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SUMMARY 
 
 
 

The presented work aims to optimize the performance of piezoresistive cantilevers in 

cases where the output signal originates either from a static deflection of the cantilever or 

from the dynamic (resonance) characteristic of the beam. While the presented 

optimizations for the static mode specifically targets the force sensitivity of piezoresistive 

cantilevers, the results and findings for the dynamic mode can be used for improving the 

resonance quality of rectangular cantilevers in general, regardless of the implemented 

sensing schemes.  

 

Based on a new stress concentration technique, which utilizes silicon beams and wires 

embedded in the cantilever, the force sensitivity of the cantilever is increased up to 8 fold 

with only about a 15% decrease in the cantilever stiffness. Moreover, the developed 

stress-concentrating cantilevers show almost the same resonance characteristic as 

conventional cantilevers. Through simulation and measurement, the effect of the stress 

concentrating elements on the force sensitivity and stiffness of cantilevers is studied and 

it is found that decreasing the size of these elements results in an improved sensitivity. 

 

The focus of the second part of the present work is to provide guidelines for designing 

rectangular silicon cantilever beams to achieve maximum quality factors for the 

fundamental and higher flexural resonance at atmospheric pressure.  The applied 

methodology is based on experimental data acquisition of resonance characteristics of 

silicon cantilevers, combined with modification of analytical damping models to match 

 xix



the measurement data. To this end, rectangular silicon cantilever beams with thicknesses 

of 5, 7, 8, 11 and 17 μm and lengths and widths ranging from 70 to 1050 μm and 80 to 

230 μm, respectively, have been fabricated and tested. To better describe the 

experimental data, modified models for air damping have been developed. Moreover, to 

better understand the damping mechanisms in a resonant cantilever system, analytical 

models have been developed to describe the cantilever effective mass in any flexural 

resonance mode. To be able to extract reliable Q-factor data for low signal-to-noise ratios, 

a new iterative curve fitting technique is developed and implemented, which is applicable 

even for cases where the noise and signal powers are equal. 

 

To address the challenge of frequency drift in (mass-sensitive) resonant sensors, and 

especially cantilever-based devices, the last part of the research deals with a novel 

compensation technique to cancel the unwanted environmental effects (e.g., temperature 

and humidity). This technique is based on exploring the resonance frequency difference 

of two flexural modes. Experimental data show improvements in temperature and 

humidity coefficients of frequency from -19.5 to 0.2 ppm˚C-1 and from 0.7 to -0.03 

ppm%RH-1, respectively. 

 

To apply the compensation technique, the cantilever-based resonator must be tuned in 

two distinct frequency overtones. Thus, the last part of the work is aimed on techniques 

to enhance or suppress the vibration amplitude in desired overtones, either by optimizing 

the location of piezoresistive detectors, or by selectively actuating the cantilever.  

 

 xx



 1

CHAPTER 1 

INTRODUCTION 
 
 
 
A fundamental part of every sensor is the transducer, which converts the measurand of 

interest into an interpretable output signal. One of the most prominent transducers in the 

micro-realm is the piezoresistive cantilever, which translates information from the 

mechanical into the electrical domain, e.g. the amount of force exerted on the cantilever 

into a resistance change or the amount of mass added to the cantilever into a resonance 

frequency change. As the title of this thesis suggests, this research focuses on both 

aspects, i.e. the application of piezoresistive cantilevers in static and dynamic sensing. In 

other words, the presented work aims to optimize the performance of piezoresistive 

cantilevers in cases where the output signal is either DC (e.g., strain gauges) or an AC 

(e.g., resonant sensors) signal. While the presented research for the static mode 

specifically targets piezoresistive cantilevers, the optimization results and findings for the 

dynamic mode can be extended to cantilevers with other sensing schemes.  

 

This thesis can be virtually divided in two parts: while the majority of Chapter 3 is about 

the static behavior of cantilevers, the discussions in Chapter 4 to Chapter 10 are dedicated 

to resonant cantilevers only. As an introduction to the field of cantilever-based 

microsensors, Chapter 2 highlights the fundamentals of cantilever sensors as well as the 

governing equations and principles of piezoresistive cantilevers. In the subsequent 

chapters, the presented research has been based on design, simulation, micro-fabrication, 

and characterization efforts. 
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The focus of Chapter 3 is on modifying piezoresistive cantilever designs for static-mode 

force sensing. To this end, a new technique utilizing stress concentration in cantilevers is 

introduced. Using a new fabrication method, stress concentrating beams and wires are 

embedded in the cantilevers. This way the force sensitivity of the cantilevers is 

significantly increased without any substantial decrease in the cantilever stiffness. 

 

Chapter 4 presents a new iterative curve fitting technique as a robust tool in interpreting 

the transfer characteristics of resonant cantilevers. The significant advantage of this 

technique is its accuracy in calculating the quality factor of resonators. The presented 

method is especially useful in eliminating the effect of noise, even for cases in which the 

output signal to noise power ratio is as small as one.  

 

Through modeling and characterization efforts, Chapters 5, 6, and 7 target the damping of 

resonant cantilevers in air in both fundamental and higher flexural modes. As a result, 

guidelines for optimization of the cantilever geometry with respect to the achievable Q-

factor in air are established. As part of this study, Chapter 6 presents how a resonant 

cantilever can be modeled as a simple spring-mass system not only in the fundamental 

mode, but also in any flexural mode.  

 

A critical challenge for resonant (mass) sensors is to distinguish resonance frequency 

variations caused by changes of the measurand (e.g., binding of molecules) from 

unintended frequency changes due to environmental effects (e.g., temperature and 

humidity). In Chapter 8, a novel technique for cancellation of environmental effects is 
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presented. This technique is based on monitoring the effective mass in two resonance 

modes. The presented method is applicable not only for resonant cantilevers, but also for 

any type of resonator as long as the described requirements are satisfied.  

 

To improve the selectivity of a resonant cantilever to a desired flexural mode, the focus 

of Chapter 9 is on different schemes for enhancement and suppression of the excitation 

and detection of particular resonance overtones. The findings in this chapter can be 

potentially used for the closed-loop operation of cantilevers in higher flexural modes, or 

for an efficient implementation of the compensation technique presented in Chapter 8.  

 

Finally, the focus of the research presented in Chapter 10 is on the effect of holes and 

trenches in the cantilever surface on its performance. 

  

It is important to note how the terms “mode” and “overtone” are used throughout this 

work. A mechanical structure can resonate in different classes of modes (or simply, 

modes), e.g., flexural, torsional, or longitudinal modes. Each class of modes consists of 

overtones, which correspond to the eigenvalues of the general solution for the governing 

resonance equation of that particular mode (e.g., flexural mode). In special cases, e.g., 

vibrations of a string, the resonance overtones are actually harmonics of the fundamental 

mode, with their resonance frequency related to the fundamental frequency through 

integer ratios. For a resonant cantilever in flexural mode, however, the overtone 

frequencies are not integer harmonics of the fundamental resonance frequency. This issue 

is explained in more details in Chapter 2.  
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CHAPTER 2 

CANTILEVER SENSORS 
 
 
 

A single supported beam, known as a cantilever, is a basic mechanical structure with well 

described strain and bending characteristics [1]. These two aspects, strain and bending, 

are the bases of most cantilever applications in static sensing. Moreover, a cantilever can 

be described as a second-order system with distinct resonance characteristics determined 

by the cantilever mass and spring constant as well as by the ambient conditions [2]. 

Therefore, any changes in these parameters will be reflected as a variation in the 

resonance characteristics. This characteristic makes the cantilever a prominent choice for 

dynamic sensing applications [3-7].  

 

In this chapter, first a brief overview of different cantilever sensor schemes is introduced; 

then the basic equations of the cantilever deflection and vibration are presented. Next, the 

characteristics of a cantilever-based system, as a second-order system, are summarized. 

Finally, a concise description of piezoresistive cantilever sensors, including their sensing 

principle and applications, is presented.  

 

2.1 Sensing Techniques Using Cantilevers 

Extensively used as building blocks in civil and aeronautical structures, cantilevers were 

first introduced in the sensors realm as strain gauges [8, 9]. Despite earlier applications as 

microphones [10], pressure sensors [11], and accelerometers [12, 13], it was the invention 

of the atomic force microscopy (AFM) [14] that gave a robust commercial momentum to 
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cantilever-based sensors. Also, it was upon the development of AFM that the potential of 

the cantilever as a dynamic sensor was explored [14-17].   

 

Regardless of the sensing method (static or dynamic), cantilever sensors can be 

categorized based on the employed detection scheme. The main detection schemes are 

listed as optical, piezoresistive, piezoelectric, electrostatic, tunneling, and thermal. The 

rest of this section introduces these schemes. Piezoresistive cantilevers will be 

reintroduced in more detail in Section 2.4.  

 

2.1.1 Optical Cantilever 

Not long after the invention of AFM, optical cantilevers were first introduced [15]. The 

basic operation principle of this type of cantilever lies in optical reflection from the back 

surface of the beam, while the front surface interacts with the sample [5, 18-23]. The 

earlier optical detection schemes were based on laser interferometry [15, 16], in which 

the resonance characteristic is extracted from the interference patterns between a 

reference light beam and the one reflected from the cantilever’s back surface. Soon after 

the introduction of optical cantilevers, the less complex scheme of position-sensitive 

detection (PSD) was developed [24, 25]. In a PSD scheme, a laser beam is emitted to the 

cantilever back surface at an angle; depending on the bending of the cantilever, the 

reflected laser beam travels at a peculiar angle; thus the cantilever deflection can be 

measured down to nano-scales. In this application, the cantilever functions only as a 

light-reflecting ultra-soft spring, often called an “optical lever” [25].  
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Optical cantilevers are highly sensitive to such an extent that, for example, when 

implemented in the magnetic resonance force microscopy (MRFM) [26], a single electron 

spin can be detected [27]. Besides the high sensitivity, another advantage of this type of 

cantilever is its relative ease of fabrication, which is due to the omission of any needs for 

electrical connections to the cantilever. Optical cantilevers have been primarily made of 

tungsten wires [16, 24], silicon [28-31], silicon nitride [32-34], and polymers [35-37].  

 

2.1.2 Piezoresistive Cantilever 

Bending a cantilever beam introduces directional stress, which will cause a resistance 

change if applied to a resistor. This quality, the dependence of electrical resistivity on 

stress, is called piezoresistance. Crystals, both metals and semiconductors, show 

piezoresistance [38-40], but while in metals the change of resistance is mainly a result of 

the geometrical variation [39, 41], in semiconductors the piezoresistance originates from 

a change of the band-gap energy [42, 43].  

 

In a piezoresistive cantilever the detecting resistors, called piezoresistors, are placed at 

potentially high-stress points of the cantilever beam; as long as the cantilever deflection 

is negligible compared to its length, the resistance of piezoresistors changes linearly with 

the deflection [44]. The considerable advantages of this scheme are the implementation 

of the detection mechanism within the cantilever [45, 46], CMOS integration capability 

[6, 47], and the possibility of making large cantilever arrays [48, 49]. A limiting factor in 

this detection scheme is the presence of Johnson and Hooge noise with the resistors [50]. 

This type of cantilever is introduced in more detail in Section 2.4. 
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2.1.3 Piezoelectric Cantilever 

Piezoelectric cantilevers are used in a variety of applications, including accelerometers 

[13, 51], mass sensors [52-55], mass flow sensors [56], chemical sensors [57], scanning 

tunneling microscopy (STM) [58], and AFM [59-61]. The detection mechanism in this 

type of cantilever is based on the generation of an electric field resulting from the 

introduction of stress (e.g., by bending) to single or multiple layers of piezoelectric 

materials such as ZnO and PZT. Whereas in the first three cited applications the 

cantilever is operating in the static mode, resonating piezoelectric cantilevers are 

extensively used in AFM.  

 

2.1.4 Electrostatic Cantilever 

By forming a capacitor between the cantilever surface and a fixed plate (i.e., counter 

electrode), the cantilever deflection can be measured as a capacitance change [62-65]. 

With this approach, not only can the static deflections be detected, but also in the 

dynamic mode, the resonance characteristic of the capacitive cantilever can be used as a 

sensing measure. A resonating cantilever, when used in the capacitive configuration, 

generates a periodic capacitance change. When implemented in an LC circuit, the 

cantilever resonance results in a frequency modulation. Hence, variations of the 

cantilever resonance frequency can be detected by demodulating the output signal [66].  

 

2.1.5 Tunneling Cantilever 

The very first AFM was in fact a modification of the existing scanning tunneling 

microscopy systems [14]. In this scheme, a tunneling tip is placed at nano-scale 



 8

proximity of the cantilever surface that has a conductive coating. The dependence of the 

tunneling current I on the gap g between the metallic electrodes is described as [67, 68] 

gaVeI Φ−∝         (2.1) 

where V is the bias voltage, Φ is the height of tunneling barrier, and a = 1.025 Å-0.5eV-0.5 

is a conversion factor. When the sample is scanned, the cantilever deflects, thus causing a 

change in the gap between the tunneling tip and the coated surface on the cantilever. 

Hence, the tunneling current changes in proportion to the deflection of the cantilever tip 

[14]. Besides for the AFM application, tunneling cantilevers have been used in 

accelerometers [69] and infrared sensors [69]. 

 

2.1.6 Thermal Cantilever 

Unlike the mentioned cantilever detection schemes, beam bending is not the working 

principle of a thermal cantilever; rather the beam acts as a heat conduction path for a 

thermal probe [70, 71]. Thermal interaction of the scanning probe with the surface can be 

utilized in a voltage generation scheme as in thermocouples [72], or it can result in a 

thermal resistance variation, which in turn changes the electrical resistance of the detector 

[73].  Thermal cantilevers have been used in thermal imaging [72], data storage [71, 73, 

74], and nano-topographical imaging [75, 76].  

 

The pros and cons of the different detection schemes are summarized in Table 2.1. 
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Table 2.1. Overview of cantilever detection schemes. 
 

Detection scheme Pros Cons 
Optical • No need for electrical connection to 

cantilever 
• Ease of fabrication with capability 

of making ultra thin beams 
• Linear response 
• Highly sensitive 
• Reliability; Highly commercialized 

• Needs external optical detection 
unit 

• Needs calibration upon change of 
medium (e.g. liquid, gas) 

• Unsuitable for high opacity, or high 
turbidity media 

• Parallel scanning of an array of 
cantilever is challenging 

• Limited to bandwidth of PSD 
Piezoresistive • Implementation of detection 

mechanism inside cantilever 
• CMOS integration  
• Can be used in any medium 
• Large dynamic range 
• Reliability; Well commercialized 
• Implementation in large arrays 

• Needs a piezoresistive layer to be 
implemented over structural layer 

• Thermal power dissipation in 
piezoresistors and thermal drift 

• Generated heat can cause erratic 
beam deflection 

• Associated noise of resistors 
Piezoelectric • Self-generating, Self-sensing  • DC leakage current makes static 

applications challenging 
• Small output signal 

Electrostatic • CMOS compatible 
• Large dynamic range 

• Needs calibration upon change of 
dielectric constant of medium 

• Unsuitable in electrically 
conductive media 

• Variation of dielectric constant of 
different parts of scanned sample 
should be taken into account. 

• Non-linear response 
Tunneling • Highly sensitive • Non-linear response 

• Limited dynamic range 
• Needs extra tunneling tip mounted 

over cantilever 
Thermal • Highly sensitive 

• No (out of plane) bending is 
required 

• CMOS compatible 

• Thermal power dissipation 
• Can alter scanned sample 

properties 
• Needs calibration upon change of 

medium 
• No dynamic application reported 
• Variation of thermal conductivity 

of different parts of the scanned 
sample should be taken into 
account. 
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2.2 Physics of Cantilevers 

In this section the basic equations of cantilever beam deflection in both static and 

dynamic modes are briefly reviewed. The beam is assumed to be homogenous with 

uniform cross section. Also, for simplicity, the Poisson ratio is assumed to be negligible. 

First, to interpret the characteristics of systems utilizing cantilevers, the characteristics of 

second-order systems are briefly reviewed. 

 

2.2.1 Second-Order Systems 

The motion of a cantilever resonator, as a lumped mass-spring system, can be described 

by the differential equation of a second-order system with constant coefficients [2]: 

)(2

2

tFky
dt
dyB

dt
ydm Ω=++ ,      (2.2) 

where y(t) is the displacement of the lumped mass m, k is the spring constant, B is the 

velocity-related damping coefficient, and F is the excitation force applied on the lumped 

mass with an angular velocity of Ω. From the properties of the second-order system, the 

natural resonance frequency f0 is calculated: 

m
kf o

ππ
ω

2
1

20 == ,       (2.3) 

where ωο is the natural angular velocity (radial resonance frequency) of the system.  

The quality factor (Q or Q-factor) of a damped system is defined as [77] 

cycleper energy  dissipated
energy  vibrationstored2π=Q .     (2.4) 

In a second-order electrical system, the definition in Eq. (2.4) can be described in terms 

of the real and imaginary parts of impedance [78]: 
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)Re(
)Im(

Z
ZQ = .        (2.5) 

A second-order mechanical system is analogous to an electrical system by corresponding 

F and dy/dt to voltage V and current I, respectively. This way, Q is calculated as  

B
km

B
k

B
mQ

o

o ===
ω

ω .      (2.6) 

The free vibration resonance angular velocity ωmax is given by [2] 

2max 4
11
Qo −= ωω .       (2.7) 

Excited by a sinusoidal force F, the vibration amplitude will be [2] 

)sin()( θβ
−Ω= tF

k
ty ,      (2.8) 

where |F| is the maximum amplitude of the applied force, β is the magnification factor 

22
2

2

)1()1(

1

oo Q ωω

β
Ω

+
Ω

−

= ,      (2.9a) 

and θ is the phase angle expressed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ω−

Ω
= −

)1(
tan 22

1

o

o

Q ω
ωθ .      (2.9b) 

The forced vibration resonance angular velocity Ωo is given by  

22
11
Qoo −=Ω ω .       (2.10) 

In the case of weak damping, or alternatively large Q, the resonance frequency can be 

closely approximated by Eq. (2.3); in other words, Ωο = ωο and ωmax = ωο. 
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The most common way to measure the Q-factor of a resonator is based on the half-power 

bandwidth Δf-3dB in the resonance transfer function [79]: 

dB

o

f
fQ

3−Δ
= .        (2.11) 

Other techniques of measuring the Q-factor are discussed in more detail in the next 

chapter. 

 

2.2.2 Cantilever Bending (Static) 

The cantilever bending y as the result of applying a point force F on the beam free end 

(i.e., the tip – see Figure 2.1) is described at a point x along the cantilever length as [80] 

⎟
⎠
⎞

⎜
⎝
⎛ −=

L
xx

EI
FLxy

3
1

2
)( 2 ,      (2.12) 

where E is the Young’s modulus, I is the moment of inertia, and L is the beam length.  

Equation (2.12) is valid as long as the beam deflection is negligible compared to its 

length (i.e., y << L). Regarding Eq. (2.12), the cantilever spring constant, i.e., the ratio of 

force to deflection on the cantilever tip, can be calculated as 

 

 
 

Figure 2.1. Schematic of a cantilever with length L and thickness H, with respect 
to coordinates X and Y, before being deflected by a point force F applied on the 
tip. 
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In general, if the force is exerted at an arbitrary point xf on the cantilever, the bending will 

be [81] 
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The moment of inertia for a rectangular cantilever beam is given as [1] 

3

12
1 WHI = ,        (2.15) 

where W and H are the width and length of the cantilever.  

 

The induced longitudinal stress on the cantilever is calculated as [1] 

ρ
σ Ezx = ,        (2.16) 

where z is the distance from the beam neutral axis, and ρ is the beam radius of curvature. 

For a point force F applied at the point xf on a single-layer rectangular cantilever, the 

stress is 

⎪⎩

⎪
⎨
⎧

≤≤

≤
−

=
Lxx

xxF
WH

xxz

f

f
f

x
0

)(12
3σ  .    (2.17) 

From Eq. (2.16) it can be seen that the maximum stress occurs on the cantilever surface. 

Also, from Eq. (2.17), the stress magnitude is the highest at the cantilever clamped end, 

and linearly decreases toward the tip. When a point force is applied at the tip, the 

magnitude of the longitudinal stress at point x is  
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F
WH

xLz
x 3

)(12 −
=σ .       (2.18) 

In a single-layer rectangular cantilever, where the neutral axis is located at the center of 

the beam, the maximum stress at point x is (z = H/2)  

F
WH

xL
x 2

)(6 −
=σ .       (2.19) 

On the other hand, considering Eqs. (2.13), (2.15), and (2.18), the induced stress resulting 

from a deflection Δy = y(L) at the tip is  

y
L

zxLE
x Δ

−
= 3

)(3σ ,       (2.20) 

and the maximum stress at point x is (z = H/2)  

y
L

xLEH
x Δ

−
= 3

)(
2
3σ .      (2.21) 

In assessing the performance of a cantilever in force sensing applications, an important 

figure is the cantilever’s force spectral density SF(f), which is defined as the Fourier 

transform of the autocorrelation function of the fluctuating (time dependent) effective 

force on the cantilever tip [82]. The “force noise spectral density” is given by (SF(f))0.5 

(unit: N/Hz1/2), and the total root mean square force noise is the integral of force noise 

spectral density over the measurement bandwidth. In some literature the force noise 

spectral density is also called force sensitivity [82, 83]. Ideally, the noise performance of 

the cantilever is limited to the sensor’s thermomechanical noise [84, 85]; in this case SF(f) 

is calculated as (lumped-mass model) 

( )0244 QfTkkTBkS BBF π== ,     (2.22) 
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where kB and T are the Boltzmann constant and temperature, respectively. As mentioned 

in Section 2.2.1, k, f0, Q, and B are the cantilever’s spring constant, resonance frequency, 

quality factor, and damping coefficient, respectively.  

 

2.2.3 Cantilever Vibration (Dynamic) 

The equation of cantilever motion for flexural vibrations of an undamped system is given 

by [86] 

0),(),(
2

2

4

4

=
∂

∂
+

∂
∂

t
txyρA

x
txyEI ,     (2.23) 

where ρ is the mass density and A is the cross-sectional area. Equation (2.23) is solved by 

assuming the possibility of separation of time and space: 

ti nexytxy  )(),( ω= ,       (2.24) 

where ωn is the angular resonance frequency of the nth overtone (flexural mode). With the 

above assumption, the differential equation for the spatial coordinates based on  

Eq. (2.23) can be written as 

0)()( 2
4

4

=−
∂

∂ xyA
x

xyEI nωρ .      (2.25) 

For a cantilever (clamped-free beam), the boundary conditions are as follows: 

at the clamped end (x = 0): 

000
0

=
∂
∂

=
=xx

yy       ,)( ,      (2.25a)  

and at the free end (x = L): 
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The deflection y, i.e., the vibration amplitude, along the beam is  
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Hence, from Eqs. (2.15) and (2.26a), the resonance frequency of a rectangular cantilever 

beam is calculated as 

ρπ
λ

π
ω E

L
Hf nn

n 2

2

1222
==  .      (2.27) 

For a simple rectangular cantilever beam, the values of λn are as follows:  

λ1 = 1.875, λ2 = 4.694, λ3 = 7.855, λ4 = 10.996, and for n > 4: λn ≈ (n - ½)π. 

 

2.3 Piezoresistive Cantilever Sensors 

In this section, after a brief introduction to the piezoresistance effect, the sensing 

applications of piezoresistive cantilevers are reviewed. The section is concluded by 

referring to a special application, i.e., using piezoresistive cantilevers for the 

characterization of nano/micro-jets.  

 

 



 17

2.3.1 Piezoresistance Effect 

As briefly mentioned before, piezoresistance is a characteristic of conductive and semi-

conductive materials, attributed to the change of the electrical resistance with an applied 

stress (strain). The phenomenon of the resistance change of metallic wires with elastic 

strain has been investigated since the mid-19th century, after the pioneering works of 

Thomson1 [87, 88] followed by, particularly, Bridgman’s works on the piezoresistance 

measurements of polycrystalline materials [38, 89]. In the mid-20th century, after the 

theoretical modeling of the energy level structure in diamond crystals (e.g., silicon and 

diamond), it was predicted that the energy gap between the valence and conduction bands 

would increase with the decrease of the atomic spacing and, therefore, with pressure [90, 

91]. This prediction was confirmed by observation of the resistance change of p-n 

junctions with pressure in germanium [92], and especially by Smith’s work on the 

piezoresistance effect in germanium and silicon [40]. Being the dominant material in the 

semiconductor industry, silicon has been comprehensively studied as a prominent 

piezoresistive material [42, 43, 93-96]. Also, besides crystalline silicon, the piezoresistive 

properties of other microelectronic materials have been exploited and characterized, such 

as poly-Si [97, 98], GaAs [99-101], GaN [102], SiC [103], poly-C [104, 105], and 

amorphous materials [106, 107].  In addition, with the development of non-conventional 

micro-fabrication techniques, the piezoresistance effect in carbon nanotubes [108] and 

thin metal films [41] has been recently investigated. These materials are demonstrated to 

be viable alternatives in piezoresistive detection [109-111].   

 

                                                 
1 Also known as Lord Kelvin 



 18

The change of resistance with strain is partly due to geometrical changes in the deformed 

body and partly due to physical changes within the material itself. Together these two 

effects are described by the strain gauge factor γ  [112]: 

ε
ρρν

ε
γ

Δ
Δ

++=
Δ

Δ
≡ ooRR )21( ,     (2.28) 

where Ro is the initial resistance, ΔR=R-Ro is the resistance change resulting from the 

strain change Δε, ν is the Poisson’s ratio, and ρo and Δρ are the electrical resistivity and 

the change of resistivity resulting from Δε, respectively. Whereas the first term on the 

right-hand side of Eq. (2.28) is the dominant factor in metals, the piezoresistance of 

semiconductors is overwhelmingly determined by the second term. When an isotropic 

monocrystalline semiconductor is subjected to stress, its resistivity ρ becomes a 

symmetric second-rank tensor.  For small stresses, the partial change of each element of 

the resistivity tensor can be approximated from a linear relationship with the stress via the 

fourth-rank tensor π of piezoresistance coefficients [40, 43]: 

∑=
Δ

lk
klijkl

o

ij

,
σπ
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.       (2.29) 

Here, σkl is the stress tensor, which implies that the resistance change depends on the 

orientation of the stress too. In cubic materials (e.g., Si), the resistivity is a scalar ρo, and 

π can be simplified to a six-element column matrix [40, 80]. Moreover, for relatively 

long and narrow resistors, the expression for the resistance change can be simplified by 

casting the piezoresistance matrix into only two coefficients. These coefficients represent 

the piezoresistance when the stress is oriented either in parallel, πl [113], or perpendicular, 

πt [114, 115], to the electrical current flow direction: 
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where σl and σt are, respectively, the longitudinal and transverse components of the stress 

with respect to the current direction. The piezoresistance coefficients, particularly in 

silicon, depend not only on the direction of the applied stress, but also on the operating 

temperature as well as the material doping [93, 116]. To reduce the effect of local 

temperature variations on the measured resistance change, i.e., to have a first-order 

temperature compensation, the piezoresistors are usually arranged in a Wheatstone bridge 

configuration [117, 118]. 

 

To apply Eq. (2.30) in a piezoresistive cantilever, the piezoresistor must experience a 

considerable net compressive (tensile) stress. To meet this requirement, the piezoresistive 

cantilever can be formed by stacking two distinct lateral layers, namely, structural and 

transducer layers. In this way, each layer experiences a net stress opposite in direction to 

the other layer; hence, the compressive and tensile stresses across the cantilever beam do 

not cancel out each other in that layer.  

 

2.3.2 Piezoresistive Cantilever Applications 

Because of their self-sensing characteristic and CMOS integrability, piezoresistive 

cantilevers have been successfully commercialized, especially in applications such as 

accelerometers (Sensonor [119], Endevco [120]), AFM probes (Piezolever® from Park 

Scientific [121, 122]), and sensing modules (Cantion [123]).   
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Piezoresistive cantilevers have been used either in the direct measurement of force/stress 

and their associates such as acceleration, deflection, and bending, or in the measurement 

of general cantilever properties such as resonance frequency and mass via a piezoresistive 

detection scheme. This section summarizes the applications of these measurement 

approaches. 

 

A. Force sensing - static mode 

Inspired by the available strain gauges [8], the first application of semiconductor 

piezoresistive cantilevers as force sensors was in microphones [10]. In the early piezo-

resistive sensors, the cantilever consisted of two layers of semiconductor attached 

together with an insulating cement to form a bimorph unit, where each layer would sense 

a net stress opposite in direction [10, 113]. Besides the microphone application, bimorph 

piezoresistive cantilevers were used in accelerometers [124], displacement, force and 

torque sensors [113], and as pressure sensors in intracardiac catheters, the first reported 

biomedical application of silicon piezoresistance [11]. Later on, with the development of 

semiconductor technology, the bimorph approach was replaced with designs based on 

diffused piezoresistors [114, 125]. The first batch-fabricated silicon accelerometers were 

presented in the late 1970s, at the onset of  integrated-circuit technology [12]. Eventually, 

the invention of AFM opened a new horizon for the piezoresistive cantilever application 

[45].  

 

As presented by Eq. (2.19), for a given applied force on the cantilever tip, the induced 

stress increases with decreasing cantilever thickness. In contrast, from Eq. (2.21), for a 
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given tip deflection, the induced stress increases with increasing cantilever thickness. 

Therefore, for the direct force sensing applications, e.g., in force, torque, pressure sensors 

or accelerometers, the piezoresistive cantilever is desired to be thinner. In the topography 

applications, e.g., AFM, there are two main approaches [59]: 1) contact imaging, when 

the cantilever is operated in the repulsive atomic force region and its deflection is sensed; 

2) non-contact imaging, when the cantilever is operated in the attractive atomic force 

region and the force is sensed directly. In non-contact imaging, too, the piezoresistive 

cantilever is desired to be as thin as possible. In contact imaging, however, there is a 

trade-off between the piezoresistive cantilever sensitivity, which increases with the 

cantilever thickness, and performing a non-destructive measurement. Here, a thicker 

piezoresistive cantilever has a greater sensitivity, but also a greater stiffness (see Eq. 

(2.13)); hence, despite the intended gain in sensitivity, applying thicker cantilevers can 

potentially damage the specimen. 

 

The thinnest cantilever reported is an optical cantilever with a thickness of 12 nm [31]; 

however, reaching such small thicknesses is not trivial in piezoresistive cantilevers 

because a piezoresistive cantilever needs at least two separate layers for an efficient stress 

detection. As mentioned before, these layers are either formed by employing the bimorph 

configuration or by using different doped regions. In the latter case, despite the 

undertaken efforts [126, 127], it is practically impossible to scale down the thickness to 

the limit and still maintain separate doped regions.  Hence, the alternative approach in 

minimizing the thickness of a piezoresistive cantilever is to adopt the bimorph 

configuration in a way that the nano-scale transducer layer can be attached to or built 
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over the structural layer. Adopting this approach, e.g., by using epitaxially grown p-

doped silicon over an n-doped region, piezoresistive cantilevers as thin as 100 nm are 

fabricated [82, 128], with force resolutions in the atto-Newton scale at room temperature.  

The same approach has been applied to InAs/AlGaSb heterostructures to fabricate 300 

nm thick III-V piezoresistive cantilevers [129].  

 

To boost the sensitivity, besides decreasing the cantilever thickness, the piezoresistive 

coefficients can be improved. As mentioned before, the conventional methods in 

improving the piezoresistance effect are to change the dopant concentration and to reduce 

the operation temperature. Moreover, the most recent method is to shrink the 

piezoresistive layer to the nano-scale domain, where 2-D and 1-D quantum effects in the 

piezoresistive material also contribute to improving the piezoresistance of the thinned 

layers [130], or nanowires [131].   

 

Finally, utilizing the principle of stress concentration (SC) [1] is another unique approach 

in increasing the sensitivity of piezoresistive cantilevers [132-134]. In this approach, the 

strain energy of the beam is concentrated on the locations that the piezoresistors are 

placed; hence, for a given force, the output signal increases. This topic is revisited in 

Chapter 3.   

