
AUTOMATIC COORDINATION AND DEPLOYMENT

OF MULTI-ROBOT SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Brian Stephen Smith

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2009

Copyright© 2009 by Brian Stephen Smith

AUTOMATIC COORDINATION AND DEPLOYMENT

OF MULTI-ROBOT SYSTEMS

Approved by:

Dr. David Taylor, Committee Chair
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Magnus Egerstedt, Advisor
Associate Professor, School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Ayanna Howard, Advisor
Associate Professor, School of Electrical and
Computer Engineering
Georgia Institute of Technology

Dr. Jeff Shamma
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ian Akyildiz
Professor, School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Frank Dellaert
Associate Professor, College of Computing
Georgia Institute of Technology

Date Approved: March 31, 2009

This is dedicated to my parents, Stephen and Renée; to my wife, Mary; and to my

daughter, Tori.

ACKNOWLEDGMENTS

First, I want to gratefully acknowledge my advisors, Dr. Magnus Egerstedt and Dr. Ayanna

Howard. We would not have been able to accomplish any of our work without their patient

instruction and guidance for the last several years. I had a great amount to learn when I

arrived at their doorsteps, and they were very generous in response. I especially thank Dr.

Egerstedt for showing me the practicality of good theory.

I would also like to thank the committee members: Dr. David Taylor, Dr. Jeff Shamma,

Dr. Ian Akyildiz, and Dr. Frank Dellaert. I know that time is aprecious commodity, and I

appreciate your generosity in this regard.

Gratitude also goes to Dr. John-Michael McNew, Lonnie Parker, Julien Hendrickx, and

Jiuguang Wang for their collaboration and inspiration.

On a personal note, I owe an unpayable debt to my parents, Stephen and Renée. I also

want to thank my daughter, Tori, for putting up with an often busy father. Last, but not

least, I thank my wife, Mary, for being very patient and supportive while I completed this

work. I husband could owe no less to another.

This work was supported by the National Aeronautics and Space Administration (NASA).

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xv

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 5
2.1 The Multi-Robot System . 5
2.2 Desired Formations and Deployments 6
2.3 Sensing and Communication Limitations 10
2.4 Decentralized Control .11
2.5 Rigidity, Persistence, and Henneberg Sequences 17
2.6 Embedded Graph Grammar Systems (EGGs) 21

CHAPTER 3 MULTI-ROBOT COORDINATION WITH EMBEDDED GRAPH
GRAMMAR SYSTEMS (EGGS) 24

3.1 Mobility Platform: The SpiderMotes 24
3.2 Implemented Embedded Graph Grammars 27
3.3 Experimental Results . 34

CHAPTER 4 RIGID AND PERSISTENT FEASIBILITY AND FORMATION
GRAPH GENERATION . 42

4.1 Rigid Feasibility and Rigid Graph Generation: The Modified “Pebble
Game” . 44

4.2 Persistent Feasibility and Persistent Formation GraphGeneration 50
4.3 Persistent Graph Operations .. . 54
4.4 Stably, Persistently Feasible Formations 63

CHAPTER 5 CONTROL LAWS FOR MULTI-ROBOT NETWORK FORMA-
TIONS WITH PERSISTENT NETWORK GRAPHS 67

5.1 Stable, Persistent Graphs .. 67
5.2 Network Deployment . 68
5.3 Local Geometry and Circle-Circle Intersection Solutions 69
5.4 Multi-Robot Network Control Laws with Stable, Persistent Network Graphs 72
5.5 Deployment Simulations . 75

CHAPTER 6 FORMATION ASSEMBLY WITH EMBEDDED GRAPH GRAM-
MAR SYSTEMS (EGGS) . 81

6.1 Control Laws For Assembling Persistent Formations 82

v

6.2 Embedded Graph Grammars for Formation Assembly 89
6.3 Wander Mode . 96
6.4 Formation Error . 103
6.5 Embedded Graph Grammar Implementation 105
6.6 Simulation Results . 110
6.7 Experimental Results . 112

CHAPTER 7 DEPLOYMENT OF HETEROGENOUS MULTI-ROBOT NET-
WORKS WITH EMBEDDED GRAPH GRAMMAR SYSTEMS
(EGGS) . 122

7.1 Preliminaries . 124
7.2 Network Deployment Control Laws .. 126
7.3 An Embedded Graph Grammar (EGG) System for Deployment 131
7.4 Formation Assembly . 134
7.5 Implementation . 136

CHAPTER 8 CONCLUSIONS . 145

REFERENCES . 148

vi

LIST OF TABLES

Table 1 Control Laws for Mode by Label .. 38

Table 2 Rigidity, Constraint Consistence, and PersistenceExamples Table 53

vii

LIST OF FIGURES

Figure 2.1 Multi-robot network . Each robot is represented as a point inR2. 6

Figure 2.2 Formation positions. The “shape” of adesired formationis defined by a
set ofpositionsin R

2. This is an example formation for the multi-robot
network in Figure 2.1. 7

Figure 2.3 Formation assembly. The goal of formation assembly for the multi-robot
network in Figure 2.1 with the desired formation in Figure 2.2. 8

Figure 2.4 Deployment example. We assume that 0< t f . These positions define the
desired network trajectory as a function of time. To satisfya formation,
we insist that,∀(i, j, t) ∈ N × N × T, ‖pi(t) − p j(t)‖ = ‖pi(0)− p j(0)‖. . . 9

Figure 2.5 Deployment implementation example. This figure shows a network ac-
complishing the network task defined by the deployment in Figure 2.4.
In Figures 2.5(b) and 2.5(c), the dotted lines indicate the previous posi-
tions of the robots. 9

Figure 2.6 An examplenetwork graphis represented by placing vertices at the lo-
cations of the robots and placing edges between the vertices. These
edges represent the topology of the control laws. The label set isΣ =
{a, b, c, d, e}. In this example, each label corresponds to each robots’s
mode based on the geometry it must satisfy with its neighbors. 15

Figure 2.7 ∆-disk proximity graphG(t). The circle aroundx1 represents the area
in which robot 1 can sense and communicate with other robots.Dashed
lines indicate edges inE(G(t)), corresponding to pairs of robots that can
sense and communicate with each other. Robot 5 is too far awayto sense
or communicate with any other robot. 15

Figure 2.8 A rigid network. We assume that 0< t1 < t f . Here, robots maintain the
inter-robot distances corresponding to the edges in the network graph.
This preserves the formation, allowing only translations and rotations of
the formation. 18

Figure 2.9 An example of constraint inconsistence. We assume that t1 > 0. If
robot four performs circular motion around robot three, agent two cannot
satisfy all three constraints. .. 19

Figure 2.10 An example of constraint consistence. We assumethat t1 > 0. If robot
two performs circular motion around robot three, robots oneand four
can still satisfy their constraints .. . 19

viii

Figure 2.11 A persistent network. We assume that 0< t1 < t f . The robot at the tail
of each edge is responsible for maintaining the corresponding inter-robot
distance. 20

Figure 2.12 An Embedded Graph Grammar (EGG) example to assemble an equilat-
eral triangle formation. In these figures, thelabelsare displayed, show-
ing the mode of each robot. In Figure 2.12(a), each robot starts out with
label a. In Figure 2.12(b), two robots apply the first rule in (2), analo-
gous to assembling one side of the triangle. In Figure 2.12(c), the second
rule in (2) is applied. Figure 2.12(d) shows the final equilateral triangle
formation. 23

Figure 3.1 ASpiderMoterobot. The robot on the left shows the chassis with equipped
hardware. The robot on the right shows the color-coded cover, allowing
other robots to sense and identify this robot. 25

Figure 3.2 Control system overview. For each robot in the network, the EGG system
generates the appropriate translation velocityv and angular velocityω
for the robot. 26

Figure 3.3 Example camera view, showing center-of-mass andbounding box coor-
dinate locations. 28

Figure 3.4 Graph inconsistency example. Figure 3.4(a): Therule can be applied by
robot pairs{(1, 2), (1, 3)} ∈ N×N. Figure 3.4(b): The rule is applied with
robot pair(1,2). Figure 3.4(c): The rule applies also with (1,3), producing
a network graph not intended by the rule.29

Figure 3.5 Deadlock example. If all the robots try to apply the ruler1 ∈ Φ shown in
(3), the network can deadlock. 30

Figure 3.6 An Extended token-based rule protocol example iteration. We define the
rule set as in (3). The ruler1 ∈ Φ is initially applicable for every pair of
robots. Figure 3.6(a): Initial setup. The used list is empty, it is robot 5’s
turn to apply a rule. Figure 3.6(b): Robot 5 appliesr1 with robot 4. The
network graph edges are updated, as well as the used set. Figure 3.6(c):
Robot 2 can now apply a rule. It appliesr1 with robot 3. Figure 3.6(d):
Robot 1 cannot apply any rules, it broadcasts itself as used.Figure 6(e):
The token iteration is complete. Robot 3 now generates a new token
and broadcasts it to the network. This clears the used set, and another
iteration begins. Figure 3.6(f): Robot 2 applies ruler2 ∈ Φ. No more
rules can be applied. 32

Figure 3.7 goToexecuted outdoors . 36

Figure 3.8 Hybrid control law for modec. 39

Figure 3.9 Two robot system performing “bar”. 40

ix

Figure 3.10 Three robot system performing triangle. 41

Figure 4.1 A flexible network. We assume thatt1 > 0. The line fromx4 represents
circular motion that robot 4 can perform and still satisfy its constraint
with robot 3. Robot 4 can move in a manner that changes its distance to
robots 1 and 2. 45

Figure 4.2 A rigid network. We assume thatt1 > 0. If all constraints are satisfied
during continuous motion, then the network geometry does not change. . 45

Figure 4.3 A constraint inconsistent network. We assume that t1 > 0. Here, robot
4 can perform circular motion around robot 3. If robot 4 moves, robot 2
cannot move in a way that preserves the distances between robot 2 and
robots 1, 3, and 4. 51

Figure 4.4 A persistent network. The network graph is rigid and constraint consis-
tent. We assume thatt1 > 0. If robot 4 satisfies its constraint, the other
robots maintain formation during continuous motion. 51

Figure 4.5 A vertex addition operation. In this figure, the shaded area represents a
minimally persistent graph before the operation. The resulting graph is
always minimally persistent, as well. 56

Figure 4.6 An edge-splitting operation. In this figure, the shaded area represents a
minimally persistent graph before the operation. The resulting graph is
always minimally persistent. 56

Figure 4.7 An example network where performing an inverse edge-splitting opera-
tion introduces a new edge whose length is greater than all pre-existing
edges. This new edge could violate the proximity range of thenetwork. . 57

Figure 4.8 A single-vertex addition. The shaded area represents a minimally persis-
tent graph before the operation. A single vertex with an edgeis added to
graphGk, producing the next graph in the sequence:Gk+1. 58

Figure 4.9 An edge insertion operation. As before, the shaded area represents a
minimally persistent graph before the operation. A single edge is added
to graphGk, producing the next graph in the sequence:Gk+1. 59

Figure 4.10 A sequence of Persistent-∆ operations constructing a framework. 4.10(a):
The initial leader-first-follower seed. 4.10(b): Two vertex additions are
performed. 4.10(c): No more vertex additions are possible.Three single-
vertex additions are performed. 4.10(d): Three edge insertions are per-
formed, one for each single-vertex addition. 60

x

Figure 5.1 The circle-circle intersection solutions for robot 3 with x1 = [−5, 0]T ,
x2 = [5, 0]T, andd31 = d32 = 10. Here,q1 = fk(x1, x2, d31, d32,Q1), and
q2 = fk(x1, x2, d31, d32,Q2). Since the circle-circle intersection problem
typically has two solutions defined by two equations, it is necessary to
define fk to correspond to the correct equation for each robotk and its
geometry in the formation. 71

Figure 5.2 The network trajectory. In this figure, dashed lines represent the desired
deployment, while solid lines represent the actual trajectory. Arrows
between the states correspond to the edges of the network graph. Here,
we define an initial error of 2 m for each robot. As the robots move, each
robot stabilizes to its deployment. .. 77

Figure 5.3 The network error and constraint errors. Here, wedefine an initial error
bound of 2 m for each robot. As the robots move, the error in thefor-
mation approaches zero ast → ∞. Figure 5.3(a) shows the formation
errors of each robot, and Figure 5.3(b) shows the errors of each robot in
satisfying their constraints. All errors stabilize to zeroast → ∞. 77

Figure 5.4 The network trajectory. In this figure, dashed lines represent the desired
deployment, while solid lines represent the actual trajectory. Arrows
between the states correspond to the edges of the network graph. Here,
each robots initial state at timet = 0 to be within 10−60 m of p1(0). As
the robots move, each robot stabilizes to its deployment. 78

Figure 5.5 The network error and constraint errors. Here, each robots initial state
at time t = 0 to be within 10−60 m of p1(0). As the robots move, the
error in the formation approaches zero ast → ∞. Figure 5.5(a) shows
the formation errors of each robot, and Figure 5.5(b) shows the errors of
each robot in satisfying their constraints. All errors stabilize to zero as
t → ∞. 79

Figure 5.6 The network trajectory. In this figure, dashed lines represent the desired
deployment, while solid lines represent the actual trajectory. Arrows
between the states correspond to the edges of the network graph. Here,
we bound the initial error of each robot to 20 m. As the robots move,
each robot stabilizes to its deployment. 80

Figure 5.7 The network error and constraint errors. Here, each robots initial error is
bounded to within 20 m. As the robots move, the error in the formation
approaches zero ast → ∞. Figure 5.7(a) shows the formation errors of
each robot, and Figure 5.7(b) shows the errors of each robot in satisfying
their constraints. All errors stabilize to zero ast → ∞. 80

Figure 6.1 The Graphical User Interface (GUI). This programimplements the meth-
ods from Chapter 4 to generate a stable, persistent network graphG∆. . . 82

xi

Figure 6.2 Leader-first-follower rules. 92

Figure 6.3 Vertex addition rules. 95

Figure 6.4 Wander mode. Assigned robots establishhop-counters, which count the
“hops” to an available vertex addition. By sharing these hop-counters
with wanderers within proximity range, wanderers can perform circular
motion and follow the hops to available vertex additions. 99

Figure 6.5 Prioritized lock negotiation. When a wander wants to apply a rule, it
first acquires the locks to robots involved, including itself. In this figure,
locks are indicated by rectangles around the robots’ states, and dotted
lines indicate which wanderer owns the lock. When a robot owns the
lock of another robot, it has exclusive control of its labeled graph in-
formation. Once the wander has all the locks, it applies the rule. Once
applied, the locks are released. .108

Figure 6.6 When two wanderers compete for the same locks, deadlock can occur.
We assign a unique priority to each robot; in this case, the wander on the
left has highest priority. When the robot on the right encounters the lock
owned by the higher priority wanderer, it releases its locks. This allows
the higher priority robot to acquire its locks and apply the rule. 111

Figure 6.7 Triangulation scenario simulation. Assigned robots are incident to edges
in the network graph, while wanderers are not. The robot achieves a
desired formation that is much larger than the perception ofany single
robot. 113

Figure 6.8 The multi-robot network. This network is used in the pre-Antarctic
stages of this project. 114

Figure 6.9 Triangulation scenario implemented on the multi-robot network. 116

Figure 6.10 The network trajectory during the triangulation assembly. This figure
shows the GPS coordinates for each robot in the network. 117

Figure 6.11 Network constraints during triangulation assembly. 118

Figure 6.12 The robot network implementing a line formation. 119

Figure 6.13 The network trajectory during the line assembly. This figure shows the
GPS coordinates for each robot in the network. 120

Figure 6.14 Network constraints during line assembly. 121

xii

Figure 7.1 Graphical User Interface (GUI) for configuring the network. A user en-
ters the desireddeployment positionsin the GUI using satellite imagery.
These positions correspond to the locations in the environment where we
desire the robots to be located. Our methods automatically configure the
network to implement the formation at the desired location.. 123

Figure 7.2 Linking rules. An unassigned follower will assign itself to follow a
leader or an assigned follower. Here, the left part of the figure indicates
the left graph of the rule, while the right part represents the right graph.
This figure represents two rules, one for assigning to followa leader,
and one for assigning to follow an assigned follower. This rule does not
change the label of the robot being followed. The guard requires that
both robots are within proximity range of each other. 133

Figure 7.3 Go rules. If, for a leader or assigned follower with a f alsego flag, all its
immediate predecessors have atruego flag, and no unassigned followers
are in proximity range, it can switch its go flag to true. 133

Figure 7.4 Break rules. This rule prevents more than one robot from following the
same robot at the same and stabilizing to the same position. If two fol-
lowers are following the same robot, one of the followers will switch to
follower the other follower. The guard function requires all robots to be
within proximity range of each other.134

Figure 7.5 Vertex addition rules. 135

Figure 7.6 Wander rules. If a follower is following a robot that is assigned a position
in the formation, and all of its predecessors are within proximity range
of the robot assigned a formation position, it can break off from the chain
and become a wanderer. All of its predecessors begin following the robot
assigned a formation position. 136

Figure 7.7 Heterogenous multi-robot deployment. The robots use the EGG system
presented here to deploy to the initial location of the deployment and
assemble the formation. 138

Figure 7.8 Network trajectory during deployment. This datais taken from GPS logs
of the robots and shows their perspective of the network. Therobots
successfully deploy the desired formation at the correct location in the
environment. 139

Figure 7.9 Follower edges. These plots show the edge length of the edges between
followers and leaders during the deployment. All edges havea length
less than∆ = 6 m. 140

xiii

Figure 7.10 Formation network graph edges. These are the edges for the assembled
formation. Since these edges correspond to an equilateral triangulation,
all edges converge to a length of 5 m as the formation is assembled.
These edges do not exceed the proximity range∆ = 6 m. 140

Figure 7.11 Moving in formation. The robots employ the control laws in Chapter 5
to maintain the formation during motion. 142

Figure 7.12 Network trajectory during motion. 143

Figure 7.13 Network graph edges. Error is introduced duringthe formation motion.
However, the edges stabilize back to 5 m when the formation stops moving.144

xiv

SUMMARY

We present automatic tools for configuring and deploying multi-robot networks of

decentralized, mobile robots. These methods are tailored to the decentralized nature of the

multi-robot network and the limited information availableto each robot. We present meth-

ods for determining if user-defined network tasks are feasible or infeasible for the network,

considering the limited range of its sensors. To this end, wedefine rigid and persistent

feasibility and present necessary and sufficient conditions (along with corresponding al-

gorithms) for determining the feasibility of arbitrary, user-defined deployments. Control

laws for moving multi-robot networks in acyclic, persistent formations are defined. We

also present novel Embedded Graph Grammar Systems (EGGs) for coordinating and de-

ploying the network. These methods exploit graph representations of the network, as well

as graph-based rules that dictate how robots coordinate their control. Automatic systems

are defined that allow the robots to assemble arbitrary, user-defined formations without any

reliance on localization. Further, this system is augmented to deploy these formations at

the user-defined, global location in the environment, despite limited localization of the net-

work. The culmination of this research is an intuitive software program with a Graphical

User Interface (GUI) and a satellite image map which allows users to enter the desired lo-

cations of sensors. The automatic tools presented here automatically configure an actual

multi-robot network to deploy and execute user-defined network tasks.

xv

CHAPTER 1

INTRODUCTION

This work originated with a National Aeronautics and Space Administration (NASA) project

to implement a wireless sensor network as a multi-robot system. The premise is that NASA

scientists will use a sensor network composed of mobile robots (calledSnoMotes) to take

meteorological sensor readings across ice shelves in Antarctica. These sensor readings

will be used as data points to validate global climate modelsand to better understand the

impacts of global climate change.

Working in Antarctica is extremely hazardous and expensive, which makes the use of

robots a viable alternative to the use of humans. The NASA scientists should not need to

know how to use mobile robots to perform coordinated navigation. Furthermore, manually

configuring each robot for each network task becomes expensive, both in terms of time and

personnel. Automatic methods for configuring and deployingthe SnoMotes are required.

According to specifications, the sensor network should be able to automatically con-

figure and deploy itself to take sensor readings with user-defined spatial resolution, and to

report back relevant measurements using communication channels. Also, the robots should

be lightweight from a sensing and communications point-of-view. The network should be

a decentralized system that requires neither global communication nor global information.

Rather, each robot will use its local information in such a manner that allows the entire

network to achieve desired network tasks.

In this work, we the present automatic tools for deploying multi-robot networks. Since

we desire for our methods to be applicable for a variety of networks (and since the Antarc-

tic sensor platform itself has not been finalized), we consider high-level models of the

multi-robot network and its sensor, communication, and locomotion abilities. We define

the control systems for the mobile sensor network such that the NASA scientists can use

1

the network with little knowledge of robotic control. Givena multi-robot network capa-

ble of sensing, communication, and mobility; its sensing, communication, and mobility

parameters (sensor and communication range, maximum velocity, etc.); and a desired net-

work task, the tools automatically configure the network to achieve the network task. This

includes tools that allow multi-robot networks to automatically assign individual robots

unique roles for the network tasks and to perform them at specific locations in the environ-

ment. The culmination of this research is an intuitive software program with a Graphical

User Interface (GUI) and a satellite image map which allows users to enter the desired lo-

cations of sensors. The automatic tools presented here configure a prototype multi-robot

network to deploy and execute these tasks.

In Chapter 2, we introduce the problem in more detail. We alsopresent previous related

work in multi-robot systems and multi-agent network control, and present our model of the

multi-robot network. We show how many tasks for sensor networks can be described as

formation problems. We define formations and deployments of multi-robot networks. We

also discuss graph-based control, where the topology of thecontrol laws for the network

are represented withnetwork graphs. Further, we discuss control systems based ongraph

grammarsfor representing multi-robot networks and their control laws.

Chapter 3 presents preliminary work towards implementing decentralized, graph grammar-

based systems for assembling triangulations of robots, as appearing in [1, 2, 3]. Using

a preliminary network ofSpiderMoterobots, an automatic control system is defined for

achieving triangulations with the robots. This includes definitions for their decentralized

control laws, as well as how they switch from one control law to another.

For our multi-robot network, each robot has only limited knowledge of the environ-

ment. In fact, each robot can only estimate the relative position of other robots in a local

area around it. Therefore, given a desired geometry for the network to achieve, we must

determine whether or not the desired geometry is achievable(i.e., feasible) for the network.

In Chapter 4, we present methods for determining if specific formations are feasible for

2

the multi-robot network, given the limits on its sensing abilities [4, 5]. These methods

take into consideration the fact that robots can only estimate the relative position of other

robots within a specificproximity range. The definition of this proximity range and the

desired formation geometry determine if the formation is feasible. Further, these methods

automatically generatepersistent network graphs. Persistent network graphs have many

desirable properties which are presented and discussed. These graphs can also be assem-

bled usinggraph operations. We present graph operations for assembling these formations

that respect the limited perception of the robots.

Control laws for formations of multi-robot networks with persistent network graphs are

presented in Chapter 5 [6]. These control laws assume a network graph generated using

the methods in Chapter 4. Using these control laws, robots can estimate their “correct”

position in the network using only the local formation geometry and the relative position

of two other robots in the network.

While the control laws in Chapter 5 allow the network tomaintaina formation with

little initial error, they do not provide a method for assembling formations. Therefore, an

automatic system for assembling formations is defined in Chapter 6 [7, 8]. The system

uses the network graphs and graph operations from Chapter 4 and a graph grammar-based

system similar to the one in Chapter 3 for assembling feasible formations for the network.

The methods in Chapter 6 assemble a desired formation at the initial location of the

network. However, for many network tasks, we desire the network to navigate to a location

of interest in the environment before the formation is assembled. This task is complicated

if only specific network members have localization ability (i.e., the ability to estimate their

location in the environment). In Chapter 7, we show how, despite the lack of localization

across the network, robots with localization ability can lead robots without localization

ability to satisfy a desired network task [9].

The demonstration in Chapter 7 presents an implementation of all of the results from

the previous chapters of this work. Starting with a desired formation and a definition of

3

the network’s sensing/communication proximity range, the methods from Chapter 4 are

used to determine that the formation is feasible and to generate a network graph for im-

plementing the formation. The methods in Chapter 7 are used to navigate the robots to the

initial location for the formation. Then, the multi-robot network implements a formation

assembly as defined in Chapter 6. Once the formation is assembled, the network navigates

while maintaining formation using the control laws from Chapter 5. The conclusion of this

chapter includes experimental data from the prototype multi-robot network used to verify

these methods.

Finally, Chapter 8 concludes this work.

4

CHAPTER 2

BACKGROUND

In this chapter, we discuss the problem of coordinating and deploying multi-robot systems.

We also discuss previous work concerning multi-robot systems in formations.

Many network tasks that the NASA scientists will request require the multi-robot sys-

tem to be “spaced” at certain intervals to achieve a desired sensor resolution. For example,

measuring the energy across a field of ice at 1 m resolution requires each sensor to be posi-

tioned within 1 m of its nearest “neighboring” sensors. Similarly, defining specific locations

for multiple sensors in the environment implicity defines the relative geometry of the sen-

sors to each other. Therefore, many network tasks can be seenasformation problems, in

which the goal for the multi-robot system is to achieve specified geometric relationships be-

tween the robots at a location of interest. Formations of multi-robot systems have received

much recent attention (see [10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22, 23, 24, 25] for

a representative sample).

2.1 The Multi-Robot System

For the multi-robot network, we definen ∈ N : n ≥ 2 as the number of robots in the

multi-robot network. This defines an index setN = {1, . . . , n} for the network. Thus, robot

i is the robot indexed byi ∈ N. We consider the network over an interval of time defined

by T = [0,∞).

Networks of mobile robots are complicated systems, and the dynamics of mobile robots

varies from one robot to another. We are concerned with the complexity of multi-robot

networks at a high-level. Therefore, we use a kinematic model to represent the multi-robot

network. Since these are planar robots, the positions of therobots are modeled by states in

two dimensions such that,∀i ∈ N, xi : T 7→ R
2 represents thetrajectoryof robot i, and,

∀t ∈ T, xi(t) is location of roboti at timet. We represent the control for each robot as a

5

x1

x2

x3

x4

x5

x6

x7

Figure 2.1. Multi-robot network . Each robot is representedas a point inR2.

single integrator such that,∀i ∈ N, ui : T 7→ R
2 is the control for roboti and,∀i ∈ N,

ẋi(t) = ui(t).

The entire network is represented by anetwork trajectory X: T 7→ R
2n such that,

∀t ∈ T, X(t) =
[

x1(t)T , . . . , xn(t)T
]T

. For all pairs of robots (i, j) ∈ N × N, the distance

between robotsi and j at timet ∈ T is represented by
∣

∣

∣

∣

∣

∣xi(t) − xj(t)
∣

∣

∣

∣

∣

∣, where|| . . . || denotes

the Euclidian norm. Figure 2.1 depicts an example multi-robot network.

2.2 Desired Formations and Deployments

Qualitatively, we say that a solution to a formation task fora network of mobile robots has

three goals:

1. Assembly: To control the network to achieve a state such that each robot satisfies

desired, relative geometric relationships with the other network members.

2. Maintenance: Once the network has assembled the formation, to maintain the forma-

tion. This includes maintaining the formation as the network moves from one place

to another.

6

p̄1 p̄2

p̄3

p̄4

p̄5

p̄6

p̄7
∗

∗

∗

∗

∗

∗∗

Figure 2.2. Formation positions. The “shape” of adesired formation is defined by a set ofpositions in
R

2. This is an example formation for the multi-robot network in Figure 2.1.

3. Deployment: To control the network such that the robots satisfies given, relative

geometric relationships with each other at a desired location of interest. This may be

a static location in the environment, or a location that changes with time.

To define a desired formation, we definen formation positionsindexed byN such that

positioni is the position indexed byi ∈ N. The positions of the formation are also modeled

as points in two dimensions such that,∀i ∈ N, p̄i ∈ R
2 is positioni. The entiredesired

formation is represented bȳP ∈ R
2n such thatP =

[

p̄T
1 , . . . , p̄

T
n

]T
. Figure 2.2 depicts the

shape of an example desired formation.

The geometric relationship between the formation positions defines the “shape” of the

formation. Note that positioni neither defines a desired location for roboti, nor is it re-

quired that roboti is assigned to positioni, for this would reduce the problem to stabilizing

each robot to its corresponding desired position. Rather, accomplishing formation assem-

bly involves assigning each robot a position in the formation and controlling the robots such

that the shape of the network matches the shape of the desiredformation. In other words,

there must exist an assignment functiona : N 7→ N that maps each robot to a unique

position. Further, the robots’ control laws must be defined such that,∀(i, j) ∈ N × N,

7

x1 x6

x4

x2

x5

x3

x7

Figure 2.3. Formation assembly. The goal of formation assembly for the multi-robot network in Figure
2.1 with the desired formation in Figure 2.2.

∥

∥

∥xi(t) − xj(t)
∥

∥

∥ →
∥

∥

∥p̄a(i) − p̄a(j)

∥

∥

∥ ast → ∞. Figure 2.3 depicts the assembly of the desired

formation depicted in Figure 2.2 by the multi-robot networkdepicted in Figure 2.1.

A desired deploymentdescribes the location in the environment where the network

members should be placed. To this end, we modeln deployment positionsindexed by

indicesN such that,∀i ∈ N, pi : T 7→ R
2 models the desired location of a network member.

In other words,pi(t) is the location where a unique network member should be at timet ∈ T.

We assume that,∀i ∈ N, that pi is continuously differentiable. Further, we assume that,

∀(i, j, t) ∈ N×N×T, that‖pi(t)−p j(t)‖ is constant (i.e.,∀(i, j, t) ∈ N×N×T, ‖pi(t)−p j(t)‖ =

‖pi(0) − p j(0)‖). These deployment positions define the network’sdeployment trajectory

P : T 7→ R
2n such thatP(t) =

[

p1(t)T, . . . , pn(t)T
]T

. The deployment trajectory describes

both a desired formation shape (P̄ = P(0)) and the desired location of the formation in the

environment, which may be a function that varies with time. Figure 2.4 shows an example

trajectory in which the network traverses an area of interest while in formation. Figure 2.5

shows the network performing the desired network task.

Note that a network deployment can be defined in a variety of ways. For example, the

NASA scientists themselves can explicitly specify the locations that the network should

8

∗

∗

∗

∗

∗

∗∗

∗

∗

∗

∗

∗

∗∗
p1(0) p2(0)

p3(0)

p4(0)

p5(0)

p6(0)

p7(0)

p1(t f) p2(t f)

p3(t f)

p4(t f)

p5(t f)

p6(t f)

p7(t f)

Figure 2.4. Deployment example. We assume that0 < t f . These positions define the desired network
trajectory as a function of time. To satisfy a formation, we insist that,∀(i, j, t) ∈ N×N×T, ‖pi(t)−p j(t)‖ =
‖pi(0)− p j(0)‖.

x1 x2

x3

x4

x5

x6

x7

(a) t = 0

x1 x2

x3

x4

x5

x6

x7

(b) t = t1

x1 x2

x3

x4

x5

x6

x7

(c) t = t f

Figure 2.5. Deployment implementation example. This figureshows a network accomplishing the net-
work task defined by the deployment in Figure 2.4. In Figures 2.5(b) and 2.5(c), the dotted lines indicate
the previous positions of the robots.

