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NOMENCLATURE 

Variable Dimensions Description 
(-) State space matrices for 

;   x Ax Bu y Cx Du  
A, B, C, D 

A m2 Cross-sectional area of a rod.  Used 
briefly in vibration model development 

tesla·m Magnetic vector potential in vector form A 
tesla·m Radial, azimuthal and axial components 

of magnetic vector potential 
, ,r zA A A  

 , ,FEMM
jA r  tesla·m Steady-state, magnetic vector potential 

due to 1 amp in the j-th coil as calculated 
by FEMM 

z  

tesla Magnetic induction vector.  Magnetic 
flux density. 

B 

tesla Radial, azimuthal and axial components 
of magnetic induction 

, ,r zB B B  

tesla Range and offset for dimensionless 
magnetic field  

, minB B  

b (-) Dimensionless magnetic induction 
Cx(t) Varies Underdetermined function in partial 

integrations 
c m/s Speed of sound 
dmi m/A Magnetostrictive constant 

i m
mi

m iT H

S B
d

H T

  
 

 

d m/A Magnetostrictive constants in matrix 
form 

(-) Derivative matrix in MPC D 
V/m Electric field E 
E (-),  
F and G (s-1) 

Derivative coupled matrices for state 
space system in   Ex Fx Gu

E, F, G 

E (-),  
F and G (s-1) 

Submatrices of E, F, G; x=1-5, y=1-5 , ,xy xyE F G x  

F   Performance index for MPC 
s Integral error in MPC 

0i
E  

f N·s/m Friction coefficient in vibration model 
A/m2 Current density distribution function for 

the k,m,p-th eddy current mode 
 , , , ,M

k m p r zf  

G J Gibbs free energy in derivation of 
constitutive properties of 
magnetostriction. 

h (-) Dimensionless variable corresponding to 
  ,H z t
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Variable Dimensions Description 

 ,FEMMh t   Dimensionless variable corresponding to 
  ,FEMMH z


t

 ,Hh t   Transverse average of dimensionless 
magnetic field due to eddy current.  

 , , ,H
Mx t    

H A/m Magnetic field vector 
(-) Predictor system matrix H 

  , ,FEMM
R CH r z tI 

z

 A/m Steady state magnetic field in the rod 
with currents in coils of   C tI

 , ,FEMM
R jH r  A/m Steady state magnetic field in the rod 

with j-coil energized at 1 amp. 
 , , , ,R zH r z t  A/m Axial magnetic field in the rod region. 

A/m Radial, azimuthal and axial components 
of magnetic field 

, ,r zH H H  

 ,H z t


 A/m Average magnetic field in transverse 
plane of rod 

A/m Range and offset for dimensionless 
magnetic field transformation 

, minH H  

A/m Integral transform of    , ,FEMM
R CH r z tI , , ,

FEMM
R k m p tH  

I A Current 
(-) Identity matrix I  
A Current in j-th coil circuit 

,C jI  

 C tI  A Vector of currents in the coils 

A Range and offset for dimensionless 
current transformation 

, minI I  

(-) Time index for current time step in MPC 
0i  

(-) Time index for time horizon in MPC. 
Hi  

 y xJ   Bessel function of first kind of order y 

   , , , , , ,r k m p k m pt tJ , J   Integral transforms of ,rj j  

A/m2 Current density in vector form J 
A/m2 Radial, azimuthal and axial components 

of current density 
, ,r zJ J J  

j (-) Index for the coils 
jmax  Number of coils 

 ,NK z t  A/m Equivalent surface current on rod due to 
vibration strain. 

A/m Integral transform of  for n-th 

vibrational mode 

 ,NK z t N
nK  

K  A/m Scaling factor for converting surface 
current to dimensionless units 
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Variable Dimensions Description 
, , ,u Exact P P I K K K K  (-) Proportional gain control matrices for 

conventional, exact, proportional, and 
proportional-integral MPC. 

k (-) Index for the radial mode of magnetic 
field and eddy currents 

kmax (-) Maxium index for the radial modes of 
magnetic field and eddy currents 

G  ohm/s Amplifier lumped gain 
l (-) Index for rearranging the four 

dimensional modal magnetic model to a 
one dimensional. 

 1 1l k kmax m mmax p        

(-) Maximum index of l lmax 
m Length of wire in one coil 

CL  

 Dimensionless inductance coefficient 
between coil and coil, coil and eddy 
current mode, coil and vibration mode 

, , , ,, , ,
K N
j j j k m p j nL L L  

,
, ,, ,K N K

j j j j L L  
,

, , , ,,M N N
j k m p j nL L  

V·s Inductance in mixed units corresponds to 
the coil-to-coil, coil to equivalent surface 
current and coil to eddy current. 

, , , ,, , ,
K M

j j k m p j n j  
L L L N  henry Inductance between coil and other coils, 

eddy current modes and vibration modes 
m (-) Index for the azimuthal mode of 

magnetic field and eddy currents 
mmax (-) Maximum index for the aximuthal 

modes of magnetic field and eddy 
currents 

kg Element of mass in vibration model M  
M A/m Magnetization 
n  (-) Index for the vibration modes 
   
nmax (-) Maximum index for the vibration modes 
nk (-) Number time steps experimental 

system’s output is delayed with respect 
to input (latency). 

 nN   (-) Normalization constant for n-the axial 
vibration mode 

 ,k mN   (-) Normalization constant for k,m-th radial 
mode magnetics mode 

 pN   (-) Normalization constant for p-the axial 
magnetics mode 

 mN   (-) Normalization constant for m-the 
azimuthal magnetics 

p (-) Index for the axial mode of magnetic 
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Variable Dimensions Description 
field and eddy currents 

pmax (-) Maxium index for the axial modes of 
magnetic field and eddy currents 

(-) Coefficient used in averaging magnetic 
field over transverse plane in vibration 
model 

,k mP  

(-) Predictor system matrix P 
q2 (-) Scalar weight factor on control error in 

conventional and proportional MPC 
(-) Scalar weight factor on proportional 

control error in MPC 

2
Pq  

2
Iq  (-) Scalar weight factor on integral control 

error in MPC 
(-) Coefficient in coupling coil to vibration 

,n jQ  

(-) Weight matrix on control error in MPC Q 

CR  ohm Resistance of the coil 

LR  ohm Resistance of load resistor 

 , ,
m k mR    (-) Radial mode function 

(-) Weight matrix for control input in MPC R 
r m Radial position 
rg m Radius of rod.  Inner radius of coil. 

Parameter of the actuator design 
rc m Outer radius of coil. Parameter of the 

actuator design 
m2 Surface area of rod SR 

(-) Strain tensor S 
(-) Integration matrix in MPC S 
Pa-1 Elastic compliance at constant H. 

,Hi
ij

j H

S
s

T

 


 

H
ijs  

Pa-1 Elastic compliance at constant H in 
matrix form 

Hs  

 Stress tensor T 
(-) Combined model transfer function T 

T turns/meter Turns per unit length.  Parameter of the 
actuator design 

s Time step 
sT  

turns/coil Turns in one coil.  Parameter of the 
actuator design 

cT  

t s time 

jU  A Current demand 
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Variable Dimensions Description 
 Predicted demands (i.e., coil current 

demand) from first predicted time,  

to prediction horizon, 
0 1i 

0 Hi i  

0 01: Hi i i u  

 Predicted change in demands from first 
predicted time,  to prediction 

horizon, 
0 1i 

0 Hi i  

0 01: Hi i i u  

m3 Volume of j-th coil region. 
,C jV  

m3 Volume of rod VR 

V  V External voltage 

,C jV  V Voltage across j-th Coil  

,Inductive jV  V Inductive component of voltage across j-
th Coil  

,Amp jV
v

 V Voltage rise across j-th amplifier  

 ,Amp j t  (-) Dimensionless variable corresponding to 
 ,Amp jV

,Inductive jv  (-) Dimensionless variable corresponding to 
 ,Inductive jV

 Coefficient used in end effect 
(magnetostrictive boundary condition) in 
vibration model 

jW  

(-), s-1, s-2 Vector of coil current states.  Amplitudes 
of modes 

, ,K K Kx x x   

(-), s-1 Vector of magnetic field states and 
derivatives.  Dimensionless units.   

,M Mx x  

(-), s-1, s-2 Vector of vibration states, first 
derivatives and second derivatives.  
Amplitudes of modes 

, ,N N Nx x x   

 , , ,M
Hx t     Dimensionless magnetic field for 

homogeneous equation.  Field due to 
eddy current alone. 

 ,N
Hx t  (-) Homogeneous component of 

dimensionless displacement 
 ,N

Ox t  (-) Quasi-steady component of 
dimensionless displacement 

 ,Nx t  (-) Dimensionless displacement 

 , ,  Dimensionless function corresponding to 
  , ,FEMMH r z

FEMMx t   
t

ˆ ( | )i ix  (-) Kalman estimate of x(i) given y(i). 

0

ˆ̂
ix  (-) Kalman estimate and Smith prediction at 

time  0i
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Variable Dimensions Description 

 N
n tX  (-) Amplitude of the n-th vibrational model.  

Integral transform of  ,Nx t  

(-) Amplitude of the k,m,p-th magnetics 
model.  Integral transform of 

 , , ,H
Mx t    

, ,
M
k m p
X  

(-) Dimensionless coil current K
jx  

(-) Current state in model predictive control 
0i

x  

Pa Effective Young’s modulus holding 
magnetic field constant.  Modulus of 
elasticity 

H
effY  

(-) Predicted outputs (i.e displacement) 
from first predicted time,  to 

prediction horizon, 
0 1i 

0 Hi i  

0 01: Hi i i y  

 ,nZ    (-) Axial mode for vibration model 

 ,pZ     Axial mode for magnetic model 

m Axial position z 
m Length of actuator rod 

Lz  

m Axial length of one coil region 
Cz  

s-1 Frequency coefficient in magnetics 
model 

, ,k m p  

 Eigenvalue of the axial vibration modes. 
n  

(-) Parameter in integral average of strain 
component of magnetization 

,k m  

 Eigenvalues of the radial, azimuthal, and 
axial magnetic modes 

, , ,k m m p    

Pa/(A/m)=Tesla Matrix of magnetostrictive constants 
  
 H S

B T
κ

S H
 

κ  

Pa/(A/m)=Tesla Effective axial magnetostriction constant 
for magnetic model 

,eff z  

Pa/(A/m)=Tesla Effective magnetostriction constant for 
vibration model 

eff  

(-) Vibration damping coefficient   
henry/m Tensor of magnetic permeability at 

constant strain 

Sμ  

henry/m Tensor of magnetic permeability at 
constant stress 

Tμ  

henry/m Magnetic permeability of a vacuum. 
7

0 4 10     
0  

11 33,S S   henry/m Permeability at constant strain in 
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Variable Dimensions Description 
transverse and axial directions 

S x
xx

x S

B

H
 


 



henry/m Permeability at constant stress in 
11 33,T T   

transverse and axial directions 

T x
xx

x T

B

H
 


 



henry/m Permeability at constant strain in axial  
33
S  

direction 
henry/m ity at constant strain in axial  

 
Permeabil
direction.  R designating the rod region. 

33
S

R   

R  

  radians Azimuthal angle. 

0
radians Angular dimension of the segmented 

actuator rod.  Azimuthal angle. 
  

 agnetics 

) 
ian/s sonance in 

radian/s frequency of amplifier. 

Azimuthal modal function for m( , )m   

Θ  (- Predictive form state matrix 
rad Frequency of first acoustic re

the rod 
Cut-off 

1  

Amp  
  (-) Dimensionless radial position 
  kg/m3 y in the 

(ohm·m)-1 

r actuator rod 

 magnetic 

(-) tween magnetic 

(-) en magnetic 
 

Density of the rod.  Used briefl
vibration model development. 
Conductivity   

R
(ohm·m)-1 Conductivity o  

(-) Coupling coefficient between
mode and coil current 
Coupling coefficient be

, , ,k m p j  

, , ,k m p n  
mode and vibration mode 
Coupling coefficient betwe

, , ,k m p j  
mode and coil current pass-through term
in the vibration mode 

(-) erse permeability Ratio of axial to transv
of rod. 

33

11

S

R S



R  


  

(-) Dimensionless axial position   
m Displacement from neutral po  sition in 

the rod. 
m d axial components of ,r z   Radial an

displacement from neutral. 
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SUMMARY 

 

This dissertation investigates a new design for a magnetostrictive actuator that 

employs individually controlled coils distributed axially along the magnetostrictive rod.  

As a quantitative goal, the objective is to show that the multi-coil actuator can operate 

effectively at frequencies as high as 10,000 Hz with 900 N force and 50 microns of 

displacement.  Conventional, single coil actuators with the same parameters for force and 

displacement develop significant attenuation in their response at frequencies above the 

first longitudinal vibration resonance at about 2750 Hz.  The goal of the research is to 

investigate whether multiple coils can effectively increase the frequency range a least 

four times the range of conventional magnetostrictive actuators.  This document derives a 

new mathematical model of the actuator that represents the spatial distributions of 

magnetic field and vibration, devises a control design that takes advantage of the multiple 

inputs to control the displacement of the actuator while consuming minimum electrical 

power, and describes a prototype multi-coil actuator and experimental system developed 

to test the idea.  The simulations of the multi-coil actuator and control design demonstrate 

successful transient operation of the actuator over the targeted frequency range with 

feasible levels of input power and current.  Experimental tests of the design, although 

limited by a computer sampling rate less than 10,000 Hz, are able to validate the 

predictions of the developed model of the actuator and reproduce the simulated control 

performance within the constraints of the experimental system. 
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CHAPTER 1 

INTRODUCTION 

 

The subject of this research is il magnetostrictive actuator.  A 

magnetostrictive actuator is a linear motor which converts electrical current into linear 

motion.  The difference between a conventional magnetostrictive actuator and the 

actuator of this study is that a conventional actuator has a single uniform coil along the 

full length of the actuator rod, whereas the proposed design divides the coil into axial 

segments which are controlled separately.  The advantage of the multi-coil design for the 

actuator is the opportunity to use the individually controlled coils to improve the speed of 

actuator response.  Possible applications of this type of device include:  high speed valves 

for diesel fuel injection, active control of combustion instability, active cancellation of 

noise or vibration, sonar, and public address loudspeakers.  The research presented here 

develops a dynamic model for the rod motion, magnetic fields, and electrical circuits and 

develops a predictive control algorithm that provides the optimum control input to the 

individual coils.  The multi-coil actuator is then implemented in a prototype design to 

measure the actuator performance, test the control design, and uncover the practical 

realities and limitations of real-time control. 

A fast actuator with a large linear displacement is a difficult, technical challenge.  

In this research, the goal, predicated on the potential application to diesel fuel injection, is 

to achieve frequency response up to 10 kHz with 50 µm displacement and maximum 

force of 900 N.  The problem with the conventional magnetostrictive actuator is that the 

design parameters work against each other, preventing all the performance parameters 

 a novel multi-co
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from being achieved at the same time.  For example, the maximum displacement of the 

rod is proportional to its  can be generated is 

proportional to the transverse area.  Unfortunately, increasing the length and diameter to 

increase dis

 

1

length.  The maximum force that

placement and force decrease the frequency response.  Moreover, increasing 

the length of the actuator causes the resonant frequency of the rod to decrease.  Similarly, 

increasing the diameter to achieve the force requirement causes the frequency at which

eddy currents begin to act against the drive coil to be too low to achieve the desired 

frequency response.   

To put these problems into numerical context, consider some preliminary rule-of-

thumb calculations.  The limiting resonant frequency for longitudinal vibration for an 

actuator with a uniform coil can be determined by the quarter wave formula ,  

 
1

L

Y

4A z 
  , (1.

where Y  is the Young’s modulus, 

1) 

  is the density, and Lz is the length of the rod. A  is 

frequency in Hertz.  Increasing the length of the actuator rod increases its static 

displacement but lowers the resonant frequency.  A magnetostrictive actuator with the 

desired 50 µm displacement must be about 0.152 m (6 inches) in length.  The resultin

resonant frequency is about 2700 Hz, too low

g 

 for applications like diesel injection.  

Above the resonant frequency, the acceleration loads dominate the force balance within 

the actuation rod.  For a harmonic signal, the coil current needed for constant amplitude 

of displacement increases approximately as the square of the driving frequency.   

                                                 
1

appropriate for a rod with one fixed and one free end.  With a load attached, for example with the actuato
connected to the valve stem, the resonant frequency is lower.  The resonant frequency equation is derived 

 The quarter wave formula comes from the fundamental vibration mode for the rod.  This formula is 
r 

in Chapter 3. 
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A similar conflict in performance can be found between the required force and 

frequency at which eddy current becomes significant.  The eddy current dynam

equation reduces to a diffusion equation analogous to the equation for conduction of heat 

in solids.  The magnetic diffusivity analogous to thermal diffusivity is given by 1( )

ic 

  .  

Based on this analogy, a frequency constant associated with the magnetic diffusion in a 

cylindrical rod2 can be defined which represents the frequency at which eddy current 

becomes significant. 

 
22M r

2.408


  , (1.2) 

where 2.408 is a geometric constant based on a solid cylindrical shape,   is the rod’s 

conductivity,   is the rod’s permeability, r is the rod’s radius, and M  is the magnetic 

diffusion frequency constant in Hertz.  The dynamic force that a rod can produce is 

proportional to its transverse area; whereas the frequency at which eddy current becomes 

tu e 

ncy from 

 

 

changes introduced by the multi-coil actuator.  The main design features of a 

significant is inversely proportional to the area.  For an ac ator producing 900 N, th

actuator rod has to be approximately 1.27 cm (0.5 inch) in diameter.  The freque

Eq. (1.2) for this diameter rod is 2400 Hz.  Above this frequency, the current of the coil

must increase proportionally with drive frequency to overcome the effects of eddy 

current.  Operating beyond the limiting frequencies for acoustic resonance or eddy 

current with a conventional magnetostrictive requires the coil’s driver amplifier to 

produce impractically high voltage and current. 

The limitations of the conventional actuator can be overcome by the design

                                                 
2 The eddy current diffusion constant represents the lowest mode of radial diffusion for a solid cylinder.  
The formula is derived in Chapter 4. 
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conven e 

ound 

the ro  

elleville washer) to preload the actuator rod, and a case to enclose 

the device and provide a structural mount for the preload spring.   

 

tional magnetostrictive actuator are shown in Figure 1.1.  The key elements of th

device are the magnetostrictive rod at the center, the drive coil (or coils) wound ar

the rod, the push rod for attaching the actuator to the load, a magnetic return path of 

highly magnetically permeable material to turn the magnetic field at the ends of d, a

bias magnet formed as a cylindrical shell that provides a steady bias field to the 

magnetostrictive rod and a high permeability path to close the magnetic circuit 

efficiently, a spring (B
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magnetostrictive actuator 
Figure 1.1:  A typical arrangement of a commercial 
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The proposed actuator offers a potential technical breakthrough in speed.  To 

extend the bandwidth, the coil in the prototype actuator investigated in this research 

project (see Figure 1.2) is divided axially into individually controlled coils.  When 

current is applied to the coil in the conventional actuator, the resulting magnetic field is 

uniform and causes all points along the rod to elongate simultaneously.  In the ne

approach, each coil’s field acts on the adjacent the rod distributing the stress alo

length.  The benefit of the concept comes from the spatial distribution of the actuating 

force.  The distribution of force allows electrical input to be timed 

w 

ng the 

along the rod to 

account for the wave propagation of stress and strain in the material and to account for 

resonance effects.  In the schematic, four coil circuits are shown.  The ellipsis, “…”, 

between coil circuits suggests that the number of coils can be adjusted to suit the 

application.  The prototype actuator has ten coils.   

The eddy current limitation on frequency is reduced to an acceptable level in the 

prototype actuator by laminating the actuator rod.  In the prototype actuator design, the 

Terfenol rod is cut into quadrants and rejoined with an insulating adhesive.  The purpose 

of the radial cuts is to reduce eddy currents in the same way that conventional plate 

laminations reduce eddy current in transformer cores.  Figure 1.3 illustrates the laminated 

actuator geometry.  A pie-shaped cylinder is the descriptive name of the geometry of the 

magnetostrictive actuator rod.   

Slicing the Terfenol actuator rod is a standard manufacturing technique for 

reducing eddy curr l of the high-

frequency actuator rod manufac e, diametral slice to reduce 

ent in magnetostrictive actuators.  The standard mode

tured by Etrema has a singl
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oil actuator and state Figure 1.2:  Concept of the multi-c
space controls 

 

 

Figure 1.3:  Pie-shaped cylindrical segments 
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eddy current.  The prototype actuator, which was also fabricated by Etrema, has an 

additional cut, as shown in Figure 1.3, to further reduce eddy current.  While the four 

quadrant lamination reduces eddy current significantly, the reduction does not 

sufficiently reduce eddy current to the point that it may be neglected.  The effect of eddy 

current in the rod is one of the technical challenges that is addressed in the magnetic 

model. 

The control problem for the multi-coil actuator is not as simple as controlling 

multiple independent actuators because each rod segment is coupled to its neighbors 

mechanically and magnetically.  The coupled system requires modern multivariate 

control techniques to compute feedforward and feedback gains that realize the improved 

dynamic response.  The primary research problem is to develop a suitable mathem tical 

model of the sys  advantage of 

the additional degrees of freedom tha ctuator provides. 

While the particular linear motor in the prototype device employs a 

magnetostrictive rod, the distributed control concept can be applied to other linear 

actuator devices in which the control can be spatially distributed, such as a stacked 

piezoelectric actuator in which regions of the stack are individually controlled or a 

stacked voice coil actuator with individual controls on each coil and magnet.   

The remainder of this chapter is devoted to introducing the ideas and plan for 

modeling and control of the multi-coil actuator and for the experimental evaluation of the 

prototype actuator.  The survey of literature related specifically to the modeling, controls, 

or experimental development is included at the start of each chapter. 

a

tem and to apply model-based control techniques that take

t the multi-coil a
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Physics of Magnetostriction 

Magnetostriction is the property of deformation in a material in response to a 

magnetic field.  James Joule is credited with the first observation of magnetostr

The term, magnetostriction, applies to all types of deformation: elongation, bending, and 

volume change.  Material that elongates along a preferred axis is the type of deformat

that is u

iction [1].  

ion 

sed for the linear motion actuator in this study. 

on.  

rch 

strains.  The 

current omposition of 

e 

].  In 

manufa by 

 the United 

                                                

All magnetic materials exhibit a certain amount of magnetostriction, but the 

magnitude of deformation in most materials is so small that it is unsuitable for actuati

In 1970’s, certain alloys of iron and terbium were discovered by Clark and his resea

team at the Naval Ordnance Laboratory which produced strains (Δl/l) on the order of 10-3.  

The alloys were named TERFENOL for terbium (TER), iron (FE) and the Naval 

Ordinance Laboratory (NOL).  Adding dysprosium was found to stabilize the 

anisotropies of the crystal alloy without greatly reducing the achievable 

 generation of magnetostrictive devices uses TERFENOL-D with a c

Tb0.30Fe0.70Dy1.92. 

Research into room temperature giant magnetostrictive materials began in th

1970’s with the discovery of the Terfenol-D alloy by A. E. Clark and H. S. Belson[2

the 1980’s, activity focused on the physics of the material and on developing 

cturing techniques [3].  When large scale industrial production of the material 

ETREMA Products3 began in 1988, research into developing applications of the material 

as actuators [4-7] and transducers began [8].  Considerable work has been conducted at 

the Naval Ordinance Laboratory, Iowa State, the University of Hull in

 
3  ETREMA Products, Inc.; 2500 North Loop Drive; Ames, IA 50010.  ETREMA is the 
sole supplier of TERFENOL-D products in the United States 
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Kingdom, the Royal Institute weden, and other places.  

ersus magnetic field intensity for 

a typic

of Technology in Stockholm, S

Today, literally thousands of articles are available on all aspects of magnetostrictive 

materials and their applications.  The current state of the art is compiled in a monograph, 

Handbook of Giant Magnetostrictive Materials, edited by Engdahl [9]. 

The material properties have been measured and tabulated by Clark[10] and 

others.  Figure 1.4 shows the strain and magnetization v

al giant magnetostrictive alloy.  The elongation effect is symmetric about the 

0H   axis; that is, the length of the actuator rod increases for both positive and negative 

magnetic fields.  The magnetic and magnetostrictive properties exhibit considerable 

hysteresis and nonlinearity. 

 

 

Figure 1.4:  Magnetostriction and magnetization for 
Te0.27Dy0.73Fe1.95 at room temperature.[9]  
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The TERFENOL-D material has excellent material properties for a low 

displacement actuator.  Strains as high as 32 10  are achieved.  Fatigue is negligible 

speed of response takes place at 1640-1940 m/s which is two to three times faster than a 

solenoid actuator [1].   

and 

s to 

applic

on 

es, the general rules for converting to dimensionless 

variables are described in Chapter 2 as well.   

 

Modeling Approach 

A fundamental step in the process of designing the multi-coil actuator is to 

develop an understanding of the dynamics of the magnetostrictive actuator and to derive 

a suitable mathematical model for model-based control.  The modeling involves 

simulation of the mechanics of vibration of the rod, the magnetic coupling between the 

magnetostrictive material and the coils, and the power electronics involved in driving the 

coils.  The research involves understanding the dynamics in detail, assessing the 

magnitude of different effects, and simplifying the modeling to an appropriate and 

minimal level necessary for the high-speed control application.  The key step is to 

simplify the model odel for the 

device is a useful byproduct of the research as a pedagogical example for control 

The modeling of magnetostriction requires developing simplified relationship

represent the behavior.  The approach is to develop linearized constitutive equations 

based on the behavior observed in Figure 1.4 and adapt them to the specific actuator rod 

ation.  These constitutive relationships are derived in the form needed for the 

actuator model in Chapter 2.  Since the normalization of variables depends primarily 

the magnetostrictive properti

 and cast it as a state space model.  The state space m
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problem agnetic 

rents in

 effect.  The targeted frequency response for the multi-coil 

actuato

hich 

The magnetic model calculates 

the inductive coupling, eddy currents, and magnetic effects of the magnetostrictive rod.  

The circuit model includes the dy  circuits that power the actuator 

nd by 

fects 

d and 

 

  

on 

s.  One of the more useful additions to the knowledge of modeling of m

materials is a low order model of eddy cur  the laminated actuator rod.  Existing 

models of magnetostrictive materials, which are used for low frequency applications, 

neglect the eddy current

r is sufficiently high that eddy current effects are not negligible. 

Derivation of the model 

The derivation of the mathematical model is divided into three main parts:  

longitudinal vibration model, the magnetic model, and the electronic circuit model w

are derived in Chapters 3, 4, and 5 respectively.  The longitudinal vibration model 

represents the mechanical motion of the rod and the effects associated with elasticity, 

inertia, and the magnetostrictive forces acting on the rod.  

namics of the electronic

and the voltage induced in each coil by itself, by other coils, by the eddy currents, a

the magnetostrictive field in the actuator rod due to strain.   

Figure 1.5 shows the three main submodels and illustrates the coupling ef

between them.  Each subsystem affects the other two.  The interactions mean that the 

system of equations involving the three models must be solved simultaneously.  This fact 

has to be accounted for in the modeling plan so that the equations can be combine

solved in a convenient way.  The discussion of the state space modeling later in this

chapter shows how this is done.   

Moreover, the interactions create a problem in the presentation of the models.

One cannot proceed serially from a starting point to an ending point in the derivati
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deriving every term as it is needed.  For example, we start with the vibration model, but 

that model necessarily includes effects from the eddy current and coil models that have 

not been presented yet.  The problem is addressed by liberal cross-references between 

modeling chapters even when those references are in later chapters. 

the 
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Figure 1.5:  Interactions between vibration, coil current, 

 of 

 

and eddy current in the actuator model 

The dynamic model of the actuator system rests on three of the most basic laws

classical physics; that is, 

 

 Newton’s second law of motion, 

 Maxwell’s equations, and 

Kirchhoff’s loop equation for circuits. 
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The process of transforming the fundamental laws of physics into a set of 

modeling equations for the actuator involves both algebraic manipulation and 

approximation.  The algebraic manipulation combines all the information known about 

the problem into a system of the fewest equations with the fewest unknowns.  The model 

derivation includes a number of approximations.  The main approximation techniques are 

to drop small terms, linearize relationships, make fast terms quasi-steady, and truncate 

infinite series.  In each case, the approximations are justified by test calculations to 

evaluate the magnitude of the error introduced.   

The vibration and magnetic models are each described by a partial differential 

equation that represents the process in space and time.  The mathematical approach for 

converting the partial differential equations into ordinary differential equations involves 

an integral transformation using an orthogonal series of mode functions to represent the 

spatial dependence of the process.  The spatial transformation converts the partial 

differential equations into a series of ordinary differential equations that are suited for 

state space representation and the control design application.  The state variables 

represent the am c fields. 

The sta

ontrol techniques to the multi-coil actuator problem, the 

mathem odel must be written in state space form.  The state space model consists 

of a t ifferential equations of the form. 