 

B. Force sensing - dynamic mode 

A resonant force gauge converts an externally applied force into a shift of resonance 

frequency [135]. In the non-contact scanning mode in AFM, when the tip-sample 
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proximity z is within the range of the van der Waals and electrostatic forces (both 

represented by a net force F), the force gradient of the tip-sample interaction zFk ∂∂=Δ  

alters the effective spring constant [136], and, according to Eq. (2.3), it changes the 

resonance frequency of the cantilever. Depending on the extent of the resonance 

frequency shift, therefore, the amplitude of the applied force can be calculated. This 

method is applicable not only to the piezoresistive cantilevers [49, 121] but also to the 

other detection schemes [15]. 

 

C. Surface stress sensing 

A difference in surface stress at an interface on a plate results in bending toward the side 

experiencing the higher tension. This deflection was first formulated by Stoney [137]. A 

more generally used equation relates the radius of curvature R to the surface stress 

difference Δσ  [138, 139]: 

R
tE
6)1(

2

ν
σ

−
=Δ        (2.31) 

where t is the thickness of the plate, E is the effective Young’s modulus, and ν the 

Poisson ratio. This concept can be used in cantilever sensors: Upon binding ligands to 

receptors, which are covering only one side of a cantilever, the cantilever bends and 

hence experiences a volume stress. Applying this technique, optical cantilevers have been 

repeatedly used in environmental [140] and chemical-biological sensing applications [5, 

7, 21, 23, 141]. Piezoresistive cantilevers also have shown promising results in this 

application [142-145], especially when the beams are made from polymeric structures 

[109, 110].    
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D. Mass sensing 

Based on Eq. (2.3), which describes the resonance frequency of a second-order system, it 

can be derived that 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

k
dk

m
dm

f
df

2
1 .       (2.32) 

Hence, assuming no variations in the spring constant (i.e., dk = 0), a mass change dm will 

result in a frequency shift df. This concept has long been in use for chemical detection 

[146]: Upon interaction of the targeted analyte with a proper coating on the resonator 

surface, the total mass of the resonator changes. Therefore, the resonance frequency 

stabilizes at a new value. Although first used to determine the spring constant of 

cantilevers [147], this technique in conjunction with cantilevers has formed a very 

reliable sensing method [3, 148-150], especially when the detection mechanism is 

integrated with the sensor by means of the piezoresistive scheme [6, 140, 151-153]. 

 

Cantilever mass sensors benefit from two distinct advantages over other resonant mass 

sensors (e.g., QCM, TSMR and SAW [154, 155]), namely, higher sensitivity and the 

possibility of implementation in arrays. The smaller mass of the cantilevers ensures the 

advantage of higher sensitivity, while the smaller size of the cantilevers makes it possible 

to implement arrays of cantilevers in a limited area, especially when the read out is 

integrated with the sensors, as in the case of piezoresistive cantilevers [49]. For resonant 

sensors, the ultimate reported mass detection sensitivity is in the ranges of  zeptogram 

[156, 157] and attogram [158], while the mass sensitivity of piezoresistive cantilevers 

typically is in the picogram range [6, 151, 159]. 
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The quality factor, Q, is an important parameter in resonant cantilever sensors for both 

mass sensing and force sensing applications. To have a clearly detectable frequency shift, 

the new resonance frequency should be completely distinguishable from any previous 

resonance traces at that frequency (see Figure 2.2). The minimum detectable frequency 

shift Δf can be described in proportion to the resonator half-power bandwidth Δf-3dB, 

dBfrf 3−Δ=Δ ,        (2.33) 

where r defines the proportionality ratio; hence, using Eq. (2.11), it can be derived that 

the resonator’s frequency resolution is inversely proportional to Q 

Q
r

f
f

=
Δ .        (2.34) 

  
In other words, it is ultimately desirable to have the resonance spectrum in the shape of 

an extremely confined peak at the resonance frequency (i.e., a Dirac’s Delta function). 

This spectral characteristic becomes even more desirable after considering the effect of 

 
Figure 2.2. Shift in resonance frequency as the result of mass change: Δω, the 
shift in resonance frequency due to a mass change, is more apparent in the 
resonator with a higher Q, i.e. the one with sharper peaks. 
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noise on the variation of resonance peak.  In practice, based on the definition of the 

quality factor, a higher level of sharpness in the resonance spectrum is achieved with a 

higher Q. Hence, it is an objective to optimize the cantilever geometry to obtain the 

maximum quality factor in the resonance mode of interest. This objective is pursued in 

this work and discussed in more details in Chapter 5. 

 

2.3.3 Special Application: Micro/Nano-Jet Characterization 

Conventional metrology techniques in the characterization of liquid flows, in particular 

jet streams, are mainly the particle image velocimetry (PIV) [160-162] and the hot-wire 

anemometry (HWA) [163, 164]; however, when the jet diameter is shrunk to 10 μm and 

less, the accuracy of these conventional techniques is questionable.  In the micron and 

submicron jet domains, not only is the laser wavelength in PIV comparable or larger than 

the jet diameter, but also the tracing particles [160] can clog the jet nozzle. On the other 

hand, the existing hot-wire anemometers, even when miniaturized [164], are still larger 

than the micro/nano jet columns, so they cannot be fully immersed into the jet stream, 

especially in the liquid flows.  

 

Utilizing piezoresistive sensors is another approach for measuring the flow characteristic 

[165-167]. Although, unlike in PIV, placing a cantilever in front of the jet will disturb the 

flow stream (i.e., it is an intrusive diagnostic investigation), a piezoresistive cantilever, 

because of its integrated read-out mechanism, is a viable alternative for characterizing jet 

flows in the micro/nano domains [168]. Since the liquid and gaseous jet can dramatically 

change the temperature along the cantilever, the measurement will be more reliable if the 
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piezoresistors are implemented in a Wheatstone bridge to have first-order temperature 

compensation.  

 

Figure 2.3 shows a transverse scan profile of a piezoresistive cantilever over a liquid jet 

steam ejected from a 10 μm×10 μm square nozzle at a pressure of 3.8MPa across the 

cantilever with a speed of 0.7 μm/s [168]. The jet impinges on the cantilever at 50 μm 

distance from the beam free end. The distance between nozzle and cantilever is 

approximately 480 μm. The employed cantilever has a deflection sensitivity of 1.01 

mV/μm at 1V bias.  

 

A major criterion in selecting a piezoresistive cantilever for the micro-jet metrology is the 

force sensitivity of the cantilever. The jet velocity v is proportional to the impingement 

force on the cantilever, F, [169]: 

 

 
Figure 2.3. Transverse scan of a piezoresistive cantilever over liquid jet [168].  

 
 



 28

ρjetm AC
Fv = ,       (2.35) 

where Ajet is the size of the impingement area, ρ is the fluid density, and Cm is a 

correction factor that accounts for the portion of the total momentum that is transferred to 

the cantilever (ideally Cm = 1, when the total jet momentum is transferred to the 

cantilever). Using Eq. (2.17), F is extracted based on the measured stress and the 

impingement location. In Eq. (2.30) the amount of resistance change corresponds to the 

induced stress given by Eq. (2.17). In practice, the stress calculation is usually bypassed 

and the cantilevers are calibrated by recording the force gauge factor, i.e., the resistance 

change versus the applied force. The force preferably should be applied at the same spot 

as the jet impingement location; otherwise, using Eq. (2.14), the force gauge factor 

should be corrected. 

 

As mentioned before, a common approach to improve the force sensitivity of a cantilever 

is to thin the beam, i.e., to reduce its spring constant. In this case, however, reducing the 

beam stiffness results in delicate devices that are not suitable for harsh-environment 

testing, e.g., interaction with the jet streams. Moreover, for a given force, a smaller spring 

constant means a larger deflection, thus potentially operating the device in its nonlinear 

region. Also, after the jet impingement, the presence of the surrounding liquid layer [168] 

can affect the sensitivity of ultra-soft cantilevers.  To address these issues, a new type of 

cantilever, highly sensitive yet stiff enough, is introduced in Chapter 3.    
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CHAPTER 3 

STRESS CONCENTRATING CANTILEVER 
 
 
 

The focus of this chapter is on modifying piezoresistive cantilevers for an optimum force 

sensing in static mode. To this end, a new technique in utilizing the stress concentration 

in cantilevers is introduced. In general, the force sensitivity of a piezoresistive cantilever 

can be described by 3 partial sensitivity terms associated to the transduction of a) S1: 

force F to deflection z, b) S2: deflection to stress σ , and c) S3: stress to relative resistance 

change dR/R, 

321 SSS
d

RdR
dz
d

dF
dzS ××=××=

σ
σ  .     (3.1) 

S3 depends only on the piezoresistive coefficients and the piezoresistors arrangement [43]. 

In a simple cantilever beam subjected to a transverse point force F, as described in 

Chapter 2 by Eq. (2.17), the longitudinal stress is given [81] 
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where L, W, and H are the cantilever length, width, and thickness, respectively, and xf is 

the location of the force exertion point on the beam. Inside the cantilever, z represents the 

distance from the neutral axis (z ≤ H/2). Based on Eq. (3.2) the maximum longitudinal 

stress occurs on the surface (i.e., z = ±H/2) and its magnitude increases toward the 

clamped edge of the beam (i.e., x = 0). In general, according to Eq. (2.16) from Chapter 2, 

the maximum longitudinal stress is inversely proportional to the radius of bending 

curvature [1]. In other words, with a point force applied on the cantilever tip, the 

maximum induced stress increases by decreasing the beam stiffness [81]. In 
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piezoresistive cantilevers the conventional approach in improving the force sensitivity is 

to reduce the stiffness by making the beams thinner, i.e., increasing S1 [128]; however, 

despite the effectiveness of this approach, the resulting reduction of the resonance 

frequency overshadows the sensor performance. Moreover, decreasing the beam stiffness 

may increase the fragility of the force sensor to survive harsh-environment operations 

[170]. Finally, for a given force, a smaller cantilever stiffness amounts to a larger 

deflection, potentially causing a nonlinear sensing characteristic by driving the cantilever 

into its nonlinear bending region.  

  

In a piezoresistive cantilever, however, instead of increasing the stress through the entire 

beam volume, it is possible to concentrate the strain energy only in fractions of the beam 

that the sensing elements are located; in other words, increasing S2 without decreasing the 

overall thickness of the beam. The two approaches previously reported in this regard are 

either to make the cantilever locally thinner in the piezoresistors region [1, 132, 133], or 

to etch holes through the beam next to the piezoresistors [171]. The disadvantage of the 

former approach is the decrease of the cantilever stiffness, while the latter approach does 

not significantly improve the sensitivity. 

 

The proposed design in this chapter combines both approaches by concentrating stress 

through fully suspended beams on the cantilever surface. In the presented scheme, the 

sensitivity S2 is increased without sacrificing S1.  
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3.1 Theory of Stress Concentrating Cantilevers 

As mentioned in Chapter 2, in a simple cantilever beam, a flexural bending introduces a 

longitudinal stress σx along the beam, which is defined by  

ρ
σ zE

x = ,        (3.3) 

where ρ is the radius of bending curvature, E the Young’s modulus, and z the distance 

from the neutral axis. Equation (3.3) indicates that the absolute magnitude of the stress σx 

increases linearly with distance z form the beam neutral axis, thus the maximum stress 

appears on the cantilever surface. Hence, it is desirable to place the stress sensing 

elements at a location as far as possible from the neutral axis. We call such location the 

sensing surface. Alternatively, the same objective can be accomplished by driving the 

neutral axis away from the sensing surface. This goal is achieved in this work by forming 

a void underneath the sensing area. The void is extended across the beam and it is 

asymmetrical to the neutral axis by being closer to the sensing surface (see Figure 3.1). 

By using such a configuration not only is the neutral axis pushed away form the sensing 

surface, but also the presence of the void results in a stress concentration in the adjacent 

areas. Referring to Eq. (3.3), applying the proposed approach affects both z and ρ in such 

a way that leads to further increase of σx. Figure 3.1 illustrates the effect of void location 

on the neutral axis position. When the void is centered with respect to the beam thickness, 

the neutral axis stays at the same level as for the rest of the cantilever (Figure 3.1(a)). By 

placing the void closer to one surface, the neutral axis moves toward the opposite surface 

(Figure 3.1(b)). In the extreme case, the void is at an infinitesimal distance from the top 

surface and can be considered as a notch. In this case, the neutral 
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axis is in its maximum recession and located at the center of the under-notch section of 

the beam (Figure 3.1(c)). 

 

A general schematic of stress concentrating (SC) cantilevers is shown in Figure 3.2. In 

this diagram, a series of parallel beams has bridged the cantilever notch, next to the 

clamped end. We simply refer to these parallel beams as SC beams, and the cantilever 

that utilizes SC beams as SC cantilever. In this work, applying the term SC beam refers to 

a class of stress concentrating elements that includes both beams and wires. In the rest of 

 
Figure 3.1. Illustration of the stress concentration principle on the cross section of 
three cantilevers with: a) symmetrical void, b) asymmetrical void, and c) the 
ultimate asymmetry in the void positioning. 

 
 

 

 
 

Figure 3.2. Schematic of a stress concentrating (SC) cantilever; the SC beams are 
suspended over the notch near the clamped end. The support is highlighted in 
green. 
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this chapter the effectiveness of the proposed cantilever scheme is examined through both 

simulation and measurement.  

 

In the finite element simulations, performed with COMSOL Multiphysics 3.3, the 

cantilever length L, width W, and thickness H are 350, 70 and 20 μm, respectively, unless 

stated. In these simulations, the structural material of the cantilevers is considered to be 

only crystalline silicon with density, modulus of elasticity and Poisson’s ratio of ρ = 2329 

kg/m3, E = 170 GPa, and ν = 0.064, respectively. The finite element simulations are 

performed using tetrahedral meshing elements with a linear solver in the COMSOL 

module of 3-D Structural Mechanics. As a boundary condition, the clamped end of the 

cantilever experiences no movement. The cantilever bending is simulated by applying a 

line-force on the lower edge of the free end of beam. For simplicity in the calculations, 

the notch is assumed to have a rectangular geometry with perpendicular sidewalls and it 

is characterized by three parameters, namely, the notch depth d, the notch length Lb, and 

the notch distance from the cantilever clamped end, Lc (see Figure 3.2). Figure 3.3 shows 

an example of the applied meshing in the simulation. A plot of simulation result for the 

induced stress along a typical SC cantilever and the SC beams is presented in Figure 3.4. 

 

The advantage of the proposed stress concentration technique is illustrated in Figure 3.5, 

in which the normalized simulated cantilever stiffness and the average longitudinal stress 

acting on the SC beam are depicted as functions of the normalized notch depth. In the 

corresponding finite element simulations, the length, width and thickness of the SC 

beams are Lb = 10 μm, Wb = 2.5 μm, and Hb = 0.5 μm, respectively. The SC beams are 
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located at Lc = 5 μm from the clamped edge of the cantilever. The spacing between 

adjacent SC beams is 2.5 μm. The cantilever is deflected by applying a constant point 

force, F = 1 mN, on its free end (tip). The calculated cantilever stiffness and the stress 

acting on the SC beams are normalized to the corresponding values for a solid cantilever 

(i.e., a conventional cantilever with no notch), which has the same thickness of 20 μm. 

For both cantilever types (i.e., SC and solid cantilevers), the maximum longitudinal stress 

is monitored at 10 μm distance from the clamped edge, coinciding with the middle of 

 

 
 

Figure 3.4. Plot of longitudinal stress σx, induced on the surface of cantilever and 
SC beam, versus the distance from the clamped edge. Inset shows the distribution 
of σx for simulated cantilever deflection.

 
Figure 3.3. Example of meshing used in finite element simulations. 
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the SC beams. This point is where the stress acting on an SC beam is equal to the average 

of stress acting over the entire length of the SC beam. Based on the simulation results, the 

induced stress in the SC cantilever is considerably larger than the corresponding value in 

the solid cantilever, provided h, i.e., the remaining thickness under the notch, is not 

smaller than the thickness of the SC beams. This gain comes at the price of a less than 

50% decrease in stiffness. This advantage is also shown in Figure 3.6, in which the 

normalized longitudinal stress and stiffness of the same SC cantilevers are plotted as 
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Figure 3.6. Ratios of the simulate stiffness (rectangles) and longitudinal stress 
(circles) in a 20 μm-thick SC cantilever to the corresponding values in a solid 
cantilever with the thickness of h (see Figure 3.2) as a function of h. A constant 
force of 1 mN is applied on the tip. 
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Figure 3.5. Normalized simulated average stress acting on SC elements and 
cantilever stiffness as a function of normalized notch depth d/H for 1 mN force 
applied on the tip. The thickness of the SC beams is 2.5% of the cantilever 
thickness (H = 20 μm). 
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functions of the under-notch thickness h. Both cantilever types have the same length and 

width as in the previous case, but here, stress and stiffness are normalized with respect to 

the corresponding values for a solid cantilever with a thickness equal to the under-notch 

thickness in the SC cantilever (h). As shown in Figure 3.6, as long as h is larger than 5 

μm, the SC cantilever experiences a larger stress compared to the solid cantilever. Also, 

despite comparatively smaller stress in the SC cantilever with h < 5 μm, the stiffness of 

the SC cantilevers is significantly larger than that of the solid cantilevers. 

 

The remainder of this section concentrates on the variation of stiffness and induced stress 

in an SC cantilever with respect to three sets of parameters: a) the notch depth and length, 

b) the SC beam dimensions, and c) the cantilever dimensions. Here, the term stiffness 

refers to the cantilever spring constant when a constant point force is applied on its tip, 

and the term stress refers to the maximum longitudinal stress induced at the middle of the 

SC beam length. 

 

3.1.1 Notch Effect 

The simulated effects of the notch location Lc and its length Lb (i.e., the SC beams length) 

are summarized in Figure 3.7. The notch depth is considered to be constant and equal to 

15 μm. The SC beams thickness, width, and spacing are 1, 2.5, and 2.5 μm, respectively. 

The simulation results indicate that a closer proximity of the notch to the clamped edge, 

i.e., a smaller Lc, would cause a larger induced longitudinal stress in the SC beams, but 

also a smaller cantilever spring constant. On the other hand, when the notch length Lb 

increases, both stress and stiffness will decrease. However, as shown in Figure 3.7, the 
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influence of Lb on the stress is less pronounced for longer SC beams. Also the simulation 

data presented in Figure 3.7 shows that when placing the notch slightly before the 

clamped edge of cantilever (Lc < 0), the compromise in stress is insignificant. This 

characteristic can be advantageous compared to regular cantilevers in cases that the 

clamped edge cannot be well-defined due to fabrication inaccuracy. In the corresponding 

simulations, as a boundary condition the cantilever has no movement at the clamped 

edge; however, for the case that Lc is negative, the movement of the cantilever is fixed 
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Figure 3.7. Simulation results for (a) induced longitudinal stress and (b) cantilever 
stiffness for different notch locations Lc and notch lengths (i.e., SC beam lengths) 
Lb. The cantilever length, width and thickness are 350, 70, and 20 μm, 
respectively. 
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not only at distance Lc from the support edge, but also along the extension of the 

cantilever that rests over the support, between Lc and the support edge (see Figure 3.8). 

Overall, to optimize the force sensitivity, i.e., to maximize the amount of induced stress 

for a constant force, the notch must be short in length and positioned as close as possible 

to the cantilever clamped end. 

 

The effect of the notch depth d is revisited in Figure 3.9. Increasing the notch depth, as 

previously shown in Figure 3.5, has a profound effect in increasing the stress; in contrast, 

increasing the notch length, as observed in Figure 3.7, does not significantly affect the 

amount of induced stress for longer SC beams. As shown in Figures 3.7 and 3.9, for 

different notch depths and notch locations, increasing the notch length causes an almost 

linear decrease in the cantilever stiffness. 

 

3.1.2 SC Beam Effect 

In addition to the effect of the SC beams length on stress and stiffness, which is 

previously discussed as the effect of the notch length, the SC beams contribution can be 

 

 
Figure 3.8. Example of a simulation case with a negative Lc (Lc = -15 μm). The 
color bar shows the intensity of longitudinal stress σx across the SC cantilever. 
The cantilever length, width and thickness are 350, 70, and 20 μm, respectively. 
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investigated in more aspects including the effect of the SC beams thickness, width, count 

and arrangement.  According to the simulation results, the SC beams arrangement has a 

small influence on the average stress and stiffness; hence, the effects of SC beams width 

and count can be summarized together as the effect of SC beams net width. 

 

As depicted in Figure 3.10, reducing the SC beams thickness leads to a considerable 

decrease in the cantilever stiffness, but an exponential increase in stress. In the 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

SC Beam Length (um)

St
re

ss
 (G

Pa
)

lc = 10 um; d = 15 um

lc = 10 um; d = 10 um

lc = 10 um; d = 5 um

 
(a) 

 

0

150

300

450

600

0 10 20 30 40

SC Beam Length (um)

St
iff

ne
ss

 k
 (N

/m
)

lc = 10 um; d = 15 um

lc = 10 um; d = 10 um

lc = 10 um; d = 5 um

 
(b) 

 
Figure 3.9. Simulation results for (a) induced longitudinal stress and (b) cantilever 
stiffness for different notch depths d and notch lengths (i.e., SC beam lengths) Lb. 
The cantilever length, width and thickness are 350, 70, and 20 μm, respectively. 
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corresponding simulations d, Lb, and Lc are 15, 10 and 5 μm, respectively. The SC beams 

width and spacing are 2.5 μm. The cantilever thickness is 20 μm, as before. Also 

observed in Figure 3.10, the thickness of the SC beams will be significantly more 

influential if it is less than 10% of the cantilever thickness. In other words, to maximize 

the stress enhancement, the SC beams should be as thin as possible; however, this 

advantage comes at the price of a considerable reduction in the cantilever stiffness.  

 

Similarly, reducing the number of SC beams, i.e., reducing the net width of the SC beams, 

will cause an increase in the induced stress but a decrease in the stiffness. Cantilevers 

with identical dimensions but different numbers of SC beams are compared in Figure 

3.11. In the corresponding simulations, the SC beams specifications are the same as in the 

case for Figure 3.10, with the SC beams thickness being equal to 1 μm. 
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Figure 3.10. Variation of stiffness (squares) and longitudinal stress (circles) 
versus SC beams thickness in an SC cantilever. The thickness of SC beams is 
normalized to the cantilever thickness H = 20 μm. The number of SC beams 
considered in the simulation is 14. 
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3.1.3 Cantilever Dimensions Effect 

In this section the effect of cantilever dimensional parameters, i.e., length L, width W, and 

thickness H, in both solid and SC cantilevers are compared. To this end, the simulation 

results for the maximum stress at half length of the SC beams are compared with the 

corresponding results for a conventional solid cantilever beam at exactly the same 

longitudinal location. Also, the validity of simulation results for the solid cantilever is 
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Figure 3.11. Simulated variation of (a) longitudinal stress and (b) stiffness versus 
the number of SC beams in SC cantilevers. The cantilever length, width and 
thickness are 350, 70, and 20 μm, respectively. 
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checked with analytical predictions. As expressed by Eq. (3.2), for a given force F 

applied on the cantilever tip, the maximum induced longitudinal stress σx at a distance x 

from the clamped edge of a solid cantilever is obtained by 

F
WH

xL
x 2

)(6 −
=σ .       (3.4) 

For the same loading condition, the cantilever stiffness (spring constant) k is defined with 

respect to Eqs. (2.13) and (2.15):  

3

4
1

⎟
⎠
⎞

⎜
⎝
⎛=

L
HEWk ,       (3.5) 

where E is the modulus of elasticity. 

 

A. Effect of cantilever width 

In the corresponding simulations for both types of cantilevers the values of L and H are 

350 and 20 μm, respectively. The SC beams are 10 μm long, 1 μm thick, and 2.5 μm 

wide. They are located at 5 μm from the clamped edge (Lc = 5 μm) and equally spaced 

from each other with 2.5 μm gap in between. The study of the effect of cantilever’s width 

is conducted with changing W in 10 μm increments; in a way that each increment is 

accompanied by introducing two additional SC beams. For both cantilevers the stress is 

observed at 10 μm from the clamped edge, i.e., at the half length of the SC beams, while 

a force of 1 mN magnitude is applied on the cantilever tip. Simulation results of solid 

cantilevers are in agreement with Eq. (3.4), which shows that in a solid cantilever the 

amount of induced stress is inversely proportional to W. The same trend is recognized in 

Figure 3.12 for SC cantilevers, but with an 8 times larger stress magnitude.  
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B. Effect of cantilever thickness  

Equation (3.4) shows that for a solid cantilever, thickness is the most effective 

dimensional parameter in inducing a longitudinal stress. In the corresponding simulations 

the cantilevers are scaled vertically in 5 μm steps, in such a way that the thickness ratio 

of the SC beams to the cantilever remains constant at 5%. Also, the ratio of the notch 

depth to the cantilever thickness is maintained at 75%. The width, length and location of 
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Figure 3.12. Effect of cantilever width on (a) longitudinal stress and (b) stiffness 
in SC cantilevers (diamonds) and solid cantilevers (squares) for an applied force 
of 1 mN on the cantilever tip. The cantilever length and thickness are 350, and 20 
μm, respectively. 
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SC beams are the same as in the previous case, while both types of cantilevers are 350 

μm long and 70 μm wide. As depicted in Figure 3.13, the variation of stress in both 

cantilevers closely follows the trend predicted by Eq. (3.4), while the SC cantilever 

experiences about an order of magnitude larger stress than the solid cantilever. The small 

discrepancy observed between the analytical and simulation results in Figure 3.13 is 
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Figure 3.13. Effect of cantilever thickness on (a) longitudinal stress and (b) 
stiffness in SC cantilevers (diamonds) and solid cantilevers (squares) for an 
applied force of 1 mN on the cantilever tip. The cantilever length and width are 
350, and 70 μm, respectively. 
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because of simplifying assumptions made in the analytical derivation, where the 

thickness of the cantilever beam is assumed to be negligible compared to its length.  

 

C.  Effect of cantilever length  

According to Eq. (3.4), in a solid cantilever σx is directly proportional to the cantilever 

length. The induced stress in an SC cantilever can be compared to a solid cantilever in 

two ways: depending on whether the SC beams length is maintained constant or scaled 

with the cantilever length, two sets of simulations can be performed. In the first set, the 

SC beams length Lb and their location Lc are constant. In the second set, Lb and Lc are 

changed in proportion to the cantilever length L, so that the ratios of L/Lb and L/Lc are 

maintained constant. In the corresponding simulations, the SC beams are 1 μm thick, 2.5 

μm wide, and they are spaced equally with gaps of 2.5 μm. In the first set of simulations, 

the beams are 10 μm long and located 5 μm from the cantilever clamped edge. In the 

second set, the ratios are fixed at Lb/L = 2/70 and Lc/L = 1/70, e.g., for a 350 μm long 

cantilever, the SC beams are 10 μm long and located 5 μm from the clamped edge. In 

both sets of simulations, the maximum longitudinal stress at half length of the SC beams 

is recorded and compared to the corresponding stress value in a solid cantilever, observed 

at the exact same longitudinal location. Results of the first simulation set, presented in 

Figure 3.14, indicate that not only increasing the cantilever length leads to an increase in 

the induced stress, but also there is an additional enhancement when the length ratio of 

SC beams to the cantilever is reduced. This effect, which has been mentioned before for 

the case of the notch length, results in a larger slope of stress versus cantilever length. On 

the other hand, in the second set of simulation, in which the length of SC beams is scaled 
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with the cantilever, both types of cantilevers follow similar trends (see Figure 3.15). 

Similar to Figure 3.13, for the case of solid cantilevers, a slight discrepancy is observed 

in Figure 3.15 between the simulation and analytical results, which has been associated 

with the simplifying assumption made in the analytical derivation.  

 

Overall, based on the simulation results presented in this section, the influence of 

cantilever dimensions is the same for both solid and SC cantilevers, but accounting for 

different amounts of stiffness and normalized longitudinal stress.  
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Figure 3.14. Effect of cantilever length on (a) longitudinal stress and (b) stiffness 
in SC cantilevers (diamonds) and solid cantilevers (squares) for an applied force 
of 1 mN on the cantilever tip. The location of notch and the SC beams length are 
invariable. The cantilever width and thickness are 70, and 20 μm, respectively. 
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3.2 Fabrication 

The cantilevers are fabricated utilizing bulk micromachining techniques. Using multi-

layer wafers as the starting material, e.g. silicon on insulator (SOI) or epitaxially grown 

(Epi) silicon wafers, the doping regions, metal lines, and eventually, the cantilevers’ 

geometry are defined on the device layer, while the cantilevers are prepared for the final 
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Figure 3.15. Effect of cantilever length on (a) longitudinal stress and (b) stiffness 
in SC cantilevers (diamonds) and solid cantilevers (squares) for an applied force 
of 1 mN on the cantilever tip. The notch location and SC beam length vary in 
proportion to the cantilever length. The cantilever width and thickness are 70, and 
20 μm, respectively. 
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release after the back side patterning and etching the handle layer [47, 172]. To provide 

higher piezoresistive coefficients, the doping of the piezoresistors is chosen as p-type, 

which necessitates using n-doped device layers. In Epi wafers, the combination of the n-

doped device layer and p-doped handle layer provides the possibility of using the 

electrochemical etch-stop technique to form a silicon membrane on the wafer surface 

[173]. The thickness of this membrane, which is the same as the intended thickness of 

cantilevers, is defined by the thickness of the device layer. A brief overview of the 

cantilever fabrication is presented in Figure 3.16. The complete cantilever fabrication 

process flow is presented in Appendix A. 

 

Utilizing a new process module right after defining the doped regions, embedded 

clamped-clamped stress concentrating beams and wires, with dimensions down to the 

submicron domain, are fabricated (see Figure 3.17). This process module can be 

performed using UV lithography (e.g., i-line at 365 nm) and requires only a single mask; 

as a result, the beams and wires can be batch-fabricated on a wafer-level scale. The 

fabrication of the SC elements starts with a thermal oxidation of the wafer surface, 

followed by pattering parallel openings on the oxide layer in <110> direction. Then, 

using an inductively coupled plasma (ICP), the oxide layer and the underlying silicon are 

etched to form shallow trenches in the device layer (with a silicon etch depth of less than 

1.2 μm). Next, another thermal oxide layer is grown to conformally cover the sidewalls 

and bottom of the etched trenches. The purpose of growing the latter oxide layer is to 

protect the silicon bars in between the trenches during the forthcoming etching steps. The  
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Figure 3.16. General process flow for fabrication of cantilevers using bi-layer 
silicon wafers, e.g., SOI and Epi wafers: (a) cross section of a bi-layer wafer with 
an oxide layer on top; (b) doping of desired regions using the oxide layer as a 
mask; (c) removal of doping mask and deposition of insulation layer, followed by 
opening windows for electrical contacts; (d) deposition, patterning and sintering 
the metal layer; (e) deposition of passivation layer, PECVD SiO2; (f) deposition 
of KOH masking layers (PECVD SiNx and SiO2) on the wafer back-side, and 
subsequent patterning; (g) Backside anisotropic etching in KOH solution; (h) 
release of final structure by front-side dry etching. 
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Figure 3.17. Single mask fabrication process flow for SC elements: (a) top-view 
of mask layout for trench etching; cross-sections after (b) etching shallow 
trenches, (c) covering sidewalls and bottom of the trenches with thermal oxide; 
(d) deepening the trenches using deep reactive ion etching (DRIE), without any 
significant decrease in the sidewall oxide thickness, (e) releasing the beams 
(highlighted with the rectangle) by immersing the sample in 6 molar KOH 
solution, (f) additional anisotropic etching, inverting the etch profile and releasing 
nanowires (highlighted with the circle)  inside the clad oxide layer; (g&h) SEM 
micrographs of released SC beams and nanowires, respectively, after removing 
the clad oxide in HF. 
 



 51

SC beams and wires are constructed within these bars; hence, the dimensions of the bars 

(trenches), determine the final dimensions of the beams and wires. 