9

satisfy as a function of time. Alternatively, the scientists could specify the network to

“track” a specific, moving feature in the environment with a specific relative formation. In

this example, the motion of the feature defines the network deployment.

2.3 Sensing and Communication Limitations

As discussed in Chapter 1, the robots in the network have limitations on their sensor and

communication abilities. Here, we present the sensor and communication limitations of the

network.

2.3.1 Localization Limitations

We describelocalization ability as the ability of a robot to estimate its position in the

environment. For example, a robot with a GPS sensor, an inertial navigation system, and

rotary encoders on its wheels can estimate both its locationand heading relative to the

earth, as well as to a reference location and heading.

If all network members have localization ability, then the problem can be solved by

assigning each robot a unique deployment position and stabilizing each robot to its cor-

responding deployment position. However, such an approachhas drawbacks. First, since

the method hinges on localization, such a method is not implementable with a multi-robot

network in which any network members do not have localization. This also implies that

the loss of localization of a robot results in the failure of that robot; it cannot participate

in any formations that require it to be at a different location. Secondly, synchronizing a

multi-robot network such that the robots follow a specific trajectory simultaneously is dif-

ficult with large networks. Finally, it is unclear how effectively the inter-robot geometry is

preserved in the case of sensor noise and errors, since the robots would ignore their relative

geometry during the execution.

As an alternative, we consider many real-world examples of formations in systems

which have no localization ability (for example, flocks of birds, formations of airplanes,

etc.). In these systems, formations are deployed using onlythe relative positionsof the

10

network members. This implies that multi-robot networks can assemble formations even if

localization ability is denied to some or all of the network.

For the multi-robot network we consider here, we assume thatonly a proper subset of

network members have localization ability. This can be due to a light-weight design, for we

show that many network tasks can be accomplished with littleor no localization. This can

also arise out of network failures (e.g., the failure of the localization sensors of a subset

of robots). We do not want such limited sensor failure for a proper subset of robots to

imply complete network failure (the inability of the multi-robot network to accomplish any

network tasks). Therefore, the methods in this work consider limited or no localization for

the multi-robot network.

2.3.2 Proximity Sensor and Communication Limitations

For our multi-robot network, we assume that there are limitsin terms of which robots

can sense and communicate with each other. We also assume that this corresponds to the

relative geometry of the robots in the network. Therefore, the sensor and communication

limitations are modeled by aproximity functionF(i), defined such thatF(i) ⊆ N is the set

of indices of robots that roboti can sense and communicate with. Note that the definition

of F is determined by the sensing parameters of the multi-robot network in question, and

can vary from network to network.

The sensors that robots use to estimate the relative positions of nearby robots are com-

plex. Often, robots use a variety of sensors simultaneously, each with its own parameters.

Again, since we are concerned with the complexity of multi-robot networks at a high-level,

we use a simplified proximity function. For the network we consider here, aproximity

range∆ > 0 is defined such thatj ∈ F(i) at timet ∈ T if and only if ‖xi(t) − xj(t)‖ ≤ ∆.

2.4 Decentralized Control

Due to the limited sensor and communication abilities of therobots, the sensor network is

implemented as adecentralized system, as stated in Chapter 1. For multi-agent systems,

11

centralized control strategiesare strategies in which a centralized control agent plans for

and controls all robots in the system. It has been shown that planned, centralized control

strategies for multiple-robot systems are computationally difficult, even when assuming

that the robots themselves are the only dynamic feature in the environment [26]. Also,

centralized control strategies typically require global network information to implement.

This information may be unavailable or difficult to obtain, especially considering the sen-

sor limitations of the network we consider here. Therefore,much attention is given to

decentralizedcontrol strategies, in which each robot makes decisions based on local in-

formation in a manner that allows global goals to be achieved. Decentralized strategies

have also received much attention (e.g., [15, 22, 26, 27, 28,29]). Such control strategies

are often described as employingnearest neighbor rulesto achieve their global objectives.

These nearest neighbor rules define the control laws for eachagent based on their nearest

neighbors.

Decentralized strategies are inspired partially from biological systems, such as flocks of

birds and schools of fish, which achieve advantageous globalbehaviors without the pres-

ence of any centralized intelligence. In [27], methods are presented for simulating the

behavior of flocks of “boids,” where the control for each “boid” is determined by the spa-

tial relationship between each of its “nearby flockmates.” It also combines several flocking

behaviors (collision avoidance, velocity matching, and flock centering) to produce the indi-

vidual control for each “boid”. When implemented, a global behavior emerges that greatly

resembles a flock of birds in flight.

Some of the earliest results in multi-robot formation control are included in [10], in

which robots are modeled as spheres in three-dimensional space, and a set of points in

three-dimensional space represents a formation pattern. In [10], several strategies for for-

mation movement are proposed, including nearest-neighbortracking and multi-neighbor

tracking, as well as leader-based formations. Work such as [10] and [27] laid the ground-

work for [30], in which several formations used by US Army scouts are implemented with

12

a team of four robots. The contribution of [30] is the combination of formation and nav-

igation behaviors that allow robot teams to navigate to a specific location while avoiding

hazards and maintaining formation. However, these methodsdo not consider the sensor and

communication limitations we consider in this work. Also, the methods in [30] implement

specific example formations used in military applications.As such, it does not address how

to automatically handle arbitrary, user-defined formations for the network that we consider.

2.4.1 Graph-Based Control

As previously mentioned, decentralized control strategies implemented with multi-agent

networks frequently feature robots using nearest neighborrules, in which each agent has

specific relationships with a proper subset of other agents.Therefore, it is often convenient

to usegraphsto represent these networks. Specifically, graphs are used to represent the

topology of the control laws, as well as the information available to each agent. Graph-

based modeling of decentralized control strategies has received much recent attention (for

example, see [13, 14, 17, 18, 28, 29, 31, 32, 33, 34]).

In this work, the network control law topology is modeled with anetwork graph G(t) =

(V,E(t)). Here,V is thevertex set, andE(t) is theedge set. We use a notation that, for

a graphG(t) = (V,E(t)), V(G(t)) = V, andE(G(t)) = E(t). For a network withn robots,

|V(G(t))| = n. As such,V(G(t)) is indexed by indicesN such thatV(G) = {v1, . . . , vn}. Each

vertex is associated by index to its corresponding robot such that,∀i ∈ N, vi ∈ V(G(t))

is the vertex of roboti. Each edgee ∈ E(G(t)) is an ordered pair such thate = (vi , vj) ∈

V(G(t)) × V(G(t)). As such,G(t) is adirected graph. In this example,vi is thetail of edge

e ∈ E(G), andvj is theheadof e. The existence of (vi , vj) ∈ E(G(t)) indicates a control

law relationship between robotsi and j (i.e., the control laws for roboti are a function

of the position of robotj). Also, E(t) is a function of time, as robots may break and/or

establish control law relationships as the system evolves.For notational clarity, we “drop”

the explicit time dependence ofG(t) when it is not relevant, describing the network graph

as simplyG.

13

If there is a directed path fromvi ∈ V(G) to vj ∈ V(G) in G, we say that roboti is a

predecessorof robot i, and robotj is asuccessorof robot i. Similarly, if there exists edge

(vi , vj) ∈ E(G), we say that roboti is animmediate predecessorof robot j, and robotj is an

immediate successorof robot i.

Each robot is modeled as a hybrid automaton that is in a specific modeat a given time

t ∈ T. Therefore, the topological model of the network is augmented to avertex-labeled

graph. In these graphs, a label setΣ is defined corresponding to all the possible modes of the

robots, andl : V(G)×T 7→ Σ is a labeling functionthat indicates the mode of each robot at

time t ∈ T. In this manner, a labeled network graph is a quadruple:G(t) = (V,E(t),Σ, l(t)).

The double (G(t),X(t)) models both the network topology, the modes of the robots,and

network geometry at timet ∈ T. Figure 2.6 shows an example network graph. Each edge

(vi , vj) ∈ E(G(t)) is depicted as an arrow between statesxi and xj. The vertices are also

labeled by mode, where each mode corresponds to the geometrythe robot must satisfy

with its adjacent neighbors.

In this work,R+ defines the set of strictly positive real numbers. The graphG(t) and the

network trajectoryX(t) define alength functionδ : V(G(t))×V(G(t))×R2n 7→ R
+ such that,

∀(vi , vj) ∈ V(G(t)) × V(G(t)), δ(vi , vj,X(t)) = ‖xi(t) − xj(t)‖. We defineδi j = δ(vi , vj ,X(t))

for simpler notation. Thus, each edge (vi , vj) ∈ E(G(t)) has an assigned weightδi j , andG

is aweighted graph.

In order to model the topology of the information available to each robot at a high level,

we use an undirectedproximity graphG(t) = (V,E(t)). Note thatV(G(t)) = V(G(t)), the

vertex set in the network graph. Thus,∀vi ∈ V(G(t)), vertexvi corresponds to roboti. In the

proximity graph, an edge (vi , vj) exists inE(G(t)) if and only if j ∈ F(i) at timet, implying

that roboti can sense and communicate with robotj. Figure 2.7 shows a∆-disk proximity

graph, where an edge exists between each pair of vertices (vi , vj) ∈ V(G(t))×V(G(t)) if and

only if ‖xi(t) − xj(t)‖ ≤ ∆.

14

a b

c

d

c

d

e

Figure 2.6. An examplenetwork graph is represented by placing vertices at the locations of the robots
and placing edges between the vertices. These edges represent the topology of the control laws. The
label set isΣ = {a, b, c, d, e}. In this example, each label corresponds to each robots’s mode based on the
geometry it must satisfy with its neighbors.

x1

x2 x3

x4

x5

Figure 2.7.∆-disk proximity graph G(t). The circle around x1 represents the area in which robot 1 can
sense and communicate with other robots. Dashed lines indicate edges inE(G(t)), corresponding to
pairs of robots that can sense and communicate with each other. Robot 5 is too far away to sense or
communicate with any other robot.

15

2.4.2 Consensus Problems

While such a system is fully described by its equations, studying the topology associated

with these systems has yielded very useful results. The Laplacian of the adjacency matrix

of multi-agent system graphs has been extensively exploited (see [13, 18, 28]). Both [13]

and [18] describe how the eigenvalues of the Laplacian of theadjacency matrix can show

the stability of systems with nearest neighbor control laws. In [28], the properties of the

Laplacian are exploited to model the system presented in [27] and prove the convergence

of the velocities of the boids. Both [27] and [28] are examples ofconsensus(or agreement)

problems, in which the goal is to achieve convergence to a common valuefor each agent

in the network. Another such consensus problem is rendezvous, in which the goal is con-

vergence to a common location. The rendezvous problem has been explored heavily (e.g.,

[29, 31, 34, 35]). It has been shown that formation control problems can be expressed as

consensus problems in which the formation error is defined for each robot, and the goal is

for each robot’s formation error to stabilize to zero [29, 35].

A variety of consensus and formation control problems have been solved if generous

assumptions are made concerning the information availableto each robot. For example,

[28] assumes that the control topology is connected “frequently enough” to allow for suc-

cessful convergence, and [29] assumes that the control topology is modeled as a connected

graph. However, due to sensor and communication limitations, these assumptions are not

guaranteed for the multi-robot network that we consider.

In this work, we assume that a robot cannot effectively execute a control law without

the information required to implement it. Therefore, another goal for the system is guaran-

teeing that there exists an edgee ∈ E(G(t)) if there exists the same edgee ∈ E(G(t)). This

is often described asmaintainingor preserving connectivity.

In [13, 18, 31], necessary and sufficient connectivity conditions are established for the

stability of multi-agent systems for consensus problems. However, these works do not

suggest methods for guaranteeing these connectivity conditions. Other work has been

16

done to develop methods to preserve sufficient connectivity, if it is initially present (see

[32, 34, 35]). However, these methods often hinge on broad multi-agent cooperation [32]

and/or localization [34, 35]. In [32], it is assumed that all agents coordinate their choice of

control values across the network in order to guarantee connectivity, an approach that does

not scale well with large networks. In [34, 35], it is assumedthat the agents in the multi-

agent system have an “agreement” as to their orientation relative to a common reference

frame, as well as the desired orientation of the formation inthat frame. For our multi-robot

network, this implies that the robots can estimate their location and/or heading relative

to some common reference frame corresponding to the environment, which is beyond the

abilities we assume for the network. Other examples of robots assembling formations have

been recently presented, (e.g., [15, 25, 36]), but these methods also require either global

communication ability, global network information, network-wide localization, and/or cen-

tralization to implement.

2.5 Rigidity, Persistence, and Henneberg Sequences

A source of inspiration towards maintaining and assemblingformations of robots under our

assumptions of limited sensing and communication is the concept ofpersistence, which is

closely related torigidity. Here, we define and discussrigid and persistent networks.

2.5.1 Rigid Networks

In a rigid network, a formation of robots is maintained bydirectly maintaining only a

subset of inter-robots distances, but in a manner which preserves all inter-robot distances.

The concept of rigidity has received much attention (see [19, 37, 38, 39, 40]). Rigidity

was first studied as it pertains toframeworks(structures of flexible joints) which are also

modeled with graphs. In a rigid control strategy, given a network graphG, each edge

(vi , vj) ∈ E(G) models aconstraintfor robotsi and j, implying that they must maintain their

inter-robot distance‖xi(t) − xj(t)‖. The network trajectoryX is edge-consistentif and only

if the inter-robot distances corresponding to edges inG are preserved, i.e.,‖xi(t) − xj(t)‖ =

17

x1

x2 x3

x4

(a) t = 0

x1

x2x3

x4

(b) t = t1

x1

x2 x3

x4

(c) t = t f

Figure 2.8. A rigid network. We assume that0 < t1 < t f . Here, robots maintain the inter-robot
distances corresponding to the edges in the network graph. This preserves the formation, allowing
only translations and rotations of the formation.

‖xi(0) − xj(0)‖ ∀((vi , vj), t) ∈ E(G(t)) × T. The network trajectoryX is rigid if and only

if all inter-robots distances are preserved (whether or notthey correspond to edges), i.e.,

‖xi(t) − xj(t)‖ = ‖xi(0) − xj(0)‖ ∀(i, j, t) ∈ N × N × T. The network itself isrigid if all

edge-consistent trajectories are rigid trajectories. If the network is not rigid, it isflexible.

Rigid networks can maintain their formation by maintainingonly the inter-robot dis-

tances corresponding to the edge set inG. This suggests a useful strategy for maintaining a

formation by onlydirectly maintaining a proper subset of inter-robot distances. Figure 2.8

shows a trajectory of a rigid network.

2.5.2 Persistent Networks

A rigid network must preserve the constraints in the network, which correspond to the

edges in the network graph. As such, rigidity itself does notconsider the direction of the

edges in the network. In apersistent network[40], these directions are important. For each

pair of robots whose inter-robot distance is to be directly maintained, the responsibility

of maintaining the distance is delegated to a single robot ofthe pair. Hence, each edge

e ∈ E(G) is an ordered pair such thate = (vi , vj), representing aconstraintof robot i only

(not of robot j). In this case, roboti has a constraint with robotj, and roboti attempts

to maintain its distance from robotj. Such a constraint does not imply anything for the

18

x1

x2 x3

x4

(a) t = 0

x1

x2? x3

x4

(b) t = t1

Figure 2.9. An example of constraint inconsistence. We assume that t1 > 0. If robot four performs
circular motion around robot three, agent two cannot satisfy all three constraints.

x1

x2 x3

x4

(a) t = 0

x1

x2

x3

x4

(b) t = t1

Figure 2.10. An example of constraint consistence. We assume that t1 > 0. If robot two performs
circular motion around robot three, robots one and four can still satisfy their constraints

control laws of robotj. In a persistent network, each robot has constraints with all of its

immediate successors in the network graph.

Qualitatively, a network isconstraint consistentif the directions of each edge are ori-

ented such that no robot can satisfy its constraints in a manner which forces another robot

to violate a constraint [40]. The constraint consistence ofa network is determined by the

out-degree of the vertices in its network graph (see [40] fora more thorough treatment).

Figure 2.9 shows a constraint inconsistent network, while Figure 2.10 shows a constraint

consistent network.

19

x1

x2 x3

x4

(a) t = 0

x1

x2x3

x4

(b) t = t1

x1

x2 x3

x4

(c) t = t f

Figure 2.11. A persistent network. We assume that0 < t1 < t f . The robot at the tail of each edge is
responsible for maintaining the corresponding inter-robot distance.

The network in Figure 2.8 is rigid, but not constraint consistent. A persistent network

is both rigid and constraint consistent[40]. Figure 2.11 shows a persistent network. Rigid

and persistent networks are discussed in more detail in Chapter 4.

2.5.3 Previous Results with Persistent Networks

Control laws for persistent networks have been demonstrated in [16, 20]. In these strategies,

for each roboti, assume thatJ(i) is the set of all immediate successors of roboti (i.e., J(i)

is the set of indicesj ∈ N such that (vi , vj) ∈ E(G)). For a minimally persistent network

in two-dimensions, this implies that|J(i)| ≤ 2 [40]. For a desired formation̄P and∀i ∈ N,

dynamics of roboti are defined in [16, 20] et al. as

ẋi(t) =
∑

j∈J(i)

−
(

‖xi(t) − xj(t)‖ − ‖p̄i − p̄ j‖
) (

xi(t) − xj(t)
)

. (1)

Stability analysis reveals that these control laws are asymptotically stable at two equi-

librium points for each robot except when the locations of all three robots are collinear

[16, 20]. However, many formations can only be satisfied if each robot stabilizes to a spe-

cific equilibrium point. These dynamics do not guarantee a particular equilibrium point,

and it can be shown by example that a network can start in formation but “lose” its forma-

tion if sufficient error is introduced. Such an error can occur when the formation is moving

20

from one location to another. This can result in a network that behaves as a flexible net-

work despite its rigidity. Also, these dynamics do not address the issue of assembling or

maintaining the formation with the sensor limitations thatwe consider in this work.

2.6 Embedded Graph Grammar Systems (EGGs)

A source of inspiration towards assembling formations is the Embedded Graph Grammar

(EGG) [41, 42], a formalism that encodes dynamic, geometric, and network properties

of a multi-agent system in a unified manner. At the core of the EGG is the notion of

a graph grammarthat takes as inputs vertex-labeled graphs, and produces other vertex

labeled graphs according to a given rule set. Through the application of the rules in the rule

set, edges may be removed or added to the graph, and the vertexlabels may change.

In an EGG system, a set ofgraph transition rulesΦ defines how the network graph can

change topology and labeling, which represents how the robots in the network can change

modes and their control laws. Each ruler ∈ Φ is defined as a pair such thatr = (L ⇀ R),

whereL is a vertex-labeledleft graphandR is a vertex-labeledright graph. When a label-

preserving induced subgraph isomorphism exists between the left graphL of a rule and

the network graphG, the induced subgraph ofG can be replaced by the right graphR of

the same rule. This rule application involves adding and/or removing edges and changing

labels, corresponding to robots changing their control lawrelationships and their modes.

Each rule also has an associatedguard function g, which evaluates totrue or f alse

depending on if the states associated with the induced subgraph ofG satisfy certain (often

geometric) constraints. These guard functions are used to model limitations on when a rule

can be applied, and typically model the sensing limitationsof the robots. For example, in

this work, the guards are defined to evaluate tof alse if the robots’ locations are too far

apart, indicating that the robots cannot sense and communicate with each other.

EGG systems are non-deterministic in that, at any given time, multiple rules can be

applied simultaneously. EGG systems insist, however, thatno robot can be involved in

21

simultaneous rule applications. In other words, the sets ofrobots in each simultaneous rule

application must be disjoint.

As an example, consider the rule set

Φ =

a a ⇀ b− b (r1),

b

ab

 ⇀

c

cc

 JJ

(r2),

(2)

with the network depicted in Figure 2.12(a). Assume that thecontrol laws ofb andc are

defined such that each robot stabilizes to a state that is a distanced > 0 away from any

adjacent robot in the network graph. Assume that all robot can sense and communicate

with each other, and that the guards are always satisfied. Then rule r1 in (2) can be and is

applied, producing the network graph shown in Figure 2.12(b). The robot labeledb attempt

to make their distanced, and ruler2 in (2) is applied, producing the network graph in Figure

2.12(c). The robots attempt to set all inter-agent distances tod, and eventually stabilize to

an equilateral triangle formation, as shown in Figure 2.12(d).

EGG systems have been defined that solve a variety of assemblyand coverage problems

[41, 42]. However, few of these systems have been implemented with real robotic systems.

In Chapter 3, we present an implementation of an EGG system onan actual multi-robot

network.

22

a

a
a

(a)

b

b
a

(b)

c

c
c

(c)

c

cc

(d)

Figure 2.12. An Embedded Graph Grammar (EGG) example to assemble an equilateral triangle for-
mation. In these figures, thelabels are displayed, showing the mode of each robot. In Figure 2.12(a),
each robot starts out with labela. In Figure 2.12(b), two robots apply the first rule in (2), analogous to
assembling one side of the triangle. In Figure 2.12(c), the second rule in (2) is applied. Figure 2.12(d)
shows the final equilateral triangle formation.

23

CHAPTER 3

MULTI-ROBOT COORDINATION WITH EMBEDDED GRAPH
GRAMMAR SYSTEMS (EGGS)

As mentioned in Chapters 1 and 2, we employ many graph-based methods for automati-

cally configuring and deploying the multi-robot network. Inthis chapter, we discuss work

towards implementing Embedded Graph Grammar (EGG) systemswith a multi-robot net-

work. A variety of EGG systems have been proposed, but few have actually been imple-

mented on actual robotic systems. Here, a preliminary multi-robot network is introduced,

composed ofSpiderMotes, a precursor of the SnoMotes. The SpiderMotes are described,

as well as methods for implementing EGG systems with them. Wepresent an effective

communication protocol that allows EGG systems to be implemented on decentralized

systems. We show that the effective design of an EGG system for a network of robots is

directly related to the design and abilities of the robots inthe network.

3.1 Mobility Platform: The SpiderMotes

As stated in Chapter 1, the robots in the multi-robot networkfor NASA must be integrated

sensor/actuation platforms that combine communication and sensing capability with mo-

bility. Such integrated platforms allow for controlled repositioning of the sensor devices

such that measurements at desired spatial and temporal resolution can be achieved. Based

on NASA’s specifications, the attributes that must be included in the robots’ design are the

following:

• The translational and rotational velocities of the robots (v andω) must be control-

lable.

• Each robot must possess a communication channel such that ithas the ability to

receive and transmit information to other robots.

24

Figure 3.1. A SpiderMote robot. The robot on the left shows the chassis with equipped hardware. The
robot on the right shows the color-coded cover, allowing other robots to sense and identify this robot.

• Each robot must possess a sensing channel such that it has theability to verify the

presence and location of other sensor nodes within the network.

• Each robot must have on-board computation such that it can function independently

and does not require a centralized host for decision-making.

This generic definition of a the network member allows us to define the network without

being limited to the utilization of specific robotic hardware, communication, or sensing

technology. Figure 3.1 depicts our rendition of a robot in the sensor network that qualifies

under this definition: theSpiderMote. The SpiderMote is a custom-made platform that

consists of a hexapod chassis, CMUCam2 vision sensor, wireless communication module,

and controller.

The skeletal body of the platform has dimensions of [7.5×26.5×24] cm. The controller

and battery pack are mounted on the rear of the chassis, whilethe wireless communication

module is mounted to the front. The CMUCam2 is mounted on a 15 cm boom. Also,

25

Robot Network

(v, ω) Locomotion Con-
trol (Actuation)

Comms

Sensors
EGG System

Mode Controller

Local Graph

Figure 3.2. Control system overview. For each robot in the network, the EGG system generates the
appropriate translation velocity v and angular velocityω for the robot.

each robot is equipped with a color-coded tetrahedral cover, which is mounted below the

camera. Figure 3.2 presents a system overview of the SpiderMote.

3.1.1 Communications

The wireless communication module is capable of transmitting and receiving a single 10

byte message at any given time. There are two types of messages: requests and responses.

Because messages could potentially be lost, requests are reattempted after a timeout period

until the appropriate response is received. This allows theSpiderMotes to exchange infor-

mation and coordinate their behaviors. These are used to implement the communication

protocol presented in Chapter 3.2.

26

3.1.2 Perception/Sensing

To allow the robots to perceive each other, each SpiderMote recognizes others by color and

estimates their positions based on image data. Each robot’schassis is tagged with a specific

color, such as red, blue, and green. The relative distance and angle is estimated based on

the location of the colored pixels representing each robot.(Note that this choice is made

to facilitate an easy algorithm for identifying adjacent robots, but more robust schemes can

certainly be envisioned.)

The CMUCam2 has a field-of-view (FOV) of≈ 0.28π rad, centered in the direction of

the robot’s heading. When the camera is set to track a specificcolor, it returns a tracking

data packet in the form of an 8-tuple:
(

mx,my, x1, y1, x2, y2, pixelcount, con f idence
)

, which

represents information about the tracked pixels, which arepixels in the camera image that

match the color being tracked. The pair (mx,my) represent the center-of-mass of the tracked

pixels in the image, while the pairs (x1, y1) and (x2, y2) represent the corners of the smallest

bounding box that contains all tracked pixels, as shown in Figure 3.3. Thepixelcount

represents the number of tracked pixels. Thecon f idenceis a ratio between the pixel count

and the number of pixels in the bounding box. These values areused to estimate the position

of robots in the field-of-view with an accuracy of≈ 10 cm.

The SpiderMotes serve as a platform for implementing the networked control algo-

rithms needed to solve the sensor coverage problem, as well as others. Next, we discuss

how EGGs are implemented on the SpiderMotes.

3.2 Implemented Embedded Graph Grammars

As presented in Chapter 2.6, Embedded Graph Grammars (EGGs)are mathematical models

that produce non-deterministic trajectories. They do not assume any particular communi-

cation architectures. When an embedded graph grammar is implemented on a real system,

a low-level protocol that implements the grammar must be designed.

Since the label and adjacency information is distributed across the network such that

27

Figure 3.3. Example camera view, showing center-of-mass and bounding box coordinate locations.

each robot has immediate access only to its own label and adjacency information, the label

and adjacency information corresponding to other robots can only be obtained through

communication. For an EGG to be successfully executed, the network must change labels

and adjacency information in a manner defined by the EGG. Since this is a decentralized

network, this implies that robots must negotiate rule applications in a manner consistent

with the EGG. It is necessary to ensure that each robot applying a rule has exclusive control

of the local network graph information of each robot involved in the rule application; if not,

then it is possible for robots to modify the graph information in a manner inconsistent with

the rules in the rule set.

Before we move on to actually defining the protocol, we note that in many cooperative

control methods, topology switches are deterministic, often determined by geometry, e.g.

[33]. Often in these systems, the robots may switch their control modes independently. Em-

bedded graph grammars do not fit into this category due to their inherent non-determinism.

28

(x1, a)

(x2, a)

(x3, a)

(a)

(x1, b)

(x2, b)

(x3, a)

(b)

(x1, b)

(x2, b)

(x3, b)

(c)

Figure 3.4. Graph inconsistency example. Figure 3.4(a): The rule can be applied by robot pairs
{(1, 2), (1, 3)} ∈ N × N. Figure 3.4(b): The rule is applied with robot pair(1,2). Figure 3.4(c): The
rule applies also with (1,3), producing a network graph not intended by the rule.

This is easy to see by considering the graph in Figure 4(a), and the corresponding EGG

system from Chapter 2.6:

Φ =

a a ⇀ b− b (r1),

b

ab

 ⇀

c

cc

 JJ

(r2).

(3)

In Figure 3.4,∀i ∈ N, robot i is labeled as a double (xi , label) wherelabel corresponds to

the label of vertexvi in the network graphG. In Figure 3.4, the solid lines correspond to

the edges in the network graphG, dashed lines correspond to edges in the proximity graph

G. Suppose that without agreeing, robots 1 and 3 apply the ruler1 ∈ Φ from (3) with robot

2 as shown in Figure 3.4. The resulting graph transformationshown in Figure 3.4(c) is

inconsistent with the valid trajectories of the grammar. Wecall this agraph inconsistency.

A protocol that allows groups of robots to come toagreementbefore applying a rule is

required. We briefly contrast peer-to-peer protocols (explicit agreement) with simple token

protocols (implied agreement). We then present anextended tokenprotocol for the network.

3.2.1 Single Token and Peer-to-Peer Protocols

The question ofdeadlockarises in any system requiring agreement. Deadlocks occur when

the communication protocol does not allow any rules to be applied even though some rules

29

(x1, a)

(x2, a)

(x3, a)

Figure 3.5. Deadlock example. If all the robots try to apply the rule r1 ∈ Φ shown in (3), the network
can deadlock.

are applicable. Consider a protocol where each robot independently attempts to apply the

rule r1 ∈ Φ defined in (3), and then communicates a request for rule application to the other

robot in the rule application. Further, assume that a robot may then either accept or deny

the request, and will always deny a request if it is in the process of sending one. Suppose

for the graph in Figure 3.5, robot 1 identifies robot 2 for ruleapplication, robot 2 identifies

robot 3 for rule application, and robot 3 identifies robot 1. Each robot will send a request

to the counterclockwise robot and deny a request from its clockwise robot, resulting in

deadlock despite the fact that multiple applications are possible.

The question of deadlock has a rich literature. One simple method to avoid deadlock is

a single token architecture where the robot possessing the token is the only one capable of

deciding which rule to apply and updating the network. Thesearchitectures often initialize

with some form of leader election algorithm.

Contrast this with a rule application protocol appropriatefor peer-to-peer communi-

cation. In such a protocol, random communication requests establish temporary links be-

tween pairs of robots. The pairs of robots pass messages to elect a leader, who requests

label information from the other robot in the pair and then decided if the rule is applicable.

Since multiple pairs may identify and apply rules independently, the result is highly par-

allel rule processing. However, the search is not complete since any cut of the graph does

not examine all possible pairings. Thus, no rule may be applied even though some rules

30

are applicable. The peer-to-peer protocol reduces the space complexity for large systems

since a vertex only needs to maintain its local topological information and not a copy of the

entire graph. However, the communication complexity is increased since messages must

be passed to elect the leader and share the local topology.

We capture some of the parallel processing abilities of the peer-to-peer architecture as

well as guarantee adeadlock-freeevaluations of the rules in an architecture calledextended

token-based rule protocol. This protocol takes advantage of the “broadcast” capabilities

of the system to distribute processing among the robots resulting in a nearly concurrent

system.

