model interfaces and pump analysis

model interfaces

4.6.3 Structural Model and Context

Once each of the analysis models has been captured in an appropriate Model

Context, the captured knowledge is reused to automatically transform from structural

representations into analysis models. First, a structural representation of the system needs

to be defined. Here, a model of the structural representation of a random hydraulic circuit

generated using the synthesis method presented in Chapter 3. This circuit is shown in

Figure 4.10. A context is also defined; it captures that the structural model of interest is

the hydraulic circuit and the composed analysis model should have certain aspects,

namely the ―Dynamic‖, ―Modelica‖, and ―DAE‖ aspects.

74

Figure 4.10: Structural model of simple hydraulic circuit.

4.6.4 Composed Analysis Model

Once the structural representation and context have been defined, a composed

analysis model is generated. This composed model is shown in Figure 4.11. The

composed analysis model has the same layout as the structural representation. All of the

structural models of the components have been replaced with appropriate analysis

models. Then the interfaces are connected in appropriate fashion. Although not shown,

the parameters are also appropriate mapped. This composed analysis model can be

transformed into a simulation model and simulation; this will be covered in the next

chapter.

[Block] Circuit Circuitibd []

<<block>>

 : FixedDisplacementPump

 : Flange : H i g h P r e s s u r e F l o w P o r t

 : L o w P r e s s u r e F l o w P o r t

< < b l o c k > >

 : DoubleActingCylinder

FlowB : FlowPort

R o d : F l a n g e

F l o w A : F l o w P o r t

< < b l o c k > >

 : 6Way3PosOCTandem

<<block>>

 : ConstantSpeed

powerOut : Flange

< < b l o c k > >

 : Load1

Power : Flange

< < b l o c k > >

 : Tank

75

Figure 4.11: Composed analysis model for simple hydraulic circuit

4.7 Discussion

The approach presented uses a graph grammar to capture the composition rules

needed to connect together component-level analysis models. Several assumptions are

made during this process. Several of these assumptions are implicitly captured within the

graph grammar; also the grammar can be extended remove or change some of these

assumptions. In the example, assigning causality to the model is left to an analysis or

simulation tool. This is not true of all such tools and the graph grammar could be

extended to implement a causality assignment algorithm.

A more difficult assumption to relax is that each component of the composed

analysis model must be classified with the same aspects. This assumption is valid in the

[Block] Circuit Circuitibd []

<<block>>
<<external>>

 : ConstantDisplacementPump

flange_a : Flange_a p o r t P : F l u i d P o r t

p o r t T : F l u i d P o r t

< < b l o c k > >

< < e x t e r n a l > >

valve : SV6_3OCTandem

<<block>>
<<external>>

 : DoubleActingCylinder

port_b : FluidPort

f l a n g e _ a : F l a n g e _ a

p o r t _ a : F l u i d P o r tf l a n g e _ b : F l a n g e _ b

< < b l o c k > >

< < e x t e r n a l > >

 : ConstantSpeed

flange : Flange_b

< < b l o c k > >

< < e x t e r n a l > >

 : SlidingMass

flange_a : Flange_a

< < b l o c k > >

< < e x t e r n a l > >

 : CircuitTank

port_a : FluidPortp o r t _ b : F l u i d P o r t

76

example presented, but for federated analysis models it is not applicable. Federated

models may need to be executed by multiple simulation tools. How to capture possible

exceptions deserves further investigation. Also, currently the aspect matching algorithm

is implemented using simple graph pattern matching. For more complex model libraries,

this method will likely become inefficient and improved implementation is worth

considering. Also, for federated analysis models an execution manager is required,

although several such tools exist (e.g. ModelCenter [33]).

4.8 Summary

In this section, the feasibility of capturing analysis knowledge using DSLs and

graph grammars is addressed. The definition a DSL for describing composed-analysis

models is described. Reusable model fragments are captured within contained called

MAsCoMs and placed into model libraries. Graph grammars are defined to compose

analysis models from structural representations. The method is then demonstrated on a

simple example involving the generation of an analysis model from a structural

representation of a hydraulic circuit

77

CHAPTER 5

GENERATING SIMULATION MODELS FROM ANALYSIS

MODELS
2

This section describes an approach to generating Modelica simulation models

from analysis models in SysML. Modelica simulation models are used as a representative

example for simulation models in general. When creating a formal approach for

representing continuous dynamics (CD) in SysML, Modelica provides a strong

foundation. Modelica has emerged as the language of choice for expressing continuous

dynamic system behavior. It is better structured and more expressive than most

alternatives such as VHDL-AMS [8] or ACSL [36]. In addition, both SysML and

Modelica are similar in that they use base modeling elements that adhere to the principles

of object-oriented modeling. Both languages also encourage model reuse through acausal

equation-based modeling. Unfortunately, enough differences exist such that a direct one-

to-one mapping is not possible. Since SysML is intended to be a general modeling

language, some of the specialized semantics of Modelica do not have a direct equivalent

in SysML. To overcome these differences, our approach has been to find a good balance

between converting some implicit Modelica semantics into explicit constraints in SysML

or, when that is not possible, extending the SysML constructs through stereotypes.