, (1.3) 

ivative vector, respectively, and  is the 

n put vector.  The terms A and B are constant matrices that contain the coupling 

plitudes of the spatial modes of the vibration and magneti

te space model 

To apply modern c

atical m

 se  of constant-coefficient, ordinary d

x = Ax + Bu 

where x and x are the state vector and state der u

co trol in
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coeffic l.  A 

ifferential 

 

 the 

 

ients derived from the governing equations that represent the physical mode

significant fraction of the research focused on the reduction of the continuous d

equations for vibration, magnetic, and coil circuit modeling into this form. 

A linear relationship in terms of the state variables and control inputs can also be 

defined to compute variables which are measured in the system that do not correspond to 

the state variables of the model.  In multi-coil actuator, the measurements consist of the

displacement of the actuator tip and the currents in the coils.  It is customary to write

measured variables in the following form. 

y = Cx + Du . (1

The set of state variables in Eq. (1.3) are not unique quantities.  The same 

physical device may be modeled with state space systems that are very different in both 

the size of the vectors and numerical properties of the matrices.  The choice of which 

model is best is based on a number of factors.  Since the model is ultimately used f

time control, it is essential that the order of the model be low so that the control 

calculations can be completed within the scan rate of the control.  Also the order n

be reasonably low for numerical accuracy in the control design calculations.  Due to

.4) 

or real 

eeds to 

 the 

ital computations, matrix operations tend to break down 

h mode does 

not interact with other terms in the same series.  The ort

diagonally dominant state matrix that is beneficial to the numerical accuracy in matrix 

finite word length of dig

eventually as the order of the system increases.  Solving for the normal modes of 

vibration and magnetism is beneficial both for numerical properties and for 

understanding.  The orthogonality property of normal modes means that eac

hogonality property results in a 
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calculations.  The modes also enhance understanding because of the connection between

the spatial shapes of the normal modes and their associated frequencies.  

The state space model is an abstract mathematical form that overwri

 

tes the 

meanin  

 

he equations are derived.  The state vectors 

and the subsystem models are grouped together in 

way, th  its 

n 

ill write 

g associated with the original nomenclature of the physical equations with generic

matrix names for the constants, state variables and control inputs.  To maintain some 

connection to the process models and to facilitate combining the three subsystem models

in a logical manner, it is convenient to subdivide the problem along the lines of the 

underlying physical processes from which t

submatrices of the full model.  In this 

e location of the variable or matrix constant in the full array is indicative of

physical meaning.   

In the model development that follows, the governing equations for the vibratio

model results in a system of second order ordinary differential equations.  The magnetic 

and the circuit models each yield a system of first order equations.  Hence, we w

the state derivative and state vectors as the following. 

 ,

   
   
   
   
   
   

N N

K K

M M

x x

x x
x = x =

x x

x x

 






, 

where N, M, and K are mnemonics for Newton, Maxwell and Kirchhoff to id

origins of the state variables.  The state vector contains both the state and the derivatives 

of the vibration state, Nx  and Nx .  The two elements are used together in the state mode

to integrate the second order part of the model twice. 

N N

(1.5) 

entify the 

l 
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An additional problem that needs to be anticipated by the model design is that the 

derivation of the state equation from the governing equation does not result directly in the 

standar n 

 

 

 

m, 

lution can be formally represented as  

 , (1.7) 

so that the conventional state space matrices are given by  and 

To facilitate the derivation, the E, F and G matrices can be subdivided along the 

same lines as the state vector in Eq. (1.5).  The subsystem matrices are numbered 1 

through 4 corresponding with the elements of the state vector. 

 

 
 
 
 

 

. (1.8) 

Even before deriving the submodels, some of the elements of the matrices can be 

is already determined.  The integration of the first derivative can be represented as 

identity matrices. 

d state space form given in Eq. (1.3).  Instead, the equations yield a system i

which the derivative side of the equation is coupled.  In other words, instead of the form 

of Eq. (1.3), the individual governing equations yield a form that is represented by 

  Ex Fx Gu . (1.6)

This special form of the state space equation is termed the descriptor form by

Luenberger [11].  In the actuator model, each individual subsystem has more unknowns

than equations.  Only after the three subsystems are determined and assembled in the 

form of Eq. (1.6) can the system be solved algebraically for the standard state space for

 x Ax Bu .  The so

1 1 

1 1

 x E Fx E Gu

A E F B E G . 

11 12 13 14 11 12 13 14 1

21 22 23 24 21 22 23 24 2

31 32 33 34 31 32 33 34 3

       
       
        
       

       

N N

N N

K K

E E E E x F F F F x G

E E E E x F F F F x G
u

 


41 42 43 44 41 42 43 44 4         M M

E E E E x F F F F x G

E E E E x F F F F x G




evaluated.  First, since the vibration model is specified to be second order, the second row 
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11 12 13 14 11 12 13 14 1

31 32 33 34 31 32 33 34 3

41 42 43 44 41 42 43 44 4

         

          
         
         
         

N N

K K

M M

E E E E x F F F F x G

0 I 0 0 x I 0 0 0 x 0
u

E E E E x F F F F x G

 




. (1.9) 

Next, we note that both 12E  and 11F  multiply Nx  in the first row.  Only one or the 

other is needed but not both.  To make the matrix inversion operation more accurate

       N N

E E E E x F F F F x G

 

 

num rically, the E matrix shou  as e as po

the righ

 
N

. (1.10) 

cts emerge from the governing 

equatio

is 

 from the three separate 

systems can be derived separately, then combined and simulated.  The first and second 

rows come from the vibration model.  The third row comes from the circuit eq

The fourth row comes from the magnetic diffusion problem.  The main objective of the 

model 

 

fects another, how various coupling terms arise from the physical laws 

e ssible so it is better to put the term on ld be spars

t hand side.  We can set the matrix, 12 0E , and put all the terms multiplying 

on the right hand side.  By similar logic, the corresponding terms in the third and forth 

lines are also zero, 32 42 0 E E .  Making these substitutions yields the following. 

11 13 14 11 12 13 14 1

   
   

N N

N0 I 0 0 x I 0 0 0

Nx  

31 33 34 31 32 33 34 3

41 43 44 41 42

         
     
      
         
    
    

K K

M

E 0 E E x F F F F x G

x 0
u

E 0 E E x F F F F x G

E 0 E E x F F F

 


 43 44 4    

    
MF x G

Other terms in the matrix are also zero but those fa

ns.   

The format and organization of the above equation describes the system that 

needed for the model.  Using this format, the physical modeling

uation.  

derivation in the following chapters is to manipulate the physical laws and other 

equations into the descriptor state space form.  The subdivided matrix explicitly identifies 

the coupling terms between different aspects of the model.  The coupling terms show

how one system af
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and how different parts of the model are connected together.  If the states are normalized 

properly, the magnitudes of the coefficients give physical insight into the stren

coupling of one part of the system with another and suggest how the system can be 

simplif val f  

s on m t 

is 

design feature to achieve a higher speed of response than a single coil actuator.  This is a 

new problem in control theory that requires an innovative solution and is part

research reported in Chapter 6 on the control design.  In addition to the theoretical 

problem

ust be compact and efficient enough to run in real time on the control 

computer for the actuator experim

at 

gth of the 

ied without affecting the idity o the results.

Control Design Approach 

The control design for the multi-coil actuator has several problems to solve.  First 

and foremost, the control design has to focu aking the actuator fast, but this is no

the only problem.  In solving the multi-coil actuator problem, it has to deal with the 

special control situation in which the device has more inputs than outputs and use th

 of the 

 of making the actuator fast, the algorithm itself needs to be fast.  The 

computation m

ent.  Moreover, the control design system must deal 

with the real-world problems of a limited number of measurements and time delay in the 

analog to digital conversion and the computer processing.  The limited number of 

measurements means that the control algorithm must include a full state estimator so th

full state feedback from the control design can be used.  In the experiment, the time delay 

in the digital part of the experimental system is significant compared to the speed of 

response of the actuator.  The estimation algorithm must project the delayed 

measurements forward to the current time so that feedback calculations can be based on 

the estimated state at the current time.  The solution to the problem of model estimation 
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with time delay and the task of performing that calculation in real time does not require 

an innovative solution, but it does add significant complication to the software in the 

experimental system.  These topics are also covered in Appendices I, J, and K. 

The main innovation in the actuator design is that multiple coils are distributed 

along the length of the rod.  All are used to control a single output, the displacement of 

the actuator drive tip.  Control theory is lacking in tools that quantify the performance 

advantages that can be attained from this arrangement with more inputs than outputs to 

the system being controlled.  Controllability only tells the minimum number of inputs to 

control the output.  Control theory emphasizes methods for square systems in which the 

number of control inputs and variable being controlled are equal.  For the actuator 

problem, one coil is obviously sufficient to control one displacement.  The question is 

what performance advantage can be achieved with the additional inputs or spare degrees 

of freedom.  The answer is found under the general heading of Model Predictive Control 

[12, 13] but with modifications to address the special problem of extra degrees of 

freedom.  The optimum control response is obtained by minimizing a quadratic 

performance index that combines the sums of squares of control error and control inputs.  

The predictive aspect of the control is that the optimization is taken over a time horizon 

into the future.  This scheme results in a feedforward as well as a feedback component to 

the control and allows the algorithm to anticipate the future changes in the demand input.  

The application of model predictive control is the key control design feature that makes 

the high speed response of the actuator possible. 

The control scheme with spare degrees of freedom is a new idea and has 

potentially a large number of applications beyond the multi-coil actuator.  The scheme 
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can be used for any system in which multiple, distributed actuators act on a single contro

objective.  Other applications for this control method could also be quite different from

the magnetostrictive actuator problem.  For example, vibration dampening in an

l 

 

 orbiting 

space p th 

Experimental Approach 

In addition to the theoretical development of the model and controls in this 

research, the prototype, multi-coil actuator was developed and tested in the laboratory.  

The experimental efforts mainly consisted of the following: 

 

 Design and development of the actuator, 

 A series of open loop tests to measure the performance, characteristics of 

d 
perform the predictive control algorithm, and  

e multi-coil design, the case and return 

path ar  

circumferential path for current.  Also, materials that are used in the return path and case 

latform with multiple actuators acting on the frame or a combustion chamber wi

multiple burners is conceptually the same problem. 

the device and to provide data for the modeling, 

 Development of software for the control program to acquire data an

 A series of closed loop experiments that demonstrate performance of the 
actuator in a laboratory setting. 

 

The prototype multi-coil actuator’s design is based on an existing commercial 

model of magnetostrictive actuator with a number of new features that include the 

multiple individually controlled coils and the additional lamination of the actuator rod 

described earlier in this chapter.  To implement th

e slit axially to route the leads from the coils to the outside.  The slit has an

additional benefit in reducing eddy currents in the case and return path by breaking the 
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of the prototype actuator have lower conductivity than the components of the standard 

actuator to reduce eddy current.   

To power the individual coils, the prototype actuator was connected to a bank of 

five, modified, dual-channel audio amplifiers.  The model predictive control system is 

implemented using a computer equipped with general purpose, input and output boards to 

receive measured analog signals, convert them to digital data for processing, and then 

convert computed demand signals back to analog form to be sent to the amplifiers.  The 

computations of the control algorithm were performed in real time by a C program on the 

control computer.  The control program also logs the input and output data for 

documentation and presentation of results. 

The experimental system and the test program are described in Chapter 7.  The 

results of open loop and closed loop tests that studied the performance of the actuator are 

presen  chapters where they are 

ne

ted.  Some experimental results are included the modeling

eded for the derivation of model input data.
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ATIONS OF MAGNETOSTRICTION 

the elastic properties of the 

material.   

 , (2.1) 

where T is the stress tensor in the material, S the strain tensor and s is a matrix 

representing the elastic compliance.  Similarly, it is common for magnetic materials to be 

represented by a linear permeability relationship, 

 

CHAPTER 2                                               

CONSTITUTIVE EQU

 

The unique property of magnetostrictive materials is that an externally applied 

magnetic field causes elongation, and conversely, an externally applied stress causes 

magnetization.  This magnetomechanical coupling is embodied in the constitutive 

equations for magnetostriction.  The constitutive equations for magnetostrictive materials 

extend and generalize the conventional linear constitutive equations for elastic and 

magnetic materials.  For example, Hooke’s law is the linearized constitutive equation 

relating stress and strain that is commonly used to represent 

S sT

B μH , (2.2) 

where B is the magnetic induction, H is the magnetic field and μ  is the magnetic 

permeability.  The subject of this chapter is to define linearized constitutive equations of 

the form,  

 , (2.3) 

 

HS = s T + dH

 TB = d T +μ H , (2.4) 



where the additional terms involving the magnetostri

manipulated algebraically to put them in the form needed for the modeling the 

magnetostrictive actua

 

Literature Survey on Characterizatio

erfenol 

ents of the constitutive equation but 

they almost always measured the dependence of

972 

paper [2] plots strain versus field and magnetization versus field in a format analogous to 

Figure 1.4.  This type of plot became the standard format for presenting experimental 

magnetostrictive results.  Clark and Crowder plotted coefficients of permeability and 

magnetomechanical coupling (the 

ctive constant matrix, d, characterize 

the magnetomechanical coupling.  The linearized constitutive equations are then 

tor. 

One of the simplifications in the actuator modeling which is worked out in this 

section is finding effective properties in terms of the full, three-dimensional linear 

constitutive equations for the case in which the vibration is a one-dimensional equation 

while the magnetic model is three-dimensional.  The reduction in dimensionality is 

obtained by applying the constraint that the volume of the magnetostrictive material is 

constant.  The constant volume property is an experimentally observed result for 

Terfenol-D.

n of Magnetostrictive Properties 

The literature on the characterization of magnetostrictive properties of T

goes back to the first reports on giant magnetostrictive materials.  The early papers did 

not characterize the full tensor and vector compon

 such properties as strain and 

magnetization upon field so that the nonlinearities were clearly evident.  Clark’s 1

33 the d33 components of the coefficient matrices in 

Eq. ) rather than the strain and field thus moving closer to a linear model [10].  Clark (2.3)
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describes much of his experimental data and his theoretical work on the properties of 

magnetostrictive materials in a chapter in Handbook for Ferromagnetic Materials

The three-dimensional linear form and experimental techniques for mea

individual three-dimension

 [14]. 

suring the 

al coefficients originate with Claeyssen’s paper of 1989 [15].  

The tec

ovable 

onal 

tropic 

sumption used in the model.  Claeyssen’s research was carried out to provide 

modeling data for a three-dimensional finite element code called ATILA [17] that was 

developed by the French navy for the design of magnetostrictive and piezoelectric 

transducers for sonar.  The typical magnetostrictive data used in the actuator model for 

this research were obtained in part from the database of material properties in ATILA by 

Engdahl [9].  The three-dimensional construction of the constitutive data with orthotropic 

symmetry is the starting point for the effective linearized constitutive equations in this 

dissertation. 

 

coil circuit models.   

hnique involved a three-dimensional model of the actuator in which orthotropic 

symmetry is assumed.  A Terfenol-D actuator in blocked (clamped in a nearly imm

frame) and free (unloaded) experimental setups were subjected to low-frequency, low 

amplitude coil current signals.  The measured data were used to fit the three-dimensi

coefficients of the constitutive relations in the actuator model.  Claeyssen credits Du 

Tremolet de Lacheisserie’s analysis and experiment [16] as the basis for the ortho

symmetry as

The General Constitutive Equations for Magnetostriction 

The derivation of the linear constitutive equations for the model starts with the

most general, formal version of the equations for a magnetostrictive material and works 

through the simplifications to obtain the form needed for the vibration, magnetics and 
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A general notation that accounts for all the mathematical coupling and dynamic

mechanisms between the magnetics equation and the equation of motion can be written 

 

as the f

  (2.5) 

 is the 

dditional alignment.  Both the strain and magnetization saturate at the 

maximum alignment.  In Figure 1.4, saturation occurs for both the magnetization and 

magnetostriction at about 60 kiloamperes per meter.  The magnetostrictive curve is a 

symmetric, U-shaped curve implying that the material elongates for either positive or 

negative magnetic field.  The trace forms a thin loop rather than a single line.  The loop 

indicates the path taken by increasing and decreasing the field.  The width of the loop is 

the magnitude of hysteresis in the magnetostrictive properties.  The curves in Figure 1.4 

ollowing: 

( ) [ ( | ), ( | )],

( ) [ ( | ), ( | )],

t t t t t t t

t t t t t t t

     
     

S S T H

B B T H

where  S  is the strain tensor, B  is the magnetic flux density vector (or magnetic 

induction), T  is stress tensor, and H  is the magnetic field intensity vector.   

The notation in Eq. (2.5) is chosen to indicate symbolically that the constitutive 

relationships are nonlinear and depend on the time history, ( | )t t t   , of T and H.   

Figure 1.4 shows the steady-state, nonlinear dependence of the strain and 

magnetization on the magnetic field for a typical Terfenol-D sample.  The experiment 

measured the response of a long, thin rod of Terfenol-D to a steady, axially uniform 

magnetic field produced by a solenoid along the full length of the rod.  The ordinate

magnetic field.  The strain and stress are in equilibrium in this experiment with no 

applied external load.  The saturation of the magnetization and the magnetostriction 

occurs when all the magnetic moments of the iron atoms in the rod become fully aligned 

with the applied field.  At that point, any further increase in the field strength does not 

produce any a
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demons

magnetostriction line.  To linearize the properties, the operating point 

for the actuator must be offset from the origin to coincide with the peak of the dotted line 

and the magnitude of the peak used for the linear coefficient.  The actuator can then be 

, the 

o  z e 

coeffic

mally by

expans  that 

 

 

trate that magnetostriction is a nonlinear phenomenon.  To apply linearization, a 

small, approximately linear range must be selected.  The dotted line shown on the figure 

is the slope of the 

operated in a small region about the peak where the slope is nearly constant.  Thus

linearized m del is both offset from ero and the slope of the line, which is th

ient in the constitutive equation, is approximated as a constant.   

The linearized constitutive relations can obtained for  a chain rule 

ion of Eq. (2.5).  In the following equation, the short-hand notation implies

repeated indices in a factor represent a summation over all elements of that index.  The

full three-dimensional, linear constitutive equations are expressed as follows: 

,

,

i j k
j k TH

m m
m j k

j k TH

S S
dS dT dH

T H

B B
dB dT dH

  
 

  

where i is the index representing the six elements of the strain tensor, j represents the si

elements of the stress tensor, m represents the three elements of the magnetic flux de

vector, and k represents the three elements of the magnetic field intensity vector. 

In the six element vector notation, the elements of the vector correspond to the

unique terms of the strain tensor.  The stress tensor can be written as  

i i

T H 

 (2.6) 

x 

nsity 

 six 

 
xx xy xz

xy yy yz

T T T

T T Tzx zy zz

T T T

 
   
  

T . (2.7) 
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Since the shear terms are all symmetric, i.e., ,xy yxT T ,xz zxT T ,yz yzT T  the 

tensor contains six unique elements.  Instead of a three-by-three matrix, these elements 

can be arranged as a six element column vector with the following correspondence to the

Cartesian tensor notation.  The same six element vector numbering scheme is applied to 

the strain terms as well.  The six element vector notation is sometimes called engineerin

strain. 

Table 2.1:  Correspondence between Tensor and Vector Nomenclature
Strain Variables 

 

g 

 for Stress and 

Tensor 
xxT  yyT  zzT  ,yz zyT T  ,xz zxT T  ,xy yxT  T

Vector 
1T  2T  3T  4T  5T  6T  

 

The partial derivatives in Eq. (2.6) are the linearized material properties.  In the 

fields of mechanics of materials and electromagnetics, the coefficients are typically 

named as follows: 

 

,Hi
ij

j H

S
s

T

 


 elastic compliance at constant H,  

,Tm
mk

k T
H

B  


 magnetic permeability at constant stress. 

The other partial derivatives, i

k T

S
and m

j H

B
, are cross terms due to 

H T

magnet

ic symmetry 

argument that for a reversible, adiabatic process the two cross term coefficients must be 

equal; i.e., 

ostriction.  They represent the strain per unit magnetic field and the magnetic 

induction per unit stress.  Engdahl [9, p. 130] shows by a thermodynam
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, i m

m iT H

S B
d

  

The coefficients, mid ,characterize both the strain due to magnetic field and the 

magnetic induction due to tension.  The factor is termed the magnetostriction constant.  In

the three-dimensional linearized case, mid  is a three by six constant matrix.  The presence 

of the m

miH T 
 (2.8) 

 

agnetostrictive term , in the constitutive relations couples the magnetic field 

equation to the stress and strain equation and vice versa and results in the special coupled 

forms of the governing equations for gnetics. 

e linearize  constitutiv equations fo  the magnetostrictive material can be 

written in terms of the linearized parameters.   

 

, mid

 vibration and ma

Th d e r

re

H
i ij j ik k

T
m mj j mk k

S s T d H

B d T H

 

 

In this indic

 (2.9) 

ial notation, the superscripts H and T indicate the independent 

variable that is held constant and the repeated subscripts in each term indicate 

summation.  The Terfenol-D magnetostrictive material is found experimentally to be 

orthotropic and thus o other coefficients.  The 

unique, non-zero coefficients with orthotropi

Engdahl [9, p. 132] are shown in Eq. (2.10) and Eq. (2.11). 

) 

many of the coefficients are zero or equal t

c symmetry defined by Claeyssen [18] and 

 

2 2 3112 11 13

3 3 3313 13 33

0 00 0 0

0 00 0 0

0 00 0 0 0 0

H H H

H H H

H

S T ds s s

S T ds s s

S T ds

      
      
      

      
 

2

H

H

 
 

    (2.10

1 1 3111 12 13

4 4 1544

5 5 1544

6 666

0 00 0 0

0 00 0 0 0 0

0 0 00 0 0 0 0

H H H

H

H

S T ds s s

S T ds

S Ts

      

    
     
     

          

1

3H   
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and  

1

 

2

2 15 11 2
4

5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

T

T

T

T
1

1 15 11
3

3 31 31 33 33 3

6

0 0 0 0 0

T

B d H
T

B d H
T

B d d d H

 
 

        

            

  

T

T




        
         

   

 

 (2.11) 

Writing the constitutive relations as matrices gives the form that we sought in 

Eqs. (2.3) and (2.4). 

H  (2.12) S = s T + dH

  TB = d T +μ H  (2.13) 

In this matrix notation, the prime in  indicates the transpose of the matrix. Also, d

Tμ  μ .   is the transpose of  the permeability holding stress co ot nstant and n

Example values for the coefficients for the three-dimensional case are listed

Engdahl [9. p. 175].  Engdahl credits the material database for ATILA as the so

some of the data.  The terms which are needed for calculations in this chapter are give

 by 

urce for 

n in 

Table 2.2. 
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Table 2.2:  Linear coefficients for Terfenol-D[9] 

Constant Value Units 

12.5×10-11 Pa-1 
11
Hs  

-1.8×10-12 Pa-1 
12
Hs  

-1.7×10-11 Pa-1 
13
Hs  

4.0×10-11 Pa-1 
33
Hs  

1.8×10-10 Pa-1 
44
Hs  

5.4×10-11 Pa-1 

2.8×10-8 m/A 

1.1×10-8 m/A 

66
Hs  

31d  -5.3×10-9 m/A 

15d  

33d  
T 1.3×10-5 (m٠Tesla)/A
11  
T 5.3×10-6 (m٠Tesla)/A
33  

 

vib e riables.  

Hence, f 

 

In the chapters that follow, the state equations for the magnetic model and 

ration model are formulated with strain and magnetic field as the stat  va

 we wish to manipulate Eqs. (2.12) and (2.13) to solve for T and B as functions o

S and H.  The result of the algebraic manipulation is given by 

    1 1 
 H HT s S s dH  (2.14) 

    1 1 
 H T HB = d s S + μ d s d H  (2.15) 

The coefficient matrices in the form given by Eqs. (2.14) and (2.15) are used 

frequently in the following sections.  Consequently, we adopt the names for the matrices 

given by Engdahl [9, p. 134] to facilitate the modeling derivations that follow. 

  (2.16) 

 

 HT Y S κH

 SB = κ S +μ H  (2.17) 

The magnetostriction coefficients in this form of the equation are defined as 
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  B T
κ  (2.18)  

 HS  SH

where  is the Young’s mo nstant netic field, 

d  is the magnetostric cient w esents either the tension 

ld at consta t stres  magnetic d ction per unit stress at 

gnetic field.  Similarly, 

  1
H HY s

  1
 H Hs d Y

agnetic fie

a

dulus at co  mag

κ

per unit m

constant m

tion coeffi hich repr

n s or the  in u

 T -1S Hμ μ - d s d is the magnetic permeability at 

constant strain. 

The matrices in Eqs. (2.16) and  b merically using the data 

in Table 2.2.  The results are shown in the full matrix form in Table 2.3 through Table 2.5 

to illustrate the zero elements

(2.17) can e evaluated nu

 and the orthotropic symmetry. 

Table 2.3:  Modulus of elasticity at constant magnetic induction, YH, [Pa] 

 1 2 3 4 5 6 
1 0.8541×10  0.0654×10  0.3908×10  0 0 0 10 10 10

2 0.0654×1010 0.8541×1010 0.3908×1010 0 0 0 
3 0.3908×1010 0.3908×1010 2.8322×1010 0 0 0 
4 0 0 0 0.5556×1010 0 0 
5 0.5556×1010 0 0 0 0 0 
6 0 1.8519×1010 0 0 0 0 

 
 
 

Table 2.4:  Magnetostrictive constant, κ ,[Pa/(A/m) = Tesla] 

 1 2 3 
1 0 0 -5.7471 

2 0 0 -5.7471 
3 0 0 270.11 
4 0 155.56 0 
5 155.56 0 0 
6 0 0 0 
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Sμ , [(m٠Tesla)/A] Table 2.5:  Magnetic permeability at constant strain, 

 1 2 3 
1 0.8644 ×10-5 0 0 
2 0 0.8644 ×10-5 0 
3 0 0 0.2268×10-5 

 

The order reduction transfor

d gives T and B as

mation can be performed more easily if the two-by-

two constitutive relations are written as a single matrix relation.  This form of the 

equations takes S and H as inputs an  outputs.   

 
   

  


   
    κ μ

The grouped matrices are described by the following notation:   

 Σ ΨS  

H

S

T SY κ

B H
 (2.19) 

(2.20) 

where  

 , ,
S

    
             B H κ

HT S Y κ
Ψ Σ

μ
S  (2.21) 

Reduction of the dimensionality of the co

symmetry 

The actuator’s dynamics, when fully described, is a three-dimensional wave 

problem.  The three-dimensional wave equation could account for the radial and 

azimuthal components of stress induced by the field due to the eddy currents.  The three-

dimensional wave equation could also include the effects of the dissimilar mechanical 

properties of the adhesive and the magne ve rod hich form the laminated rod.  

owever, the azimutha om onent of w  motion is arguably small and may be 

neglected by performing an average of the stresses across the transverse area.  This step 

converts the coordinate system from Cartesian coordinates to cylindrical and reduces the 

nstitutive equations by application of 

tostricti  w

H l c p ave
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wave equ ad ponents 

of stress and strain and z uthal dependence.  The magnetic field and 

flux density retain their three-dimensional fo ymmetry, the 

Cartesian and cylindrical components have a one-to-one correspondence. To see the 

correspondence, consider coincident pl

ation from three dimensions to two representing the r ial and axial com

 eliminating the a im

rm.  Because of orthotropic s

anes in the two coordinate system, 0y   and 

0  .  The basis vectors of the two coordinate systems are aligned and have the 

following correspondences.   

 .ˆ ˆ ˆ ˆ ˆ ˆ, ,x r y z ze e e e e e    (2.22) 

The tension variables likewise have the following corresponding values.  The 

corresponding values are arranged in columns. 

2.6:  Correspondence between strain elements in Cartesian and cylindrical tensor 
notation and six-element engineering vector no

Cartesian 

Table 
menclature 

xxT  yyT  zzT  ,yz zyT T  ,xz zxT T  ,xy yxT T  

Cylindrical 
rrT  T  zzT  ,z zT T   ,rz zrT T  ,r rT T   

Engineering 
1T  2T  3T  4T  5T  6T  

 
 

Within this specified plane, the same coefficient matrices apply to both the 

cylindrical coordinates and the Cartesian system because the systems are both 

orthonormal coordinate systems and are identically oriented.  Because of the cylindrical 

symmetry of the material properties, the same coefficients apply in the cylindrical syste

for any rotation about the z axis.  Thus, there is a one-for-one correspondence of the 

three-dimensional properties in Cartesian and the cylindrical coordinates. 

The next step in the derivation of the constitutive relations in cylindrical 

coordinate is to convert the stress and strain variables from Cartesian to cylindrical 

m 
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coordinate variables.  In this conversion, the symmetry of the stress and strain about the 

central axis of the rod can be used to reduce the dimensionality of the constitutive 

equations.  Consider an axisymmetric axial load and assume that differences between the

elastic properties of magnetostrictive rod and adhesive do not affect the distribution o

stress and strain.  (This assumption is equivalent to saying that the bond does not slip

the adhesive layer is vanishingly thin.)  Under these assumptions, the resulting str

strain are axisymmetric as wel

 

f 

 and 

ess and 

l.  Axisymmetric stress and strain does not mean that stress 

and strain are zero in the azimuthal direction.  It means that the 

vary along the circular path in the plane.  Hence, the gradients in the azimuthal direction 

are zero and an element of volume on the circular path maintains a rectangular shape 

despite the deformation due to an axial load.  Since the angles of the volume do not 

c

stress and strain do not 

hange, the shear stress terms, rT  and zT , must be zero.  Applying the uniform stress 

and strain distribu on to the te s in the si element vectors reduces the vector to fou

elem nts.  The tra sformation in dimensionality can be expressed as 6×4 

 

ti rm x r 

independent e n

matrix.   