3.2.2 Extended Token-Based Rule Protocol

Rather than having the robot with the token single-handedlyevaluate the rule set and apply

a rule before then passing the turn to another robot, we instead construct a type of token

that distributes the rule evaluation. We call thisextended token-based rule protocol. Figure

3.6 shows an example iteration of this protocol.

An extended tokenconsists of a random sequence of network indices. This extended

token determines the order in which robots are allowed to apply rules. We can express an

extended token of a network withn robots as (n) where (n) is a sequence of the network

indicesN. For example, ifn = 5, a token could be (5)= (5, 4, 2, 1, 3).

Also, the network has aused set, which the robots use to keep track of what robots have

been used in recent rule applications. Each robot keeps track of the used set by network

broadcasts. By updating the used set and avoiding the application of rules involving robots

in the used set, we guarantee that graph inconsistencies areavoided.

We describe this protocol as aniterative protocol, in which a new extended token is

generated for each iteration. Initially, we designate a single robot to generate the first

extended token and broadcast it to the network. We also initialize the used set of each robot

to empty. This begins the first iteration. During each iteration, the following takes place:

31

Token= (5, 4, 2, 1, 3)

Used= ∅

(x1, a)

(x2, a)

(x3, a)

(x4, a) (x5, a)

(a)

Token= (5, 4, 2, 1, 3)

Used= {5, 4}

(x1, a)

(x2, a)

(x3, a)

(x4, b) (x5, b)

(b)

Token= (5, 4, 2, 1, 3)

Used= {5, 4, 2, 3}

(x1, a)

(x2, b)

(x3, b)

(x4, b) (x5, b)

(c)

Token= (5, 4, 2, 1, 3)

Used= {5, 4, 2, 3, 1}

(x1, a)

(x2, b)

(x3, b)

(x4, b) (x5, b)

(d)

Token= (2, 4, 3, 5, 1)

Used= ∅

(x1, a)

(x2, b)

(x3, b)

(x4, b) (x5, b)

(e)

Token= (2, 4, 3, 5, 1)

Used= {2, 3, 1}

(x1, c)

(x2, c)

(x3, c)

(x4, b) (x5, b)

(f)

Figure 3.6. An Extended token-based rule protocol example iteration. We define the rule set as in (3).
The rule r1 ∈ Φ is initially applicable for every pair of robots. Figure 3.6(a): Initial setup. The used
list is empty, it is robot 5’s turn to apply a rule. Figure 3.6(b): Robot 5 appliesr1 with robot 4. The
network graph edges are updated, as well as the used set. Figure 3.6(c): Robot 2 can now apply a rule.
It applies r1 with robot 3. Figure 3.6(d): Robot 1 cannot apply any rules, it broadcasts itself as used.
Figure 6(e): The token iteration is complete. Robot 3 now generates a new token and broadcasts it to
the network. This clears the used set, and another iterationbegins. Figure 3.6(f): Robot 2 applies rule
r2 ∈ Φ. No more rules can be applied.

32

1. All robots clear their used set such that it is empty.

2. All robots consider all previous network graph information out-of-date.

3. Each robot concurrently searches the partition of the rule search space that includes

itself and the robots that follow it on the token, requestingupdated information from

those robots.

4. The robot with the lowest index in the extended token whichis also not in the used

set attempts to apply any applicable rules involving itselfas follows:

• If a rule is applicable and none of the involved robots are in the used list, it

applies the rule, changing the adjacencies and/or labels in the network graph. It

then broadcasts the robots involved in the rule applicationto the network, who

add them to the used set. Since it can only apply a rule that applies to itself, it

broadcasts itself as used.

• If no rules are applicable, it broadcasts itself as used, andeach robot in the

network adds it to the used list.

5. The last robot in the extended token generates a new randomextended token, and

broadcasts it to the network. This begins a new iteration.

During each iteration, the robot whose turn it is to apply rules is always the robot with the

lowest index in the extended token who has also not been used during the current iteration.

Thus, robots take their turn as the used list updates are broadcast. Since this guarantees

that there is never more than one robot actively attempting to a apply rule, the vertex sets

of their rule applications are always disjoint (i.e., no robots are ever involved in multiple,

simultaneous rule applications in the same iteration). This also guarantees that deadlock

is avoided, since the robots take turns having exclusive control of the network graph infor-

mation. In other words, if we assume that the vertex sets of the rule applications are not

disjoint, or that deadlock is occurring, this would violateour definition of the protocol.

33

Since all graph information is “thrown away” by each robot atthe beginning of each

iteration with the cleared used set, and since the used set isavoided for all rule applica-

tions during each iteration, this ensures that graph inconsistencies do not occur, since this

guarantees that the robots involved in any rule applicationhave not changed their labels or

adjacencies since the rule was evaluated as applicable. In other words, if we assume that a

graph inconsistency takes place, this implies that a robot in a rule application changed its

graph information after its graph information was obtained. This implies that it is in the

used set, which violates our definition of the protocol.

Finally, the search of the rules is “complete” only when no rules are applicable. For

every token, ifanyrule is applicable, at least one rule will be applied. The resulting imple-

mentation exhibits nearly concurrent behavior.

3.3 Experimental Results

To implement an EGG system on a networked system ofn = 3 SpiderMotes, we first

describe how we model the SpiderMotes, their control laws, and the implemented EGG

system. Then, we present the results of executing the EGG system by the SpiderMotes.

3.3.1 Dynamics and Control Laws

The robots are indexed by index setN = {1, 2, 3}. Each robot in the network can be

described by the unicycle model such that,∀i ∈ N, (xi , yi)T ∈ R
2 andφi ∈ [−π, π) are the

position and orientation of roboti. Also, ∀i ∈ N, vi ∈ R
+ andωi ∈ R are the controlled

translational and rotational velocities of roboti such that

ẋi = vi cos(φi),

ẏi = vi sin(φi),

φ̇i = ωi.

For all (i, j) ∈ N × N, we define the angle of robotj to robot i asρi j = tan−1
(

yj−yi

xj−xi

)

.

Sensor information from the camera provides the robots withthe relative displacement

34

between robots within its angular field of view of±ϑ = π/7 rad centered aroundφi ∀i ∈ N.

Therefore, the information available as control support for each robot is given by the pair

δi j =

√

(xj − xi)2 + (yj − yi)2

θi j = ρi j − φi,

whereδi j ∈ R+ represents the distance between robotsj andi, andθi j ∈ [−π, π) represents

the relative angle of robotj to the headingφi of robot i. This implies that,∀(i, j) ∈ N × N,

robot j is perceivable by roboti if and only if |θi j | ≤ ϑ. To accurately represent the network,

the control laws of each robot must be a function only of the relative position of robots it

can perceive.

In order to decrease the distance between all robots, thereby increasing the possibility of

robots being able to perceive and communicate with each other, a control law for bringing

robots closer together was developed for robots with limited perception. For alli ∈ N,

we define the proximity functionF such thatF(i) = { j ∈ N : |θi j | ≤ ϑ}. In other words,

F(i) is the set of indices corresponding to robots in the FOV of robot i. The positions of

these robots define a centroid with a distanceδF(i)i and relative angleθF(i)i to the position and

orientation of roboti such that

δ
F(i)
i =

√

√

√

√

√

√

√

√

√

√

√

√

∑

j∈F(i)

δi j cos(θi j)

|F(i)|

2

+

∑

j∈F(i)

δi j sin(θi j)

|F(i)|

2

θ
F(i)
i = tan−1

∑

j∈F(i)

δi j sin(θi j)

∑

j∈F(i)

δi j cos(θi j)

.

We define upper bounds on the allowable error in position and orientation asǫδ and ǫθ,

respectively. There are derived experimentally, based on the accuracy of the robots in

moving and estimating the relative locations of other robots. For alli ∈ N, we define the

35

(a) goTo: initial setup (b) goTo: complete

Figure 3.7.goToexecuted outdoors

control law (vi , ωi) = goTo(i) such that

vi =

v0 · δ
F(i)
i if F(i) , ∅ andδF(i)i ≥ ǫδ,

0 otherwise

ωi =

θ
F(i)
i if F(i) , ∅ andδF(i)i ≥ ǫδ and|θF(i)i | ≥ ǫθ,

0 if F(i) , ∅ andδF(i)i ≥ ǫδ and|θF(i)i | < ǫθ,

ω0 otherwise

,

wherei is the vertex of the robot performinggoToandv0 andω0 are positive constants. If

no robot is perceived by roboti, roboti stops and rotates until a robot is perceivable. Figure

3.7 shows robots performinggoTo. Figure 3.7(a) shows three robots at their initial setup.

During all experiments such that three robots execute this control law within perception

range of each other, the distances between each robot decrease until they are directly next

to each other, as shown in Figure 3.7(b).

To allow a robot to achieve a desired distance to a specific robot, the control mode

(vi , ωi) = setDistance(i, j, d) is defined as

36

vi =

v0(δi j − d) if j ∈ F(i) and|δi j − d| ≥ ǫδ,

0 otherwise

ωi =

θi j if j ∈ F(i) and|θi j | ≥ ǫθ,

0 if j ∈ F(i) and|θi j | < ǫθ,

ω0 if j < F(i) (i.e., otherwise)

,

where i is the vertex of the robot performingsetDistance; v0, ω0, ǫδ, andǫθ are the

previously defined constants;d is the desired distance; andj is the index of the robot that

robot i is trying to achieve a distanced to. If robot j is not perceivable, then roboti stops

and rotates until robotj is perceivable.

3.3.2 EGG System Definition

The EGG used for the assembling triangular formations is thequadruple (G0,Φ, F, u).

1. G0: The initial network graphG(0) = G0 is defined such that there are no edges and

each vertex has a labela.

2. Φ: The rule set is defined as in our example:

Φ =

a a ⇀ b− b, (r1)

b

ab

 ⇀

c

cc

 JJ

(r2).

(4)

The control laws for these labels are defined in Table 1.

3. F: In this network, the members have global broadcast ability. Therefore, the prox-

imity function captures the limited visual perception of the robots. The proximity

function F spawns a proximity graphG such that a directed edge (vi , vj) exists in

E(G) if and only if robot j is in the FOV of roboti, i.e. j ∈ F(i). Since the network

has global communication ability, the proximity graphG has an undirected edge be-

tween each pair of vertices inG. The guard for ruler1 ∈ Φ requires that a directed

37

Table 1. Control Laws for Mode by Label
LABEL l(i) MODE
a (vi ,wi) = goTo(i)
b (vi ,wi) = setDistance(i, j, db)
c Hybrid control law in Figure 3.8

and undirected edge exists between the corresponding vertices inG for the rule to be

applicable. The guard for ruler2 ∈ Φ requires that all robots in the rule application be

fully connected with undirected edges. Further, the robot labeleda in the left graph

be able to perceive one of the robots labeledb in the network graph. This implies

that there is a directed edge inG between the vertices corresponding to the robot in

modea and one of the robots in modeb for the rule to be applicable.

4. u: The locally implementable mode controlleru for each roboti is a function of

the label associated with the corresponding vertexi in G. The control modes by

label are defined in Table 1. The control law for modea is goTo(i). For modeb,

setDistance(i, j, db) is executed such thatj is the index of the robot paired with the

robot i as in the right side of ruler1 in (4), and the constantdb represents the desired

distance to maintain between robots adjacent robots labeled b. This brings two robots

in modeb to the distancedb from each other. The control law for modec is a hybrid

one shown in Figure 3.8 that alternately performssetDistanceon robots j and k

adjacent to the robot in question in the right side of the ruler2 ∈ Φ from (4). Once

the distancedc is achieved for one robot, it switches to the other, and then repeats.

3.3.3 Execution

Here, we describe two executions of the defined EGG. The first execution uses two robots,

while the second execution uses three.

3.3.3.1 “Bar” formation in a two robot system

Two robots as described previously are configured to executethe defined EGG. We define

the length of the “bar” to bedb = 1.5 m to allow the execution to be easily photographed.

38

setDistance(i, j, dc) setDistance(i, k, dc)

|δi j − dc| < ǫδ

|δik − dc| < ǫδ

Figure 3.8. Hybrid control law for mode c.

Each robot begins with the labela and begins performinggoToin control modea. Since

they begin without being able to sense another robot, they begin searching for a robot by

rotating and processing sensor data from the camera, as shown in Figure 3.9(a). Since each

robot can communicate with each other, they begin the token-based rule execution scheme,

transmitting tokens, as well as label, adjacency, and perception information. Since no robot

can sense the other,there are no sensing edges in the proximity graph. The guards prohibit

any rule for being applied.

Eventually, one robot is able to sense the other, creating a sensing edge in the proximity

graph, as seen in Figure 3.9(b). Since now the guard is satisfied and the robots match the

left side ofr1 ∈ Φ in (4), the rule can be applied. The robot whose turn it is currently in the

token-based rule protocol communicates the rule application to the other. This creates an

edge in the network graphG, indicated by the solid line in Figure 3.9(c). The robots begin

executing the labelb control laws, and eventually settle at a distancedb from each other, as

indicated in the same figure.

3.3.3.2 Equilateral triangle formation in a three robot system

Three robots are configured with the defined EGG, as shown in Figure 3.10(a).We define

the length of the triangle sides to bedb = dc = 1 m in order to easily photograph the

execution. Each robot begins with the labela and begins performing thegoTofrom control

modea. As in the two-robot EGG, two robots are relabeledb, and an edge is added to the

network graph, shown in Figure 3.10(b). However, now a robotlabeleda is available to

39

(a) Initial setup: communication edge exists (b) Robot 2 can sense robot 1. A sense edge exists in
the proximity graph, indicated by the dashed arrow.

(c) The rule is applied, each robot is relabeled ‘b’,
and an edge is added in the network graph, indicated
by the solid line.

Figure 3.9. Two robot system performing “bar”.

complete ruler2 ∈ Φ. Each robot is relabeledc (Figure 3.10(c)) , and two edges are added

to the network graph. While the blue and green robots (top andright in Figure 3.10(c)) can

perceive other robots, the red robot (left in Figure 3.10(c)) cannot. Therefore, it rotates left

in the same spot, while the blue and green robots rotate and adjust their distances to each

other and the red robot. By the time the red robot can perceiveeither of them, the robots

have achieved a triangle with edges of approximate lengthdc = 1 m. During all executions,

the approximate triangle was formed (Figure 3.10(c)). Also, no inconsistent trajectories

occurred.

40

(a) Initial setup.

(b) Red rotates left, looking for robots, while blue and green adjust.

(c) Robots have formed equilateral triangle with sides of 1 m.

Figure 3.10. Three robot system performing triangle.

41

CHAPTER 4

RIGID AND PERSISTENT FEASIBILITY AND FORMATION
GRAPH GENERATION

Chapter 3 presented methods and experiments for successfully implementing EGG systems

with a small network of robots. In this chapter, we present methods for choosing a suitable

network graph for the desired formation. We define aformation graphas a desired network

graph for implementing the desired formation with the multi-robot network.

The number of potential formation graphs for the network grows exponentially with the

network size. Therefore, we need an efficient way to choose a “good” network graph for a

given desired formation.

We would like a network graph such that the network, when in formation, is arigid

network. However, since the network has a proximity range (the maximum range at which

robots can sense/communicate with each other), this implies that network constraints that

are longer than the proximity range cannot be maintained. Itis unclear, under the sens-

ing and communication limitations we consider, how a multi-robot network will maintain

constraints that are longer than the proximity range. This suggests that certain formations

are feasiblewith rigid and persistent network graphs, and certain formations are not. In

this chapter, we present a method for determining if a desired formation isrigidly and

persistently feasiblewith respect to the proximity range of the network.

In Chapter 4.1, we review the concept of rigidity. This includes a discussion ofrigid

graphs: network graphs such that the network is rigid for (practically) all network states.

We also define therigid feasibility of a desired formation. Given the proximity range of

the network, a desired formation is rigidly feasible if, while in formation, the network

graph can be a rigid graph whose edges are less than or equal tothe proximity range.

Otherwise, we say that the desired formation isrigidly infeasible. We also present an

algorithm for efficiently determining the rigid feasibility of a desired formation for the

42

network’s proximity range. This is an efficient algorithm that generates a rigid network

graph that respects the network’s proximity range. Specifically, the generated network

graph is a rigid graph with edge lengths less than or equal to the proximity range of the

network.

Chapter 4.2 reviewspersistenceas it pertains to multi-robot networks. This also in-

cludes a discussion ofpersistent graphs: network graphs such that the network is persistent

for (practically) all network states. Further, we define thepersistent feasibilityof a desired

formation. Given the proximity range of the network, a desired formation is persistently

feasible if, while in formation, the network graph can be a persistent graph whose edges

are less than or equal to the proximity range. We show that, for a specific proximity range,

all rigidly feasible formations are also persistently feasible. Also, the same algorithm for

generating a rigid graph for the network also generates a persistent graph that respects the

network’s proximity range.

Graph operations for assembling persistent network graphsare presented in Chapter

4.3. For these operations, we start with an initial graph with two vertices and one edge.

Each graph operation adds vertices and edges to the graph. Thus, a sequence of these graph

operations generates a sequence of graphs such that the lastgraph is the desired, persistent

network graph. Also, each intermediate graph in the sequence is a persistent graph. We

present graph operations for assembling persistent network graphs that respect the prox-

imity range of the network. We also present an algorithm for automatically generating a

sequence of graph operations for a persistent formation graph.

In Chapter 4.4, we definestably, persistently feasibledesired formations. These are

persistently feasible formations that can be realized withthe network using an acyclic,

persistent network graph that respects the network’s proximity range. Such acyclic, per-

sistent graphs are calledstable, persistent graphs, and facilitate the automatic definition of

control laws for stabilizing the network to a desired formation. We present an algorithm

for determining if a desired formation is stably, persistently feasible, given the proximity

43

range of the network. We also present an algorithm for generating a sequence of graph

operations for assembling a stable, persistent formation graph. Stable, persistent formation

graphs and their corresponding sequences of graph operations are used for defining control

laws for persistent networks (Chapter 5), as well as in implementing an EGG system for

formation assembly under range constraints, presented in Chapter 6.

4.1 Rigid Feasibility and Rigid Graph Generation: The Modified “Peb-
ble Game”

Here, we present rigid feasibility in terms of range constraints. First, we present rigidity

as it has been defined in previous work. Then, we define rigid feasibility under range con-

straints and provide an algorithm for determining if a desired formation is rigidly feasible

for the network.

4.1.1 Rigidity

Here, we examine the potential rigidity of a network given a desired formationP̄ and a

network graphG. Recall our multi-robot system model from Chapter 2, and consider a

multi-robot network with network graphG that is initially in formationsuch that,∀(i, j) ∈

N × N, ‖xi(0)− xj(0)‖ = ‖p̄i − p̄ j‖. For a network initially in formation, an edge-consistent

trajectory is a network trajectory such that,∀
(

(vi , vj), t
)

∈ E(G) × T,
∥

∥

∥xi(t) − xj(t)
∥

∥

∥ =

∥

∥

∥p̄i − p̄ j

∥

∥

∥. A rigid trajectory is a network trajectory such that,∀ (i, j, t) ∈ N × N × T,
∥

∥

∥xi(t) − xj(t)
∥

∥

∥ =
∥

∥

∥p̄i − p̄ j

∥

∥

∥ (i.e., the network stays in formation during the entire trajectory).

For a given formation̄P and network graphG, the multi-robot network is rigid if and only

if all edge-consistent trajectories of the network are alsorigid trajectories. Otherwise, it is

a flexible network. The rigidity of the network in a desired formationP̄ with network graph

G implies that the target formation can be maintained by guaranteeing that the constraints

represented byE(G) are maintained. Figure 4.1 gives examples of a flexible network, while

Figure 4.2 gives an example of a rigid network.

44

x1

x2 x3

x4

(a) t = 0

x1

x2 x3

x4

(b) t = t1

Figure 4.1. A flexible network. We assume thatt1 > 0. The line from x4 represents circular motion that
robot 4 can perform and still satisfy its constraint with robot 3. Robot 4 can move in a manner that
changes its distance to robots 1 and 2.

x1

x2 x3

x4

(a) t = 0

x1

x2

x3

x4

(b) t = t1

Figure 4.2. A rigid network. We assume thatt1 > 0. If all constraints are satisfied during continuous
motion, then the network geometry does not change.

45

4.1.2 Infinitesimal Rigidity

Here, we review the concept of infinitesimal rigidity as presented in [37, 38, 39]. The

infinitesimal rigidity of a network is a stronger condition than rigidity in that all infinitesi-

mally rigid networks are rigid. While some rigid networks arenot infinitesimally rigid, the

infinitesimal rigidity of a network is a much easier condition to both test for and guarantee

through our choice of network graph.

We assume thatxi(t) is continuously differentiable∀i ∈ N. Since we have defined an

edge-consistent trajectory such that,∀(vi , vj) ∈ E(G), the distance between pointsxi(t) and

xj(t) remains constant all along the trajectory, this implies that,∀
(

(vi , vj), t
)

∈ E(G) × T,

d
dt

(

∥

∥

∥xi(t) − xj(t)
∥

∥

∥

2
)

=
(

xi (t) − xj (t)
)T (

ẋi (t) − ẋj (t)
)

= 0. (5)

Since we assume that the network is in formation, we can assume without loss of generality

thatxi(0) = p̄i ∀i ∈ N. Under this assumption,∀i ∈ N, the assignment of constant instanta-

neous velocitiesui ∈ R
2 such that,∀(vi , vj) ∈ E(G), ẋi(0) = ui and ẋj(0) = u j satisfies (5)

is described as aninfinitesimal motionof the network [39]. LetU ∈ R2n be defined by the

infinitesimal motion such thatU =
[

uT
1 , . . . , u

T
n

]T
. Then (5) is represented in matrix form

∀(vi , vj) ∈ E(G) as

M(P,G)U = 0,

whereM(P,G) is known as therigidity matrix [39]. The rigidity matrix has|E(G)| rows and

2n columns. For each edge (vi , vj) ∈ E(G), each rowmi j of M(P,G) represents the equation

for that edge as a 2n-vector of the form

mi j = (0, . . . , (p̄i − p̄ j)
T , 0, . . . , 0, (p̄ j − p̄i)

T , . . . , 0).

Here, (p̄i − p̄ j)T is in two columns for vertexi, (p̄ j − p̄i)T is in the columns forj, and zeroes

are elsewhere [39]. A network withn ≥ 2 points inR2 and in formationP̄ is infinitesimally

rigid if and only if rank(M(P,G)) = 2n− 3 [38, 39].

Infinitesimal rigidity implies rigidity, but rigidity doesnot imply infinitesimal rigidity

46

[37]. Still, the rigidity matrix is an effective way to demonstrate infinitesimal rigidity, and

thus rigidity, based on the desired formation and network graph.

4.1.3 Generic Rigidity

The rigidity of a network depends both on the topology (G) and the state of the network

(X(t)). A generically rigid graphis an network graph for which there exists a formation

P̄ ∈ R2n such that the network is infinitesimally rigid when in formation. Note that generic

rigidity is a property of a network graph. Therefore, we refer to generically rigid graphs as

rigid graphs. If the network graphG is rigid and the network is infinitesimally rigid while

in formationP̄ ∈ R2n, we say that̄P is ageneric formationof G.

If G is rigid, then the generic formations ofG form a dense, open subset ofR
2n [38].

This implies that, for any generically rigid graphG, any desired formation̄P′ can be well-

approximated by a generic formation̄P such that the network, when in formation, is in-

finitesimally rigid and, therefore, rigid.

4.1.4 Rigid Feasibility and Rigid Formation Graph Generation

The proximity range∆ ∈ R
+ of the network limits the maximum length of a constraint

in the network. It is unclear, without further assumptions,how a pair of robots would

maintain a distance greater than∆ from each other, since they would be outside their sen-

sor/communication range. Given a desired formationP̄, we want to determine if, while in

formation, the network can have a rigid network graph such that all edges of the network

graph are less than or equal to the proximity range. To this end, we definerigid feasibility

as follows:

Definition 4.1 For a multi-robot network with n∈ N : n ≥ 2 members and proximity range

∆ ∈ R+, a desired formation̄P ∈ R2n is rigidly feasible if and only if there exists a network

graph G∆ such that G∆ is rigid and,∀(vi , vj) ∈ E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆.

Adding edges to a rigid graph cannot cause it to lose rigidity(i.e., it will stay rigid).

A minimally rigid graphis rigid but does not remain rigid after the removal of any single

47

edge. By Laman’s theorem [43], a network with robots defined inR
2 with n ≥ 2 vertices is

minimally rigid if and only if

1. it has 2n− 3 edges, and

2. each induced subgraph ofn′ ≤ n vertices has no more than 2n′ − 3 edges.

To generate minimally rigid graphs, we utilize the“pebble game” algorithm[44]. The

pebble game algorithm constructs minimally rigid graphs, with a worst case performance

of O(n2) [44]. In the pebble game, each vertex is represented as having two pebbles, each

pebble representing a degree of freedom for that vertex. Apebble coveringexists if each

edge can be covered by a pebble from a vertex incident to that edge. To keep track of

pebbles, the pebble game works with a directed graph, where adirected edge (vi , vj) ∈ E(G)

indicates that edge (vi , vj) is covered by a pebble from vertexvi ∈ V(G). For a given

v ∈ V(G), the pebbles ofv can only cover edges whose tail isv.

The pebble game starts with a directed graph with no edges andattempts to add each

potential edge one at a time to the pebble covering in a mannerthat ensures the second part

of Laman’s theorem is satisfied. Since the pebbles of each vertex limit the number of edges

directed out of each vertex, this is accomplished by modifying the directions of both the

edge to be added and the other edges already in the graph. If part 2 of Laman’s theorem

is satisfied, we say that avalid pebble coveringhas been found. If a valid pebble covering

of 2n − 3 such edges is found, then this implies that the first part of Laman’s theorem is

satisfied and the graph is minimally rigid. For more detail onthe implementation of this

algorithm, see [44].

To test for a minimally rigid graph that satisfies Definition 4.1, we modify the pebble

game algorithm so that it only considers edges of length lessthan or equal to∆. The

modified pebble game is described in Algorithm 1.

The following Theorem 4.2 states the effectiveness of the modified pebble game to test

for rigid feasibility.

48

Algorithm 1 Modi f iedPebbleGame(P̄,∆)
Require: P̄ ∈ R2n is a formation ofn positions such that,∀i ∈ {1, . . . , n}, p̄i ∈ R

2

Require: ∆ ∈ R+ is the proximity range of the network
Initialize networkG∆such thatV(G∆) := {v1, . . . , vn}, E(G∆) := ∅
Initialize rigid := false
for all possible edgese= (vi , vj) ∈ V(G∆) × V(G∆) such thatvi , vj and

∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆,
andwhile rigid = false do

E(G∆) := E(G∆) ∪ e;
Rearrange edge directions to try to find a valid pebble covering;
if a valid pebble covering isnot foundthen

E(G∆) := E(G∆) \ e;
end if
if |E(G∆)| = 2n− 3 then

rigid := true;
end if

end for
return (rigid ,G∆);

Theorem 4.2 For a multi-robot network with n∈ N : n ≥ 2 members and proximity

range∆ ∈ R+, a desired formation̄P ∈ R2n is rigidly feasible if and only if the algorithm

Modi f iedPebbleGame(P̄,∆) returns a minimally rigid graph.

Proof: Definition 4.1 is satisfied for formation̄P only if there exists a rigid graphG∆ such

that,∀(vi , vj) ∈ E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆. This implies the existence of a minimally rigid graph

with the same properties. Assume thatG∆ exists (with all edges of length less than or equal

to ∆), but thatModi f iedPebbleGame(P̄,∆) fails to return a minimally rigid graph. Note

from [44] that the unmodified pebble game always generates a rigid graph, and does so by

considering each edge and adding it to a flexible graph until it becomes minimally rigid.

Therefore, the failure ofModi f iedPebbleGame(P̄,∆) implies that no such graph can be

generated considering only edges such that their distance in the network would be less than

or equal to∆. Since the unmodified pebble game always returns a minimallyrigid graph

[44], this implies that, for any rigid graphG, ∃(vi , vj) ∈ E(G) :
∥

∥

∥p̄i − p̄ j

∥

∥

∥ > ∆. However,

this violates our assumption thatG∆ exists. Therefore, the formation is rigidly feasible only

if Mod f iedPebbleGame(P̄,∆) returns a minimally rigid graph.

49

When the modified pebble game produces a minimally rigid graphG∆ such that,∀(vi , vj) ∈

E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆, then the conditions of Definition 4.1 are satisfied.

4.2 Persistent Feasibility and Persistent Formation GraphGeneration

Here, we present persistent feasibility in terms of range constraints. First, we present per-

sistence as it has been defined in previous work. Then, we define persistent feasibility under

range constraints. Further, we demonstrate that rigid feasibility and persistent feasibility

are equivalent. We also show that the modified pebble game algorithm generates minimally

persistent graphs.

4.2.1 Persistence

To discuss persistence, we must first presentconstraint consistence. Informally, we say that

constraint consistence means that all constraints are satisfied as long as all robots satisfy

their individual constraints, i.e., no subset of robots cansatisfy their constraints in a man-

ner which prevents another robot from satisfying a constraint. Constraint consistence is

determined by the number and orientation of the constraints. Figure 4.3 shows a constraint

inconsistent network, while Figure 4.4 shows a constraint consistent network. For a more

rigorous definition, see [40]. A network is persistent if andonly if it is rigid and constraint

consistent [40], as in Figure 4.4.

We say that a graph isgenerically constraint consistentif all of its vertices have an out-

degree less than or equal to two [40]. Thus, we refer to generically constraint consistent

graphs asconstraint consistent graphs.

Similar to generic rigidity, we say that a graph isgenerically persistentif it is generi-

cally rigid and generically constraint consistent. Like generic rigidity, generic persistence

applies to graphs, not networks. Therefore, we refer to generically persistent graphs as per-

sistent graphs without confusion. A persistent graph isminimally persistentif it is persistent

and if no edge can be removed without losing persistence (i.e., it is constraint consistent,

but no edge can be removed without losing rigidity) [40].

50

x1

x3

x4

x2

(a) t = 0

x1

x3

x4

x2?

(b) t = t1

Figure 4.3. A constraint inconsistent network. We assume that t1 > 0. Here, robot 4 can perform
circular motion around robot 3. If robot 4 moves, robot 2 cannot move in a way that preserves the
distances between robot 2 and robots 1, 3, and 4.

x1

x2 x3

x4

(a) t = 0

x1

x2

x3

x4

(b) t = t1

Figure 4.4. A persistent network. The network graph is rigid and constraint consistent. We assume
that t1 > 0. If robot 4 satisfies its constraint, the other robots maintain formation during continuous
motion.

51

4.2.2 Rigidity, Constraint Consistence, and Persistence Summary

To summarize the topological notions of rigidity, constraint consistence, and persistence

and their relations, see Table 2. Rigidity tells us whether or not we have sufficient edges

in our graph to guarantee that the formation is maintained byonly maintaining its edge

lengths. Therefore, in Table 2, Graph 1 is flexible (i.e. not rigid), while Graphs 2 and 3 are

rigid. Note that rigidity does not depend on the orientationof the edges.