2
 Based on work by Tommy Johnson [28]

78

While SysML is a valuable integration tool, much of that value could be detracted

if engineers must manually transform domain-specific models into SysML and vice-

versa. In the case of continuous dynamics models, an approach is needed for

accomplishing automated, bidirectional transformations between the SysML and

Modelica languages.

5.1 Related Work

The need to describe system behavior in terms of equations or constraints has been

previously recognized in the work on Constrained Objects (COBs) [48, 49]. COBs

provide both a graphical and lexical representation of algebraic relationships that can be

used to tie design models to analysis models in a parametric fashion. These COBs

recently served as the basis for the development of the SysML parametric diagrams [42].

By establishing a mapping between COBs and SysML, the integration and execution of

engineering analyses (such as structural finite element analyses) within the context of

SysML has been demonstrated [46]. This section extends this past work on COBs by

focusing on the modeling and simulation of the continuous dynamics of systems as

defined in Modelica models.

Recently, Fritzson and Pop [50] have worked on the integration of UML/SysML

and Modelica to provide support for modeling and simulating continuous dynamics.

They have created a UML profile called ModelicaML that enables users to depict a

Modelica simulation model graphically alongside UML/SysML information models. The

ModelicaML profile reuses several UML and SysML constructs, but also introduces

79

completely new language constructs. Such constructs are the Modelica class diagram, the

equation diagram, and the simulation diagram.

Nytsch-Geusen [41] developed a specialized version of UML called UML
H
. This

version is used in the graphical description and model-based development of hybrid

systems in Modelica. The author presents hybrid system models as Modelica models that

are based on DAEs combined with discrete state transitions modeled with the Modelica

statechart extension. Using a UML
H
 editor and a Modelica tool that supports code

generation, Modelica stubs can be automatically generated from UML
H
 diagrams so that

the user must only insert the equation-based behavior of the system in question. In this

chapter, the capabilities of ModelicaML and UML
H
 are further extended by

demonstrating the integration of continuous dynamics models with other SysML

constructs for requirements, structure, and design objectives, and by demonstrating the

translation between SysML and Modelica through the use of TGGs.

5.2 Domain Specific Language for describing CD Models

In order to transform between the system-level analysis models described in

SysML and models that can be simulated described in the Modelica simulation language,

a DSL approach is once again taken. This transformation can be viewed as taking models

described by different concrete syntaxes but similar abstract syntax. The essence of the

two models is the same; from the stand point of a domain-specific language both capture

the same pieces of knowledge.

By explicitly capturing the mapping between the concrete and abstract syntaxes,

model-driven software development methods are used to simplify the creation of

80

computer-code to execute the transformation. The same approach as in Section x is taken

to map between the concrete syntax in SysML into an abstract syntax defined by the

explicit metamodel. A tool integrator is then implemented to generate code in the

Modelica textual language. This step would not be necessary if a Modelica tool was

capable of simply executing the abstract syntax.

5.2.1 Abstract Syntax

To define the abstract syntax of this domain specific language, the Modelica

metamodel is formally and explicitly defined using assumptions about the structure of the

implicitly implemented metamodel from Modelica tools as a guide. (In this thesis, the

Modelica tool of chose is Dymola [10]). For the purposes of simply demonstrating the

feasibility and applicability of the presented method, the explicitly defined metamodel

remains fairly simple and does not exhaustively cover every construct in the Modelica

language. This metamodel is once against specified in MOF; a simplified visual

illustration is shown in Figure 5.1.

81

Figure 5.1: Simplified Modelica metamodel represented in MOF.

5.2.2 Concrete Syntax

As in the previously defined DSLs, a concrete syntax is needed to completely

specify the DSL. In this case, there are two separate concrete syntaxes: one defined using

the graphical constructs of SysML as a foundation and the other being the Modelica

textual language. The Modelica language is specifically designed for representing

continuous dynamics models so a clear mapping exists between it and the defined

abstract syntax. This is not the case for SysML because SysML is a more general purpose

language.

82

5.2.3 Representation of Continuous Dynamics models in SysML

When defining the concrete syntax for representing continuous dynamics in

SysML, Modelica is used as the foundation because of its well defined structure and sue

of object-oriented modeling concepts. Although there is argument over exactly which

SysML constructs best fit the description of continuous dynamics systems, blocks are

chosen here to represent Modelica models as in [26]. SysML ports are used to describe

the interfaces of the model and SysML value properties

Because the DSL approach facilitates the formal modeling of the mapping

between the abstract syntax and possible concrete syntaxes, the particular chose of

SysML constructs is unambiguously defined as well as easy to adjust.