1

2

3

4

5

6

0 1 0 0 0 0

0 0 1 0 0 0zz

zr

T

TT

TT

T



1 0 0 0 0 0

0 0 0 0 1 0

rr TT

TT

 
                              
  

Applying matrix variables to this equation makes it more compact; i.e, 

. (2.23) 

  (2.24) 4 6 4 6T TM
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where the subscripts on the vectors are used to indicate the order of the matrix.  The 

transformation matrix, 6 4M , is so named to indicate the transformation from the s

element vector to four element.  The same transformation matrix applies to the strain 

vector.  The transformation for strains using the same notation can be written as the 

following. 

  (2.25) 

 
 
 

6 6 4 4

6 6 4 4









T T

S S

M

M
 (2

The transformation of the magnetic induction does not change the dimensionalit

or values of the magnetic induction in the component directions.  The transformation is 

represented by the identity matrix. 

ix 

6

The inverse relationship to transform from four to six elements is simply the 

transpose.   

.26) 

y 

 

4 6 4S SM



1

2

3

1 0 0

0 1 0

0 0 1

r

z

B B

B B

B B


     
          
          

 (2.27) 

Equations (2.25) and(2.27) can be consolidated into a single matrix operation.  

 4 66 4

3 3

   



   

 


  

T T0

B B0 I

M


 (2.28) 

ction, , 

from Eq. (2.21)and a subscript to indicate the number of independent elements of the 

vector, we can express Eq. (2.28) in the following form: 

 9  (2.29) 

 ΨUsing the nomenclature for the joint vector for stress and magnetic indu

7 9 7Ψ ΨM
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where  

6 4 0

0
 

 9 7   
 I

M

 6

M  (2.30) 

9
3

 
  
 B

T
Ψ  (2.31) 

4
7

3

 
  
 

T
Ψ

B
  (2.32) 

An analogous transformation holds for a vector composed of the strain and 

magnetic field; i.e., 

9Σ  (2.33) 

where  

7 9 7Σ M 

 6
9

3

 
  
 

Σ
H

 (2.34
S

) 

 4
7

3

 
  
 

S
Σ

H
 (2.35) 

The transformation from seven elements to nine is the transpose of the above 

matrix 

 7Ψ  (2.36) 

The subscript indicating the number of terms in the vectors can be added to the 

constit

37) 

9 7 9 7 9 7  Ψ ΨM M

utive relationship given by Eq. (2.20). 

 9 9 9Σ ΨS  (2.
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The constitutive relation for the seventh order vector in the axisymmetric system 

is given by substituting Eq. (2.36) on the right hand side and multiplying both sides by 

 

By comparison to the constitutive relationship for the seventh order axisymmetric case, 

7Ψ , the seventh order matrix must be the 

 (2.39) 

 representing the Young’s modulus, the magnetostrictive constant, 

and the permeability can be obtained by subdividing

.21).  The coefficient terms inside the matrices in the following equation are 

numbered using the indices for the six element matrices to illustrate that the values of the 

oefficients themselves are not changed by the red

9 7M  

7 9 7 9 9 7  Σ ΣM M 9 9 7 7 ΨS M  (2.38) 

7 7SΣ following.  

7 9 7 9 9 7 S SM M  

The matrices

 7S  into four individual matrices as 

in Eq. (2

c uction in order. 

 130 0 r
1311 12 13

12 11 13

3313 13 33

0 00

0

0 00

H H H
rr rr

H H H

H H H
zz zz

z

T SY Y Y
H

T SY Y Y
H

T SY Y Y
H

 

5155
0 00 0 0 B

zr zrT SY







      
   
            

         

   
    (2.40) 

       

 
15 110 0 0 0 0

0 0 0 0 0

0 0 0

rr S
r r

zz S
z z

S

11 0S

B H
S

B H

31 31 33 33
zr

S
B H



S

 

 

   

 
       
            
             

   
    (2.41) 

 

describes the full coupling between the 

magnetic and vibration models, accounting for axi

The constitutive equations in Eqs. (2.40) and (2.41) invoke the symmetry of the vibration 

problem without imposing any additional approximation beyond the linearization given 

This form of the constitutive relations 

symmetry and orthotropic properties.  
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by Eq. 

n 

size.  The shear terms, which are always zero under the assumption of axisymmetry, are 

the only terms that have been eliminated. 

The next step is to introduce an approximation that reduces the constitutive 

relation for the vibration to a one-dimensional stress-strain relationship while retaining 

the three-dimensional magnetic flux and magnetic field relationship.  This means that the 

four component vectors for stress and strain have to co

in the v

tly faster than the 

axial dynamics.  This difference in frequency response suggests that the radial motion can 

e approximated as a quasi-steady process, making the radial motion an a

function of the slower axial motion.  This approximation reduces the complexity and 

system order of a two-dimensional wave model to a much more manageable one-

imensional longitudinal vibration problem.  The same reduction in dimen

appropriate for the radial and azimuthal components in the magnetics equation because 

the mag

(2.6).  The numerical values of the coefficients are unchanged from the values in 

Table 2.3 through Table 2.5.  The matrix of coefficients is just rearranged and reduced i

llapse into single axial component 

ibration model.  The radial and tangential strains must be algebraic functions of 

the axial strain. 

The constant volume approximation for magnetostrictive materials  

The radial and azimuthal components of stress and strain are not necessarily 

small, but for a long thin rod, the radial motion dynamics are significan

b lgebraic 

d sionality is not 

netic flux density is conserved  i.e.,  0 B  and diminishes axially only 

because it diffuses out of the rod in the radial direction.  The radial and azimuthal 

components for the eddy current flow are likewise three-dimensional.  Hence, the 

magnetic problem must retain the three-dimensional components of magnetic flux; 
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whereas the vibration problem can be modeled as a one dimensional problem.  An 

approach to account for the difference in dimensionality of the various phenomena is 

proposed in this section to reduce the mechanical motion to an effective one-dimensional

vibration model while retaining three-dime

 

nsional magnetics in the model.  The approach 

assume ume 

l 

oreover, the constant volume conjecture can be tested using the material 

property data in Table 2.2 (see APPENDIX A).  A second part of the approximation is an 

assumption that, in a differentially thin axial segment of the actuator rod, the mechanical 

stress and strain in the radial dimension are in quasi-equilibrium.  This assumption 

implies that the stresses and strains in the r and 

s that the actuator rod’s volume is constant.  This assumption of constant vol

under magnetostriction is mentioned by both Savage and Jiles, [15, 19, p. 127].  The 

constant volume approximation means that an axial elongation is accompanied by a radial 

contraction to maintain a constant average density in the magnetostrictive material.  Jiles 

indicates that the constant volume approximation is in good agreement with experimenta

observations.  M

  directions come to equilibrium and 

e radial 

dial 

ather 

dimensional vibration and three-dimensional m gnetics. The effective constitutive 

equations can be expressed as follows: 

(2.42) 

balance one another instantaneously.  This approximation neglects the inertia of th

motion.  The approximation of applying constant volume as a constraint causes the ra

displacement and strain to become algebraic functions of the axial displacement r

than the solution of a differential equation representing wave motion in the radial 

direction.  The final result is a set of effective constitutive equations involving the one-

 zz eff zz eff zT Y S H   

a

H
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, 11

11

0 0

0 0 0

S
r eff r r

S
zz

S
, 30 0z eff z 3 z

B H

B S H

B H
 

 


     
       

     
 (2

where 

 

    

     





.43) 

H
effY , eff , ,eff r , and ,eff z  are effective scalar constants that are functions of the 

original linearized material properties.  The anisotropic permeability coefficients, 11
S  and

33
S

 

 , are unchanged from the original constitutive equations to retain the three-

dimensional anisotropic effects in the magnetic model.  The goal is to find formulae that 

define   ,  , and   in terms of the original six element data.  

If an axial load is applied to the volume, the volume is strained in both axial an

  

eff ,reff ,zeff

The constant volume relationship in terms of the radial and axial strains can be 

derived from the equation for a differential volume.  Consider an axial segment of rod 

between  and .  The volume of the segment under no stress is  

 z  (2.44) 

d 

radial directions.  The volume of the element in terms of the radial and axial displacement 

is, 

z z z 

2V r  

2 z
rV r z z

z

         
. (2.4

  

 
5) 

In the constant volume approximation, the volumes in Eqs. (2.44) and (2.45) must 

be equal, .  Therefore, V V   

2 2zz z r
z

      
rr  


z . (2.46) 

Expanding the product on the left hand side and simplifying the expression yields 
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 2 2

2 2 2

1 ,

2 2

z
r

z z z
r r r r

r r
z

r r r
z z z



     

     
      
  

 

0.

Sin  th seco rth a

 (2.47) 

ce e nd, fou nd fifth terms in Eq. (2.47) are second order or higher, 

they may be neglected.  This yields the following equation for the radial strain. 

 
1r z

2r z

   . 


(2.48) 

The axial strain is assumed to be uniform in the radial direction.  This amounts to 

a constant density throughout the actuator rod.  This is obviously true on average for the 

constan

proximation that 

the density is uniform throughout the rod requires t

mainta

If the density is uniform in the transverse direction, then the ratio on the left of 

Eq. (2.48) must be a function of z alone.  This observation leads to the following 

relationship between the radial displacement and the axial strain. 

t volume approximation, but defining the density at every point as equal to the 

average is an additional assumption.  If only constant volume is required, the density 

could be distributed in any way that keeps the volume the same.  The ap

he least motion by the actuator to 

in constant volume which seems plausible; however, it should be recognized that 

other reasonable approximations of the density distribution can be made.   

 1
.

2
zr

z

r z

 
 


  (2.49) 

Differentiating with respect to r gives the radial strain in terms of the axial strain: 

 
 1

2r z 
zr

z    . (2.50) 
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The four components of strain in terms of the radial and axial displacements in 

axisymmetric cylindrical geometry are given by Engdahl [9, p. 201]

Engdahl’s definition of the strain components and incorporating the constant volume 

express

olume 

constraint. 

.  Restating 

ions from Eqs. (2.48) and (2.49) into these expressions yields the algebraic 

expressions for all the strains in terms of axial displacement under the constant v

2

2

.
2

1
.

2

.

1 1

2 2 2

.
2 4

r z
rr

r z

z
zz

r z z

S
r z

S
r z

S

r

z r z z

z r z



1

,

1

rz

r z z

z

S

r

 

 

 



  

  
 

  




       
       

       

 (2.5

These four components of strain can be expressed as an operator matrix times the

axial strain. 

  

 



       

   

1) 

 

1

2

2

r

z

S

S
1

1

4

z

rz

S z

S
r

z



 
 

   
  



   
  

 
   
     

(2.52) 

Eq.  to reduce its dimensionality yields the following expression: 


 

. 

Next, substituting the strain equations into the first constitutive equation in 

(2.40)
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3111 12 13

3112 11 13

3313 13 33

1555

1

2 0 00
1

2
0 00

0 00 0 0

4

H H H
rr

rH H H
z

H H H
zz

zB
zr

T Y Y Y
H

H
T zY Y Y

T Y r

z

 0 00

1

T Y Y Y

H







 
              
  

 

           
 

  
        

 

     
 

.53) 

 the third row of this equation is needed for the one-dimensional vibration 

model in Eq. (2.42), which is given by 

 

 
 

. (2

Only

 33 13 33
H H z

zz zT Y Y H
z

   


. (2.54) 

The second constitutive equation is obtained after substituting Eq. 

Eq. (2.41).  This yields: 

(2.52) into 

15 11

110 0 0 0 0 0 ,2
10 0 0 S

B H
z

B H
 

   
                     

 

31 31 33 33

15

11

11

33 31 33

1

2
0 0 0 0 01

4

0 04
0 0 0

0 0

S
r r

Sz

z z

S
r

Sz

S

B H

r

z

r
Hz
H

z

 





 
  

  
                  

   
   

                  
 

.

H


 
 
 


 (2.55) 

It follows that the effective constants that are needed for the reduced order system 

describ nal 

 

z 

ed by Eqs. (2.42) and (2.43) can be calculated in terms of the three-dimensio

constants as the following: 

33 13
H H H

effY Y Y  . (2.56) 
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15
, 4eff r

r

z

  


 . (2.57) 

31 . (2.58) 

 . (2.59) 

Note that th

, 33eff z    

33eff 

e coefficient, 12
HY , does not appear in the formula for the effective Young’s 

modulus constant. 

The only component that is troublesome in this derivation is the radial component 

of magnetostriction in Eq. (2.57).  Instead of resulting in a constant coefficient as might 

be expe r.  

nce of the approximation that the density is uniform in the 

transverse direction.  In other words, the radial distribution of magnetization due to strain 

given by Eq. (2.57) is consistent with the uniform density assumption.  Alternate forms 

for the radial component would be obtained with other assumptions about the density 

distribution.  As stated previously, the uniform density in the transverse direction is an 

approximation that results in the least motion and the simplest model.  However, it results 

in the term in question.  For the time being, this term is carried in the derivation.  The 

magnitude of this term can be estimated in comparison with the rest of the terms in the 

magnetics equation when those equations are derived in Chapter 4. 

e used in the derivations and applications of the vibration and 

magnetics models that follow.  The coefficients are 

cted, this term depends upon the radial position, r, and the differential operato

The term is the conseque

The final results of this section are the numerical values for the effective 

coefficients in the constant volume approximation.  These are the forms of the 

constitutive relations that ar

calculated from the data in Table 2.2. 
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Table 2.7:  Effective magnetostrictive properties for 
dimensional magne

Effective Linear
Property 

Value Units 

one-dimensional vibration and three-
tics 

2.441×1010 Pa H
effY  

0 Pa/(A/m)=T  
,eff r  

,eff z
275.86 Pa/(A/m)=T 

270.11 Pa/(A/m)=T 

  

eff  

0.8644×10-5 T/(A/m) 
11
S  

0.2268×10-5 T/(A/m) 
33
S  

 

 

 

lf disappears from 

the nor any 

 it cancels 

their actual offset values.  

Linear range and offset for the linear model. 

The nonlinear constitutive relations depicted in Figure 1.4 are the basis for the 

linear range and offset for the actuator operating conditions.  The limits of the linear

range and offset of the actuator’s operating point are needed in addition to the linearized 

coefficients for the actuator experiment in the control design and in the experimental 

setup to avoid the nonlinearity associated with saturation.  The basis for the limit can 

come from either the manufacturer’s specifications for maximum current or from the 

observed current at which saturation occurs. 

The offset is needed to set the operating point of the experiment.  The linearized

control problem is written in terms of perturbations about the operating point.  In the 

perturbation form of the modeling equations, the operating point itse

malized differential equation.  This is a convenient simplification, and in m

cases, the actual operating point is not even derived with the understanding that

out in the final form.  In the experimental setup, the operating point does have to be 

added to the perturbation to convert the variables from their perturbation form back to 
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The DC offset in the current signal is needed in the prototype but is not usually 

applied in the comme agne ve a mercial 

magnetostrictive actuator, offset in the magnetic field is supplied by an annular 

permanent magnet called the bias magnet as sh n in Figure 1.1 located in a cylindrical 

shell just outside the drive coils. This bias eld along the rod 

to shift the operating point from he null re t zer to the steep linear 

region.  The multi-segmented a r designed f ias 

agnet because the permanent magnet materials have a high conductivity that produce 

uth 

l-D 

 The magnetic field at the operating point 

can be 

e.  

e 

156 

m (0.625 inches) and the num T is then 

rcial models of m tostricti ctuators.  In a com

ow

 magnet provides a steady fi

 t sponse a o inductance 

ctuato or this experiment does not use a b

m

eddy currents that consume too much power for the actuator to operate at high frequency.  

Instead, a low conductivity but unmagnetized silicon iron sleeve is used in the same 

annular region of the case to provide a high permeability path from the north to the so

poles of the actuator.  The return path reduces the magnetic losses from the end of the 

actuator rod; however, without a permanent magnet supplying bias, the offset in the 

magnetic field has to be supplied by a steady (DC) current in the coils.   

A first estimate of the field needed for offset can be obtained from the Terfeno

constitutive properties diagram in Figure 1.4. 

estimated from the peak of the dotted curve representing the slope.  An 

approximate value of 28 kiloamperes per meterOPH  can be estimated from the figur

The current per turn of the coil can be extracted from this field using this formula for 

magnetic field in an infinite solenoid.  In SI units, the formula is H T I  where T is th

turns per meter and I is the current per turn.  The actuator design data can be used to 

obtain T.  From design data, we obtain:  the length of one coil of the actuator, Δz=0.0

ber of turns per coil, cT 105 .  The value of 
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105

6614 turns/mcT
T     (2.6

0.0159z
0) 

The current at the maximum slope is a preliminary estimate for the operating 

point current. 

 
28,000

4 amps/turnOP

H
I     

 

6614T
(2.61) 

A linear range based on Figure 1.4 about the operating point is approximately 

.  Converting this to a current range for the coil gives 6700 ampere per meterH  

6700
1 ampere/turn

6614

H
I

T

     (2.6

Thus, the range for current based on Figure 1.4 is 4±1 amperes or 3 to 5 amperes

This range turns out to be too high for the prototype actuator based on the manufacturer’s 

specification for current.  The maximum coil current specified by the manufacturer is

amperes.  The manufacturer’s limit is based partly on magnetostrictive saturation but also 

on the ohmic heating in the coil.  Since the bias current is present at all times, the ohmic 

losses in the coil can cause significant heating.  Also, the Terfenol alloy used in the 

prototype is more efficient than that shown in the figure so that the same m

2) 

.  

 3 

aximum 

elonga

e 

This range 

ational limits specified by the m

tion is produced by a smaller applied magnetic field.  The peak strain rate 

(maximum slope) for the prototype actuator occurs at a correspondingly lower field.  Th

actual limits used for the prototype experiment are from 0.75 to 2.25 amperes.  

is well within the oper anufacturer and the actuator 

remains cool to the touch while operating.   
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Dimensionless Variables 

After the governing equations for vibration, ism and coil current are  magnet

derived in dimensioned form in Chapter 3, 4, and 5, the variables in the system models 

are normalized into dimensionless variables.  The dimensionless variables are all scaled 

by the p ns 

chapter.  The conversion to dimensionless variables accomplishes several 

things.  First, the scaling is important because the numerical p

computations rely, in some cases, on proper scaling for numerical error control and 

stability in the calculations.  A second argum

leads to groups of factors that com

term mensionless groups, p

and revealing understanding of how the process scales.  All cases that have the same 

values for dimensionless groups have exactly the same dimensionless solution.  The 

similarity relationship can reduce a family of simulation cases into a single case that 

solves all the cases when the appropriate scaling factors are applied.  The final reason for 

normalization is to facilitate the control system tuning.  In control system design, 

adjusting the weighting factors in the quadratic error index is the main tool for tuning 

control response.  The weight factors are more easily interpreted when the states are 

scaled for unit range (unitary gain).  When variables are dimensioned, the weight factor 

must serve the dual role of converting the units and weighting the error. 

One valid choice for scaling factors can be defined in terms of the steady, no-load 

cases at the maximum and minimum currents from the preceding section.  These two 

points define a normalized range for each of the dimensionless variables.  The steady 

hysics of the process to be on the order of unity using the constitutive equatio

derived in this 

roperties of the control 

ent for dimensionless variables is that it 

bine all the parametric dependence into the fewest 

s.  The factors, usually called the di rovide a very condensed 
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state case means that the curren iting value until transient 

y 

g 

.63) 

ion, 

e 

ce 

ate 

dy 

Eq. (2.12) and Eq. (2.13) and solving for the axial components. 

t is held at the indicated lim

effects die out.  No load means that no external mechanical load is applied.  At stead

state with no external load, the elastic stress balances the magnetostrictive stress resultin

in zero net stress is in all directions. 

The relationships needed for the scaling calculation are the constitutive relations 

and the infinite solenoid equation.  The field for an infinite solenoid is given by  

 zH T I  . (2

In this case, the parameter, T, is the number of turns per unit length, not tens

T, as in the earlier part of the discussion.  The variable, I, is the current in the coil.  Th

constitutive relations provide equations relating stress, strain, magnetic field, and 

magnetic induction.  The infinite solenoid equation is an approximation that relates 

magnetic field to coil current for the case in which all coils are equally energized.  Sin

the actuator solenoid is long and thin, the infinite solenoid formula gives a good estim

of the field through the actuator.  The linear constitutive relations for the no-load stea

state case can be evaluated by substituting the tension, 0T  and I   into 

 

33

0 0

0 0

0

zz

T I

S d TI

zH T

   
   
   
      



HS = s + d
 (2.64) 

 

33

0 0

0 0

0
T

z

TI

B TI

   
   
   
     

TB = d +μ


.65) 



 (2
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The strain in Eq. (2.64) can be converted into displacement by the replacement: 

 zzS
z




Since the strain in the equilib

  (2.66) 

rium case is uniform axially, the strain in Eq. (2.64) 

can be written in terms of displacement as follows. 

 
 z Lz

S


 . zz
Lz

(2.67) 

Thus, the no-load, steady state displacement can be written as the following: 

 I . (2.68) 

s, it 

 z d Tz  33z L L

From the derivation of the Young’s modulus and magnetostrictive constant

can be shown that  

 33
eff

H
eff

d
Y


 . (2.69)

The displacement can be written as 

  

 

eff L
z L

Tz
z I


  . (2.70) 

H
effY

Although somewhat less compact, 33
T  can also be written in terms of the 

parameters in Table 2.7, 

 ,
33 33

eff eff zT S
H

effY

 
 

 
  
  

. (2.71) 

Table 2.8 gives the data for evaluating the dimensionless variables.  For 

convenient reference, all the data for the model are collected in the table. 
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Table 2.8:  Modeling Data for Prototype Actuator 

Parameter Value Units Description 

0.0063 m Rad
gr  ius of actuator rod 

c

 0.1492 m Length of actuator rod 

Tc 105 - Turns p

r  0.0111 m Outer radius of coil 

er coil 

0.0159 m Length per coil 

T 6614 m-1 Turns per unit length 

Lz

cz  

- Angu
cylindrical lamination 

vibration 

2


 0  lar dimension of  

1  1.7261×104 s-1 Natural frequency of longitudinal 

  0.1008 - Dampin
vibratio

Imin 0.75 amp Minimum current for linear range 

g coefficient of longitudinal 
n  

I  1.5 amp Linear range for current 

LR  4 ohm Resistance of load resistor 

9.6682e-008 ohm Resistance of actuator coil 

4.4182 ohm Gain
CR  

G   of current controlled amplifier 

T/(A/m) Permeability of free space 

Conductivity of copper (coil) 

Conductivity of  
actuator rod (Terfenol-D) 

0  74 10   
7

C
5.958×10  m/ohm 

1.7241×106 m/ohm 

  

R  

2.441×1010 Pa Effectiv

0 Pa/(A/m)=T Effective magnetostriction 
constant, transverse direction 
E
constant, axial direction 

 Pa/(A/m)=T Effective magnetostriction 
constant, unidirection 

e Young’s modulus of Terfenol-DH
effY  

,eff r  

,eff z  275.86 Pa/(A/m)=T ffective magnetostriction 

eff  270.11



0.8644×10-5 T/(A/m) Permeability of Terfenol-D 
in transver

11
S  

se direction 
0.2268×10-5 T/(A/m) Permeabil

in axial direction 
33
S  ity of Terfenol-D 

  9250 Kg/m Density of Terfenol-D 3 
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Table 2.9 ev or magnetic field, 

an  for ctio  cases for the minimum and 

maximum current, 0.75 and 2.25 amperes.   

Table 2.9:  Minimu  maximum lues o bles over the linearized range 
using dy sta

imum  Units 

aluates Eq. (2.68) for the displacement, Eq. (2.63) f

d Eq. (2.65) the indu n at the steady-state, no-load

m and  va f actuator varia
stea te, no load case 

Parameter Symbol Min Symbol Maximum

0.75 
maxI  2.25 Ampére Coil Current 

minI  

M gnetic 60.6 meter

Displacem

49
maxH  1.4882×10  Ampére/4a  field H

ent 
min  

max  24.4283 µm (10-68.1427 
min   m) 

Mag etic indun ction 0.0263 
maxB  0.0789 Tesla 

minB  

 
 

The corresponding normal ariab cement, and 

magnetic induction are all valued at zero for d unity for the 

maximum.  The range variables, 

ized v les for coil current, displa

the minimum current case an

H ,   , and B , in Eqs. (2.76), (2.77) and (2.78) can 

be written in term rren sus of the cu bstituting I  into the infinite st range by olenoid 

equation, Eq. (2 tion pla ion at no-load, Eq. (2.68) 

and Eq. (2.65). 

 (2.72) 

 

.63), the equa s for dis cement and induct

H T I , 

eff LTz
H

eff

I
Y


(2.73) 

 

   , 

TB T I  .   (2.74) 

The formulae for converting the dime to normalized variables 

sing these data are the obvious linear relationships including the offset and range. 

 

nsioned variables 

u

K min min

max min

I I I I
x

I I I

  
 

. (2.75) 
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33

N z min z min z min

max min L

x
d Tz I

     
  

    
  

, (2.76)

 

 

M minH H H H
x

  min min

max min

H H

H H H T I

 
  

, (2.77) 

 min min min
T

B B B B B B

max min

b
B B B T I

   
  

 . (2.78) 

aling for e coi it equatio  is bas  the sam  range 

as in E s case, the sca  that e voltage rise across 

the a s the coil and load resist led to vary from zero 

 one for the current range from

The voltage sc th l circu n ed on e current

q. (2.75).  In thi ling is set so  th  steady state 

mplifier (or voltage drop acros or) is sca

 minI  to maxIto .  The scaling can be written as the 

following. 

 min


V V
V , (2.79) 

where 

 
  ,I  V = R R

=v

 (2.80) 

The parameters,  and , are the ohm

resi or in the coil circuit.  At steady state, the induct

voltage.  At high frequency, the inductive component dominates the loop equation.  The 

lack of an inductive component means that the dim

the ran

 .
L C

min min L CI V = R R

CR LR ic resistances of the coil and load 

st ive component does not affect the 

ensionless voltage goes well outside 

ge of zero to one in transients. 
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The geometrical scaling for the problem requires a norm

radial and axial directions.  The dimensions of the rod may be chosen as the scaling 

factors. 

 

alization of the lengths in 

L

z

z
  . (2.81) 

 
g

r

r
  . (2.82) 

A dimensionless time variable could also be defined either in terms of the period 

of the acoustic resonance or the radial magnetic diffusion time.  However, a great deal of 

the physical understanding of the ling esults is rooted in the frequency ran

interest in u

sca of r ge of 

nits of Hertz.  Therefore, the formulation retains time as a dimensioned 

variable. 

The relationships in Eqs. (2.75) through (2.82) and the steady-state, no load 

(2.65) and (2.68) provide the equations needed to convert the 

vibration model, magnetic diffusion model and the amplifier circuit model into 

dimensionless variables. 

t of

e effect is a non-linear, time-dependent process.  

The mathematical difficulty of modeling the hysteresis effect using, for example, the 

Preisach operator as proposed by Hughes and Wen is significant [20].  In this section, the 

relationships given by Eqs. 

Effec  Neglecting Hysteresis 

The most significant approximation in the actuator model is to neglect the 

nonlinear behavior of the magnetostrictive material with linear constitutive properties as 

in Eqs. (2.3) and (2.4).  Hysteresis complicates the modeling of almost any magnetic 

material, including the Terfenol-D.  Th
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measured hysteresis of the prototype actuator is shown and the argument is made that the 

effect can be neglected if the amplitude of the transients is greater than a certain 

minimum value.  Hence, the combination of saturation and hysteresis means that the 

amplitude of transient cases should cover nearly the full range of current defined in Table 

2.9 for results that minimize the impact of saturation and hysteresis nonlinearities on the 

results. 

The results of an experiment devised to show the effect of amplitude on the 

respons

e-

mponent of the signal.  As time advances, the hysteresis produces a 

counter sts 

lel to and 

.3 amps to the right of the path for decreasing current.  For the 

smallest amplitude signal, 0

llest 

e is shown in Figure 2.1.  In this experiment, a slowly varying sinusoidal current 

(20 Hz) is applied to all the actuator coils simultaneously.  The average current is offset 

from zero so that the actuator is operating in the linear range of motion.  The figure 

shows the traces of displacement versus current for a range of amplitudes for the tim

varying co

clockwise loop in displacement and current.  The degree of hysteresis manife

as the width of the loop.  The amplitude dependence is indicated by a change in slope.  