Unlike rigidity, constraint consistencedoesdepend on the orientation of the edges.

While Graph 1 in Table 2 is flexible, it is constraint consistent, since all vertices have an

out-degree less than or equal to two. This implies that the robots can maintain these edges

regardless of how robots 2 and 4 satisfy their constraints with robot 3. Still, the formation

may deform, since the graph is flexible. On the other hand, Graph 2 is rigid, but not

constraint consistent. While the maintenance of the edges would preserve the formation, it

is possible for robot 4 to satisfy its constraint with robot 3such that robot 2 cannot satisfy

all of its constraints, as in Figure 4.4.

Of the graphs in Table 2, only Graph 3 is both rigid and constraint consistent, which

makes it the only persistent graph example. The maintenanceof the edges ensures that the

formation does not deform, and all robots can, in fact, maintain these edges during any

continuous motion.

4.2.3 Persistent Feasibility

We definePersistent feasibilityas follows:

Definition 4.3 For a multi-robot network with n∈ N : n ≥ 2 members and proximity range

∆ ∈ R+, a desired formation̄P ∈ R2n is persistently feasibleif and only if a exists a network

graph G∆ such that G∆ is persistent and,∀(vi , vj) ∈ E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆.

For any minimally rigid graph, it is possible to assign directions to the edges such that

the obtained directed graph is minimally persistent [23]. Therefore, we have the following

Theorem 4.4 describing necessary and sufficient conditions for a target formation to be

52

Table 2. Rigidity, Constraint Consistence, and Persistence Examples Table
Graph 1 Graph 2 Graph 3

x1

x2 x3

x4

x1

x2 x3

x4

x1

x2 x3

x4

Flexible Rigid
Constraint Consistent Constraint Inconsistent Constraint Consistent

Not Persistent Not Persistent Persistent

persistently feasible.

Theorem 4.4 For a multi-robot network with proximity range∆ ∈ R+, a desired formation

P̄ ∈ R2 is persistently feasible if and only if it is rigidly feasible.

Proof: If P̄ is rigidly feasible, then, by Definition 4.1, there exists a rigid graphG∆ that

is rigid and,∀(vi , vj) ∈ E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆. This implies the existence of a minimally

rigid graph such that,∀(vi , vj) ∈ E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ ≤ ∆. The directions of the edges of this

minimally rigid graph can be assigned such that it is a minimally persistent graph [23],

implying that Definition 4.3 is satisfied and the formation ispersistently feasible. Since a

graph is persistent if and only if it is rigid and constraint consistent, then̄P is not persistently

feasible if it is not rigidly feasible.

Theorem 4.4 shows that the modified pebble game tests for bothrigid and persistent feasi-

bility.

53

4.2.4 Persistent Graph Generation

Here, we show that the pebble game algorithm also generates minimally persistent graphs.

A graph is minimally persistent if and only if it is minimallyrigid and no vertex has

an out-degree larger than two [40]. We denote the out-degreeof a vertexv by deg−(v).

Note that the pebble game produces a directed graphG∆, where each edge (vi , vj) ∈ E(G∆)

is covered by one of two pebbles from vertexvi ∈ V(G∆). Thus, we have the following

theorem:

Theorem 4.5 The pebble game and modified pebble game algorithms generateminimally

persistent graphs.

Proof: Assume thatG∆ is a rigid graph successfully generated by the pebble game. In

[44], it is shown that the pebble game generates a minimally rigid graph. Since each di-

rected edge (vi , vj) ∈ E(G∆) represents the edge being covered by one of two pebbles from

vertex vi ∈ V(G∆), this implies that,∀v ∈ V(G∆), deg−(v) ≤ 2. This implies thatG∆

is constraint consistent. SinceG∆ is constraint consistent and minimally rigid, it is also

minimally persistent. This also holds for the modified pebble game.

4.3 Persistent Graph Operations

Given a minimally persistent formation graphG for the network, aHenneberg sequence

[45] of graph operationscan be defined for assembling it. These sequences start out with

an initial,leader-first-follower graph G2 such thatV(G2) has two vertices andE(G2) has one

edge between them. If there are more than two vertices inV(G), the first graph operation

in the sequence adds a vertex and two edges to theG2, producing a new graph:G3. The

next graph operation adds vertices and edges toG3. In this manner, a sequence of graph

operations and an initial graphG2 defines a sequence of graphs (Gn) = (G2, . . . ,Gn) such

thatGn = G, the final graph in the sequence. Furthermore, each intermediate graphGi :

2 ≤ i ≤ n is also minimally persistent.

54

Here, we describe traditional graph operations. We introduce new graph operations for

assembling minimally persistent graphs that respect the proximity range of the network. We

also present an algorithm for automatically generating sequences of these graph operations

for assembling a given, minimally persistent graph.

4.3.1 Leader-First-Follower Pairs

For a minimally persistent graphG, we define aleader-first-follower pairas a pair of

robots corresponding to adjacent vertices (vl , vf) ∈ V(G) × V(G) such thatdeg−(vl) = 0,

deg−(vf) = 1, and∃(vf , vl) ∈ E(G). We say that vertexl is the leader, and f is thefirst-

follower. In such a network, all remaining robots are simply calledfollowers(all robotsi

such thati ∈ N \ {l, f }).

The leader robot has no constraints, and thus has two degreesof freedom, implying that

the persistent formation will follow the leader robot inR2. Similarly, the follower robot

has one constraint, and thus one degree of freedom, implyingthat the persistent formation

will rotate around the leader robot as the follower robot performs circular motion around

the leader. Thus, the leader and first-follower establish the position of the formation in

the environment, in terms of both translation and rotation.For a persistent graph, edge-

reversing operations can make any pair of adjacent robots a leader-first-follower pair with

the graph remaining persistent [23]. A leader-first-follower pair is demonstrated in Figure

4.4 with robots 3 and 4.

4.3.2 Traditional Persistent Graph Operations

In a multi-robot network, achieving a persistent formationrequires robots with (initially)

no constraints to interact and establish constraints. Sucha sequence of robots interactions,

if successful, results in a persistent formation, with inter-robot distances corresponding to

the target formation.

Graph operations are used to represent such a sequence of robot interactions. In [23],

graph operations are presented for assembling and modifying persistent graphs. Initially,

55

vk

vi

vj

(a)

vk

vi

vj

(b)

Figure 4.5. A vertex addition operation. In this figure, the shaded area represents a minimally persis-
tent graph before the operation. The resulting graph is always minimally persistent, as well.

vk

vi

vj

vp

(a)

vk

vi

vj

vp

(b)

Figure 4.6. An edge-splitting operation. In this figure, theshaded area represents a minimally persistent
graph before the operation. The resulting graph is always minimally persistent.

a leader-first-follower seed graph is formed, with leader robot l, first-follower robot f , and

graphG2 such thatV(G2) = {vl, vf }, andE(G2) = {(vf , vl)}.

In [23], directed vertex addition and edge-splitting operations are presented. Consider

a graphGi in a Henneberg sequence such that 2≤ i ≤ n, {vi, vj , vp} ⊆ V(Gi), (vp, vj) ∈

E(Gi), andvk < V(Gi). A vertex addition consists of addingvk to V(Gi) and adding edges
{

(vk, vi), (vk, vj)
}

to E(Gi), producing the next graph in the sequence,Gi+1, with one new

vertex and two new edges. Figure 4.5 shows a vertex addition operation.

An edge-splitting operation consists of addingvk toV(Gi) and adding edges
{

(vk, vi), (vk, vj)
}

to E(Gi), while also removing edge (vp, vj) from E(Gi), producing the next graph,Gi+1.

Figure 4.6 shows an edge-splitting operation.

Any minimally persistent graph can be assembled from a leader-first-follower seed

graph and a sequence of vertex additions and edge-splittingoperations, along with edge

and path reversing operations [23]. Additionally, each intermediate graph is persistent

56

x1

x2 x3 x4 x5

x6 x7

Figure 4.7. An example network where performing an inverse edge-splitting operation introduces a
new edge whose length is greater than all pre-existing edges. This new edge could violate the proximity
range of the network.

[23]. These sequences of graph operations to build a desiredgraph are typically defined

by performing inverse graph operations on the desired graph, defining a reverse sequence

of graphs until the last graph is a leader-first-follower seed graph: (Gn, . . . ,G2). However,

these methods are completely graph based, and do not take into account the proximity

range for the multi-robot network. Consider Figure 4.7. This network has a minimally

rigid, persistent graph. An inverse vertex addition cannotbe performed. Also, note that

any inverse edge-splitting operation will introduce a new edge into the network which has

a length longer than any other edge. This new edge could violate the proximity range of

the network.Therefore, given a formation and a proximity range limit on the edge lengths

of a network, certain network graphs cannot be assembled by these traditional operations

without introducing a constraint that violates the proximity range.

4.3.3 Persistent-∆ Operations

To construct persistent graphs under proximity range constraints, we present two new graph

operations. These, combined with traditional vertex addition, allow any persistent graph

57

vj vi

(a)

vj vi

(b)

Figure 4.8. A single-vertex addition. The shaded area represents a minimally persistent graph before
the operation. A single vertex with an edge is added to graphGk, producing the next graph in the
sequence:Gk+1.

with a leader-first-follower pair to be constructed withoutusing any edges that are not con-

tained in the final graph. We call this set of three graph operationspersistent-∆ operations.

Each operation is represented by a doubleop = (V,E), whereV(op) = V is a set of

vertices to add to the graph, andE(op) = E is a set of edges to add to the graph.

A vertex additionis a persistent-∆ operation defined as in Chapter 4.3.2. A vertex

addition is represented asvertexAddition(vi, vj , vk) = ({vk}, {(vk, vi), (vk, vj)}).

Consider a directed graphGk such that 2≤ k ≤ n, vi ∈ V(G), vj < V(G). Single-

vertex additionconsists of adding a vertexvj to V(Gk) and adding edge (vj , vi) to E(Gk),

producing the next graphGk+1 in the sequence. A single-vertex addition is represented as

singleVertex(vi, vj) = ({vj}, {(vj, vi)}). Note that this operation doesnot preserve persis-

tence. In fact, it guarantees a loss of persistence, since this new vertex has one degree of

freedom. Figure 4.8 shows a single-vertex addition.

Consider a directed graphGk such that 2≤ k ≤ n, (vi , vj) ∈ V(Gk) × V(Gk) and

(vj , vi) < E(Gk). Edge insertionconsists of adding edge (vj , vi) to E(Gk), producing the

next graphGk+1 in the sequence. An edge insertion is represented asedgeInsertion(vi, vj) =

(∅, {(vj, vi)}). Figure 4.9 shows an edge insertion operation.

4.3.4 Persistent-∆ Sequence Generation

Here, we describe how persistent-∆ operations can be used to construct any persistent graph

with a leader-first-follower pair.

58

vi

vj

(a)

vi

vj

(b)

Figure 4.9. An edge insertion operation. As before, the shaded area represents a minimally persistent
graph before the operation. A single edge is added to graphGk, producing the next graph in the
sequence:Gk+1.

If G is a minimally persistent graph and∃(vi , vj) ∈ V(G) × V(G) such thatdeg−(vi) ≥ 1

and vertexdeg−(vj) ≤ 1, then there is a directed path fromvi to vj [23]. If (vl , vf) ∈ V(G) ×

V(G) are a leader-first-follower pair, respectively, then∀v ∈ V(G) \ {vl , vf }, deg−(v) = 2

[40]. This leads to the following lemma:

Lemma 4.6 Let G be a minimally persistent graph such that vl ∈ V(G) is the vertex of the

leader and vf ∈ V(G) is the vertex of the first-follower in a leader-first-follower pair. This

implies the existence of a directed path from all vertices v∈ V(G) \ vl to vl.

Proof: Since robotsl and f are a leader-first-follower pair, this implies that there exists

a directed path fromvf to vl and thatdeg−(vl) < deg−(vf) ≤ 1. This implies that,∀v ∈

V(G) \ {vl , vf }, deg−(v) = 2. Then there is a directed path fromv to vf andvl. This implies

that there exists path from all vertices inV(G) \ vl to vl.

This leads us to an algorithm for constructing a sequence of graph operations to con-

struct a minimally persistent graph. We define aleader-first-follower seedas a graphG2

such thatV(G2) = {vl , vf } andE(G2) = {(vf , vl)}. Here, vertexvl is the leader vertex, and

vertexvf is the follower vertex.

Any minimally persistent graph can be constructed from a leader-first-follower seed by

a sequence of persistent-∆ graph operations. First, given a minimally persistent formation

graphG∆, a graphG is initialized to the leader-first-follower seed such thatG = G2 using

59

x1

x2 x3 x4 x5

x6 x7

(a)

x1

x2 x3 x4 x5

x6 x7

(b)

x1

x2 x3 x4 x5

x6 x7

(c)

x1

x2 x3 x4 x5

x6 x7

(d)

Figure 4.10. A sequence of Persistent-∆ operations constructing a framework. 4.10(a): The initial
leader-first-follower seed. 4.10(b): Two vertex additionsare performed. 4.10(c): No more vertex ad-
ditions are possible. Three single-vertex additions are performed. 4.10(d): Three edge insertions are
performed, one for each single-vertex addition.

the leader and follower vertices inG∆. Until all vertices and edges ofG∆ are present inG,

the following process is performed:

1. Generate each possible edge insertion.

2. Generate each possible vertex addition.

3. If no vertex additions were performed, generate each possible single-vertex addition.

The condition for single-vertex addition is due to the fact that single-vertex addition does

not preserve persistence. Directed vertex addition does. Therefore, these are preferred.

Edge insertions are necessary to complete the graph after single-vertex additions are per-

formed. After this process, each of the generated graph operations is executed on the graph

G. This process is repeated until all vertices and edges have been added to the graph, im-

plying thatG = G∆. Algorithm 2 describes this process. In Algorithm 2, we represent

concatenating elements to the end of sequenceS by S · s.

Figure 4.10 shows a resulting sequence of this algorithm. Wehave the following

theorem for the effectiveness of this method:

Theorem 4.7 For a minimally persistent graph G∆ with a leader-first-follower pair, the

persistent-∆ generation algorithm will generate a sequence of graph operations that con-

struct G∆ from a leader-first-follower seed.

60

Algorithm 2 Persistent∆Generation(G∆)

Require: GraphG∆ exists such thatG∆ is minimally persistent with leader-first-follower
pair (vl , vf);
Initialize G2 such thatV(G2) = {vl, vf } andE(G2) = {(vf , vl)};
G := G2;
Initialize S such thatS is a sequence of zero graph operations;
while |V(G)| < |V(G∆)| or |E(G)| < |E(G∆)| do

Initialize set of graph operationss := ∅;
for all (vi , vj) ∈ V(G) × V(G) do
{Generate all possible edge insertions}
if (vj , vi) ∈ E(G∆n) and (vj , vi) < E(G) then

s := s∪ edgeInsertion(vi, vj);
end if

end for
vertexAdded:= false;
for all vk ∈ V(G∆) such thatvk < V(G) do
{Generate all possible vertex additions}
if ∃(vi , vj) ∈ V(G) × V(G) such thatvi , vj and{(vk, vi), (vk, vj)} ∈ E(G∆) then

s := s∪ vertexAddition(vi, vj , vk);
vertexAdded:= true;

end if
end for
if vertexAdded= false then

for all vj ∈ V(G∆) such thatvj < V(G) do
{Generate all possible single-vertex additions}
if ∃vi ∈ V(G) such that (vj , vi) ∈ E(G∆n) then

s := s∪ singleVertex(vi, vj);
end if

end for
end if
for all operationsop ∈ s do
{Perform all determined graph operations}
V(G) := V(G) ∪ V(op);
E(G) := E(G) ∪ E(op);
S := S · op;

end for
end while
return (G2,S);

61

Proof: Assume thatG∆ exists, with (l, f) as the leader and first-follower of a leader-first-

follower pair, and thatG is the initialized leader-first-follower seed such thatG = G2. If

G∆ has only two vertices, the graph is constructed.

If there are more than two vertices, then, by Lemma 4.6, thereexists a path from all

vertices inV(G∆) \ {vl} to vertexvl. This implies that there exists a pair of vertices (vi , vj)

such thatvj ∈ V(G∆), vj < V(G), vi ∈ V(G), and (vj , vi) ∈ E(G∆). This implies that a

single-vertex addition is possible (there may also be vertex additions possible, but this is

unnecessary for the proof).

Assume that a single-vertex operation is performed, increasing the size ofV(G) and

E(G). Note thatG always has the leader-first-follower pair. Therefore, if there are re-

maining verticesv ∈ V(G∆) such thatv < V(G), then Lemma 4.6 also shows that more

single-vertex additions are possible. In fact, more single-vertex additions will always be

possible until there does not exist av ∈ V(G∆) such thatv < V(G). Since we have not added

any verticesv < V(G∆) to V(G), this implies that, at this point,V(G∆) = V(G).

For all edges (vj , vi) ∈ E(G∆), either (vj , vi) = (vf , vl),the leader-first-follower’s edge, or

it does not. If (vj , vi) is the leader-first-follower’s edge, then it was added toE(G) when the

leader-first-follower seedG2 was initialized. If it is not the leader-first-follower edge, note

that we have already proven that all verticesV(G∆) are added toV(G) such thatV(G∆) =

V(G). This implies that, for any remaining edges not added by vertex or single-vertex

additions, there exists a pair of vertices (vi , vj) ∈ V(G) such that (vj , vi) ∈ E(G∆) and

(vj , vi) < E(G). These edges are added by edge insertions.

Since the algorithm uses these conditions to search for single-vertex additions and edge-

insertions, all such operations are performed, guaranteeing thatV(G∆) = V(G) andE(G∆) =

E(G).

62

4.4 Stably, Persistently Feasible Formations

In Chapter 4.2, we describe how to determine if desired formations were persistently feasi-

ble given the proximity range of the network. While all rigidly feasible formations are also

persistently feasible, some rigidly feasible formations require minimally persistent graphs

that containcycles. Cyclic formation graphs can result in instabilities whichdepend on the

initial state of the network, and are difficult to identify before their implementation on the

network [15, 16].

Directed graphs that are minimally persistent and acyclic have been calledstably rigid

graphsin other works (see, for example, [16, 20]). A graph is stablyrigid if and only if it

can be assembled from a Henneberg sequence composed entirely of vertex additions [20].

This implies that these graphs are also minimally persistent [23]. Therefore, we call these

graphsstable, persistent graphs.

It has been shown that not all persistently feasible formations can be assembled with

only vertex addition operations [4]. However, all persistently feasible formations that can-

not be assembled by vertex additions must contain cycles. Therefore, we present a method

to determine if a persistently feasible formation can be assembled only with vertex addi-

tions. We define stable, persistently feasible formations as follows:

Definition 4.8 For a multi-robot network with n∈ N : n ≥ 2 members and proximity range

∆ ∈ R
+, a desired formation̄P ∈ R

2n is stably, persistently feasible if and only if there

exists a network graph G∆ such that G∆ is persistent and acyclic and,∀(vi , vj) ∈ E(G∆),
∥

∥

∥p̄i − p̄ j

∥

∥

∥ < ∆.

To determine if a formation described bȳP is stably, persistently feasible, we present

the S tablePersistentDeltaalgorithm, shown in Algorithm 3. This is a polynomial time

algorithm that attempts to assemble such a graph using edge weights defined bȳP. For

each potential pair of leader and first-follower robots, thealgorithm attempts to build a

minimally persistent graph using only vertex additions andedges with lengths less than∆.

If successful, this algorithm also defines a leader-first-follower seed graph and a sequence

63

of vertex addition operations for assembling an acyclic, minimally persistent graph. This

algorithm has a worst-case performance ofO(n4).

Theorem 4.9 A desired formation̄P is stably, persistently feasiblefor a multi-robot net-

work with proximity range∆ ∈ R
+ if and only if the S tablePersistentDelta algorithm

successfully returns a minimally persistent graph.

Proof: From Definition 4.8 and [20], a desired formation̄P is stably, persistently feasible

if and only if there exists a minimally persistent network graphG∆ such thatG∆ can be

assembled entirely from directed vertex additions, and,∀(vi , vj) ∈ E(G∆), ‖p̄i − p̄ j‖ < ∆.

From Algorithm 3, theS tablyRigidDeltaalgorithm first finds a pair of positions within∆

to be the leader and first-follower pair. Then, it attempts tofind vertex additions to add the

remaining vertices to the graph using vertex additions withedges less than∆. The final

graphG∆ is only returned when alln vertices have been added, implying thatG∆ is, indeed,

a minimally persistent graph assembled totally from vertexadditions. Thus,̄P is stably,

persistently feasible if theS tablePersistentDeltaalgorithm is successful.

To show that this is necessary, assume that, for our given proximity range∆, G∆ exists

such that it is a stable, minimally persistent graph, but theS tablePersistentDeltaalgo-

rithm fails to return such a graph. This implies that a leaderand first-follower pair cannot

be chosen such that a sequence of vertex addition operationsproduces a minimally per-

sistent graph whose edges all have a length less than∆. However, this contradicts the

assumption thatG∆ exists and is a stable, minimally persistent graph. Therefore, P̄ is sta-

bly, persistently feasible only if theS tablePersistentDeltaalgorithm successfully returns

a minimally persistent graph.

The S tablePersistentDeltaalgorithm is used to automatically generate stable, persistent

formation graphs for the network. In subsequent chapters inthis work, given a desired

formationP̄and the formation graphG∆ generated by theS tablePersistentDeltaalgorithm,

64

Algorithm 3 S tablePersistentDelta(P̄,∆)
Require: n ∈ N : n ≥ 2 is the network size;
Require: P̄ ∈ R2n is a formation ofn positions such that,∀i ∈ {1, . . . , n}, p̄i ∈ R

2;
Require: ∆ ∈ R+;

Initialize graphG∆ such thatV(G∆) = ∅ andE(G∆) = ∅;
Initialize graphG2 such thatV(G2) = ∅ andE(G2) = ∅;
for all a ∈ N do

Nadd := {a} ;
Vadd := {va} ;
V(G∆) := ∅ ;
E(G∆) := ∅ ;
for all b ∈ N \ {a} do

if ‖p̄a − p̄b‖ < ∆ ; then
Nadd := Nadd∪ {b} ;
Vadd := Vadd∪ {vb} ;
Eadd := {(vb, va)};
V(G2) := {va, vb};
E(G2) := {(vb, va)};
Initialize S such thatS is a sequence of zero graph operations;
while |V(G∆)| < n andVadd , ∅ do

V(G∆) := V(G∆) ∪ Vadd ;
E(G∆) := E(G∆) ∪ Eadd ;
Vadd := ∅ ;
Eadd := ∅ ;
for all k ∈ N \ Nadd ; do

if ∃(vi , vj) ∈ V(G∆)×V(G∆) such thatvi , vj, ‖p̄k − p̄i‖ < ∆, and‖p̄k− p̄ j‖ <

∆ then
Nadd := Nadd∪ k ;
Vadd := Vadd∪ {vk} ;
Eadd := Eadd∪ {(vk, vi), (vk, vj)} ;
S := S · vertexAddition(vi, vj , vk);

end if
end for

end while
if |V(G∆)| = n ; then

return (G∆,G2,S) ;
end if

end if
end for

end for

65

the pair (̄P,G∆) represents astably persistent formation. The rest of this work describes

how to achieve our formation goals with these formations.

66

CHAPTER 5

CONTROL LAWS FOR MULTI-ROBOT NETWORK
FORMATIONS WITH PERSISTENT NETWORK GRAPHS

In Chapter 4, we presented an algorithm for determining if a desired formation is sta-

bly, persistently feasible given the proximity range of themulti-robot network, as well as

efficiently, automatically generating a stable, persistent formation graph that respect the

network’s proximity range. Since these graphs are acyclic,we can automatically define

control laws for their implementation while avoiding instabilities that are difficult to predict

[15, 16]. These graphs can also be assembled entirely from vertex additions, as presented

in Chapter 4.4.

In this chapter, we present control laws for multi-robot networks with stable, persistent

network graphs. In Chapter 5.1, we review some relevant properties of stable, persistent

graphs. We review the definition of a network deployment in Chapter 5.2. How robots use

their local geometry and the relative positions of other robots to estimate their deployment

is discussed in Chapter 5.3. Chapter 5.4 defines control lawsfor multi-robot networks with

stable, persistent network graphs. Simulation results arepresented in Chapter 5.5.

5.1 Stable, Persistent Graphs

In this chapter, we assume that the network already has a stable, persistent network graph

G, and that each robot is aware of its local topology. Since thenetwork graphG is a stable,

persistent graph, it has several useful properties. As mentioned in Chapter 4.4,G is a

Directed Acyclic Graph (DAG), and can be assembled entirelyfrom vertex additions from

a leader-first-follower seed graph. In this chapter, we assume that the leader robot is robot

1, and the first-follower robot is robot 2. Therefore, robot 1has no constraints, robot 2 has

one constraint such that (v2, v1) ∈ E(G).

For all robotsk such thatk ∈ N\{1, 2}, there exists (vi , vj) ∈ V(G)×V(G) such thatvi , vj

67

and{(vk, vi), (vk, vj)} ⊂ E(G). This implies that robotsi and j are immediate successors of

robot k. There is also a directed path from every vertex inV(G) to the leader and first-

follower [23]. Thus, all such followersk are predecessors of the leader and first-follower

in the network. This implies that we can order the indices to correspond to a topological

order of the network graph such that,∀(vj , vi) ∈ E(G), i < j. In this chapter, in order to

facilitate future developments, we assume that the networkis indexed in this manner.

5.2 Network Deployment

Recall from Chapter 2.2 that a network deployment ofn robots is defined by a set ofn

deployment positionssuch that,∀i ∈ N, pi : T 7→ R
2 represent the desired trajectory for

the robot assigned positioni. These deployment positions define thenetwork deployment

P : T 7→ R
2 such that,∀t ∈ T, P(t) =

[

p1(t)T , . . . , pn(t)T
]T

. For the deployment to be valid,

∀(i, j, t) ∈ N × N × t, ‖pi(t) − p̄ j(t)‖ = ‖p̄i(0)− p̄ j(0)‖ (i.e., all inter-position distances are

preserved for the entire trajectory). In this manner,P captures both the desired formation

(P̄ = P(0)) and the desired location of the formation in the environment as a function of

time.

We assume that the leader and first-follower robots have the network deployment avail-

able to them, and that they can estimate their relative position to the network deployment.

This implies that we can define the leader’s controlu1 as a function of (x1 − p1) and the

first-follower’s controlu2 as a function of (x2 − p2). In Chapter 5.4, for all other robots,

we define their control laws as a function of the desired formation P̄ and its constraints in

the network and the relative position of the corresponding robots. Since this is a persistent

formation then,∀k ∈ N \ {1, 2}, ∃(i, j) ∈ N×N such thati , j and{(vk, vi), (vk, vj)} ⊂ E(G),

and we define ˙xk = uk as a function ofxi andxj.

These assumptions imply that the control laws we present here are applicable in a va-

riety of situations. For example, if the NASA geologists explicitly define a deployment as

the positions in the environment that the robots must satisfy, then these assumptions and

68

control laws imply that only the leader and first-follower must be aware of the deployment

P, and that only the leader and first-follower require localization ability (i.e., the ability to

estimate their position relative to the environment). For the rest of the network, each robot

successfully navigates with only knowledge of the desired local geometry defined in̄P and

the relative positions of its immediate successors in the network. Therefore, if the leader

and first-follower coordinate and decide to deviate from theplan, the rest of the formation

will follow.

The latter situation (where the leader and first-follower decide to deviate from the plan)

corresponds to a special case where the leader-first-follower pair of robots decide where the

robots should position the formation. For example, assume that the leader robot determines

a deployment for the network and defines it based on its own location. IN this case,x1 = p1,

and the leader coordinates with the first-follower to definep2 as a function ofp1. Thus, our

approach to defining these control laws is applicable to manysituations, without requiring

localization, and with little or no planning required.

5.3 Local Geometry and Circle-Circle Intersection Solutions

Here, we describe how each follower robot estimates its desired location and dynamics in

the formation. This involves determining a velocity that satisfies the deployment using the

desired formation̄P, as well as the positions and velocities of its adjacent neighbors in the

network graph.

In this chapter, we assume that the deployment positions areindexed in the same

manner as the robots assigned to them such that,∀i ∈ N, robot i is assigned position

i. The desired formation̄P and the network graphG definedesired edge weightsfor all

(vi , vj) ∈ E(G). Thus, we define adesired length function d: V(G)×V(G)×R2n 7→ R
+ such

that,∀(vi , vj) ∈ V(G) × V(G), d(vi, vj , P̄) = ‖p̄i − p̄ j‖. For each pair (vi , vj) ∈ V(G) × V(G),

we definedi j = d(vi , vj, P̄) = ‖p̄i − p̄ j‖ for simpler notation. Hence,d assigns a desired

weight to each edge in the network graph.

69

Recall from Chapter 2.4.1 that the network graphG and the network trajectoryX(t)

define a weight function such that,∀(vi , vj) ∈ V(G) × V(G), δi j = δ(vi , vj,X(t)) = ‖xi(t) −

xj(t)‖. The network graph is persistent such that, when initially in formation, the network

maintains the formationif, ∀(vi , vj) ∈ G, δi j = ‖xi(t) − xj(t)‖ = di j ∀t ∈ T. However, there

may be some initial formation error, implying that simply maintaining the initial inter-

robot distances corresponding to the network graph may not satisfy the desired formation.

Further, if error is introduced into the formation, we wouldnot desire for the control laws

to attempt to maintain the error. We must control each robot to satisfy its unique, local

geometry with its adjacent neighbors in a manner such that the global network geometry

satisfies the formation and the deployment.

The leader and first-follower robots attempt to satisfy thisby stabilizing to their de-

ployment positions. As stated in Chapter 5.2, we assume thatthe leader robot 1 and

first-follower robot 2 have direct access to their deployment positionsp1 and p2. Re-

call that, since each additional robot (i.e., each followerrobot) is added by a vertex ad-

dition, then,∀k ∈ N \ {1, 2}, there exists (vi , vj) ∈ V(G) × V(G) such thatvi , vj and

{(vk, vi), (vk, vj)} ⊂ E(G). In this case, robotsi and j are immediate successors of robotk.