 

In the next step, using reactive ion etching, the oxide layer on the bottom of the trenches 

is removed. Then, using the Bosch® process in an ICP system, the trenches are further 

deepened into silicon, while no significant decrease is observed in the thickness of 

protecting oxide on the sidewalls. At this point, a portion of the sidewall, indicated in 

Figure 3.18 with d1, is covered with oxide, while over the remaining portion, indicated 

with d2, the bare silicon is exposed. Finally, to release the SC elements, the wafer is 

immersed in a 6-molar KOH solution at 30 ºC for approximately 60 minutes. The etching 

time depends on the spacing G between adjacent trenches as well as the targeted shape of 

the SC elements, i.e., the shape of either a beam or wire. 

 

To have a successful beam release, the following requirement must be fulfilled: 

22dG ≤ .        (3.6) 

 

 
 
Figure 3.18. Etching profile of the released SC beams and wires. To release the 
wires, the pale colored (torquise) areas are removed after the extended etching. 
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By extending the etching time, the etched profile inverts and prismatic wire strands form 

in place of the beams. The cross sections of the released wires are triangular. A wire 

would be released only if 

21 Gd ≤ .        (3.7) 

The widths of the two perpendicular facets of the released wire are d1 and d1/√2 (see 

Figure 3.18). To successfully release the wires as clamped-clamped structures, the length 

of adjacent trenches must be unequal (see Figure 3.17(a)). This way, at the expense of 

detachment and sacrificing the wire along the shorter trench, the wire along the longer 

trench will be released attached to the substrate at both ends. Figure 3.19 shows the 

excursion angle at the clamped end of a released wire, which is approximately 14.5˚. As a 

rule of thumb, based on geometrical analyses on the captured micrographs, it is 

discovered that the difference in the length of adjacent trenches, when placed 

symmetrically, needs to be at least about 8 times larger than the spacing between the two 

trenches. However, since the etching process is time-dependent, a prolonged immersion 

can result in a complete loss of the wires. Also, when releasing beams and wires with the 

 
 

 
 

Figure 3.19. Excursion angle on a released wire. 
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presented technique, because of the anisotropic etching characteristics, the notch floor is 

not even (see Figure 3.20). 

 

In the fabricated cantilevers, after the deposition of an extra passivation oxide layer over 

the metal lines, the released beams and wires were covered with a 0.8 μm-thick oxide 

layer. Figure 3.21 shows an SEM micrograph of a fabricated device, with the SC 

 
 

 
 
Figure 3.21. SEM micrograph of a fabricated SC cantilever; the SC elements 
(covered by the clad oxide) are suspended over the notch, 25 μm from the 
clamped edge. 

 

 
 
Figure 3.20. SEM picture of the uneven trench floor morphology; the released 
wires are suspended over the trench (notch). 
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elements suspended over the notch and covered by a clad oxide layer. Because of 

variations in the thickness of the handle wafer, the clamped edge of the cantilever did not 

coincide exactly with the edge of the back-side-etched cavity; instead, the cantilevers 

were supported by a silicon rim of the same thickness, providing about 8-20 μm spacing 

between the edges of the cantilever and the cavity (see Figure 3.22).  

 

3.3 Measurements and Discussion  

3.3.1 Static Characteristics 

Using a Berkovich tip in a Hysitron TriboIndenter®, different preset forces were applied 

on the free end of the cantilever and the resulting deflections were recorded with sub-

nanometer precision. Meanwhile, the resistance change in the piezoresistors was 

measured by a Keithley 2400 Sourcemeter®. By adjusting the current, the dissipated 

power in the piezoresistors was set at 15 ± 5 μW. 

 

 

 
 
Figure 3.22. SEM picture of a back-side etched cavity showing the back-surface 
of an SC cantilever and the silicon rim. 
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In the first set of measurements, the effect of the SC beam thickness has been 

investigated. As shown before in Figure 3.10, decreasing the thickness of the SC element 

results in an increase of the induced longitudinal stress. Hence, it is expected that a 

cantilever utilizing wires instead of beams as SC elements shows a higher sensitivity for a 

given force. In this regard, Figure 3.23 compares the force sensitivity and the spring 

constant of three SC cantilevers and a solid cantilever. The specifications of the measured 

cantilevers are summarized in Table 3.1. As for the stress concentrating elements, two of 

the compared SC cantilevers have wires with submicron cross-sections, and the third one 

has thicker SC beams. The cantilever with a thinner wire is associated with a higher 

resistance. Figure 3.23 shows that for the thinner SC elements the sensitivity is higher but, 

at the same time, the stiffness is slightly smaller. Since in the cantilevers presented in 

Figure 3.23 only a fraction of the measured resistance is aligned with the longitudinal 

stress (see Figure 3.24(a)), in cantilevers with thicker SC elements a smaller fraction of 

the overall resistance of the piezoresistor experiences the concentrated stress, and hence, 
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Figure 3.23. Relative resistance change as a function of the applied tip force for a 
solid cantilever (triangles), cantilevers with stress-concentrating silicon wires with 
resistance R = 8.4 kΩ (squares) and R = 117 kΩ (diamonds), and a cantilever with 
stress-concentrating beam (circles).   
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(a) 

 
 

 
(b) 

 
Figure 3.24. Layout of two SC cantilevers: (a) transverse fraction of piezoresistor, 
unlike longitudinal fraction, is not aligned with longitudinal stress σx; (b) 
transverse fraction of piezoresistor is by-passed (short-circuited) using metal line. 
 

Table 3.1. Specifications of cantilevers in Figure 3.23. 
 

Cantilever length L 350 μm 
Cantilever width W 70 μm 
Cantilever thickness H 17 μm 
Notch location Lc 25 - 30 μm 
Average notch depth d ~ 10 μm 
SC beam thickness (sidewall) ~ 0.8 μm 
SC beam length Lb ~ 6 μm 
SC beam width 2.5 μm 
SC wire width < 0.5 μm 
SC beams number 14 
SC wires number 20 
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compared to a device with thinner SC elements, the sensitivity is further reduced. This 

issue is an additional reason for the large difference between the measured sensitivity of 

cantilevers with wires and the one with beams in Figure 3.23. The force sensitivity of the 

SC cantilever with thinner wires (R = 117 kΩ) is 5.7 times larger than the sensitivity of 

the SC cantilever with beams.  On the other hand, the force sensitivity of the same SC 

cantilever with wires (R = 117 kΩ) is 8.0 times larger than that of the solid cantilever, 

which is consistent with the simulation results presented in Figure 3.5 for d/H = 0.55, in 

spite of the fact that the silicon wires are covered by the clad oxide layer. It must be noted 

that since in the fabricated cantilevers the resistors are placed in a Wheatstone bridge 

configuration, the measured resistance change of a single resistor is in fact affected by the 

other three resistors as well. However, the data shown in Figure 3.23 represents the 

resistance change of the single piezoresistor that is subjected to stress, whereas the effect 

of the other three resistors, which are not undergoing a stress change, is excluded. To this 

end, the resistance change of the single piezoresistor is extracted from the measured data 

using a ratio that is calculated based on the measured resistances between every two 

nodes on the Wheatstone bridge. 

 

Also, it is observed in Figure 3.23 that the reduction in the SC cantilevers stiffness, 

compared to the solid cantilever, is less than what has been predicted by the simulation. 

This issue can be attributed to the presence of the cavity rim, which results in a decrease 

of the solid cantilever’s stiffness; in contrast, the stiffness of the SC cantilevers, as an 

advantage of this type of cantilevers, is less affected by non-idealities on the clamped end.  
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As indicated in Figure 3.6, based on the simulation results the force sensitivity of the SC 

cantilevers improves with increasing the d/H ratio. The validity of this prediction is 

confirmed by the measurement results depicted in Figure 3.25. To have a fair comparison 

between SC cantilevers with different d/H ratios, in Figure 3.25 the simulated 

piezoresistor values are adjusted to include the effect of the unstressed fraction of the 

resistors. For this reason, the simulation is not in a complete agreement with the data 

shown in Figure 3.6. In addition, the discrepancy between the simulation and 

measurement can also be associated with the presence of dry etching artifacts on the 

sidewalls of the notch (see Figure 3.21), an uneven trench floor, the difference between 

the actual and simulated thickness of the SC elements, as well as the difference between 

the actual and assumed piezoresistive coefficients. The piezoresistive coefficient is a 

function of doping [93], and in this case, the simulated doping concentration (performed 

by SSUPREM3) is about 2 x 1018
 cm-3, which may not the same as the actual doping 

concentration.  
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Figure 3.25. Measured (symbols) and simulated (solid lines) relative resistance 
change as a function of applied tip force for d/H ratios of 0.55 and 0.71 in 
cantilevers with stress-concentrating beams. 
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The focus of rest of this section will be only on SC cantilevers utilizing beams as stress 

concentrating elements. The measured cantilevers are 12 μm thick, with SC beams 

located at Lc = 8.5 μm from the cantilever edge. The SC beams are 1.0 μm thick (on the 

sidewall) and the notch is about 6.0 μm deep. Each SC cantilever has 23 SC beams unless 

mentioned. Also, by short-circuiting with a metal line, the effect of the unstressed 

fraction of the resistors canceled (see Figure 3.24(b)). The reason for confining the 

investigation only to the SC beams and not the SC wires is the fact that the cross 

sectional area of the fabricated wires, unlike the beams, were less uniform across the 

wafer, therefore, a fair comparison between many different devices was not possible.  

 

An investigation of the effect of the SC cantilever length on the force sensitivity is 

presented in Figure 3.26. In this comparison all the measured cantilevers are 82 μm wide. 

As it has been shown for a solid cantilever by Eq. (3.4), the amount of induced 

longitudinal stress at a given point x would increase with the increase of cantilever length 

with a constant tip force. The same trend has been also observed in the simulation results 

for SC cantilevers (see Figure 3.14). In practice, for a given force, a larger amount of 

induced stress at point x corresponds to a higher force sensitivity of the cantilever. 

Therefore, if the piezoresistors are located at a fixed distance from the cantilever clamped 

edge, a larger resistance change for a given force corresponds to a larger force sensitivity. 

In this respect, the variation of force sensitivity with length, shown in Figure 3.26, 

follows the same linear pattern as predicted by simulation, presented in Figure 3.14; thus 

the measurement results are qualitatively in agreement with the simulation. 
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The effect of cantilever width on the measured force sensitivity is shown in Figure 

3.27(a), which also compares the sensitivity of solid versus SC cantilevers. In this 

comparison the cantilever lengths are equal L = 450 μm, while the only variable 

parameter is the cantilever width. The measurement results presented in Figure 3.27(a) 

indicate that for a constant tip force, the amount of induced stress in the piezoresistors in 

both SC and solid cantilevers is inversely proportional to the cantilever width. This 
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Figure 3.26. Measured effect of cantilever length on (a) force sensitivity and (b) 
stiffness in SC cantilevers. The location of notch and the SC beams length are 
invariable. All cantilevers are 12 μm thick and 82 μm wide. 
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observation is in agreement with the analytical prediction of Eq. (3.4) and the simulation 

results depicted in Figure 3.12. On the other hand, as shown in Figure 3.27(b), despite 

variation of the cantilever width, the stiffness plots of the SC cantilevers closely follows 

the plots of solid cantilevers.  

 

The effect of the SC beam length on the measured force sensitivity and stiffness are 

shown in Figures 3.28(a) and 3.28(b), with all the measured cantilevers being 450 μm 
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Figure 3.27. Measured effect of cantilever width on (a) force sensitivity and (b) 
stiffness in SC cantilevers (diamonds) and solid cantilevers (squares). All 
cantilevers are 450 μm long and 12 μm thick. 
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long and 82 μm wide. Compared to Figures 3.7 and 3.9, the measurement data shown in 

Figure 3.28(a) are not consistent with the simulation: while the cantilevers with 3 μm-

long SC beams are only slightly superior in force sensitivity over the cantilevers with 6 

μm-long SC beams, unexpectedly the highest sensitivity is observed for the cantilevers 

with the longest SC beams, i.e., the 9 μm-long beams. The difference between the 

simulation and measurement results can be explained by reviewing the fabrication 

process of the SC beams: we have observed that the parts around the middle of an SC 
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Figure 3.28. Effect of SC beams length on (a) force sensitivity and (b) stiffness in 
SC cantilevers. All cantilevers are 450 μm long, 82 μm wide, and 12 μm thick. 
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beam release faster than the parts closer to the clamped ends (see Figure 3.20); hence, 

when most of a 9 μm-long beam is well released, the 3 μm-long beam is still comparably 

thick, whereas the thickness of the 6 μm-long beam is between the other two. As a result, 

the force sensitivity trend shown in Figure 3.28(a) emerges as a trade off between the 

effect of SC beam thickness and the effect of SC beam length. Unlike the force sensitivity, 

the measured cantilever stiffness data (shown in Figure 3.28(b)) are in agreement with the 

simulation results (see Figures 3.7 and 3.9), except for cantilevers with 6 μm-long SC 

beams. The reason for such deviation is not clear; however, it is speculated that variations 

in the cantilever thickness might play a role.  

 

Finally, from the simulation results (see Figure 3.11) it is expected that decreasing the 

number of SC beams causes an increase in the force sensitivity (i.e., induced stress). This 

speculation is confirmed by the measurement results presented in Table 3.2, in which the 

force sensitivity of two identical SC cantilevers, but one with 12 SC beams and the other 

one with 23 SC beams, are compared. In addition to the previously mentioned 

specifications, both cantilevers are 450 μm long and 82 μm wide. The SC beams in both 

cantilevers are identical and 6 μm long.  

 

 
 

Table 3.2. Effect of number of SC beams on the force sensitivity. 
 

Beams number Force sensitivity ΔR/R/F (1/μN) 
23 81.2  10 -6 
12 110  10 -6 
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3.3.2 Noise Considerations 

Noise in a piezoresistive cantilever originates from both electrical and mechanical 

domains [50, 85, 174, 175]. In this regard, the main determining factor in both domains is 

the damping of the system, which is represented by an electrical resistance R in the 

electrical domain, and a mechanical damping coefficient B in the mechanical domain.  

 

The power spectral density of electrical noise, Sv, for a piezoresistor is determined by the 

Flicker noise for lower frequencies f  [176], 

f
fSv

1)( ∝ ,         (3.8) 

and the Johnson noise for higher frequencies [177], 

KTRfSv 4)( = ,       (3.9) 

where K is Boltzmann’s constant and  T is the temperature of the resistor. 

  

As mentioned before, both simulation and measurement results suggest that thinning the 

stress concentrating elements will increase the force sensitivity of SC cantilevers. 

However, for a given length, when a piezoresistor is realized through a thinner and 

narrower beam, its electrical resistance will be larger [178]: 

bb

b

WH
L

R ∝ ,        (3.10) 

and thus the associated Johnson noise will increase. As a result, optimizing the 

piezoresistors (i.e., the SC elements) will always involve a compromise between 

sensitivity and resolution of the SC cantilevers. 
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Previously it was observed in Figure 3.23 that the force sensitivity of an SC cantilever 

utilizing submicron silicon wires could be 8 times larger than the force sensitivity of a 

similar solid cantilever. However, since the measured resistance in the SC cantilever is 

considerably larger than the resistance in the solid cantilever, at any given temperature 

the noise spectral density of the SC cantilever also would be larger. The noise spectral 

densities of the same two previously mentioned SC and solid cantilevers (in Figure 3.23) 

are compared in Figure 3.29. The data presented in this figure are acquired using an SRS 

Digital Spectrum Analyzer 780, with a minimum resolution of about -165 dBm. Since 

during the noise measurement the devices were not completely isolated from the outside 

environment, at certain frequencies similar ambient induced parasitic spikes are measured 

in addition to the actual cantilever noise. For the data shown in Figure 3.29, unlike in 

Figure 3.23, the contribution of single piezoresistors is not extracted; rather, Figure 3.29 

shows the measured resistance between the two nodes of the Wheatstone bridge that are 

connected to the same piezoresistors represented in Figure 3.23. In this configuration the 
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Figure 3.29. Noise power spectra of an SC cantilever (blue) and a solid cantilever 
(red). The repeated periodic spikes are the results of ambient noise. The minimum 
resolution of the spectrum analyzer is about -165 dBm. Both cantilevers are 350 
μm long, 70 μm wide, and 17 μm thick.
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piezoresistor is in parallel with the rest of the bridge; hence, the effective resistance, 

which emerges in Eq. (3.9), is slightly smaller than the actual resistance of the 

piezoresistor shown in Figure 3.23.    

    

The spectral density of thermomechanical noise of a resonant cantilever beam, for force 

per unit length of beam, is calculated as [85] 

2

*4)(
QL

fKTmfS n
n = ,       (3.11) 

where m* is the effective mass of cantilever, fn is the resonance frequency of the beam in 

the nth overtone (mode), and  Q is the resonance quality factor. As mentioned in Chapter 

2, a resonant cantilever at the fundamental resonance mode (fn = f1) can be considered as 

a second order system, in which the mechanical damping coefficient is defined by  

Eq. (2.6): 

Q
fmB 1

*

2π= .        (3.12) 

With f1 given as 

m
kf

π2
1

1 = ,         (3.13) 

the mechanical damping coefficient will be calculated as 

Q
kmB

*

2π= .       (3.14) 

Replacing Eq. (3.12) in Eq. (3.11) would define the noise spectral density in a term 

similar to the Johnson noise in Eq. (3.9): 

22
4)(

L
BKTfSn π

= .       (3.15) 
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Therefore, to compare the thermomechanical noise spectral densities of an SC cantilever 

with a solid cantilever, both having the same length and operating temperature, we need 

to compare the mechanical damping coefficients of the two cantilevers. As indicated by 

Eq. (3.14), the mechanical damping coefficients of two cantilevers can be compared in 

terms of the effective mass, spring constant, and quality factor of each cantilever.  

 

To optimize the force sensitivity of an SC cantilever, as mentioned before, the notch 

should be short in length and positioned as close as possible to the clamped end. In 

forming a notch, the cantilever mass loss would be insignificant when the notch is 

comparably short. On the other hand, in a resonant cantilever the vibration amplitude in 

the proximity of the clamped end, where the notch would be located, is negligible. 

Therefore, the kinetic energy associated with the removed mass in an SC cantilever, 

while forming the notch, is negligible and as the result, the contribution of the removed 

mass in the effective mass of cantilever can be ignored. In other words, for approximately 

the same resonance mode shapes, the amount of effective mass considered in Eq. (3.14) 

is almost equal for both SC and solid cantilevers. Nevertheless this statement may not be 

valid if the notch depth is closely comparable to the cantilever thickness. In this case, the 

resonance mode shapes of SC and solid cantilevers could be different and to have an 

accurate comparison, the effective mass of the SC cantilever should be calculated based 

on the exact vibration amplitude along the beam. 

 

Besides the effective mass, according to Eq. (3.14), the other two parameters that define 

B are the cantilever spring constant and quality factor. The presented measurement results 
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in this work indicate that the spring constant of the SC and solid cantilevers, with the 

same geometrical dimensions and the reported notch specifications, are almost equal.  

 

To perform a comparison of the quality factors, the resonance characteristics of two SC 

cantilevers and one solid cantilever are measured (see Figure 3.30). The length, width and 

thickness of all cantilevers are 450, 82, and 12 μm, respectively. The SC beams are 3 and 

9 μm long. All other specifications of the SC beams and cantilevers are the same as 

before (Table 3.1). The measurement results are summarized in Table 3.3. Since the 

implemented Wheatstone bridges on the cantilever are not completely balanced, the 

cantilevers show different offsets in the output voltage, which are visible as different off-

resonance power magnitudes in Figure 3.30. Confirmed by the measurement results, it 

has been expected that the SC and solid cantilevers resonate at very close frequencies: 
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Figure 3.30. Resonance spectra of two SC cantilevers with SC beam length Lb = 3 
μm (blue) and 9 μm (red) and a solid cantilever (green). All cantilevers are 450 
μm long, 82 μm wide, and 12 μm thick. 
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The effective masses and the spring constants in both SC and solid cantilevers are 

estimated to be equal, thus according to Eq. (3.13) the resonance frequency must be 

approximately equal too. Also observed in Table 3.3, the quality factor of both 

cantilevers are closely comparable. Therefore, since the effective masses and the spring 

constants in both cantilevers are almost equal and the quality factors are close, based on 

Eq. (3.14) the mechanical damping coefficients for both cantilevers are approximately the 

same. In other words, the thermomechanical noise density of both cantilevers is almost 

the same.  

 

The dynamic behavior of SC cantilevers is further investigated in Chapter 10. 

 

*** 

 

In this chapter a new technique in utilizing the stress concentration in piezoresistive 

cantilever force sensors is introduced and verified through simulation and experiment. 

Introducing a new fabrication process module, embedded stress concentrating silicon 

wires and beams are fabricated and implemented in cantilevers. By using these structures 

as piezoresistors and concentrating stress through such piezoresistors, the force 

sensitivity of cantilevers is increased without noticeably sacrificing the stiffness, 

Table 3.3. Resonance characteristics of measured SC and solid cantilevers. 
 

Type Resonance frequency f (kHz) Quality factor 

Solid cantilever 73.175 740 
SC cantilever (Lb = 3 μm) 71.983 704 
SC cantilever (Lb = 9 μm) 72.842 695 
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resonance frequency, and quality factor. The performed finite element simulation results 

are confirmed by experiment data and indicate that in an SC cantilever the amount of 

induced stress for a given force, i.e., the force sensitivity of the cantilever, not only 

follows the same relationship with geometrical dimensions as in a solid (conventional) 

cantilever, but also increases by decreasing the thickness of the stress concentrating 

elements (e.g., beams or wires). This advantage comes at the expense of a small decrease 

in the spring constant, compared to solid cantilevers.  As an example, the measurement 

results of SC cantilevers with embedded stress concentrating wires show an up to 8.0 

times increase in force sensitivity at the price of only a 15% reduction in stiffness. On the 

other hand, in designing SC cantilevers, special attention must be paid to the noise 

characteristic of the device. While the thermomechanical noise of both solid and SC 

cantilever types are closely comparable, using a long and thin stress concentrating 

element can result in an increased Johnson (thermal) electrical noise, hence, deteriorating 

the force resolution of the cantilever sensor. 
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CHAPTER 4 

CALCULATION OF Q-FACTOR BY ITERATIVE CURVE FITTING  
 
 
 
As expressed before by Eq. (2.4), the quality factor (Q or Q-factor) of a resonant system 

provides a measure for the ratio of the stored and lost energy in that system. The Q-factor 

of a mechanical system can provide information about loss mechanisms in the system, 

e.g., viscous damping, support loss, and thermoelastic loss [179-181]. In an electronic 

oscillator, the Q-factor provides valuable information about the Ohmic loss in the system 

[182].  In a microwave resonator, the Q-factor can reveal information about the structural 

material with respect to its dielectric permittivity, magnetic permeability and surface 

impedance [183-187]. 

 

From this chapter forward the focus of the thesis will be on the dynamic behavior of 

cantilevers, with an emphasis on magnetically excited piezoresistive cantilevers. To have 

a valid assessment of the performance of a resonant cantilever, it is imperative to acquire 

reliable data about the resonance frequency and the Q-factor of the resonator. To this end, 

this chapter is aimed to provide an accurate method for measuring the quality factor of 

simple harmonic resonators based on their magnitude transfer characteristic. The goal of 

introducing this method is to overcome the effect of noise in interpretation of the 

measurement results.  This method can be especially useful when no specific data is 

available about the measurement noise, except the assumption that the noise spectral 

density is constant over the measured bandwidth. 
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4.1 Simple Harmonic Oscillators 

The frequency transfer function of every resonator can be considered as a product of 

transfer functions of multiple “simple harmonic oscillators (SHO),” each representing a 

resonance mode of the system. A simple harmonic oscillator is in fact a second order 

system, which its time-dependent characteristic equation is the same as Eq. (2.2) [188]: 

)2(2

2

ftScS
dt

dSb
dt

Sda io
oo π=++       (4.1) 

where So is the output signal magnitude, f is the frequency of the excitation signal Si, and 

a, b and c are constant coefficients. For a resonant cantilever beam, as mentioned in 

section 2.2.1, the coefficients a, b, and c are the cantilever effective mass m, damping 

coefficient B, spring constant k, respectively. Hence, similar to Eq. (2.8), at a given 

excitation frequency f (i.e., f = Ω/2π), the output signal So is calculated in the time 

domain as 

( ))(2sin)()( fftS
c
ftS io θπβ

−= ,      (4.2) 

where |Si| is the amplitude of the excitation signal, β is the magnification factor, 
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and θ is the phase angle, 
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In close proximity to the resonance frequency, i.e., f ≈ fr, the magnification factor can be 

approximated by a Lorentzian curve: 
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4.2 Common Methods in Extraction of Q-Factor 

The Q-factor of a resonator can be calculated from the magnitude, phase, or complex 

transfer characteristics of the resonance [189-193]. Petersan and Anlage have provided a 

comprehensive comparison between the different methods [189]. The focus of this 

chapter, however, is to calculate the Q-factor based on the magnitude transfer 

characteristic of the resonator, i.e., based on the magnification factor β described by Eq. 

(4.3).  Widely used methods in this regard are the 3-dB method and the least-square fit 

method. 

 

In the 3-dB method, the frequency of the maximum magnitude is considered as the 

resonance frequency fr, according to Eq. (4.3), and the difference between the half power 

frequencies, where the signal magnitude (amplitude) is 1/√2 of the maximum magnitude, 

defines the half power bandwidth Δf3-dB. The Q-factor is then calculated as [79] 

dB

r

f
fQ

−

=
3Δ

.         (4.6) 

 

In the least-square fit method, the measured magnitude transfer function is fitted to either 

an SHO transfer function given by Eq. (4.3), or to a Lorentzian curve given by Eq. (4.5). 

A non-linear least-square fit is iterated with respect to f and Q until the fitted curve shows 

the minimal chi-square [189, 194]. 
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Besides the mentioned approaches, Eq. (4.2) can be used to establish two other less 

common methods for calculating the Q-factor. In the first method the Q-factor is 

extracted based on the ratio of transfer characteristic magnitudes at the resonance 

frequency and a considerable lower frequency. This ratio, by combining Eqs. (4.2) and 

(4.3), is given as 

)0(
)(

≈
=

=
f

ffQ r

β
β .       (4.7) 

In applying this method one should be careful about the effect of 1/f noise [176]. In the 

second method the Q-factor is extracted from the slope of the phase angle. Here, by 

differentiating Eq. (4.4) with respect to f, the quality factor is calculated at the resonance 

frequency: 

rff
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dfQ

=

=
θ

2
.       (4.8) 

 

4.3 Noise in Measurement Set-up 

Presence of both noise and cross-talk signals can affect the measurement result. However, 

the focus of this chapter is on the effect of noise, i.e., interfering signals that have zero 

mean and zero correlation to the input signal. The presence of noise in a measurement 

set-up is illustrated in Figure 4.1. For an electromechanical resonator, for example, the 

input signal Si is accompanied with thermomechanical noise [85] Nth and also with Ni, the 

noise generated due to variations in Si itself. Since Si, typically generated by a network 

analyzer, has a uniform power spectral density over the measurement sweeping 

bandwidth, any other input signal with a uniform spectral density can be represented as a 
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fraction of Si; hence, if the input noises, at node 1 in Figure 4.1, have uniform power 

spectral densities in the measurement bandwidth, they can be simply considered 

altogether as a part of the input signal Si without affecting the Q-factor of the measured 

data A(f). In fact, using noise as the input signal is an established method in examining 

the mechanical properties of cantilever resonators [195]. 

 

In contrast to the input noise, the measurement result is highly susceptible to noise 

introduced at the intermediate stages, i.e., at node 2 in Figure 4.1. This noise appears in 

the read-out stage, e.g., in the sensors and the interface circuitry, and its power spectral 

density is independent of the transfer characteristic of the resonator, thus potentially can 

contribute to erroneous data interpretation. Through the rest of this chapter, the 

intermediate stage noise is simply referred as noise.  

 

 
 
Figure 4.1. Schematic of the measurement set-up, including the resonator and 
network analyzer, with the corresponding signal and noise inputs marked. At node 
1: Si is the input signal from the network analyzer, Ni and Nth are the noises 
associated with the input signal and the ambience (e.g., thermomechanical noise), 
respectively. At node 2: S is the resonator output signal and N is the intermediate 
stage noise. The measured output signal is A.   
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In the following sections an iterative curve-fitting method is introduced to eliminate the 

effect of noise introduced at intermediate stages when extracting the Q-factor from the 

measured magnitude data. This method is especially useful when no specific data is 

available about the measurement noise. 

 

4.4 Iterative Curve Fitting Method 

As mentioned previously, a well established technique for measuring the resonance 

characteristic of a system is to fit the measured magnitude spectrum with the transfer 

function of an SHO (or a Lorentzian curve).  However, with the presence of noise at the 

intermediate stages, the measured output power spectral density will not be solely defined 

by the resonance characteristic of the system; instead, with a reasonable assumption that 

signal and noise are statistically independent, the power spectral density of the measured 

signal GA(f) is [196]  

)()()( fGfGfG NSA += ,      (4.9) 

where Gs(f) and GN(f) are the power spectral densities of the SHO signal and noise, 

respectively. By integrating both sides of Eq. (4.9) over the measurement bandwidth W, 

the measured signal power PA is calculated as: 

NSA PPP += ,        (4.10) 

where PS and PN are the signal and noise power, respectively. In a network analyzer the 

power spectral density of the measured signal over the minimum resolution bandwidth is 

approximated to be constant. Ideally, the minimum resolution bandwidth is equal to an 

infinitesimal frequency change df. In practice, however, the minimum resolution 
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bandwidth Bmr is a finite number, by which Eq. (4.9) gives the average power at a swept 

(measured) frequency fj as 

mrjNmrjSmrjA BfGBfGBfG )()()( += .     (4.11) 

In a transfer characteristic measurement set-up the load impedance is not a function of 

frequency (e.g., it has a constant impedance of 50 Ω or 75 Ω); hence, for a load 

impedance normalized to unity, the average signal power is proportional to the square of 

the signal amplitude for every measured frequency: 

)()( 2
jmrjA fABfG = .       (4.12) 

As the result, with respect to Eq. (4.11), the measured signal magnitude at a frequency fj 

can be expressed as the sum of the square magnitudes of the SHO signal, S, and the noise, 

N: 

)()()( 222
jjj fNfSfA += .      (4.13) 

When the noise power spectral density is constant over the measurement frequency span 

W, e.g., as in the case of white noise, the square of noise magnitude can be described as  

WPNfN Nj == 22 )( ,       (4.14) 

where the load impedance is again normalized to unity. In this case Eq. (4.13) simplifies 

to 

222 )()( NfSfA jj += ,       (4.15) 

or  

22 )()( NfSfA jj += .      (4.16) 

If N2 is equal to zero, the measured transfer characteristic perfectly matches the resonance 

transfer characteristic of an SHO signal with magnitude Sf(f). It is important to notice that 
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in contrast to the actual SHO transfer characteristic of the system S(f), which is unknown, 

Sf(f) is the transfer characteristic that is obtained by curve fitting to the measured signal 

A(f) (see Figure 4.2).  When N2 is negligible, the difference between A(f) and Sf(f) at 

frequencies considerably far from the resonance frequency will be negligible too. On the 

 
 
Figure 4.2. (a) The magnitude of the measured signal amplitude A(f) compared to 
the contributing SHO transfer function S(f), the initial least-square curve fit Sf(f), 
and root-mean-square (rms) noise N(f), (b) illustration of the proposed iterative 
procedure for step-by-step elimination of the noise effect, with intermediate 
signals Ak(f) and Sfk(f)  of the kth iteration step are marked. In both graphs the 
signal amplitude is shown in linear scale. In the presented data, the signal-to-noise 
ratio at the resonance frequency, i.e., S2(fr)/N2, is 3.0; also, the extracted Q-factor 
based on Sf(f) is 1074, while the actual resonance Q-factor, which is extracted 
based on S(f), is 1280. 
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other hand, if N2 is not negligible, A(f) will not follow the transfer characteristic of an 

SHO, thus Sf(f), as an SHO transfer function, will overlap with A(f) only around the 

maximum  magnitude, i.e., at the resonance frequency (see Figure 4.2), 

)()( 22
rfr fSfA = .       (4.17) 

For a reasonable measurement bandwidth, in which the magnitude transfer function of an 

SHO can also be described by a Lorentzian curve, moving away from the resonance 

frequency results in reduction of Sf
2(f), while A2(f) settles around at the noise power level. 