For the largest amplitude signals, the path for increasing current is roughly paral

offset by approximately 0

.14 amps, the actuator displacement hardly changes as the 

current changes.  In the scale of this figure, the hysteresis is not evident for the sma

amplitude loop.  However, if the scale is expanded, the hysteresis for this trace is also 

evident.   
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The results in the figure suggest that hysteresis can be neglected with less impac

for transients involving greater amplitude of coil current and displacement.  For

amplitude signals which change less than 0.3 amps peak-to-peak, the slope of 

displacement versus current is quite small.  However, for large amplitude signals on the 

order of 2 amps or more, the slope is steeper and the hysteresis is a smaller fraction of the 

total response.  The larger amplitude current signals give a smaller hysteresis error in the 

position, on a relative basis, compared to the total position change.  The slope of 

displacement to current is much larger giving a more detectable transient.  This behavior

suggests that neglecting hysteresis is a better approximation for larger amplitude 

transients.

Figure 2.1:  Actuator hysteresis obtained experimental data 

t 

 small 

 

  This observation suggests that the amplitude of experimental transients should 

e greater than a certain minimum value because of hysteresis and less than a maximum 

ause of saturation.  With this in mind, the control test transients are designed to 

operate over the full current range of current in Table 2.9, 0.75 amps to 2.25 amps.  This 

range corresponds to the second largest loop (green trace) in Figure 2.1. 

b

value bec
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Summary of the Modeling of Magnetostrictive Materials 

This section derives the form of linearized constitutive relations that are needed 

for modeling the multi-coil actuator.  The general constitutive equations for 

magnetostrictive materials involve six element tensors for stress and strain and three 

dimensional vectors for magnetic field and magnetic induction.  The relationship in terms 

of nine inputs and nine outputs is reduced by symmetry of the problem and the constant 

volume approximation to a system of four inputs and four outputs. 

The approximations to neglect saturation and hysteresis are introduced and the 

effects of those approximations are discussed.  The nonlinearity due to saturation limits 

the maximum amplitude transients that can be approximated with the linearized model, 

and hy

nds on the 

 

f the 

steresis limits the smallest amplitude.  The recommendation is made to formulate 

test cases to operate across the full scale of the normalized range of variables. 

The normalization of variables in magnetics and vibration models depe

magnetostrictive properties so the linear transformations defining the dimensionless 

variables are introduced in this section.  This chapter collects the data which are used for 

the transformations in a single table.  These data are used throughout the modeling 

chapters. 

Identities which test the matrix manipulations and constant volume approximation

are developed in APPENDIX A.  The tests provide an independent confirmation o

formulation of the coefficients in the linearized magnetostrictive constitutive 

relationships.
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d in 

 

hapter covers the 

derivation of the governing equation and boundary

tegral 

transform

ary 

oil currents in the circuit model and to the eddy current amplitude functions 

from the m

ion of their significance are given.  The final result of the chapter is 

a fit of model parameters for fundamental frequency and damping coefficient to 

experimental data measured for the actuator. 

CHAPTER 3 

LONGITUDINAL VIBRATION MODEL 

 

The physics of vibration is the aspect of the actuator dynamics that is exploite

the control of the multi-coil actuator to make it faster than a single coil actuator.  The 

vibration can be modeled by a one-dimensional, longitudinal wave equation by applying

the constant volume approximation introduced in Chapter 2.  This c

 conditions for the vibration model, the 

conversion to dimensionless variables, the solution of the equation, and the representation 

of vibration dynamics as a state space system in descriptor form.  The spatial part of the 

solution to the vibration problem is composed of orthogonal modal functions.  The 

corresponding amplitude functions for the modes are obtained by applying the in

 method to the vibration equation.  The vibration equation solution is found by 

the superposition of the longitudinal wave modes and amplitude functions.  The prim

contribution of this derivation to the field of modeling of magnetostrictive actuators is the 

formulation for the coupling coefficients that interface the vibration modes to the 

individual c

agnetics model.  Sample calculations are presented for the vibration model as 

a stand alone system showing the step and impulse response in the time domain and 

amplitude and phase in the frequency domain for each of the coil inputs.  Plots of these 

results and the discuss



APPENDIX B  describes the integral transform solution and evaluation of the 

coupling c ing the 

derivation and programming are also described in the appendix.   

 

n 

 

 

 

e 

han the 

oefficients for the vibration model.  Test calculations for check

Literature Survey of Vibration Modeling  

The wave equation represents a great many physical processes such as sound in

air, a vibrating string, water waves, light, radio waves, and many others.  The derivation 

of the longitudinal vibration equation representing sound waves in materials is found i

almost every elementary physics or acoustics book.  Standard texts [21-24] include 

derivations of the equation for longitudinal wave motion using much the same approach 

as taken in this report.  The approach in this report differs from the standard textbook 

only because of the introduction of the magnetostrictive stress into the differential 

equation and the boundary conditions.   

A one-dimensional, damped wave equation accounting for the distributed nature 

of the stress due to magnetostriction that is similar to the one presented here can be found

in an early paper by Smith [25].  In Smith’s paper, the one-dimensional wave equation is 

given as the model for vibration in a thin iron ring whose motion is stimulated by a

magnetostrictive force.  The magnetic field is generated by a toroidal coil.  A derivation 

of the equation is not given but apparently comes from Joule.  The subject of the paper is 

the experimental determination of the magnetostriction constant in the equation using

measured data to fit the coefficient in the vibration model.  Engdahl and many others giv

one-dimensional wave equations for magnetostrictive actuators and transducers.  In the 

oft-cited handbook [9], Engdahl’s distributed wave equation is slightly different t
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wave e  

   

olution by the method 

of characteristics, Fourier’s solution for a resonant cavity, and any number of finite 

difference or finite element methods.  Since the method of characteristics does not readily 

convert into a state space approach, the research has to choose between the modal 

approach using Fourier’s method and the finite difference (or finite element) approach.  

Both the modal method and the finite difference approach result in linear, time-invariant 

systems of ordinary differential equations that can be written as state space equations.  

The Fourier’s modal solution has the advantage of giving a better match with frequency 

response than the finite difference method when both are evaluated with the same order 

of solution.  The finite difference approach gives better steady state accuracy.  Since 

frequency response is the main subject of the report, the modal approach is chosen for 

this research.  The modal method is commonly described in textbooks on mathematical 

physics such as Courant and Hilbert [26, p. 288-290].  The procedure for the integral 

transform method for one-dimensional problems on a finite region is given by Özişik, 

[27, p. 508-518] 

The literature available for modeling the magnetostrictive actuator or transducer 

which combine the effects of wave motion and magnetics range from models that 

represent the device as a single, spring-mass oscillator and single coil to much more 

detailed finite element model of magnetics and mechanical motion solved jointly.  These 

models fall on both sides of the level of detail needed for control design and analysis of 

quation derived in this work.  His wave equation lacks the damping term and he

solves the spatial dependence with only the first mode of the trigonometric series.

The solutions available for the wave equation include the s
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the multi-coil device, either too simple to capture the essential physics or too complex 

and large in terms of matrix size to be useful in control analysis. 

The simplest physical model represents the mechanical motion as a single spring-

mass oscillator acted on by a single coil.  The model is termed a gyrator model by 

Engdahl [9] because of a mathematical analogy with an electronic device of that name 

described by Tellegren[28].  The mechanical portion of the gyrator model is a singl

degree of freedom problem which produces the first resonance of the actuator.  It does 

not include the dynamics of higher modes of vibration of the actuator rod.  Nor does the 

gyrator model readily extend to account for the distributed nature of the coupling of 

multiple-coils to the actuator in which each coil provides a forcing function that is 

distributed along the rod length.  The physics of the underlying continuum problem and 

the potential for interactions between different parts of the actuator have been elimina

by the lumped parameter approach, so that it not possible to handle the multiple coils an

their interactions.   

At the other extreme from the gyrator model of the actuator are models which 

represent distributed fields and vibration in too great detail to be useful for control 

modeling [17].  T

e 

ted 

d 

he vibration of a cylindrical piezoelectric transducer has been modeled 

with fin

 in the 

t 

very fine mesh of elements in three dimensions to model the vibration.  It is not clear how 

ite element analysis by Decarpigny [29].  The referenced paper develops a finite 

element model of a Tonpilz sonar transducer and determines if the vibration modes

cylindrical actuator portion are primarily plane longitudinal waves.  The finite elemen

model is compared to a modal model to verify that the plane wave assumption is valid.  

The reference is primarily about the vibration model.  Figures in the reference show a 
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the magnetic field is modeled and coupled to the vibration model.  The same finite 

element code is apparently modified to represent magnetostrictive materials by 

Claeys

r 

o 

s 

 

e 

d 

 

on [30] solve the longitudinal vibration problem with lumped spring 

and ma

o 

 

. 

Governing Equation for Longitudinal Vibration  

The original concept for the wave equation in continuous media was first 

constructed by Fourier as the limiting case for a system of discrete masses and springs as 

sen.  Decarpigny’s finite element code is the ancestor of the commercial ATILA 

code [17]. 

Numerical stability of the control design calculations and computational time fo

real-time control calculations restrict practical system models to a maximum of forty t

fifty state variables.  This limitation means that finite element or finite difference model

with thousands of nodes or elements do not translate into a system model that can be used

in state space control without a considerable effort in model reduction.  Moreover, th

computer codes which offer detailed models of continuum mechanical modeling an

magnetism are commercial products that are not available to the research. 

A small number of models in the literature of magnetostrictive modeling involve 

an intermediate level of detail that is close to the needs of the multi-coil actuator problem. 

Engdahl and Svenss

ss approach.  Kvarnsjö and Engdahl [31] present a two-dimensional, finite 

difference model of the vibration dynamics.  The vibration model is coupled to a tw

dimensional magnetic field model that accounts for eddy current.  These distributed 

models are based on a very coarse mesh, finite difference approximation.  As indicated in

this section, this research has taken the alternative approach of modeling spatial 

distribution using modal functions to obtain a more accurate response at high frequency
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the number of springs and masses approaches infinity.  The lumped parameter mode

which masses acted on by the forces of elasticity, magnetostrictive force and fric

useful starting point to illustrate model.  Figure 3.1 shows the lumped mass approach to 

modeling th

l in 

tion is a 

e actuator.  The parameter, max, is an arbitrary number of spring-mass-coil 

elements.  

� &
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Figure 3.1:  Elasticity and density of actuator rod 
represented as lumped springs and masses 

�

  

In this illustration, the cylinders represent rigid masses, the coil-like structures 

represent the elastic properties of the rod, the box of circles with plus and minus symbols 

and associated curved lines represents the coils and their magnetic fields, and the fixed 

structures touching each mass represent a frictional surface that resists motion.  The 

displacement of each mass from the unstressed position is indicated by the variable, j .  

At rest with no magnetostrictive stress applied, each of the displacements is zero, 0i  . 

The forces acting on the masses are labeled e, h, and f, in the figure representing 

elastic and magnetostrictive stress and the friction force.  Collectively, 2 2 2T e h   

t

represents the total stress

he 

 applied to the left face of 2M .  In this idealization, the spring is

 to 

 

massless, so by Newton’s law, an equal and opposites stress of 2T  must be applied
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the right face of 1M .  Similar logic yields the stress, 3T , applied to the right face of 2M .  

 a force proportional to velocity, The frictional force is idealized as 2
2f fA z

d

dt

   .   

gnetostrictive 

rgy 

 

As the number of elements (max) in Figure 3.1 approaches infinity, the masses, 

springs, and coi  each reduced to a differential element.  Deriving the wave equation 

for the rod star ith a differential element of mass illustrates how the 

ma s originate in Newton’s equation of motion through the 

inclusion of titutive relations for magnetostriction.  The term for ma

stress is distributed along the length of the rod.  This f ure for distributing the applied 

stress is the charac istic of the multi-coil ac ator tha  is used to distribute the ene

input to the actuator in space and time which results in the increase in the frequency 

response of the tor

ls are

ting w

gnetostrictive and elastic term

 the cons

ter

actua

eat

ttu

. 

Figure 3.2 shows a cross-sectional differential element of the rod as a free body

with tension and frictional forces acting on it. 

� � � � 	 � � �� � � 
 �

� �

��

 of 
the actuator rod 

In the figure, T tress at the left face of the element, A is the cross-sectional a

is a small length of rod,  is the change in the stress along the length of the element, 

��
� � � �

 

Figure 3.2:  Free body diagram of a differential element

 is the s rea, 

z T
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and f is the friction coefficient.  The stress term, T, includes both magnetostrictive and 

elastic stresses. 

Applying Newton’s second law, we get 

2

   2

Forces applied to
left and right faces

TA T T A fA z M
t t

 

Friction Acceleration

        
   

. (3.1)

Simplifying the equation and using 

 

M A z   gives the relation. 

 
2T

f
2z t t

     . (3.2) 

 

  

Taking the limit as gives the expected partial derivative. 0z 

0
lim
z

T T

z z 

 
 

. (3.3) 

 
2

2
f

z t t

T   
  

. (3.4

The constitutive relationship for the ma

  
) 

gnetostrictive material relates the stress to 

the strain and magnetic flux.  In Chapter 2, the three-dimensional relationships for strain 

and magnetostriction are reduced to an effective constitutive relationship in a single axial 

dimension.  Equation (2.43) describes this relationship; i.e.,  

 . (3.5) 

In the magnetic model derivation, the magnetic field is a function of all spatial 

dimensions.  To he magnetic 

field is averaged over the cross-sectio d to give an effective average field 

H
eff effT Y S H 



 reduce that result to a one-dimensional vibration variable, t

nal area of the ro

in the transverse plane. 
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21 gr
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H z t H r z t rd dr
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   . (3.6) 

ized strain relation in Eq. (3.5) gives an 

expression containing the stress gradient needed in Eq. (3.4). 

 



Taking the partial derivative of the linear

H
eff eff

T S
Y

z z
  

 


H

z




. (3.7) 

Recognizing that strain, S, is defined as 

,S
z




  (3.8) 

suggest can be  substituting 

Eq. 3.8) into Eq. (3.7). 

 

s that that the strain eliminated in favor of displacement by

 (

2

2
H

eff eff

T H
Y

z z z

    
  


. (3.9) 

Substituting Eq. (3.9) into Eq. (3.4) and rearranging terms gives the final form of 

the partial differential equation in dimensioned variables.  The equation is easily 

recognized as the damped wave equation. 

2 2

2 2
H

eff eff

H
Y f

z t t z

        
   


 . (3.10) 

To complete the vibration model, boundary c

be spec .  

 

 a simple model of a passive load such as a valve.  Boundary 

conditions for the unloaded actuator rod are zero strain at the fixed end of the rod (e.g. 

onditions and initial conditions must 

ified.  The boundary condition at the free end represents the load on the actuator

We will choose an unloaded actuator for this model recognizing that this is one particular

choice rather than a general solution for all possible loading conditions.  A mass and a 

damper could be used as
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the displacement is zero) and zero stress at the free end.  These conditions are expressed 

mathematically as 

 
0 at 0 and

0 at .L

z

T z z

  
 

 (3.11) 

For the stress at the free end of the actuator to be zero, the magnetic force must 

balance the elastic force; i.e., 

 H  at z=zL. (3.12) 

Hence,  

0 HT Y S   eff eff



 ateff
LH

effz Y


3) 

Dimensionless variables 

The governing equations for vibration in the rod can be rewritten in terms of 

dimensionless variables to reduce the num

following variable transformations in Chapter 

2, define a new set of dimensionless, dependent and independ

vibration model. 

H
z z

   . (3.1

ber of physical parameters in the model to a 

minimum.  The linear transformations described in Chapter 2 are based on unitary gain 

for the steady state, no-load condition.  The 

ent variables for the 

L

z
 

z
  . (3.14)

 

 

33

N z min

L

x
d Tz I

 
5) 


. (3.1

 minH H
h

T I





. (3.1


6) 
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Regrettably, the symbol, T, that represents the turns per unit length in Eqs. (2.76) 

and (2.77) has been previously used to represent the stress.  The overlap is tolerated since 

an explicit variable for stress is not needed for the remainder of the derivation. 

Replacing the variables in the differential equation and boundary conditions gives 

the foll

 

owing differential equation. 

22 N 2

2 2

N N
effL

H H
eff

z

33eff

x f x h

Y t t


Y d

x

  
         

. (3.17) 

 (2.70) gives an identity for  in terms of



 33d  H
effYEquation  and ; i.e., eff

33

1eff

H
effY d


 . (3.18) 

With this simplification, the dimensionless equation for vibration is the following. 

 
22 2

eff
2 2

N N N
L

H

zx x f x h
Y t t  

        . (3
    

.19) 

Two dimensionless groups of parameters appear in the equation.  Hence, only two 

parameters are needed to define the dimensionless damped wave problem uniquely.  This 

is the main benefit of dimensionless variables.  The two parameters can be defined freely.  

The most familiar dynamic characteristics are the fundamental frequency and the 

damping ratio of the rod.  The actuator’s longitudinal vibration dynamics are analogous 

to the resonance in a pipe which is closed at one

frequency of the pipe is usually written as a function of sound speed, c, and pipe length, l.  

The organ pipe formula applies to the actuator’s lon

not loaded.  Written in cycles per second, the natural or undamped frequency is, 

 end.  The “quarter wave” resonant 

gitudinal vibration when the end is 
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4

c

l
  . (3.20)  

The general formula in radians per unit time is the following 

 1

c  . (3.21) 
2 l

The parameter, , is the frequency of the first resonance of the undamped 

oscillator in radians per second.  Higher harmonics are obtained a

and so on times the base frequency.   

The sound speed in the actuator material in terms of the properties of Terfenol-D 

is given by 

 

1

s multiples of 3, 5, 7, 

H
effY

c


 . (3.22) 

The length of the actuator rod in this derivation is deno

group of parameters can be written in terms of the fundame  is in 

ted by Lz .  Hence, the 

ntal frequency where 1

units of radians per second. 

 



2 2

12
L

H
eff

z

Y




 


 
. (3.23) 

The damping ratio gives the ratio of one peak to the next in the decaying 

oscillation.  In terms of the parameters of the system, each successive peak at the 

fundamental frequency drops by a factor of 2e  .  The damping ratio can be written in 

terms of the original parameters of the system as 

 

 

12
f


 . (3.24) 
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Writing the final version of the damped 

variables, the resonant frequency, and the damping ratio gives the following. 

 

wave equation in terms of dimensionless 

22 2

12 2
1

2
2

N N Nx x x h

t

 
t  

             
. (3.25) 

e 

substitutions. 

Boundary conditions

 

The boundary conditions and initial conditions can be obtained from the sam

 

 

 
   

0, 0.Nx t 

1,
1, .

Nx t
h t







 (3.26) 

Initial conditions 

 
 
 

,0 0.

,0Nx   (3

Discussion of the governing

0.

Nx

t

 




.27) 

 equation and its solutions 

Equation (3.10) is the damped wave equation in one spatial dimension.  The 

ma ears both as a non-homo

differen he 

s the 

odels represent the motion of 

the actuator as a single spring and mass system acted on by a single coil which yield an 

ordinary differential equation for a harmonic osci

actuator.  The equation for induction in the coil gives a first-order system relating voltage 

gnetostrictive effect app geneous forcing term in the 

tial equation and in the boundary condition for the free end.  The part of t

magnetostrictive force that is a distributed stress term in the differential equation i

point of departure in this modeling compared to other models used for designing control 

of magnetostrictive actuators [30, 32, 33].  The simplest m

llator to describe the dynamics of the 
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and cur

rmonics 

that are needed to represent the high frequency behavior of the actuator vibration.  The 

single coil does not model the interactions between multiple coils with each other or with 

the mo  

dimensional model of longitudinal vibration is a partial differential 

equatio otion from which the higher harmonics of rod vibration are 

generated.  The formulations for vibration in magnetostrictive actuators found in the 

literature only provide for a magnetic field which is ge

along the length.  A coil wound uniformly along the length of the actuator rod has a 

nearly netic field internal to the coil.  Since the rod is long and thin, 

the magnitude of the field is very close to the value for an infinite coil, I .  In this 

formula,  is the number of turns per unit length of the coil, and 

rent in the coil.  The simple model is not general enough to model the multi-coil 

actuator.  The single harmonic oscillator equation does not yield the higher ha

tion of the rod.  The single lump can be thought of as a zero dimensional model.

A one-

n of the mechanical m

nerated by a single uniform coil 

uniform, axial mag

H T 

T I  is the current per 

turn.  The gradient in the field of the single uniform coil is steep at the end of the rod, 

on of magnetic field 

e 

lds 

approaching a step function.  Approximating the distribution functi

as a step can be achieved in Eq. (3.10) by replacing the magnetic gradient term on th

right hand with zero to represent the uniform field and retaining just the non-

homogeneous boundary condition at the free end to represent the step there.  This yie

the following boundary condition: 

 
      ,eff L effL

H H

,,

eff eff

H z t Tz t
I t

z Y Y
 


 (3.28

 
) 

and following homogeneous differential equation: 

 71



 
2 2

H       
  

. (3.29

Equation 

2 2
0effY f

z t t
) 

provide ich 

or 

n 

.  

this chapter.  The optimum input strategy is found in Chapter 6.  This section provides the 

mathematical model that computes the motion of the actuator with the coil current and 

eddy current as inputs. 

transform 

rm method converts the partial differential equation 

into a series of ordinary differential equation.  The solution is a series solution using an 

orthogonal series of trigonometric functions.  The solution of the vibration subsystem 

ent function is given by. 

(3.28) approximates the magnetostrictive effect of a uniform coil as a 

force applied at the end of the rod.  While the equation accounts for all the modes, it is 

driven by only one force acting on the free end.  A distributed input with multiple coils 

s a way to introduce a driving force at different points in space and time wh

have different coupling coefficients with the modes of the rod.  The distributed force 

sources can be timed so that their effect on the output is a maximum.  This is the basis f

the control strategy that underlies the multi-segmented actuator.  The actuator control ca

be designed so that the inputs applied along the length by the multi-coil actuator are all in 

phase with the desired output resulting in no cancellation by the rod’s acoustic response

This effect can be seen more easily in the calculated frequency response given later in 

Modal solution to longitudinal vibration equation 

The solution of the damped wave equation is obtained by the integral 

method.  The solution to Eq. (3.25) and associated boundary conditions is given in 

APPENDIX B.  The integral transfo

from the appendix is repeated here.  The displacem
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sin
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  X
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. (3.30) 

 nN   is the normalization parameter for the sine function and  N tX  is the 

amplitude function that solves the following differential equation. 
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P
t Q x t

 


  
     

    
 

    
   

   

 X X X

X

The variables,  , ,
M
k m p tX  and  K

j

 

2

, , ,2 2 k m p n j j   

 (3.31) 

x t , are the state variables from the magnetic 

subsystem model and coil subsystem model, respectively.  The coefficients and 

parameters are defined in APPENDIX B. 

State Space Modeling 

A more compact notation can be developed using matrix arithmetic to replace the 

indicial equations.  First, the state variables are written as vectors.  The magnetics states, 

which are derived in Chapter 4, can be arranged as the following one-dimensional vector 

 

2

,

M

M

lmax

X

X

1

l

MX

MX 
 
 
 

  
 
 
 
  

Mx




 

where  

  , , : 1 1 .M M
l k m pX l k kmax m mmax p     

(3.32) 

  X  (3.33) 
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The amplitude variables for the vibration and the coil cu

form as follows: 

 

rrents are given in vector 

11

; .KN
jn

KN
jmaxnmax

x

x

x

22

KN

KN x

  
  
  
  

    
  
  
  
     

N Kx x




X

X

X

X

 (3.34) 

The descriptor form for the vibration equation that combines the vibration 

subsys er mode iven i  of 

 of each 

te variable terms and lower order derivatives 

on the right hand side.  Each vector is multiplied by a constant coefficient matrix 

obtained from the process model.  This yields the following equation: 

 

where the coefficient matrices can be defined from the coefficients in Eq. (3.31); i.e., 

 . (3.36) 

 . (3.38) 

. (3.39) 

 

tem with the oth ls is g n Eq. (1.10) of Chapter 1.  The organization

the matrix equation places the terms involving the highest order state derivatives

subsystem on the left hand side and the sta

 
11 13 14 11 12

13 14 1

   E x E x E x F x F x   
 (3.35)

.  

N K M N N

K MF x F x G u

11
nmax nmaxE I

 . (3.37) 13
nmax jmaxE 0

14
nmax mmaxE 0

11
12 nmax nmax  F I 

 
2

12 212
diag n

 


   
 

F . (3.40) 
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2

,14 14 1
, 2 2

2 n p k m
n l

p n

P
F

 
  

              
F . (3.42) 

The elements of the array are arranged in a row14F  in the same order as the MX  

 1 1kmax m mmax p  l k    vector.  The row index is . 

he 

 

(3.43) 

ro matrices and the 

identity matrices yields  

 M . (3.44) 

.  

It is not given, however, by a single state.  It can be

obtained from Eq.(3.30) by setting 

The system input (to the amplifiers) does not affect the vibration directly.  T

effect is felt only through the currents that are generated in the coil.  The coil currents are 

state variables in the coil model derived in Chapter 5.  Hence, the input coupling matrix is

zero. 

 1 G 0 . 

Rewriting the matrix form of the equation, incorporating the ze

11 12 13 14   N N N Kx F x F x F x F x 

The displacement of the free end is an output that is needed by the control system

 expressed in the following form, 

1  ; 

 

    

   
1

-1

1

1, 2 sin

2 -1 .

nmax
N

n

nmax
n N

n
n

y t x t

t





 





 X

  ,N
n n t X

 (3.45) 

In general, an output can be written in the following m

 . (3.46) 

atrix format: 

  11 12 13 14 1y t     N N K MC x C x C x C x D u
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A comparison of Eqs. (3.45) and (3.46) indicates that the C and D matrices which 

compute the displacement at the free end can be expressed as follows: 

 (3.47) 

 

11
1 ,nmaxC 0 

  -112 2 -1 ,
n   

 

C  (3.48) 

 (3.49) 

 0) 

Eliminating the zero elements from Eq. (3.46) leaves the following equation for 

the displacement variable. 

  (3.52) 

13
1 ,jmaxC 0

14
1 ,jmaxC 0  (3.5

 1D 0 . (3.51) 1 jmax

  12 .N Ny t  C x

Nywhere  is the displacement of the actuator tip. 

Time and Frequency Response of the Vibra

m.  

dyna ics associated with longitudinal vibration and 

shows that the model reproduces the dynamics expected for a damped wave equation.  

Additional tests cases are presented in APPENDIX B.  The stan

evaluates the displacement of the free end of the actuator as a function of the coil current.  

Both st .  To 

eliminate the magnetic field due to eddy currents, the eddy current states, 

tion Model 

A simulation of the vibration subsystem as a stand alone model tests the 

derivation and programming of this part of the model before assembling the full syste

The stand alone model captures the m

d alone vibration model 

ate space and transfer function versions of the model can be obtained

Mx , may be set 
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to zero

If a second equation is added to integrate the velocity, , then the problem is 

completely determined. 

 

.  With this simplification, the displacement is only a function of the coil current, 

which may be treated as the input for this problem. 

 13 KF x . (3.53) 11 12  N N Nx F x F x 

Nx

11 12
14

N N
K

N N

     
      

    

x F F x
F x

x I 0 x

 
 

. (3.54) 

The displacement of the free end is determined by the following equation: 

 2
1 nmax N

y 

N
N  

    
 

0 C
x

. (3.55

The stand alone sys

x
) 

tem can be put into standard state space form by defining the 

system matrices as the following. 

 
11

N  12 
  
 I 0

F F
A . (3.56) 

 . (3.57) 13N B F

 2
1

N
nmax   C 0 C . (3.58)

 N D 0  (3.59

This vibration model can be simulated using MATLAB[34] to show both time 

domain response for a set of ten cases in which each coil is individually energized in a 

step change in the current variable.  The model used for the simulation is low orde

nmax=10.  The step in the input is initiated at t=5×10-5 s.  Each trace represents a separate 

 

) 

domain and frequency domain response of the actuator.  Figure 3.3 shows the time 

r; i.e. 

1 jmax
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transient.  The plot shows the time delay between the step in coil current and the response

of the tip displacement.  The pulse originating from 

 

the first coil (nearest the free end) 

arri s at the free end first.  The pulses from the coils are s

corresp

sed on the model parameters is given by: 

 

ve eparated by a time delay 

onding to the time for an acoustic wave to travel the length of a single coil.  The 

theoretical time delay ba

6

1

9.1 10  s
2c

c
z

max

z

c j




    . (3.60) 

The delay between the pulses during the initial rise, evaluated numerically from 

the data in Figure 3.3, is an average of .   