Johnson also shows how the majority of the constructs present in Modelica can be

analogously represented in SysML to allow for the creation of fully detailed ―white box‖

continuous dynamics models as well as ―black box‖ models which act as references for

existing, external Modelica models. The approach of using ―black box‖ models is taken

here because it is sufficient for the examples presented. In the ―black box‖ approach

models in SysML that relate to fully specified models defined using the textual Modelica

language. These models can be thought of as pre-specified library models which are a

common feature of most domain-specific simulation tools.

83

5.3 Transforming Between SysML and Modelica Models

 Many methods exist for implementing transformations between various modeling

languages such as the use of the QVT or TGG standard as mentioned in Section 2.2. An

approach similar to Section 3.1.2 is taken here:

1. The abstract syntax of the domain specific language is captured in a MOF-

compliant metamodeling tool as described in the previous section.

MOFLON is used as the meta-modeling tool because of its code

generation capabilities.

2. A SysML profile is defined within the SysML modeling tool. In this case,

the profile is specifically designed to facilitate the representation of ―black

box‖ models in SysML. This profile is shown in Figure 5.2. Stereotypes

are also defined to capture references to a particular external model

library.

3. MOFLON is used to generate Java Metadata Interface (JMI) based code

that implements the metamodel.

4. Query/View/Transformation (QVT) based transformation rules are also

defined in MOFLON to map between the stereotyped SysML profile and a

specific instance of the metamodel. This serves the role of a translator or

compiler between the concrete syntax and the abstract syntax.

5. MOFLON is used to generate JMI code that implements these

transformations.

84

6. The code generated by MOFLON is combined with a JMI-compliant

SysML tool. This extends the tool to provide the capability of authoring

models defined by the DSL.

7. A tool integrator is implemented to create Modelica textual code from the

abstract syntax.

A SysML model is stereotyped using the profile. It is then translated into an

abstract representation by executing the JMI code. This abstract representation is an

abstract syntax graph; this graph is the abstract representation of the defined model.

Figure 5.2: Profile for capturing "Black Box" models

5.4 Example: Hydraulic Circuit

This section describes the creation of a simulation model that can be compiled

and executed by a Modelica simulation tool such as Dymola.

Modelica[Profile] Librarypkg []

+startTime [1] = 0
+stopTime [1] = 10
+analysis : Block

<<stereotype>>

simulation

[Class]

- i s E n c a p s u l a t e d : B o o l e a n

< < s t e r e o t y p e > >

Block

[Class]

+ref : String [1]
+url : String
+library : Block [1]

<<stereotype>>

external

[Class]

+ u r l : S t r i n g

< < s t e r e o t y p e > >

library

[Class]

85

5.4.1 Referencing models in a model library

As described earlier, useful Modelica models are captured in a model library

described in SysML. Each model in the model library is a ―black box‖ model; it

references an existing model outside of the SysML tool. In order to create a ―black box‖

model and therefore reference an external model, several pieces of information are

needed. These are captured within the <<Library>> and <<External>> stereotypes. The

<<Library>> stereotype requires the ―url‖ tag where information pointing to the location

of the library is stored. The <<External>> stereotype requires the ―ref‖ tag which stores

information about the location of that particular model within the library. The stereotype

also needs either the ―library‖ tag which points to the associated library or a ―url‖ tag.

A SysML block representing the fluid power library and a SysML block

representing the ―ConstantDisplacementPump‖ model is shown in Figure 5.3. The fluid

power library block has a ―url‖ tag pointing to the location of the library. The

―ConstantDisplacementPump‖ model uses the ―ref‖ tag to describe the location of that

model within the fluid power library.

86

Figure 5.3: Pump model from library along with abstract model of the library

5.4.2 Generating Modelica code from an Analysis Model

The composed analysis model used as an example is the one created in the

previous chapter. This model is shown in Figure 5.4. To create a simulation model from

this model, some additional knowledge is required. In this case, because it is a dynamic

simulation, the start and stop time is required. This is captured in a SysML block

modeling the simulation. This is shown in Figure 5.5. The resulting code is shown in

Figure 5.6.

[Package] Untitled14Modelicabdd []

<<external>>

library = F l u i d P o w e r L i b r a r y

r e f = " F l u i d P o w e r . C o m p o n e n t s . M o t o r s P u m p s . C o n s t a n t D i s p l a c e m e n t P u m p "

Dconst : Volume = 1e-5

< < b l o c k > >

< < e x t e r n a l > >

ConstantDisplacementPump

<<library>>

url = "C:\...\Dymola\FluidPower\package.mo"

<<block>>
<<library>>

FluidPowerLibrary

87

Figure 5.4: Simulation model

Figure 5.5: Composed analysis model

[Package] Analysis sim bddbdd []

<<simulation>>

analysis = C i r c u i t

s t a r t T i m e = " 0 "

s t o p T i m e = " 1 5 "

<<simulation>>
<<block>>

Simulation

[Block] Circuit Circuitibd []