To determine how to satisfy their local geometry, each follower robot employs solutions

to the circle-circle intersection problem to estimate their deployment positions and their

dynamics, shown in Figure 5.1. We define

Q1 =

0 1

−1 0

, Q2 =

0 −1

1 0

,

and chooseQk ∈ R
2×2 such thatQk = Q1 or Q2. Given this choice ofQk, two circles whose

centers are atxi(t) ∈ R2 andxj(t) ∈ R2 with radii of dik andd jk respectively intersect at the

70

−15 −10 −5 0 5 10 15

−10

−8

−6

−4

−2

0

2

4

6

8

10

q1

q2

x1 x2

x

y

Circle-Circle Intersection Solutions

Figure 5.1. The circle-circle intersection solutions for robot 3 with x1 = [−5, 0]T, x2 = [5, 0]T, and
d31 = d32 = 10. Here, q1 = fk(x1, x2, d31, d32,Q1), and q2 = fk(x1, x2, d31, d32,Q2). Since the circle-circle
intersection problem typically has two solutions defined bytwo equations, it is necessary to definefk to
correspond to the correct equation for each robotk and its geometry in the formation.

point defined by

fk(xi(t), xj(t), dik, d jk,Qk) =
xi(t) + xj(t)

2
+

1

2δ2i j

(

(

d2
ik − d2

jk

) (

xj(t) − xi(t)
)

+Qk

(

xj(t) − xi(t)
)

√

(

(

dik + d jk

)2
− δ2i j

) (

δ2i j −
(

d jk − dik

)2
)

)

.

(6)

The choice ofQk selects which intersection point is desired, since there are (typically) two

solutions to the circle-circle intersection problem. For each follower robotk, the appropri-

ate equation is used to definefk. Since fk is defined to choose the appropriate circle-circle

intersection point, then,∀{(i, j, k) ∈ N×N×N : i , j , k}, p̄k = fk(p̄i , p̄ j, di j , dik,Qk). Also,

if ‖xi(t) − xj(t)‖ = ‖p̄i − p̄ j‖, thenxk(t) = fk(xi(t), xj(t), dik, d jk,Qk) satisfies the same local

geometry withxi(t) andxj(t) as does ¯pk with p̄i and p̄ j. Thus, the robot assigned position

k can determine its desired position without using any localization ability. Each follower

robot can determine its desired position based only on the estimated range and bearing of

its adjacent neighbors in the network graph. In this work, wesayxk = fk(xi , xj) for simpler

notation to define these circle-circle intersection solutions.

Note that, when operating onxi(t) andxj(t), there is a discontinuity whenxi(t) = xj(t)

71

(i.e., when the circles have a common center). There are alsocomplex solutions when

∥

∥

∥dki + dk j

∥

∥

∥

2
<

∥

∥

∥xj(t) − xi(t)
∥

∥

∥

2

or
∥

∥

∥dk j − dki

∥

∥

∥

2
>

∥

∥

∥xj(t) − xi(t)
∥

∥

∥

2
.

The first condition indicates that the centers of the circlesare too far apart to intersect. The

second condition implies that one circle is inside the otherso that they do not intersect.

5.4 Multi-Robot Network Control Laws with Stable, Persistent Net-
work Graphs

Here, we define control laws for multi-robot networks with stable, persistent network

graphs. First, we define the formation error. Then, we present control laws for two cases.

In the first case, we assume that each robot has access to its deployment position. While

this involves more knowledge for the follower robots than wepreviously assume, it is use-

ful for setting up the second case, where only the leader and first-follower have knowledge

of their deployment positions.

5.4.1 The Formation Error

Since the deploymentP represents the desired network trajectory, we can define therelative

error of each specific robot as ˜xi = xi−pi ∀i ∈ N. Thenetwork errorX̃ : T 7→ R
2n is defined

such thatX̃(t) =
[

x̃1(t)T, . . . , x̃n(t)T
]T

. These error definitions are useful for characterizing

how the formation error behaves given the control laws of thenetwork.

We always assume that the leader and first-follower have access to their deployments.

We define persistent control strategies for two cases. In thefirst case, we assume that

∀k ∈ N such that distinct robotsi and j are immediate successors of robotk, follower robot

k has access topi andp j, and can thus derivepk = fk(pi , p j). Here, the robots are controlled

with knowledge of their specific deployment positions and their dynamics. In the second

case, we assume that each follower robotk can only estimatepk by the actual positions

72

of the other robots as ˆpk = fk(xi , xj). Here, the robots are controlled by estimating their

deployments and dynamics using sensor data.

5.4.2 Control With Knowledge of the Deployment Positions and Their Dynamics

We assume that the leader robot 1 and the first-follower robot2 have access top1 andp2

and can share them with neighboring robots. For our first scenario, we assume that, if

n ≥ 3, robots 1 and 2 communicate (p1, ṗ1, p2, ṗ2) to robot 3. This implies that robot 3

can calculate bothp3 and ṗ3, and can share those with its adjacent neighbors. In general,

we assume that,∀k ∈ N \ {1, 2} such that distinct robotsi and j are immediate successors

of robotk, robotsi and j share (pi , ṗi, p j, ṗ j) with robotk. This could be accomplished

by robot sharing these as explicit functions of time, or communicating these values as the

formation is executed. Then, robotk can derivepk = fk(pi , p j) and ṗk =
∂ fk
∂pi

(

pi, p j

)

ṗi +

∂ fk
∂pj

(

pi , p j

)

ṗ j. We can define each robots’s control based on its desired state and the desired

state’s dynamics.

For all i ∈ N, we define roboti’s control byui = ṗi − Ki pi, where−Ki ∈ R
2×2 is a

Hurwitz matrix. This implies that the error dynamics are

˙̃xi = ẋi − ṗi = ui − ṗi = ṗi − Ki x̃i − ṗi = −Ki x̃i .

The system˙̃xi = −Ki x̃i has a globally exponentially stable origin. Further, the network

error is described by the system̃̇X = −KX̃, where−K ∈ R
2n×2n is a Hurwitz matrix with

−K1, . . . ,Kn on its diagonal. Therefore, the network error has a globallyexponentially

stable origin. Hence, limt→∞ X̃(t) = 0.

5.4.3 Control Without Knowledge of the Deployment Positions and Their Dynamics

In the previous case, we assumed that the leader and first-follower robots where sharing

their deployment positionsp1 and p2 with their adjacent neighbors. Without localization

ability, robots sharing this information must come to an agreement about their locations

in a common frame of reference before such communicated locations and velocities are

meaningful. This suggests that either all robots have localization ability, or that each edge

73

in the network graph implies a high level of coordination between those pairs of robots.

The in-degree of stable, persistent network graphs is only bounded byn − 1. Since the

robots have limited computation and communication abilities, this could be problematic

for a robot who is the immediate successor of potentiallyn− 1 robots in the network.

As an alternative, we now consider the case of estimated knowledge of the deployment

P. We assume that the leader robot 1 has access top1, and the first-follower robot 2 has

access top2. However, follower robotsk with immediate successorsi and j do not have

access to eitherpi, p j, or pk.

For all robotsk such that robotsi and j are its distinct, immediate successors, we assume

that robotk has access to the local geometry that must be satisfied (i.e.,p̄i, p̄ j, and p̄k), as

well as xi andxj, as in the case where robotk estimates the relative positions of robotsi

and j through sensor information. For all robotsi ∈ N, we define itsestimated deployment

p̂i : T 7→ R
2. For all follower robotsk with distinct, immediate successorsi and j, robotk

estimates its deployment position by ˆpk = fk
(

xi , xj

)

and ˙̂pk =
∂ fk
∂xi

(

xi, xj

)

ẋi +
∂ fk
∂xj

(

xi , xj

)

ẋj.

Since the leader and first-follower robots still have accessto p1 andp2, then p̂1 = p1 and

p̂2 = p2. We also define an estimation of the desired deployment asP̂ : T 7→ R
2n such

that P̂(t) = [p̂1(t)T , . . . , p̂n(t)T]T . Similarly,∀i ∈ N, we define anestimation of the errorof

robot i as x̂i = xi − p̂i, and theestimated network errorasX̂ = X − P̂.

For all i ∈ N, we define roboti’s control law byui = ˙̂pi − Ki x̂i, where−Ki ∈ R
2×2 is a

Hurwitz matrix. This implies thaṫ̂xi = −Ki ˙̂xi ∀i ∈ N, which has a globally stable origin.

This implies that theestimatednetwork errorX̂ has a globally, exponentially stable origin

and limt→∞ X̂(t) = 0.

If, ∀k ∈ N such that{(vk, vi), (vk, vj)} ⊂ E, we assume that limt→∞ x̃i(t) = limt→∞ x̃j(t) =

74

0, then this implies that

lim
t→∞

(p̂k (t) − pk (t)) = lim
t→∞

(

fk
(

xi (t) , xj (t)
)

− fk
(

pi (t) , p j (t)
))

= lim
t→∞

(

fk
(

pi (t) , p j (t)
)

− fk
(

pi (t) , p j (t)
))

= 0.

Also,

lim
t→∞

x̃k(t) = lim
t→∞

(xk (t) − pk (t))

= lim
t→∞

(xk(t) − p̂k(t) + p̂k(t) − pk(t))

= lim
t→∞

(x̂k (t) + p̂k(t) − pk(t)) = 0.

Note that, by our assumptions, ˆp1 = p1 and p̂2 = p2. This implies that limt→∞ x̃1(t) =

limt→∞ x̃2(t) = 0. Recall that the network graph is a directed, acyclic graphsuch that the

leader and first-follower are successors to every other robot in the network. Then, by the

topological properties of the network graphG and induction, this implies that,∀k ∈ N

such thatk ≥ 3, ∃(i, j) ∈ N × N such thati , j, {(vk, vi), (vk, vj)} ⊂ E, i < k, j < k, and

limt→∞ x̃i(t) = limt→∞ x̃j(t) = 0. Hence, limt→∞ X̃(t) = 0.

However, the equations forfk are nonlinear. As discussed in Chapter 5.3, there can be

discontinuities or imaginary components of the solution inthe presence of specific errors.

Further, sinceδi j appears in the denominator of (6), this implies that the value may approach

infinity as δi j approaches zero. Therefore, we have onlylocal stabilityprovided by these

control laws. In order to be effective, we must firstassemblethese formations to with a

sufficiently small initial error before we employ these control laws such that we operate

within a sufficiently tight neighborhood ofP. This is part of our motivation for a strategy

for formation assembly, presented in Chapter 6.

5.5 Deployment Simulations

Here, we present simulation results for the control strategy using estimations of the desired

states presented in Chapter 5.4.3. First, we present a scenario of the NASA project. Using

75

a Graphical User Interface (GUI) for entering formation positions, we assume that the

geologists specify a hexagonal formation ofn = 7 robots to track a moving terrain feature

with their sensors. A minimally persistent network graphG is generated such that, for each

edge (vi , vj) ∈ E(G), di j = 10 m. The software automatically configures the robots with the

control laws in Chapter 5.4.3 and the network graphG. The robots then implementing the

control laws begin collecting data. Initially, during the data collection, the terrain feature

begins moving with a velocity of [1, 1]T . The leader and first-follower begin moving in

order to track this motion, defining a desired velocity of ˙pi = [1, 1]T , ∀i ∈ N. For each

robot i, we define−Ki = −I and implement the control laws in Chapter 5.4.3.

The simulation results for this motion are shown for three different initial error assump-

tions. First, it is assumed that the initial error of each robot is bounded to within 2 m of

pi(0) ∀i ∈ N. Then, we perform two simulations to test the “robustness” of the control

laws when the conditions discussed in Chapter 5.3 occur. In one simulation, it is assumed

that all the robots are initially very close to the initial desired state of the leader such that,

∀(i, j) ∈ N × N, xi(0), xj(0) are within 10−60 m of each other. In the last simulation, we

assume that the initial position of each robot is within 20 m of the initial desired leader

state, but allow large initial formation errors. These lasttwo scenarios allow sufficient error

to produce complex results for the circle-circle intersection solutions.

5.5.1 Simulation Results

Figure 5.2 shows the resulting network trajectory when the error of each robot is initially

bounded to 2 m. In this figure, dashed lines represent the desired trajectory, while solid

lines represent the actual trajectory. Arrows between the states correspond to the edges of

the network graphG.

Figure 5.3 shows the errors of each robot in the network. Figure 5.3(a) shows the error

of each robot with respect to their desired states, which approach zero ast → ∞. Figure

5.3(b) shows the errors of each constraint of the network, which also approach zero as

t → ∞.

76

−15 −10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

x1
x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(a) t = 0 sec

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

x1
x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(b) t = 1 sec

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(c) t = 5 sec

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(d) t = 15 sec

Figure 5.2. The network trajectory. In this figure, dashed lines represent the desired deployment, while
solid lines represent the actual trajectory. Arrows between the states correspond to the edges of the
network graph. Here, we define an initial error of 2 m for each robot. As the robots move, each robot
stabilizes to its deployment.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

t (sec)

‖x̃
i(t

)‖
(m

)

(a)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

t (sec)

|‖
x j

(t
)−

x i
(t

)‖
−

d i
j|

(m
)

(b)

Figure 5.3. The network error and constraint errors. Here, we define an initial error bound of 2 m for
each robot. As the robots move, the error in the formation approaches zero ast → ∞. Figure 5.3(a)
shows the formation errors of each robot, and Figure 5.3(b) shows the errors of each robot in satisfying
their constraints. All errors stabilize to zero ast → ∞.

77

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

X

y
(m

)

x (m)
(a) t = 0 sec

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7y
(m

)

x (m)
(b) t = 1 sec

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7y
(m

)

x (m)
(c) t = 5 sec

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(d) t = 15 sec

Figure 5.4. The network trajectory. In this figure, dashed lines represent the desired deployment, while
solid lines represent the actual trajectory. Arrows between the states correspond to the edges of the
network graph. Here, each robots initial state at timet = 0 to be within 10−60 m of p1(0). As the robots
move, each robot stabilizes to its deployment.

In the next simulation, we force each robot’s initial state at time t = 0 to be within 10−60

m of p1(0). This can produce complex results, large errors in the estimation of the network

error, and, thus, large errors in the early portions of the formation trajectory. However,

the errors still stabilize to zero ast → ∞. Figure 5.4 shows the corresponding network

trajectory of this scenario. The robots still stabilize to their desired deployment.

Figure 5.5 shows the corresponding errors for each robot, aswell as each constraint in

the network. The errors still approach 0 ast → ∞.

To further test the robustness of the dynamics defined byfk when it produces complex

results, we enlarge bound on the initial error of each robot to 20 m. Figure 5.6 shows the

network trajectory for this scenario. Ast → ∞, the robots still stabilize to their desired

78

0 1 2 3 4 5
0

2

4

6

8

10

12

t (sec)

‖x̃
i(t

)‖
(m

)

(a)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

t (sec)

|‖
x j

(t
)−

x i
(t

)‖
−

d i
j|

(m
)

(b)

Figure 5.5. The network error and constraint errors. Here, each robots initial state at time t = 0 to
be within 10−60 m of p1(0). As the robots move, the error in the formation approaches zero as t → ∞.
Figure 5.5(a) shows the formation errors of each robot, and Figure 5.5(b) shows the errors of each
robot in satisfying their constraints. All errors stabiliz e to zero ast → ∞.

deployments.

As seen in Figure 5.7, this produces large initial errors, aswell as complex results.

However, using these dynamics, the errors still stabilize to zero ast →∞.

These simulation results shows us that we need an alternative method to assemble a

persistent formation before these control laws are implemented. This is the subject of the

next chapter.

79

−10 −5 0 5 10 15 20 25

−5

0

5

10

15

20

X

x1

x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(a) t = 0 sec

−10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

x1

x2x3

x4

x5

x6

x7

y
(m

)

x (m)
(b) t = 1 sec

−15 −10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(c) t = 5 sec

−15 −10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

x1 x2

x3

x4

x5

x6

x7

y
(m

)

x (m)
(d) t = 15 sec

Figure 5.6. The network trajectory. In this figure, dashed lines represent the desired deployment, while
solid lines represent the actual trajectory. Arrows between the states correspond to the edges of the
network graph. Here, we bound the initial error of each robot to 20 m. As the robots move, each robot
stabilizes to its deployment.

0 1 2 3 4 5
0

5

10

15

20

25

30

35

t (sec)

‖x̃
i(t

)‖
(m

)

(a)

0 1 2 3 4 5
0

5

10

15

20

25

t (sec)

|‖
x j

(t
)−

x i
(t

)‖
−

d i
j|

(m
)

(b)

Figure 5.7. The network error and constraint errors. Here, each robots initial error is bounded to
within 20 m. As the robots move, the error in the formation approaches zero ast → ∞. Figure 5.7(a)
shows the formation errors of each robot, and Figure 5.7(b) shows the errors of each robot in satisfying
their constraints. All errors stabilize to zero ast → ∞.

80

CHAPTER 6

FORMATION ASSEMBLY WITH EMBEDDED GRAPH
GRAMMAR SYSTEMS (EGGS)

In Chapter 5, we present control laws for deploying multi-robot networks with stably per-

sistent formation graphs. While these control laws featured unique equilibria for each robot

in the formation, they were only locally stable. As such, they should only be used in de-

ploying formations with sufficiently small initial error. In this chapter, we present a way

of assembling formationssuch that we can bound the initial formation error before deploy-

ment.

As a starting point, we assume that the NASA scientists entera stably, persistently

feasible desired formation as a set of points in a Graphical User Interface (GUI), given

the network’s proximity range. We assume this GUI program implements the methods

from Chapter 4, generating a stable, persistent formation graphG∆, along with a leader-

first-follower seed graphG2 and a sequence of vertex addition operations for assembling

G∆ from G2. Figure 6.1 shows an example of this GUI, with desired formation P̄ and

corresponding stable, persistent network graphG∆.

In this chapter, we present a method for automatically generating Embedded Graph

Grammar (EGG) systems for assembling formations using these vertex operation sequences.

This involves defining EGG rules and control laws for coordinating leader-first-follower

pairs and performing vertex additions.

In Chapter 6.1, we present control laws for implementing leader-first-follower pairs,

as well as performing vertex additions. Chapter 6.2 shows how to define an EGG system

given a stably, persistently feasible desired formationP̄, a leader-first-follower seed graph

G2, and a sequence of vertex addition operations that assemblea stable, formation graphG∆

from G2. This EGG assigns each robot to a position in the formation and provides control

81

Figure 6.1. The Graphical User Interface (GUI). This program implements the methods from Chapter
4 to generate a stable, persistent network graphG∆.

laws that allow them to achieve the correct relative geometry specified in the desired forma-

tion. A method for allowing unassigned robots to navigate through the network to locations

where they can apply vertex additions is presented in Chapter 6.3. In Chapter 6.4, we show

that we can arbitrarily bound the final error in the formationassembly. Chapter 6.5 presents

our methods for implementing the resulting EGG system on decentralized networks, where

decision-making is distributed across the network. This involves the presentation of decen-

tralized EGG rule evaluation. Simulations results for a large scale network are described in

Chapter 6.6. Two scenarios with a prototype multi-robot network are presented in Chapter

6.7.

6.1 Control Laws For Assembling Persistent Formations

Here, we present control laws for building the leader-first-follower seed graph and perform-

ing vertex addition operations. We define control laws for assembling these formations that

satisfy the proximity range constraints and the maximum velocity constraints, and prove

their stability.

82

Recall from Chapter 4.4 that, given the desired formation and the network’s proximity

range, theS tablePersistentDeltareturns a stable, minimally persistent formation graph

G∆, along with a leader-first-follower seed graphG2 and a sequence of vertex addition op-

erations. These vertex addition operations, when performed onG2, result in a sequence of

graphs (G2, . . . ,Gn) such thatGn = G∆, the desired stable, minimally persistent formation

graph. The pair (̄P,G∆) is apersistent formation, with a desired geometry specified bȳP

and a desired network graph specified byG∆.

First, we define control laws for a leader and first-follower pair of robots to establish

the leader-first-follower seed graph. Then, we present control laws for robots performing

vertex addition operations.

6.1.1 Leader-First-Follower Control Laws

In order to assemble the leader-first-follower seed graph, we must navigate a first-follower

robot such that it satisfies the distance defined inP̄ with the leader robot. The following

theorem presents control laws that accomplish this while respecting the limitations of the

network.

Theorem 6.1 For a multi-robot network with proximity range∆ ∈ R
+, consider a stable,

persistent formation(P̄,G∆) with leader and first-follower positions̄pa andp̄b, respectively.

Assume that robot a is assigned positionp̄a, and that robot b is assigned position̄pb in

desired formationP̄. For a proximity range∆ ∈ R
+ and a maximum velocity umax ∈ R

+,

robot b’s control laws are defined by

dab = ‖p̄a − p̄b‖, (7)

pb = dab
xb − xa

‖xb − xa‖
+ xa, (8)

K =
umax

∆
, (9)

ub = −K(xb − pb) = −K

(

1−
dab

‖xb − xa‖

)

(xb − xa). (10)

We assume that ua(t) = 0 ∀t ∈ T. Then, for every initialization of the pair such that

83

0 < ‖xb(0)− xa‖ ≤ ∆,

• xb is continuously differentiable,

• ṗb(t) = 0 ∀t ∈ T, and pb is a globally, exponentially stable equilibrium point of xb,

• limt→∞ ‖xb(t) − xa‖ = dab,

• ‖xb(t) − xa‖ ≤ ∆ ∀t ∈ T,

• ‖ub(t)‖ ≤ umax∀t ∈ T, and

• xb is Lipschitz continuous.

Proof: First, we show thatxb(t) , xa ∀t ∈ T, andxb is continuously differentiable. By our

assumptions,xa(t) is a constant∀t ∈ T. Also from our assumptions,xb(0) , xa, anddab > 0.

By (8) and (10),xb is continuously differentiable if we can guarantee thatxb(t) , xa ∀t ∈ T.

To see the behavior of‖xb − xa‖, note that

d
dt

(

1
2
‖xb − xa‖

2

)

= (xb − xa)
T(ẋb − ẋa) = (xb − xa)

Tub.

Substituting (10) into the previous yields

d
dt

(

1
2
‖xb − xa‖

2

)

= −K

(

1−
dab

‖xb − xa‖

)

(xb − xa)
T(xb − xa)

= −K

(

1−
dab

‖xb − xa‖

)

‖xb − xa‖
2.

This implies that
d
dt

(

1
2
‖xb(t) − xa‖

2

)

> 0 if ‖xb(t) − xa‖ < dab. (11)

Equation (11) implies that the distance between robotsa andb is always increasing if their

distance is less thandab. Thus, if we assume that, for somet ∈ T, that‖xb(t) − xa‖ = 0,

we always have a contradiction. Ift = 0, then this violates our initial assumption that

‖xb(0)−xa‖ , 0. If t > 0, then there exists somet1 > 0 such thatt1 < t, d
dt

(

1
2 ‖xb(t1) − xa‖

2
)

<

0, and‖xb(t1)−xa‖ < dab. In other words, this implies that there exists a time beforet where

84

the distance between the robots is decreasing and their distance is less thandab. However,

this violates (11). Therefore,xb(t) , xa ∀t ∈ T, andxb is continuously differentiable over

T.

To see that ˙pb = 0, from (8) and the quotient rule, we have that

ṗb(t) = dab
d
dt

(

xb(t) − xa

‖xb(t) − xa‖
+ xa

)

= dab

(ẋb(t) − ẋa) ‖xb(t) − xa‖ − (xb(t) − xa) d
dt (‖xb(t) − xa‖)

‖xb(t) − xa‖2

= dab

ub(t)‖xb(t) − xa‖ − (xb(t) − xa)
(xb(t)−xa)T

‖xb(t)−xa‖
ub(t)

‖xb(t) − xa‖2

=
dab

‖xb(t) − xa‖2

(

‖xb(t) − xa‖ −
(xb(t) − xa)(xb(t) − xa)T

‖xb(t) − xa‖

)

ub(t).

Substituting (10) into the previous gives

ṗb(t) =
−dabK
‖xb(t) − xa‖

(

1−
dab

‖xb(t) − xa‖

)

((xb(t) − xa) − (xb(t) − xa)) = 0.

Hence, ˙pb(t) = 0 ∀t ∈ T, andpb is a constant.

To see thatpb is a globally, exponentially stable equilibrium point ofxb, consider the

translated system

x̃b = xb − pb.

By (10), this implies that

˙̃xb = ẋb − ṗb = −K(xb − pb) = −Kx̃b,

This implies that ˜xb has a globally, exponentially stable origin, and thatpb is a globally,

exponentially stable equilibrium point ofxb.

Note from (8) thatpb(t) ∈ R2 is a pointdab away fromxa and in the direction ofxb from

xa. Therefore, we have from (8) that

lim
t→∞
‖xb(t) − xa‖ = lim

t→∞
‖pb − xa‖ = dab.

To see that‖xb(t) − xa‖ ≤ ∆ ∀t ∈ T, note that the control laws ofxb imply that

xb(t) − pb = e−Kt ((xb(0)− pb)) . (12)

85

Therefore,xb(t) = e−Kt(xb(0)− pb) + pb, and the range ofxb is the “straight” line segment

Xb = {xb(0)s+ (1− s)pb : s ∈ (0, 1]}.

Let B∆[xa] define theclosed ballof radius∆ centeredxa. From our initial assumptions,

‖xb(0) − xa‖ ≤ ∆, and xb(0) ∈ B∆[xa]. Since P̄ describes a stably, persistently feasible

formation for proximity range∆, thendab ≤ ∆. From (8), this implies that‖pb − xa‖ ≤ ∆,

andpb ∈ B∆[xa]. SinceXb is a line segment betweenxb(0) andpb, and{pb, xb(0)} ⊂ B∆[xa],

then the convexity ofB∆[xa] implies thatXb ⊂ B∆[xa]. Thus,‖xb(t) − xa‖ ≤ ∆ ∀t ∈ T.

To prove that‖ub(t)‖ ≤ umax∀t ∈ T, we definep∆ ∈ R2 such that

p∆ = ∆
xb(0)− xa

‖xb(0)− xa‖
+ xa.

In other words,p∆ is a point∆ distance away fromxa, in the direction ofxb(0) from xa. Let

R∆ be the “straight” line segment such that

R∆ = {xas+ (1− s)p∆ : s ∈ [0, 1]}.

Since‖p∆ − xa‖ = ∆, thenR∆ describes a line of length∆. Since pb(0) is a pointdab

away fromxa in the direction ofxb(0) from xa, thenpb(0) ∈ R∆. Since‖xb(0) − xa‖ ≤ ∆,

then xb(0) ∈ R∆. SinceR∆ describes a line of length∆ and {xb(0), pb(0)} ⊂ R∆, then

‖xb(0)− pb(0)‖ ≤ ∆.

Equation (12) implies that,∀t ∈ T,

‖xb(t) − pb‖ ≤
∣

∣

∣e−Kt
∣

∣

∣ ‖(xb(0)− pb)‖ ≤ ‖xb(0)− pb‖.

By the control laws in (10),∀t ∈ T,

‖ub(t)‖ = ‖ − K(xb(t) − pb)‖ ≤ |K|‖xb(0)− pb‖.

Since‖xb(0)− pb(0)‖ ≤ ∆, then,∀t ∈ T,

‖ub(t)‖ ≤ |K|‖xb(0)− pb‖ ≤ |K|∆ ≤
umax

∆
∆ ≤ umax.

Sinceub is defined overT and‖ub(t)‖ bounded byumax∀t ∈ T, thenxb is Lipschitz contin-

uous.

86

6.1.2 Vertex Addition Control Laws

Once the leader-first-follower pair are assembled, all remaining robots must “attach” to

the formation using vertex addition operations. In order todefine a unique position that

satisfies the geometry defined in̄P, we utilize solutions to the circle-circle intersection

problem, presented in Chapter 5.3. The following theorem defines control laws that use

this estimation.

Theorem 6.2 For a multi-robot network with proximity range∆ ∈ R
+, consider a stable,

persistent formation(P̄,G∆), along with three robots i, j, and k. We assume that ui(t) =

u j(t) = 0 ∀t ∈ T. We also assume that and̄pk = fk(p̄i , p̄ j) as described in Chapter 5.3. For

a maximum velocity umax ∈ R
+, robot k’s control laws are defined by

p̂k = fk(xi , xj), (13)

K =
umax

∆
, (14)

uk(t) =

−umax
xk(t)−p̂k

‖xk(t)−p̂k‖
if ‖xk(t) − p̂k‖ > ∆,

−K(xk(t) − p̂k) otherwise.
(15)

Then, for every initialization of xi, xj, and xk such that‖xk(0)− xi(0)‖ ≤ ∆, ‖xk(0)− xj(0)‖ ≤

∆, ‖p̂k − xi‖ ≤ ∆, ‖p̂k − xj‖ ≤ ∆,andℑ(p̂k) = 0,

• ˙̂pk(t) = 0 ∀t ∈ T, andp̂k is a globally, asymptotically stable equilibrium point of pk,

• xk is continuously differentiable,

• ‖xk(t) − xi‖ ≤ ∆ and‖xk(t) − xj‖ ≤ ∆ ∀t ∈ T,

• ‖uk(t)‖ ≤ umax∀t ∈ T,

• xk is Lipschitz continuous.

Proof: Sinceẋi(t) = ẋj(t) = 0 ∀t ∈ T, this implies that˙̂pk(t) = 0 ∀t ∈ T. We define the

translated system

x̂k = xk − p̂k.

87

Equation (15) implies that

˙̂xk = ẋk =

−umax
x̂k

‖x̂k‖
if ‖x̂k‖ > ∆,

−Kx̂k otherwise.

The Lyapunov functionV(x̂k) = 1
2 x̂T

k x̂k is globally positive definite. Its time derivative is

V̇(x̂k) = x̂T
k

˙̂xk

=

−umax‖x̂k‖ if ‖x̂k‖ > ∆

−K‖x̂k‖
2 otherwise.

Therefore,V̇(x̂k) is globally negative definite, and the origin of ˆxk is globally asymptotically

stable. This implies that ˆpk is a globally, asymptotically stable equilibrium point ofxk.

Here, we show thatxk is continuously differentiable. If‖xk(0) − p̂k‖ ≤ ∆, then (15)

implies thatxk is continuously differentiable. For the case where‖xk(0) − p̂k‖ > ∆, (15)

implies that robotk will have a velocity of magnitudeumax in the direction of ˆpk until

‖xk(t) − p̂k‖ = ∆, at which point the control laws switch such thatuk(t) = −K(xk(t) − p̂k).

Let us assume that this switch occurs att∆ ∈ T such that‖xk(t∆) − p̂k‖ = ∆. This implies

thatxk is continuously differentiable over [0, t∆). Note that the limit ast → t∆ from the left

is

lim
t→t−

∆

uk(t) = −umax
xk(t∆) − p̂k

‖xk(t∆) − p̂k‖
.

At t∆, ‖xk(t∆) − p̂k‖ = ∆, and the control laws switch such that,∀t ∈ (t∆,∞), uk(t) =

−K(xk(t) − p̂k). Hence,xk is continuously differentiable over (t∆,∞). Also, the limit as

t → t∆ from the right is

lim
t→t+

∆

uk(t) = −K(xk(t∆) − p̂k)

= −
umax

∆

xk(t∆) − p̂k

‖xk(t∆) − p̂k‖
‖xk(t∆) − p̂k‖

= −umax
xk(t∆) − p̂k

‖xk(t∆) − p̂k‖
= lim

t→t−
∆

uk(t).