The truncation error in the modal model is eviden

high frequency ripple in the response is due to the truncation of the Fourier series at ten 

terms.  In addition to the ripple, the plot shows that the response of coil 1, which is 

nearest the free end, is significantly below the rest.  This anomaly is also due to 

truncation error.  The end coil is somewhat less effec

beyond the active length of the actuator rod, but the effectiveness of the coil only 

accounts for a small part of the problem.  The truncation error is great

because the boundary condition used for the series of m

derivative condition (Neumann), whereas the boundary cond

nonhomogeneous derivative.  Consequently, the modal solution does not converge on the 

boundary, only on the interior of the rod.  The resulting error is most apparent with the 

coil input at the free end which has a substantial field diffusing out of the rod.  All other 

coils have nearly zero field at the free end resulting in much smaller error.  If a higher 

order solution is used, for example nmax=40, the response of coil 1 becomes consistent 

with the rest of the coils.  The dependence of steady state accuracy and transient response 

 68.9 10  s

t in the simulated results.  The 

tive than the rest because it extends 

est at the free end 

ode function is a homogeneous 

ition for the problem is 
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on the number of modes is shown in APPENDIX B.  The effect of the truncation error is 

not serious.  From the plot, the full amplitude current in the first coil causes an error of 

0.02 in the displacement.  On this basis, the low order model results are considered 

acceptable. 
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Figure 3.3:  Actuator displacement due to step change in 
coil current 

The advantage of the multi-coil actuator can be anticipated from this plot.  To get 

the benefit from the multi-coil design, the inputs to the individual coils need to be 

separated by a certain time delay to arrive at the actuator tip when needed.  To follow a 

reference trajectory, the input should lead the reference by the acoustic delay between the 
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coil input and the displacement.  The plots also show the ringing as the traveling waves 

generated by the step inputs travel back and forth along the rod.  Following the step, the

control system must attenuate the kinetic energy in the acoustic waves so that the rod

comes to res

 

 

t rapidly. 

Another type of type response is shown in the three-dimensional surface plot in 

Figure 3.4.  This figure shows the response of spatial distribution of strain,  ,Nx t  from 

Eq. (3.30) to an impulse function given by the following: 

    K
jx t t . (3.61) 

In the case shown, a coil in the middle of the actuator, j=6, is energized by the 

impulse function.  The figure shows that the magnetostrictive force pushes outward in 

both directions, compressing the rod below the energized coil and expanding the rod 

above.  Two pulses are generated that move in opposite directions.  The progress of the 

pulses is shown in the time dimension of the plot.  The figure shows the two wave forms 

crisscrossing and diminishing in amplitude over a few periods of oscillation.  The pulses 

reflect at each end with inversion on the fixed wall where 0   and without inversion at 

the free end where 1  .  The plot demonstrates that the model is behaving as expected. 

The frequency response model of the vibration model is obtained by applying the 

Fourier transform ystem, this is 

accomp

 to the system in Eq. (3.54).  For a linear time-invariant s

d
ilished by replacing derivatives with (

dt
 ).  The transformed variable is 

indicated by the underscore.   

 
 
   N N Ni C I A B . (3.62) 

1

K

y i

i






x
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Figure 3.4:  Impulse response showing traveling pulse 
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   /N Ky  xIn this form, the matrix transfer function, , is a row vector 

(1×jmax) of scalar transfer functions.  Each trace represents the response of the 

displacement of the free end to a unit harmonic signal applied to a particular coil.  The 

input signal is given by: 

   1K
jx   . (3.63) 

Figure 3.5 is the frequency response of the vibration model which has been 

computed and plotted using MATLAB.  The plot shows the amplitude and phase of the 

transfer functions in Eq. (3.62) versus frequency.  The frequency is normalized using the 

fundamental frequency of the actuator, 1  , so that the resonant frequencies at odd 

multiples of the base frequency are evident.  The amplitude plot shows the resonant peaks 

and shows that each coil affects the resonance by a different amount.  The phase plot 

shows that the timing relationships for the coils are also different.  The phase of each coil 

changes by 0 or ±π radians as the frequency passes through a resonance.  The phase for 

each coil changes differently.  The direction of change is determined by the position of 

the coil with respect to the nodes and antinodes of the standing waves associated with the 

resonance. 

The frequency response gives the clearest picture for understanding the operation 

of the multi-coil actuator and its enhanced frequency response.  Consider the amplitude

and phase at three

 

 frequencies 1  =1, 2, and 3.  The phases at 1   =1 are all 

approximately equal to zero so the responses from all coils are nearly in phase.  However, 

the amplitudes are significantly different.  To get the greatest response from the actuator 

for fixed total power delivered to the coils, more current should be sent to coils with high 

gain and less current to the coils with low gain.   
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Model order, nmax = 10
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Figure 3.5:  Frequency response of actuator to individual 
coil inputs 
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Now, consider the amplitude and phase values at 1  =2.  At this point, the 

phase values for coils 1-4 are all close to 0 while the phase for coils 7-10 are all -π.  The 

amplitudes cover a range of values with coils 5 and 6 having the lowest gain.  The phase 

difference means that, if the coils are energized in unison, coils 1-4 would work against 

coils 7-10 canceling their effect.  The overall actuator gain for fixed power would be 

enhanced if the signals in 7-10 are reversed in sign and the signals sent to 5-6 are zero.  

Now examine the values at 1  =3.  The phases for coils 8-10 are clustered at -3π/2 

while coils 1-6 are close to –π/2.  Again, the coils are working against each other.  Coil 7, 

which has very low amplitude, is in between.  The amplitudes and phases for the input 

signals can be chosen that give much higher output than operating the coils in unison 

with the same current.  The exact optimum distribution for maximum displacement for 

fixed total power in coils as a function of frequency is derived in Chapter 6 as the 

introduction to the optimum control problem.  The frequency response plot gives a 

physical understanding of how the multi-coil actuator can achieve a significant 

improvement in the bandwidth of the actuator in comparison to a single coil. 

Experimental Determination of Fundamental Frequency and Damping Ratio  

The dimensionless equation for vibration model contains only two parameters:  

the fundamental frequency, , and the damping ratio, 1  .  The fundamental frequency 

can be estimated from the Young’s modulus, density, and length of the actuator using 

Eq. (3.23).  The material properties of Terfenol have been studied extensively.  Engdahl 

[9, p. 108] gives a range of values for Terfenol-D, 25-35 GPa, that are appropriate for 

zero dimension models.  In Table 2.7, an effective Young’s modulus that is calculated 

from three-dimensional stress and strain relationships.  The effective value 
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24.41 GPaH
effY 

Table 3.1 gives the m

length of the actuator rod is from

frequency for the actuato

 falls near Engdahl’s published range.  The range of resonant 

frequencies based on Engdah’s data for Young’s modulus is useful for comparison.  

aterial data from Engdahl for density and Young’s modulus.  The 

 design data.  The speed of sound and the fundamental 

r are calculated from Engdahl’s typical data.  

Table 3.1:  Fundamental frequency estimate from engineering data 

Parameter Value  Units 

Density  9250 (kg/m3) 

Young’s modulus  25-35 (GPa) 

Length of actuator  0.1524  [5.875 in] (m) 

Speed of sound  1650-1950 (m/s) 

Frequency  2697- 3190 (Hz) 

Frequency  16,945- 20,049 (rad/sec) 
 

The damp

therefore a simp

(not the ten coil a

in this resear

damping ratio and fundam

The experim

Etrema AA-

ing ratio is not given in the engineering specifications for the actuator; 

le frequency response experiment using a conventional Etrema actuator 

ctuator) was performed to estimate a typical value.  The procedure used 

ch was to fit the model predictions to the experimental data using the 

ental frequency as free parameters. 

ent to measure damping and fundamental frequency uses a standard 

140J025 actuator.  The actuator’s nominal fundamental frequency is 2400 

Hz.  A sine wave generated by Wavetek signal generator is applied to the actuator coil 

through a Crown LVC 608 amplifier.  A feedback circuit using the measured current is 

used for automatic control of the ampli nt to the actuator.  The position is 

measured using a Philtec Model D63 Fiber Optic Displacement Probe which produces a 

tude of curre
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voltage e co ing 

 

s.  The 

   

 linearly related to displacement.  The current in th il is obtained by measur

the voltage across a load resistor in series with the actuator coil.  The voltage signals for 

current and position are monitored by National Instruments digital input and output board

on a Dell Precision computer which converted the data to 12 bit digital values.  A 

Labview program operating on the Dell computer captured the time series data and 

performed a fast Fourier transform (FFT).  The amplitude and phase of the current and 

position at the peak response from the FFT are located in the spectrum and are recorded 

manually.  This procedure is repeated at a series of discrete frequencies, mapping the 

frequency response one frequency value at a time.  The ratio of the magnitude of position 

to current plotted versus the frequency forms an experimental amplitude plot of the 

frequency response.  The difference of the angles gives the phase plot.  The amplitude 

and phase thus measured are manually transferred into a MATLAB program which plots 

the data.  The modeling equation for a single node model is fitted to the experimental 

curve using a least sum of the squared differences in the real and imaginary part

experimental data can be written as a complex number. 

   exp, j j jj
cos sinx x i     , (3.64) 

where 
j

x and j  are the amplitude and phase at the frequency, j . 

The model response at j can be written as complex number as the following.  

The gain parameter, 1g , is needed because the experimental current and displacement a

not normalized as in the model. 

 

re 

 
2

1 1g 
model 2 2 2

1 12
x

i


  

  

. (3.65) 
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A com l results. plex difference can be taken between the experimental and mode

  exp, modelj j jx x x    . (3

The sum of the squared differences, J, is the quantity which can be minimized to

fit , ,

.66) 

 

1   and g .  Using the rules for complex arithmetic, sums of the squared 

differences can be computed by the following: 

1

 (3.67) 

where 

   †Mj

J x x   . 
1

j j
j

   †

jx  x  Mjis the  conjugate of complex  andj is the number of frequency 

points in the e

The results eter fitting are shown i ies of figures.  

Figure 3.6 shows t  and phas ent in 

frequency from

 for the current is nearly 

zero for all m

xperimental data.   

 of the param  experiments n a ser

he amplitude e of the displacem a test that ranged in 

 28 Hz to 5000 Hz.  Figure 3.7 shows the amplitude of the current for the 

same experiment.  Data for the current are not recorded at every frequency.  Interpolated 

values are generated to fill in the missing data.  Both measured and interpolated data are 

shown in Figure 3.7.  The nearly flat response of the current is an indication that the 

improvised control circuit for current is successful.  The phase

easurements so it is not recorded.   

The fit is performed by minimizing the error in the imaginary and real parts 

individually.  Figure 3.8 shows the real and imaginary parts of the measured data and the 

fitted model.  The same data are plotted in Figure 3.6 as magnitude and phase.  
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Figure 3.6:  Magnitude and phase data for displacement for 

 

28-5000 Hz test 
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Figure 3.7:  Measured and interpolated current data for 28-
5000 Hz test 
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Figure 3.8:  Measured and fitted actuator response as real 
and imaginary components for 28-5000 Hz Test 

A second test was performed over a higher frequency range.  These data cover the

frequency range from 1000 Hz to 10,000 Hz to show the fundamental and first harmonic 

in the actuator response.  The measurements of the current are not recorded in this 

instance because the current transfer function is nearly a constant in the previous 

experiment.  To fit these data, a second order modal m

 

odel is needed.  The formula for 

the sec e 

 

ond order model is computed using a single coil and two vibration modes.  Th

resulting second order model written in terms of frequency response is the following. 

     
2 22

1 12 5i  1
model 1 2 2 2 2

1 1 1 1

16
2 9 2

x i g
i i


      

         
. (3.68) 
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The same fitting procedure, except using the second order model, is applied to the 

second set of data.  The magnitude and phase plot of experimental data and the fitted data 

are shown in Figure 3.9. 
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Figure 3.9:  Frequency response of displacement for 1000-
10,000 Hz 

The fitted parameters from the two experiments are summarized in Table 3.2.  

The gain parameters are not comparable because the calibration of the experiments is 

different and because the high frequency test did not employ the current transfer function 

in a ratio.  The resonant frequency is close to the value predicted from engineering data.  

The parameters ations 

wherever typical values are needed. 

 in Table 3.2 from the 28-5000 Hz test are used in all calcul
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Table 3.2:  Actuator modeling data from least squares fit 

Parameter 28-5000 Hz Test 
(Figure 3.6) 

1000-10000 Hz Test 
(Figure 3.9) 

2747.6 2580.2 
1  

  0.1008 0.1369 

0.0015 0.0051 
1g  

 
 

Summary of the Vibration Model 

The vibration model has been developed from the general equations of motion.  

The effect of magnetostrictive coupling is introduced through a constitutive relation 

involving the stress and strain and magnetic field.  The continuous differential equation is 

reduced to an infinite series of ordinary differential equations by the integral transform 

method.  The tru n integral 

formulation for coupling coefficients between the eddy current and coil currents in the 

model 

 

ress 

he 

els 

acoustically in the rod. 

Mathematical tests are constructed in APPENDIX B tests that use the properties 

of the solution to verify the derivation and programming.  The normalization of variables 

ncated series is used as a state space model of vibration.  A

is a product of the integral transform method.  Methods are presented for 

evaluating the coefficients either analytically or numerically. 

Stand alone calculations of the model are presented to illustrate the time and

frequency response of the model.  The results illustrate the wave propagation of st

generated by magnetic field from a coil.  The simulations illustrate how the time and 

frequency response of the actuator displacement are affected by the spatial position of t

coil.  Three-dimensional visualizations illustrate how a pulse of energy from a coil trav
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is used

e coupling of vibration modes to coil current and to eddy 

current are evaluated at various numbers of term to assess the truncation error.  Time 

simulations of the model are generated with 20, 40 and 80 vibrational modes to assess the 

truncation error of the series solution. 

 to test the steady state of produced by the model.  The eigenvalues computed from 

the state space model of vibration are compared to an analytical formula.  Fourier series 

solutions that represent th
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CHAPTER 4 

MAGNETIC MODEL 

 

Magnetic fiel is the physical p on that couples the longitudinal vibration, 

e edd current, and the electronic circuit models together.  Each model produces a 

current density distribution (in the case of vibration, the strain produces magnetization 

which can be treated as an duces a magnetic field.  

e 

so 

rned with deriving spatial 

distribu field 

rent 

f the magnetic modeling equations begins with three of the four 

Maxwe  

d henomen

th y 

equivalent current) which in turn pro

The magnetic field acts on the magnetostrictive rod to generate stress which produces th

linear motion of the actuator.  A time-varying field from any of the current sources al

generates an electric field along every current density path by Faraday’s law of induction.  

The induction couples the current of one current distribution to itself by self-induction 

and to the other current distributions in the actuator through mutual induction.  The 

inductance is the coupling parameter that relates voltage in a circuit or path to the 

derivative of current in the source distribution.   

This chapter on the magnetic model is primarily conce

tion functions for the magnetic field and eddy current density.  The magnetic 

distributions are used in Chapter 3 in the vibration modeling to calculate the coupling 

coefficients between the vibration modes and the coil and eddy current.  The eddy cur

density distributions are used in Chapter 5 to compute the inductance coefficient between 

coil and eddy current.   

The derivation o

ll’s equations for electromagnetic fields.  After applying the quasi-static magnetic

field approximation and the linearized constitutive equations, Maxwell’s equations are 
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 can 

be 

r geometry and materials using a finite element 

magnetics code called FEMM [35].  The eddy current field is obtained by solving the 

magnetic diffusion equation on the pie-shaped cylinder geometry using a summation of 

orthogonal modes.  Conventional boundary and interface conditions are used by the finite 

element code to solve the static magnetic diffusion problem.  An approximation to the 

boundary condition is needed for the modal solution to the eddy current’s field.   

To model the eddy current field, a three-dimensional geometry is needed to 

represent the pie-shaped cylinder configuration of the laminated rod and the axial 

dependence of coil current from the multi-coil design.  The modal solution to the eddy 

current field uses a three-dimensional integral transform method to reduce the time 

dependence to a set of first-order, ordinary differential equations.  The solution to the set 

of differential equations is the amplitude of each of the orthogonal modes of the eddy 

current’s magnetic field.  The eigenvalues of the differential equations are the poles of 

the eddy current model and characterize the frequencies at which each mode’s 

contribution becomes significant.  The amplitude variables are the state variables for the 

state space system.  The modal approach results in an efficient, low-order model for the 

eddy current’s three-dimensional effects.  For the ten-coil prototype actuator, the full 

reduced to a single, three-dimensional, diffusion problem in H.  All three components of 

vector field are non-zero; however, only the axial component is needed for the coupling 

with the vibration model.  For the purposes of the actuator model, the magnetic field

be solved for the axial component alone.  The fields due to coils and eddy current can 

separated in the general equation and solved individually.  The coil field is calculated by 

a detailed representation of the actuato



three-dimensional eddy current effect is captured sufficiently for the frequency range of 

interest in only ten state variab

he eddy current density distribution is derived from the eddy current’s field 

distribution.  The eddy current d

rn 

eld, 

ns, 

ctuator.  The gradient in the magnetic 

field al

 that real-time control can be based on the model.  It is not 

surpris y 

g 

les.   

T

ensity is a function of the same amplitudes and 

eigenvalues as the magnetic field solution.  The spatial modal functions for the density 

distribution, however, are different. 

Literature Survey on Magnetic Modeling 

The difficulty in modeling the magnetics of the actuator rod is that it involves 

coupled solutions of spatial distributions of magnetostrictive stress, eddy current, and 

magnetic field in multidimensional, vector relationships.  Spatial effects that are 

frequently neglected in general magnetostrictive actuator models are the primary conce

in the multi-coil actuator problem.  In particular, the axial dependence of magnetic fi

which can be ignored with conventional, single-coil magnetostrictive actuator desig

must be represented accurately in the multi-coil a

ong the length of the actuator rod is the source of the strain distribution along the 

rod and is the physical process underlying the high frequency response of the multi-coil 

design.  Also, because the goal is to achieve higher frequency response, eddy current, 

which can frequently be neglected for low frequency applications, becomes a significant 

issue.  Compounding the difficulty of multiple, coupled, differential equations is the need 

for a low-order model so

ing that it is necessary to start with fundamental equations and to derive an entirel

new approach to model the actuator.  Despite the lack of a perfectly suited solution in 

prior work, related work does exist in modeling magnetostrictive actuators and modelin
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of magnetics that bears on the formulation and serves as a starting point for this work.  

This background section on magnetic modeling cites prior modeling work of 

magnetostrictive devices as well as citing the basic textbook references on magnetics and 

eddy current modeling that form the starting point for the model that follows.   In 

particular, the features that need to be added to existing models in creating the new model

are indicated. 

The prior work specifically in modeling of magnetostrictive materials and devi

began with the introduction of the “giant” magnetostrictive materials, like Terfenol-D in 

the 1980’s.  The works cited in the vibration chapter regarding zero, one-dimensional and 

two-dimensional mechanical modeling of magnetostrictive transducers are equally 

applicable to the magnetic modeling.  Engdahl’s monograph, Handbook of Giant 

 

ces 

Magne main 

s of 

ese 

he 

model is a point or lumped model rather than a spatially distributed model of the actuator.  

tostrictive Materials [9], which is cited many times in this dissertation, is the 

compilation of research on the magnetostrictive materials and contains several way

modeling of the magnetics of Terfenol-D actuators and transducers.   

In most applications of magnetostrictive actuators, the actuator rod is fully 

surrounded by a single uniform coil and is contained within a closed magnetic circuit 

with low reluctance.  At low frequency, eddy current can be neglected.  Thus, the 

magnetic field can be approximated as a uniform field both axially and radially with its 

value computed from the formula for field inside an infinite solenoid.  Under th

circumstances, the magnetic “model” reduces to a simple proportionality with current 

with no spatial or temporal dynamics.  This approach is the basis for device models that 

are focused on investigating the nonlinear and hysteretic effects of magnetostriction.  T
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The assumption in a point model is that all points in the actuator can be represented by 

average values for the magnetic field, magnetic flux density, stress and strain.  The basic 

point m

ork 

Models that account for eddy current effects generally add a radial diffusion 

equation to the point model representing a solid cylinder.  The first publication of eddy 

current modeling applied to magnetostrictive actuators appears to be Kvarnsjö and 

Engdahl [40].  Other authors have reported similar models including Evans [41] and 

Huang [42].  Hall and Flatau present a model of the radial dependence of magnetic field 

accounting for eddy current using an analytical solution to the radial dependence in the 

frequency domain [43].  The solution does not represent the azimuthal or axial 

dependence of magnetic field which are needed for the pie-shaped lamination and the 

multi-coil effects, but the radial model does have the mathematical advantage (because 

the axial dimension is neglected) that the interface condition between coil and actuator 

rod is not approximated as it is in this dissertation.   

The formulation for finite element with joint solution of the magnetics and 

vibration are given by Lhermet for the ATILA code [17] and by Benatar for a finite 

element solution constructed using general purpose finite element code called FEMLAB 

(now called COMSOL Multiphysics) [44].  Benatar comments that he encountered 

problems with memory storage which prevented solving some of the relatively simple 

geometries with his program.  A generalized finite element formulation is presented by 

odel can be found in Pratt [36]. Other examples include Smith’s work on 

modeling hysteresis as a motion of a magnetic domain wall [37] and Dapino’s w

characterizing the nonlinear material properties of Terfenol-D using a Tonpilz sonar 

transducer [38, 39].  
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Besbes [45].  The formulation includes linear, nonlinear magnetics with linear elastic 

properties, and fully nonlinear versions of the constitutive properties.  The Bes

programming is not described, but apparently a solution is obtained for a thin film of 

material in x-y geometry. 

The magnetic model development starts with the fundamental laws of classical 

electrodynamic

bes’ 

s known as Maxwell’s equations.  The equations can be found in any 

standar

tion is 

 

ic field diffusion 

equatio etic 

his 

dded 

c 

d electrodynamics text [46-48].  Jackson [47] describe a simplification of 

Maxwell’s equations called the quasi-static magnetic approximation that is appropriate 

for the regime of the problems in which the finite speed of light can be neglected and 

electromagnetic fields can be treated as if they propagate instantly.  This approxima

valid when the product of characteristic length times frequency of interest is small

compared to the speed of light in the material as it is in the actuator.  The quasi-static 

magnetic approximation reduces the electromagnetic modeling equation from the usual 

wave equation to a diffusion equation.  Stoll [49] develops the magnet

n from Maxwell’s equations.  His formulation applies the quasi-static magn

approximation and is geared specifically to eddy current problems.  The derivation in t

dissertation follows Stoll’s method except that the terms for magnetostriction are a

and the anisotropic permeability is retained in the modeling data. 

A number of general purpose magnetics codes exist which solve the magneti

diffusion problem numerically.  Most magnetics codes are expensive, commercial 

products that are not available to this research.  However, the Finite Element Magnetic 

Modeling (FEMM) [35] code originally written by David Meeker as a part of his doctoral 

dissertation at the University of Virginia is a powerful, general purpose, two-dimensional 
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magnetics code that is made available free of charge by its author.  The code is actively 

maintained by Meeker in his professional work and has a large number of academic 

users.  The FEMM code allows detailed representation of the geometry of the actu

steady state and harmonic current distributions.  The code has proven to be very useful 

for the magnetic modeling in this paper.  However, the finite element solution does no

produce results that c

ator for 

t 

an be used directly in the control analysis problem.  First of all, the 

code do ed 

ly 

tics 

 

state case 

 

n for the high frequency control that 

is the o  of 

n for 

, the 

 

es not include the magnetostriction effect which means that the fields generat

by strain magnetization must calculated by some other technique.  Second, the code 

produces spatial distributions of magnetic variables, but these do not translate direct

into the matrices needed for a state-space model.  A matrix formulation for the magne

problem is created internally by the code as a part of the finite element solution 

technique, but, just as in the finite difference approach, it is a very high order matrix and

not suitable for control.  Thirdly, the finite element code only solves the steady 

and harmonic cases, not the general, time-dependent problem needed for the control 

design.  Fourth, the two-dimensional code in cylindrical coordinates does not have the 

capability to solve the three-dimensional actuator rod with pie-shaped laminations.  The

eddy current in the pie-shaped lamination is a concer

bjective of the actuator development.  The lack of an adequate representation

the pie-shaped cylinder geometry limits the usefulness of FEMM’s harmonic solutio

the actuator. 

Despite the shortcomings of the FEMM code for the actuator control problem

detailed representation of the actuator geometry and materials makes a much more 

complete solution of the actuator possible.  Detailed maps of the distribution of magnetic
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field and magnetic vector potential generated by the steady state coil current can be 

calculated by the FEMM code.  The steady state problem does not produce eddy cur

and is not affected by the pie-shaped lamination.  The steady state distributions are use

to calculate the coupling c

rents 

d 

oefficients between the coil current and the vibration model 

and to f 

ight 

 these 

l 

cal diffusion equation.  

The ap

l of 

 

calculate the inductance coefficients for the coil model.  Additionally, the maps o

magnetic field and eddy current calculated by FEMM have provided considerable ins

into the equations which model electromagnetics.  Parametric studies varying the 

geometry and material properties aid the understanding of the dependencies of the 

problem on physical properties of the materials and the geometry.  The FEMM numerical 

results also provide a point of comparison for the analytical solutions which are also 

derived and experimental results that are observed.  The consistency of results from

three approaches builds confidence that the mathematical problem is correctly 

understood.  A brief description of the problem solved by the FEMM code and the 

models of the actuator that are used in this analysis are given in APPENDIX C. 

Once the magnetics problem is reduced to a diffusion equation, a large body of 

work on the mathematical methods for solving diffusion problems can be brought to bear 

to solve the problem.  Problems in heat transfer, nuclear reaction dynamics, and chemica

processes in addition to the magnetics problems involve the classi

proach in this paper uses the integral transform method to separate the spatial and 

temporal parts of the solution.  The temporal solution becomes the state space mode

the magnetics.  Heat transfer texts [27, 50, p. 218-219] are the primary resources used by

this author for the integral transform solution technique. 
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Geometry of the Actuator Rod 

Figure 1.2 shows the general configuration of the actuator.  The actuator cont

a number of concentric regions for the case, magnetic return path, coil, and actuator rod.  

The full details of the actuator geometry are solved for the coil current distribution using

a steady state FEMM calculation (see APPENDIX C).  However, for the purpose of 

discussing the spatial effects of coil and eddy current fields and the requirements of the 

magnetic solution, the geometry of the actuator is simplified to just three regions as 

shown in Figure 4.1:  rod, coil, and region outside the coil.  The coil is divided into 

individually controlled coils axially.  Each coil produces a magnetic field that is centere

within the coil while also diffusing axially and radially.  Because the coils are 

axisymmetric, the fields due to coils are axisymmetric.  

Eddy current turns out to be a significant problem for the actuator in the 

frequency range of interest.  At sufficiently high frequency, the eddy current field cancels 

any field generated by the external circuit inside the conducting material.  As discusse

the introduction, the eddy current problem was anticipated before constructing the 

prototype actuator and the rod was laminated to reduce the eddy current.  The insulated 

boundaries of the pie-shaped segments interrupt the circular eddy current paths and 

generate electric fields on the surfaces of the radial faces that cause the eddy current to 

flow around the perimeter of the pie-shaped segment.  While the component of current 

density that is

ains 

 

d 

d in 

 perpendicular to the insulated surface is zero, the current density parallel to 

the surface is non-zero.  The eddy current and the electrical potential gradient that drives 

the eddy current around the segment’s path must have both radial and azimuthal 

components.  Figure 4.2 illustrates the path that the eddy current must take. 
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Figure 4.1:  Simplified rod and coil geometry for analytical 
solution of magnetics problem
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Figure 4.2:  Eddy current paths in a pie-shaped cylinder 

The length of the path for the electron current (summing all four quadrants 

together) is greater than a ci

of a material is the resistance per unit path length (ohms/meter).  Thus, the resistance that 

the electrons see in one transverse of their path is higher for the pie-shaped lamination 

eddy current.  A less obvious result is that the time constant for the magnetic field to 

ield 

diffuses inward from the insulated edges of a conducting region.  The coil field travels 

z

unaffected by the eddy current field.  The coil magnetic field diffuses into the conducting 

segment is faster than into the solid circular rod because the average thickness of the pie-

rcumferential path around the solid cylinder.  The resistivity 

than for a solid circular cylinder.  A longer path has higher resistance and thus lower 

diffuse into the center of the pie-shaped segment is reduced as well.  The magnetic f

instantaneously (due to the quasi-steady magnetics approximation) without attenuation 

from the edge of the cylinder along the radial cuts so that H  on the radial boundary is 

region from all surfaces of the pie-shaped cylinder.  Diffusion into the pie-shaped 
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shaped cylinder is less than the solid cylinder.  Consequently, the time constants for the 

magnetic dynamics of the pie-shaped lamination are less than those of the solid cylinder.   

The magnetic modeling section derives a dynamic model for eddy current and the 

field that it produces.  The main chapter derives the governing equation from Maxwell’s 

equations and gives sample calculations to illustrate the solution.  The details of the 

integral transform solution of the governing equation and various numerical tests to 

verify the solution are given in APPENDIX D. 

The distribution of field for the eddy current involves all three dimensions 

because of the radial and azimuthal components of current.  The field has non-zero 

components in all three directions and the field varies in all three dimensions.  The axial 

component eddy current density is zero throughout the actuator.  Accounting for the 

multi- dimensional effects with a low order model is the main challenge of the magnetic 

model. 

The Governing Equation for Magnetics 

The first step in the magnetic model development is to derive the magnetic 

diffusion equation from Maxwell’s equations following the same general steps as given 

in Stoll while adding the terms for magnetostriction in the constitutive equations and 

accounting fo anisotropic permeability.  Three major approximations are used in solving 

the magnetics problem:   

 

 A quasi-static magnetic field is assumed approximating the speed of 
electromagnetic waves as infinite. 

The constitutive equations for Terfenol-D are treated as linear thereby 
neglecting hysteresis, saturation, and other nonlinear effects. 
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 The boundary condition for eddy current’s magnetic field on the surface of 
the pie-shaped segment is approximated as being homogeneous (Dirichlet 
condition).  