<<block>>
<<external>>

 : ConstantDisplacementPump

flange_a : Flange_a p o r t P : F l u i d P o r t

p o r t T : F l u i d P o r t

< < b l o c k > >

< < e x t e r n a l > >

valve : SV6_3OCTandem

<<block>>
<<external>>

 : DoubleActingCylinder

port_b : FluidPort

f l a n g e _ a : F l a n g e _ a

p o r t _ a : F l u i d P o r tf l a n g e _ b : F l a n g e _ b

< < b l o c k > >

< < e x t e r n a l > >

 : ConstantSpeed

flange : Flange_b

< < b l o c k > >

< < e x t e r n a l > >

 : SlidingMass

flange_a : Flange_a

< < b l o c k > >

< < e x t e r n a l > >

 : CircuitTank

port_a : FluidPortp o r t _ b : F l u i d P o r t

88

Figure 5.6: Code generated from composed model

5.5 Summary

In this section, the feasibility of capturing creating simulation models from

analysis models is addressed. Modelica is used as the representative language. A DSL is

defined to capture the simulation models. Reusable model fragments are referenced from

external libraries. The method is demonstrated with the generation of Modelica code

from an analysis model of a hydraulic circuit in SysML.

89

CHAPTER 6

DISCUSSION AND CLOSURE

In this thesis, the Model-Driven Software Development concepts of formal DSLs

and model transformations are applied to the capture of design knowledge. This final

chapter reviews the overall approach, discusses limitations, and highlights possible future

work.

6.1 Review and Evaluation

The motivation behind this thesis is an open-ended question concerning the

efficient representation of design knowledge. Throughout this thesis, concepts from

Model-Driven Software Development, mainly the use of domain specific languages and

graph-based model transformations, have been used to capture various pieces of design

knowledge. The examples of design knowledge used throughout are representative;

therefore it is likely that the prescribed approach can be applied to a wider range of

problems (not just the design of toy examples or hydraulic circuits). But from the work

presented here, it would be bold to claim that all types of design knowledge could be

formally captured in this manner.

The use of formal models represented using formal domain specific languages

throughout the design process promotes traceability, transparency, consistency, and

automated transformation. The presented approach facilitates the definition of domain

specific languages and therefore likely better enables designers to apply MBSE to

complex systems. The major problem with the work presented in this thesis, however, is

90

that it has not been tested on the target audience: systems and disciplinary engineers

working in a variety of domains. One can assume that through improvement of

implementation details this approach to specify DSLs could be valuable for the target

audience; however, that value has yet to be confirmed.

The effectiveness of the presented approach in capturing the prescribed design

knowledge about the example problem is encouraging. Although there are clearly

limitations, as discussed in each chapter and further addressed in the next section, none

seem to be the results of an inherent and fundamental flaw in the approach. Therefore, it

seems reasonable to claim that using such an approach to capture design knowledge is

generally feasible.

6.2 Limitations

The limitations of the presented approaches to capturing specific design

knowledge have been presented in each individual chapter. This section discusses high-

level limitations to capturing design knowledge in general using the presented approach.

Expressivity of the Metamodels

Throughout this thesis, the metamodeling language used is OMG’s MOF; MOF is

designed to be an effective meta-language for models that are inherently object-oriented

or are based on object-oriented principles. The DSLs introduced throughout have been of

an object-oriented nature, but this may not be the case to capture knowledge in certain

domains. But since the trend in systems engineering is towards modularity and other

91

object-oriented concepts in designed systems, a majority of languages for describing

aspects of these systems are also objected-oriented in nature.

Ease of Using Graph Grammars

Graph grammars are used throughout this work to capture knowledge. One

weakness of this approach is that some of the knowledge being captured within the graph

grammars is implicit. A particular modification rule might be designed to insure a certain

component is also connected to another component, but it does not explicitly capture, for

example, whether these two components must always be connected. Also, creating

transformations rules that implicitly capture certain knowledge can become tedious and

difficult. How this complexity presents itself deserves further consideration, although

graph grammars have been used for a wide variety of applications as mentioned

throughout the thesis.

Fidelity/Abstraction

Also, throughout this thesis models are assumed to be at an ―appropriate‖ level of

abstraction or fidelity when being composed. It is also not clear if is possible to rate a

model’s ―fidelity‖ or ―level of abstraction‖ using an absolute and unambiguous scale.

Scalability

Applying graph transformations to increasingly complex systems models can

become very computational expensive. There have been a number of case-studies using

graph transformations applied to very complex software systems, and in this thesis this

computational expense never presented a problem.

92

6.3 Future Work

Obviously, it would be prudent for future work to focus on addressing the

limitations presented in the previous section. Also, the work presented here has only

attempted to establish the feasibility of using the presented methods .One obvious

extension is the comparison of the work presented here with other approaches to capture

design knowledge. Such a rigorous comparison is likely to shed more light on the

question of how should design knowledge be captured, versus simply how it can be

captured.