In a measurement frequency span, therefore, the maximum difference between A2(f) and 

Sf
2(f) occurs at frequency fi, the farthest frequency from the resonance frequency, with the 

spectral power difference N1
2 calculated as 

)()( 222
1 ifi fSfAN −= .       (4.18)   

It can be shown that 22
1 NN ≤  if it is possible to show that )()( iif fSfS 22 > . The latter 

statement is true, because Sf is associated with a smaller Q-factor and a larger maximum 

magnitude: The Q-factor associated with Sf would be same as the actual Q-factor of the 

system if N2 was negligible, but since a power PN across the spectra is uniformly added to 

the signal power, the Q-factor of the fitted signal Sf becomes smaller than the actual Q-

factor of the system. Hence, considering Eq. (4.3), )()()()( rirfif fSfSfSfS 2222 > . But 

according to Eqs. (4.15) and (4.17) )()( rrf fSfS 22 > , thus )()( iif fSfS 22 > . This conclusion 

is also illustrated in Figure 4.2(a). 

 

In the next step, the effect of noise on the measured signal is reduced by eliminating the 

contribution of 2
1N . Therefore, the modified measured signal is defined as 
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and with respect to Eq. (4.15), 

2
1

222
1 )()( NNfSfA jj −+= .      (4.20) 

The modified amplitude can be fitted by a new SHO curve, Sf1(f). Similar to Eq. (4.18), 

the maximum difference N2 is calculated by  

)()( 2
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2
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2
2 ifi fSfAN −= .       (4.21) 

It can be shown that 2
1

22
2 NNN −≤ , i.e., Sf 1(fi) > S(fi), with an explanation similar to what 

was mentioned earlier for 22
1 NN ≤ .  

 

By repeating the procedure of modifying the measured signal, the partial noise power in 

the kth iteration step is calculated as 

 )()( ifkikk fSfAN 222
1 −=+ ,      (4.22) 

where )( jk fA2  can be expanded with respect to Eq. (4.15) as 
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This procedure can be is iterated until the mth step, in which 
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At this point, the modified measured transfer characteristic is almost identical to the 

actual SHO transfer characteristic: 
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Figure 4.3. Flowchart of proposed iterative curve fitting method. 
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In other words, at the final step (i.e., the mth
 step) not only Sfm(fj) is the same as S(fj), but 

also it closely fits to Am(fj) because Am(fj) has become the same as an SHO transfer 

characteristic itself. The latter statement provides the criterion for finding the final 

iteration step: 

0222
1 ≈−=+ )()( ifmimm fSfAN       (4.26) 

Figure 4.3 shows the flowchart of proposed method.  

 

To examine the convergence of this method, the explanation mentioned for 22
1 NN ≤ can 

be generalized to the nth iteration step with respect to Eq. (4.23): 
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or alternatively, 
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since 2N  is constant in the measured data, for n >> 1 the partial noise power 2
nN  must 

approaches zero, thus the presented method is always converging.   

 

With this technique, based on the measured magnitude of the resonator transfer 

characteristic, the effect of noise in extraction of Q-factor can be eliminated without any 

pre-existing knowledge of the noise spectral density, except the assumption that the noise 

spectral density is constant over the measured bandwidth. For simplicity, in the following 

sections the proposed method is referred to as the iterative fitting method. 
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4.5 Experiment 

As an example of simple harmonic oscillators, the fundamental flexural resonance mode 

of a rectangular silicon cantilever beam with length, width and thickness of 225, 106 and 

11 μm, respectively, is measured and characterized. The cantilever resonance is exited at 

fr ≈ 250 kHz by passing an alternating current with amplitude of 2.0 mA along the beam 

perimeter in presence of a static magnetic field, at room temperature and atmospheric 

pressure. Piezoresistors in a Wheatstone bridge configuration, implemented near the 

clamped edge of cantilevers, are used to transduce the cantilever mechanical vibrations 

into electric signals. A complete description of the excitation and detection schemes used 

in the cantilevers is presented in Chapter 5. The data is acquired using an Agilent 4395A 

Network Analyzer (50 Ω load impedance), with frequency sweeping span W and 

averaging bandwidth of 1 kHz and 100 Hz, respectively. The captured spectrum consists 

of 801 data points. To improve the symmetry of the captured transfer characteristics, the 

largest magnitude, which occurs around the resonance frequency, is recorded as the 401st 

data point. To change the signal-to-noise power ratio in the measured spectrum, the flux 

density of the excitation magnetic field is changed from 25 to 3750 Gauss. To diversify 

the measured noise sources (e.g., night-time versus day-time activity noises), the 

measurements were performed in different time periods of day.  

 

A schematic of the measurement set-up is shown in Figure 4.1. In calculating the SNR, 

the absolute noise level is obtained based on the noise power spectral density of the 

minimal static magnetic field (during the same measurement time period), while the 

signal level is calculated based on the maximum moving average of the power magnitude 
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in the captured spectrum, according to Eq. (4.15). In each iteration of the procedure 

explained in section 4.4, the Q-factor and the resonance frequency fr are calculated by a 

nonlinear least-square fit of the measured magnitude transfer characteristic to an SHO 

transfer function.  

4.6 Results and Discussion 

A series of measured magnitude transfer characteristics for different signal-to-noise ratios 

are shown in Figure 4.4. Since the transfer characteristics shown in Figure 4.4 are 

captured with insignificant time lapses, the noise spectral density is almost equal for all 

the shown data.  

 

In this work the Q-factors of measured transfer characteristics are calculated based on 

three methods: (a) half-power bandwidth (i.e., the 3-dB method), (b) single least-square 

fit to an SHO transfer function, and (c) iterative least-square fit as presented in this 

chapter. In implementing the iterative fitting method, due to fluctuation of the noise 
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Figure 4.4. Measured resonance characteristics (magnitude) for different signal 
powers. The corresponding measurements are performed with minimum 
sequential time delay to prevent possible variations in the noise power density. 
(The presented magnitudes are in dB, with the noise power set as reference.) 
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spectral density (see Figure 4.5), the initial signal power, i.e., )( ik fA2  in Eq. (4.22), is 

calculated by averaging the power of the first few data points of Ak( f ).  Figure 4.6 

compares the calculated Q-factor values for different signal-to-noise ratios. Each data 

point in this figure represents an average of repeated measurements with the same SNR, 

with the number of measurement repetition starting at 5 and increasing up to 20 for the 

data with larger standard deviation. In Figure 4.6, the bars on each side of the data points 

are equal to the standard deviation of the calculated Q-factor for the corresponding SNR. 

As shown in Figure 4.6, the chosen method has no significant effect on the value of 

extracted Q-factor as long as the SNR is larger than 20. Also, it is observed that for a 

larger SNR, the standard deviation is smaller. On the other hand, for signal-to-noise ratios 

smaller than 10, there is a clear difference between the calculated Q-factors. The Q-factor 

calculated based on the half-power bandwidth (if it is possible to find such a bandwidth− 

see Figure 4.5), shows the largest deviation from the actual Q-factor number, while the 

result of a single least-square fit appears modestly better. However, the most precise 

results, even down to an SNR of 1, are calculated using the proposed iterative fitting 

method. Overall, as it is observed in Figure 4.6, for an SNR larger than unity the 

calculated Q-factor with iterative fitting method undergoes less than 5% variation, which 

appears in a noticeable contrast to the errors associated with the other two methods in the 

same SNR range.  

 

The basic assumption in the presented method is that the noise spectral density is constant 

over the measurement bandwidth. Such assumption may be held valid if the measurement 

bandwidth is relatively small. However, as mentioned before, the noise spectral density 



 86

 
 
 
 

0

300

600

900

1200

1500

0.1 1 10 100 1000
SNR

Q
-F

ac
to

r

Iterative Fit
Single Fit
3-dB method

 
 
Figure 4.6. Q-factor as a function of SNR, extracted from the measurement data 
by using the two conventional methods, i.e., single least-square curve fit (square) 
and the 3-dB bandwidth methods (circle), and also the proposed iterative fitting 
method (diamond).  No meaningful Q-factor data were obtain with the 3-dB 
bandwidth method for SNR smaller than 2, and with the single fit method for 
SNR smaller than 1. 
 

 

 
 
Figure 4.5. Implementation of the proposed iterative fitting method on an actual 
measured signal A(f). Because of magnitude fluctuations, the partial noise power 

2
1+kN  is calculated by considering the average of squares of the first 10 data points 

of Ak( f ). In this graph, the signal-to-noise ratio is 3.5, and the magnitude is in 
linear scale. 
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may exhibit fluctuations around a constant average. If the signal power becomes 

comparable to these fluctuations, the accuracy of calculation will decline, as it is reflected 

by higher standard deviations in Figure 4.6. In the extreme case, when the signal power is 

smaller than the fluctuations, the presented method will be flawed.  For this reason, a 

considerable drop in the extracted Q-factor values can be observed in Figure 4.6 for the 

SNR smaller than unity.  

 

*** 

 

In the work presented in this chapter, the Q-factors extracted based on the 3-dB and the 

least-square curve fit methods are found to be inaccurate when the signal-to-noise ratio is 

less than 20. For a small SNR, it may not be even possible to clearly detect a half-power 

bandwidth on the resonator’s magnitude transfer characteristic. To overcome the noise 

effect, a new iterative method is proposed and successfully tested. In this method, first 

the magnitude transfer characteristic of the resonator is fitted to the transfer function of 

an SHO (or a Lorentzian curve), then after calculating the power difference between the 

measured signal and the fitted curve, the measurement data is refined. By iterating this 

sequence, the noise effect is significantly eliminated from the measured data, to such an 

extent that for a tested cantilever resonator, the error in the Q-factor calculation is 

reduced to less than 5% for an SNR of unity. The applicability of the iterative method in 

canceling the effect of noise is confirmed by proving that the presented method 

converges to a unique solution for a given SHO transfer function. Although the resonance 

quality factors are extracted from SHO transfer characteristics, in general, for the purpose 
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of noise elimination, the presented iterative method can be applied to any transfer 

function as long as the convergence criterion is met; i.e., as long as unique solutions exist 

for the transfer functions of interest (e.g., Lorentzian, Gaussian, and etc.). The proposed 

method is especially useful in interpreting the measurement data when obtaining specific 

data about noise is not possible, either because of the special measurement set-up or 

because of the considerable time laps between the measurements. 
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CHAPTER 5 

Q-FACTOR IN FUNDAMENTAL FLEXURAL MODE 
 
 
 

As mentioned earlier in Chapter 2, resonant cantilever sensors have been used in a variety 

of chemical and biochemical sensing applications [3, 6, 140, 149, 153]. The operation 

principle in most of these sensors is based on the detection of a resonance frequency shift 

as a result of interaction with the targeted subject [7, 111, 146, 147]. An important 

parameter in this detection scheme is the quality factor of the resonator: a larger quality 

factor results in better frequency stability and consequently better sensing resolution [197, 

198].  Also, in force detection techniques with cantilevers, e.g., in atomic force 

microscopy (AFM) and magnetic resonance force microscopy (MRFM), the 

thermomechanical noise of cantilever sensors is reduced by increasing the Q-factor [85, 

199, 200]. 

 

For a simple resonator, higher Q-factors can be obtained either by improving the quality 

of the resonator structural material [201] or by optimizing the resonator shape to decrease 

the energy loss of the system. For a simple micro-cantilever beam resonating in air, since 

the choice of material is usually limited to what is commonly provided in micro-

fabrication technology, e.g., silicon, silicon nitride and silicon oxide, the effect of 

cantilever’s geometrical dimensions on the Q-factor becomes an attractive subject to 

study. In this regard, the focus of this chapter is on the fundamental flexural resonance 

mode of rectangular silicon cantilever beams resonating in air. The goal of this chapter is 
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to find the optimum dimensions for such cantilevers to achieve maximum Q-factors in 

the fundamental flexural mode.  

 

5.1 Damping Mechanisms in a Resonant Cantilever 

As described by Eq. (2.4), the quality factor is a measure of energy loss in a system. As 

long as the stored energy is constant, the higher quality factor means the lower energy 

dissipation per cycle. The quality factor of a cantilever resonating in air can be attributed 

to two main loss mechanisms, extrinsic and intrinsic. The extrinsic loss is due to 

interactions with the surrounding medium, e.g., viscous losses [202-204] and acoustic 

radiation [205, 206]. The intrinsic loss is due to interactions within the cantilever 

structure or with its support structure, e.g., support loss [207], thermoelastic loss (TED) 

[208-210], volume loss [179, 204], and surface loss [84, 179, 180]. The total energy 

dissipation in a system is calculated by adding the energy dissipation of each individual 

loss mechanism. Hence, for a given resonance frequency, the quality factor of the system 

is obtained from the quality factors attributed to each individual loss mechanism Qindiv,  

surfvolTEDclampairindiv QQQQQQQ
1111111

++++== ∑  .   (5.1) 

The individual Q-factors Qindiv are calculated as if there is no other loss mechanism 

except the investigated one, e.g. air, support (clamp), thermoelastic, volume, or surface 

loss. For cantilevers resonating at atmospheric pressure, the dominant damping 

mechanism is the viscous (air) damping [180, 202]; on the other hand, in vacuum, where 

the resonators generally have significantly larger Q-factors, the support loss becomes 

more dominant when decreasing the cantilevers length [84, 180, 211]. In the next sections, 
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the three main damping mechanisms for a resonant cantilever, the air damping, support 

loss and thermoelastic damping (TED), are reviewed.  

 

5.1.1 Air (Viscous) Damping 

To analytically describe the air damping of a transversely resonating cantilever, three 

major approaches are proposed in the literature [212-214]. All these approaches rely on 

analytically well-known solutions for the viscous damping of basic solid bodies, which 

are derived from the Navier-Stokes equation and the continuity equation for 

incompressible fluids [215]  
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0=⋅∇ u ,        (5.3) 

where u(x,y,z,t) is the velocity field of the medium, P is the medium pressure, η and ρo 

are the dynamic viscosity and the density of the medium, respectively.  

 

In the first analytical approach, the air damping of the cantilever is approximated by the 

viscous damping of a plate that undergoes a steady motion in the normal direction to the 

surface [212, 216]. In the second approach the beam is visualized as a single or a string of 

coherently resonating spheres, and based on the damping of each sphere, the total 

damping is calculated [202, 213, 217-221]. In the last approach, the beam vibration is 

described based on the vibration of a cylinder in a viscous medium [214, 222, 223]. In 

most of the models derived based on these approaches, a general assumption is to have a 

flow with a small Reynolds number. The Reynolds number Re for a resonating beam is 

defined as [214]  
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where W is the width of the beam and ω is the angular resonance velocity. The 

requirement for a small Reynolds number implies that there are possibly less accurate 

predictions for higher resonance frequencies or for wider cantilevers. 

 

Regardless of the chosen approach, the medium-exerted drag force Fd on the cantilever 

beam can be descried by two components, the dissipative and inertial [202, 217, 223]: 
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where y(x,t) is the cantilever deflection, and d1 and d2 are the dissipative and inertial 

coefficients of the drag force, respectively. The dissipative component of the drag force 

causes an energy loss in the resonant system, while the inertial component accounts for 

an extra force applied on the mass of medium that resonates with the beam. Often in the 

study of damping, especially in the earlier works, the inertial component of the drag force 

has been ignored [204, 212]. Equation (5.5) can be combined with Eq. (2.23) to describe 

the damped vibration of resonant cantilever beams: 
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where ρb and A are the cantilever mass density and cross section area, respectively, I is 

the moment of inertia and E is the modulus of elasticity. The general solution for Eq. 

(5.6) has the form of  
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where ωn is the angular resonance frequency of the nth overtone (mode) and Tn(ω) is a 

frequency dependant function, given by [224] 
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which describes the transfer characteristic of a simple harmonic oscillator (see  

Eq. (2.9a)). 

 

In calculating the air damping, the first aforementioned analytical approach only accounts 

for the continuous movement of the cantilever through the medium (steady flow), while 

this model neglects the presence of resonant flows. This shortcoming is addressed in the 

other two approaches. In the second approach, i.e. the string of spheres model, the 

stream-line around the cantilever beam can be considered the same as a stream-line 

around a sphere when the Reynolds number is fairly small (Re < 1) [202, 219]. An 

analytical expression for the oscillatory motion of a sphere in a viscous fluid has been 

derived by Landau et al. [215], based on which Blom et al. [202] have calculated the Q-

factor of an oscillating beam in a viscous medium. In Blom’s model, the whole cantilever 

beam is approximated with a single sphere, whose radius is obtained by curve fitting the 

experimental results. Hosaka et al. [219] have expanded the analytical expression of this 

model by considering the entire cantilever structure as a string of identical spheres. The 

diameter of each sphere is equal to the width of the beam. According to this model, the 

quality factor associated with the air damping Qair is calculated as 
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where ρa is the density of air and H is the thickness of the beam. This model, however, 

does not include the effect of the drag force on the areas of the beam that the spheres do 

not cover. This issue is addressed by empirically calculating an effective sphere radius 

based on the measurement data [220, 225]. 

 

The third approach, applying the vibration solution of a resonating cylinder instead of a 

string of spheres, can alleviate the issue of incomplete coverage of spheres over the beam 

structure. The analytical solution of the Navier-Stokes equation for oscillation of a 

cylinder in a viscous medium is well-known [223, 226]. Sader [214] and Kirstein et al. 

[223] approximated the damping of a resonating cantilever with that of an infinitely long 

cylinder. In Sader’s model, the assumptions are that the length of the beam L greatly 

exceeds the width W, and also the width greatly exceeds the beam thickness H. The 

accuracy of this model is improved by using a complex frequency dependent correction 

factor[214].   

 

5.1.2 Support Loss 

For a cantilever with an infinite width (a two-dimensional, 2-D, assumption) and with the 

cantilever-support considered as a semi-infinite large elastic body, the damping due to 

elastic energy radiation to the support from the cantilever is proportional to the cube of 

thickness to length ratio [211] (H/L)3. Hence, the quality factor of a resonator enduring 

only the support loss, Qclamp, is estimated as 

3)(
H
LQclamp κ=  ,       (5.10) 
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where κ is a coefficient calculated as κ = 0.34 [153], 2.17 [84, 219] or 2.081 [211]. In 

practice, the support usually does not have the exact shape assumed in the 2-D theoretical 

derivations. In a special case, when the support is a plate as thin as the cantilever beam 

[207, 227], the deteriorated quality factor is proportional to L/H. 

 

5.1.3 Thermoelastic Damping (TED) 

In the absence of the air damping and support loss, one of the most influential loss 

mechanism is the thermoelastic damping [84, 209]. The basic analytical calculations for 

TED in resonant structures, especially beams in flexural mode, are derived by Zener[208]. 

In Zener’s model the thermoelastic quality factor of an isotropic homogenous beam 

resonating in the fundamental flexural mode, QTED, is approximated by 

Z

Z

o

pb
TED TE

C
Q

τω
τω

α
ρ

1

2
1

2

)(1+
= ,      (5.11) 

with 

th

pb
Z

HC
κπ

ρ
τ 2

2

= , 

where Cp is specific heat capacity, α is the linear thermal expansion coefficient, To
 is the 

equilibrium temperature, and κth is thermal conductivity. Although Zener’s model 

provides a good estimate of QTED for a resonating cantilever beam at the fundamental 

flexural mode, a better accuracy especially for more complicated structures, e.g., 

laminated beams, requires a more complex modeling [228]. 

 

In this chapter, the goal is to optimize the cantilever dimensions in order to maximize the 

Q-factor of the fundamental flexural resonance mode in air, and establish design 
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guidelines for cantilever-based resonators. To this end, the relationships between the Q-

factor and the cantilever length, width and thickness are studied by measuring transfer 

characteristic of various rectangular silicon cantilever resonators, and by comparing the 

experimental data to analytical derivation. As an eminent result, accurate models for air 

damping are extracted. 

 

5.2 Theory of Air Damping in Fundamental Resonance Mode 

In this work, despite the mathematical elegance of Sader’s model, it is chosen to use the 

more physically comprehensible approach of the string of spheres as a backbone for 

modeling the Q-factor of resonating cantilevers in the fundamental flexural mode. It can 

be seen from Eq. (5.9) that the Q-factor is almost independent of the beam width if 

WW na πηηωρπ 32
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which defines the following requirement for the resonance frequency of the beam: 
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Therefore, for micro-cantilever beams with a width of larger than 100 μm, to satisfy the 

condition of Eq. (5.12) at the room temperature (see Table 5.1), the required resonance 

frequency should be larger than 20 kHz, i.e., typically at least 10 times larger than the 

right-side of Eq. (5.12). The flexural resonance frequency of a cantilever beam is given 

by[188]  
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where λn is the flexural mode identifier constant with λ1 = 1.875. By placing Eq. (5.13) in 

Eq. (5.9), provided the condition of Eq. (5.12) is satisfied, a simplified expression for Qair 

is obtained: 
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Equation (5.14) is a function of the cantilever geometry through the ratio χ defined as 

3H
L
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and also is a function of the material properties of the beam as well as the ambient 

conditions through the coefficient ε  
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Hence, Qair can be simply described by a reciprocal relationship with χ :  

Table 5.1. Material properties of silicon and air. 
 

 Quantity Symbol value 

Density [202] [kg.m-3] ρa 1.18 Air  

(To = 27 ˚C) 
Dynamic Viscosity [202] [Pa.s] η 18.6 × 10-6

Density [43] [kg.m-3] ρb 2330 

Specific Heat Capacity [84] [J.kg-1.K-1] Cp 700 

Modulus of Elasticity [43] <110> [GPa] E 169 

Linear Thermal Expansion Coefficient [84] [K-1] α 2.6 × 10-6

 

 

Silicon 

Thermal Conductivity [43] [W.m-1.K-1] κTH 156 
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εχ=
airQ
1 .        (5.17) 

Revisiting Eq. (5.10),  Qclamp can also be expressed as a function of χ : 

323 χκHQclamp =        (5.18) 

Using Eqs. (5.1), (5.17) and (5.18), the combined quality factor Q can be calculated as 
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The maximum Q is found at the optimum χopt: 
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In other words, for a simplified case that the loss mechanism is dominated by only the air 

damping and support loss, the maximum Q-factor is obtained when the beam length and 

thickness fulfill the ratio:  
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The accuracy of this calculation can be improved by including the effect of thermoelastic 

damping. For a simple rectangular beam resonating at the fundamental flexural mode, 

QTED is approximated by Eq. (5.11), which can be rearranged with respect to χ  after 

applying Eq. (5.13): 
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Using Eqs. (5.1), (5.17), (5.18) and (5.22), the combined quality factor Q can be written 

as 
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Hence for the independent variable χ, the maximum Q occurs when 
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Using the analytical expression of Eq. (5.24), variations of Q-1 with χ for beams with 

thicknesses of 5, 10 and 20 μm are calculated and depicted in Figure 5.1(a). The required 

 

 
 

Figure 5.1. (a) Plots of Q-1 versus χ = L/H1.5 for cantilevers with thicknesses of 5, 
10 and 20 μm, calculated from Eq. (5.24), (b) close-up of the region of maximum 
Q comparing the model described by Eq. (5.24) (solid lines) with the model 
described by Eq. (5.19) that excludes TED (dotted lines). 
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parameters for plotting Figure 5.1(a) are summarized in Table 5.1, based on which, ε and 

β are calculated as 7.2×10-8 m0.5 and 9.33×106 m-1, respectively.  Here, the assumed 

coefficient for the support loss is [84, 211] κ  = 2.1. As depicted in Figure 5.1(b), 

including QTED
 in Eq. (5.24) only slightly changes the value of minimum Q-1 and the 

location of the optimum χ. The same observation can be made in Figure 5.2, which 

shows the optimum calculated length Lopt versus the cantilever thickness. In general, as 

seen in Figure 5.1(a), the Q-factor is limited by the support loss for smaller χ, and by the 

air damping for larger χ. Equation (5.25) indicates, as shown in Figure 5.1(a), that 

increasing the cantilever thickness will monotonically increase the maximum Q-factor; 

but since in this model the effect of other damping mechanisms is ignored, e.g., 

 
 
Figure 5.2. Optimum length of cantilever versus cantilever thickness for 
achieving maximum Q-factor; the calculation represented by the solid line, based 
on Eq.(5.25), includes the three dominant damping mechanisms, i.e., the air 
damping, support loss and TED, while the calculation of dotted line, based on Eq. 
(5.20), excludes TED. The dashed line calculation, which also includes the three 
dominant damping mechanisms, is based on an empirically adjusted model that is 
described by Eq. (5.30) with an exponent of support loss p = 2.7. 
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especially air friction on the sidewalls, increasing the thickness beyond a limit can no 

longer be helpful in achieving larger Q-factors. 

 

5.3 Measurement 

Rectangular silicon cantilever beams with lengths and widths ranging from 70 to 1050 

μm and 80 to 230 μm, respectively, have been tested (see Figure 5.3). The cantilevers 

were fabricated using epitaxial silicon wafers with an n-type device layer and a p-type 

handle layer. The device layer thickness ultimately defined the cantilever thickness. The 

handle layer was about 525 μm thick. The beams were released by a combination of 

 
 

 
 

 
Figure 5.3. (a) SEM micrograph of fabricated silicon cantilevers showing the 
current route along the beam perimeter for excitation of beam vibrations in the 
presence of a static magnetic flux B; a Wheatstone bridge is located close to the 
clamped edge to sense the beam deflections. (b) Schematic of a typical cantilever. 
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back-side anisotropic wet etching, using an electrochemical etch-stop technique, and 

front-side dry etching to define the lateral geometries along the [110] directions. 

Depending on the thickness of device layer, the fabricated cantilevers had final silicon 

thicknesses of 5, 7, 8, 11 and 17 μm, covered with an approximately 0.8 μm thick 

PECVD silicon dioxide layer. As mentioned in Chapter 3, it must be pointed out that due 

to variations in the thickness of the handle wafers, the clamped edge of the cantilevers 

was not exactly coinciding with the edge of the back-side etched cavity; instead, the 

cantilevers were supported by a silicon rim of the same thickness, 5 to 20 μm long for 

different wafers (see Figure 5.3). 

 

Flexural cantilever vibrations are electro-magnetically excited: in the presence of a static 

magnetic flux B in the cantilever length direction, an excitation force is exerted on the 

cantilever by passing an alternating current through a metal loop along the perimeter of 

the cantilever (see Figure 5.3). In the measurement set up, the cantilevers were at least 

525 μm away from the closest parallel surface. The flexural beam vibrations are sensed 

on-chip by a piezoresistive Wheatstone bridge located near the clamped-edge of the beam. 

To have comparable results, it was imperative to keep the resonance amplitude of 

cantilever confined within the linear bending region of the beam; to this end, depending 

on the stiffness of the cantilever, the amplitude of excitation current was in the range of 

3–20 mA, and the magnetic flux density was between 0.1-0.6 T. The transfer 

characteristics of the resonant cantilevers were recorded by an Agilent Network Analyzer 

4395A. Figure 5.4 shows an amplitude and phase spectrum of a sample device. All 

measurements were performed at 30 ± 5 ºC. For each data point presented in the 
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following section, at least eight transfer characteristics were recorded, and after fitting the 

data to the amplitude transfer characteristic of a second-order system, using the iterative 

method presented in Chapter 4, the extracted resonance frequencies and Q-factors were 

averaged. For the presented data, the maximum relative standard deviation for the Q-

factor is less than 3.3%.  

 

5.4 Results and Discussion 

In this section, first the measurement results for different cantilevers are presented and 

compared with the previously presented analytical predictions. Next, using correction 

factors, Eq. (5.24) is adjusted to have the best agreement with the measurement results. 

 

The dependence of the Q-factor on the cantilever length is shown in Figure 5.5. In this 

plot, the width and thickness of the measured cantilevers are 130 and 11 μm, respectively. 

 
 

Figure 5.4. Measured amplitude and phase transfer characteristic of a silicon 
cantilever beam resonator with L, W, and H of 225 , 82  and 11 μm, respectively, 
around the fundamental flexural resonance frequency. 
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Two distinct regions can be recognized: in the first region, for a cantilever length smaller 

than 200 μm, the Q-factor increases with increasing length, whereas in the second region 

(L > 200 μm), the Q-factor decreases with an increase in length. From Eq. (5.24) it is 

known that the dominant damping mechanisms are the air damping and support loss; 

hence, the two regions in Figure 5.5 can be each attributed to one of these damping 

mechanisms. In the first region, where the length is smaller than 200 μm, i.e., χ is smaller 

than 5 μm-0.5, damping is dominated by the support loss.  In the second region, for χ 

larger than 7 μm-0.5, the air damping is dominant.  

 

To investigate the dependence of the Q-factor on χ, data from all measured cantilevers 

with different W, L and H, are gathered in Figure 5.6, where Q-1 is plotted versus χ. It is 

observed that the Q-factors of beams with different dimensions not only follow similar 

trends, but also overlap for larger χ values.  This behavior has been predicted by Eq. 

(5.24), as shown in Figure 5.1.   Equation (5.24) indicates that for larger χ, where the air 

damping is the dominant loss mechanism, Q-1 increases linearly with χ following a slope 
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Figure 5.5. Q-factor as a function of length for cantilevers with width and 
thickness of 130 and 11 μm, respectively. The solid line is a guide to the eye only.  
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Figure 5.7. Inverse of Q-factor Q-1 as a function of: (a) L/H1.5 and (b) L/H1.25. The 
exhibited Q-factors belong to cantilever resonators enduring the air damping as 
the dominant loss mechanism 
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Figure 5.6. Plot of measured Q-1 versus χ = L/H1.5 for cantilevers with thicknesses 
of 5, 7, 8, 11 and 17 μm. Although not marked in the graph, the widths of the 
measured cantilevers are not necessarily equal. 
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given by the coefficient of air damping ε. Therefore, an empirical value for ε can be 

obtained by a linear regression for all data with χ > 12 μm-0.5, yielding εipm = 8.2× 10-5 

μm0.5 (see Figure 5.7(a)). Since the calculated air damping factor from Eq. (5.16) is 7.2× 

10-8 m0.5 (i.e., ε = 7.2× 10-5 μm0.5) for the conditions given in Table 5.1, a correction 

factor of c1 = 1.14 can be introduced in Eq. (5.17) to describe the measured results: 
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Generally, the energy loss in the region dominated by the air damping is larger than what 

is predicted by Eq. (5.14), i.e., by approximating the beam as a string of spheres. A 

potential explanation for this observation can be attributed to the influence of the beam 

thickness on the energy loss as the result of, for example, air friction on the beam 

sidewalls. This explanation is supported by the fact that the measured slope ε for equally 

thick cantilevers slightly increases by increasing the thickness (see Figure 5.7(a)). In fact, 

based on the measured data for the air damping dominated region, i.e., χ larger than 12 

μm-0.5, it is found that all the Q-1 data points, regardless of the cantilever thickness, will 

follow almost identical slopes if they are plotted versus L/H1.25, i.e., H0.25χ  (see Figure 

5.7(b)). In this case, the air damping coefficient, extracted from the slope of experimental 

data, is about 1.6 × 10-6 m0.25 (i.e., 5.1 × 10-5 μm0.25): 

χ25.061 106.1 HQair
−− ×= .      (5.27) 

It must be noted that this coefficient is extracted from the data of the fundamental 

flexural resonance of silicon cantilevers in air and at a temperature of 30±5 ºC. 
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For χ < 15 μm-0.5 (see Figure 5.6), unlike in the air damping dominated region, Q-1 

sharply depends on the device thickness and width. While the thickness dependence is 

theoretically predicted (as depicted in Figure 5.1), the dependence of the Q-factor on W is 

left unexplained by the basic theory discussed earlier. The width dependence of the Q-

factor is further investigated in Figure 5.8, which compares the measured Q-factors 

versus the width of cantilevers with H = 11 μm and shows that for longer cantilevers (i.e., 

larger χ values) the Q-factor becomes almost independent of the width; however, when L 

is smaller (e.g. shorter than 250 μm) the wider beams have noticeably smaller Q-factors. 