The section in Chapter 2 discussing the Terfenol-D constitutive equations 

includes a justification of the linearization approximation and the limitations that the 

approximation places on the range of solution.  The quasi-static magnetics approximation 

is commonly applied in eddy current problems.  It is described and justified for eddy 

current problems in Jackson [47].  The third is the subject of a detailed discussion the 

section on boundary and interface conditions in this chapter. The first two 

approximations are introduced immediately.  The third is introduced after separating the 

problem into the il current.   

The conventional derivation of the governing equation for magnetic field in eddy 

current problems starts with Maxwell’s equations in which the quasi-static magnetic field 

has already been applied.   

.1) 

 components of the field due to eddy current and due to co

  H J  (4

 
t

   B
E  (

 0 B  (4.3) 

The linearized magnetostriction matrix equations derived in Chapter 2 provide 

one constitutive equation for this system.  Ohm’s law provides a second constitutive 

equation relating electric field to current density.   

 J E  (4.4) 

 S B


4.2) 

μ H κS  (4.5) 
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The next step is to manipulate these five equations algebraically into the form of 

the diffusion equation.  The objective is to eliminate B, E, and J in favor of H.  First, take 

curl of 

  (4.6) 

Eq. (4.1) and substitute for J using Eq. (4.4) to get 

.
  

 
H J

E

Next, substitute Eq. (4.2) into the right hand side of Eq. (4.6). to get 

 
t

  H E   

B

. (4.7) 

Using the vector identity   X , Eq. (4.7) becomes 

  

2    X X

2       B
H H . (4.8)

t
 

The first term can be simplified and the effect of anisotropic diffusion can be 

brought out by using Maxwell’s equation from Eq. (4.3). 

 0 S S          B μ H κS μ H κS . (4.9) 

The first term on the right hand side is the conventional linear permeability of magnetic 

materials.  The second term describes the magnetostrictive effect due to strain.  The first 

term on the right hand side of Eq. (4.9) can be expanded into its vector components using 

the orthotropic permeability of Terfenol from Eq. (2.56).   
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vergence in cylindrical coordinates is define
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X . (4.11) 

Thus, Eq. (4.10) can be rearranged as follows: 

 33
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S
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1 z
              

The magnetostrictive term in Eq. (4.9) can be evaluated using the constant volume 

approximation from Chapter 2 to give the following. 

 

μ H H . (4.12) 
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. (4.10) and Eq. (4.13) into Eq. (4.9) gives the following. 

 

 
  

   

Inserting the result from Eq

2
5133

33 13 2
11 11
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H . (4.14) 

Substituting Eq. (4.14) into Eq. (4.8) yields. 

 



2  B, 51 233
2

1
S

eff zz zH   
        H . (4.15) 

stant volume approach has been 

applied to reduce the wave equation to one-dime

com (4.15) is given by the following.  

2
11 112S Sz z t           

While the above equation has three components, we only need its axial 

component for the vibration model because the con

nsional axial vibration.  The axial 

ponent of Eq. 
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11 11

2

2

S
eff zz z zH B

z z t

  
 

     
     

The scalar Laplacian can be expanded into individu

z2 3
1 H

S S
       . (4.16) 

al terms.  After simplifying 

and rearranging, the result is the following equation. 

 
2 2 2 3

, 5133
2 2 2 2

11 112S Sr r r r z t 3

21 S
eff zz z z z z zH H H H B

z

  
          


. (4.17) 

The axial component of Eq. (4.5) gives the relationship between the m

inductance and the magnetic field and strain.  This relationship can be differentiated with 

. 

        

agnetic 

time to yield the following

33 ,
Sz z

eff z
zB H

t t
   

 
 

S

t




The str

 

. (4.18) 

ain can be written in terms of displacement as  

z
zS

z




. (4.19) 

Inserting these results into Eq. (4.17) eliminates Bz from the equation and gives an 

equation in which the dependent variables are  and .  The left-hand-side of this 

equation can be recognized as a three-dimensional diffusion equation with anisotropic 

diffusion coefficients. 

z zH S

2 2 2
33

332 2 2 2
11

 
2

51 .zS, 33
33 2

33 11 ,

1

1
2

S
Sz z z z z

S

S
eff z S z

S S
eff z

H H H H H

r r r r z t

S

t z

 
 

  
  

       
    

           

lacement or strain.  The 

displacement version is given by the following. 

 (4.20) 

The right hand side can be written in terms of either disp
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S
eff z

H H H H H

r r r r z t

t z

 
 

   



 

       
    

             

 (4.21) 

Equation (4.21) is a general form for magnetic diffusion

and conventional magnetic materials.  By choosing the material properties appropriately, 

Eq. (4.21) reduces to a conventional magnetic diffusion problem.  For example, by 

selecting a zero value for the magnetostriction constant ( ), the terms on the right 

hand side drop out and the equation represents a non-magnetostrictive material.  The 

effect of anisotropic permeability is captured by the rati

 for both magnetostrictive 

, 0eff z 

o of permeabilities, 33
S

11

S


, in the 

axial component of the divergence.  For an isotropic ma ial and axial 

components of permeability are equal, 

terial, the rad

33 11
S S  .  With this  parameters, 

Eq. (4.21) becomes a conventional isotropic diffusion equation.   

The more general form of the material properties permitted by

that the equation can be applied to any region but with the special form it can apply 

specifically to the rod region.  A subscript, R, is added to the magnetic field in Eq. (4.21) 

to indicate the rod region.  

 . (4.22) 

ters 

 choice of

 Eq. (4.21) means 

,R z z

Similarly, the subscript, C, is used to indicate the coil region when needed. 

To identify the rod region material properties, the following material parame

for the rod are also defined. 

H H
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The magnetostrictive term on the right hand si



  (4.23) 

de represents the contribution to the 

ma ield due to the strain in the rod.  Mathematically, this term couples

magnetic field to the vibration model.  This term can be replaced by more compact 

notatio les 

l models.   

 

gnetic f  the 

n to represent the entire group of parameters and variables.  The original variab

are restored when these expressions are used to compute coupling coefficients between 

the vibration and mechanica

     2
51

,z t, 33
33 2

,

,
, 1 .

2

S
eff z z zN S

S S
eff z

z t
K z t

z t z

  
  

    
33 11

       
  (4.24) 

The variable  is a function of the axial position and time and has the 

units of current per unit length.  The variable can be interpreted as an equivalent surface 

a el 

ature of the strain is retained for the moment.  It is 

eventually dropped after the dimensionless variables are introduced and its magnitude 

can be show to be small relative to the time derivative term. 

Inserting the new nomenclature from Eq. (4.23), Eq. (4.22) and (4.24) into 

Eq. (4.21) gives the form used for deriving the solution of the governing equation for the 

magnetic field in the actuator rod.  In this form, the axial component has been separated 

from the other two components of the magnetic field.  

 ,NK z t

current density for the magnetostrictive effect.  The superscript, N, is chosen as a 

reminder that the magnetization comes from the strain c lculated in the vibration mod

which is based on Newton’s equations of motion.  In the formula for NK , the second 

term in the brackets related to curv
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2 2 2
, , , , ,

2 2 2 2

1
.R z R z R z R z R z N

R R R

H H H H H
K

r r r r z t
  


    

    
    

  (4.25) 

Inserting the same parameter replacements into  in Eq. (4.24) gives the result for the 

forcing term from the vibration equation using the nomenclature for the rod parameters 

given in Eq. (4.23).   

NK

      2
, 51

2

, ,
, 1eff z z zN

R R R

z t z t
K z t

    
,2R eff zz t z 

             
(4.26) 

Boundary conditions, interface conditions, and initial conditions are needed to 

close the system of equations.  Since the magnetic field is defined over an infinite 

y in 

(4.27) 

 

 . 

Boundary, interface, and initial conditions 

domain, the boundary condition is that the magnetic field must go to zero at infinit

any direction: i.e., 

 lim 0H . 
r

A second condition equivalent to a boundary condition is that the magnetic field 

is finite everywhere.  In particular, the magnetic field is finite on the axis of symmetry of 

the actuator rod. 

  H r


. (4.28) 

Additionally, conditions at the interfaces between dissimilar materials are 

quations that 

apply a  

two dissimilar magnetic materials are given by the following 

equations: 

required.  The interface conditions are actually special forms of Maxwell’s e

t surfaces of discontinuity in the material properties [48].  The interface equations

at the interface between any 
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 , (4.29) 

where the subscripts 1 and 2 indicate any two materials. 

 . (4.31) 

For a complete solution, the magnetic field problem requires an initial condition 

specified over the solution domain.  This turns out to be an arbitrary condition.  The 

initial condition can be anything if the starting time is set sufficiently before the time 

fram ated with the initial condition has 

out.  The remaining solution is entirely dependent on the forcing function applied over 

time.  Hence, a hom

 . (4.32) 

 

l-

ools that are available 

combin i-

 

ful to understand that the quasi-

1 2ˆ ˆn ne e  H H

 ˆne , (4.30) 1 2ˆne  B B

In addition, an insulated boundary, such as the surface of the actuator rod, must 

have zero current density normal to the surface; i.e.,   

1 2ˆ ˆ 0n ne e   J J

e of interest so that the transient associ time to die 

ogeneous initial condition can be chosen without any loss of 

generality for this problem. 

 

Separation of diffusion problem into quasi-steady and dynamic solutions 

The complete solution of the time dependent diffusion problem for the complex

actuator geometry is a difficult mathematical problem and would be impractical for rea

time control.  The approach that takes best advantage of the t

, , ,0 0RH r z 

es two solutions:  a quasi-steady solution and a transient solution.  The quas

steady solution can be calculated using the finite element code FEMM which is described 

in APPENDIX C.  The dynamic solution is obtained by the method of integral transforms

in three dimensions.  In obtaining the solutions, it is use
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steady solution gives the field produced by the coils and the dynamic field represents the 

effect of the eddy current field.  The quasi-steady and the dynamic problems can be 

where t  is the quasi-steady solution calculated by FEMM and 

amic solution.  The superscript H is used to indicate 

dynamic solution involves an approximation of the boundary condition as a 

aped cylinder.  This approximation and the 

 

separated by writing the magnetic field in Eq. (4.25) as the sum of two solutions; i.e., 

      H FEMM , (4.33) , , , , , , , , ,R z R RH r z t H r z t H r z t  

 , ,FEMM
RH r z

 , , ,z t  is the dynH
RH r that the 

homogeneous field on the surface of the pie-sh

justification for it are given later.  Substituting Eq. (4.33)into Eq. (4.25) yields: 

     

   

2 2

2

2

1

.

H FEMM H FEMM H FEMM

H FEMM H FEMM
R R R R N

R R R

H H H H H H

H H H H
K

z t
  

     

   
 

 


2 2 2

R R R R R R

r r r r 
 

  



 (4.34) 

The quasi-steady problem in the rod region is controlled by an equation similar to 

Eq. (4.

ng differential equation§.   

 

25) with its time derivative terms set to zero.  The differential equation for the 

quasi-steady problem is the same as the steady state FEMM problem.  FEMM indirectly 

solves the followi

2 2 FEMMH
2 2Rr r r z  

The azimuthal contribution to the diffusion is zero, 

1
0

FEMM FEMM
R R RH H     . (4.35) 

2

0
FEMM
RH  , since the laminations 

of the rod have no effect on the steady state problem.  The azimuthal dependence of the 

2 2r 

                                                 
c potential, A, is actually the variable that is solved by FEMM’s finite element calculation.  

The magnetic field is derived from the potential by spatial differentiation.  Nevertheless, the derived 
magnetic field satisfies the equation indicated. 

§ The magneti
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ma es from the eddy current circulati

The FEMM code solves the steady state magnetic diffusion problem

representation of the actuator geometry using the exact boundary conditions and interface 

conditions given by Eqs. (4.27) through (4.30).  The source terms in the model are the 

coil currents.  The material properties with anisotropic permeability are modeled by the 

FEMM code.  These features mean that very few approximations are needed to solve the 

steady state problem and that the FEMM code gives a very accurate sim

field du

so 

 C . (4.36) 

In this notation,  indicates a vector of currents in the individual coils.   

 

gnetic field com ng around the pie-shaped cylinder.  

 with a detailed 

ulation of the 

e to coil current in the actuator. 

The quasi-steady solution gives the field that would be present if the 

conductivities of all materials were zero (and, consequently, the eddy currents were al

zero) and the only current driving the field were imposed by the current in the coils.  To 

emphasize the point, we change the notation. 

FEMM FEMM   , , , ,R RH r z t H r z t I

 C tI

        ,1 ,2 ,, ,...C C C C jmaxt I t I t I tI , (4.37) 

where    is the current in the j-th coil.  The quasi-steady solution, 

self.  

ic 

,C jI t

M   , ,R CH r z tI , depends on the coil currents which in turn may depend on time.  

However, the relationship between current and field contributes no time dynamics it

The contribution due to each coil is proportional to the coil current.  Since the magnet

field is a linear property, the principle of superposition holds.  We can compute 

  , ,FEMM
R CH r z tI  as the summation of normalized FEMM cases.  The field for an 

arbitrary combination of coil current is then 

FEM
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1

, , ,
jmax

FEMM FEMM

j

H r z t H r z I t


 I , (4.38)

where  , ,FEMM
R jH r z  is a steady state FEMM case in which  , 1C jI t   and the current t

, ,R C R j C j  

o 

all her coils is zero.  The parameter, jmax, is the number of coils. 

The derivative of the quasi-steady solution is obtained by differentiating 

Eq. (4.38).  Hence, derivative can be written as  

ot

 
      , ,

1

, ,FEMM FEMM
R R j C j

j

H H r z I t
dt




    . 

Using Eq. 

, , ,FEMM jmax
R CdH r z t I

(4.39) 

the following.   

(4.35) to eliminate the spatial derivative terms of FEMMH  in Eq. (4.34) gives R

   22

2 2 2

1 1
H H FEMMH H
R R R NR R

R R R

H H HH H
r K

r r r r z t
  


              


 . (4.40) 

HFrom the standpoint of the RH  problem, the FEMM component is a source term that can 

be moved to the right hand side of the equation.  Placing the FEMM
RH  on the right hand

side as part of the non-homogeneous forcing function yields the form for the equation in 

dimensioned variables in which the coupling 

 

of the eddy current field to the coil and 

vibration models is explicitly shown; i.e., 

 
2 2

2 2 2

1 1H H H H
FEMM NR R R R

R R R R R R

H H H H
r H K

t
               

  . (4.41) 

Equivalently, the forcing function can be written in terms of the magnetic 

induction by recognizing that the time derivative terms can be combined using the 

 

r r r r z    

constitutive relation.  The time derivative of magnetic induction in the of the constitutive

 115



relation, Eq. (4.18), can be written as the following by incorporating the eddy current and

coil current components for the magnetic field from Eq. 

 

he 

 

(4.33) and the definition of t

strain terms as a surface current as in Eq. (4.74). 

 H FEMM

R R R

H HB

t t

 
 

This equation leads to a form that is needed in solving for the eddy current problem. 

R R Nz K     . (4.42) 

 
2 2

2 2

1 1H H HH H H B

r r r r

    
  

2
R R R z

R Rr
z t

 


      
. (4.43) 

The field that remains to be solved, H
RH , is the field due to eddy curre

desired approach at this point would be to apply the boundary and interface conditions 

from Eqs. (4.27) through (4.30) and solve the magnetic diffusion equation over all space 

using the simplified geometry given by Figure

nt.  The 

 4.1 and Figure 4.2.  There are two 

problems.  The first problem is that we want to solve just the a

imuthal and 

radial components of magnetic field in the rod.  The second problem is that, even if a 

satisfactorily separated interface condition were available, the problem

ite cannot be 

solved using conve

requirement for interface conditions between the rod and coil region.  The goal would be 

to solve only the axial component of field.  The differential equation for the axial 

xial field problem in Eq. 

(4.43) but the interface conditions for axial field are not separable from the az

 of a two region 

scalar diffusion problem in which one region is finite and the other infin

ntional transcendental functions such as sine, cosines, and Bessel 

functions.  However, both problems can be addressed with a single approximation that 

requires the eddy current field on the boundary to be zero.   

To illustrate the problem of separating the boundary conditions, consider the 
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com q. (4.41).  To complete the problem, two interface equations are 

needed over the surface of the pie-shaped cylinder.  For example, on the interface 

tions involving the axial field 

ponent is given in E

between the rod and the coil, two linearly independent equa

and the first derivative on either side, , , ,R zH ,C zH ,R zH
, and ,C zH

r r

the system.  At first this seems plausible since Eq

, are needed to close 

. (4.25) is a scalar equation involving 

only the axial component of ma (4.29), (4.30), and (4.31), 

Maxwell’s equations, and the cons ns are available to find th

interface relationships.  One equatio the axial field on each surface is easy to 

obtain.  For example, on the cylindrical  the between rod and coil, 

gnetic field.  Equations 

 surface of

titutive relatio

n involving 

e desired 

gr r , and 

00 , 0Lz z       the axial component of Eq. (4.29) can be written as a scalar 

equation. 

 . (4.44) 

Equation (4.44) can be separated into quasi-steady and dynamic components.   

  . (4.45) 

Since the FEMM solution satisfies the interface condition,  the dynamic term must satisfy 

the equation also.   

 . (4.46) 

A second linearly independent relationship is needed to close the system.  It is impossible 

to find that is 

   , ,, , , , , ,R z g C z gH r z t H r z t 

      , , , , , , , , , ,H FEMM H FEMM
R g R g C g C gH r z t H r z t H r z t H r z t   

   , , , , , ,H H
R g C gH r z t H r z t 

a second equation on the cylindrical surface or any other surface of the rod 

not a function of other components of the magnetic field.   
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Instead of solving the exact eddy current problem, a simplifying approximation is 

proposed.  The homogeneous boundary condition on the surface of the pie-shaped 

cylinder is a reasonable approximation and makes the field problem solvable.   

 . (4.47) 

Since the coil region’s field is not involved in this equation, only a single condition is 

needed at the surface.  In effect, the second equation to close the system is, 

, but the field outside the rod region is not neede

solution is attempted in the coil region.   

To illustrate the effect of the homogeneous boundary condition approximation, an 

example case for a solid (unlaminated) rod can be computed using FEMM to solve a 

harmonic problem for the actuator geometry.  The harmonic problem for the solid rod 

produces circular current distributions that are larger than the currents in the 

corresponding laminated rod.  Figure 4.3 shows the axial field along the cylindrical 

surface 

 , , , 0H
RH r z t 

 , , , , 0E
C zH r z t ddy d in the model and no 

 gr r

field due to eddy current, 

 from the bottom to the top of the rod for a case in which two coils near 

, a 

the axial midpoint are energized.  The three traces for magnetic field are shown:  a 

FEMM harmonic case, 10,000 Hz  , which represents the total field,  , , ,RH r z t

FEMM steady state case  0  which represents the field due to just the coil current

alone,   , ,FEMMH r z tI , and the difference between those two which represents the 

 

EMM . 

R C

 , , ,H r z t   , , , , ,H FH r z t H r z t  R g R g R g
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Figure 4.3:  Comparison of total, coil current, and eddy 

bottom,

current magnetic field along rod surface.  Top,  Re zH ; 

z  Im H  
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 120

ent of 

axial field, and the bottom shows the imaginary comp

atively 

large estimate of the eddy current field in comparison to the pie-shaped cylinder.  The 

pie-shaped cylinder reduces eddy current and magnetic field resulting in a smaller error 

in the field calculation due to the boundary condition approximation. 

The error due to the homogeneneous boundary approximation can be estimated by 

considering a third contributor to the magnetic field.  The true total field be given by  

nous 

Figure 4.3 shows that the field due to eddy current is small compared to the field 

due to coil current which suggests that the homogeneous boundary condition in 

Eq. (4.47) is a reasonable approximation.  The top figure shows the real compon

onent.  In the lower figure, the total 

and eddy field are of identical because the coil’s field is all real. 

The FEMM calculation for an unlaminated, solid cylinder gives a conserv

 , , , , , , , , , , , ,R z R R RH r z t H r z t H r z t H r z t     , (4.48) 

where  , , ,BC
RH r z t  is the solution to a diffusion problem with the true nonhomege

boundary condition, 

 

       H FEMM BC

2 21
0

BC BC BC
R R RH H H     , 

due to the homogeneous b

2 2Rr r r z  
(4.49) 

and the boundary condition is given by 

  . (4.50) 

Summing the equations shows that the proposed additional term corrects the error 

oundary condition approximation.  By applying the maximum 

principle [51] to Laplace’s equation to the case represented by Eqs. (4.49) and (4.50), we 

can establish maximum error in the interior of the rod due to neglected boundary 

condition.  The maximum principle for a diffusion equation with no sources states that 

  , , , , , ,BC Eddy
R g C gH r z t H r z t 



the solution in the interior must be less than or equal to the maximum value on the 

boundary.  The interion solution must also be greater than the minimum on the boundary.  

Hence, the limits of the solution can be written as 

   (4.51) 

We also know that the eddy current field on the surface of the laminated rod must 

be less than the solution for the unlaminated rod.  Hence, the maximum eddy current field 

on the surface of the rod in Figure 4.1 bounds the error at all interior points.  The 

maximum on the perimeter in Figure 4.1 is approximately 10% of the field at the interior. 

The boundary condition approximation of the eddy current problem is not 

insignificant.  However, the eddy current’s magnetic field is a secondary effect compared 

to the coil’s field for the frequency range that is needed.  The FEMM model is not 

approximated as homogeneous on the surface and retains the full rigor of the interface 

conditions defined by Eq. (4.29) and Eq. (4.30). 

Another possible boundary condition that could be used for the eddy current 

problem is a mixed boundary condition of the form 

 

     Min , , , , , , Max , , ,Eddy BC Eddy
C g R C gH r z t H r z t H r z t        

   , , ,
, , ,

H
R g H

R g

H r z t
aH r z t b

r





 


, (4.52) 

where a and b are constant or possibly known functions of .  To evaluate the mixed 

boundary conditi  is 

plotted versus its partial derivative, 


 C tI

on as a candidate for the eddy current model, the field, H



 , , ,H
R gr z t

, ,H
R gH r ,z t

r




, for all points along the rod surface 

to see if a linear relationship emerges.  This calculation is performed using the same 

FEMM model of a solid cylinder that was used for the calculations shown in Figure 4.3.  
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The pa

rgized 

rtial derivative is evaluated numerically by finite difference.  Figure 4.4 gives this 

plot for the same current distribution case as in Figure 4.3 with coils 5 and 6 ene

and frequency 10,000 Hz  . 
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Figure 4.4:  Evaluation of linearity of mixed boundary 
condition 

ed from Figure 4.4 is that the relationship does 

not match a mixed boundary condition with constant coefficients.  No simple functions 

for a and b give a straight line.  Figure 4.3 and Figure 4.4 make the case that 

 is a reasonable approximation and the best available choice for the 

boundary condition.  The diffusion problem with homogeneous (Dirichlet) boundary 

condition on a pie-shaped cylinder is a problem that can be solved by conventional 

integral transform methods. 

The conclusion that can be reach

 , , , 0H
R gH r z t 
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Another alternative is to solve the eddy current field over a three region dom

including the rod, coil, and return path.  Most of the magnetic flux is channeled from the 

positive pole of the actuator to the negative pole w

ain 

ithin the high permeability material in 

the return path.  Consequently the field due to eddy current at the outer surfac

return path is much smaller than on the surface of the rod.  The error due to neglecting it 

is correspondingly smaller in the rod region by the maximum principle.  The difficulty is 

that the solution requires modal functions that span the three regions.  The solutions are 

possible but much more complicated algebraically than the functions over a single region.  

The ease of solution is viewed to outweigh the error in the eddy current model. 

 

les are based on the linearized range for 

magnet

 be converted to dimensionless units 

by a set of linear transformations that are defined in Chapter 2.  The transformations 

consist of a scaling factor and an offset.  The coil current transf

 

e of the 

Dimensionless variables for magnetic modeling 

As in the vibration submodel, dimensionless variables can be defined for the

magnetic problem that reduce all parametrically similar problems to a single case.  The 

dimensionless variables for the dependent variab

ostriction effect found in Chapter 2.   

The governing equation and the solutions can

ormation is given by the 

following equation.  The superscript K is used to acknowledge Kirchhoff’s laws which 

are the basis of the circuit equations that are used to compute the coil current. 

, ,C j min C j minK
j

max min

I I I I
x

I I I
 

 


. (4.53) 

The scaling for the displacement variable is given by the elongation for the 

maximum and minimum current at steady state and no applied load.  The superscript, N, 

 123



is used to indicate Newton’s equations of motion as the source of the displacement 

model. 

 
H

effN
z min

eff L

Y
x

z T I
 


 


 . (4.54) 

The scaling for the magnetic field is defined for the maximum and minimum 

current and an infinite coil as the following. 

 M R min R min R min

max min

H H H H H H
x

H H H T I

    
  

. (4.55) 

In this case, the superscript, M, is used to indicate Maxwell’s equations which are 

the basis for the magnetic modeling.  The magnetic field is divided into a homogeneous 

part and quasi-steady part in Eq. (4.33) 

 

.

H FEMM
M R R min

max min

FEMMH
R mR

H H H
x

H H

H HH

H H

 


 
 

in

 (4.56) 

The two parts can each b

 

e defined as a dimensionless variable.   

.

.

H H
M R R
H

FEMM FEMM

H T I

H H H H
x

H T I

 
  

 

 (4.57

Since the two terms are added together in the total solution, the offset term is 

 parts.  The offset is chosen to be associated with the quasi-steady te

because that leads to a convenient simplification in obtaining the dimensionless current 

variable.  This simplification is given by the following derivation of the FEMM field in 

terms of the dimensionless coil curr

FEMM R min R min

H H
x  

) 

necessary 

for only one of the rm 

ent variables. 
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The derivative of FEMMx  does not depend on the offset term because the offset is a 

constant.   

 ,
1

1
,

FEMM FEMM
FEMM R min RH H Hd jmax

FEMM K
R j j

j

x H r z x
dt T T T 


 

  . (4.59) 

The differential equation in Eq. (4.41) can be converted to dimensionless form by 

making the following substitutions. 

 . (4.60) 

 

 

   




  , , ,H
RH r z t T   , , ,H

MIx r z t

   , , , ,FEMM FEMM
RH r z t T Ix r z t   . (4.61) 

The dimensionless spatial variables are given by the following replacements. 

gr r   . (4.62) 

 Lz z   . (4.63) 

After making the above substitutions and rearranging, the governing equation for 

the eddy current part of the magnetic model is then given in dimensionless variables by 

the following. 
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 (4.64) 

The  term can also be put into dimensionless units to reveal its parameter 

groups

he defining equation for  from 

Eq. 4.24) ensionless surface current is designated with a

indicate the transformation. 

NK

.  The dim

.  The entire last term in Eq. (4.64) is converted to dimensionless variables by 

making the same substitutions as above into t NK

(  lower case, Nk , to 

 
2 2 2

, 2 51
2 2

1
N N

g eff z eff R gN N
R R gH

r r

,2eff R L eff z

x x
k K r

    
T I Y t z   

                
) 

The homogeneous boundary conditions in dimensionless variables is  

. (4.66) 

for all points on the surface of the pie-shaped cylinder.  The initial condition is 

Estimating Parameter Groups for the Magnetic Model 

Since the dependent variables and position variables in th

equation are scaled to order unity, the groups of constants in Eq. (4.64) and Eq. (4.65) 

  . (4.65

  , , , 0M
Hx t   

homogeneous at all points in the pie-shaped cylinder at 0t  . 

e dimensionless 

give some insight into the magnitudes of the terms of the governing equation.  The 

parameters that are needed for the evaluations are given in Table 2.8. 

The time variable has not been scaled to be dimensionless; hence the 

term, 2
T T gr  , has units of time and represents the magnetic diffusivity.  The magnitude 
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of the diffusivity can be evaluated from the properties of Terfenol-D and the radial 

dimension of the actuator rod. 

 . (4.67) 

This quantity appears in the denominator of each of the frequency constants for the 

magnetic solution spatial modes.  It can be viewed as an overall time scale factor for 

magnetics.  It is mentioned in Chapter 1 in the argument for addressing the frequency 

response limitations for the magnetostrictive actuator. 

 term, 

   22 6 -5 -41.7241 10 0.8644 ×10 0.0063 1.5766 10R R gr s     

2

2

R g

L

r

z


The , combines factors representing the anisotropy in magnetic 

permeability, R , and the length to radius ratio and gives an effective aspec

cylinder.  Since the anisotropy factor is a number less than one, the cylinder is effectively 

longer and thinner from the standpoint of magnetic diffusion than the actual dimensions.  

The actual length to radius ratio is approximately 24.  The dimensionless parameter gives 

an effective length to radius ratio for the actuator rod. 

 

t ratio of the 

1 1
-62 2

-6

1 8.6444 10 5.875
45.9

2.2678 10 0.25R gr   
Lz           

 
. (4.68) 

The ratio is also an indication of the orde

direction that give comparable diffusion.  Since there are ten coils in the prototype 

actuator, the model needs ten or more axial modes to model the coupling of the coils to 

the rod

r is roughly equal to the number of coils.  With ten coils in the actuator, 

this means that only a one or two radial modes need to be retained in the model to 

 

r of the modes in radial and axial 

.  The 45-th axial mode has about the same axial diffusion as the radial diffusion 

of the first radial mode.  The minimum number of axial modes needed to represent the 

multi-coil actuato
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represent the radial diffusion to the same degree of approximation as the ten axial modes 

represent the axial diffusion.   