Throughout the work presented in this thesis, only a single application domain is

considered. Transformations are used to transformation from one DSL to another, but

interactions between models represented using different DSLs is not considered. Also,

interactions with other domains are largely abstracted. For example, the interaction

between the hydraulic circuit and the corresponding mechanical structure is significantly

simplified. With the DSL approach, it is likely that both of these domains would be

described using different DSLs. How models represented using such DSLs would interact

deserves consideration.

Also, completing the loop shown in the high-level view on Figure 1.1 by using an

optimization algorithm is left for future work. The use of an evolutionary program with

the synthesis approach is demonstrated in this thesis but to truly complete the loop an

attribute grammar [53] or similar method is needed to provide appropriate initial sizing to

the components. Else, the applied optimization algorithm may generate hydraulic circuits

with very poor parameters which become difficult to simulate.

93

APPENDIX A

GLOSSARY OF TERMS

Abstract syntax – describes the ―essence‖ of the model; the abstract syntax

representation is independent of any particular concrete representation

Concrete syntax – describes how a model can be represented concretely. For

example, with programming languages the concrete syntax includes punctuation, etc. that

is not included in the abstract syntax. A concrete syntax can be either textual or visual.

Domain-Specific language – a language specifically designed for describing a

particular problem domain. Defined by an abstract syntax as well as at least one concrete

syntax. In general, a domain-specific language is mapped to a specific domain to give it

semantic meaning.

Graph – A collection of nodes and edges. For the purpose of this thesis, the nodes

and edges are generally labeled. Also, the edges are directed.

Metalanguage – a language for describing a metamodel, just as a metamodel

describes a model.

94

Metamodel – language for defining models, a metamodel provides the available

constructs and relationships that can be used to describe a model. A particular model is an

instance of its metamodel.

Meta-circularity – the use of a metalanguage to define itself. This allows the

practical definition of metalanguages.

Model-Based Systems Engineering – The use of models instead of documents to

describe all aspects of the systems engineering process.

Model-Driven Architecture – Pre-cursor to Model-Driven Software Development

in computer science; model-driven/based architecture relies on

Model-Driven Software Development – From computer science, models are used

to automate the generation of code. This is a shift from the more conventional approach

of using models to constitute documentation.

Modeling Language – any language that can be used to express information or

knowledge in a structure that is defined by consistent set of rules.

Profile – A light weight extension mechanism that SysML shares with UML; a

profile can be used to quickly extend either UML’s or SysML’s metamodel.

95

SysML – Object Management Group’s Systems Modeling Language. It is a

standardized general-purpose visual modeling language for systems engineering.

Syntax – The rules and principles that govern the structure of a language

Semantics – the meaning of a language

UML – Object Management Group’s Unified Modeling Language. It is a

standardized general-purpose visual modeling language in the field of software

engineering.

96

APPENDIX B

SYNTHESIS GRAMMAR

The graph grammar used to create design alternatives for the hydraulic circuit

example is presented in this appendix. As mentioned in Section 3.3.2, these

transformations reflect actions designers might take to create a hydraulic system. The

presented graph transformations:

 Select a random component from the model library

 Add an instance of a cylinder to the circuit and configure it to actuate a load.

 Add an instance of a directional valve to the circuit to control a cylinder.

 Add an instance of a pump to the circuit to provide flow to the directional

valve.

 Add an instance of a tank to the circuit to provide flow to instances of pumps.

These transformations are implemented using MOFLON and executed using an order

determined by traversing the decision graph.

97

Figure B.1: Graph pattern for matching random component models in model library

98

Figure B.2: Graph transformation for adding a cylinder to the hydraulic circuit

99

Figure B.3: Graph transformation for adding a directional valve to the hydraulic circuit

100

Figure B.4: Graph transformation for adding a pump to the hydraulic circuit

101

Figure B.5: Graph transformation for adding a tank to the hydraulic circuit

102

Figure B.6: Graph transformation for connecting similar directional valves

103

APPENDIX C

ANALYSIS MODEL COMPOSITION GRAMMAR

The three graph transformations used to create a composed analysis model from a

structural representation are presented in this appendix. The first transformation creates a

new system-level analysis model that is consistent at the system level with the original

structural model; i.e., the transformation creates a system-level analysis model that is

composed of the models with the same component types present in the structural model.

The second transformation maintains consistency at the component level; it creates the

parameters and interfaces for each analysis model. The third transformation creates the

appropriate connections between interfaces.

104

Figure C.1: Partial SysML metamodel used when defining transformations

105

Figure C.2: System level transformation

106

Figure C.3: Component-level transformation

107

Figure C.4: Connection-level transformation

108

REFERENCES

[1] Alber, R., Rudolph, S., and Kröplin, B., 2002, "On Formal Languages in Design

Generation and Evolution," Fifth World Congress on Computational Mechanics,

Vienna, Austria.