The variation of the Q-factor with W is also shown in Figure 5.9, for cantilevers with a 

fixed length of 400 μm but different thicknesses of 5, 8, and 17 μm. In this figure, the Q-

factor variation with width is only observed for cantilevers with χ smaller than 15 μm-0.5, 

i.e., for 17 μm-thick cantilevers.  

 

Revisiting the theoretical derivations for the air damping expression in Eq. (5.14), the 

associated energy loss has become independent of W when the requirement described by 

Eq. (5.12) is fulfilled. To examine the validity of this simplification, the Q-factors of 11 

μm-thick cantilevers as a function of their fundamental resonance frequency are plotted 

in Figure 5.10. Noting that from Eq. (5.13) the resonance frequency is independent of the 

cantilever width, as observed in Figure 5.10, the width dependence is more pronounced 

for the Q-factors of cantilevers with higher resonance frequencies. However, cantilevers 

with higher resonance frequency even better satisfy the condition of Eq. (5.12); hence, 

the simplification made in deriving Eq. (5.20) is valid, and the width variations must be 

due to another loss mechanism. By comparing the results of Figures 5.8–5.10 and 
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considering the observation that the width dependence is more noticeable in the support 

loss dominated region, i.e., for smaller lengths, we conclude that using the Qclamp 

expression of Eq. (5.18) does not give accurate results for smaller L/H ratios; in fact, 

Qclamp increases by decreasing the width. Although this observation has been predicted by 

other theoretical models[227], the 2-D support loss model of Eq. (5.18) still provides the 

best overall approximation for the measurement data. Also, since the maximum Q-factor 

for different cantilever widths occurs at almost identical χ values, as shown in Figure 5.6, 
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Figure 5.9. Q-factor as a function of width W for cantilevers with a fixed length   
L = 400 μm but different thicknesses of 5, 8, and 17 μm. 
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Figure 5.8. Q-factor as a function of the cantilever width for different lengths; the 
cantilever thickness is 11 μm. 
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Eq. (5.18) can still be helpful in determining the optimum cantilever geometry, despite of 

its shortcoming in including the effect of width. On the other hand, since the fabricated 

cantilevers are not ideal beams, which must be clamped on a straight semi-infinite 

sidewall as assumed in the derivation of Eq. (5.18), Qclamp may not be exactly 

proportional to (L/H)3, but to an L/H ratio with a different exponent[207]. This statement 

becomes more viable when considering the effect of the silicon rim between the clamped 

end of the cantilever and the supporting sidewall. To account for this effect, Qclamp can be 

expressed in a more general form of 

pp
clamp HQ χκ 2= .       (5.28) 

For ideal boundary conditions, i.e., perfect support, the exponent p is 3, while by 

increasing the length of support rim, a smaller p can give a more accurate expression. By 

replacing the air damping and support loss terms in Eq. (5.24) with Eqs. (5.26) and (5.28), 

the Q-factor of resonating cantilevers is obtained as 
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Figure 5.10. Q-factor as a function of the fundamental flexural resonance 
frequency for 11 μm-thick cantilevers with different widths ranging from 82 to 
230 μm. 
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On the other hand, using the empirically adjusted expression for air damping from Eq. 

(5.27), a better agreement with the measurement results of resonant silicon cantilever at a 

temperature of 30 ± 5 ºC can be obtained: 
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The effect of the support loss exponent p is further investigated in Figure 5.11, where the 

Q-factors of cantilevers with thickness and width of 11 and 130 μm, respectively, are 

compared with the empirical model of Eq. (5.30). In this figure the measured cantilevers 

have a silicon rim, approximately 8 μm long. As observed in Figure 5.11, a support loss 

exponent of p = 2.7 provides the best estimate for the Q-factor of the cantilevers in the 
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Figure 5.11. Comparison of measured and calculated Q-factor data for different 
support loss exponents p; the cantilever thickness and width are 11 and 130 μm, 
respectively. The Q-factor calculation is based on the empirical model described 
by Eq. (5.30). 
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support loss dominated region, i.e., L < 400 μm. When evaluating the quality of the 

empirical model of Eq. (5.30), it must be noted that the calculated maximum Q-factor is 

expected to be larger than the measured data because Eq. (5.30) neglects possible 

additional damping mechanisms, e.g., the volume loss and the air friction, as well as the 

effect of ambient conditions, e.g., temperature. Moreover, the influence of the silicon 

oxide layer covering the cantilever (~ 0.8 μm) and also the effect of small variations in 

the thickness of fabricated beams are not considered in the calculation. Finally, the 

influence of the cantilever width is also not included in Eq. (5.30). It should be 

emphasized that unlike the absolute value of the calculated Q-factor, the optimum 

calculated length Lopt does not vary significantly with the empirical and theoretical values 

of p = 2.7 and 3 (where Lopt
 = 210 and 176 μm, respectively).  

 

A comparison of different models for describing the Q-factor versus the resonance 

frequency f is presented in Figures 5.12 and 5.13. Figure 5.12 summarizes the Q-factor 

data for 140 μm wide cantilevers with thickness of 5, 8 and 17 μm, and compares them to 

the calculated data based on the combined effects of support loss using Eq. (5.28) with p 

= 2.7, TED using Eq. (5.22), and three different air damping models: (A) the corrected 

analytical air damping model described by Eq. (5.29); (B) the well-known analytical air 

damping model proposed by Sader[214]; and (C) the empirical model of air damping 

according to Eq. (5.30). Overall, model C, based on Eq. (5.30), best describes the 

experimental data (see Figure 12(c)). This observation becomes even more evident in 

Figure 5.13, where the results obtained from the three models are compared closely 

together and to the measurement data of cantilevers with width and thickness of 130 and 
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Figure 5.12. Q-factor as a function of resonance frequency for 140 μm-wide 
cantilevers. The measured data is compared with the following models: (a) model 
A, the proposed analytical model of Eq. (5.29), (b) model B, in which the air 
damping is described by Sader’s analytical model [213], and (c) model C, the 
proposed empirical model of Eq. (5.30). The x-axis indicates the corresponding 
fundamental flexural resonance frequency. 
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11 μm, respectively. For lower resonance frequencies (i.e., longer cantilevers), model C 

perfectly matches the measurement data, while the two other models closely follow the 

data trend. However, for higher frequency (i.e., shorter cantilevers), there is a frequency 

gap between the measurement and calculations. Since in Figure 5.11 the result of model 

C has exhibited an acceptable match with the experimental data for the shorter cantilevers, 

the presence of the frequency gap in Figure 5.13 is believed to be associated with the 

discrepancy between the calculated and measured frequencies in the shorter cantilevers. 

An explanation for this effect is referred to the increasing significance of non-ideal 

boundary conditions (e.g., the presence of silicon rim and non-ideal clamped edge) for 

shorter beams. 

 

The presence of resonant modes in close frequency proximity (coupled peaks) is another 

factor that can undermine the analytical predictions. It is well-known that the presence of 

multiple peaks in a close vicinity results in reduction of the Q-factor[179]. This effect can 
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Figure 5.13. Q-factor as a function of resonance frequency for cantilevers with thickness 
and width of 11 and 130 μm, respectively. The measured data is compared with the 
results of previously mentioned models A, B, and C. The x-axis indicates the 
corresponding fundamental flexural resonance frequency. 
 



 114

be observed in Figure 5.14, which demonstrates two examples of significant aberration of 

the measured Q-factors from the analytical prediction for cantilevers with lengths of 100 

and 150 μm. In this figure, the cantilevers width and thickness are 11 and 82 μm, 

respectively. The analytical calculation is based on Eq. (5.30) with a support loss 

exponent p = 2.75. In all presented plots in this work, the data-points associated with 

coupled peaks are omitted unless they are explicitly marked. 

 

Finally, the optimal cantilever geometry for achieving the maximum Q-factor, given by 

Eq. (5.25) can be revised by including the fit parameter as in Eqs. (5.29) or (5.30). 

Similar to Eq. (5.25), the optimal χ can be calculated by finding the minimum Q-1 in Eq. 

(5.30). Based on this calculation, for p = 2.7, the optimal length, as a function of 

thickness, is presented with a dashed line in Figure 5.2. The required parameters for 

plotting Figure 5.2 are summarized in Table 5.1. It is observed that using the empirically 

adjusted model only slightly affects the predicted optimal cantilever length for a given 

 

0

350

700

1050

1400

0 100 200 300 400 500

Length L (um)

Q
-F

ac
to

r

H = 11 um
Model C
Multiple Peaks

 
 

Figure 5.14. Reduced Q-factors for two cases of cantilevers with lengths of 100 and 150 
μm (dark diamonds) due to occurrence of multiple peaks in a close frequency proximity 
(coupled peaks); the thickness and width of the cantilevers in this graph are 11 and 82 
μm, respectively. The solid line shows the Q-factor calculation based on Eq. (5.30). 
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thickness; therefore, Figure 5.2 can be used as a simple look-up graph to find the 

cantilever dimension for maximizing the Q-factor of the fundamental flexural resonance 

mode.  

 

*** 

 

In this chapter by combining analytical derivations and experimental results, two models 

are developed to estimate the optimum dimensions of resonant rectangular cantilever 

beams for achieving maximum quality factor in air at the fundamental resonance. For 

silicon cantilevers with thicknesses between 5 to 17 μm, it has been calculated that the 

reciprocal of Q-factor is linearly proportional to L/H1.5 if this ratio is larger than  

15 μm-0.5. This behavior indicates that the air damping is the dominant loss mechanism 

for cantilevers with such length to thickness ratios; however, a close examination of the 

measured quality factors of these cantilevers shows that they exhibit almost identical 

quality factors if they share the same ratio of L/H1.25, or in other words, the air damping 

seems to be proportional to L/H1.25. Also, it has been shown that the effect of cantilever 

width may be neglected in analytical calculations, and the measurement results of 

cantilevers with large L/H1.5 confirm this assumption. In contrast, with the support loss 

being a major contributor to the damping, in short cantilevers (i.e., L/H1.5 < 15 μm-0.5) the 

Q-factor becomes a strong function of the cantilever width. Nevertheless, it is observed 

that the maximum measured Q-factor of cantilevers with different widths but same 

thickness occurs almost at the same length. Moreover, it is recognized that the support 

loss equation must be adjusted to include the effect of imperfectness on the cantilever 
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support (i.e., the clamped edge) when compared to the ideal boundary condition.  

Combining the corrected equations of air damping and support loss with the well-known 

Zener approximation for TED has made it possible in this chapter to calculate the 

optimum lengths of resonant cantilevers with given thicknesses to achieve the maximum 

achievable quality factor for the fundamental flexural resonance mode in air. 
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CHAPTER 6 

EFFECTIVE MASS IN FLEXURAL VIBRATIONS 
 
 
 

The goal of this chapter is to provide a theoretical model for estimating the effective mass 

and spring constant of a cantilever resonating in flexural modes. To establish such a 

model, first, using beam theory, the conditions for statically bending a beam to resemble 

the flexural mode shapes are explored. Next, a cantilever resonating in the nth overtone is 

modeled as a system with n degrees of freedom, which consists of n coupled single mass-

spring systems. The presented model is used in Chapter 7 to evaluate the damping of 

cantilevers resonating in flexural modes.  

 

6.1 Flexural Vibration of a Cantilever Beam 

As mentioned in Chapter 2, the undamped vibration of a homogenous cantilever in the nth 

flexural resonance mode can be described by 

ti nexytxy  )(),( ω= .       (6.1) 

The vibration amplitude y(x) is calculated as [2, 229] 
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The kinetic energy K of a particle is defined by [230] 

2

2
1 mvK = ,        (6.3) 

where m and v are the mass and velocity of the particle, respectively. A vibrating beam 

can be considered as a series individual particles; hence, its kinetic energy is given by 

[175]: 
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where A and ρ are the beam cross section and density, respectively, and L is the beam 

length. For a cantilever resonating in a flexural mode, the velocity of any single point of 

the beam can be calculated with respect to Eq. (6.1): 
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assuming that no part of the beam undergoes a shear movement (i.e., the cantilever 

thickness is negligible compared to the length). Therefore, with respect to Eq. (6.4), the 

maximum kinetic energy of the entire beam in the nth flexural mode can be calculated as  
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It must be noted that for the derivation of Eq. (6.6) the damping of system is considered 

to be negligible; hence, the contribution of resonance modes other than the nth flexural 

mode can be ignored. In a homogeneous cantilever beam with uniform cross section, Eq. 

(6.6) can be simplified to 
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In Appendix C it is shown that for all flexural modes the amount of integral in Eq. (6.7) is  
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where, y2(L) is the vibration amplitude of the cantilever tip (free end) . Hence, Eq. (6.7) 

for all flexural modes can be simplified to 
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A cantilever beam can be considered as a single point-mass resonator, which vibrates at 

the same amplitude as the cantilever tip. In this case, according to Eqs. (6.3) and (6.5), 

the maximum kinetic energy of the point-mass resonator will be 

( ))(
2
1 22* LymK nω= ,       (6.10) 

where m* is the effective resonator’s mass corresponding to the total actual mass of 

cantilever when concentrated on the tip. (For simplicity we refer to it as the tip point-

mass.) To have a valid correspondence between the single point-mass resonator and the 

resonant cantilever, the kinetic energies of the both systems must be equal; hence, with 

respect to Eqs. (6.9) and (6.10): 

mm 4
1* = .        (6.11) 

In other words, for all flexural vibration modes the effective mass of a cantilever, if 

considered as a point-mass on the tip, is a quarter of the actual mass. For the fundamental 

flexural mode this ratio will be examined further in section 6.3.1.  

 

 



 120

6.2 Imitating Flexural Mode Shapes with Static Beam Bending 

The flexural vibration amplitude of a cantilever can be resembled by statically bending 

the beam. It must be noted that such a resemblance is in fact an approximation since the 

governing equations for static and dynamic beam deflection, despite close similarity, are 

not identical. In other words, revisiting Eq. (2.23), the deflection of a resonant cantilever 

beam is caused by a distributed inertial force: 
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while the static bending of a beam is caused by discrete point forces. For example, when 

the cantilever is deflected by a force applied on the tip (x = L) the deflection along the 

beam is described as [1] 
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where M is the bending moment. 

 

A cantilever resonating in the nth flexural mode (i.e., the nth flexural overtone) has n-1 

nodes (regardless of the clamped end) and n antinodes. Therefore, to imitate the vibration 

mode shape, at least n different point forces are needed. Here we assume that each of the 

point forces is applied on an antinode. The fairness of this assumption is examined later 

by comparing the modeled beam deflection with the theoretical flexural vibration 

amplitude. Also with this assumption there will be always a point force applied on the 

cantilever tip in any flexural overtone. The proposed force arrangement along the beam is 

illustrated in Figure 6.1.  
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In Chapter 2 the bending of cantilever due to a point force was expressed by Eq. (2.14). 

Based on the same equation, the cantilever deflection yj at a point x on the cantilever, as 

the result of applying a force Fj at the point xj, can be expressed in a more general form: 
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where pj = xj/L is the ratio between the location of applied force (xj) and the cantilever 

length. (For example pj = 1 when the force is applied on the cantilever tip.) Using the 

superposition principle [81], the overall deflection of the cantilever beam as the result of 

applying multiple point forces can be calculated as 
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Equation (6.15) can be used in resembling the bending of a cantilever to the deflection of 

a flexural mode shape. In this regard the overall deflection is described as 

 
 
Figure 6.1. Configuration of independent point forces applied on antinodes in the 
5th flexural mode. The size of point force vectors are in proportion to the ratios 
given in Table 6.2.    
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where the point force applied on the cantilever tip is counted as j = 1 and βj is the ratio 

between the force applied at point xj and the tip force (βj = Fj/F1). In Eq. (6.16), )(xy j  is 

the deflection caused by the unit point force Fu = F1 applied at xj. For calculating the net 

deflection Yi of the beam at the point xi where the point force Fi is applied, Eq. (6.16) can 

be further simplified: 
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where i indicates the point of interest, as i is equal to 1 on the cantilever tip and increases 

by moving toward the clamped end, and αij is  
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In other words, αij is an element of the symmetrical n×n matrix C: 
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and Eq. (6.16) can be described by: 
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The force ratios βj can be obtained by solving Eq. (6.16) for the zero deflection (i.e., y(x) 

= 0) in x corresponding to node locations, while from Eq. (6.2) the node locations can be 

calculated. The node (and antinode) locations, normalized with respect to the cantilever 

length, are summarized in Table 6.1 for the first 6 flexural modes, based on which the βj 

ratios are calculated and presented in Table 6.2. Using Eqs. (6.16) and (6.2), the 

resemblance of the static and dynamic deflection of a cantilever beam are compared in 

Figure 6.2. As it can be observed, the resembled static deflection closely follows the 

vibration amplitude. This statement becomes even more evident by comparing the 

deflection at the antinodes for the first 6 flexural modes as presented in Table 6.3; hence, 

the earlier assumption of applying the point forces on the antinodes is valid. 

 

6.3 Effective Mass in Flexural Vibration Modes  

As expressed with Eq. (6.11), for all flexural modes the corresponding mass of a 

cantilever beam, when considered as a single point-mass on the cantilever tip, is a quarter 

of the actual mass. The tip point-mass is also known as the effective mass of the 

fundamental mode [231]. Nevertheless, we will show that for the other overtones the 

resonant beam can be characterized with more than one point-mass. In this perspective, a 

beam resonating in the nth overtone can be considered as a system of n coupled lumped 

mass-spring subsystems. In other words, a resonant beam in the nth overtone can be 

considered as a system with n degrees of freedom, which consists of n coupled point-

masses subsystems each located on an antinode (i.e., the same locations that the point 

forces should be applied to imitate the vibration deflection as shown in Figure 6.3). In 
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Table 6.3. Normalized deflection amplitude at antinodes rj1 (with respect to the tip 
deflection) in flexural modes (fl.) versus the resembled static bending (st.). 

 

 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 
 fl. st. fl. st. fl. st. fl. st. fl. st. fl. st. 

r11 1 1 1 1 1 1 1 1 1 1 1 1 

r21 – – -0.720 -0.715 -0.659 -0.648 -0.661 -0.650 -0.661 -0.650 -0.661 -0.651

r31 – – – –  0.758  0.762  0.707  0.704  0.709  0.705  0.709  0.705

r41 – – – – – – -0.756 -0.761 -0.705 -0.700 -0.707 -0.703

r51 – – – – – – – –  0.756  0.761  0.705  0.702

r61 – – – – – – – – – – -0.756 -0.762

 
 

Table 6.2. Force ratio βj in flexural modes. 
 

 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 
β1 1 1 1 1 1 1 

β2 – -3.266 -2.541 -2.578 -2.575 -2.576 

β3 – –  3.683  3.090  3.119  3.118 

β4 – – – -3.660 -3.056 -3.088 

β5 – – – –  3.655  3.059 

β6 – – – – – -3.661 

 
 

Table 6.1. Normalized location x/L of nodes zj and antinodes  pj in flexural modes. 
 

 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 
z1 – 0.784 0.868 0.906 0.927 0.940 

z2 – – 0.504 0.644 0.723 0.774 

z3 – – – 0.358 0.500 0.591 

z4 – – – – 0.279 0.409 

z5 – – – – – 0.228 

 
 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 

p1 1 1 1 1 1 1 

p2 – 0.471 0.692 0.780 0.829 0.860 

p3 – – 0.291 0.501 0.611 0.682 

p4 – – – 0.208 0.389 0.500 

p5 – – – – 0.162 0.318 

p6 – – – – – 0.132 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6.2. Static deflection imitation (red lines) versus flexural mode shapes 
(green lines) of a 1-dimensional cantilever in (a) fundamental flexural mode, (b) 
second flexural mode, (c) 6th flexural mode. The deflections are normalized. 
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this system the defining equations for an undamped free vibration have the general form 

of [2] 

0SYYM =+&& ,        (6.18) 

where S is the stiffness matrix, M is the mass matrix: 
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and Y is the displacement vector with 

ti
n

ne ωΦY = ,         (6.19) 

in which Φn represents the corresponding vector of antinode amplitudes based on  

Eq. (6.1): 

 
 
Figure 6.3. Cantilever resonating in the 5th flexural mode as a system of 5 point-
masses, each located on an antinode.    
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where y(xj) is the vibration amplitude of the jth point-mass located at xj from the beam 

free end (i.e., y(x1) = Y1 is the amount of deflection on the cantilever tip).  

 

For a cantilever resonating in the nth flexural mode there are two conditions in 

determining the point-mass mj. The first condition comes from the characteristic equation 

for the resonance frequency [2]: 

0)( 2 =− nn ΦMS ω .       (6.20) 

Expanding Eq. (6.20) for the jth point-mass gives: 

∑
=

=
n

k
kjjknj rsm

1

2ω ,       (6.21) 

where rkj defines the ratio between the vibration amplitudes of the kth and jth point-

masses: 

j

k
kj Y

Yr = .        (6.22) 

It is worth mentioning that the right-hand side of Eq. (6.21) is the effective spring 

constant at the point j in the coupled system: 

∑
=

=
n

k
kjjkj rsk

1

.        (6.23)   

Since at any resonance overtone all point-masses vibrate at the same frequency, using Eq. 

(6.21) the point-masses relationship can be described by 
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The second condition in determining the point-mass mj is imposed by the total effective 

mass of a resonant cantilever. In this regard, the maximum kinetic energy of a single 

mass-spring subsystem resonating at point j is calculated with respect to Eqs. (6.3), (6.5) 

and (6.19): 

22

2
1

jnjj YmK ω= .       (6.25) 

Hence, the maximum total kinetic energy of the system is described by 
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j YmKK ω . 

On the other hand, the maximum kinetic energy of the resonant cantilever is described by 

Eq. (6.9); therefore, the maximum total kinetic energy of the system must be 

)
4
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1 2
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jjn ωω == ∑
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,     (6.26) 

 where Y1 = y(L). Thus, with the notation of Eq. (6.22), the second condition in 

determining the point-masses is defined by 

mrm
j

jj 4
1

1

2
1 =∑

=

.       (6.27) 

      

6.3.1 Effective Mass in the Fundamental Flexural Resonance Mode 

The static imitation of the first flexural resonance mode can be obtained by a simple 

cantilever bending as the result of applying a point force on the tip. In this case the matrix 
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S has only one element which is equal to the static spring constant of the beam described 

by Eq. (2.13): 

311
3
L
EIks == .        (6.28) 

As expressed by Eqs. (6.11) and (6.27), the effective mass of a resonant cantilever, when 

the entire mass a considered to be on the tip point, is exactly one quarter of the actual 

cantilever mass. On the other hand, the resonance frequency of a mass-spring system is 

given by Eq. (2.3), therefore, the fundamental flexural resonance frequency is calculated 

as 

m
kf
25.02

1
1 π

= .       (6.29) 

Equation (6.29) can be simplified after replacing k from Eq. (6.28), I from Eq. (2.15) for 

a rectangular cantilever beam, and expressing the actual mass m based on the cantilever 

density ρ : 

ρπ
E

L
Hf 21 2

1
= .       (6.30) 

However, according to Eq. (2.27): 

ρπρπ
λ E

L
HE
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Hf 22

2
1

1 2
0149.1

122
==  .    (6.31) 

In other words, for the fundamental flexural mode, it seems that the ratio of effective 

mass to the total mass is equal to 0.24 instead of the expected ratio of 0.25. To explain 

the origin of this discrepancy, one must point out the difference between the dynamic and 

static deflection of a beam. Figure 6.2(a) shows the normalized deflection profile of a 

cantilever beam with uniform cross-section when the beam is deflected by a tip point 
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force (dashed red line) and when it is vibrating in the fundamental flexural mode (dashed 

green line). As observed, along the length of the beam the deflection due to a point force 

is slightly smaller than the vibration amplitude, which results in a slightly smaller kinetic 

energy, and hence, a smaller effective mass ratio. 

 

The 0.24 ratio has a special value in characterization of AFM cantilever probes [218, 

232], as with this ratio the static spring constant of a cantilever can be calculated based 

on its resonance frequency. 

  

6.3.2 Effective Mass in All Flexural Resonance Modes 

Similar to the case of the fundamental mode, the proposed vibration amplitude imitation 

can be used to calculate the stiffness matrix elements sjk of a flexural overtone. 

Nevertheless, also similar to the previous case, the slight mismatch between the static 

model and the flexural vibration amplitude can result in a small discrepancy between the 

actual and calculated effective masses.  

 

The stiffness matrix S describes the ratio between displacements and the applied forces; 

therefore, with respect to Eqs. (6.17), for the static imitation of all flexural resonance 

modes (including the fundamental mode) the stiffness matrix can be described as    

1CS −= 3
2
L
EI .        (6.32) 

Substituting the corresponding stiffness matrix elements in Eq. (6.24) reveals the 

relationship between every two point-masses in a given resonance overtone, which 

together with the condition described by Eq. (6.27) will lead to finding the exact ratios of 
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point-masses in the flexural mode of interest. Calculated with this approach, the effective 

point-mass ratios – with respect to the actual mass – in the first 6 flexural modes are 

listed in Table 6.4.  

 

It is interesting to note that the sum of all point-masses converges to half of the actual 

mass as the overtone number increases. In the extreme case, when the overtone number is 

reaching infinity, i.e., n → ∞, the sum of all point-masses will be 

mm
j

j 2
1

1

=∑
∞

=

.        (6.33) 

This can be explained as follows: when the resonance overtone approaches infinity, each 

infinitesimal segment of the cantilever is quantized into a node and an antinode, which 

are corresponding to the two quantized energy states of high (at antinode) and zero (at 

node). Therefore, the entire cantilever beam becomes a long chain of quantized masses 

equally distributed on the nodes and antinodes (see Figure 6.4). Since the kinetic energy 

of each quantized segment is defined by the energy associated with the antinode, the 

effective mass of each quantized segment is equal to the mass located on the antinode. In 

other words, the effective point-mass in each segment is equal to the half of the actual 

Table 6.4. Effective point-mass ratios in flexural modes. 
 

 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 
m1 0.25 0.075 0.046 0.033 0.026 0.021 

m2 – 0.338 0.177 0.128 0.099 0.081 

m3 – – 0.222 0.143 0.112 0.092 

m4 – – – 0.157 0.110 0.091 

m5 – – – – 0.122 0.090 

m6 – – – – – 0.100 
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mass of the segment. Thus the total mass located on the antinodes is half of the 

cantilever’s actual mass, as expressed by Eq. (6.33). 

         

The validity of this conclusion can be confirmed by investigating the vibration amplitude 

at antinodes. To this end, according to Eq. (6.27), the relationship between the sum of 

point-masses located on the antinodes and the cantilever mass is defined as: 

mrm
j

jj 4
1

1

2
1 =∑

∞

=

.       (6.34) 

On the other hand, in higher overtones the mode shape of a resonant cantilever 

approaches a sinusoidal shape (except for the points that are very close to both ends) 

[229]; hence, for n → ∞ the amplitude of antinodes can be considered to be equal − with 

the exception of the tip amplitude, which can be used as the reference. In other words, the 

coefficients rj1 for j > 1 have the same value for all antinodes, thus 

 
 

 
 
Figure 6.4. Quantization of a resonant cantilever into nodes and antinodes in the 
nth flexural mode, where n → ∞. The highlighted area shows a quantized segment, 
consisting of a node and an antinode.   
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where r11 = 1 based on the definition expressed by Eq. (6.22). Since on an infinitely 

quantized cantilever each single point-mass is negligible in comparison to the total mass 

of the cantilever, the contribution of m1, the point-mass on the tip, can be ignored: 

mmr
j

jj 4
1

2

2
1 =∑

∞

=

.       (6.36) 

The same argument can be stated for Eq. (6.33). Therefore, for overtones approaching the 

infinity, Eq. (6.36) together with Eq. (6.33) can be used to define the vibration amplitude 

of antinodes (for j > 1, which are normalized with respect to the tip amplitude): 

2
1

1 =jr .        (6.37) 

Since the result of Eq. (6.37) is consistent with the theory [229] and calculation (e.g., see 

rj1 for the center antinodes in higher flexural modes in Table 6.3), the assumption made 

for deriving Eq. (6.33) is valid.  

 

In Figure 6.5(a) the total point-mass ratios of each overtone (i.e., the sum of individual 

point-mass ratios in that overtone) are depicted versus the corresponding flexural mode 

overtone. As discussed before, by increasing the overtone number the total mass ratio 

approaches 0.5. Investigating the change of total point-mass ratios in every two 

consecutive overtones reveals, as shown in Figure 6.5(b), that the largest increase in the 

amount of total point-mass ratio occurs for the 2nd flexural mode. This overtone shows a 

65% increase with a total point-mass ratio of 0.413 compared to the 0.25 ratio in the 

fundamental mode. However, the increment rate sharply drops after the 2nd overtone, to 
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such an extent that the amount of total point mass-ratio in the 6th overtone is barely 1% 

more than the same ratio in the 5th overtone.  
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Figure 6.5. (a) The total point mass ratio in the first 10 flexural modes; (b) change 
in the total mass ratio in each flexural mode compared to the previous mode.   
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CHAPTER 7 

Q-FACTOR IN FLEXURAL OVERTONES 
 
 
 

In Chapter 5 the dependence of the Q-factor on the geometrical dimension of a cantilever 

in the fundamental flexural resonance mode was investigated and it was observed that the 

two major damping mechanisms are the air damping and support loss. In this chapter the 

measurement results for the same resonant cantilevers at higher flexural overtones are 

presented.  

 

The variation of the Q-factor in different overtones can be studied in two aspects. In the 

first aspect the study focuses on the change of the Q-factor for different resonance 

overtones of the same cantilever; whereas the second aspect involves a comparative study 

of different cantilevers resonating in the same overtone. The latter approach is similar to 

the presented study in Chapter 5 for the fundamental flexural mode. This chapter covers 

both aspects; however, to grasp a better understating about damping in higher flexural 

modes, the chapter starts with a theoretical modeling of the slightly damped resonance of 

cantilevers.  

 

7.1 Damping in Flexural Overtones 

7.1.1 Effective Damping Coefficient of Resonant Cantilevers 

The objective of this section is to find a system level model for the damping in a resonant 

cantilever system at any given flexural overtone. As mentioned in Chapter 6, a resonant 

cantilever in the nth overtone (i.e., ωn) can be considered as a system with n degrees of 
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freedom, consisting of n mass-spring subsystems which resonate at the same frequency. 

In this section, the damping associated with such system is investigated.  

 

The deflection yj in the jth mass-spring subsystem is defined by a second order differential 

equation: 

02

2

=++ ji
j

j
j

j yk
dt

dy
B

dt
yd

m ,      (7.1) 

where, as discussed in Chapter 6,  mj and kj are the jth point-mass and spring constant, 

respectively, and Bj represents the damping coefficient of the subsystem. When the 

second term in Eq. (7.1) is relatively small, i.e., the quality factor is large, as mentioned 

in Chapter 2 the damped and natural resonance frequencies of the subsystem will be 

almost equal; therefore the free vibration amplitude in the subsystem can be described in 

the time domain as [233] 

)cos()( 2 teYty n

t
Q

jj
j

n

ω
ω

= ,      (7.2) 

where Yj is the initial resonance amplitude of the point-mass mj as described in Chapter 6. 

Since at any given overtone of a resonant cantilever system, the resonance of each 

subsystem damps no faster than the others, the quality factor of all subsystems must be 

identical and equal to the quality factor of the system: 

QQ j = .        (7.3) 

With respect to Eq. (2.6), it can be deducted from Eq. (7.3) that the ratios of the damping 

coefficient to the point-mass in all subsystem are equal: 

Qm
B n

j

j ω
= .        (7.4) 
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Therefore, by measuring the Q-factor and resonance frequency of the cantilever and by 

calculating the amount of mj as explained in Chapter 6, the damping coefficient of any 

subsystem in any resonance overtone can be extracted. The assumption here is that the 

medium has an insignificant effect on the inertial part of Eq. (7.1), i.e., mj is defined only 

based on the cantilever mass and the resonance overtone. 