The factor , 33eff z

R

d


 gives a relative weighting of the vibration modes to the axial 

eddy current modes.  The value of the factor is given by 

  -8
,

-5

192.34 1.1×10
0.9329eff z eff

H

 
  .  

0.2268 10eff RY  
(4.69) 

Since the factor is close to unity, the time derivative terms for the coil  and 

for the vibration 

FEMMx

Nx  contribute approximately equally to the eddy current model 

dynamics.   

The  term defined in dimensionless variables in Eq. (4.65) is the coupling 

term between the vibration model and the magnetic model.  The term contains a time 

derivative, 

NK

2
N

R R g

x
r


, and a curvature term
t

  , 
2 2

51
2 2

,2L eff z

1R gr
Nx

z 
 


    .  With the 

 magnitude of the time derivative 

and curvature term ature 

ncy in 

   

variables in dimensionless units, an estimate the relative

s can be calculated to see if it is reasonable to neglect the curv

term.  In dimensionless units, the time derivative term is on the order of the freque

radian/second.   

 
Nx   . 
t

(4.70) 

The curvature term can be estimated from the highest spatial mode that 

contributes to the solution.  The curvature is the square of the axial mode’s highest spatial 

eigenvalue.  For a ten coil actuator, the maximum value is reasonably estimated as the 
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tenth mode (based on ten coils).  The solution derived in the section that follows sho

that for the unloaded rod the cu

ws 

rvature of the tenth mode is given by 

 
22

2

2 1

2

Nx n 


           
. (4.71) 

If we choose the maximum frequency of interest as 10,000 Hz and the tenth vibration 

mode, n=10, as the highest mode to be considered contributing to the response, then the 

relative magnitudes of the dimensionless time derivative term and the curvature term can 

be estimated as follows.   

 

Time derivative term 

 2 2 -4 41.5766 10 10 2 9.9
N

R R g R R g

x
r r            . (4.72) 

t

Curvature term 

 

2 22
251

2 2 2
1 1

2 2
R g R gr rx

z z

  
  

      
51

10
, ,

2
21 155.56

1
45.9 2 275.86

0.3038

N

L eff z L eff z


   


   

            


 (4.73) 

 

29.8

0.

By this estimation, the curvature term is a factor of 30 smaller than the time 

derivative term and can be dropped.  This approximation simplifies the vibration term to

the following.   

 ,
N zK R eff z z t

        
 . (4.74) 
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Solution of the Magnetic Diffusion Problem 

The derivation of the solution of Eq. (4.64) by the integral transform method is 

given in .  The resulting m

The total magnetic field combines the fields of the coils and the eddy currents. 

 

APPENDIX D odal equations for the solution are repeated here.  

      , , , , , , , , ,M FEMM M
Hx t x t x t         Kx . (4.75) 

where  , , ,Mx t    is the dimensionless magnetic field in the axial direction, 

 , , ,FEMMx t   Kx  is the FEMM solution the field due to the current in the 

without eddy curr t effects given by Eq. (4.58), and  tKx  is a vector of the 

dimensionles

coils 

rents.  The solution for the edd t field, 

en

s coil cur y curren  , , ,M
Hx t   , which 

is derived in AP  

 

PENDIX D, is given as the following summation of azimuthal, radial,

and axial modes. 

        
     

,

, ,
1 1 1 ,

sin sin
, , ,

,
m

pmaxkmax mmax
pm k mM M

H k m p
k m p k m m m p

x t t
N N N

     
  

     

  
J

X . (4.76) 

The set of three constants, N, in the denominator are the normalization coefficients for the 

orthogonal modal functions and are given in the appendix. 

The amplitude functions are given by the solution to a system of ordinary 

differential equations.   

 X . (4.77) 

The coefficient terms, , and  are defined in APPENDIX D.  The 

   , , , , , , , , , , , ,
1 1

jmaxnmax
M N K
k m p k m p n n k m p j j k m p k m p

n j

t x t 
 

        X X M

, , ,k m p n , , ,k m p j , ,k m p

terms,  N
n tX  and  K

j

 ,  

x t , couple the eddy current field to the fields generated by the 
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magnetostrictive strain and coil current, respectively.  The variables are the state 

variables from the vibration and coil circuit subsystem models. 

Time and Frequency Response Using th

This section presents sample results using the magnetics submodel as a stand 

alone calculation.  The purpose of the stand alone model calculations is to show that the 

results are plausible and to show graphically the magnitude and delay of the eddy current 

effect.  One of the approximations of the magnetic model is the truncation of the series.  

The effect of truncation is shown by comparing a high-order and a low-order model.  

Additional results and numerical tests of the solution are given in APPENDIX D. 

Results are shown in two types of plots, spatial plots and frequency response 

plots.  The spatial plot shows magnetic field versus position while hold

constant.  The second type of calculation gives the frequency response plot in which the 

frequency is varied.  The variable that is plotted versus frequency is the average field in a 

transverse section.  The transverse sections are located at the midpoint of each coil.  The 

forcing function for both types of cases is a harmonic current in a single c

vibration inputs are specified as zero,  in all the sample cases.  A schematic 

illustrating the arrangement of the actuator showing energized coil and elevations for 

midpla

ated as functions of frequency.  The Fourier transform is applied to 

Eq. 4.77) to compute the amplitudes as functions of fre

vibration inputs are set to zero.  The underscore indicates the frequency transformation. 

e Magnetic Model 

ing frequency 

oil.  The 

  0N
n t X

ne of coils is shown in Figure 4.5 

In both spatial and frequency response calculations, the amplitude functions, 

, ,
M
k m pX , are calcul

( quency.  In this equation, the 
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     , , , , , , , , , 
1j

A case in which the coils are individually energized can be specified as 

jmax
M K Mi x i     k m p k m p j j k m p k m pi i i   X X . (4.78) 

  1K
jx    for 

j j  , and   0K
jx    for j j  .  With this restriction, the amplitude function can be 

written as a transfer function. 

 
 

  
, , , , ,

M
k m p k m p ji i 

 
X

. (4.79) 
, ,

K
j k m px i i  
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Figure 4.5:  Arrangement of the magnetic model for sample 
calculation 
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The transfer function of the dimensionless field due to eddy current can be 

obtained by performing the Fourier transform on Eq. (4.76) and substituting in the results 

from Eq. (4.79). 
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J

 (4.80) 

The transfer function form of the coil field due to single energized coil is given by 

transforming Eq. (4.75) and applying the condition that only the j-th coil is energized 

 

  



JX

 
   ,

, , , 1
,

FEMM
FEMM
R j g LK

j

x
H r z

x T

   
 


 . (4.81) 

The coil current transfer function is independent of frequency.  For a unit amplitude input 

(   1K
jx   ), Eqs. (4.80) and (4.81) for the total field give the following. 
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J  (4.82) 

This function is evaluated and plotted using MATLAB.  The sample case for the 

spatial plot has frequency of  radians/second.  The effect of truncation 

error on the calculation can be assessed by comparing two cases.  The first case is 

calculated with a relatively high-order solution.  The maximum orders of the three 

components are:  radial, kmax=10; azimuthal, mmax=10; and axial, pmax=20.  This is a 

much higher order solution than can be used in the control algorithm.  The high-order 

case is intended to show that the solution is smooth and convergent.  The high order 

2 10,000  



solution should be close to the true solution.  The low-order solution gives the minimum 

number of terms and represents the preferred number of states for real-time control. 

Two cross-sectional views of the results are shown.  The first view, in Figure 4.6, 

is a plot of amplitude and phase in a transverse (   ) section of the rod at the midplane 

of the energized coil.   

The magnetic field for the harmonic case is a complex number so it is converted 

into absolute magnitude and phase for the plots.  The absolute magnitude plot shows the 

dip in the field in the middle of each quadrant due to eddy current.  The field is depressed 

about ten per cent at the center of the pie-shaped section.  The phase shows that the field 

is delayed with respect to the input.  A phase of 0.5 radians at 10,000 Hz corresponds to a 

time delay of 

 60.5
8 10  s

2 2 10,000

M

M

x
 

   
 

. (4.83) 

The magnetic field delay is comparable to the delay from acoustic effects.  For 

example, the time delay for an acoustic wave to pass through a single coil is  

 6

1

9.1 10  s
20c

c
z

z

c




    . (4.84) 
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a:  Amplitude 

b:  Phase 

Figure 4.6:  High-order model of magnetic field through a 
transverse section view of the actuator rod. 
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Another spatial plot, in Figure 4.7, shows an axial section view (   ) through 

the diameter of the rod.  The section passes through the center of the pie-shaped quadrant 

(
4

  ).   

 

Figure 4.7:  High-order model of magnetic field through an 
axial section view of the actuator 

For comparison, Figure 4.8 and Figure 4.9 show the FEMM results for the same 

radial and axial section views at steady state.  The coil field is independent of frequency.  

The difference between the full magnetic model and FEMM results is the result of the 

eddy current field.  The FEMM field in the transverse plane is an azimuthally symmetric 

shallow bowl.  The ridges in the amplitude plot of Figure 4.6a are the same depth as the 

bowl in Figure 4.8.  The axial section view is similar to Figure 4.7 but shows no saddle-

like dip in the middle of the coil, corresponding to the eddy current effect.  

rod. 

 137



 

Figure 4.8:  Steady s eld through a radial 
section view due to culated by FEMM  

tate magnetic fi
 coil current cal

 

Figure 4.9:  Steady state m
section view due to coil current calculated by FEMM 

agnetic field through an axial 
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A second case in which the number of modes is reduced to a min  is shown 

in 

imum

 low-order solution are:  radial - kmax=1, azimuthal - mmax=1, and axial - 

pmax=10.  The same types of transverse and axial section view plots are shown for the 

low-order case.  The case shows that the distribution functions using just one radial and 

one azimuthal mode are not greatly different than the high order case.  These plots 

suggest that the low order solution is reasonable for frequencies up to 10,000 Hz.  

Figure 4.10 and Figure 4.11.  The number of terms it each series for the magnetic 

modes in the

 

Figure 4.10:  Low order model of magnetic field through a 
transverse section view of actuator rod 
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Fig n 
axial section view 

Another type of example problem can be constructed to evaluate the frequency 

dependence of the magnetic field.  In this case, we define a set of output variables in 

which the magnetic field is averaged across a transverse section of the rod.  The 

transverse average field is the variable used by the vibration model to compute the 

distribution of magnetostrictive stress in the rod.  The frequency response shows how the 

average field at an axial position changes with frequency. 

The transverse average of dimensionless field for the coils from FEMM at the 

midplanes of the coils can be obtained by averaging the result in Eq. (4.82) across the pie 

segment.   

ure 4.11:  Low order model of magnetic field through a
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(4.8

where  

 Axial midpoint of the  coilj j

 





 

    



5) 

    (4.86) 

The formula is given for an arbitrary angular dimension, 0 , of the laminated 

segment.  For the case computed, the angle is a quadrant of a circle, 0 2

  .   

Equation (4.85) can be simplified with the following definitions, 

    
1
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,FEMM FEMM
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 (4.87) 
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 (4.88) 

Inserting the definitions into Eq. (4.85) 

 
 
       , , ,

pmax mmax kmax
k m p jFEMM i
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M
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 (4.89) 

This calculation can be computed for any energized coil and axial position for 

jmax×jmax array of results.  Figure 4.12 shows a calculation in which the sixth coil, j=6, 

is energized and all ten axial positions are evaluated, .  The calculation in 

Figure 4.12 is the high order case.  The top line in the figure is the field at the midplane 



1 10j  
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of the energized coil at 6 .  The two lines for the field on either side of coil 6 for the 

levels at 5  and 7  lie alm

plitude.  These lines represent the field in

 the en

 the energized coil are quite weak, a fact

ost on top of one another and are about a factor of ten lower in 

am  the rod which has diffused axially along the 

rod on either ergized coil.  The magnetic field at positions which are farther 

from or of 100 smaller than the field inside the 

energized co by the top line.   

The line for 

 side of

il shown 

6  shows the effect of eddy current on the driving force for the 

actuator.  The effect of the eddy current shows up as a first order attenuation beginning at 

eld at the midplane of the coil diminishes 

as a first o e  above this point. 

a frequency of about 10,000 Hz.  The average fi

rd r system
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Figure 4.12:   Frequency response of the average field at 

for a single energized coil 

 

various axial positions for the high order magnetic model 
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Figure 4.13 shows the same calculation except that the model is the low order 

case.  The amplitude at low frequency is the same and response begins to roll off at the 

same frequency.  The difference between the high order and low order cases can be seen 

in the attenuation the top line at 6  at high frequency.  The attenuation of the low order 

case flattens out at about 200,000 Hz rather than continuing toward zero field.  The figu

illustrates the expected result that the h

re 

igh order terms in the series are necessary for 

matchin st hich 

odel. 

g the field di ribution at high frequency.  The upper limit on frequency for w

the low order model can be satisfactorily used is the frequency at which the response 

begins to flatten out.  The low order response begins to deviate above 100,000 Hz  .  

Higher frequency calculations would require a higher order spatial m
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F

response to a single energized coil 

igure 4.13:  Frequency response of the average magnetic 
field at various axial positions for the low order system in 
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State Space Magnetics Model  

The derivation of the magnetic field has been working toward the state space 

form.  The next step is to write Eq. (4.77) in the form of a descriptor state space system 

that can be combined with the vibration and circuit models of the actuator as indicated in 

 . (4.90) 

In this form, all the terms that are coupled through their highest order derivatives are on 

the left hand side and multiplied by the E matrix.  All the terms that are coupled through 

their states or lower orders of derivatives are multiplied by the F matrix.  The matrices 

The magnetics model supplies the fourth row of the four-by-four system. Hence, we write 

out each submatrix individually as the following equation.   

  (4.91) 

By comparison to Eq. (4.77), it is evident that a number of the matrices are zero matrices.   

  (4.92) 

Equation (4.77) also shows that .  Incorporating these simplifications into 

Eq. (4.92) leaves the version of the state space equation which can be combined with the 

other subsystems as the following. 

 M . (4.93) 

Chapter 2.  The technique is to write each subsystem in the following matrix form. 

are subdivided into a four-by-four array according to the subdivision of the state vector.  

 Ex Fx Gu

41 43 44

41 42 43 44 4 .

N K M

N N K M

 
    

E x E x E x

F x F x F x F x G u

  


41

42

43

4

.

.

.

.






E 0

F 0

F 0

G 0

44 E I

43 41 44  K M NE x x F x F x  
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The elements of the non-zero coefficient matrices can be written as 

  (4.94) 

where the index, 

43
, , ,

41
, , ,

44
, ,

.

.

.

l, j k m p j

l,n k m p n

l,l ll k m p

E

F

F   

 

 

 

 1 1l k kmax m mmax p      

nsional k, m, and p elem

ration states.  The index, j

44
l,lF   term gives a matrix with the elem

, is the index computation that stacks 

the three-dime ents into a vector.  The index n corresponds to the 

elements of the vib , corresponds to the elements of the coil 

current states.  The ents of  on the diagonal. 

Combined Magnetics and Vibration State Space Model 

The magnetics and vibration models can be combined in a state space model for 

sample calculations.  In this model the derivative of coil current is the input to the 

magnetics model whereas the coil current itself is the input to the vibration model.  First, 

we write the vibration and magnetics equations in descriptor form with the coil current in 

the input position of the equation.  

 K . (4.95) 

 K . (4.96) 

Equations (4.95) and (4.96) can be written as a matrix equation.  Notice that the 

coil current deriva ow. 

 

 , ,k m p

11 12 14 13   N N N Mx F x F x F x F x 

41 44 43  M N Mx F x F x E x 

tive input. , is integrated to get the current in the third r

11 12 13 14   

Kx

4341 44

   
       
        
       
             

N N

N N
K

K K

M M

x

0x I 0 0 0 x
x

Ix 0 0 0 0 x

Ex F 0 0 F x








0F F F F x

. (4.97) 
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To clarify the input derivative for current from the state derivative for current, the 

equation can be rewritten as the following.  

 

11 12 13 14       
       
        
       

4341 44             

N N

N N
K

K K

M M

0x F F F F x

u
Ix 0 0 0 0 x

Ex F 0 0 F x

 





. (4.98)
0x I 0 0 0 x

 

This system can be written as a state space s

 

ystem 
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where 
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I 0 0 0
A . (4.100) 
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NM
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0
. (4.101) 

The displacement can be computed from this model using the  from Eq.  3.55.   2C
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 (4.102) 

 in 

Figure 4.14 t whe

derivative of current, we must apply an impulse to the derivative input. 

 (4.103) 

The impulse input is equivalent to setting the initial condition to the following. 

 

The time response for a step change transient analogous to the vibration model

Figure 3.3 is shown in .  To get a step change in curren n the input is the 

 Ku t . j

 0  , (4.104)

where 1K
ju   and 0K

ju    for all 

MV Kx B u

j j  . 

The response of the combined model shows ringing that is similar to the vibration 

model’s step response, but the attenuation of the displacement

Instead of a sharp step-like response in the vibration model, the displacement has the 

exponential rise of a first-order response to a step.  This is the expected effect of a 

diffusion equation opposing the step response. 

 response is clearly evident.  
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magnetic and vibration model due to a step change in coil 
current 

Figure 4.14:  Actuator displacement for the combined 
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The frequency response form of the combined vibration and magnetic model can 

be obtained by transforming the state space system in Eqs. (4.99) and (4.102) and solving 

algebraically for 
yNM

Ku
. 

   1y
i i 


 

NM
NM NM NM

K
C I A B

u
. (4.105)  

The input derivative is transformed in the above expression, iK Ku u , which 

gives the extra i  factor on the right.  The frequency response plot for a series of cases in

which the inputs are individually energized is given in 

 

 figure is 

analogous to frequency response for the vibration

the eddy current as frequency increases, whereas the vibration alone had much higher 

high frequency response.  The eddy current attenuation has an even more significant 

ined vibration and m tic models than the magnetic model alone 

becaus

cy 

Figure 4.15.  This

 model in Figure 3.5. 

The frequency response shows the strong attenuation in the displacement due to 

effect for the comb agne

e the vibration also generates a changing magnetic induction which adds to the coil 

current generating the eddy current.  The eddy current effect acts as a magnetic drag on 

the vibration of the rod.  The magnetic drag effect increases dramatically with frequen

above the first radial mode’s frequency constant.   
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Figure 4.15:  Frequency response of actuator displacement 
for the combined vibration and magnetics model 
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The eddy current attenuation of the vibration response makes a significant impact 

on the actuator design for high speed actuator response.  The main frequency range of 

interest is the range up to , ( ).  In this range the 

attenuation is significant, but  At frequency greater than 

10,000 Hz, the loss in response m

significant actuation.  Fo ust be modified 

to redu etic model 

te

1/ 4  

ean

r that

4 2747 Hz 10,000Hz   

 the actuator still responds. 

s that the eddy current eff

 range of frequency, the actuator design m

ect would prevent 

ce the eddy current by including more laminations.  The magn includes 

a design parame r, 0 , representing the angular dimension of the pie-shaped segment of 

the actuator rod.  The prototype is divided into quadrants so 0 2

  .  The eddy current 

can be reduced by decreasing 0 .  Another frequency response is shown in Figure 4.16 in 

which the angle is set to 0 16



significantly reduces the eddy current effect and restores the frequency response out to 

very high frequency.  The magnetic model development including eddy current effects is 

a key tool to designing actuators with high frequency response.  

   or 32 pie segments.  The finely laminated rod 
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Figure 4.16:  Frequency response of the finely laminated 

actuator rod, 0 16
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Current Density Solution 

Any time-varying magnetic field in the actuator rod induces a voltage in the coi

through Faraday’s law.  A nt 

eddy current density distribution.  To model this effect, one of the inductance coeffi

that is derived in Chapter 5 depends on the azimuthal component of eddy current d

distribution.  In this section, formulae for the radial and azimuthal components of current

density are derived in terms of the magnetic field solution.  The current density 

distribution of the actuator rod is not linearly independent of the magnetic field.  In this 

of the field has been derived thus far.  The solution for current density must account for 

equation for the current density is derived starting with one of Maxwell’s equations from

Eq. 

ls 

 compone of that voltage depends on the induction due to the 

cients 

ensity 

 

section, the relationship between the magnetic field and the current density is derived.  

The operation is not as simple as evaluating  because only the axial component 

the radial, azimuthal, and axial dependence of the field.  To get the full, three-

dimensional dependence, we have to return to Maxwell’s equations.  First, a governing 

 

 

 H J

(4.2) 

t

  

B

E , (4.106) 

and Ohm’s law, 

 


 J
E . (4.107) 

Substitute Eq. (4.107) into Eq. (4.106) to obtain 

 
t

   

B

J . (4.108) 
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The axial component of the Eq. (4.108) can be obtained by performing the curl operation 

on the vector.  The axial component of current density is zero by the orientation of the 

coil current. 
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J . (4.109) 

The axial component of Eq. (4.108) can be written as a scalar equation involving the 

radial and azimuthal current densities. 

 
1 r z

rJ J B

r r t
 


        

. (4.110) 

A second equation involving the components of current density can be obtained 

from the conservation of charge equation. 

 
1

0r
JrJ

r r



        

J . (4.111) 

These equations can be put in to dimensionless form with the variable 

substitutions from Chapter 2. 

 min min
T

B B B B
b

B T I
  
 

. (4.112) 

 
L

z

z
  . (4.113) 

 
g

r 
r

. (4.114) 
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T ,Note that the permeability,  is not the same parameter as R . 

dimensionless current density. 

We can derive a scaling factor for  , , ,J r z t  and  , , ,J r z t  to create a 

 

r 

,g r g
rj j

T I T I

r J r J
 

 
. (4.115)

Inserting these definitions into Eq. 

 

(4.110) and Eq. (4.111) gives the dimensionless form 

of the current density equations. 

 21 Tj
r z

g

j b  
r

t
 

  
      

. (4.11

 

6) 

1 jj   
0r

  
    

. (4.117

The goal of the derivation is to use Eq. 

) 

eries 

 

 

(4.116) and Eq. (4.117) to find s

solutions that are similar in form to the magnetic field solution.  The general form of the

solution that is sought is given by the following two equations. 

       
     

, , , ,

1 1 1 , ,k m m pN N 
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, (4.118) 

  

 
       
     

, , , ,

1 1 1 ,

( , , , )
,

pmaxkmax mmax
r k m p r k m r m r p

r
k m p r m r k m m r p

t R Z
j t

N N N

     
  

     


  

J
, (4.119) 

where ( , , , )rj t    and ( , , , )j t     are dimensionless current density functions, 

    , ar k  nd r pR Z, ,m r m    

current density, and 

 are modal functions for the radial component of 

Z , ,k mR    , and m p       are modal functions for the 

azimuthal component of current density.  The solution of current density is not 
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independent of the magnetics solution so it is to be expected that the amplitude functions, 

 , , ,r k m p tJ  and  , , ,k m p tJ  are related to the amplitude functions for the magnetic modes

 M   The details of the derivation of the functions are given in 

, 

APPENDIX D.  The 

results are repeated here for completeness. 

, , .k m p tX
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. (4.122)  

      ,

, , 1 ,mk m k m k mR 
mm k m  

    


 
  
  

J . (4.123) 
J

   cosr m m     . (4.124) 



 

  sinm m      . (4.125) 

   sinp pZ     . (4.126)  

   sinr p pZ     . (4.127) 

e same as for the magnetic field problem and are 

. 

ensioned units is needed for the coil circuit 

lation involves d

FEMM.  The vector current density in dimensioned units is given by 

The eigenvalues for the modes are th

APPENDIX D

The vector current density in dim

coupling to eddy current because the calcu

defined in 

imensioned parameters from 
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The radial and azimuthal components of the current density distribution functions can be 

grouped into a single vector function for use in the induction calculation. Let  

 

 

     

 
2 2

,

sin sin

1
m

g m

m
gR g p

L k m

r
r r

r rr

z



 


 


 
  

       
 

,

2 2

2 2
,

,
, 1

, ,

,

2 2

cos sin

1

, ,

m

m

pk m
m

g LR g p
m

L k m r m r

k m
k mM

k m p g

g k m

zr

r zr

z N N

r
T I

r z r






 

 


  




 





   
          

 

 
       

  

 

f

J

J

J

, ,k m m r pN  



     , ,

p

L

m k m m

z

N N  

    

 
 



0

p

z

N 


 
 
 
 
 
 
 
 
 
  

 




 
 
 
 

.(4.129) 

With this definition of the spatial distribution function, the dimensioned current 

density can be written in terms of the dimensionless eddy current states as  

(4.130) 

This is the form for current

ts in Chapter 5. 



    , , , ,, ,M M M
k m p k m pr z t  J f X . 

 density that is most convenient for computing the 

inductance coefficien

 
1 1 1

, , ,
pmaxkmax mmax

k m p

r z t 
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Frequency Response of the Eddy Current Density Model 

model can be evaluated using MATLAB to illustrate the 

 of the current distribution under an oscillatory input current to the coil.  The 

The eddy current 

properties

frequency dependent amplitude functions are given in Eq. (4.79).  The current density can 

be evaluated using these amplitudes and the distribution function in Eq. (4.118) along 

with the associated spatial functions for the coil field and ed

vibration component of magnetization is set to zero in these calculations.  Figure 4.17 

shows the real component of current density, 

dy current field.  The 

Re( ( , , , ))j t     through an axial,    

plane.  Only the azimuthal current density is plotted.  The inductance coefficients which 

are computed in the following chapter ultimately depend 

component.  The radial component current density is an intermediate step in the 

derivation of the azimuthal component.   

The response of the eddy current is to cancel the field from the coil current.  The 

coil current is positive so the eddy current reaches a pe

outer surface of the rod just inside the energized coil.  T

centerline is due to conservation of charge.  No charge can build up at any point in the 

interior of the rod; therefore, the net current through the axial section must be zero, and 

the area under the curve in Figure 4.17 must integrate 

r 

only on the azimuthal 

ak in the negative direction on the 

he positive peak near the 

to zero.  The positive and negative 

components represent the circulation of the eddy current around the pie-shaped cylinde

as illustrated in Figure 4.2 
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Figure 4.17:  Real component of eddy current density 
distribution in an axial section view 

The real and imaginary components of azimuthal current distribution in a 

transverse section view are shown in Figure 4.18 and Figure 4.19.  Both current 

distributions in the transverse section view show the negative peak at the outer radius of 

the cylinder and the corresponding positive peak near the centerline.  The current density 

must be zero normal to any insulated surface.  So, the azimuthal current density goes to 

zero on the insulated boundaries between the pie segments. 

The general features of the current density solution conform 

modal model of eddy current distribution in a transverse section view is also compared 

the current density computed by the FEMM infinite cylinder problem in APPENDIX D. 

to expectations.  The 
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Figure 4.18:  Real component of current density 
distribution in a transverse section view 

 

Figure 4.19:  Imaginary component of current density 
distribution in a transverse section view 
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Summary of the Magnetic Model 

The governing equation for magnetics is derived from Maxwell’s equations.  The 

equation is simplified using the quasi-steady magnetics approximation of the 

electromagnetic wave equation to obtain a diffusion equation representing the magnetic 

field.  The magnetostrictive effect is added through a constitutive relation relating 

magnetic induction to magnetic field and strain.  The magnetic field problem is separated 

into two terms, one representing the field of the coil and the other representing the field 

due to eddy current.  This separation allows the field from the coil to be simulated by the 

finite element code, FEMM.  The eddy current’s magnetic field is obtained from a modal 

solution of a three-dimensional diffusion problem.  The homogeneous boundary 

condition approximation is introduced to make the equation for the eddy current’s 

magnetic field sol al transform 

which reduces the partial differential equation in time and three spatial variables to a set 

of ordin

 related 

 

ional distribution of 

magnet

vable.  The solution is obtained by the method of integr

ary differential equations in the time variable.  Each differential equation 

represents the amplitude of a spatial mode of the eddy current’s magnetic field.  A

problem to obtain the eddy current density distribution from the magnetic field solution is

also solved.  The eddy current density distribution is needed to compute the inductance 

between the eddy current and the coil.  The total number of state variables for the 

magnetic model is only ten states to represent a three-dimens

ic field and eddy current in the ten coil actuator.  This is a significantly more 

compact model than might have been anticipated and is one of the results of the project 

that may be useful in other magnetostrictive actuator research. 
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Spatial distributions of magnetic field are evaluated and plotted to visualize the 

solution of the magnetic field problem.  These calculations illustrate the axial distribution 

of magnetic field that is the source of the localized stress used in the multi-coil design to 

distribute the energy input in space and time for more efficient operation.  The 

visualization of the magnetic field in the transverse plane illustrates that the additional 

lamination of the actuator rod in the prototype design did not eliminate eddy current.  The 

eddy current effect produces a significant loss in actuator response at the upper end of the 

frequency range of interest. 