[2] Amelunxen, C., Konigs, A., Rotschke, T., and Schurr, A., 2006, "MOFLON: A

Standard-Compliant Metamodeling Framework with Graph Transformations,"

Lecture Notes In Computer Science, 4066, pp. 361.

[3] Bajaj, M., Peak, R. S., and Paredis, C. J. J., 2007, "Knowledge Composition for

Efficient Analysis Problem Formulation Part 2: Approach and Analysis Meta-

Model," in ASME 2007 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference, ASME, Las Vegas,

Nevada, USA.

[4] Bajaj, M., Peak, R. S., and Paredis, C. J. J., 2007, "Knowledge Composition for

Efficient Analysis Problem Formulation Part 1: Motivation and Requirements,"

in ASME 2007 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, ASME, Las Vegas,

Nevada, USA.

[5] Baldwin, C. Y., and Clark, K. B., 1999, Design Rules: Volume 1. The Power of

Modularity, The MIT Press.

[6] Bolognini, F., Seshia, A. A., and Shea, A. K., 2007, "A Computational Design

Synthesis Method for Mems Using COMSOL," COMSOL Users Conference.

[7] Campbell, M. I., Cagan, J., and Kotovsky, K., 1999, "Agent-Based Synthesis of

Electro-Mechanical Design Configurations," ASME Journal of Mechanical

Design, 122(1), pp. 61-69.

[8] Christen, E., and Bakalar, K., 1999, "VHDL-AMS - a Hardware Description

Language for Analog and Mixed-Signal Applications," IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, 40(10), pp. 1263-

1272.

[9] Czarnecki, K., and Helsen, S., 2003, "Classification of Model Transformation

Approaches," Proceedings of the 2nd OOPSLA Workshop on Generative

Techniques in the Context of the Model Driven Architecture

[10] Elmqvist, H., Brück, D., and Otter, M., 1995, "Dymola-User's Manual," Dynasim

AB, Research Park Ideon, Lund, Sweden.

109

[11] Emmerich, M., Grotzner, M., and Schutz, M., 2001, "Design of Graph-Based

Evolutionary Algorithms: A Case Study for Chemical Process Networks,"

Evolutionary Computation, 9(3), pp. 329-354.

[12] Eppinger, S. D., Sosa, M. E., and Rowles, C. M., 2000, "Designing Modular and

Integrative Systems," ASME 2000 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference,

Baltimore, Maryland, USA.

[13] Evans, E., 2004, Domain-Driven Design: Tackling Complexity in the Heart of

Software, Addison-Wesley Professional.

[14] Fenves, S., Foufou, S., Bock, C., and Sriram, R. D., 2008, "CPM2: A Core Model

for Product Data," Journal of Computing and Information Science in Engineering,

8(1).

[15] Fisher, J., 1998, "Model-Based Systems Engineering: A New Paradigm," in

INCOSE Insight, vol. 1.

[16] Gershenson, J. K., Prasad, G. J., and Allamneni, S., 1999, "Modular Product

Design: A Life-Cycle View," Journal of Integrated Design & Process Science,

3(4), pp. 13-26.

[17] Giese, H., Levendovszky, T., and Vangheluwe, H., 2007, "Summary of the

Workshop on Multi-Paradigm Modeling: Concepts and Tools," Lecture Notes In

Computer Science, 4364, pp. 252.

[18] Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.

[19] Greenyer, J., Kindler, E., 2007, "Reconciling Tggs with Qvt," in Model Driven

Engineering Languages and Systems, MoDELS 2007, Springer, Berlin /

Heidelberg.

[20] Grosse, I. R., Milton-Benoit, J. M., and Wileden, J. C., 2005, "Ontologies for

Supporting Engineering Analysis Models," Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 19(1), pp. 1-18.

[21] Holland, J. H., 1992, Adaptation in Natural and Artificial Systems, MIT Press

Cambridge, MA, USA.

[22] Horváth, I., Vergeest, J. S. M., and Kuczogi, G., 1998, "Development and

Application of Design Concept Ontologies for Contextual Conceptualization,"

1998 ASME Design Engineering Technical Conferences, Atlanta, GA.

[23] ISO/IEC, 2005, Unified Modeling Language Specification,

http://www.omg.org/cgi-bin/apps/doc?formal/05-04-01.pdf. March 10, 2009.

http://www.omg.org/cgi-bin/apps/doc?formal/05-04-01.pdf

110

[24] Jackson, D., 2002, "Alloy: A Lightweight Object Modelling Notation," ACM

Transactions on Software Engineering and Methodology (TOSEM), 11(2), pp.

256-290.

[25] Jobe, J. M., 2008, Multi-Aspect Component Models: Enabling the Reuse of

Engineering Analysis Models in SysML, Masters Thesis, Department of

Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

[26] Johnson, T. A., Paredis, C. J. J., and Burkhart, R., 2008, "Integrating Models and

Simulations of Continuous Dynamics into SysML," in Modelica Conference

2008, Bielefeld, Germany.