 

The energy loss in each subsystem consists of two mechanisms: a) the energy that is 

dissipated out of the overall resonant cantilever system, b) the energy that is transferred 

to other subsystems within the resonant cantilever system. Since the net amount of energy 

transferred between the subsystems is zero, the total energy loss in the subsystems is 

equal to the dissipated energy in the resonant cantilever system.  

 

The one-cycle energy loss Lj in the jth subsystem is defined based on Eq. (7.1): 

∫=
T

o

j
jj dt

dt
dy

BL 2)( .       (7.5) 

If the subsystem is forced to resonate with an amplitude yj(t) = Yj cos(ωt), the integral of 

Eq. (7.5) will be simplified to 

2
jjnj YBL πω= .       (7.6) 

In a resonant system the maximum stored energy is equal to the maximum kinetic energy, 

while their relationship with the energy loss per cycle is expressed by the Q-factor 

through Eq. (2.4). Applying the same definition to each subsystem gives 

jj K
Q

L π2
= ,        (7.7) 
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where Kj is the maximum kinetic energy of the jth mass-spring subsystem defined by Eq. 

(6.25). If the Q-factor of the resonant cantilever at a given overtone is large enough to 

ignore the effect of other overtones on the vibration amplitudes, the total dissipated 

energy of the cantilever system in that overtone, as mentioned before, will be equal to the 

total energy loss of the subsystems in the same overtone: 

∑∑
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jjn

j
j YBLL πω       (7.8) 

Also, as mentioned in Chapter 6, the same argument is valid for the kinetic energy of the 

system: according to Eq. (6.26) the total kinetic energy of the system can be considered 

as the kinetic energy of an effective mass on the tip point (m* = 0.25m). Hence, the total 

energy loss of the resonant cantilever system in the nth overtone is 
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Simplifying Eq. (7.9) with respect to Eq. (7.8) and the definition of Eq. (6.22) yields 
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.       (7.10) 

On the other hand, B*, the effective damping coefficient of the resonant cantilever system 

when considered as a tip point mass-spring system, can be defined by Eq. (7.8): 
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which with respect to Eq. (6.22) simplifies to 
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Therefore, considering Eqs. (7.10) and (7.12), the overall damping of a resonant 

cantilever at the nth overtone can be modeled as the damping of resonating mass-spring 

system on the cantilever tip: 

Q
mB nω4

1
* = .        (7.13) 

Equation (7.13) can be very helpful in evaluating and comparing the damping 

coefficients (i.e., energy losses) in different overtones of a same resonant cantilever. 

 

7.1.2 Damping Mechanisms in Flexural Overtones 

As mentioned in Chapter 5, the energy loss in the fundamental flexural resonance mode 

of a cantilever can be associated with different mechanisms, among which the air 

damping and support loss are the most prominent ones. In the same way, the total energy 

loss at a given overtone also can be attributed to different loss mechanisms: 

.etcLLL clampair ++= ,       (7.14) 

where Lair and Lclamp are the viscous (air) and support (clamp) energy losses, which 

individually can be calculated by the same expression presented in Eq. (7.6). Thus the 

total energy loss can be calculated with respect to the model presented in Eq. (7.11): 

.2
1

2
1 etcYBYBL clampnairn ++= πωπω      (7.15) 

Therefore, the overall effective damping coefficient of the system can be described as: 

otherclampair BBBB ++=* ,      (7.16) 

where Bother represents the cumulative damping coefficient of other loss mechanisms 

besides the air damping and support loss. Combining Eqs. (7.13) and (7.16), the overall 

Q-factor of the system at any given overtone is 
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otherclampair QQQQ
1111

++= ,      (7.17) 

which has been also mentioned in Chapter 5. 

 

7.2 Measurement Results and Discussion  

The measurement results presented here are obtained from the same cantilevers 

investigated in Chapter 5 but at higher flexural resonance overtones. The measurement 

setup and data acquisition conditions are exactly the same as what has been mentioned in 

Chapter 5. Also, each data point presented in this chapter is an average of extracted Q-

factors of at least 8 repeated resonance characteristic measurements for a single 

resonance mode of each cantilever. The associated relative standard deviation (statistical 

uncertainty) with each data point is less than 5%, otherwise the data is discarded. 

 

7.2.1 Q-factor of Different Overtones for the Same Cantilevers 

The focus of this section is on the change of Q-factor with different overtones for the 

same cantilever. The investigated cantilevers are 850 and 1050 μm long and have a 

thickness of 11 μm (i.e., according to the notation of Eq. (5.15), χ = 23.3 and  

28.8 μm-0.5). The widths of measured cantilevers are 82, 130, 180 and 230 μm. As 

mentioned in Chapter 5, the quality factor of cantilevers with such χ values in the 

fundamental flexural mode is overwhelmingly determined by the air damping and almost 

independent of the width. However, it is predicted that in higher flexural overtones the 

support loss becomes more influential since Qclamp approximately changes inversely 

proportional to λn
2 [234] while Qair approximately increases by λn (see Eq. (5.9)) [219]. 
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On the other hand, it was observed in Chapter 5 that in the fundamental flexural mode the 

Q-factor would become a function of the cantilever width if the support loss was the 

dominant damping mechanism. Therefore, assuming that in higher flexural modes the 

two major damping mechanisms are still the air damping and support loss, the 

dependence (independence) of Q-factor on the cantilever width might indicate the 

support loss (air damping) as the dominant damping mechanism. To this end, in Figure 

7.1 the measured Q-factors are depicted versus the resonance frequencies of the 
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Figure 7.1. Q-factor as a function of the overtone resonance frequency for 
cantilevers with different width W ranging from 82 to 230 μm, and with (a) L = 
1050 μm, and (b) L = 850 μm. All cantilevers are 11 μm thick. 
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overtones. It is observed that the Q-factor becomes a function of the width, starting from 

the second overtone for 850 μm-long cantilevers, but from the third overtone for 1050 

μm-long cantilevers. Therefore, it may be conceived that at higher flexural modes the 

support loss becomes the dominant damping mechanism. In this regard, based on the 

theoretical support loss model proposed by Hao et al. [234], Qclamp is calculated as 

32
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1 )()(
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c
cCQ

n
FCclamp λ−= ,      (7.18) 

where CC-F is 3.99, and the coefficients c1 and c2 are given by Eq. (2.26b) which result in 

the ratio of c1/c2 to be equal to -0.73, -1.02 and -1.00 for the fundamental, second and all 

higher flexural modes, respectively. However, depicting the calculated support loss as an 

inverse of Qclamp (see Figure 7.2) reveals that the damping in the higher overtones 

significantly exceeds the theoretical prediction of Hao et al. The explanation for the 

observed discrepancy is not known to the author; but it is speculated that in higher 

flexural modes either Hao’s theoretical model is less accurate in predicting the support 

loss, or there are other dominant damping mechanisms besides the support loss. On the 

other hand, the width-independent increase of Q-factor for the first two flexural modes in 

1050 μm-long cantilevers indicates that the air damping is not only the dominant 

damping mechanism for these flexural modes, but also Qair increases with the overtone 

number as expected by the theory [219]. Therefore, the decrease of the measured Q-

factor in higher overtones indicates that the air damping is no longer a significant 

contributor to the energy loss in those overtones.  

 

Using Eq. (7.13) the variation of the total damping coefficient B* of the system for 

different flexural modes is traced in Figure 7.3, which shows that for both sets of 
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cantilevers the damping monotonically increases with the overtone number. This 

observation is made despite the fact that for both sets of cantilevers the Q-factors in the 

second overtone are larger than in the fundamental mode. In other words, for higher 

overtones with an increase in Qair the air damping also increases, but the negative 

contribution of the air damping to Qair is overshadowed by the increase of resonance 

frequency, as expressed by Eq. (7.13).  
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Figure 7.2. Measured 1/Q and calculated 1/Qclamp in the first 5 flexural modes as
functions of the overtone resonance frequency for cantilevers with different width W
ranging from 82 to 230 μm, and (a) L = 1050 μm, (b) L = 850 μm. All cantilevers are 
11 μm thick. 

 
 



 144

 

7.2.2 Q-factor of Different Cantilevers for the Same Overtones 

Previously in Figure 5.6 the dependence of the Q-factor on χ for the fundamental flexural 

mode was shown. In a similar way, Q-1 is depicted as a function of χ in Figure 7.4 not 

only for the fundamental mode, but also for the second and third flexural modes. For 

acquiring the presented data, the same cantilevers are measured in different overtones, 

with the same dimensional specifications as described in Chapter 5. Because of the 
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Figure 7.3. Variation of the effective damping coefficient versus the flexural mode 
(overtone) number for cantilevers with different width W ranging from 82 to 230 μm, 
and (a) L = 1050 μm, (b) L = 850 μm. Both cantilevers are 11 μm thick. 
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Figure 7.4. Plots of measured Q-1 versus χ = L/H1.5 for cantilevers with thicknesses of 
5, 7, 8, 11 and 17 μm; (a) fundamental flexural mode – same as Figure 5.6, (b) second 
flexural mode, (c) third flexural mode. Although not marked in the graph, the widths 
of the presented cantilevers are not necessarily equal. 
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measurement limitations especially for higher overtones, no data for a number of 

cantilevers could be collected in those overtones. Also, data points associated with 

coupled peaks (see Chapter 5) are discarded in the presented graphs. It can be observed 

that the critical region, i.e., the region where the support loss is comparable or larger than 

the air damping, ends at χ = 14 μm-0.5 for the fundamental flexural mode, while it extends 

to χ ≈ 30 μm-0.5 for the second overtone, whereas all the collected data for the third 

overtone (χ  < 60 μm-0.5)  are in the critical region. In other words, as mentioned before, it 

seems that at higher overtones the support loss becomes the dominant damping 

mechanism.  

 

Similar to the discussion in Chapter 5, the Q-factor becomes a function of the cantilever 

width in the critical region. Figure 7.5 compares the effect of the width on the Q-factor 

for two cantilever sets resonating in the second flexural mode, with both sets having the 

same thickness of 11 μm, but different lengths of 1050 versus 450 μm. As seen in the 
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Figure 7.5. Q-factor in the second flexural mode as a function of the cantilever 
width for different lengths; the cantilever thickness is 11 μm. 
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graph, the Q-factors of 1050 μm-long cantilevers (χ = 28.8 μm-0.5) are independent of the 

cantilever width, while the narrower 450 μm-long cantilevers (χ = 12.3 μm-0.5) have the 

higher Q-factors. 

 

The dependence of Qair on the geometry of resonant cantilevers in the second overtone is 

shown in Figure 7.6, in which, similar to the graphs for the fundamental flexural mode 

(see Figure 5.7), data points from the air damping dominated region are plotted versus 
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Figure 7.6. Inverse of Q-factor Q-1 in the second flexural mode as a function of: (a) 
L/H1.5 and (b) L/H1.25. The presented Q-factors belong to cantilever resonators 
enduring the air damping as the dominant loss mechanism. 
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L/H1.5 and L/H1.25. Applying a linear regression for the data that is plotted versus L/H1.5 

(see Figure 7.6(a)) yields an empirical air damping coefficient of εemp = 3.15×10-5 μm0.5. 

In comparison with the corresponding coefficient for the fundamental mode, i.e., εemp = 

8.18×10-5 μm0.5, extracted in Chapter 5, the air damping coefficient is reduced by a factor 

of 2.5, while according to the model proposed by Hosaka et al. this factor is predicted to 

be approximately equal to λ2/λ1 = 4.2 (see Eq. (5.9)) [219]. In other words, the increase 

of Qair in the second overtone is less than the theoretical prediction. Comparing Figures 

5.7(b) and 7.6(b) shows that the empirical air damping coefficient for the data plotted 

versus L/H1.25 is also decreased by a factor of 2.5 in the second flexural mode. 

 

Figure 7.7 shows the variation of the Q-factor with the resonance frequency for the first 

three flexural modes. An interesting observation is that for all the measured cantilevers, 

the maximum Q-factors are found in a small frequency span of 200 to 400 kHz, 

regardless of the overtone number. This observation indicates that, at least for the first 

three flexural modes of resonant cantilevers within the investigated dimensions, the 

maximum achievable Q-factor is bound to an upper limit in frequency (i.e., f < 400 kHz). 

Similar to the discussion for the fundamental flexural mode, the decrease of Q-factor at 

higher and lower resonance frequency can be attributed to the dominance of support loss 

and air damping, respectively.  

 

Finally, as depicted in Figure 7.7(c), the maximum measured Q-factor among all 

measured cantilevers regardless of the investigated overtone belongs to an 11 μm-thick 

cantilever with a length and width of 850 and 82 μm, respectively, which resonates at the 
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Figure 7.7. Q-factor versus resonance frequency for cantilevers with thickness of 5, 7, 
8, 11 and 17 μm; (a) fundamental flexural mode (b) second flexural mode, (c) third 
flexural mode. Although not marked in the graph, the widths of the presented 
cantilevers are not necessarily equal. 
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third flexural mode with the measured Q-factor of 1574. Based on what is mentioned in 

this chapter, it is expected to reach even higher Q-factors by further decreasing the 

cantilever width.  

 

7.3 Temperature Considerations 

The measurement results presented in the previous section are obtained in a temperature 

range of 30 ± 5 ºC. Although the temperature span is small, it can be helpful to 

investigate the effect of temperature on the Q-factors and resonance frequencies of 

cantilevers. To this end, the resonance characteristics of a cantilever with length, width, 

and thickness of 1050, 130, and 11 μm has been captured in a temperature range form 10 

to 70 ºC. The measurement was performed inside an ESPEC Environmental Chamber 

SH-241, with a relative humidity confined between 30 to 45%. To fit the measurement 

setup inside the chamber, and also to avoid any thermal influence form the setup, the 

excitation magnetic flux is generated by a permanent magnet instead of the previously 

used electromagnet. 

 

Figure 7.8 presents plots of measured Q-factors versus temperature for the fundamental 

and the 5th flexural modes. As observed in Figure 7.8(a), the influence of temperature on 

the Q-factor in the fundamental mode is negligible. However, as shown in Figure 7.8(b), 

in the 5th mode the Q-factor dramatically increases by increasing the temperature. As a 

result, in general, trends of the Q-factor data for higher overtones must be interpreted 

with extra care since the observed variations may also be due to the temperature changes 

in addition to the cantilever dimension alterations. Also observed in Figure 7.8, for both 
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modes, the resonance frequency slightly decreases with an increase in the temperature. 

The latter observation is investigated in more details in Chapter 8.  

 

*** 

 

In this chapter, as a follow up to Chapter 5, the effect of cantilever dimensions on the Q-

factor in flexural overtones was studied. Also, to have an accurate estimate of the 
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Figure 7.8. Plots of Q-factor versus resonance frequency for different temperatures; (a) 
fundamental flexural mode, (b) 5th flexural mode. The measured cantilever has a 
length, width, and thickness of 1050, 130, and 11 μm, respectively. 
 



 152

damping coefficient, based on the theoretical models given in Chapter 6, a model for the 

effective damping coefficient in every overtone was presented. The measurement results 

show that in higher flexural modes, similar to the fundamental mode, the dependence of 

Q-factor on cantilever geometry can be described by χ = L/H1.5; however, the critical 

region, in which the dominant damping mechanisms have equal influence, occurs at 

higher χ in the higher overtones. In other words, the Q-factors of cantilevers which have 

the air damping as the dominant loss mechanism in the fundamental flexural mode, 

initially increases in the second or third flexural modes, but eventually drops for higher 

modes. Also in this chapter the air damping and support loss were identified as dominant 

damping mechanisms for flexural overtones, although the cited theoretical models did not 

exactly match the measurement data. Finally, it was observed that a temperature variation 

can have a significant influence on the measured Q-factor, thus extra care must be 

applied in interpreting the trends of the Q-factor data in higher overtones.  
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CHAPTER 8 

CANCELLATION OF ENVIRONMENTAL EFFECTS  
IN RESONANT MASS SENSORS  

 
 
 

In study of the flexural resonance behavior of cantilevers in the previous chapters a major 

motivation has been to use the optimized resonators as mass sensors. As previously 

mentioned in Chapter 2, mass sensing with a resonant sensor was first demonstrated 

using quartz crystal microbalances (QCM) [146], which was based on the concept that a 

change in the resonant sensor’s mass causes a change in resonance frequency [235]. 

Facilitated by the development of microfabrication technologies, this concept has been 

successfully implemented in other bulk acoustic wave resonators [236], as well as in 

surface acoustic wave sensors [237] and resonant cantilevers [6, 52, 238-240]. These 

mass sensors are especially used for (bio-) chemical detection, in which the mass change 

is typically caused by adsorption or absorption of target analytes to a sensitive layer 

coating the resonator.  

 

One of the major challenges in resonant mass-sensing is to distinguish between frequency 

variations caused by a mass change and frequency variations caused by environmental 

changes, e.g., temperature, viscosity, or humidity. For example, in the previous chapter, 

in Figure 7.8, it was shown that a temperature increase would result in reduction of the 

cantilever resonance frequency. This observation can be explained by the well known 

phenomenon that a temperature change causes variations of the resonator’s elastic 

modulus and/or dimensions [241]. On the other hand, changes in the ambient humidity 
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and viscosity alter the viscous damping of the resonant system and also cause resonance 

frequency drift [148, 241].  

 

In this chapter a novel technique is presented to cancel the effect of environmental 

parameters, e.g., temperature and humidity, in resonant mass sensors, in general, and in 

resonant cantilevers, in particular. Utilizing a single resonator, the environmental 

cancellation is achieved by monitoring a pair of resonant overtones and the effective 

sensed mass in those overtones (ECOM: environmental effect cancellation with overtone 

and mass). As an eminent advantage the presented technique eliminates any need for 

previously measured look-up tables or fitting the measurement data. 

 

8.1 A Brief Review of Temperature Compensation Techniques 

To compensate the frequency drifts caused by ambient variations − temperature 

fluctuations in particular − one of the widely investigated approaches is to utilize another 

resonator as a reference [242-244]. In this approach, the sensing resonator, which is 

coated with the sensitive layer, and the uncoated reference resonator operate under the 

same environmental conditions. With the assumption that any environmental parameter 

affecting the resonance behavior will cause the same frequency drift in both sensing and 

reference resonators, the induced frequency change by an added mass can be extracted by 

subtracting the frequency changes of the two resonators. The drawback of this method 

originates from the aforementioned assumption that both resonators have exactly the 

same mechanical properties or at least respond similarly to environmental changes. In 

practice, however, no two resonators have exactly identical mechanical properties, even if 
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they are fabricated in the same batch process; consequently, their resonance frequencies 

and their responses to varying environmental parameters may not be same. Overall, this 

approach can be helpful in estimating the frequency change by a mass-uptake, but it 

cannot provide a complete solution. 

 

Several other approaches in minimizing the temperature-induced resonance frequency 

variation include active frequency control with a co-integrated temperature sensor [242, 

245] or feedback loop [246], passive temperature compensation using the stress induced 

by thin films [247-249], and selection of structural materials that are less sensitive to 

temperature [250]. When using a co-integrated temperature sensor, it is mandatory to 

establish a reproducible relationship between temperature and resonance frequency 

change. Here, a major challenge is that the temperature coefficient of the resonance 

frequency varies from one resonator to another, thus requiring a calibration for each 

sensor. Also, the required circuitry for precise sensing of temperature may increase the 

complexity and cost of overall sensing system. Finally, this approach only compensates 

the temperature effect, but leaves other contributing effects, e.g., humidity, 

uncompensated. On the other hand, passive approaches utilizing thin-film-induced 

stresses are highly dependent on the packaging, the adopted resonant structure, and the 

quality of the selected thin film. Finally, finding an absolutely temperature insensitive 

material is not trivial, and integrating such material with existing microfabrication 

technologies includes challenges, both in terms of feasibility and cost.  
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Another approach in compensating the temperature effect is to study the variation of 

different resonance modes [251-253] or overtones [254]. Here, a relationship between the 

temperature and frequency changes of different overtones or modes is established; hence, 

the same resonant mass sensor also acts as a thermometer. For such a sensor, with the 

help of a look-up table or calibrated coefficients, temperature-induced frequency changes 

can be eliminated. However, the main drawback of this approach is the need for such 

look-up tables or coefficients. 

 

This chapter describes a new technique for cancellation of environmental parameters in 

resonant mass sensing based on monitoring the overtones of partially coated resonators. 

Like the aforementioned mode-based compensation approaches, an essential part of this 

technique is also based on comparing the frequency changes of different overtones. 

However, as an advantage, this technique obliterates any needs for pre-measured 

temperature-frequency look-up tables. In fact, the aim of the presented technique is to 

eliminate any environmental-related frequency dependence only by aid of a single 

resonator. The applicability of the presented technique is tested on a cantilever resonator 

and the results show excellent agreement with the theoretical predictions. 

 

8.2 Theory of ECOM 

In this section, first the frequency dependence on variations in mass and environmental 

parameters is described. Next, a special class of resonators is identified, whose 

normalized frequency change caused by environmental parameters is independent of the 
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resonance overtone. The technique presented in this chapter (ECOM) is aimed at such 

resonators. 

 

8.2.1  General Theory 

For all mechanical resonators, according to Rayleigh’s quotient method, the resonance 

frequency, f, is determined by the ratio of the potential energy U and the inertial part of 

the kinetic energy KE [188, 255]: 

EK
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where KE is expressed by the kinetic energy K as follows: 
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Therefore, variations in KE and U will reflect as a change of the resonance frequency Δf, 

which for small variations is calculated as 
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For a mass-spring system, whenever variations of the vibration amplitude can be 

neglected,  

Eq. (8.2) simplifies to 
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where m* and k* are the effective mass and spring constant, respectively. In a resonant 

mass sensor used for (bio-)chemical sensing, the detection is accomplished by binding of 

target molecules to the surface of the resonator [3, 47], which results in an effective mass 
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change Δm*. As long as the effect of the added mass on the potential energy can be 

neglected, i.e., k* does not change with Δm*, the change of the resonance frequency can 

be described as a function of the independent parameter mass m and also environmental 

parameters, e.g., temperature T, relative humidity RH, etc.: 
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and with respect to Eq. (8.3), 

f
etcRHTf

m
m

f
f .),,(

*

* Δ
+

Δ
−=

Δ
2
1 .     (8.5) 

The second term in Eq. (8.5) emerges because of variation of the potential energy, i.e., 

the effective spring constant, with environmental parameters. Without mass change, the 

resonance frequency variation will only depend on environmental parameters. The 

influence of these parameters on the resonance frequency is caused by changes in the 

resonator’s material properties and/or geometry. In general, the normalized frequency 

changes of overtones in a resonator due to environmental changes are not identical; 

however, in a special class of resonators (e.g., the flexural modes of homogeneous 

cantilever beams) the overtone frequencies are related to each other through constant 

coefficients. In these resonators, the resonance frequency fi of the ith overtone is described 

as 

),,F( ,, zyxii lEf ρλ2= ,       (8.6) 

where λi is the overtone constant and F is a function of the resonator geometry lx,y,z, and 

the material properties, i.e., Young’s modulus E, Poisson ratio ν and density ρ. For this 

class of resonators, in case of environmental variation, the change of the resonator 

geometry and material properties will be same for all overtones; therefore, the change of 
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F will be same for all overtones. Hence, the resonance frequency change Δfi of the ith 

overtone can be described as  

FΔ=Δ 2
iif λ ,        (8.7) 

where ΔF is an overtone-independent change of F. As the result, the overtone dependence, 

i.e., λi, vanishes after normalizing Δfi with the overtone frequency fi from Eq. (8.6),  
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Since all variables affecting F are in fact functions of environmental variables, Eq. (8.8) 

can be rewritten with respect to Eq. (8.5): 
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To completely describe Eq. (8.5) for a given overtone frequency, the effect of any added 

mass in that overtone needs to be included. In a resonant mass sensor, the attached 

analyte mass Δm generally vibrates with different normalized amplitudes in different 

overtones, and thus its contributed effective mass, Δm*, will be different in those 

overtones. In other words, if the actual mass change is Δm, the effective mass change in 

the ith overtone is given by 

mm ii Δ=Δ α* .        (8.10a) 

where αi is the effective mass coefficient and calculated only based on the mode-shape 

and the location of the added mass on the resonator surface. Likewise, the effective mass 

of the resonator can also be described based on its actual mass and the overtone by a 

coefficient ζi, 

mm ii ζ=* .        (8.10b) 
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By applying Eqs. (8.9) and (8.10) in Eq. (8.5), the normalized frequency change of the ith 

overtone Δfi/fi is given by 
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Hence, by subtracting the normalized frequencies of two overtones i and j, it is possible 

to eliminate the effect of environmental parameter changes 
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If the resonator has the same effective mass in all overtones, Eq. (8.12a) simplifies to 
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As mentioned earlier, the conditions for establishing Eqs. (8.12) are: 1) the added mass 

must not change the potential energy of the system (i.e., no change in the resonator 

effective stiffness), and 2) the effective added mass must be different in the examined 

overtones. 

 

8.2.2 Beam Resonators with Flexural Resonance Overtones 

Beams undergoing flexural resonance are prominent examples of the resonators that fit 

the conditions described for Eqs. (8.12). For homogenous, clamped-free (i.e., cantilever) 

or clamped-clamped beams, when damping of the resonant system is negligible, fi can by 

Eq. (2.27): [188]  
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where L and h are the beam length and thickness, respectively. Comparing Eq. (8.6) and 

Eq. (8.13), the function F of a beam in a flexural overtone becomes 

ρπ
ρ E
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hlE zyx 2122

1
=),,F( ,, .     (8.14) 

The focus of the rest of this chapter will be on cantilevers resonating in the flexural 

resonance modes as resonant mass sensors. To calculate the effective mass of a deposited 

layer on the cantilever surface, the resonator’s kinetic energy need to be studied. As 

mentioned in Chapter 6, the maximum kinetic energy K of a thin homogenous cantilever 

beam with a uniform cross-section is given by [188] : 
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where y is the vibration amplitude at point x along the beam, and m and ω are the beam 

actual mass and angular velocity, respectively. A particle with mass dm, which is 

attached at point x on the cantilever surface, increases the kinetic energy by dK 
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provided that the change in the resonance amplitude is negligible. If the attached particle 

does not contribute to the stiffness of the beam, i.e., to the potential energy, the principle 

of energy conservation requires the equality of the kinetic energy before and after 

attachment: 
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where ωi and ωf are the angular velocities for the initial case (unattached mass) and final 

case (attached mass). Since for all flexural modes of a resonating cantilever beam the 
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integral value of Eq. (8.15)  is equal to ¼ L y2(L) [175, 229]  (see Appendix C), Eq. (8.17) 

can be rearranged as 
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Assuming ωi and ωf are almost identical, the resulting relative frequency change dω/ω 

due to the added mass dm at distance x is obtained as 
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On the other hand, as discussed in Chapter 6, for all flexural vibration modes (overtones) 

the effective mass of a cantilever, if considered as a point-mass on the tip, is a quarter of 

the cantilever’s actual mass: 
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Thus Eq. (8.19) becomes 
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The result of Eq. (8.21) is consistent with reported experimental results [256, 257]. With 

the same argument, the frequency change due to attachment of a continues sequence of 

discrete particles, e.g., deposition of a layer or sorption of target molecules into a 

sensitive film on surface of the resonator, can be described as 
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where a and b are, respectively, the starting and ending points of the layer coverage. 

Assuming a uniform mass loading between a and b with a total added mass of Δm, Eq. 

(8.22) simplifies to 
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Hence, by comparing Eq. (8.11) and Eq. (8.23), the effective mass coefficient αi in the ith 

overtone is calculated as 
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Here, Δm* = αi.Δm is the effective mass of the added mass when considered as a lumped 

point mass on the beam tip (see Figure 8.1). It is important to note that when the added 

layer covers the entire cantilever, according to Eq. (8.24) αi will have the same value of 

¼ for all overtones. Hence, to have an effective temperature cancellation through Eqs. 

(8.12), the attached layer (i.e., the added mass) must only partially cover the cantilever 

surface. 

 

 
 

 
 

Figure 8.1. Schematic of the 3rd overtone mode-shape of a cantilever; Δm, the 
mass of the added layer, shown in thick blue, can be considered as a lumped 
effective mass Δm* on the cantilever tip. 
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8.2.3 Technical Considerations 

To apply the presented technique in a resonant cantilever mass sensor, the detection must 

be accomplished through binding of target analyte to a sensitive layer that partially 

covers the resonator surface. If the layer is uniformly deposited, it is a fair assumption 

that binding also takes place with a uniform rate across the layer. There are always at 

least two different flexural overtones of a resonant cantilever that exhibit different 

effective mass coefficients for a partially covering layer. Therefore, the requirement of 

Eqs. (8.12), i.e., having different αi in different overtones, can be satisfied. However, 

addressing the second requirement, i.e., maintaining the same stiffness after binding, 

depends on the type of material or the location of binding on the cantilever surface. In 

other words, either the binding must have a negligible effect on the stiffness of the 

sensing layer, or the sensing layer must be placed at a location that causes a minimal 

contribution to the strain energy of the desired overtones. Such locations include areas on 

the cantilever surface that experience minimal stress in a flexural vibration. Finite 

element simulations results presented in Figure 8.2 indicate that in case of the 

fundamental and the 2nd overtone, the final 20% portion of the cantilever length can 

satisfy this requirement. This portion of the cantilever length includes areas around the 

cantilever tip. In general, by approaching the cantilever tip the contribution of the sensing 

layer on the strain energy decreases. However, confining the sensing layer to a close 

proximity to the tip may not be a helpful approach; because in this case, the difference 

between the values of the effective mass coefficients in different overtones also becomes 

smaller; hence, the mass ratios in Eqs. (8.12) become smaller. 
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8.3 Experiments 

Flexural resonance frequencies of a silicon cantilever with length, width and thickness of 

1050, 130 and 11 μm, respectively, were investigated. The surface of the cantilever was 

covered with 0.8 μm silicon dioxide. The resonator vibration in air was 

electromagnetically exited by passing an alternating current along the perimeter of 

cantilever in the presence of a static magnetic field of 0.2 Tesla. The used measurement 

set-up was the same as the set-up described in Chapter 5 with the only exception that the 

magnetic field was generated by a permanent magnet block. In this set-up the transverse 

beam vibrations were sensed on chip by a piezoresistive Wheatstone bridge located at the 

clamped-end of the beam. The amplitude/phase transfer characteristics of the resonator 

were recorded by an Agilent Network Analyzer 4395A. Each data-point presented in this 

chapter is an average of at least 5 repeated measurements, with a maximum standard 

 

 
 

Figure 8.2. FEM simulation results for the longitudinal distributions of the 
normalized strain energy in a cantilever beam for the fundamental and 2nd flexural 
resonance modes; also for these vibration modes, the normal stress distributions 
are shown in the inset. 
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deviation of 10 ppm. To improve the accuracy of the extracted resonance frequency, the 

measured transfer characteristic around each peak was fitted to an SHO transfer function, 

as described in Chapter 4. The ambient temperature and humidity were controlled with an 

ESPEC SH-241 environmental chamber, in which a part of the measurement set-up, 

including the resonant cantilever and the magnet block, were held. 

 

The effect of mass loading was investigated by depositing a strip of SC1813 photoresist 

at approximately 90 μm from the cantilever free-end (Figure 8.3). For this location, 

according to Eq. (8.24), the effective mass coefficient α1 is approximately 0.8. To 

evaporate the photoresist solvent, the sample was baked for 45 minutes at 100 ˚C in oven. 

Although identifying the photoresist mass has no influence in evaluating the validity of 

proposed technique, the actual mass of the photoresist layer was calculated by examining 

the frequency change at a constant temperature. At 10 ºC and for the fundamental flexural 

mode with α1 = 0.8, according to Eqs. (8.23) and (8.20), the actual added mass is 

calculated as 0.095% of the actual cantilever mass, i.e., approximately 3.6 ng.   