Since the limit ast → t∆ is identical from the left and from the right, thenuk is continuous

overT, andxk is continuously differentiable.

88

To show that‖xk(t) − xi‖ ≤ ∆ and‖xk(t) − xj‖ ≤ ∆ ∀t ∈ T, note that the control laws in

(13-15) imply that the range ofxk is in the “straight” line segment parameterized by

Xk = {xk(0)s+ (1− s)p̂k : s ∈ (0, 1]}.

We defineB∆[xi] and B∆[xj] as the closed balls of radius∆ aroundxi and xj. By our

initialization assumptions,{xk(0), p̂k} ⊂ B∆[xi] ∩ B∆[xj]. The convexity ofB∆[xi] ∩ B∆[xj]

implies thatXk ⊆ B∆[xi] ∩ B∆[xj]. Hence,∀t ∈ T, ‖xk(t) − xi‖ ≤ ∆ and‖xk(t) − xj‖ ≤ ∆.

To show that‖uk(t)‖ ≤ umax ∀t ∈ T, note from (15) that, if‖x̂k(t)‖ > ∆, thenuk(t) =

−umax
xk(t)−x̂∗k
‖xk(t)−x̂∗k‖

. This implies that, when‖x̂k(t)‖ > ∆,

‖uk(t)‖ = umax.

When‖x̂k(t)‖ ≤ ∆, uk(t) = −Kx̂k(t). This implies that

‖uk(t)‖ = ‖ − Kx̂k(t)‖ ≤ |K|∆ ≤
umax

∆
∆ ≤ umax.

Hence,‖uk(t)‖ ≤ umax ∀t ∈ T. Sinceẋk is defined and‖ub(t)‖ is bounded overT by umax

∀t ∈ T, thenxk is Lipschitz continuous.

Theorems 6.1 and 6.2 specify how robots can satisfy their local geometry, assuming that

the robots satisfy the theorems’ initialization conditions and have been properly assigned

formation positions. We next present an Embedded Graph Grammar (EGG) system that

dictates how this assignment occurs, as well as how robots appropriately “switch” control

laws when assigned positions. In Chapter 6.3, we also define the initial conditions and

controls laws for unassigned robots for guaranteeing that the initialization conditions of

Theorems 6.1 and 6.2 are satisfied.

6.2 Embedded Graph Grammars for Formation Assembly

Previously, we defined control laws for controlling the leader-first-follower pair, as well as

each vertex addition in the Henneberg sequence to assemble the network graphG∆. Here,

89

we present a method to automatically generateEmbedded Graph Grammar (EGG) systems

[41] for assembling desired formations. Through the application of the rules in the rule set,

edges may be removed or added to the graph, and the vertex labels may change.

6.2.1 Initial Network Graph

Since the goal of the multi-robot network is to assemble a desired formation, each robot

must be assigned a unique position in the formation and attempt to satisfy the local ge-

ometry with its immediate successors in the network graph. Note that the network graph

G is a labeled graphwith a labeling function l : Σ 7→ V(G). For all vi ∈ V(G), this la-

beling function assigns a label to each vertexvi corresponding to themodethat roboti is

in. In this assembly EGG system, the vertex label functionl assigns to each vertex inG

either a position inP̄ or the unassigned labelw < P̄. It also associates a Boolean value to

each vertexv ∈ V(G) depending on whether or not the corresponding robot has reached

a location that sufficiently satisfies its constraints with other robots. We use the notation

l(vi).assign∈ P̄∪{w} to denote the position in the desired formation that roboti is assigned

to, andl(vi). f inal ∈ {true, f alse} as a flag that indicates whether or not roboti has con-

verged sufficiently close to its desired destination. Ifl(vi).assign= w, we say that roboti is

awanderer. Otherwise, we say that roboti is anassignedrobot.

Initially, all robots in the network are wanderers. Therefore, we model the initial con-

dition for the network graphG(t) asG(0) = (V,E(0), l0), with E(0) = ∅, and,∀v ∈ V(G),

l0(v).assign= w andl0(v). f inal = f alse.

6.2.2 Embedded Graph Grammar Generation

In order to characterize how robots should navigate and establish and maintain constraints

with other robots, as well as the corresponding change in network topology, we define

graph-transitionrules. Each rule consists of a vertex-labeledleft graph L(the input to the

rule), a vertex-labeledright graph R(the output to the rule), and aguard that defines the

geometric conditions under which the rule is applicable. These rules define the desired

90

interactions between robots and will be given to each robot,along with the corresponding

control laws for each position, in order to execute the formation. Here, we briefly review

EGG systems, as discussed in Chapter 2.6.

Assume thatV(L) is the vertex set of the left graphL of a ruler. In order forr to be

applicable to the robot network modeled byG(t), some subset ofG(t) must “look” like L.

For this, we follow the notation in [41] and we define awitness h: V(L) 7→ V(G) as a

label-preserving isomorphism between the vertices of the left graphL and the vertices of

G(t). Witnesses formalize the notion of when two graphs “look” the same (including vertex

labels and adjacencies).

However, we also need that certain geometric conditions aresatisfied for a rule to be

applied. These conditions are encoded through aguard function g: H × (R2 × · · · ×R2) 7→

{true, f alse}, whereH is the set of all witnesses for a specific rule. In this work, the guard

function is defined to respect the proximity range of the network. This implies that robots

must be sufficiently close enough to perceive and communicate with each other in order to

apply a rule.

When a witness for a rule exists and the guard evaluates totrue, we say that the guard is

satisfiedand the rule isapplicable. If a rule is applicable, the subgraph ofG(t) isomorphic

to L can be replaced inG(t) by the right graphR in the rule. This can involve both changing

labels and/or edges to match the right graphR. A guarded rule is represented by the triple

r = (L⇀ R, g).

As a final building block, each assignment in the vertex labels (i.e. l(v).assign) corre-

sponds to a particular control mode based on its position in the desired formation. As such,

the robots execute specific control laws for each label.

Depending on the rule set and the network graph, multiple rules may be applicable at

the same time. As in [41], we insist that, for a specific timet, if multiple witnesses exist,

we allow multiple rules to be applied simultaneously, but insist that the sets of vertices in

V(G) that belong to each witness over which the rules are appliedmust be disjoint. In other

91

w

w

w

w

w

w

⇀ p̄a

p̄b

w

w

w

w

Figure 6.2. Leader-first-follower rules.

words, no vertex inV(G) is allowed to be in two simultaneous rule applications.

Here, we define the specific rules and appropriate control modes that ensure that the

desired network graph is achieved. In this work, we augment atraditional EGG system,

and describe asingle application EGG system. In this system, we also assume that each

rule in the rule set is allowed to be applied once and only once. This is another condition

that is guaranteed by our rule negotiation scheme, which is discussed in Chapter 6.5.

6.2.3 Leader-First-Follower Rules

In Chapter 4.3, we see that the Henneberg sequence begins with a leader-first-follower

seed graphG2. Here, assume thatV(G2) = {va, vb}, andE(G2) = {(vb, va)}. These vertices

in V(G2) correspond to positions ¯pa and p̄b. The robot assigned to ¯pa is the leader, while

the robot assigned to ¯pb is the first-follower. Here, we define EGG rules for assigninga pair

of robots to these positions and establishing this first constraint. Since we require a unique

leader-first-follower seed, we need to make sure that the entire network is involved in the

assignment. As such, the leader-first-follower rules involve the entire network. Figure 6.2

describes these leader-first-follower rules.

Leader-First-Follower Position Rule

Through the leader-first-follower seed graph we define aleader-first-follower position rule

as

r p
l f = (Lp

l f ⇀ Rp
l f , g

p
l f),

92

where the left graph is given by the initial network graphLp
l f = G(0) and the right graph

Rp
l f is given by

V(Rp
l f) = V(G),

E(Rp
l f) = {(v2, v1)},

and,∀v ∈ V(Rp
l f),

lp
Rl f

(v) =

(p̄a, true) if v = v1

(p̄b, f alse) if v = v2

(w, f alse) o.w.

Given a witnessh for this rule, the guardgp
l f evaluates to true if and only if the robot

corresponding to vertexh(v1) can detect and communicate with each robot in the network.

Thus, ifh(v1) = va, then the guard is true if and only if,∀i ∈ N, ‖xa(t) − xi(t)‖ ≤ ∆. Since

the left graph is the initial graphG(0) where each vertex is labeled as a wander and no

edges exist, this implies that, initially, any robot withinproximity range of all other robots

can potentially be a leader, and any robot within proximity range to a potential leader is a

potential first-follower.

The control laws associated with labels (¯pa, true) and (p̄b, f alse) are defined in Theorem

6.1. From Theorem 6.1, robota corresponds toh(v1) = va, robotb corresponds toh(v2) =

vb. As such, the leader sets its velocity to zero, while the first-follower begins to approach

a distance ofdab from the leader.

Leader-First-Follower Final Rule

As the follower is approaching the its equilibrium point asymptotically, we also have a

condition under which we consider the maneuver to be completed. Assume that robota

is assigned ¯pa, robotb is assigned ¯pb, andpb is defined as in Theorem 6.1. We define the

leader-first-follower final rule

r f
l f = (L f

l f ⇀ Rf
l f , g

f
l f),

93

whose effect is that the final label ofvb is changed fromf alseto true when the distance

between the leader and first-follow has sufficiently converged topb for a given threshold

valueǫ > 0. In other words,l(b). f inal = true if and only if ‖xa(t) − xb(t)‖ ≤ ǫ. It also sets

the control laws of robotb to zero.

6.2.4 Vertex Addition Rules

The leader-first-follower position and final rules specify how we obtain the leader-first-

follower seed graphG2 for the Henneberg sequence. In Chapter 4.3, we also describehow

vertex additions generate a graph sequence (G2, . . . ,Gn) such thatGn = G∆. Assume that,

for graphGp : 2 ≤ p ≤ n, that{vi , vj} ⊂ V(Gp) and a vertex addition operation adds vertex

vk to V(Gp) and edges{(vk, vi), (vk, vj)} to E(Gp) to produce the next graph in the sequence:

Gp+1. Due to the directions of these edges, the robot corresponding to vk is in charge of

ensuring the proper distance is maintained to the robots corresponding to verticesvi and

vj, defined by formation positions ¯pi, p̄ j, and p̄k. This vertex addition operation defines a

vertex addition position ruleas

r p
va = (Lp

va⇀ Rp
va, g

p
va),

where the left graph is given byLp
va, with

V(Lp
va) = {v1, v2, v3}

E(Lp
va) =

{(v1, v2)} if ∃(vi , vj) ∈ E(G∆)

{(v2, v1)} if ∃(vj , vi) ∈ E(G∆)

∅ o.w.

and,∀v ∈ V(Lp
va),

lp
Lva

(v) =

(p̄i , true) if v = v1

(p̄ j , true) if v = v2

(w, f alse) if v = v3.

94

p̄i

p̄ jw

⇀

p̄i

p̄ jp̄k

Figure 6.3. Vertex addition rules.

The right graph is given byRp
l f , with

V(Rp
l f) = {v1, v2, v3}

E(Rp
l f) = E(Lp

va) ∪ {(v3, v1), (v3, v2)}

and,∀v ∈ V(Rp
l f),

lp
Rva

(v) =

(p̄i , true) if v = v1

(p̄ j , true) if v = v2

(p̄k, f alse) if v = v3.

Given a witnessh for this rule, the guardgp
va evaluates to true if an only if the robot cor-

responding to vertexh(v3) is close enough toh(v1) andh(v2) to be able to detect them. In

other words, assuming thath(v1) = vi, h(v2) = vj, andh(v3) = vk, the guard is true at time

t if and only if ‖xk(t) − xi(t)‖ ≤ ∆ and‖xk(t) − xj(t)‖ ≤ ∆. The control laws associated

with labels (p̄i , true) and (p̄ j , true) and (p̄k, f alse) are defined in Theorem 6.2. As such, the

robots assigned ¯pi and p̄ j have zero velocity, while the robot assigned ¯pk begins to move

towards its estimate of its desired position. Figure 6.3 shows vertex addition rules.

Vertex Addition Final Rule

As robotk is approaching its equilibrium point asymptotically, we also have a condition

under which we consider the maneuver to be completed. For this we define thevertex

addition final rule

r f
va = (L f

va⇀ Rf
va, g

f
va),

95

whose only effect is that the label at vertexh(v3) = k is changed fromf alseto true when

‖p̂k(t) − xk(t)‖ < ǫ, for a given threshold valueǫ > 0. Like the leader-first-follower final

rule, it also setsuk to zero.

Based on the EGG rules we have defined, the robots switch to thecontrol modes defined

in Chapter 6.1 and then switch out of them after sufficient convergence to their estimated

desired states, setting their control laws to zero. This implies that there will be some final

error in the formation, and the amount of this error is intuitively determined by how small

we defineǫ. In Chapter 6.4, we discuss this formation error, and show that it is, in fact,

bounded by our choice ofǫ. By boundingǫ to be arbitrarily small, we can also arbitrarily

bound the resulting formation error to be arbitrarily small. In Chapter 6.3, we discuss the

implementation of “wander mode” to ensure that the rule guards are satisfied, and that the

unassigned robots (the “wanderers”) will satisfy the guards of the vertex additions as the

formation expands from the network’s initial state.

6.3 Wander Mode

Here, we presentwander mode, which allows unassigned wanderers to satisfy the guards

of available vertex addition rules. The wanderers must navigate to positions in the network

where vertex addition rules are applicable. However, each robot is limited to perceiving

only the portions of the network that are within its proximity range. At any given time, the

locations in the network where vertex additions are applicable may be outside the proxim-

ity range of any wanderer. We need a way for the wanderers to navigate without global

information.

To implement wander mode, each robot assigned a position is given a hop-counter

λ, which it communicates to all assigned robots within proximity range. We set to zero

the hop-counters of all assigned robots whose labels allow them to participate in vertex

addition position rules that have not been applied. This implies that their labels occur in

the left graph of position rules that have not yet been applied (This also requires robots

96

to “keep track” of what rules have and have not been applied).Assume that roboti is an

assigned robot that cannot participate in a vertex additionposition rule. Assume thatΛi is

the set of all the hop-counters of all robots within proximity range ofi. Then we define

robot i’s hop-counter by

λi =

min(Λi) + 1 if min(Λi) < n

n otherwise.
(16)

Since all robots with hop-counters equal to zero have been assigned positions in the desired

formation, and since each edge inG∆ has a length less than or equal to∆, this implies that

there always exists a “path” of assigned robots with decreasing hop-counters that leads to

a hop-counter of zero, if such a robot exists. Wander mode is defined so that wanderers

perform circular motion around the robot with the lowest hop-counter in proximity range.

When a robot with a lower hop-counter comes into its perception, it switches to circle

around that robot. This process repeats until the wanderer finds an assigned robot with a

hop-counter equal to zero.

Once a wanderer encounters an robot whose hop counter equalszero, it enters an exclu-

sive partnering relationship with that robot. The assignedpartneri changes its hop-counter

from zero to min(Λi) + 1. The assigned partner also refuses any more partnerships with

other wanderers. As each rule is applied, the robots involved in the rule application reeval-

uate their hop-counters as defined in (16).

Note that each vertex addition rule has two vertices with labels that assign a hop-counter

of zero to assigned robots. This implies that two wanderers can potentially be partnered

with different robots, but for the same rule. Therefore, if the hop-counter changes from

zero to another value, this signals any partnered wanderersto abandon the partnership and

to follow a path to another robot with a zero hop-counter. Since this situation only occurs

when all robots required for a vertex addition rule are present, then this implies that the

redundant partnered wanderer is always freed, and can proceed towards another vertex

addition rule opportunity.

97

The definition of hop-counters also implies that, when all robots that can participate

in vertex additions have partners, there may be intervals oftime where there is no hop-

counter equal to zero. However, this situation guarantees that a vertex addition rule is

applied, since all assigned robots that can participate in vertex additions have a partnered

wanderer. Figure 6.4 shows a wanderer performing wander mode.

The following control laws are performed by the wanderers. For a wanderer robotw

and an assigned robota, these control laws stabilize the wanderer to a circular velocity

around robota at a distance approaching∆ ast → ∞.

Theorem 6.3 Consider a stably, persistently feasible formation definedby P̄ and corre-

sponding stable, persistent network graph G, along with a pair of robots a and w. For a

proximity range∆ ∈ R
+ and a maximum velocity umax ∈ R

+, robot w’s control laws are

defined by

x∗w = ∆
xw − xa

‖xw − xa‖
+ xa, (17)

Kw =
umax

2∆
, (18)

Q1 =

0 1

−1 0

, (19)

uw =
umax

2
Q1

xw − xa

‖xw − xa‖
− Kw

(

xw − x∗w
)

=
umax

2
Q1

xw − xa

‖xw − xa‖
− Kw

(

1−
∆

‖xw − xa‖

)

(xw − xa). (20)

We assume that ua(t) = 0 ∀t ∈ T (i.e., xa(t) is a constant∀t ∈ T). Then, for every

initialization of the pair such that0 < ‖xw(0)− xa(0)‖ ≤ ∆,

• xw is continuously differentiable,

• limt→∞ ‖xw(t) − xa‖ = ∆,

• limt→∞

(

uw(t) − umax
2 Q1

xw−xa

‖xw−xa‖

)

= 0,

• ‖xw(t) − xa‖ ≤ ∆ ∀t ∈ T,

98

w

(a)

2 13 14

12 03

23 24

1 023

3 34 35
w

(b)

2 13 14

12 03

23 24

1 023

3 34 35

w

(c)

2 13 14

12 03

23 24

1 023

3 34 35

w

(d)

2 23 24

12 13

33 34

1 023

4 44 45

w

(e) (f)

Figure 6.4. Wander mode. Assigned robots establishhop-counters, which count the “hops” to an avail-
able vertex addition. By sharing these hop-counters with wanderers within proximity range, wanderers
can perform circular motion and follow the hops to availablevertex additions.

99

• ‖uw(t)‖ ≤ umax∀t ∈ T, and

• xw is Lipschitz continuous.

Proof: First, we must show thatxw(t) , xa ∀t ∈ T. To analyze the behavior of‖xw − xa‖,

note that

d
dt

(

1
2
‖xw(t) − xa‖

2

)

= (xw(t) − xa)
T(ẋw(t) − ẋa)

= (xw(t) − xa)
T ẋw(t).

SinceQ1 is an rotation matrix corresponding to a rotation ofπ2, then,∀x ∈ R
2, Q1x is

orthogonal tox, andxTQ1x = 0. Then, substituting (20) into the previous yields

d
dt

(

1
2
‖xw(t) − xa‖

2

)

= −Kw

(

1−
∆

‖xw(t) − xa‖

)

‖xw(t) − xa‖
2. (21)

This implies that d
dt

(

1
2‖xw(t) − xa(t)‖2

)

> 0 if ‖xw(t) − xa(t)‖ < ∆. In other words, the

distance between robotsw anda is always increasing if their distance is less than∆.

By our assumptions,xw(0) , xa. This implies thatuw(0) is defined. If we assume that,

for somet > 0, thatxw(t) = xa, we always have a contradiction. This assumption implies

that there existst1 > 0 such thatt1 < t, d
dt

(

1
2‖xw(t) − xa‖

2
)

< 0, and‖xw(t) − xa(t)‖ < ∆.

In other words, this implies that there exists a time beforet such that the distance between

robotsw anda is decreasing and their distance is less than∆. This violates (21). Hence,

xw(t) , xa ∀t ∈ T, andxw is continuously differentiable.

To show that limt→∞ ‖xw(t) − xa‖ = ∆, we first show the stability of the origin of ˜xw =

xw − x∗w. By the quotient rule, we have that

ẋ∗w =
∆

‖xw − xa‖2

(

‖xw − xa‖ −
(xw − xa)(xw − xa)T

‖xw − xa‖

)

ẋw.

Substituting (20) into the previous yields

ẋ∗w =
∆

‖xw − xa‖

umax

2
Q1

xw − xa

‖xw − xa‖
. (22)

100

The Lyapunov functionV(x̃w) = 1
2 x̃T

wx̃w is positive definite. Also, from (20) and (22),

V̇(x̃w) = x̃T
w

˙̃xw

= x̃T
w(ẋw − ẋ∗w)

= x̃T
w

((

1−
∆

‖xw − xa‖

)

umax

2
Q1

xw − xa

‖xw − xa‖

− Kwx̃w

)

Sincex̃w and (xw − xa) are parallel, then ˜xT
wQ1(xw − xa) = 0. Hence,

V̇(x̃w) = −Kwx̃T
wx̃w = −Kw‖x̃w‖

2.

Thus,V̇(x̃w) is negative definite. This implies that the origin of ˜xw is globally, asymptoti-

cally stable. Therefore,x∗w is a globally, asymptotically stable equilibrium point ofxw, and

limt→∞ ‖xw(t) − xa‖ = limt→∞ ‖x∗w(t) − xa‖ = ∆.

Since

lim
‖xw(t)−xa‖→∆

uw(t) =
umax

2
Q1

xw − xa

‖xw − xa‖
,

then limt→∞

(

uw(t) − umax

2 Q1
xw−xa

‖xw−xa‖

)

= 0. Hence, ast →∞, the wander’s velocity approaches

a circular velocity around robota with radius of∆.

To see that‖xw(t) − xa‖ ≤ ∆ ∀t ∈ T, note from (21) thatddt

(

1
2‖xw(t) − xa(t)‖2

)

< 0 if

‖xw(t) − xa(t)‖ > ∆. In other words, the distance between robotw and robota is always

decreasing if their distance is greater than∆. If we assume that, for somet ∈ T, that

‖xw(t) − xa‖ > ∆, we always have a contradiction. Ift = 0, then this contradicts are

initialization assumptions. Ift > 0, then this implies that there exists at1 > 0 such thatt1 ≤

t, ‖xw(t1) − xa‖ > ∆, and d
dt

(

1
2‖xw(t1) − xa‖

2
)

> 0. In other words, this assumption implies

that there is a time beforet such that the distance between robotsa andw is increasing and

their distance is greater than∆. This violates (21). This contradiction shows us that no such

t exists. Hence,‖xw(t) − xa‖ ≤ ∆ ∀t ∈ T.

To show that‖uw(t)‖ ≤ umax∀t ∈ T, (20) implies that

‖uw(t)‖ ≤
∥

∥

∥

∥

∥

umax

2

∥

∥

∥

∥

∥

+ |Kw|‖xw(t) − x∗w(t)‖.

101

Since d
dt‖xw(t)−x∗w(t)‖2 < 0∀t ∈ T then‖xw(t)−x∗w(t)‖ ≤ ‖xw(0)−x∗w(0)‖ ∀t ∈ T. From (17),

the pointsxa, xw(0), andx∗w(0) are collinear,‖x∗w(0) − xa‖ = ∆, andxa cannot be between

xw(0) andx∗w(0). Since‖xw(0)− xa‖ ≤ ∆, this implies that‖xw(0)− x∗w(0)‖ ≤ ∆. Hence,

∥

∥

∥

∥

∥

umax

2

∥

∥

∥

∥

∥

+ |Kw|‖xw(t) − x∗w(t)‖ ≤
umax

2
+

umax

2∆
∆ ≤ umax,

and‖uw(t)‖ ≤ umax∀t ∈ T. Sinceuw is defined and bounded byumax over allT, thenxw is

Lipschitz continuous.

The following corollary shows that, while circling a robot in wander mode, a wanderer

will always satisfy the guard of any available vertex addition rules.

Corollary 6.4 Consider a trio of robots a, b, and w. Assume that robot w is executing the

wander mode control laws as in Theorem 6.3, performing circular motion around robot a.

We define B∆(xa) ∩ B∆(xb) as the intersections of theopenballs of radius∆ around xa and

xb, and let B∆[xa] ∩ B∆[xb] be the intersections of the correspondingclosedballs. For any

initialization of the trio such that B∆(xa) ∩ B∆(xb) , ∅, there exists a time t∈ T such that

xw(t) ∈ B∆[xa] ∩ B∆[xb].

Proof: SinceB∆(xa) ∩ B∆(xb) , ∅, then‖xa − xb‖ < 2∆. From Theorem 6.3, there exists a

time t ∈ T such thatxa, xb, andxw are collinear, and

x∗w = ∆
xw − xa

‖xw − xa‖
+ xa

= ∆
xb − xa

‖xb − xa‖
+ xa.

This occurs whenxw is in the direction ofxb from xa. Since‖x∗w−xa‖ = ∆ and‖xa−xb‖ < 2∆,

then ‖x∗w − xb‖ < ∆ and x∗w ∈ B∆(xb). Since the origin of ˜xw = xw − x∗w is globally,

asymptotically stable, this implies that there exists a time t such that‖x̃w(t)‖ is arbitrarily

small. Hence, there exists a timet when xw(t) ∈ B∆(xb). Since Theorem 6.3 shows that

xw ∈ B∆[xa] ∀t ∈ T, this implies that there exists at ∈ T such thatxw(t) ∈ B∆[xa] ∩ B∆[xb].

102

6.4 Formation Error

Here, we define the formation error. We also show that we can arbitrarily bound the result-

ing formation error.

By the control laws in Theorem 6.1, the robot assigned the leader position does not

move. Therefore, the position of the leader establishes thetranslation of the formation̄P to

the robots’ environment. The control laws in Theorem 6.1 also show that the initial position

of the first-follower establishes the rotation of the formation P̄ to the robots’ environment.

To define the network’s formation error, we assume that, for aformationP̄, the appro-

priate EGG system is generated and executed such that each rule is applied once, and that,

at timet ∈ T, each robot has completed the execution of its control laws.The execution of

the EGG system does not insist that any particular robot is assigned any specific position in

the formation. For notational clarity, we assume that the robots and positions are indexed

such that,∀i ∈ N, robot i is assigned position ¯pi such thatl(vi) = p̄i. If p̄a and p̄b describe

the leader and first-follower positions in̄P, then robotsa andb are assigned the leader and

first-follower positions, respectively, as described in Theorem 6.1.

Recall that the desired formation̄P does not necessarily specify the desired location

of the network in the environment. Rather, the positions of the formation define a relative

geometry that we want the network to satisfy. However, to further aid the definition of the

network’s formation error, let us assume without loss of generality that the leader robot

a is at locationxa = p̄a, and that the first-follower robotb is navigating towards position

pb = p̄b as defined in Theorem 6.1. Then,∀i ∈ N, p̄i does, in fact, define the location of

zeroformation errorfor robot i. This allows us to define the formation error of each robot

such that,∀i ∈ N, x̃i = p̄i − xi is the formation error of roboti.

By this definition of formation error, we assume that the leader always has zero forma-

tion error (i.e.,xa(t) = p̄a ∀t ∈ T). Similarly, the first-follower executing the control laws

in 6.1 is always navigating to a position of zero formation error (i.e., pb(t) = p̄b ∀t ∈ T).

However, the first-follower is exponentially approaching ¯pb; it never achieves it. In fact,

103

based on our EGG system definition, the first-follower stops when it is withinǫ of p̄b. The

remaining robots mustestimatetheir zero formation error positions based on the positions

of other robots, as described in Theorem 6.2. The following theorem shows that we can

arbitrarily bound the final formation error by choosing an appropriately small epsilon.

Theorem 6.5 Consider a multi-robot network with proximity range∆ ∈ R+, stably, persis-

tently feasible formation̄P and stable, minimally persistent network graph G. Assume that

the EGG system described in Chapter 6.2 is implemented, and the guards of each rule are

satisfied such that each rule is applied in the network. This implies that,∀i ∈ N,

lim
ǫ→0
‖x̃i‖ = 0.

Proof: For convenience, let us assume that the vertices inG are indexed such that robot 1

is leader, robot 2 is the first-follower, and,∀(vj , vi) ∈ E(G), j > i. This is always possible

since stably, persistent formation graphs are always directed acyclic graphs, as discussed

in Chapter 4.4.

Since we assume that ¯p1 = x1, this implies that‖x̃1‖ = 0 ∀ǫ ∈ R
+. Note that the

first follower stops such that‖x̃2‖ = ‖x2 − p̄2‖ = ǫ. Since limǫ→0 ǫ = 0, this implies that

limǫ→0 ‖x̃2‖ = 0.

Note that all additional robots are added to the formation byvertex additions. Ifn ≥

3, then{(v3, v1), (v3, v2)} ⊂ E(G), and the leader and first-follower robots are immediate

successors of robot 3. Robot 3 will drive to a point withinǫ of its estimationof p̂3 such that

p̂3 = f3(x1, x2) = f3(p̄1 + x̃1, p̄2 + x̃2). Sincep̄3 = f3(p̄1, p̄2), then this implies that

lim
x̃1→0,x̃2→0

‖p̂3 − p̄3‖ = ‖ f3(p̄1 + 0, p̄2 + 0)− f3(p̄1, p̄2)‖ = 0.

This implies that limǫ→0 ‖p̂3 − p̄3‖ = 0. Since robot 3 drives withinǫ of p̂3 before stopping,

this implies that limǫ→0 ‖x3 − p̂3‖ = 0. Hence,

lim
ǫ→0
‖x̃3‖ = lim

ǫ→0
‖x3 − p̄3‖ = lim

ǫ→0
‖x3 − p̂3 + p̂3 − p̄3‖ ≤ lim

ǫ→0
‖x3 − p̂3‖ + ‖p̂3 − p̄3‖ = 0.

104

Since 0 is the lower bound of‖x̃3‖, this implies that limǫ→0 ‖x̃3‖ = 0. Thus,

lim
ǫ→0
‖x̃1‖ = lim

ǫ→0
‖x̃2‖ = lim

ǫ→0
‖x̃3‖ = 0.

Remember that the formation graph is an acyclic graph, and that we have indexed our

indices where 1 is the leader, 2 is the first-follower, and,∀k ∈ N : k ≥ 3, robotk attaches

with a vertex addition. Any robot attaching with a vertex addition will do so with robotsi

and j such thati and j are less thank. Then, based on our previous results and induction,

∀{k ∈ N : k ≥ 3}, ∃(vi , vj) ∈ V(G) × V(G) such that{(vk, vi), (vk, vj)} ⊂ E(G), k > i, and

k > j. This implies that

lim
ǫ→0
‖x̃i‖ = lim

ǫ→0
‖x̃j‖ = 0.

Therefore, limǫ→0 ‖p̂k − p̄k‖ = 0, and limǫ→0 ‖x̃k‖ = 0. Hence, limǫ→0 ‖x̃i‖ = 0 ∀i ∈ N.

6.5 Embedded Graph Grammar Implementation

Having automatically generated the set of rules and controlmodes defining the EGG as

discussed in Chapter 6.2, this EGG is then given to the robots, whose task is to execute

them. As discussed in this chapter, as well as Chapter 2.6, our EGG system requires that no

robots are involved in simultaneous rule applications, andthat robots keep track of which

rules have been applied. Here, we describe how this is accomplished with a decentralized

network. Specifically, we describe how robots negotiate rule applications and keep track of

which rules have been applied.