[27] Johnson, T. A., Paredis, C. J. J., Burkhart, R. and Jobe, J. M., 2007, "Modeling

Continuous System Dynamics in SysML," in 2007 ASME International

Mechanical Engineering Congress and Exposition, ASME, Seattle, WA.

[28] Johnson, T. J., 2008, Integrating Models and Simulations of Continuous Dynamic

System Behavior into SysML, Masters Thesis, G. W. Woodruff School of

Mechanical Engineering, Georgia Insitute of Technology, Atlanta, GA.

[29] Königs, A., and Schürr, A., 2005, Multi-Domain Integration with MOF and

Extended Triple Graph Grammars, Internat. Begegnungs-und Forschungszentrum

für Informatik.

[30] Kopena, J. B., and Regli, W. C., 2003, "Functional Modeling of Engineering

Designs for the Semantic Web," Data Engineering, 26(4), pp. 55-61.

[31] Koza, J. R., Bennett III, F. H., Andre, D., Keane, M. A., and Dunlap, F., 1997,

"Automated Synthesis of Analog Electrical Circuits by Means of Genetic

Programming," IEEE Transactions on Evolutionary Computation, 1(2), pp. 109-

128.

[32] Lee, C. Y., Ma, L., and Antonsson, E. K., 2001, "Evolutionary and Adaptive

Synthesis Methods," Formal Engineering Design Synthesis, Cambridge

University Press, pp. 270-320.

[33] Malone, B., and Papay, M., 1999, "ModelCenter: An Integration Environment for

Simulation Based Design," Simulation Interoperability Workshop.

[34] Mellor, S. J., Scott, K., Uhl, A., and Weise, D., 2002, "Model-Driven

Architecture," Lecture Notes In Computer Science, pp. 290-297.

[35] Michalewicz, Z., 1996, Genetic Algorithms+ Data Structures= Evolution

Programs, Springer, New York.

[36] Mitchell, E. E. L., and Gauthier, J. S., 1976, "Advanced Continuous Simulation

Language (ACSL)," SIMULATION, 26(3), pp. 72-78.

111

[37] Mocko, G., Malak Jr., R. J., Paredis, C. J. J., and Peak, R., 2004, "A Knowledge

Repository for Behavioral Models in Engineering Design," ASME Computers and

Information in Engineering Conference, Salt Lake City, UT.

[38] Modelica Association, 2005, Modelica Language Specification,

http://www.modelica.org/documents/ModelicaSpec22.pdf. January 12, 2009.

[39] Murthy, K. V. S., and Salzberg, S. L., 1996, On Growing Better Decision Trees

from Data, Thesis, The Johns Hopkins University.

[40] Nagl, M., 1979, "Graph-Grammatiken, Theorie, Implementierung,

Anwendungen," Vieweg, Braunschweig.

[41] Nytsch-Geusen, C., 2007, "The Use of UML within the Modelling Process of

Modelica-Models," in International Workshop on Equation-Based Object-

Oriented Languages and Tools, Linköping University Electronic Press, Berlin,

Germany.

[42] Object Management Group, 2007, OMG Systems Modeling Language

Specification, http://www.omg.org/cgi-bin/doc?ptc/07-09-01. March 15, 2009.

[43] Object Management Group, 2007, Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, http://www.omg.org/docs/ptc/07-07-

07.pdf. March 20, 2009.

[44] Pahl, G., Beitz, W., Feldhunen, J., and Grote, K.H., 2007, Engineering Design: A

Systematic Approach, Springer, London, UK.

[45] Paredis, C. J. J., Diaz-Calderon, A., Sinha, R., and Khosla, P. K., 2001,

"Composable Models for Simulation-Based Design," Engineering with

Computers, 17(2), pp. 112-128.

[46] Peak, R., Friedenthal, S., Moore, A., Burkhart, R., Waterbury, S., Bajaj, M., and

Kim, I., 2005, "Experiences Using SysML Parametrics to Represent Constrained

Object-Based Analysis Templates," 7th NASA-ESA Workshop on Product Data

Exchange (PDE), Atlanta, GA, USA.

[47] Peak, R. S., Fulton, R. E., Nishigaki, I., and Okamoto, N., 1998, "Integrating

Engineering Design and Analysis Using a Multi-Representation Approach,"

Engineering with Computers, 14(2), pp. 93-114.

[48] Peak, R. S., and Wilson, M. W., 2001, "Enhancing Engineering Design and

Analysis Interoperability Part 2: A High Diversity Example," First MIT

Conference Computational Fluid and Structural Mechanics (CFSM), Cambridge,

Massachusetts, USA.

http://www.modelica.org/documents/ModelicaSpec22.pdf
http://www.omg.org/cgi-bin/doc?ptc/07-09-01
http://www.omg.org/docs/ptc/07-07-07.pdf
http://www.omg.org/docs/ptc/07-07-07.pdf

112

[49] Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., and

Kim, I., 2007, "Simulation-Based Design Using SysML-Part1: A Parametrics

Primer," in INCOSE Intl. Symposium, San Diego, CA.