 

 

 

8.4 Results and Discussion  

8.4.1 Temperature Effect 

In the performed measurements, the initial temperature was 10 ºC. The influence of 

temperature was studied by increasing it to 70 ºC in 15 ºC steps, while the relative 

humidity was stabilized at 45%. The stability of temperature in the measured sample was 
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monitored by checking the (lack of) temperature-induced variations in a pair of reserved 

on-chip resistors. The resistance variations were measured with a Keithley 2400 

Sourcemeter. Figure 8.4 plots the relative frequency change of both the unloaded and the 

loaded cantilever as a function of the temperature increase for different overtones; as 

expected from Eq. (8.14), the temperature-induced relative frequency changes (Δfn/fn) are 

coinciding and exhibit almost equal temperature coefficients, namely -18.8 ppm˚C-1 for 

the 2nd overtone. These results confirm that the measured cantilever beam can be 

 
 

Figure 8.3. (a) Optical micrograph of magnetically excitable resonant cantilevers. 
The cantilever tested in this work is covered by a strip of photoresist about 90 μm 
from the tip. (b) SEM picture of the photoresist strip near the cantilever tip. 
 
 

Photoresist strip 
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considered as a suitable example of resonators with the property presented in Eq. (8.9). 

Table 8.1 summarizes the measured absolute frequencies and quality factors of the 

unloaded cantilever for the first three overtones at the initial and final temperatures.  

 

The combined effects of added mass and temperature on the resonance frequency are 

shown in Figure 8.5, which plots the relative frequency change of each overtone as a 
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Figure 8.4. Relative frequency change Δf/f of the first three flexural modes 
(fundamental, 2nd and 3rd overtones) for (a) the unloaded and (b) the loaded 
cantilever versus temperature change ΔT (reference temperature T0 = 10 ˚C). 
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function of the temperature change. In this figure, the observed relative frequency change 

for ΔT = 0 K, i.e., at the reference temperature of 10 ˚C, is only due to the effect of mass 

change. Increasing temperature affects the frequency with a similar trend as shown in 

Figure 8.4, and the frequency change in each overtone follows a trend parallel to the 

changes in other overtones; however, since the effective mass in each overtone is 

different, the overtone plots have different Y-intercepts. In other words, for a given 

temperature the relative frequency change of each overtone is different because the 

coefficients of effective mass in those overtones are different. 
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Figure 8.5. Relative frequency change Δf/f of the first three flexural modes of 
cantilever as the result of a fixed mass change Δm, versus temperature change ΔT 
(reference temperature T0 = 10 ˚C).

Table 8.1. Measured resonance frequency and quality factor for the fundamental 
and the next two flexural resonance overtones of the unloaded cantilever beam at 
10 ˚C and 70 ˚C. The theoretical values of the corresponding overtone constants 
are indicated by λi. 

 

T = 10 ˚C T = 70 ˚C  λi f (Hz) Q-factor f (Hz) Q-factor 
Fundamental mode 1.875 13,532.4 360.7 13,517.6 361.0 
2nd overtone 4.694 84,874.3 946.5 84,777.8 999.1 
3rd overtone 7.855 237,467 1378 237,192 1504 
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8.4.2 Humidity Effect 

To investigate the effect of relative humidity, the temperature was kept constant at 55 ˚C, 

while the relative humidity was increased from 30% to 90% at 15% steps. For both 

loaded and unloaded cantilever, the effect of relative humidity on the relative frequency 

change of the overtones frequency is presented in Figure 8.6. Similar to the argument 

made for the temperature effects, the relative variations of overtone frequencies are 

coinciding and independent of the overtone number. However, the effect of humidity is 

0

25

50

75

100

0 15 30 45 60 75

ΔRH %

Δ
f/f

 (p
pm

)

1st mode
2nd mode
3rd mode

)(
)()(

0

00

RHf
RHfRHRHf

f
f

i

ii

i

i −Δ+
=

Δ

 
(a) 

y = 0.81x

0

25

50

75

100

0 15 30 45 60 75

ΔRH (%)

Δ
f/f

 (p
pm

)

1st mode
2nd mode
3rd mode

)(
)()(

0

00

RHf
RHfRHRHf

f
f

i

ii

i

i −Δ+
=

Δ

 
(b) 

 
Figure 8.6. Relative frequency change Δf/f of the flexural modes (fundamental, 2nd 
and 3rd overtones) for (a) the unloaded and (b) the loaded cantilever versus 
relative humidity change ΔRH (reference relative humidity RH0  = 30%). 
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not as pronounced as the effect of temperature; for example the 2nd overtone has a 

humidity coefficient as low as 0.9 ppm-%RH-1. For the loaded cantilever (see Figure 

8.6(b)), none of the three overtones appears to follow the linear trend at the first 15% 

increase of relative humidity; nevertheless, for both loaded and unloaded cases, all data 

points are coinciding. The combined effects of mass loading and relative humidity 

changes on the resonance frequency are shown in Figure 8.7. Similar to the temperature 

case (see Figure 8.5), the plots of relative frequency change versus the relative humidity 

also follow parallel trends, but because of the dominating influence of the added mass, 

the slopes are more gradual, e.g., 0.7 ppm-%RH-1 for the 2nd overtone. 

 

8.4.3 Environmental Effect Cancellation 

As observed in Figure 8.5, for a given temperature, the added mass does not have the 

same effect for each of the overtone frequencies, but it follows the prediction of  
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Figure 8.7. Relative frequency change Δf/f of the first three flexural modes of 
cantilever as the result of a fixed mass change Δm, versus relative humidity 
change ΔRH (reference relative humidity RH0 = 30%). 
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Eq. (8.23). However, the variations of the relative resonance frequencies with 

temperature exhibit almost identical slopes. Hence, after subtracting the relative 

frequency changes of every two overtones according to Eq. (8.12b), the resulting plot, 

shown in Figure 8.8, is almost temperature independent. For example, the temperature 

coefficient of the 2nd overtone, as shown in Figure 8.5, is -19.5 ppm˚C-1, but after 

applying Eq. (8.12b) on the measurement results of the 2nd and 3rd overtones, the 

temperature dependence changes to 0.2 ppm˚C-1, an almost 2 orders of magnitude 

improvement.  

 

Similarly, Figure 8.9 shows that by applying the result of Eq. (8.12b) the effect of 

humidity is canceled too. In this case, the humidity coefficient of the 2nd overtone is 0.7 

ppm-%RH-1 (see Figure 8.7), but after applying the proposed technique on the results of 

the 2nd and 3rd overtones, the humidity dependence decreases to -0.03 ppm %RH-1 (see 

Figure 8.9), literally the level of measurement error (noise). 
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Figure 8.8. Cancellation of temperature dependence by evaluating the difference 
of relative frequency change Δf/f of two overtones (based on the data from   
Figure 8.5). 
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Theoretically, applying Eq. (8.12b) shall result in a complete cancellation of temperature 

effects. However, as shown in Figures 8.4 and 8.6, the temperature coefficients of the 

overtones are not exactly the same, hence, the differences of the relative overtone 

frequency changes, shown in Figures 8.8 and 8.9, slightly vary with the temperature. The 

reason for the slight difference in the temperature coefficients of the overtones can be 

attributed to the facts that 1) the used cantilever is not an ideal beam with an ideal 

clamped-end boundary condition; in fact, because of fabrication limits, the thickness of 

the cantilever slightly varies along the beam, and also, the clamped-end of the beam is 

not attached to a solid straight wall, but to the upper rim of an etched cavity; 2) The 

vibration amplitude, especially in case of the fundamental flexural mode, can exceed the 

small amplitude assumption used in derivation of Eq. (8.13) – the maximum vibration 

amplitude of the beam was up to 35 μm; 3) The contribution of added mass on the 

resonator stiffness can cause a non-ideality and void the assumption made in deriving  

Eq. (8.4); and 4) as presented in Table 8.1, the resonance quality factor is not identical in 
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Figure 8.9. Cancellation of humidity dependence by evaluating the difference of 
relative frequency change Δf/f of two overtones (based on the data presented in 
Figure 8.7). 
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different overtones, hence, the relative frequency shift due to damping is not identical 

either.  

 

Ideally, since the y-intercepts in Figures 8.8 and 8.9 are solely determined by the added 

effective mass, they must also have the same values for a given combination of overtones. 

However, as it is observed in these figures, the values of y-intercepts are slightly different. 

The main reason for this variation is the fact that the reference temperatures (and relative 

humidity) for the cases shown in Figures 8.8 and 8.9 are different. The reference 

temperatures in Figures 8.8 and 8.9 are 10 ˚C and 55 ˚C, respectively.  

 

*** 

 

In this chapter, a novel technique for cancellation of environmental effects (e.g., 

temperature and relative humidity) on the resonance frequency of resonant mass sensors 

is introduced. After applying this technique in a resonant cantilever, the undesired 

resonance frequency shifts caused by environmental parameters, namely temperature and 

humidity, are suppressed by up to 2 orders of magnitude. To detect an added mass and 

meanwhile cancel the effect of environmental parameters, the presented technique needs 

only 4 frequency measurements; i.e., measuring the frequency of a pair of resonance 

overtones and comparing them with another pair measured before the potential variation 

in the mass. Hence, utilizing a single sensor, this technique obliterates any need for look-

up tables, or the need for numerically adjusting the measurement results. The requirement 

for applying the presented technique are 1) the mass change must affect the examined 
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overtone frequencies with different ratios, and 2) the mass change must not alter the 

potential energy of the resonant system, i.e., it must have a minimal effect on the 

resonator stiffness. To fulfill the former requirement, the surface of the resonant mass 

sensor, e.g., a mass-sensitive (bio-) chemical sensor, must be partially covered with the 

sensing layer. To address the latter requirement, either the binding induced changes in the 

modulus of elasticity of the sensing layer must be negligible, or the sensing layer must be 

deposited on areas of resonator with minimal potential (strain) energy. 
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CHAPTER 9 

OVERTONE-EMPHASIZED FLEXURAL RESONANCE 
 
 
 

In Chapter 8 it was shown that unwanted effects of environmental parameters on the 

resonance frequency of cantilever sensors can be eliminated by simply monitoring the 

variation of normalized resonance frequencies in two different overtones. To do so, 

however, the detection scheme must be capable of tuning to the desired overtone. Usually 

resonant sensors are operated in a closed-loop configuration [258, 259], in which the 

oscillator normally locks on the largest output signal (e.g., the largest magnitude or 

phase-change). A conventional way to tune to the desired resonance frequency involves 

suppressing other resonance modes with electronic filters. Considering flexural resonance 

of a cantilever, however, the frequency separation between consecutive resonance 

overtones may not be large enough to avoid using high quality electronic filters. In fact 

for a given cantilever, the ratio gi,j between every two flexural resonance frequencies fi 

and fj is derived from Eq. (2.26a):   
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Table 9.1 summarizes calculated ratios gi+1,i for consecutive flexural modes. The 

presented data imply that when the fundamental resonance frequency is small, the 

separation between the overtone frequencies will be small too, to such an extent that an 

efficient filtering may not be possible. 
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Another approach in selective tuning to an overtone is to use the cantilever itself as a 

mechanical filter. The focus of this chapter is on techniques to enhance or suppress the 

vibration amplitude in desired overtones, either by optimizing the location of 

piezoresistive detectors, or by selectively actuating the cantilever, similar to playing 

different notes on a string of the violin.  

 

9.1 Detection Enhancement and Suppression Techniques 

9.1.1 Detection Enhancement by Optimization of Piezoresistive Bridge Location 

When a cantilever is statically deflected by a point force, ideally the piezoresistive 

Wheatstone bridge must be implemented at the location that undergoes the maximum 

longitudinal stress, i.e., in the proximity of the cantilever clamped edge. Not only in the 

static mode, but also for all flexural resonance modes the clamped edge bears the 

maximum induced stress; because the radius of curvature is always minimal at the 

clamped edge as a result of applied boundary conditions, while according to Eq. (2.16) 

the longitudinal stress σx is inversely proportional to the radius of curvature ρ : 

ρ
σ Ezx = .        (9.2) 

Here E is the modulus of elasticity and z is the distance from the cantilever neutral axis. 

In general, for small deflections, the maxima and minima of longitudinal stress can be 

 
Table 9.1. Ratios of flexural resonance frequencies. 

 

 i =1 i = 2 i = 3 i = 4 i > 4 
gi,1 1 6.27 17.55 34.39 0.70 × (2i - 1)2 

gi+1,i 6.27 2.80 1.96 1.65 [(2i + 1)/(2i - 1)]2 
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found by investigating the second derivative of the flexural vibration amplitude y(x), 

which is also inversely proportional to ρ [1]: 

2

21
dx

yd
=

ρ
;        (9.3)  

Solving Eqs. (9.2) and (9.3) together reveals that for flexural deflection y(x) expressed by 

Eq. (2.26) the absolute longitudinal stress maximum is always on the clamped end (see 

Figure 9.1). In selective detection of overtones, however, the objective is to enhance the 

 

 
(a) 

 

 
(b) 

 
Figure 9.1. Normalized plots of (a) cantilever deflection y, and (b) d2y/dx2 along 
the cantilever length in the first three flexural modes.  
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detection of desired overtones.  As shown in Figure 9.1, in a resonant cantilever for each 

flexural mode there is a location where the induced stress is locally maximized for that 

overtone; hence, by placing the piezoresistors on this location the detection selectivity for 

that particular overtone can be increased. Again, by solving Eqs. (9.2) and (9.3) together 

the exact location of local maxima for any flexural mode can be calculated. Applying this 

approach for the first three flexural modes, Table 9.2 summarizes locations of the 

longitudinal stress maxima, which are normalized with respect to the cantilever length. 

The presented data is also confirmed by finite element simulation results (see Figure 9.2). 

 

9.1.2 Detection Enhancement and Suppression by Optimization of Excitation Line 

An advantage of magnetically actuated cantilevers is that the actuation force can be 

precisely exerted on selected locations, which are designated by excitation current lines 

passing over them. At these locations, as mentioned in Chapter 5, an out-of-plane force F 

is applied to the cantilever at the presence of a magnetic flux density B. This force (the 

Lorentz force) is calculated as [260]  

BILF exc ×= ,        (9.4) 

where I is the current passing through an excitation line that has a length of Lexc. To 

excite the flexural resonance modes of a cantilever, the force direction must be normal to 

 
Table 9.2. Normalized location of local longitudinal stress maxima. 

 

Flexural mode 1 2 3 
Normalized location 0  0.53 0.71 
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the cantilever surface, which requires implementing a configuration as shown in Figure 

5.3. In this configuration (see also Figure 9.3) the effective portion of the excitation line 

is only that section of the line that passes across the cantilever width (i.e., the transverse 

line), while the two parallel sections running along the cantilever length (i.e., the 

longitudinal lines) experience no force. Even if there was any force acting on the 

longitudinal lines, e.g., due to a change of the magnetic flux direction, the net out-of-

plane force would be zero since the current directions in those lines are opposite. 

 
 

Figure 9.2.  Simulation results for longitudinal stress σx in the first three flexural 
resonance modes of a cantilever. 
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Therefore, by changing the location of the transverse line along the beam it is possible to 

apply an excitation force at a desired location. 

 

 

A. Overtone suppression  

As discussed in Chapter 6, the flexural mode shapes of a cantilever include peculiar 

points known as nodes and antinodes. While ideally the vibration amplitude at a node is 

zero, the cantilevers exhibits locally maximal vibration amplitudes at antinodes. The 

fundamental flexural mode shape does not have any nodes, yet its vibration amplitude at 

the cantilever clamped edge is zero, similar to all other modes.  

 

Taking advantage from the fact that a given overtone has its own unique node location, it 

is possible to suppress that overtone by simply applying an excitation force at the 

corresponding node; in other words, suppression is imposed by forcing the cantilever to 

deflect at the locations where it naturally should have no deflection. This objective can be 

 
 

Figure 9.3. Implemented layout for the magnetic excitation. The blue arrow 
indicates the direction of the magnetic flux B. The alternating excitation current I 
passes through the red line. 
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achieved by positioning the transverse excitation at the nodes of the overtone to be 

suppressed. 

 

B. Overtone enhancement 

If applying a force at the node location can suppress an overtone, exerting excitation 

forces at the antinodes can enhance the overtone vibration. From Eq. (2.26) it is known 

that the maximum vibration amplitude is always at the cantilever tip; hence, positioning 

the transverse excitation line as close as possible to the tip is the best strategy for exciting 

all overtones. However, this excitation scheme will not be very helpful if the objective is 

to selectively excite an overtone. On the other hand, other than the absolute maximum 

amplitude at the tip, flexural overtones have local maximal amplitudes at the antinodes. 

Therefore, by implementing transverse excitation lines at the location of each antinode 

not only the desired overtone can be excited, but also as a result of using multiple 

excitation lines the vibration amplitude may be amplified.  

 

To excite a flexural overtone, the applied forces on the adjacent antinodes must be 

opposite in direction. To this end, two topologies for the excitation lines can be defined, 

as shown in Figure 9.4: a) Simple loop topology (SLT), in which the net length of the 

excitation line on the farther antinode (i.e., the antinode closer to the tip) is larger, thus 

the farther antinode experiences a larger force; b) Twisted loop topology (TLT), in which 

by twisting the excitation loop the net length of the transverse line on the farther antinode 

is smaller, thus it experiences a smaller force. Although any ratio between the lengths of 

consecutive transverse excitation lines can be assumed, an efficient overtone tuning is 
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achieved by implementing the ratios presented in Table 6.2 in Chapter 6, i.e., by applying 

a unique force combination that causes the static deflection of the beam to be similar to 

the targeted flexural mode shape. Using the aforementioned ratios, the cantilever is 

forced to adapt to vibration amplitudes similar to the desired mode shape; hence, the 

vibration amplitudes of other overtones are suppressed, while the vibration of the desired 

flexural mode is enhanced. For example, in the second flexural mode the force ratio is 

calculated in Chapter 6 as β2 = -3.27, which with respect to Eq. (9.4) gives 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 9.4. Excitation line schemes for applying force in opposite directions: (a) 
Simple loop topology (SLT), (b) Twisted loop topology (TLT). In the scheme 
shown in (c) the exerted out of plane forces are in the same directions. In this 
figure the black arrows indicate the relative direction of the current flow and the 
blue arrow indicates the direction of the magnetic flux B. 
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27.32
1

2 == β
ex

ex

L
L ,       (9.5) 

where Lex1 is the length of the shorter transverse excitation line, located in the proximity 

of the tip, and Lex2 is the total length of the transverse excitation lines located at the 

antinode at a normalized distance of p2 = 0.47 from the clamped edge. Here, since a 

smaller force is applied on the farther antinode, TLT topology must be used. On the other 

hand, based on Figure 9.4(b) the relationship between the net lengths of the transverse 

excitation lines can be expressed as 

12 exWex LLL += ,       (9.6)   

where LW is the initial distance between the longitudinal excitation lines as shown in 

Figure 9.4(b). Therefore, by solving Eqs. (9.5) and (9.6) together, the calculated lengths 

of the excitation lines are 

Wex

Wex

LL
LL

×=
×=

44.1
44.0

2

1 .       (9.7) 

The efficiency of this approach is evaluated in the next section through the measurement. 

 

To excite higher overtones, multiple combinations of SLT, TLT or both combined can be 

used. Some of the combined schemes are shown in Figure 9.5. In both TLT and SLT 

multiple combinations, the transverse excitation lines in the intermediate stages– but not 

the final stage– can assume arbitrary ratios. Nevertheless, in SLT combinations the 

excitation line in the final stage, i.e., the closest transverse line to the tip, is always longer 

than the transverse line in one stage before, while the opposite is true in TLT 

combinations. 
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9.2 Experiments 

The effectiveness of the proposed schemes has been tested using silicon cantilevers with 

the same length, width and thickness of 450, 130, and 7 μm, respectively, covered by a 

layer of PECVD oxide, approximately 0.8 μm thick. The cantilevers were fabricated 

according to the procedure described in Appendix A. The excitation lines have been 

realized with a single metal (aluminum) layer; therefore, whenever it was needed to cross 

two metal lines, e.g., in TLT cantilevers, the current line is tunneled through a diffused 

resistor in the substrate silicon. The width and thickness of the excitation lines have been 

4 and 0.3 μm, respectively. The resonators were excited in the presence of static magnetic 

 
(a)  

 
(b)  

 
 

 
(c) 

 
(d) 

 
 

Figure 9.5. Combined schemes for anti-nodal actuation in the third flexural mode: 
(a) SLT-SLT combination, (b) TLT-TLT combination, (c) SLT-TLT combination, 
(d) TLT-SLT combination. It must be noted that in the TLT-SLT combination, 
unlike other combinations, the direction of current in the neighboring transverse 
excitation lines is not necessarily opposite. In this figure the black arrows indicate 
the relative direction of the current flow and the blue arrow indicates the direction 
of the magnetic flux B. 
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flux densities B of 500 and 30 Gauss. All cantilevers were excited by applying a 

sinusoidal voltage waveform, with a peak-to-peak value of 2.1 V, to the excitation line. 

Depending on the resistance of the excitation line, however, the amplitude of passing 

current may not be the same for different devices. The cantilever vibration is detected by 

a piezoresistive Wheatstone bridge, which depending on the adopted scheme has been 

implemented either near the clamped end, or at the location of a local stress maximum 

(given in Table 9.2). The specifications of the Wheatstone bridge are presented in Table 

9.3. Similar to the procedure described in Chapter 5, transfer functions of cantilever 

resonators have been captured with an Agilent Network Analyzer 4395A. All 

measurements were performed at 30 ± 5 ºC.  

 

A complete summary of the characterized schemes is presented in Figure 9.6, where each 

design is labeled after its functionality: The first letter describes whether the design is 

intended for an overtone enhancement, marked with “E,” or for suppression, marked with 

“S,” whereas the label number represents the targeted flexural mode. For example E3-X 

is a design intended for the enchantment of the third flexural mode, while S2-Y is 

intended for suppression of the second flexural mode. Overall, the proposed schemes can 

also be characterized in three categories: 1) Schemes for optimized locations of the 

piezoresistive bridge; this category includes E2-A and E3-A. 2) Schemes for modified 

 
Table 9.3. Specifications of the Wheatstone bridge. 

 

Single side resistance ≈ 800 Ω 
Piezoresistor length 24 μm 
Piezoresistor width 5 μm 
Distance from geometrical center to  
the clamped edge (Regular cantilever) 20 μm 
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Regular cantilever scheme 

 
E2-A 

 
E2-B 

 
E2-C 

 
E2-D 

 
E2-E 

 
E2-F 

 
E3-A 

 
E3-B 

 
E3-C 

 
E4-A 

 
S2-A 

 
Figure 9.6. List of characterized overtone enhancement/suppression schemes. 
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excitation line layouts; this category includes E2-B, E2-C, E2-D, E2-E, E3-B, E4-A,  

S2-A, S3-A, and S3-B. 3) Hybrid schemes, which are combinations of the previous two 

categories; this category includes E2-F and E3-C. As a reference for comparison, a 

cantilever with the same dimensions but with a regular design (labeled “Regular” in 

Figure 9.6) is characterized under the same conditions. Micrographs of some of the 

measured cantilevers are presented in Figure 9.7. The resonance frequencies and quality 

factors of the measured cantilevers are summarized in Table 9.4. It must be noted that by 

variations in patterning and positioning of the excitation line (in general, metal lines), the 

effective stiffness and mass of the cantilever may slightly change, resulting in small 

deviations in the resonance characteristics. However, this issue becomes insignificant 

when compared to the deviations caused by an imperfect fabrication process.  

 

To have a fair comparison between the peak spectral magnitudes of different overtones, 

the effect of noise and cross-talk must be cancelled. To this end, the captured magnitude 

transfer characteristic at B = 30 Gauss can be considered as a measure of the power 

spectral density of noise and cross-talk, although even at such a small magnetic flux 

density still some resonance peaks are detectable. Nevertheless, here, it is possible to 

ignore the presence of resonance peak magnitudes at B = 30 Gauss; because if not buried 

 
S3-A 

 
S3-B 

 
Figure 9.6. continued. 
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under the noise power, the magnitude of these peaks will be negligible in comparison 

with the magnitude of resonance peaks at B = 500 Gauss. Hence, to eliminate the effect 

of noise and cross talk, the captured amplitude power – in linear scale – at B = 30 Gauss 

has been subtracted from the amplitude power at B = 500 Gauss. This procedure is 

illustrated in Figure 9.8, in which the effect of noise and cross-talk are removed from the 

magnitude spectrum of the Regular-type cantilever. The reason to choose B = 30 Gauss 

 
(a) 

 

 
(b) 

 
Figure 9.7. Characterized overtone-emphasized cantilevers: (a) Optical 
micrograph of (clockwise from top-right) E2-C, E2-D, E3-B, and E2-E; (b) 
Scanning electron microscopy picture of an E2-E cantilever. 
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as the reference, and not smaller values, is because B = 30 Gauss is approximately equal 

to the residual magnetic flux density of the measurement setup. Completely removing the 

residual flux density required a change in the setup, which would cause an alteration of 

the noise and cross-talk level. 

 

9.3 Results and Discussion 

A comparison of the overtone enhancement devices is presented in Figure 9.9, in which 

the resonance peak magnitude in each flexural mode is normalized to the peak magnitude 

of fundamental mode for the same device. As observed in Figure 9.9, for the second 

flexural mode, the design based on a TLT excitation line, i.e., E2-E, has a significantly 

better selectivity. This result also indicates that the preceding theoretical calculation, 

presented in Chapter 6, is valid. The other schemes that show a good selectivity for the 

 
Table 9.4. Resonance frequencies and Q-factors of measured cantilevers. 

 

1st flexural mode 2nd flexural mode 3rd flexural mode † 4th flexural mode ‡Type 
f1 (kHz) Q f2 (kHz) Q f3 (kHz) Q f4 (kHz) Q 

E2-A 47.87 492 294.89 858 818.23 475 1594.20 193 
E2-B 48.32 493 297.73 985 828.38 § – –  
E2-C 48.07 507 298.11 872 833.63 320 * – – 
E2-D 48.40 504 299.60 953 831.10 475 – – 
E2-E 48.06 531 295.56 945 822.28 450 – – 
E2-F 47.58 498 293.42 854 817.96 538 1589.80 211 
E3-A 48.95 482 299.91 930 832.53 570 1621.17 221 
E3-B 47.77 497 295.55 1008 821.74 501 – – 
E3-C 49.15 497 300.54 822 835.90 473 1632.30 248 
E4-A 47.82 501 296.52 921 823.30 527 1601.26 149 
S2-A 48.09 512 297.78 924 829.71 520 – – 
S3-A 48.66 508 302.68 949 838.45 464 – – 
S3-B 48.68 510 298.46 977 828.21 495 – – 

 Regular 48.59 509 303.15 971 842.91 541 – – 
† Deteriorated Q-factor due to presence of multiple (coupled) peaks. 
‡ For some devices the 4th mode signal was not detected. 
§ Low signal to noise ratio. 
* Presence of coupled peaks. 
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second flexural mode are E2-F, E3-A, and E3-C. Contrary to the expectation, E2-A, i.e., 

the design with an enhanced location of the Wheatstone bridge for the second overtone, 

shows a poor selectivity between the first and second modes, while the location of the 

bridge on E3-A seems to undergo a considerable stress not only in the intended third 

mode, but also in all 3 other measured flexural modes.  
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Figure 9.8. Elimination of noise and cross-talk: (a) captured frequency transfer 
characteristics of a Regular-type cantilever excited using a static flux density of 
500 Gauss (blue) and 30 Gauss (red); (b) corrected transfer characteristic after 
eliminating the noise and cross talk powers. 
 
 



 192

As shown in Figure 9.9, the best selectivity in the third flexural mode belongs to E3-C, 

i.e., the hybrid scheme for the third mode enhancement; however, for all schemes 

intended for the third mode enhancement, the peak magnitudes in the third mode are 

smaller than in the second mode. This observation implies that to have a good selectivity 

for the third mode, a more effective scheme must be applied, e.g., a scheme based on a 

TLT excitation line. This conclusion is emphasized by the fact that the least effective 

design for the third mode enhancement, i.e., E3-B, is based on an SLT-SLT excitation 

line. The same explanation can be offered for the poor performance of E4-A in the 4th 

flexural mode. E4-A is designed to enhance the selectivity to the 4th mode peak 

magnitude based on a multiple SLT excitation line. This device, unlike the characterized 

regular cantilever, can detect the 4th mode signal; however, using E4-A, the measured 

magnitude for the 4th overtone is smaller than the magnitudes of the three preceding 

flexural modes. 

 

R
eg

ul
ar

R
eg

ul
ar

R
eg

ul
ar

E4
-A

E4
-A

E4
-A

E4
-A

E2
-C

E2
-C

E2
-C

E3
-B

E3
-B

E3
-B

E2
-B

E2
-B

E2
-B

E2
-D

E2
-D

E2
-D

E2
-A

E2
-A

E2
-A

E2
-A

E3
-C E3

-C

E3
-C

E3
-C

E2
-F E2

-F

E2
-F

E2
-F

E3
-A E3

-A

E3
-A E3

-AE2
-E

E2
-E

E2
-E

0.0

1.0

2.0

3.0

4.0

1 2 3 4
Flexural Mode

N
or

m
al

iz
ed

 M
ag

ni
tu

de

Regular E4-A
E2-C E3-B
E2-B E2-D
E2-A E3-C
E2-F E3-A
E2-E

Figure 9.9. Normalized vibration amplitude in overtone enhancement cantilevers. 
The vibration magnitude of overtones for each device is normalized to the 
vibration amplitude of the fundamental resonance mode of the same device. 
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Figure 9.10 presents a comparison of the overtone suppression devices, in which, similar 

to the previous figure, the resonance peak magnitude in each flexural mode is normalized 

to the peak magnitude of fundamental mode for the same device. In the second mode, as 

observed in Figure 9.10, S2-A (i.e., the design for the second mode suppression) has an 

acceptable performance in the targeted overtone. In the third mode, S3-A (i.e., the design 

with a suppression scheme based on forcing vibrations at the node that is closer to the tip) 

reduces the peak magnitude to less than half of the corresponding peak magnitude in the 

regular cantilever, while S3-B (i.e., the design with a suppression scheme based on 

forcing vibrations at the node that is closer to the clamped edge) has hardly reduced the 

peak magnitude of the third mode. It is worth noting that S3-B and E2-A have very 

similar designs, hence, they exhibit almost the same performance in the second flexural 

mode. 

 

The absolute peak magnitude in each device depends not only on the flux density and 

excitation current, but also on parameters such as the quality of the implemented 
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Figure 9.10. Normalized vibration amplitude in overtone suppression cantilevers. 
The vibration magnitude of overtones for each device is normalized to the 
vibration amplitude of the fundamental resonance mode of the same device. 
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piezoresistors and the perfectness of the Wheatstone bridge. In other words, comparing 

the absolute magnitudes among different designs is a subjective issue. Nevertheless, by 

normalizing the captured peak magnitudes – in linear scale – to the amplitude of the 

excitation current, different designs can be roughly compared. Such normalization is 

essential for comparing the performance of devices with highly resistive excitation line, 

e.g., E2-E. The typical resistance of the excitation lines in the characterized devices is 

measured to be in the range of 40 to 60 Ω. However, in E2-E, to resolve the metal line 

crossing, a part of the excitation line is tunneled via a diffused resistor in the substrate 

silicon, which has increased the resistance of the excitation line up to 770 Ω. Figure 9.11 

compares the peak magnitudes of the measured devices, which are normalized not only to 

the excitation current of the same device, but also to the peak magnitude of the 

corresponding flexural mode in the regular cantilever. The data presented in Figure 9.11 

is useful in comparing the absolute advantage of each design; for example, in the second 
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Figure 9.11. Normalized vibration amplitude in overtone-emphasized cantilevers. 
The vibration magnitude of overtones for each device is normalized to both a) the 
excitation current of the same cantilever and b) the vibration amplitude of the 
regular cantilever in the same overtone. 
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mode, E2-D, E2-E, E2-F, and S3-B exhibit absolute peak magnitudes higher than the 

regular cantilever, while in the third mode, for all cantilevers that are designed to enhance 

this mode, the resonance peak magnitudes are larger than the peak magnitude in the 

regular cantilever, as intended.  