6.5.1 Primaries and Rule Evaluation

Since this is a decentralized network, the robots must communicate and negotiate rule

applications in a manner consistent with the EGG defined in 6.2. The label and adjacency

information is distributed across the network such that each robot has immediate access

only to its own label and adjacency information. The label and adjacency information

corresponding to other robots can only be obtained through wireless communication. For

the EGG to be successfully executed with the network, the robots in the network must

105

change modes and execute control laws in a manner defined by the EGG’s guarded rules,

labels, and the corresponding control law for each label. For the EGG we have defined, this

also requires the network to guarantee that no rule is applied more than once.

For each ruler = (L ⇀ R, g), there is a vertexv ∈ V(L) that is defined as theprimary

vertexof the rule. In each rule, the primary vertex corresponds to the robot in the rule

application that is within proximity range of every other robot involved in the rule appli-

cation. Therefore, the primary robot has enough local graphinformation to apply the rule.

For leader-first-follower position rules, this is the vertex corresponding to the leader robot.

For vertex addition position rules, this is the vertex corresponding to the wanderer in the

left graph. For final rules, this is the vertex with thef alsefinal label.

When a witness exists that maps a rule’s primary vertex to a robot’s vertex inG(t), we

say that the robot is aprimary robot. Robots only attempt to apply rules with witnesses

that map themselves to the primaries of the rules. Each robotdetermines whether or not it

is a primary by examining its label, the rule set, requestingthe graph information of other

robots, and comparing it to the left graphs of the rules to seeif one is applicable. If so, then

the primary robots attempt to apply the rules to the network graph by modifying the local

graph information of itself and its neighbors. This processis calledrule evaluation.

Since a witness for a rule is a label-preserving graph isomorphism from the vertices of

the left graph of a rule to the vertices ofG(t), this seems to suggest a potentially expensive

computation, especially when considering an exhaustive, global search for all witnesses.

However, the definition of these rules and the decentralizednature of the network greatly

reduce this complexity.

The leader-first-follower position rule is a large rule, in that every vertex inG(t) is in-

cluded in the rule’s left graph. At first glance, this may suggest checking every permutation

of the vertices inG(t) for a label-preserving isomorphism. However, since the left graph

of this rule is the initial graphG(0), every permutation of the vertices inG(t) is a label-

preserving graph isomorphism at timet = 0, and any permutation of rules checked will

106

imply that the rule is applicable. Since this rule is appliedonly once and at the beginning

of execution, exhaustive searches for graph isomorphisms for this rule are never performed.

When evaluating a vertex addition rule, a wanderer is searching for two assigned robots

with the labels corresponding to the assigned labels in the left graph. Note that a vertex

addition rule adds all the edges from the new vertex to the vertices inG(t) that correspond

to the edges inG∆. Therefore, if the wanderer finds two robots whose labels match the left

graph of a vertex addition rule, then the edges must also satisfy the rule, implying that the

rule is applicable. This reduces the search for a vertex addition rule witness to a search for

two robots with specific labels, which can be solved in lineartime (O(n)).

6.5.2 Prioritized Lock Negotiation

It is necessary that each primary robot has exclusive control of all robots necessary to apply

a rule; if not, then it is possible for multiple primary robots to modify the graph information

in a manner inconsistent with the rules, or apply a rule more than once, producinggraph in-

consistencies. Graph inconsistencies occur when there exists subgraphs of G(t) that are not

intended to exist by the EGG design. For example, assume thattwo wanderers simultane-

ously apply the same vertex addition position rule, assigning both robots the same position

in the desired formation. This would result in a redundant robot for one position, and a

missing robot for another position.

In Chapter 3.2, we presented a communication protocol for networks with global com-

munication. However, the network we consider here does not have global communication

ability. Therefore, we present a communication scheme for preventing graph inconsisten-

cies that is applicable for networks with only local communication abilities. To this end,

we define theprioritized lock negotiationcommunication scheme, shown in Figure 6.5.

The prioritized lock negotiation communication scheme gives primaries exclusive con-

trol of other robots’ EGG information through a series oflock negotiations. When a pri-

mary robot wants to apply a rule involving another robot, it performs alock requestfor

that robot. We define alocked robotas a robot that is locked by a primary. We define an

107

w w

p̄i

p̄ j

(a)

w w

p̄i

p̄ j

(b)

w w

p̄i

p̄ j

(c)

w w

p̄i

p̄ j

(d)

p̄k w

p̄i

p̄ j

(e)

p̄k w

p̄i

p̄ j

(f)

Figure 6.5. Prioritized lock negotiation. When a wander wants to apply a rule, it first acquires the locks
to robots involved, including itself. In this figure, locks are indicated by rectangles around the robots’
states, and dotted lines indicate which wanderer owns the lock. When a robot owns the lock of another
robot, it has exclusive control of its labeled graph information. Once the wander has all the locks, it
applies the rule. Once applied, the locks are released.

unlocked robotas a robot that is not locked by a primary. If the robot being requested for a

lock is unlocked, it accepts the lock of the primary and records the primary’s index. We say

that the primaryownsthe lock on this robot. The locked robot will refuse any lock requests

while locked. Once locked, the locked robot only allows the owner of its lock to modify

the locked robot’s EGG information.

Once a primary has locked the entire set of robots necessary for the rule application

(including itself), it verifies that the rule is still applicable, i.e. the graph information is still

consistent with the rule, and the rule has not been applied. Since each robot has a copy

of the rule set, we exploit the locality of the guarded rules to prevent any rule from being

applied more than once. As each rule is applied, it is removedfrom the rule sets of the

robots involved in the application. Also, before a primary can apply a rule with its locked

robots, it must first verify that each locked robot has the rule in its rule set.

From the definition of the leader-first-follower position rule, each robot in the network

108

participates in the rule application. Therefore, since each robot removes the leader-first-

follower positions rules from their set of rules as it is applied, this guarantees that the

leader-first-follower position rule is applied only once. Similarly, when vertex addition

rules are applied, the corresponding vertex addition position rule is removed from the rule

sets of the involved robots. However, this does not encompass the entire network of robots.

After a vertex addition rule is applied, the remaining wander robots (which make up the

primaries in vertex additions) are not aware of previously applied vertex additions.

Since applied rules are removed from the rule sets of the involved robots, the unique-

ness of the leader-first-follower subgraph implies that allvertex addition rules that apply

with the leader and follower are applied only once and resultin unique subgraphs. By

induction, this comparison of rule sets implies that all vertex additions require a unique

subgraph ofG(t), and this prevents all rules from being applied more than once, guarantee-

ing the uniqueness of all positions assigned by position rules. This verification also allows

wanderers to remove rules that have been applied from their rule sets, preventing redundant

rule evaluations. When the primary has completed all modifications of graph information

necessary to apply the rule, including the removal of the applied rule from the rule sets of

the involved robots, it thenunlocksall the robots it has locked.

This system of lock negotiations ensures that graph inconsistencies are avoided and that

rules are not applied more than once. However, the rule set could define many witnesses,

and, therefore, many primary robots. With many primary robots attempting to lock sets of

other robots, it is possible for primary robots to lock robots in a manner that prevents any

applicable rule from being applied. We define this asdeadlock.

To prevent deadlock, we define a priority to each robot that corresponds to its index.

We say that robotj has a higher priority than roboti if i < j. Since each robot has a

unique index, no robots have the same priority. When a lockedrobot refuses a lock request,

it communicates the index of the primary that locked it to therobot requesting the lock.

Based on this index, the requesting primary robot does either one of two things:

109

1. If it has a higher priority than the robot that owns the lock, it immediately retries the

lock request.

2. If it has a lower priority than the robot that owns the lock,it immediately unlocks all

robots that it owns locks for, and waits for a timeτ before reattempting the rule.

We defineτ as a worst-case period of time long enough to allown robots to attemptn rule

negotiations in series. Therefore, when robots compete forlocks, there will always be a

lowest priority robot. This implies that, if no robot can acquire a lock to all the robots

involved in a rule application, then the lowest priority robot will always release its locks

and wait for timeτ before trying again. There is also always a highest priorityrobot, who

does not release its locks, and does not delay in reattempting to acquire a lock. Even if

more robots begin attempting to compete for the same locks, the delay timeτ is defined for

a worst-case, meaning that there is time forn rule negotiations, and subsequentlyn more

robots to “drop out”, releasing its locks and delaying for their ownτ, before the delayed

robot attempts again. This implies that, in a worst-case scenario, there will, at some time,

be only one robot attempting to acquire locks. Therefore, the network cannot be constantly

deadlocked.

6.6 Simulation Results

Here, we present simulation results of our method of formation assembly. We consider

a group of robots and a desired triangulation formation thatcorresponds to a coverage

pattern.

6.6.1 Triangulation Scenario

To demonstrate the assembly of formations with the multi-robot network, we implement

the following scenario: We have a network ofn ≥ 2 robots with data collection sensors,

and we wish to distribute them in a triangular coverage pattern over an area of interest.

Triangular coverage patterns occur frequently, since theydictate an equal distance between

110

w w

p̄i

p̄ j

(a)

w w

p̄i

p̄ j

(b)

w w

p̄i

p̄ j

(c)

p̄k w

p̄i

p̄ j

(d)

p̄k w

p̄i

p̄ j

(e)

Figure 6.6. When two wanderers compete for the same locks, deadlock can occur. We assign a unique
priority to each robot; in this case, the wander on the left has highest priority. When the robot on the
right encounters the lock owned by the higher priority wanderer, it releases its locks. This allows the
higher priority robot to acquire its locks and apply the rule .

each adjacent robot in the coverage pattern. Therefore, we enter a triangulation pattern of

positions in our graphical program shown in Figure 6.1.

In Chapter 4.4, a method for automatically generating stable, persistent graphs for de-

sired formations is presented. This is used to define the minimally persistent formation

graphG∆, as well as a leader-first-follower seedG2, and a sequence of vertex addition

operations that assembleG∆ from G2.

Using the methods previously described, the EGG defined byG∆ and the desired for-

mationP̄ is automatically generated. The EGG is then given to each robot, and the network

is positioned in the area of interest. Then the EGG is executed.

6.6.2 Triangulation Simulation

Figure 6.7 shows a simulation of these results withn = 23 robots, using a triangulation

pattern with 20 m constraints. In this simulation, a proximity range of∆ = 21 m is used.

Since there are so many robots in this large scale simulation, we omit explicit labeling of

111

each robot (later implementation examples with smaller networks will show labels). In this

figure, assigned robots are incident to edges in the network graph, while wanderers are not.

Figure 6.7(a) shows the initial conditions. Since there is awander within range of each

network member, the leader-first-follower rule is applied,producing the network graph’s

first edge (see Figure 6.7(b)). While the first edge is being formed, there is only one robot

assigned a formation position with a final field. Therefore, all the wanderers circle this

position, waiting for vertex addition rules to be applicable. Once the leader-first-follower

seed is formed, vertex addition rules are concurrently applied, as in Figure 6.7(c). Figures

6.7(d)-7(e) show further vertex additions being applied, as wanderers use the network’s hop

counters to navigate and satisfy the guards of the remainingvertex additions. Figure 6.7(f)

shows the fully assembled formation.

6.7 Experimental Results

Here, we present experimental results from implementing the EGG system for formation

assembly with a multi-robot network. First, we describe thenetwork. Then, we present

two experimental scenarios. In the first, the robots assemble a triangulation pattern. In the

second, the robots assemble a line pattern.

6.7.1 The Multi-Robot Network

For the pre-Antarctic stages of this project, we use the prototype network shown in Figure

6.8. The prototype network is designed to approximate this network for experiments while

the Antarctic platform is developed.

For mobility, each robot has a wheeled platform base. While these robots are not de-

signed for snow and ice, the have controllable forward and angular velocity, dynamically

similar to the tracked platform for the Antarctic. Each has an onboard computer. Commu-

nication between robots is achieved by 802.11g wireless communication modules on each

robot. GPS receivers on each robot estimate the location of each robot, as well as heading

information. Odometry sensors allow the robots to estimatetheir current positions relative

112

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(a)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(b)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(c)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(d)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(e)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(f)

Figure 6.7. Triangulation scenario simulation. Assigned robots are incident to edges in the network
graph, while wanderers are not. The robot achieves a desiredformation that is much larger than the
perception of any single robot.

113

Figure 6.8. The multi-robot network. This network is used inthe pre-Antarctic stages of this project.

to their initial positions.

Each robot has sensors for odometry information, represented as a pair of coordinates

in R
2, which we refer to as the robot’sodometry plane. Initially, each robot assumes

it is at the origin of its odometry plane with a heading corresponding to 0 rad from the

odometry plane’sx-axis. However, since each robot is initially at neither thesame location

nor necessarily the same heading, there is no agreement on the orientation of their odometry

planes.

The wireless communication module provides each robot withthe location of the other

robots in the network. Since the network has global information, this allows for a great

amount of freedom to limit what information is used by the robots. Since the actual sensor

network will not have global information or global localization, we define a proximity

range∆, and allow the robots to only use the range and bearing information of robots

within proximity range. In this manner, we can experiment with a variety of formations

and proximity ranges. Also, by recording the GPS sensors during the experiments, we are

114

able to verify and plot the results during each experiment. The EGG system for formation

assembly only requires relative position estimation for the robots. As such, the method

presented here for formation assembly can be utilized on multi-robot networks that can

provide this information, regardless of their ability to localize.

6.7.2 Triangulation Implementation

To test our methods on an actual decentralized network, the previous scenario is imple-

mented withn = 6 robots, as shown in Figure 6.9.

Since the network is small, we modify the wander control laws. Instead, each wanderer

requests that the assigned robot with the lowest hop-counter in proximity range commu-

nicate the relative position of the next robot with the lowest hop-counter. In this manner,

circular motion is avoided, and the wanderers directly movefrom one assigned robot to

another, looking for applicable vertex addition rules.

In this scenario, each robot is given the EGG corresponding to the formation shown in

Figure 6.1. Here, each constraint is 5 m long. The proximity range∆ is defined such that

∆ = 6 m.

In Figure 6.9, each robot is labeled with eitherw, indicating that it is a wanderer, or with

its corresponding position in Figure 6.1, indicating that it is an assigned robot. In Figure

6.9(a), we see the initial setup, where each robot is a wanderer, labeledw. This implies

that the leader-first-follower position rule is applicable, and it is applied. One of the robots

is now a leader (labeled ¯p1), and the other is a first-follower (labeled ¯p2), and the follower

begins moving to reach a distance of 5 m from the leader, as shown in Figure 6.9(b).

Note that, while vertex addition operations define a sequence of subgraphs, many ver-

tex addition rules can be applied concurrently. As shown in Figures 6.9(c)-(d), two vertex

addition position rules are applied simultaneously (robots labeled ¯p3 and p̄4), before either

has been finalized. This is because these rules depend only onthe presence of two assigned

vertices inG(t), not on the entire subgraph before the corresponding vertex addition opera-

tion. In this way, this method takes advantage of concurrency to accomplish the formation

115

w w ww w w

(a)

w w p̄1

p̄2

w w

(b)

w

p̄3

p̄1

p̄2

p̄4

w

(c)

w

p̄3

p̄1

p̄2

p̄4

w

(d)

p̄5

p̄3

p̄1

p̄2

p̄4

p̄6

(e)

p̄5

p̄3

p̄1

p̄2

p̄4

p̄6

(f)

Figure 6.9. Triangulation scenario implemented on the multi-robot network.

task. Similarly, Figure 6.9(e) shows two concurrent vertexaddition rules being applied.

Finally, the EGG is successfully completed, as shown in Figure 6.9(f).

The error in the final formation (shown in Figure 6.9(f)) is due to the errors in the

robots’ GPS sensors, which have an average error of approximately 2 m. In Figure 6.10,

the recorded GPS coordinates of the network during the assembly are plotted. Despite the

noise and error in the GPS sensors, the robots accurately position themselves based on their

estimations of the relative positions of other robots.

Figure 6.11 shows the constraint lengths in the network graph as they are established

over time. Each constraint is established at approximately5m as intended, despite the

116

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

www ww w

x (m)

y
(m

)

(a) t = 0 sec

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

p̄1

p̄2

w ww w

x (m)

y
(m

)

(b) t = 45 sec

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

p̄1

p̄2

p̄3 p̄4

w w

x (m)

y
(m

)

(c) t = 88 sec

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

p̄1

p̄2

p̄3 p̄4

p̄5 p̄6

x (m)

y
(m

)

(d) t = 120 sec

Figure 6.10. The network trajectory during the triangulati on assembly. This figure shows the GPS
coordinates for each robot in the network.

117

0 20 40 60 80 100 120
0

1

2

3

4

5

6

t (sec)

D
is

ta
n

ce
(m

)

Figure 6.11. Network constraints during triangulation assembly.

presence of noise and errors in the sensor data. Also, each constraint respects the proximity

range∆ = 6 m.

6.7.3 Line Implementation

Here, we present a scenario for assembling a “straight line”formation of six robots. Each

“link” in the line of robots represents a constraint 5 m. The resulting network graph has

constraints of 5 m and 10 m. In this scenario, we use a proximity range∆ of 12 m. For

the filming of this scenario, we initialize a leader-first-follower pair before the assembly

process. Even with noise and error in the robots’ sensors, aswell as the collinearity in the

desired formation, the formation is successfully assembled. Figure 6.12 shows the network

performing the line formation.

In Figure 6.13, we show the GPS coordinates of the network as the line formation is

assembled.

Figure 6.14 shows the 5 m and 10 m constraints being established in the network. Note

that the network respects the proximity range∆ = 12 m.

118

p̄1 p̄2

w ww w

(a)

p̄1 p̄2
p̄3

p̄4

w w

(b)

p̄1 p̄2
p̄3

p̄4

w w

(c)

p̄1 p̄2
p̄3

p̄4p̄5

p̄6

(d)

p̄1 p̄2
p̄3

p̄4

p̄5

p̄6

(e)

Figure 6.12. The robot network implementing a line formation.

119

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

wwwww w

x (m)

y
(m

)

(a) t = 0 sec

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

p̄1 p̄2

wwww

x (m)

y
(m

)

(b) t = 110 sec

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

p̄1 p̄2
p̄3 p̄4

ww

x (m)

y
(m

)

(c) t = 150 sec

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

p̄1 p̄2p̄3 p̄4

p̄5 p̄6

x (m)

y
(m

)

(d) t = 180 sec

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

p̄1 p̄2p̄3 p̄4

p̄5 p̄6

x (m)

y
(m

)

(e) t = 200 sec

0 5 10 15 20

−2

0

2

4

6

8

10

12

14

16

p̄1 p̄2p̄3 p̄4p̄5 p̄6

x (m)

y
(m

)

(f) t = 255 sec

Figure 6.13. The network trajectory during the line assembly. This figure shows the GPS coordinates
for each robot in the network.

120

0 50 100 150 200 250 300
0

2

4

6

8

10

12

t (sec)

D
is

ta
n

ce
(m

)

Figure 6.14. Network constraints during line assembly.

This EGG system for formation assembly will be used to automate multi-robot deploy-

ment, as presented in Chapter 7.

121

CHAPTER 7

DEPLOYMENT OF HETEROGENOUS MULTI-ROBOT
NETWORKS WITH EMBEDDED GRAPH GRAMMAR SYSTEMS

(EGGS)

One of the advantages of the methods presented in Chapters 5 and 6 is that the methods

presented there can be implemented with multi-robot networks with little or no localization

ability. In this chapter, we assume that the NASA scientistsdefine a deployment for the

network that must be satisfied in terms of the multi-robot network’s location in the envi-

ronment. We also assume that the multi-robot network has limited localization ability, in

that some robots have localization ability, while others donot. As such, the network is

heterogeneous, in that only certain robots can estimate their location in the environment.

Such a lack of localization in a multi-robot network can arise out of design, for we show

that localization ability is not necessary for all members of the network to achieve these

goals. However, it can also arise out of failures, i.e., the failure of the localization systems

of a subset of the network.

This chapter presents methods for automatically deployingthe heterogeneous multi-

robot network. Having a prototype multi-robot network composed of mobile robots shown

in Figure 6.8, a user graphically enters a desirednetwork deploymentfor the network. By

“clicking” with a Graphical User Interface (GUI) incorporating satellite imagery shown

in Figure 7.1, a network deployment is entered. This deployment represents the desired

locations of the robots in the environment and the specific relative geometry that must be

satisfied between pairs of robots. We present a method for automatically configuring the

multi-robot network to deploy at the desired coordinates despite the limited localization

ability of the robots.

This chapter concludes with experimental results that showthe implementation of all

of the methods in this work. Given a user-defined deployment and the network’s proximity

122

Figure 7.1. Graphical User Interface (GUI) for configuring the network. A user enters the desired
deployment positions in the GUI using satellite imagery. These positions correspond to the locations in
the environment where we desire the robots to be located. Ourmethods automatically configure the
network to implement the formation at the desired location.

range, the methods in Chapter 4 are used to define a stably persistent formation graph for

the network. The EGG system for deployment presented in thischapter is defined from the

desired deployment and this stable, persistent graph. ThisEGG is then given to each robot

in the network. This EGG incorporates the EGG system for assembly presented in Chapter

6 which, when extended with the control laws and rules presented in this chapter, allow the

network to navigate to the initial deployment location and assemble the desired formation

at the location defined in the deployment. Then, the control laws from Chapter 5 are used

to move the network while maintaining formation. In this manner, given a definition of the

desired deployment and the network’s proximity range, the multi-robot network satisfies

the user-defined deployment automatically.

In Chapter 7.1, we characterize the limited localization ability of the network. Chapter

7.2 discusses control laws that allow robots to move to the same locations while preserv-

ing their connectivity. Chapter 7.3 presents an EGG system which allows robots without

123

localization ability to form “chains”, following robots with localization ability, so that the

robots can navigate to the necessary location in the environment. We discuss how the

robots transition from this new deployment EGG to a (slightly modified version of) the

formation assembly EGG in Chapter 7.4. Finally, Chapter 7.5presents a demonstration of

these methods with an actual deployment scenario.

7.1 Preliminaries

Here, we review our definition of a network deployment. We also discuss the sensing

limitations of the robots. Specifically, we discuss how onlya proper subset of robots can

estimate their location in the environment. Therefore, theproblem is how to navigate the

network to the location of the initial deployment despite this lack of localization for some

of the network members.

7.1.1 Network Deployment

Recall from Chapter 2.2 we define desired network deploymentwith deployment positions

pi : T 7→ R
2 ∀i ∈ N using the GUI shown in Figure 7.1. Each position correspondsto a

location in the environment where we desire a robot to be located. Thus, these positions

define anetwork deployment P: T 7→ R
2 such thatP(t) =

[

p1(t)T , . . . , pn(t)T
]T

. For

this problem, we assume there is no preference for specific robots to be assigned specific

positions.

We assume that the deployment satisfies a formation such that, ∀(i, j, t) ∈ N × N × T,

‖pi(t) − p j(t)‖ = ‖pi(0) − p j(0)‖. Therefore, the deployment defines aformationP̄ ∈ R
2n

such thatP̄ = P(0). This also definesformation positionssuch that,∀i ∈ N, p̄i = pi(0). In

this case, the formation positions define both the relative geometry of the formation as well

as the initial location of the network for the deployment.

124

7.1.2 Sensing Limitations: Proximity Range and Localization Abilities

All robots in the network have sensors for estimating therelative positionsof robots within

their proximity range∆ ∈ R
+. The proximity range is chosen to model the sensing limi-

tations of the robots in the network. Hence, a pair of robots (i, j) ∈ N × N can sense and

communicate with each other at timet if and only if ‖xi(t) − xj(t)‖ ≤ ∆. Therefore, this

allows us to defineui(t) as a function ofxi(t) − xj(t) if and only if ‖xi(t) − xj(t)‖ ≤ ∆.

This network is heterogeneous in that not all robots have localization ability. We call

a robot with localization ability a networkleader. This localization ability implies that

the leaders can estimate the relative position of the deployment positions. We define the

indices of the network leaders asNl ⊂ N, and insist that|Nl | ≥ 2 (i.e., there must be at least

one network leader). Given a specific location in the environmentpi ∈ R
2, the localization

ability of the leaders implies that, for all leader robotsi ∈ Nl , we can defineui as a function

of xi − pi. The remaining robots in the network arefollowerswho do not have localization

ability. The followers cannot determine their relative positions to any defined goal location

in the environment.

Since all robots do not have localization ability, we cannotsimply assign robots to po-

sitions and have them navigate to each. In Chapter 6, we present a formation assembly

EGG that respects the proximity range of the network. However, the formations are assem-

bled using only the relative positions of the robots. Thus, the formation is assembled at

the initial location of the network, and the formation is notachieved with any pre-defined,

specific orientation relative to the environment.

The stable, persistent feasibility of the desired formation implies that the location and

orientation of the formation is determined by the location of a specific pair of leader and

first-follower robots in the persistent network graph. Therefore, our strategy is to assign

leader robots to these positions in the formation. Then, once the followers have been led to

the deployment positions, they can assemble the formation as presented in Chapter 6 using

only the relative positions of other robots.

125

7.2 Network Deployment Control Laws

Here, we show how to navigate a pair of robots so they always stay within proximity range

of each other,preserving their connectivity. Utilizing these control laws, a robot can follow

another robot and navigate towards a common position in the environment. These control

laws rely only on bounding the maximum velocities of the robots. This is a very reasonable

assumption, since most systems have an inherent limit on their maximum velocities due to

their design. These control laws are the foundation for our method of automatic network

deployment.

7.2.1 Preserving Connectivity Between Pairs of Robots

The following theorem describes two robots in which one follows the other. By bounding

the velocity of the robot being followed to a chosen maximum velocity, we guarantee that

the pair of robots never lose connectivity.

Theorem 7.1 Consider a pair of robots l and f . For a given proximity range∆ ∈ R+ and

maximum velocity umax ∈ R
+, robot f ’s control laws are defined by

K =
umax

∆
, (23)

uf = −K
(

xf − xl

)

. (24)

We assume the following about robot l:

• The velocity of robot l is bounded by umax such that‖ul (t) ‖ ≤ umax∀t ∈ T.

• p̄l ∈ R
2 is a globally asymptotically stable equilibrium point of xl.

Then, for every initialization of the pair such that‖xf (0) − xl (0) ‖ ≤ ∆,

• ‖xf (t) − xl (t) ‖ ≤ ∆ ∀t ∈ T, and

• p̄l is a globally asymptotically stable equilibrium point of xf .

126

Proof: By our assumptions,xl is Lipschitz continuous, since its first derivative is defined

and its magnitude is bounded over the entire domain. From (24), xf is continuously differ-

entiable.

First, we show that connectivity is preserved. If‖xf (t) − xl (t) ‖ ≥ ∆, then this implies

that

d
dt

(

1
2
‖xf (t) − xl (t) ‖

2

)

=
1
2

d
dt

(

(

xf (t) − xl (t)
)T (

xf (t) − xl (t)
)

)

=
(

xf (t) − xl (t)
)T (

ẋf (t) − ẋl (t)
)

=
(

xf (t) − xl (t)
)T (

−K
(

xf (t) − xl (t)
)

− ẋl (t)
)

= −
umax

∆
‖xf (t) − xl (t) ‖

2 − ẋl (t)T
(

xf (t) − xl (t)
)

≤ −umax‖xf (t) − xl (t) ‖ + umax‖xf (t) − xl (t) ‖

≤ 0.

(25)

This implies that the distance between the follower and the leader is always stable or de-

creasing if their distance is greater than or equal to the proximity range. If we assume for

somet ∈ T that ‖xf (t) − xl (t) ‖ > ∆, we always have a contradiction. Ift = 0, then the

initialization assumption is violated. Ift > 0, then the continuous differentiability of xf

implies that, for somet∆ ∈ (0, t], ‖xf (t∆) − xl (t∆) ‖ ≥ ∆ and d
dt

(

1
2‖xf (t∆) − xl(t∆)‖2

)

> 0. In

other words, this implies that there is a time beforet such that the distance between robots

l and f is increasing while their distance is greater than or equal to the proximity range.

This violates (25). Therefore,‖xf (t) − xl (t) ‖ ≤ ∆ ∀t ∈ T.

To show that ¯pl is a globally asymptotically stable equilibrium point ofxf , we first

define the translated system ˜xf = xf − p̄l. The control laws in (23-24) imply that̃̇xf = ẋf =

−K(xf − xl). Similarly, we define the translated system ˜xl = xl − p̄l. Substitution implies

that

˙̃xf = −K
(

xf − (x̃l + p̄l)
)

= −K(x̃f − x̃l).

Taken together, ˜xf and x̃l are a cascade system. This implies that, if ˜xl has a globally

127

asymptotically stable origin, then so does ˜xf [46]. Since we assume that ˜xl has a glob-

ally asymptotically stable origin, then ˜xf does as well. This implies that ¯pl is a globally

asymptotically stable equilibrium point ofxf .

7.2.2 Navigating Leaders to Deployment Positions

To define the control laws of a leader robot driving to its assigned position for formation

deployment, we implement the control law defined in the following theorem.

Theorem 7.2 Consider a robot l. For a given proximity range∆ ∈ R+, maximum velocity

umax ∈ R
+, and formation position̄pl ∈ R

2, we define the leader’s control laws by

K =
umax

∆
,

ul(t) =

−umax
xl (t)−pl

‖xl (t)−pl ‖
if ‖xl(t) − pl‖ > ∆

−K (xl(t) − p̄l) if ‖xl(t) − p̄l‖ ≤ ∆

(26)

This implies the following:

• p̄l is a globally asymptotically stable equilibrium point of xl,

• xl is continuously differentiable, and

• xl is Lipschitz continuous.

Proof: To show thatpl is a globally asymptotically equilibrium point ofxl, we define the

translated system ˜xl = xl − p̄l and show that its origin is globally asymptotically stable.The

Lyapunov functionV(x̃l) = 1
2 x̃T

l x̃l is globally positive definite. Its time derivative is

V̇(x̃l) = x̃T
l

˙̃xl =

−umax‖x̃l‖ if x̃l > ∆

−K‖x̃l‖
2 if x̃l ≤ ∆

.

Therefore,V̇(x̃l) is globally negative definite. Since the same Lyapunov function applies

when x̃l > ∆ and x̃l ≤ ∆, this implies that the origin of ˜xl is globally asymptotically stable.

This implies that ¯pl is a globally asymptotically stable equilibrium point ofxl.

128

If the leader is initialized outside of proximity range of ¯pl such that‖xl(0) − pl‖ > ∆,

note that the control laws in (26) define ˙xl(0) to be a velocity with a magnitude ofumax in

the direction of ¯pl. This velocity will be constant until timet∆, when‖xl(t∆)− p̄l‖ = ∆. This

implies thatxl(t) is continuously differentiable over (0, t∆). Note that the limit ast → t∆

from the left is

lim
t→t−

∆

ẋl(t) = −umax
xl(t∆) − p̄l

‖xl(t∆) − p̄l‖
.