[50] Pop, A., and Akhvlediani, D., and Fritzson, P., 2007, "Towards Unified Systems

Modeling with the Modelicaml UML Profile," in International Workshop on

Equation-Based Object-Oriented Languages and Tools, Linköping University

Electronic Press, Berlin, Germany.

[51] Powell, A., Nilsson, M., Naeve, A., and Johnston, P., 2007, DCMI Abstract

Model, http://dublincore.org/documents/2007/06/04/abstract-model/. January 21,

2008.

[52] Rachuri, S., Baysal, M. M., Roy, U., FouFou, S., Bock, C., Fenves, S.,

Subrahmanian, E., Lyons, K., and Sriram, R. D., 2005, "Information Models for

Product Representation: Core and Assembly Models," International Journal of

Product Development, 2(3), pp. 207-235.

[53] Rinderle, J. R., 1991, "Grammatical Approaches to Engineering Design, Part II:

Melding Configuration and Parametric Design Using Attribute Grammars,"

Research in Engineering Design, 2(3), pp. 137-146.

[54] Sage, A. P., and Armstrong Jr., J. E., 2000, Introduction to Systems Engineering,

Wiley and Sons.

[55] Sasajima, M., Kitamura, Y., Ikeda, M., and Mizoguchi, R., 1995, "FBRL: A

Function and Behavior Representation Language," Proc. of IJCAI, 95, pp. 1830-

1836.

[56] Schmidt, L. C., and Cagan, J., 1997, "GGREADA: A Graph Grammar-Based

Machine Design Algorithm," Research in Engineering Design, 9(4), pp. 195-213.

[57] Schmidt, L. C., and Cagan, J., 1998, "Optimal Configuration Design: An

Integrated Approach Using Grammars," ASME Journal of Mechanical Design,

120(1), pp. 2-9.

[58] Schürr, A., 1994, "Specification of Graph Translators with Triple Graph

Grammars," in WG'94 Workshop on Graph-Theoretic Concepts in Computer

Science.

[59] Schürr, A., 2001, "Adding Graph Transformation Concepts to UML's Constraint

Language OCL," Electronic Notes in Theoretical Computer Science, 44(4), pp.

93-106.

[60] Simmetrix Inc., 2006, Simulation Application Suite,

http://simmetrix.com/products/SimulationApplicationSuite/main.html. Jun 20,

2006.

http://dublincore.org/documents/2007/06/04/abstract-model/
http://simmetrix.com/products/SimulationApplicationSuite/main.html

113

[61] Simulink (The Mathworks), 2008, Simulink,

http://www.mathworks.com/products/simulink/. Feb 1, 2008.

[62] Stahl, T., Voelter, M., and Czarnecki, K., 2006, Model-Driven Software

Development: Technology, Engineering, Management, John Wiley & Sons.

[63] Starling, A. C., Street, T., and Shea, K., 2005, "A Parallel Grammar for

Simulation-Driven Mechanical Design Synthesis," ASME International design

Engineering Technical Conferences (IDETC/CIE2005), 2, pp. 24-28.

[64] Stone, R. B., and Wood, K. L., 2000, "Development of a Functional Basis for

Design," Journal of Mechanical Design, 122, pp. 359-370.

[65] SysML, 2006, OMG Systems Modeling Language (OMG SysML), V1.0,

http://www.omgsysml.org/. June 20, 2006.

[66] Szykman, S., Sriram, R., Bochenek, C., and Racz, J., 1998, "The Nist Design

Repository Project," Advances in Soft Computing - Engineering Design and

Manufacturing, Springer-Verlag, London, pp.

[67] Tzilla, E., Robert, E. F., and Atef, B., 2001, "Aspect-Oriented Programming:

Introduction," Communications of The ACM, 44(10), pp. 29-32.

[68] Ulrich, K., and Tung, K., 1991, "Fundamentals of Product Modularity," 1991

ASME Design Technical Conferences - Conference on Design / Manufacture

Integration, Miami, Florida.

[69] Umeda, Y., Takeda, H., Tomiyama, T., and Yoshikawa, H., 1990, "Function,

Behavior, and Structure," Applications of Artificial Intelligence in Engineering V,

Springer-Verlag, Berlin, Germany, 1, pp. 177-193.

[70] Wallace, D., Pahng, G. D. F., and Bae, S., 1998, "Web-Based Collaborative

Design Modeling and Decision Support," 1998 ASME Design Engineering

Technical Conferences and Engineering in Information Management Conference,

Atlanta, Georgia, USA.

[71] Weisemoller, I., and Schurr, A., 2007, "A Comparison of Standard Compliant

Ways to Define Domain Specific Languages," 4th International Workshop on

Software Language Engineering, pp. 31-45.

http://www.mathworks.com/products/simulink/
http://www.omgsysml.org/