 

*** 

 

The focus of this chapter was on modifying the excitation and detection schemes on a 

regular rectangular cantilever to make it more (or less) sensitive to desired flexural 

modes; in other words, utilizing the cantilever resonator as an overtone filter. This study 

is aimed at applications such as the temperature compensation presented in Chapter 8, or 

closed-loop resonance of cantilevers in higher flexural modes. The chapter objective is 

achieved by optimizing the location of piezoresistive Wheatstone bridge, by modification 

of the excitation line pattern, or by a combination of both approaches. The presented 

measurement results indicate that a design with an excitation line based on the twisted 

loop topology has the best tuning selectivity in the second flexural mode, while the 

results from hybrid approaches in all investigated overtones were promising too. 
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CHAPTER 10 

Q-FACTOR OF UNCONVENTIONAL RECTANGULAR CANTILEVERS 
 
 
 

In Chapters 5 and 7 the dependence of the Q-factor on the cantilever geometry has been 

investigated. The proposed models and the performed measurements in these chapters, 

however, were in respect to rectangular cantilevers with a basic geometry. The focus of 

this chapter is again on rectangular cantilevers, but with some level of added structural 

complexity either by perforating the cantilever surface or forming a trench at the clamped 

end. The latter case is in fact a follow up to the study of resonance characteristics of 

stress concentrating cantilevers (SC cantilevers), which was presented in Chapter 3.  

 

10.1 Quality Factor of Perforated Cantilevers 

The effect of holes on the cantilever surface is studied among 10 different perforated 

cantilever designs, which are categorized in five classes each having single or double 

holes perforation. A complete list of the characterized cantilevers is presented in Figure 

10.1. The cantilevers are 450 μm long, 130 μm wide and 11 μm thick. Each opening is  

40 × 40 μm2. The cantilevers are actuated and characterized with a similar procedure that 

has been used for regular shape cantilevers in Chapter 5, with the output signal being 

measured over a Wheatstone bridge at the clamped end of the cantilever. Figure 10.2 

presents micrographs of some of the tested cantilevers. 

 

In the first studied category of the perforated cantilevers, i.e., Class A, single or double 

hole openings are centered at 420 μm from the clamped end. This way the holes are as 



 197

 
 

C
la

ss
 A

 

A1 
 

A2 

C
la

ss
 B

 

 
B1 

 
B2 

C
la

ss
 C

 

 
C1 

 
C2 

C
la

ss
 D

 

 
D1 

 
D2 

C
la

ss
 E

 

 
E1 

 
E2 

 
Figure 10.1.Complete list of characterized perforated cantilevers. 
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close as possible to the tip, hence, the vibration amplitude at the perforation site and thus 

the effective removed mass are largest in the fundamental flexural mode (see Figure 

10.1(a) and (b)).  

 

In Class B, single or double openings are formed at 215 μm from the clamped end (see 

Figure 10.1(c) and (d)): in this location, according to the results of finite element 

 
(a) 

 

 
(b) 

 
Figure 10.2. Characterized perforated cantilevers: (a) Optical micrograph of 
(clockwise from top-right) B2, C2, D2, and A2; (b) SEM picture of an E1 
cantilever. 
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simulation (COMSOL), shown in Figure 10.3, the perforated cantilevers exhibit an 

antinode (i.e., local deflection maximum) in the second flexural mode. It must be noted 

that because of perforation, the flexural mode shape of the cantilever is not necessarily 

the same as the theoretical prediction presented by Eq. (2.26); instead the location of the 

antinode depends on the size and placement of the holes and may be determined by 

simulation.  

 

In Class C, single or double openings are formed at 357 μm from the clamped end, 

centered at the node location of the second flexural mode (see Figure 10.1(e) and (f)).  

 

 
 

 
(a) 

 

 
(b) 

 
Figure 10.3. Finite element simulation results for perforated cantilevers resonating 
in the second flexural mode: (a) single hole Class B cantilever, in which the 
location of the hole coincides with the local deflection maximum (dark red 
region); (b) single hole Class E cantilever with the first hole on the local 
deflection maximum (dark region), the second hole at zero deflection region 
(yellow region), and a hole at the proximity of the tip. 
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Class D, the forth studied category, is a combination of the first two classes (see Figure 

10.1(g) and (h)), while Class E is a combination of all pervious classes (see Figure 10.1(i) 

and (j)). 

 

In Table 10.1 the measurement results for all studied perforated cantilevers resonating in 

the first three flexural modes are summarized and compared to solid cantilevers with the 

same length and thickness but widths of 130 and 82 μm. As expressed by Eqs. (2.6) and 

(7.13), the Q-factor of the nth flexural mode is proportional to the effective mass m*, the 

resonance frequency and the effective damping B*: 

*

*

B
mQ nω

= .        (10.1) 

 
 
 

Table 10.1. Measured resonance frequency f and Q-factor of perforated and solid 
cantilevers in the first three flexural modes. 

 

1st flexural mode 2nd flexural mode 3rd flexural mode Cantilever type 
f1 (kHz) Q f2 (kHz) Q f3 (kHz) Q 

A1 75.89 742 467.5 360 1287 273 
B1 71.63 752 441.4 464 1259 323 
C1 74.98 709 444.4 516 1210 348 
D1 75.21 669 450.9 594 1270 327 
E1 78.03 621 454.1 854 1256 314 
A2 78.68 685 481.8 616 1302 249 
B2 68.70 811 412.2 990 1243 302 
C2 76.21 679 431.8 811 ‡ ‡ 
D2 77.55 626 433.5 677 1262 322 
E2 81.55 542 422.3 877 1158 316 

Solid* 69.32 824 439.8 600 1234 320 
 Solid** 70.76 801 437.0 982 1218 584 

* Solid cantilever’s dimensions are the same as perforated cantilevers, i.e., L = 450 μm, H = 11 μm, W = 130 μm. 
** Solid cantilever’s dimensions are the same as perforated cantilevers with the exception of width: W = 82 μm. 
‡ No detectable signal was measured for this particular device. 

 
 



 201

On the other hand, the resonance frequency of the nth flexural mode is proportional to the 

effective spring constant k* and the effective mass m* in that overtone: 

*

*

2
m
kfnn == πω .       (10.2) 

Forming a hole in the cantilever, especially at locations where the cantilever has larger 

vibration amplitudes, results in a decrease in the effective mass, thus an increase in the 

resonance frequency is expected. Using Eq. (8.23), the effect of holes can be roughly 

approximated by the effect of an added negative mass, equal to the etched mass, 

distributed over the same locations on the solid (imperforated) cantilever where the holes 

are formed. This approximation is valid as long as the change in the stiffness of cantilever 

is negligible; in other words, as long as the flexural mode shapes of the perforated 

cantilever are approximately the same as those of a simple cantilever. However, for the 

studied cantilever designs (see Figure 10.1) such an assumption is hardly satisfied: Based 

on the measurement results, in most of the investigated arrangements the reduction in the 

potential energy of the system (i.e., the reduction in the effective spring constant) has 

cancelled the reduced mass effect in such a way that the resonance frequency is more and 

less equal to that of a solid cantilever.  

 

As presented in Table 10.1, for all three flexural modes, the maximum increase of 

resonance frequency is observed for Class E, regardless of having single or double holes. 

However, because of the significant reduction of the effective mass, Class E cantilevers 

also exhibit the lowest Q-factors. Reviewing Table 10.1 reveals that in the fundamental 

flexural mode, all the proposed perforation arrangements, with an exception of type B2, 

result in reduced Q-factors compared to the solid cantilevers. In the second overtone, the 
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cantilevers with a single hole perforation, excluding type E1, exhibit Q-factors smaller 

than the Q-factor of the similar solid cantilever (i.e., the one with W = 130 μm). On the 

other hand, the Q-factors of cantilevers with double holes are generally larger than the Q-

factor of the similar solid cantilever, to such an extent that they can be even compared to 

the Q-factor of the narrower solid cantilever (W = 82 μm) – here, it must be noted that in 

the second flexural mode, as mentioned in Chapter 7 (e.g., see Figure 7.5), the Q-factors 

of the presented solid cantilevers are inversely proportional to the cantilever width. 

Finally, in the third overtone, the Q-factor of the perforated cantilevers is almost the same 

as the similar solid cantilever, except for Class A cantilevers which exhibit smaller Q-

factors.  

 

Based on the data presented in Table 10.1, the type B2 cantilever deserves special 

recognition: In the fundamental mode, the type B2 cantilever resonates at slightly smaller 

resonance frequencies than the solid cantilevers, while both cantilever types have 

approximately equal Q-factors. Since the effective mass of the type B2 cantilever is 

smaller than that of the similar solid cantilever, the equivalence of the Q-factors and 

resonance frequencies implies via Eq. (10.1) that the effective damping of the perforated 

cantilever system is smaller than the effective damping of the solid cantilever system. 

The main advantage of the type B2 cantilever, however, appears in the second overtone, 

where at the price of only about 6% reduction in the resonance frequency, the Q-factor of 

the perforated cantilever is 65% larger than the Q-factor of the similar solid cantilever  

(W = 130 μm). 
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10.2 Quality Factor of SC Cantilevers 

In Chapter 3 the fundamental flexural resonance characteristics of two SC cantilevers 

were compared with the resonance characteristics of a corresponding solid cantilever. 

Both types of cantilevers had the same length, width and thickness of 450, 82 and 12 μm, 

while the SC beam lengths were 3 and 9 μm and had a sidewall thickness of 1.0 μm. The 

average notch depth in the SC cantilevers was 6 μm and it was located 8.5 μm from the 

cantilever clamped edge. The total number of SC beams on each SC cantilever was 23. 

The presented measurement results indicated that the resonance frequencies of both types 

of cantilevers are approximately equal, and the difference in their Q-factors is less than 

6%. In this chapter, again, the resonance characteristics of SC cantilevers with the same 

specifications are compared with the corresponding solid cantilevers with respect to the 

cantilever length and flexural overtone. To this end, the measurements are performed 

using the same setup as mentioned in Chapter 5. 

 

The variation of the Q-factor with the length of both SC and solid cantilevers for the 

fundamental flexural resonance mode is shown in Figure 10.4. The specifications of the 

cantilevers are as mentioned before, except that in most cases the SC beam length is Lb = 

6 μm, whereas for cantilevers with lengths of 175, 450, 750 and 1050 μm the results of 

SC cantilevers with SC beam lengths of 3 and 9 μm are included as well (although not 

differentiated on the graph). As observed in Figure 10.4, the Q-factors of both cantilever 

types closely follow each other, although the Q-factors of solid cantilevers for most 

lengths are larger. In two special cases, namely the solid cantilevers with lengths of 100 

and 175 μm, coupling of resonance modes is observed around the fundamental flexural 
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resonance frequency, therefore, the Q-factors are reduced. For the same lengths, the Q-

factors of SC cantilevers with Lb = 6 μm are reduced as well, yet they stay larger than the 

Q-factors of similar solid cantilevers. However, no significant coupling is observed for 

the SC cantilever with the length of 175 μm and Lb = 9 μm. In other words, forming a 

notch on the clamped end can cause the coupled resonance modes to separate. 

 

In Figure 10.5 the Q-factors of SC and solid cantilevers are plotted versus the resonance 

frequency of the first 7 flexural modes. The cantilever specifications are the same as 

before, except that all have a length of 1050 μm. The only difference among the 

represented SC cantilevers is in the length of SC beams Lb, which is equal to 3, 6, or 9 

μm. For the SC cantilever with Lb = 9 μm, no meaningful data have been obtained 

beyond the 5th flexural mode. The same happens after the 6th flexural mode for the SC 

cantilever with Lb = 6 μm, while the SC cantilever with Lb = 3 μm has provided data up 
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Figure 10.4. Measured Q-factor as a function of length for stress concentrating 
cantilevers (rectangles) and solid cantilevers (diamonds) which resonate in the 
fundamental flexural mode. The cantilevers width and thickness are 82 and    
12 μm, respectively. 
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to the 7th overtone. This observation supports the earlier finding that the force sensitivity 

of SC cantilevers decreases with increasing Lb, as discussed in Chapter 3. On the other 

hand, since the implemented Wheatstone bridge in the solid cantilever is balanced, unlike 

in the SC cantilevers, this cantilever has been able to provide meaningful data even up to 

the 7th overtone. Regardless of this issue, the Q-factors of both cantilever types follow 

each other very closely; hence, adopting the aforementioned SC cantilever schemes (with 

an average notch depth equal to half of the cantilever thickness) will not noticeably 

change the damping mechanisms in the cantilevers. This observation can be explained by 

the fact that the difference in the effective masses of solid and SC cantilevers is virtually 

nothing: because the location of the notch in the adopted schemes (i.e., the proximity of 

the clamped edge) experiences insignificant vibration amplitudes in the flexural mode 

shapes; therefore, given the fact that both SC and solid cantilevers resonate at almost 
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Figure 10.5. Measured Q-factor as a function of flexural resonance frequency (7 
modes) for stress concentrating cantilevers (rectangles) and solid cantilevers 
(diamonds). The cantilevers length, width and thickness are 1050, 82 and 12 μm, 
respectively. The lengths of stress concentrating beams in the SC cantilevers are 
3, 6, and 9 μm. 
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equal frequencies, the removed mass at the trenches results in a negligible change in the 

kinetic energy of the systems, thus the effective masses of both cantilever types are equal. 

 

*** 

 

It can be concluded from the measurement results presented in this chapter that the effort 

in improving the Q-factor of simple rectangular cantilevers by introducing holes has been 

successful only for the second flexural resonance mode and mainly for the cantilevers 

perforated with double holes at the center (i.e., at the antinode location). In general, it 

seems that in the second flexural mode the Q-factor of the cantilever improves by moving 

the double-hole perforation from the tip toward the middle of the cantilever. On the other 

hand, the experimental results presented in this chapter indicate that the SC and solid 

cantilevers exhibit almost equal Q-factors, regardless of the cantilever geometrical 

dimensions or flexural resonance overtone. 
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CHAPTER 11 

CONCLUSION AND FUTURE TREND 

 
 
The objectives of this thesis has been to optimize cantilevers in the static sensing mode, 

specifically to enhance the force sensitivity of piezoresistive cantilevers, as well as in the 

dynamic mode, with improving the performance of resonant cantilever mass sensors as a 

prime target.  

 

In the first part of this thesis, i.e., the static optimization part, a new technique in utilizing 

the stress concentration in piezoresistive cantilever force sensors is introduced and 

verified through simulation and experiment. Introducing a new fabrication process 

module, embedded stress concentrating (SC) silicon wires and beams are implemented in 

cantilevers. By using these elements as piezoresistors and concentrating stress through 

them, the force sensitivity of the cantilever is increased without noticeably sacrificing the 

cantilever stiffness, resonance frequency, and quality factor. The experiment data confirm 

the performed finite element simulation results, indicating that in an SC cantilever the 

force sensitivity not only follows the same relationship with geometrical dimensions as in 

a solid (conventional) cantilever, but also the sensitivity increases by decreasing the 

thickness of stress concentrating elements. This advantage comes at the expense of a 

small decrease in the spring constant in comparison to solid cantilevers with the same 

dimensions.  As an example, the measurement results of SC cantilevers with embedded 

stress concentrating wires show an up to 8.0 times increase in force sensitivity at the price 

of only a 15% reduction in stiffness. Nevertheless, in designing SC cantilevers, special 
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attention must be paid to the noise characteristic of the device. While the 

thermomechanical noise of both solid and SC cantilever types are very similar, to reduce 

the Johnson noise in SC cantilevers it is required to use less resistive stress concentrating 

elements, e.g., shorter SC elements. 

 

As a future trend, the stress concentrating elements in SC beams can be further scaled 

down by utilizing either bottom-up approaches (e.g., nanotubes fabrication) or top-down 

approaches (e.g., nanolithography). This way, not only the width and thickness of the SC 

beams can be decreased, but also they can be fabricated in shorter length; hence, both 

sensitivity and resolution can be increased. 

  

The focus of the second part of this thesis has been on optimization of resonant 

cantilevers, which potentially can be used in mass detection applications such as 

chemical and biological sensors. The objectives of this optimization include increasing 

the quality factor of the resonator as well as cancellation of the effect of environmental 

parameters on the frequency detection in resonant mass sensors. Although the presented 

results were obtained for magnetically excited piezoresistive cantilevers, these results can 

be generalized to any type of cantilever sensors.  

 

For the flexural resonance of cantilevers, by combining analytical derivations and 

experimental results, two models are developed to estimate the optimum dimensions of 

resonant rectangular cantilever beams for achieving maximum quality factor in air. For 

silicon cantilevers with thicknesses between 5 to 17 μm, it has been calculated that the 
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reciprocal of the Q-factor is linearly proportional to χ = L/H1.5 if this ratio is larger than  

15 μm-0.5. This behavior is the result of the dominance of air damping for cantilevers with 

such length to thickness ratios; however, a close examination of the measured quality 

factors of these cantilevers shows that the air damping seems to be proportional to an 

empirical ratio of L/H1.25 rather than L/H1.5. Also, it has been shown that the effect of 

cantilever width may be neglected for cantilevers with large ratios of L/H1.5. In contrast, 

with the support loss being a significant contributor to the damping, in short cantilevers 

(i.e., χ  < 15 μm-0.5), the Q-factor becomes a strong function of the cantilever width. Also, 

it was observed that the equation expressing support loss must be adjusted to include the 

effect of imperfectness on the cantilever clamped boundary. Combining the empirically 

corrected equations of air damping and support loss with the well-known Zener 

approximation for TED has made it possible to calculate the optimum lengths of resonant 

cantilevers for a given thickness to achieve the maximum quality factor for the 

fundamental flexural resonance mode in air. 

 

In this thesis, the cantilever flexural resonance in any overtone is modeled with a set of 

coupled lumped mass resonators. Based on this model, the effective damping coefficients 

in the flexural modes of interest are calculated. The measurement results show that in 

higher flexural modes, similar to the fundamental mode, the dependence of the Q-factor 

on the cantilever geometry can be described by χ = L/H1.5; however, the critical transition 

region, where the dominant damping mechanisms have equal influence, occurs for a 

larger χ in a higher overtone. In other words, the Q-factors of cantilevers, which have the 

air damping as the dominant loss mechanism in the fundamental flexural mode, initially 
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increases in the second or third flexural modes (i.e., lower overtones), but eventually 

drops in higher overtones. An interesting observation is that for all the measured 

cantilevers, the maximum Q-factors are found in a small frequency span of 200 to 400 

kHz, regardless of the overtone number. This observation indicates that, at least for the 

first three flexural modes of the investigated resonant cantilevers, the maximum 

achievable Q-factor is bound to an upper limit in frequency (i.e., f < 400 kHz).  

 

From the measurement results it is observed that a temperature variation not only can 

influence the Q-factor, but also introduces a shift in the resonance frequency. In this 

thesis, a novel technique is introduced to cancel the effect of environmental parameters 

(e.g., temperature and relative humidity) on the resonance frequency of resonant mass 

sensors (e.g., resonant cantilevers). After applying this technique in a resonant cantilever, 

the undesired resonance frequency shifts caused by environmental parameters, namely 

temperature and humidity, are suppressed by up to 2 orders of magnitude. To detect a 

change in mass and meanwhile cancel the effect of environmental parameters, the 

presented technique needs only 4 frequency measurements; i.e., measuring the frequency 

of a pair of resonance overtones and comparing them with another pair measured before 

the potential variation in the mass. Hence, utilizing a single sensor, this technique 

eliminates any need for look-up tables, or the need for numerically adjusting the 

measurement results. The requirement for applying the presented technique are 1) the 

mass change must affect the examined overtone frequencies with different ratios, and 2) 

the mass change must not change the potential energy of the resonant system, i.e., it must 

have a minimal effect on the resonator stiffness. To fulfill the former requirement, the 
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surface of the resonant mass sensor, e.g., a mass-sensitive (bio-) chemical sensor, must be 

partially covered with the sensing layer. To address the latter requirement, either the 

sorption (binding) induced changes in the modulus of elasticity of the sensing layer must 

be negligible, or the sensing layer must be deposited on a portion of the resonator that has 

minimal contribution to the potential (strain) energy of the resonator. 

 

To selectively tune to a desired overtone, e.g., for the presented temperature cancellation 

technique or for closed-loop oscillation in higher flexural modes, the piezoresistive 

cantilever is modified as an overtone filter. To this end, the magnetic excitation and 

piezoresistive detection schemes on a regular rectangular cantilever are modified to make 

the cantilever more (or less) sensitive to desired flexural modes. This objective is 

achieved by optimizing the location of the piezoresistive Wheatstone bridge, by 

modification of the excitation line pattern, or by a combination of both approaches. The 

presented measurement results indicate that a design with an excitation line based on the 

twisted loop topology has the best tuning selectivity in the second flexural mode, while 

the results from hybrid approaches in all investigated overtones were promising too. 
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APPENDIX A 

PROCESS FLOW FOR CANTILEVER FABRICATION 
 
 
 

Table A.1. Complete process flow for fabrication of piezoresistive silicon cantilevers. 
 
Step Description Process Details 

1 Thermal oxidation Equipment: Tystar Furnace 
Temperature: 1050 ˚C (wet oxidation) 
Duration: 185 min 
Measured thickness: ~ 8600 Å 

2 Lithography 
(defining doping area) 

Photoresist: SC1813 
Spin: 4000, 1000, 40 [rpm, rpm/sec, sec] 
Soft-bake (SB): 3 min at 100 ˚C on hotplate (HP) 
Exposure: λ = 405 nm, UV density = 172 mJ/cm2 
Developer: MF-319 
Hard-bake (HB): 10 min at 110 ˚C – HP  

3 Silicon oxide etch 
(defining doping area)  

Equipment: Plasma Therm ICP with C4F6 Plasma 
Note: the entire thickness of the oxide layer (~ 8600 Å) in 
the opening must be etched. 

4 Cleaning Rinse the sample in acetone, methanol, and DI water. Use 
oxygen plasma to remove the remaining residues. 

5 CMOS grade cleaning Piranha solution: 10 min 
Rinse with DI water 
RCA clean: 10 min 
Rinse with DI water 
BOE dip: 15 sec 
Rinse and dry 

6 Diffusion doping  Equipment: Tystar Furnace 
Solid boron source 
Temperature: 950 ˚C 
Duration: 60 min 

7 Backside oxide protection On the backside of the wafer: 
Photoresist: SC1827 
Spin: 4000, 1000, 40 [rpm, rpm/sec, sec] 
SB: 3 min at 100 ˚C – HP 
No exposure 
HB: 10 min at 110 ˚C – HP 

8 Boron oxide removal BOE immersion: 20 min 
9 CMOS grade cleaning Same as step #5 
10 Thermal oxidation 

(diffusion drive-in) 
Equipment: Tystar Furnace 
Temperature: 950 ˚C (wet oxidation) 
Duration: 240 min 
Measured thickness: ~ 5650 Å 

11 Rinse and dry Rinse the sample with DI water and dry it by blowing 
nitrogen. 
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Table A.1. Continued. 
 
Step Description Process Details 
12 Isolation layer Isolation layer : PECVD silicon oxide 

Equipment: Unaxis PECVD 
Deposited SiO2 thickness: 2500 Å 

13 Lithography 
(contact opening) 

Photoresist: SC1827 
Spin: 2 steps 
1) 500, 100, 10 [rpm, rpm/sec, sec] 
2) 4000, 1000, 40 [rpm, rpm/sec, sec] 
SB: 3 min at 100 ˚C – HP 
Exposure:  
λ = 405 nm, UV density = 374 mJ/cm2 
Developer: MF-319 
HB: 10 min at 110 ˚C – HP 

14 Silicon oxide etch 
(contact opening)  

Equipment: Plasma Therm ICP with C4F6 Plasma 
Note: the entire thickness of the oxide layer (2500 Å) in the 
opening must be etched. 

15 Cleaning Same as step #4 
16 Lithography 

(lift-off for contact metal)
Photoresist: SPR-220 7.0 
Spin: 2 steps 
1) 500, 100, 10 [rpm, rpm/sec, sec] 
2) 4000, 1000, 33 [rpm, rpm/sec, sec] 
SB: 3 min at 110 ˚C – HP 
Exposure: λ = 405 nm, UV density = 365 mJ/cm2 
Developer: MF-319 
No hard-bake 

17 Aluminum deposition 
(lift-off for contact metal)

Equipment: Electron beam evaporator 
Deposition pressure: 1.3e-6 
Aluminum thickness: 667 Å 

18 Lift-off The sample must be immersed in acetone for 45 min, until 
the aluminum layer completely get separated from the 
substrate. Next, sample needs to be rinsed with methanol 
and DI water and dried with nitrogen blow. 

19 Sintering Equipment: Lindberg furnace 
Forming gas: 98% N2, 2% H2  
Temperature: 450 ˚C 
Duration: 65 min 

20 Rinse and dry Rinse the sample with DI water and dry it by blowing 
nitrogen. 

21 Cavity filling 
(for SC cantilevers only)

Photoresist: SC1813 
Spin: 2 steps 
1) 500, 100, 10 [rpm, rpm/sec, sec] 
2) 2500, 1000, 40 [rpm, rpm/sec, sec] 
SB: 3 min at 100 ˚C – HP 
Exposure: flood exposure 
λ = 405 nm, UV density = 108 mJ/cm2 
Developer: MF-319 for 45 sec (until the sample surface 
becomes clean) 
No hard-bake 
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Table A.1. Continued. 
 
Step Description Process Details 
22 Descum Equipment: Plasma Therm RIE with oxygen plasma 

Duration : 40 sec 
23 Metal line deposition Equipment: Electron beam evaporator 

Deposition pressure: 1.5e-6 
Aluminum thickness: 3000 Å 

24 Lithography 
(metal line) 

Same as step #2 

25 Metal line patterning Wet etchant: Al etch type A 
Temperature: 50 ˚C 

26 Cleaning Same as step #4 
27 Passivation layer Isolation layer : PECVD silicon oxide 

Equipment: Unaxis PECVD 
Deposited SiO2 thickness: 4500 Å 
(for SC cantilevers: 2500 Å) 

28 Backside mask deposition On the back surface, in addition to the existing thermal 
SiO2 layer: 
1) PECVD silicon oxide 
Equipment: Unaxis PECVD 
Deposited SiO2 thickness: 8400 Å 
The sample should be rinsed in DI water and dried. 
2) PECVD silicon nitride 
Deposited SiNx thickness: ~1.00 μm 
Note: it is better to partially pattern the sample between the 
two steps. 

29 Lithography  
(Backside mask) 

Photoresist: SPR-220 7.0 
Spin: 2 steps 
1) 500, 100, 10 [rpm, rpm/sec, sec] 
2) 4000, 1000, 40 [rpm, rpm/sec, sec] 
SB: 3 min at 110 ˚C – HP 
Exposure: λ = 365 nm, UV density = 400 mJ/cm2 
Developer: MF-319 
HB: 20 min at 120 ˚C – HP 

30 Backside mask patterning 1) For etching SiNx: 
Equipment: Plasma Therm RIE with SF6 plasma 
Duration: ~ 25 min (until SiNx layer is completely gone) 
2) For etching SiO2: 
Equipment: Plasma Therm ICP with C4F6 plasma 
Duration: ~ 15 min (until SiO2 layer is completely gone) 

31 Lithography  
(via) 

Same as step #13 

32 Silicon oxide etch 
(via opening) 

Equipment: Plasma Therm RIE with CF4 plasma 
(Until SiO2 layer is completely etched in the openings) 

33 KOH etch KOH solution: 6 molar 
Temperature: 75 ˚C 
Electrochemical etch stop reverse bias: 1.500 V 
Duration: ~ 10 hours 
Note: only the back surface is exposed to the solution. 
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Table A.1. Continued. 
 
Step Description Process Details 
34 Rinse and dry Thoroughly rinse the sample with DI water and dry it by 

blowing nitrogen. 
35 Cleaning Same as step #4 
36 Lithography 

(cantilever release) 
First, attach the sample to a carrier wafer using cool grease. 
Cool grease should not be applied under the etched cavities, 
but only at the edge of wafer. 
 
Photoresist: SPR-220 7.0 
Spin: 2 steps 
1) 500, 100, 10 [rpm, rpm/sec, sec] 
2) 4000, 1000, 33 [rpm, rpm/sec, sec] 
SB: 6 min at 115 ˚C – HP 
Exposure: λ = 405 nm, UV density = 600 mJ/cm2 
Developer: MF-319 
HB: 15 min at 120 ˚C – HP 

37 Silicon oxide etch 
(cantilever release) 

Equipment: Plasma Therm ICP with C4F6 Plasma 
Note: the entire thickness of the exposed silicon oxide layer 
must be etched. 

38 Silicon etch 
(cantilever release) 

Equipment: Plasma Therm ICP  
Recipe: Bosch process 
Note: the entire thickness of the exposed silicon membrane 
must be etched. 

39 Cleaning Same as step #4 
40 Dicing Dicing speed: 7.62 mm/sec 

Blade type: 01776-2501-040-CHO (Nickel) 
Dicing cut width: ~ 150 μm 
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APPENDIX B 

FABRICATION OF SC ELEMENTS 
 
 
 

Table B.1. Process module for fabrication of SC beams and wires. 
 
Step Description Process Details 

0 Thermal oxidation 
(diffusion drive-in) 

Start after step #10 in Table A.1. 

1 Rinse and dry Rinse the sample with DI water and dry it by blowing 
nitrogen 

2 Lithography 
(trench) 

Photoresist: SC1813 
Spin: 4000, 1000, 40 [rpm, rpm/sec, sec] 
SB: 3 min at 100 ˚C – HP 
Exposure: λ = 365 nm, UV density = 30 mJ/cm2 
Developer: MF-319 – immersed for 8 sec 
HB: 10 min at 110 ˚C – HP  

3 Silicon oxide etch 
(trench window)  

Equipment: Plasma Therm ICP with C4F6 Plasma 
Note: the entire thickness of the oxide layer (~ 5650 Å) in 
the opening must be etched. 

4 Silicon etch 
(shallow trench, d1) 

Equipment: Plasma Therm ICP  
Recipe: Bosch process 
Silicon etch depth: d1 (please refer to Chapter 3) 

5 Cleaning Rinse the sample in acetone, methanol, and DI water. Use 
oxygen plasma to remove the remaining residues. 

6 CMOS grade cleaning Piranha solution: 10 min 
Rinse with DI water 
RCA clean: 10 min 
Rinse with DI water 
BOE dip: 15 sec 
Rinse and dry 

7 Thermal Oxidation Equipment: Tystar Furnace 
Temperature: 950 ˚C (wet oxidation) 
Duration: 60 min 
Measured thickness: ~ 2200 Å 

8 Silicon oxide etch 
(trench foot opening) 

Equipment: Plasma Therm ICP with C4F6 Plasma 
Note: the entire thickness of the silicon oxide layer at the 
bottom of the trench must be etched. 

9 Silicon etch 
(deep trench, d2) 

Equipment: Plasma Therm ICP  
Recipe: Bosch process 
Silicon etch depth: d2 (please refer to Chapter 3) 

10 KOH etch 
(front-side release) 

KOH solution: 6 molar 
Temperature: 30 ˚C 
Etch rate: ~ 0.1 μm/min 
Duration: depends on G (please refer to Chapter 3) 
Note: only the front surface is exposed to the solution. 
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Table B.1. Continued. 
 
Step Description Process Details 
11 Rinse and dry Thoroughly rinse the sample with DI water and dry it by 

blowing nitrogen. 
12 Cleaning Same as step #5 
13 Isolation layer Continue from step #12 in Table A.1 
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APPENDIX C 
 

INTEGRAL VALUE OF EQUATION (6.8) 
 

 
 
Transversal vibration amplitude of a simple cantilever beam is given by Eq. (2.26): 
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Multiplying and integrating each of the ten resulting terms leads to 
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By expanding the terms, the integral expression can be further simplified: 
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As expressed by Eq. (2.26a), for a resonant cantilever the boundary conditions requires  

1coshcos −=nn λλ . 

Hence, integral I can be even further simplified: 
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