At t∆, ‖xl(t∆) − p̄l‖ = ∆ the control laws switch such that ˙xl(t∆) = −K (xl(t∆) − p̄l).

Hence,xl(t) is continuously differentiable over (t∆,∞). Also, the limit ast → t∆ from the

right is

lim
t→t+

∆

ẋl(t) = −K (xl(t∆) − p̄l)

= −
umax

∆

xl(t∆) − p̄l

‖xl(t∆) − p̄l‖
‖xl(t∆) − p̄l‖

= −umax
xl(t∆) − p̄l

‖xl(t∆) − p̄l‖
= lim

t→t−
∆

ẋl(t).

Since the limit ast → t∆ is identical from the left and from the right, then ˙xl is continuous

over the entire domain, andxl is continuously differentiable. Since‖ẋl(t)‖ ≤ umax ∀t ∈ T,

this implies thatxl is Lipschitz continuous.

The following corollary shows that, when following anotherrobot with a constant,

bounded velocity, the relative position of the leading and following robot stabilizes to a

position∆ apart from each other, with the follower directly “behind” the leader.

Corollary 7.3 Consider again the pair of robots l and f , with proximity range ∆ ∈ R
+.

Defineû ∈ R2 as a constant unit vector. Assume that robot l has a constant velocity in the

direction ofû with a magnitude of umax ∈ R
+ such that,∀t ∈ T, ẋl(t) = umaxû. Assume that

uf is defined as in Theorem 7.1, and that‖xl(0) − xf (0)‖ ≤ ∆. This implies that−∆û is a

globally asymptotically stable equilibrium point ofx̃f = xf − xl.

Proof: We define ˆxf = xf − xl + ∆û. This implies that

˙̂xf = ẋf − ẋl = −K(xf − xl) − umaxû = −K(xf − xl + ∆û) = −Kx̂f .

129

The systeṁ̂xf = −Kx̂f has a globally, exponentially stable origin. This implies that−∆û

is a globally, exponentially stable equilibrium point of ˜xf .

Corollary 7.3 implies that we should choose a “safe” proximity range for the network.

Ideally, the chosen proximity range should be well enough within the actual limits of the

robot sensors to allow for the noise and potential error of the system.

Theorem 7.1 shows us that, as long as the velocity of the leader robot is defined and

bounded by our chosen maximum velocity, the distance between the pair of robots cannot

exceed the proximity range. A corollary of Theorem 7.1 is that the state and dynamics of

robot f also satisfy the same assumptions made about robotl.

Corollary 7.4 Consider the pair of robots l and f . Given the same assumptions and ini-

tialization as in Theorem 7.1, then the velocity of the follower robot is bounded by umax

such that‖uf (t)‖ ≤ umax∀t ∈ T.

Proof: The control law for robotf in (23-24) implies that

‖uf (t)‖ = | − K|‖xf (t) − xl(t)‖ =
umax

∆
‖xf (t) − xl(t)‖.

Since‖xf (t) − xl(t)‖ ≤ ∆ ∀t ∈ T, then

‖uf (t)‖ ≤
umax∆

∆
= umax.

Hence,‖uf (t)‖ ≤ umax∀t ∈ T.

Corollary 7.4 implies that, while robotf is following robot l, another robot within

proximity range of robotf could follow robot f in the same manner and never loose con-

nectivity with robot f . This suggests that we can connect robots together to follower a

single leader using these control laws in Theorems 7.1 and 7.2.

130

7.3 An Embedded Graph Grammar (EGG) System for Deployment

Here, we present a method to automatically generateEmbedded Graph Grammar (EGG)

systemsthat allows follower robots (without localization) to follow leader robots (with

localization). Thus, the network can navigate to a common goal in the environment. The

EGG will use the control laws from Chapter 7.2. With this EGG,the entire network can

navigate to a common location, and it requires only one robotto have localization (i.e., it

requires only one leader robot). Later we describe how two robots with localization allow

the network to implement this EGG system in conjunction withthe assembly EGG system

from Chapter 6 to assemble the formation at the initial deployment location.

7.3.1 Embedded Graph Grammar System for Deployment

For the EGG we present here, we define the label set of each vertex such that each label

has two parts: themodeand thego flag. The mode indicates what control law the robot

is implementing, while the go flag is a boolean indicating whether or not the robot can

implement the control law. If the go flag isf alse, the robot must sets its control to zero and

stay at the same location. We use the notation thatl(vi).modeis the mode of roboti, and

l(vi).go is the go flag of roboti.

Since this is a heterogeneous network, the leaders and the followers will each have

different modes. We define modeL as leader mode. When in leader mode, the robot’s

control law is designed to stabilize the robot to a given goalposition for deployment. Thus,

l(vi).mode= L and l(vi).go = true if and only if i ∈ Nl and roboti is moving towards its

assigned deployment location.

The follower robots initially are assigned modeU, which isunassigned mode. This

mode corresponds to a follower that has no one to follow, and does not move. Once it

has been assigned someone to follow, it changes its mode toF, which isassigned follower

mode. Robots in assigned follower mode have a single edge in the network graph directed

towards the robot they are following. Thus,l(vi).mode= F and l(vi).go = true indicates

that roboti is following a leader. Ifl(vi).go= f alse, the robot does not move.

131

7.3.2 Initial Network Graph

To describe the required initial conditions of this EGG system, we use aproximity graph

G(t) = (V,E(t)), as presented in Chapter 2.3. Here,V = V, the vertices in our network

graph, and∃(vi , vj) ∈ E(t) if and only if vi , vj and‖xi(t) − xj(t)‖ ≤ ∆, and we say that

robotsi and j areconnected. Hence, edges in our proximity graph indicate which pairs of

robots can sense and communicate with each other.

We initialize the leader robots in modeL, the follower robots in modeU, and the go

flags of all robots are set tof alse. Thus, att = 0, the network graphG(0) has no edges. We

initially require that a path exists in the proximity graphG(0) between each follower and

at least one leader. As long as this condition is satisfied, the initial proximity graph can be

disconnected. The following describes the EGG rules for “linking” pairs of robots.

7.3.3 Linking Robots with Linking Rules

To establish constraints between leaders and followers, wefirst uselinking rulesshown in

Figure 7.2. There are two linking rules. In the first linking rule, the left graph consists of

two robots. One is a leader robot, and one is an unassigned follower. The left graph has

no edges. If they are within proximity range, the follower can switch to follow mode and

add an edge to the network graph directed towards the leader.The other linking rule is

identical except that, instead of a leader robot, the left graph includes an assigned follower.

By repeatedly applying this rule, all unassigned followersare assigned to follow either a

leader or a predecessor of a leader.

7.3.4 Moving Robots with Go Rules

Thego rulesspecify when the leaders and assigned followers can begin implementing their

assigned control laws, as shown in Figure 7.3. For either a leader or an assigned follower,

if all its immediate predecessors havetruego flags and if no robots within proximity range

to it are unassigned followers, the robot switches its go flagfrom f alseto true and begins

implementing its control laws. These rules guarantee that all unassigned followers are

132

(U, f alse)

(L or F, f alse)

⇀
(F, f alse)

(L or F, f alse)

Figure 7.2. Linking rules. An unassigned follower will assign itself to follow a leader or an assigned
follower. Here, the left part of the figure indicates the left graph of the rule, while the right part
represents the right graph. This figure represents two rules, one for assigning to follow a leader, and
one for assigning to follow an assigned follower. This rule does not change the label of the robot being
followed. The guard requires that both robots are within proximity range of each other.

(L or F, f alse)

(F, true) (F, true). . .

⇀

(L or F, true)

(F, true) (F, true). . .

Figure 7.3. Go rules. If, for a leader or assigned follower with a f alsego flag, all its immediate prede-
cessors have atrue go flag, and no unassigned followers are in proximity range, it can switch its go flag
to true.

linked to follow a leader or a predecessor of a leader before the robots within their proximity

range move.

7.3.5 Break Rules

While the previous rules ensure that robots become predecessors of leaders, and that robots

do not leave unassigned followers behind, it is possible formultiple followers to follow

the same robot. If that robot has a constant velocity, then Corollary 7.3 implies that the

followers will stabilize to the same location, directly behind the leading robot. For our

multi-robot system, this is not desirable, since the robotsneed to avoid colliding. Therefore,

we definebreak rulesthat reduce the immediate predecessors of a single robot. The left

graph has a robot being followed by two follower robots. If all of these robots are within

proximity range of each other, one of the following robots isswitched to follow the other

follower. For any robot with multiple immediate predecessors, the repeated application of

133

(L or F, true)

(F, true) (F, true)

⇀

(L or F, true)

(F, true) (F, true)

Figure 7.4. Break rules. This rule prevents more than one robot from following the same robot at the
same and stabilizing to the same position. If two followers are following the same robot, one of the
followers will switch to follower the other follower. The guard function requires all robots to be within
proximity range of each other.

this rule ensures that, eventually, it will only have one immediate predecessor. Figure 7.4

represents these break rules.

When implemented with our multi-robot network, this EGG results in “chains” of

robots, as shown in Figure 7.7. In general, this EGG system for deployment can be used

with only one network leader to allow any number of followersto navigate to a desired

location. Next, we describe how the desired formation is assembled such that these follow-

ers are assigned and navigate towards unique deployment positions, despite their lack of

localization ability.

7.4 Formation Assembly

Here, we discuss how to assemble formations as the network arrives at the deployment co-

ordinates in the environment. Recall from Chapter 6 our methods to automatically generate

an EGG system for assembling persistently feasible formations. This assembly strategy is

based on EGG rules that correspond tograph operations. In this previous work, the net-

work graph is initially unassembled, and each robot begins in awandermode. An initial

edge is added between aleaderandfirst-follower pair of robots. The positions of these

robots specify the location and orientation of the formation in the environment. Then,ver-

tex addition rulesattach wanderers to the leader and first-follower, as shown in Figure 7.5.

These vertex addition rules assign the robots their unique positions. These robots then nav-

igate to the correct locations using only therelative positionsof other robots. When all

134

p̄1

p̄2w

⇀

p̄1

p̄2p̄3

Figure 7.5. Vertex addition rules.

vertex addition rules have been applied, the formation is assembled.

The initial conditions of the EGG presented in Chapter 6.2 are that all wander robots

must be within proximity range of the leader robot in the formation. While our EGG for

linking robots allows us to navigate the network with only one leader, we utilize two leader

robots in our current implementation. In this implementation, we order the deployment po-

sitions such that ¯p1 is theleader positionand p̄2 is thefirst-follower position. Both leaders

are initially assigned to navigate to ¯p1. When a leader has successfully navigated to this

position, it assigns its mode to ¯p1 such thatl(vi).mode= p̄1. The remaining leader, when

encountering the robot assigned to ¯p1 will then switch and begin converging to the first-

follower positionp̄2. Therefore, the network deploys as two chains, one which converges

to the leader position in the formation graph, and one that converges to the first-follower

position.

In order to switch followers from follow mode to wander mode,we employwander

rulesthat assign followers to wander mode once they have reached the deployment location.

If a follower is following a leader robot, and all its immediate predecessors are within

proximity range of that leader, it switches to wander mode, and all its predecessors begin

following the leader or first-follower. Figure 7.6 depicts wander rules. The application of

this rule implies that all wanderers are within proximity range of either the leader or the

first-follower, which are sufficient conditions for successfully assembling the formation.

135

(p̄1, true)

(F, true)

(F, true)

⇀

(p̄1, true)

(w, true)

(F, true)

Figure 7.6. Wander rules. If a follower is following a robot that is assigned a position in the formation,
and all of its predecessors are within proximity range of therobot assigned a formation position, it
can break off from the chain and become a wanderer. All of its predecessorsbegin following the robot
assigned a formation position.

7.5 Implementation

Here, we discuss the implementation results of the automatic EGG generated for formation

deployment. This demonstration utilizes all of the methodswe present in this work.

We implement the deployment depicted in Figure 7.1, where a user has chosenn = 5

deployment positions using the GUI with satellite imagery of our test field. The GUI is able

to compare the positions with the known coordinates of reference positions in the satellite

image to estimate the desired deployment positions for the network. Using the methods in

Chapter 4 and the defined proximity range∆ = 6 m, the software determines that the de-

ployment positions can be assembled as a persistent formation. A stable, persistent graph

is generated for the formation, and the network members are automatically configured to

assemble the formation using the methods in Chapter 6. All network members are config-

ured to implement the EGG system for linking robots discussed in Chapter 7.3. Then the

network members are given the command to deploy.

Figure 7.7 shows the network deploy and assemble the initialformation. Figure 7.7(a)

shows the initial state of the network. The leaders are in leader mode, labeledL, and the

followers are initially in unassigned mode, labeledU. The robots begin applying the EGG

rules described in Chapter 7.3. The two leader robots initially navigate to the leader position

p̄1. However, since they are in range of each other, one of the leader robots switches to

navigate to the first-follower position ¯p2. By applying linking rules, two followers begin

136

following the leader on the right, and one follower begins following the leader on the right.

Since two follower are following the right leader, the breaking rule is applicable, and is

applied, allowing the followers to follow as a “chain”, seenin Figure 7.7(b).

As seen in Figure 7.7(c), the leader on the left arrives at formation position ¯p1, the

leader position for the formation. It changes to the appropriate mode, allowing its follower

to switch to wander mode. Figure 7.7(d) shows this wander perform a vertex addition,

assigning itself formation position ¯p3. Also, the first-follower arrives at ¯p2, and one of its

following robots “pops off” as a wanderer. The follower who previously followed the wan-

derer now follows the first-follower (assigned ¯p2). Figure 7.7(e) shows the wanderer per-

forming a vertex operation, assigning itself ¯p4. Also, the last follower becomes a wanderer.

While these vertex addition operations are being completed, the wanderer is already within

proximity range of the leader, which has an available vertexaddition operation. Thus, it

does not move until the vertex addition for ¯p3 is complete. Once these vertex operations

are complete (Figure 7.7(f)), the remaining wanderer navigates through the network using

the hop counters, and finally performs the last vertex operation (Figure 7.7(g)), assigning

itself p̄5. The entire formation is assembled, as shown in Figure 7.7(h).

Figure 7.8 shows the GPS coordinates of the robots during theformation deployment.

The robots successfully deploy the desired formation.

Figure 7.9 shows how the followers respected the proximity range as edges between

leaders and followers are created and destroyed. Note that all edges always have a length

less than the proximity range∆ = 6 m.

Figure 7.10 shows the edges in the network graph that correspond to the formation. All

edges stabilize to a desired length of 5 m. Also, these edges never violate the proximity

range of∆ = 6 m.

Once assembled, the network begins following the deployment, as shown in Figure

7.11. The leader begins driving “north”, as shown in Figure 7.11(a). The rest of the net-

work members adjust their velocities using the control lawsfrom Chapter 5, and the entire

137

L ULUU

(a)

L

F

L

F F

(b)

p̄1

w

p̄2

F

F

(c)

p̄1

p̄3

p̄2

w F

(d)

p̄1 p̄3

p̄2

p̄4

w

(e)

p̄1

p̄3

p̄2

p̄4

w

(f)

p̄1

p̄3

p̄2

p̄4

p̄5

(g)

p̄1

p̄3

p̄2

p̄4

p̄5

(h)

Figure 7.7. Heterogenous multi-robot deployment. The robots use the EGG system presented here to
deploy to the initial location of the deployment and assemble the formation.

138

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

LULUU

x (m)

y
(m

)

(a) t = 0 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

L

F

L

F
F

x (m)

y
(m

)

(b) t = 60 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

p̄1

w

p̄2

F

F

x (m)

y
(m

)

(c) t = 80 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

w

F

x (m)

y
(m

)

(d) t = 85 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

p̄1p̄3 p̄2

p̄4
w

x (m)

y
(m

)

(e) t = 105 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

w

x (m)

y
(m

)

(f) t = 140 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

p̄5

x (m)

y
(m

)

(g) t = 200 sec

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

p̄5

x (m)

y
(m

)

(h) t = 230 sec

Figure 7.8. Network trajectory during deployment. This data is taken from GPS logs of the robots and
shows their perspective of the network. The robots successfully deploy the desired formation at the
correct location in the environment.

139

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

t (sec)

le
n

g
th

(m
)

Figure 7.9. Follower edges. These plots show the edge lengthof the edges between followers and leaders
during the deployment. All edges have a length less than∆ = 6 m.

60 80 100 120 140 160 180 200 220 240
0

1

2

3

4

5

6

t (sec)

le
n

g
th

(m
)

Figure 7.10. Formation network graph edges. These are the edges for the assembled formation. Since
these edges correspond to an equilateral triangulation, all edges converge to a length of 5 m as the
formation is assembled. These edges do not exceed the proximity range ∆ = 6 m.

140

formation moves north. Eventually, the leader reaches the end and stops, as shown in Fig-

ure 7.11(d). The rest of the network stabilizes to this new position for the formation, seen

in Figure 7.11(f).

Figure 7.12 shows the GPS coordinates of the robots during the formation motion. The

robots maintain formation, and stabilize to the desired formation at the final location for

the deployment.

Figure 7.13 shows the network graph edge lengths during the formation motion. Ini-

tially, the edges are approximately 5 m long. During the formation motion, error is intro-

duced as the robots attempt to estimate their appropriate velocities. Note that the proximity

range is violated by two “peaks” in the error. The largest peak violates the proximity range

by approximately.1 m. This reiterates the necessity of the proximity range to be well within

the operating range of the network, to account for noise and errors. When the formation

stops moving, the edges stabilize back to lengths of 5 m.

This experiment demonstrates all of the methods detailed inthis work.

141

p̄1

p̄3

p̄2

p̄4

p̄5

(a)

p̄1

p̄3

p̄2

p̄4

p̄5

(b)

p̄1

p̄3

p̄2

p̄4

p̄5

(c)

p̄1

p̄3

p̄2

p̄4

p̄5

(d)

p̄1

p̄3

p̄2

p̄4

p̄5

(e)

p̄1

p̄3

p̄2

p̄4

p̄5

(f)

Figure 7.11. Moving in formation. The robots employ the control laws in Chapter 5 to maintain the
formation during motion.

142

2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

p̄5

x (m)

y
(m

)

(a) t = 230 sec

2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

p̄5

x (m)

y
(m

)

(b) t = 250 sec

2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

p̄5

x (m)

y
(m

)

(c) t = 280 sec

2 4 6 8 10 12 14 16

−8

−6

−4

−2

0

2

4

p̄1

p̄3

p̄2

p̄4

p̄5

x (m)

y
(m

)

(d) t = 300 sec

Figure 7.12. Network trajectory during motion.

143

230 240 250 260 270 280 290 300
0

1

2

3

4

5

6

t (sec)

le
n

g
th

(m
)

Figure 7.13. Network graph edges. Error is introduced during the formation motion. However, the
edges stabilize back to5 m when the formation stops moving.

144

CHAPTER 8

CONCLUSIONS

This work is part of project to deploy a multi-robot system asa wireless sensor network for

meteorological data collection in Antarctica. Automatic tools for configuring and deploy-

ing the network are presented. These methods are tailored tothe decentralized nature of

the multi-robot network and the limited information available to each robot.

Multi-Robot Coordination with Embedded Graph Grammar Syst ems
(EGGs)

In Chapter 3, we present preliminary work towards implementing triangulations of robots

with a network ofSpiderMoterobots. These robots use an Embedded Graph Grammar

(EGG) system, which defines the control laws for each robot, as well as how the robots

sense, communicate, and switch modes. A communication protocol for multi-robot net-

works with global communication is introduced. This allowsthe for the implementation of

the EGG system on the multi-robot network.

Rigid and Persistent Feasibility and Network Graph Generation

Chapter 4 presents methods for determining if a desired formation for the multi-robot net-

work is rigidly, persistently, andstably, persistently feasiblewith respect to the limited

information available to each robot. Given aproximity rangewhich defines the maximum

distance at which a pair of robots can sense/communicate with each other, these meth-

ods not only determine the corresponding feasibility, but generate an appropriate network

graph for the formation. All rigid, persistent, and stably persistent network graphs are rigid.

Persistent and stably persistent network graphs limit the number of constraints assigned to

each robot to two or less. Stable persistent network graphs have the advantage of being

acyclic. This facilitates the automatic definition of control laws for these graphs.

145

Control Laws for Multi-Robot Network Formations with Persi stent Net-
work Graphs

Using stable, persistent network graphs generated by the methods in Chapter 4, we present

control laws for formations of mobile robots using these network graphs in Chapter 5.

These control laws use circle-circle intersection solutions to determine the local geometry

that they must satisfy with respect to their constraints in the network graph.

Formation Assembly with Embedded Graph Grammars (EGGs)

In Chapter 6, we present a method to automatically generate EGG systems for assembling

formations of mobile robots. These generated EGG systems rely only on the relative loca-

tions of the robots. As such, the network does not need any localization to implement these

EGGs. Further, this EGG system respects the proximity rangelimitation of the network.

We demonstrate these EGG systems using a prototype network and present experimental

results.

Deployment of Heterogenous Multi-Robot Networks with Embedded
Graph Grammars (EGGs)

Chapter 7 presents a method for deploying heterogenous multi-robot networks, as well as

an experimental demonstration of all of the methods in this work. The network is heteroge-

nous in that only a proper subset of robots have localizationability. We present an EGG

system that allows all the robots to navigate towards the initial deployment location. This

is despite the fact that some network members cannot estimate their location relative to

the initial deployment location. This chapter also includes experiments with a prototype

multi-robot network. In these experiments, we use our methods for persistent feasibility,

automatic stable, persistent network graph generation, automatic assembly EGG genera-

tion, the deployment EGG, and the control laws for multi-robot networks with persistent

network graphs. This demonstrates how our methods allow a network with limited sensor

and location ability to automatically achieve a feasible, user-defined network deployment

146

automatically. This demonstration also includes implementation of all the methods pre-

sented in this work.

147

REFERENCES

[1] A. M. Howard, B. S. Smith, and M. Egerstedt, “Realizationof the sensor web concept
for earth science using mobile robotic platforms,” inIEEE Aerospace Conference,
(Big Sky, MT), pp. 1–6, Mar. 2007.

[2] A. Howard, L. Parker, and B. S. Smith, “A learning approach to enable locomotion
of multiple robotic agents operating in natural terrain environments,”Intelligent Au-
tomation and Soft Computing, vol. 14, no. 1, pp. 47–60, 2008.

[3] B. S. Smith, A. M. Howard, J.-M. McNew, and M. B. Egerstedt, “Multi-robot de-
ployment and coordination with embedded graph grammars,”Autonomous Robots,
vol. 26, pp. 79–98, Jan. 2009.

[4] B. S. Smith, M. Egerstedt, and A. Howard, “Automatic generation of persistent for-
mations for multi-agent networks under range constraints,” in Proceedings of the First
International Conference on Robot Communication and Coordination, 2007.

[5] B. S. Smith, M. Egerstedt, and A. Howard, “Automatic generation of persistent for-
mations for multi-agent networks under range constraints,” Mobile Networks and Ap-
plications, 2009. To appear.

[6] B. S. Smith, J. Wang, and M. B. Egerstedt, “Persistent formation control of multi-
robot networks,” inProceedings of the IEEE Conference on Decision and Control,
(Cancun, Mexico), pp. 471–476, Dec. 2008.

[7] B. S. Smith, M. Egerstedt, and A. Howard, “Automatic deployment and formation
control of decentralized multi-agent networks,” inProceedings of the IEEE Interna-
tional Conference on Robotics and Automation, (Pasadena, CA, USA), pp. 134–139,
May 2008.

[8] B. S. Smith, J. Wang, M. Egerstedt, and A. Howard, “Automatic deployment of per-
sistent multi-robot formations with sensing and localization limitations,”IEEE Trans-
actions on Robotics, 2009. In submission.

[9] B. S. Smith, J. Wang, M. Egerstedt, and A. Howard, “Automatic formation deploy-
ment of decentralized heterogeneous multiple-robot networks with limited sensing
capabilities,” inProceedings of the IEEE International Conference on Robotics and
Automation, (Kobe, Japan), May 2009. To appear.

[10] P. K. C. Wang, “Navigation strategies for multiple autonomous mobile robots moving
in formation,”Journal of Robotic Systems, vol. 8, pp. 177–195, Apr. 1991.

148

[11] J. Desai, J. Ostrowski, and V. Kumar, “Control of formations for multiple robots,”
in Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 2864–2869, May 1998.

[12] R. Olfati-Saber and R. Murray, “Graph rigidity and distributed formation stabilization
of multi-vehicle systems,”Proceedings of the 41st IEEE Conference on Decision and
Control, vol. 3, pp. 2965 – 71, 2002.

[13] J. A. Fax and R. M. Murray, “Graph laplacians and stabilization of vehicle for-
mations,” in15th International Federation on Automatic Control (IFAC)Congress,
(Barcelona, Spain), 2002.

[14] H. G. Tanner, G. J. Pappas, and V. Kumar, “Input-to-state stability on forma-
tion graphs,”Proceedings of the 41st IEEE Conference on Decision and Control,
pp. 2439–2444, Dec. 2002.

[15] A. Das, J. Spletzer, V. Kumar, and C. Taylor, “Ad hoc networks for localization and
control,” inProceedings of the 41st IEEE Conference on Decision and Control, vol. 3,
pp. 2978 – 2983, Dec. 2002.

[16] J. Baillieul and A. Suri, “Information patterns and hedging brockett’s theorem in con-
trolling vehicle formations,”Proceedings of the 42nd IEEE International Conference
on Decision and Control, pp. 556–563, Dec. 2003.

[17] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,” IEEE
Transactions on Robotics and Automation, vol. 20, pp. 443–455, June 2004.

[18] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle
formations,”IEEE Transactions on Automatic Control, vol. 49, pp. 1465–1476, Sept.
2004.

[19] T. Eren, W. Whiteley, A. S. Morse, B. D. Anderson, and P. N. Belhumeur, “Infor-
mation structures to secure control of globally rigid formations,” Proceedings of the
2004 American Control Conference, vol. 6, pp. 4945–4950, 2004.

[20] T. Eren, W. Whiteley, B. D. Anderson, A. S. Morse, and P. N. Belhumeur, “Informa-
tion structures to secure control of rigid formations with leader-follower architecture,”
Proceedings of the 2005 American Control Conference, vol. 4, pp. 2966–2971, June
2005.

[21] G. A. Kaminka and R. Glick, “Towards robust multi-robotformations,”Proceedings
of the IEEE International Conference on Robotics and Automation, pp. 582–8, May
2006.

[22] S. Sandeep, B. Fidan, and C. Yu, “Decentralized cohesive motion control of multi-
agent formations,” in14th Mediterranean Conference on Control and Automation,
pp. 1–6, June 2006.

149

[23] J. M. Hendrickx, B. Fidan, C. Yu, B. D. O. Anderson, and V.D. Blondel, “Elementary
operations for the reorganization of minimally persistentformations,” inProceedings
of the Mathematical Theory of Networks and Systems (MTNS) Conference, no. 17,
(Kyoto, Japan), pp. 859–873, July 2006.

[24] L. Vig and J. A. Adams, “Multi-robot coalition formation,” IEEE Transactions on
Robotics, vol. 22, pp. 637–49, August 2006.

[25] N. Michael and V. Kumar, “Controlling shapes of ensembles of robots of finite size
with nonholonomic constraints,” inRobotics Science and Systems, (Zurich, Switzer-
land), June 2008.

[26] D. Y. Yeung and G. A. Bekey, “A decentralized approach tothe motion planning
problem for multiple mobile robots,”Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, vol. 3, pp. 1779–1784, Mar. 1987.

[27] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,”Com-
puter Graphics, vol. 21, pp. 25–34, July 1987.

[28] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,”IEEE Transactions on Automatic Con-
trol, vol. 48, pp. 988–1001, June 2003.

[29] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile
autonomous agents,”IEEE Transactions on Automatic Control, vol. 49, pp. 622–629,
Apr. 2004.

[30] T. Balch and R. Arkin, “Behavior-based formation control for multirobot teams,”
IEEE Transactions on Robotics and Automation, vol. 14, pp. 926–939, Dec. 1998.

[31] W. Ren and R. Beard, “Consensus of information under dynamically changing in-
teraction topologies,”Proceedings of the American Control Conference, vol. 6,
pp. 4939–4944, July 2004.

[32] G. Notarstefano, K. Savla, F. Bullo, and A. Jadbabaie, “Maintaining limited-range
connectivity among second-order agents,”Proceedings of the American Control Con-
ference, pp. 2124–2129, June 2006.

[33] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile autonomous
agents via proximity graphs in arbitrary dimensions,”IEEE Transactions on Auto-
matic Control, vol. 51, no. 8, pp. 1289–1298, 2006.

[34] M. Ji and M. B. Egerstedt, “Distributed coordination control of multi-agent systems
while preserving connectedness,”IEEE Transactions on Robotics, vol. 23, pp. 693–
703, Aug. 2007.

[35] M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connectivity of
mobile networks,”IEEE Transactions on Robotics, vol. 23, pp. 812–816, Aug. 2007.

150

[36] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in distributed motion plan-
ning with local coordination,”IEEE Transactions on Robotics, vol. 24, pp. 232–242,
Feb. 2008.

[37] H. Gluck, “Almost all simply connected closed surfacesare rigid,” in Geometric
topology, Lecture Notes in Math, vol. 438, (Berlin), pp. 225–239, Springer, 1975.

[38] B. Roth, “Rigid and flexible frameworks,”The American Mathematical Monthly,
vol. 88, no. 1, pp. 6–21, 1981.

[39] W. Whiteley and T. Tay, “Generating isostatic frameworks,” Structural Topology,
vol. 11, pp. 21–69, 1985.

[40] J. M. Hendrickx, B. D. O. Anderson, J.-C. Delvenne, and V. D. Blondel, “Directed
graphs for the analysis of rigidity and persistence in autonomous agent systems,”In-
ternational Journal of Robust and Nonlinear Control, 2000.

[41] J.-M. McNew and E. Klavins, “Locally interacting hybrid systems with embedded
graph grammars,”Proceedings of the 45th IEEE Conference on Decision and Control,
pp. 6080–6087, 2006.

[42] J.-M. McNew, E. Klavins, and M. Egerstedt, “Solving coverage problems with em-
bedded graph grammars,”Hybrid Systems: Computation and Control, vol. 4416,
pp. 413–427, Apr. 2007.

[43] G. Laman, “On graphs and rigidity of plane skeletal structures,”Journal of Engineer-
ing Mathematics, vol. 4, pp. 331–340, Oct. 1970.

[44] D. J. Jacobs and B. Hendrickson, “An algorithm for two-dimensional rigidity perco-
lation: The pebble game,”Journal of Computational Physics, vol. 137, pp. 346–365,
June 1997.

[45] L. Henneberg, “Die graphische statik der starren systeme,” 1911.

[46] H. K. Khalil, Nonlinear Systems, ch. 4, pp. 179–180. Upper Saddle River, NJ 07458,
USA: Prentice Hall, 3 ed., 2002.

151