The magnetic model is combined with the vibration model to show the coupled 

system involving the damped wave equation for the vibration model with the diffusion 

equation for the mag t the magnetic drag 

term is greater than the frictional drag at high frequency and is responsible for a 

significant attenuation of the response.  A calculation using a modified, high speed 

actuator design is shown which increases the number of laminations to recover the very 

high frequency response. 

Test calculations are provided in APPENDIX D based on limiting cases in which 

the magnetic model solution must approach a known distribution.  One limiting case can 

be constructed by allowing the driving frequency to approach infinity.  The magnetic 

induction in the interior of the rod must approach zero.  The eddy current induction must 

build sufficiently to cancel the source distribution exactly.  Since the series solution for 

the eddy current induction distribution is truncated, the cancelation is approximate.  The 

test cases verify the derivation and programming of the coupling coefficients between 

eddy current model and t

netic field.  The stand alone simulations show tha

he vibration and coil current models. 
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An innovative test c wo-dimensional FEMM 

etation, the 

 

 

for the 

rations 

d for 

ase is also constructed in which the t

code is used to simulate the transverse plane of the actuator rod.  The calculation 

approximates the rod as a uniform infinite cylinder.  With some special interpr

results from FEMM can be compared to the eddy current density and magnetic field 

distributions from the modal series solution developed for the research.  The modal

model is executed with all coils operating in unison to approximate the infinite rod and 

the distributions functions are evaluated at the axial midplane of the actuator.  This 

simulation is used to evaluate the number of terms in the eddy current modal solution that

are needed for accurate simulation of the field.  At 10,000 Hz, the calculations show that 

one radial mode, one azimuthal mode and ten axial mode functions are sufficient 

problem.   

A test is devised using the symbolic mathematical manipulation program in 

MATLAB to differentiate the modal solution of current density to test that the solution 

solves the original differential equation.  A series of differential and algebraic ope

using Maxwell’s equations generates the analytical solutions for the modes of magnetic 

potential, magnetic induction, magnetic field, and back again to current density.  

Reproducing the original modal current density function by way of a computer program 

to perform the algebraic steps provides an independent test of modal functions use

the magnetic field and current density solution. 
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portant because the coils, eddy current, and vibration are 

physically close to one another 

ded to the actuator model in this 

section is the approximation that the amplifier is a proportional gain device.  This 

approximation neglects the higher frequency dynamics of the amplifier’s internal 

feedback network.  The coil model is also affected by approximations from the vibration 

CHAPTER 5 

COIL CIRCUIT MODEL 

 

Each of the drive coils in the multi-coil actuator is contained in a separate, 

individually controlled circuit consisting of a coil, load resistor, and amplifier.  The 

control input is computed by the digital control system and is applied to the amplifier’s 

input.  The control input must then go through the amplifier circuitry and the coil circuit 

to reach the magnetostrictive rod.  The dynamics of the amplifier and coil circuit affect 

the model-based control strategy.  The magnetic model section discusses the inductive 

coupling between the coils, eddy current, and vibration.  The inductive coupling of a coil 

with other current sources is im

in the actuator device.  The induced currents work against 

the input current that the control algorithm would ideally need for optimal actuator 

response.  The amplifier in the circuit is configured as a current-controlled device whose 

internal feedback is designed to compensate for the induced voltages, but the 

compensation is not perfect and the dynamics of the circuit need to be considered in 

conjunction with the dynamics of eddy current and vibration for an accurate 

representation of the process in the control algorithm. 

The only significant, new approximation ad



an

inductance calculation. 

The voltages around the coil circuit loop are given by Kirchhoff’s law for closed 

loop.  The main objective of the development of the circuit model is to account for the 

self inductances of the coil and the mutual inductance between the coil and all other 

current sources in the model.  The inductances are determined by an application of 

Faraday’s law.  Each mode of eddy current ibration can be thought of as a coil with a 

density of turns at every point in space equal to the modal current density distribution 

function.  The inductance calcula nt density distribution weighted 

ith the coil’s magnetic potential at that point in space.  Since each mode shape is fixed, 

the calculation yields an array of constants which represent the inductances between the 

current density distributions of the eddy current and vibration modes and the coil. 

The differential form of Faraday’s law is one of Maxwell’s equations and is the 

starting point for the derivation.  The inductances are solved using the current density 

distributions for vibration and eddy current that have been derived in Chapter 3 and 

Chapter 4.  The calculation depends on the magnetic potential that is calculated by the 

FEMM model of the actuator that is described in Appendix C.  The coil circuit model 

derivation results in a state space equation in descriptor form for the coil circuit.  The 

state variables in the coil circuit model are the normalized coil currents.  In addition, the 

outputs for coil voltage and power are computed from the state space system.  

APPENDIX F derives the general coupling of a coil with the magnetic potential which is 

used in the formulation of the inductances.  APPENDIX G gives the details of the 

solution for each coefficient.   

d eddy current models because it uses their current density distributions in the 

or v

tion integrates that curre

w
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Literature Survey on the Coil Circuit Modeling 

Mathematical m gnetostrictive device are 

rarely reported in the literature.  Modeling for the two main components, the amplifiers 

and magnetostrictive devices, are typically f

ictive 

law of m

ible 

magnetostrictive transducer [43].  The design of the feedback circuit requires a simple 

odels of a complete coil circuit of a ma

ound in separate references.  The literature 

survey covers the references to coil and amplifier topics separately with the coil model 

discussed first. 

The magnetostrictive device has a dual nature as both actuator and sensor.  Just as 

an externally supplied current in the coil produces a strain in the rod, a strain in the 

actuator produces a current in the coil.  Models dealing with the voltage or current 

induced in a coil from magnetostriction are mainly concerned with using the 

magnetostrictive device as a sensor.  In many instances, separate coils for sensing and 

driving the device are provided in the design [52, 53].  The sensing coils are modeled 

using the Faraday law applied to a coil.  The early articles by Pratt [36] and Calkins [54] 

are relevant because they recognize that sensing and driving could be accomplished in a 

single coil.  The models of inductive coupling are mainly lumped models with a single 

average magnetization in the device and a single average current. A typical case is 

Dapino’s lumped parameter model which is used to fit of several magnetostr

parameters simultaneously.  To model the pickup coil, Dapino applies the Faraday-Lenz 

agnetic induction to calculate the field in a coil as the integral of voltage across a 

pickup coil.  Dapino also uses a direct measurement of the magnetic field at the surface 

of the coil to show that the magnetic end effects of the coil are actually not neglig

[38].  Hall devises a feedback control circuit to compensate for nonlinearity of a 
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model of the drive circuit.  In two versions of the circuit, the feedback control wa

with both current-contro

s tried 

lled and voltage-controlled configurations of the drive amplifiers.  

Both ty

re 

e but is 

adapted y 

e 

e 

trol 

amples of simple dynamic models of an amplifier in a 

pes of amplifiers are modeled as proportional amplifiers in which the output is 

proportional to the error (either current or voltage error).  Hall’s paper is the only 

reference obtained in which the amplifier is explicitly part of the model. 

The coil modeling requirements of the multi-coil magnetostrictive actuator a

different than other magnetostrictive actuator models because of the spatially distributed 

nature of the coils, vibration, and eddy current density distributions.  To develop the 

multiple interactions between the current sources in the model, the research returns to 

basic textbook references in electricity and magnetism.  Modeling of inductive coupling 

between coils is commonly found in elementary physics and electromagnetic texts [46-

48].  The approach in this model is the same as conventional coil-to-coil inductanc

 so that the inductive coupling between each coil and modal function for the edd

current and vibration can also be computed.  The equation for inductive coupling is 

derived from Maxwell’s equations and the constitutive relations for the materials. 

The amplifier is the other dynamic component of the coil circuit.  The current 

controlled amplifier produces an output current proportional to the input voltage.  In th

actuator experiment, the current feedback (as opposed to the more conventional voltag

feedback) works to counteract any current induced in the coil by inductive coupling to 

other coils, vibration, and eddy currents and causes the coil current to track con

demand more closely.   

Mathematical models of amplifiers are commonly found in textbooks.  The 

references [55] and [56] give ex
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circuit.  The typical ices producing an 

 

e 

in of the circuit only requires the resistances in the circuit and does not 

depend

 from 

s a 

quency 

d 

tion 

r 

ic 

or in the 

 textbook models of amplifiers are constant gain dev

output voltage proportional to the input voltage.  Operational amplifiers, for example, are

idealized as constant, very high gain devices with infinite input impedance and zero 

output impedance.  The main point in modeling the operational amplifier is to compute 

the steady state gain when various forms of compensation and feedback are applied.  Th

calculation of ga

 on the dynamic components such as the inductance or capacitance.  The output of 

the calculation is simply the linear, steady state gain.  In models that are one step up

the steady-state gain calculation, the operational amplifier or transistor is modeled a

perfect gain device plus a capacitor in parallel.  This model is converted to fre

domain and algebraic computations in the complex plane are used to evaluate gain and 

phase as a function of frequency.  This type of model is used to design feedback 

compensation of amplifiers.  Since audio amplifiers, like the ones used in this research, 

are multi-stage devices with complex feedback schemes, the frequency response models 

become high-order transfer functions.  Modeling of a detailed circuit is a usually handle

by computer simulation.  One of the early circuit modeling codes is SPICE (Simula

Program with Integrated Circuit Emphasis) which was developed at University of 

California at Berkeley in the 1970’s by Nagel and others [57, 58].  The modeling 

approach of SPICE has been widely adopted and many commercial electronic analysis 

codes trace their modeling origins to the SPICE code.  SPICE was originally intended fo

integrated circuit design but has become a general-purpose tool for all types of electron

circuits.  SPICE represents each discrete transistor, resistor, inductor, and capacit

circuit individually.  The power of the code comes from the library of models of 

 171



nonlinear devices such as MOSFET’s and bipolar transistors which can be incorporated 

into a circuit as building blocks.  Steady state, dynamic and frequency domain results can 

be calculated from the same SPICE model.  For an electronic circuit simulation 

representing all the discrete components in an audio amplifier, the model might be

compared to an integrated circuit but still results in a high order model fo

 small 

r the purposes of 

control he 

egin 

Governing Equation for the Coil Circuit 

The coil circuit consists of three components:  a coil, an amplifier and a resistor 

connected in series.  The starting point for the model of the circuit is Kirchhoff’s loop 

equation around the coil circuit.  In the loop equation, the sum of the voltages around any 

closed loop must be zero. 

.  Moreover, the input data for the discrete components in the amplifier used in t

research are not available.  Since the amplifier used in this research is rated for less than 

±3 dB variation in gain from DC to 20 kHz, the amplifier frequency dynamics only b

to come into play at the upper end of the range of the actuator problem.  Based on this 

understanding of the dynamics, a simple, proportional gain approximation of the 

amplifier, like the models in Ogata[55], should suffice.  

 , 0Amp j j j LI   , (5.1) 

where 
,Amp j

V  is the voltage supplied by the amplifier, 

K KV V R
K

jV  is the voltage drop across th

coil, 

e 

K
jI  is the current in the circuit, and LR  is the resistance of the load resistor in the 

circuit.   

A load resistor is included in the circuit to match the impedance of the circuit to 

the output impedance of the amplifier.  The audio amplifier is designed for a load 
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impedance of 4 ohms.  Audio amplifiers, like the ones used for the experiment, when 

used to power loudspeakers are high pass filters with cut-off frequency of about 20-50 

Hz.  The circuit can rely mainly on the inductive component from coil of the loudspe

to provide load impedance.  The magnetostrictive actuator, however, includes a DC bias

The inductive load becomes zero at DC so a resistive element is needed in the circuit to 

stabilize the amplifier feedback under DC conditions.  The resistance of the load resistor

is selected to be 4 ohms to match the impedance of the output stage of the amplifier.   

The voltage across the coil consists of a purely resistive loss in the coil wire and 

an inductive component.  The dimensionless variables are more conveniently defined 

when these inductive and resistive components are separated.  Let 

 K KI V V R . (5.

With this definition, the loop equation becomes the following:   

  , , 0Amp j Inductive j j L CI    . (5.3) 

While amplifier dynamic modeling could be elaborate, the choice in this model is 

to take the simplest possible approach.  The amplifier in the prototype actuator’s drive 

circuit is configured as a current-controlled or transconductance amplifier.  This 

configuration typically is high gain and is fast responding.  Based on this characte

the approach in this dissertation is to approximate the amplifier voltage as a proportiona

gain device.   

       ,
K

Amp j j jt U t I t V G . (5.4)

The proportional nature of the feedback results in a steady state error between 

   and  K

aker 

.  

 

2) 

ristic, 

l 

 

,j Inductive j j C

KV V R R

jU t jI t .  The steady state error is made small by designing the amplifier so that 
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the gain G  is large.  The name “transconductance” amplifier recognizes that the gain of

the device in units of resistance.  The gain multiplies the amplifier input by a negative 

resistance to provide a source term for the differential equation.  Including the 

proportional gain model of the actuator in Eq. (5.3) yields the following.   

  

 

 ,Inductive j L C j j
KI U t   V G R R G . (5.5) 

    

A simplified inductive voltage that includes just the self-inductance of the coil 

reveals the basic character of the coil dynamics. 

 K K
j L C j jI t I U t   L G R R G . (5

where L  is the self inductance of the j-th coil.  This equation is a first order, ind

resistive system.  A frequency constant of the circuit, in

.6) 

uctive-

, can be defined which 

in he numerator in 

y 

igh frequency. 

,ductive j

characterizes the dom ant pole of the inductive-resistive circuit.  T

Eq. (5.7) sums of all the resistance elements including the transconductance gain of the 

amplifier, load resistor, and the resistance of the coil.  It can be seen from this frequenc

constant that a gain which makes the steady state error small has the additional effect of 

making the pole occur at h

 


,

L C

inductive j K


 

G R R

L . (5.7) 

The gain in this expression represents a dynamic feedback rather than a steady 

s not given in amplifier design data because the gain actually depends on the 

load.  A  

state relation between the input demand and output current.  The gain for this type of 

application i

n approximate value must be inferred from the frequency range of the amplifier. 
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The gain is estimated by using the nominal amplifier cut-off frequency in radians per 

second for inductive and then solving for the corresponding gain, G . 

The main work of this chapter is to define the self and mutual inductance 

coefficients for the coil and other current density distributions.  The general equation for 

induced voltage can be written out from elementary physics without yet knowing the 

formulations of the coefficients.  The voltage induced in a coil due to time-varying 

currents can be expressed as a set of inductance coefficients times the current derivatives 

for all the sources of induction. 

    , , , , , , ,
1 1 1 1

jmax pmaxkmax mmax nmax

Inductive j j j j k m p j k m p
j k m p n

 ,
1

K K M M N N
n j nI t I t 

   

I t . (5.8) 

The constants, 



       V L L L

,
K

j jL , , , ,
M

k m p jL , and  represe,
N

n jL , nt inductances between the j -

coil to vely.  The 

variable, 

the other coils, eddy current modes, and vibration modes respecti

K
jI 
 , represents the derivative of current in the -th co

and 

j il.  The variables, , ,k m pI  M

N
nI , represent the derivatives of the amplitude functions for the eddy current and 

vibration modes scaled to units of equivalent current.  These quantities are proportional

the dimensionless amplitude functions,  , , , , ,
M H
k m p M k m pI t I = X  and  N N

n n

 

 

to 

I t I = X

are ultimately replaced by the dimensionless quantities in the derivation.  The 

inductances are fixed coefficients that depend only on the geometry and material 

properties of th

t , and 

e actuator.  

Dimensionless variables for the coil circuit model 

approa t has

The coil circuit equation is transformted into dimensionless units using the 

ch tha  been applied to the vibration and magnetic field problems.  As in the 
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vibration model and the magnetics field model, the range and offset of the dependent 

variables are set by the linear range of the coil current at steady state.  The 

transformations of the variables defined in the Chapter 2 are applied to the coil 

variables. The current is defined as the following. 

equation 

K
j miK

j
nI I

x
I





 . (5.9) 

 

The amplifier input is scaled in units of current also. 

j minK
j

U I
u

I





. (5.10) 

An additional parameter, the dimensionless voltage, is needed for the circuit 

equation.  The inductive voltage of the coil is zero at steady state so the scaling and offset 

for the amplifier voltage are given by the voltage drop across the loop resistance. 

) 

 

  L CI   . (5.11

The dimensionless voltages are given by: 

V = R R

 
, ,

,
Amp j Amp j

Amp j

L CI



V V
Vv

 
= R R . (5.12) 

In dimensionless units, the proportional model of the amplifier can be written as  

        ,Amp j j j

L C

Kt u t x t   R R

The inductive voltage, in dimensionless units is given by: 

 

Gv . (5.13) 

 
, ,Inductive j Inductive jv  ,Inductive j

L CI


  
=
V V
V R R . (5.14)
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The dimensionless version of the loop equation is found by substituting the 

dimensionless variables into Eq. (5.3) and simplifying the result. 

        1 Kt x t u t   v . (5.15) ,Inductive j j j

L C
L C

 

    
G

R R
G

R R

To make the notation more compact, let the following dimensionless gain for the 

amplifier be defined. 

 amp

L C


=
GG

R R
. (5.16) 

 u t . (5.17) 

(5.1

(5.1 ) 

 

       , 1 K
Inductive j amp j amp jt x t  G Gv

The transformation in Eq. 4) can also be applied to Eq. (5.8). 

 
1 1 1 1

,
1

.

jmax pmaxkmax mmax

j k m p

j n n
n

   









 8

where the dimensionless inductance coefficients are defined as: 

 

   

 

, , , , , , ,
K K M M

Inductive j j j j j k m p k m p

nmax
N N

L x t L t

L t

  



   







X

X

v

,
,

K
j jK

j j

L CR RL 
 

L
. (5.19) 

  
, , ,

, , ,

ML j k m pM
j k m p

L C

L 
R R . (5.20) 

  
,
N

j nNL 
L

,j n R R . (5.21) 
L C
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Solving for the inductance coefficients 

The inductance coefficients can be derived from the Faraday’s law o

Faraday’s law in differential form is one of Maxwell’s equations.   

f induction.  

 
t

  


E
B

. (5.22) 

In APPENDIX F, this equation is integrated

the coil

 twice to get the following form for 

 voltage.   

  
,

ˆ
C j

K K
j j CV I R . (5.23) 

Vc g

T
e d

r r


  AV

where he 

the rod and the inner radius of the coil are assumed to be equal.  By comparison to 

Eq. 5.2), the inductive component of the coil voltage c

 

A  is the magnetic potential, T  is the number of turns per unit length, ,C jV  is t

volume of the coil,  and r r  are the inner and outer radii of the coil.  The outer radius of c g

( an be identified as  

 
,

, ˆ
C j

Inductive j

Vc g

TV e dV
r r


  A . (5.24) 

The differential equation for magnetic potential is derived in Appendix C in the 

section

shows it is a linear function of the current density.  We repeat the equation for the 

discussion. 

 (5.25) 

The linear properties of Eq. (5.25) mean that the potential can be expressed as an 

algebraic function of the current density distribution functions.  Let the solution to 

Eq. (5.25) be written in the following way to show the linear dependence of the function 

 that describes the FEMM model.  Equation C.5 gives a form for the potential that 

         υ r A r J r . 
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A on J  not 

 . (5.26) 

where the notation suggests the linear dependence of A on J 

ociated amplitude functions.   

where the functions, 

.  The square brackets are used to indicate that A depends on J over all space

just the value of J at r. 

   , | ,t t    A r A r J r r

The current density can be written as the sum of all the current density modal 

functions and their ass

 
, , , ,

1
k m p k m p t



X
 (5.27) 

         

   

1 1 1

1

,

.

jmax pmaxkmax mmax
K K M M
j j

j k m p

nmax
N N

n n
n

t x t

t

  



   



   



J r f r f r

f r X

 , ,K
j r zf ,  , , , ,M

k m p r zf , and  , ,N
n r zf

, eddy current, and vibration in dim

 K
j

 are the spatial current 

ensioned 

units.  The correspond

density distribution functions for coil current

ing amplitudes functions are x t , , ,
M
k mX  p t , and . 

The principle of superposition applies to linear equations so this expression can be 

written as the following where A[-] implies the same mathematical operation in each 

  (5.28) 

Differentiating Eq. (5.28) and substituting the

yields the following. 

 N
n tX

instance. 

     

   

   

1

, , , ,
1 1 1

1

, |

|

| .

jmax
K K
j j

j

pmaxkmax mmax
M M
k m p k m p

k m p

nmax
N N

n n
n

t x t

t

t



  



   

   

   



  



A r A r f r

A r f r

A r f r

X

X

 result into the integral in Eq. (5.24) 
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,

,
1

, ,ˆ |

C j

Inductive j j j
j Vc g

M
k m p

r r

dV








  

        e A r f r X

   .NdV t


  X

,

,

, ,
1 1 1

1

ˆ |

ˆ |

C j

C j

K K

pmaxkmax mmax
M
k m p

k m p V

nmax
N

n n
n V

dVx t

t



  



  

    

 

 

e A r f r

e A r f r





V

 (5.29) 

Converting the voltage to dimensionless form yields the following. 

 

jmaxT 

      

   

   

,

, , , ,
1 1 1

ˆ | .

C j

k m p k m p
k m V

nmax
N N

n ndV t





  
 

    



  e A r f r X

,

,

,
1

1

ˆ |

ˆ |

C j

C j

jmax
K K

Inductive j
j Vc g L C

pmaxkmax mmax
M M

p

n V

T

r r I

dV t







      

  






 

  

e A r f

e A r f r X

R Rv
 (5.30) 

The A and f terms are kept in dimensioned form so that the input and output from 

FEMM can be used in their native units.  The integral terms are constants that are 

functions of the geometry and material properties of the actu

resembles the desired inductance formula in Eq. (5.18).  The formulae for the inductances 

in dimensionless units are given by the following: 

j jdVx t r 

ator.  Equation (5.30) now 

     ,
ˆ |K K

j j j

T
L dV

r r I
 

,C jVc g L C

        e A r f rR R . (5.31) 

    
,

, , , , ,| k m p Vˆ
C j

M M
j k m p

Vc g L C

T
L d

r r I
     f r . (5.32) 

    e A rR R

     
,

,

C j

N N
j n n

Vc g L C

T

r r I
ˆ |L dV     R R  e A r f r= . (5.33) 
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Evaluation of the inductance using reciprocity 

While the coupling coefficient problem is solved by Eqs. (5.31) through (5.33), 

the calculation of magnetic potential using Eq. (5.25) over

the current density distributions is a particularly arduous analytical task.   A FEMM 

calculation of the potential is advantageous because it accounts for all the geometric 

details of the actuator design rather than the simplified geometry used to represent the 

magnetic field for eddy current or vibration.  The difficulty is that the FEMM code only 

provides two types of current sources:  uniform sources which can be used to model the 

coil and point sources which represent an infinitesimal wire loop in the axisymmetric 

geometry.  Unfortunately, the current density distributions for the modal functions of 

rrent cann  be easily or  

source n the ind e calc tion 

to be in

n’s potential over the coil volume.  The coil’s potential function can be 

calculated by FEMM using the same cases used to evaluate the coupling coefficients in 

the vibration and eddy current modeling chapters so the coil potential distribution is a 

ma atical result that is already in hand.  

The principle of reciprocity of inductances means that the inductance between any 

two current loops or current density distributions is the same if the role of source and 

target are reversed.  The following description illustrates the principle.  Consider two 

volumes, V1 and V2, and two prescribed current density distribution in those volumes, J1 

 the coil volume due to each of 

vibration and eddy cu ot  accurately defined in terms of point and

uniform current sources.  One of the useful mathematical properties of Eq. (5.25) is the 

principle of reciprocity which allows the target and  i uctanc ula

terchanged.  Consequently, the coil’s potential is integrated over the volumes of 

the various current density distributions rather than integrating the current density 

distributio

them
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and J2.  In this scenario, J1 is zero outside of V1 and J2 is zero outside of V2.  The vector 

potential, , is the potential function over all space corresponding to J1 

alone with .  The vector potential, 

 1| , t  A r J r

2 0J  2| , t  A r J r , is the reverse case in which J2 

is energized and J1=0.  The reciprocity relation can then be stated as: 

 

The reciprocity relationship is a consequence of Green’s first identity for vector 

fields applied to the magnetic potential differential equation, Eq. (5.25).  The reciprocity 

relation can be used to manipulate the expressions for the induction coefficien

Eqs. (5.31) through (5.33) into a form that can be computed using FEMM cases in which 

the coil current is the current source. 

 be 

 

       
1 2

1 2 2 1| , | ,
V V

t dV t dV    J r A r J r J r A r J r  . (5.34)    

t in 

The reciprocity equation can be applied to the evaluation of the inductance 

calculation in Eq.  (5.34).  Let 1V  and its associated current density distribution, 1J

the coil volume and current density in the inductance calculation. 

 1 ,C jV V . (5.35) 

,

     1
ˆ, ,K

j

c g

T I
r z

r r
  


J r f e . (5.36) 

The second current density distribution and volume can be any current mode in 

the actuator model and its associated volume. 

 2 xV V . (5.37) 

, (5.38)    2
xJ r f r 

 182



where x may be K, M, or N representing any coil current, eddy current mode, or vibration 

rent 

by 

mode. 

The FEMM cases used to calculate the potential due to coil current are designed 

with a current density distribution equal to one amp in each turn of the coil.  This cur

density gives a uniform current density over the coil area that differs from the  K
jf r  

the factor I . 

     ˆ, ,FEMM
j

c g

T
r z

r r
 


J e . (5.39

The corresponding magnetic potential is then: 

M
j j

The equivalences defined in Eqs. 

) 

 A . (5.40) 

e 

    1| , | K FEMt I        A r J r A r f r r

(5.35) through (5.40) can be substituted into th

reciprocity equation. 

        
,

ˆ ˆ| , ,
C j x

x x FEMM
j

T I
dV I A r z dV       e A r f r f r e  . (5.41

Divide both sides by  L C

) 
V Vc gr r

I R R  

 
    

    

ˆ |

1
ˆ .

x

x FEMM
j

VL C

dV

A d
I





  







e A r f r

f r r e





R R
,C j

x

Vc g L C

T

r r I  


R R

 (5.

V

42) 

The left hand side has been manipulated to be in the same form as the inductance 

coefficients in Eqs. (5.31) through (5.33).  Thus, the reciprocal form of the inductance 

coefficient is the right hand side of Eq. (5.42). 
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      1
ˆ

x

x x FEMM

VL C

L A dV  f r r e . (5.43

models and the potential calculated by FEMM.  APPENDIX G gives t

j
I

 R R ) 

The inductance formulation in Eq. (5.43) can be calculated with existing 

information from current density distributions derived in the vibration and magnetic 

he evaluation of 

the coefficients using the previously derived current density formulae.  A

also gives a test of the inductance coefficients that uses Green’s first identity for vector 

functions to develop a proportionality relationship between the coupling coefficients 

developed in the vibration, magnetic, and coil circuit models.   

il circuit model with the full system that is given in 

Chapte e 

to on o 

The coil current differential equation can be assembl

from Eq. (5.17) and the inductive voltage in Eq. (5.18).  The terms are arranged to 

correspond to the order of the terms in Eq. (5.44) 

PPENDIX G 

State Space Equation 

The plan for combining the co

r 1 requires that the coil current model be defined in the descriptor state spac

form.  The terms in the descrip r form for the coil circuit which are potentially n -zer

are the following: 

  (5.44) 
31 33 34

31 32 33 34 3 .

 
    

N K M

N N K M

E x E x E x

F x F x F x F x G u

  


ed using the loop equation 

  (5.45) 

   

       

, , , , , ,
1 1 1 1

,
1

1 .

jmax pmaxkmax mmax
K K M M
j j j j k m p k m p

j k m p

nmax
N N K
j n n

n

L x t L t

L t x t u t

 
   





   

   







X

X +G Gamp j amp j
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The rearrangement of the three dimensional array of states for the magnetics as a 

linear vector has been given in Chapter 3 and 4.  The definitions of the state vectors are 

repeated here for reference.  The magnetics vector is defined as 

 

2

M

M

X

X
1

M
l

M
lmax

X

X

 
 
 
 

  
 
 
 
  

Mx




, (5.46) 

where the index,  1 1l k kmax m mmax p       , is computed to stack the three 

dimensional k, m, and p elements into a one-dimensional vector.   

 . (5.47) 

on and the coil currents are already in 

vector form.   

 

, , p

The amplitude variables for the vibrati

M M
l k mX  X

11

22

;

KN

KN

K
KN
jn

KN
jmaxnmax

x

x

x

x

  
  
  
 

 
 

  
  
  
  
     

Nx x




X
X

X

X

. (5.48) 

The index n corresponds to the elements of the vibration states.  The index, j, corresponds 

to the elements of the coil current states.   

The required matrices for the state system form are given by 

 31
jmaE 0 x nmzx . (5.49) 

 33
,

K
j jL    E . (5.50) 
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34
, , ,

M M
,j l j k mL L p       E . (5.51) 

 31 N
,j nL    F . (5.52) 

 32
jmax nmaxF 0 . (5

 34

.53) 

 . (5.54)  33 1amp jmax jmax  F IG

jmax lmaxF 0 . (5.55

 3 G IG . (5

) 

.56) 

Equation (5.44) can be rewritten omitting the zero elements. 

  (5.57) 

Output variables for the coil model 

amp jmax jmax

33E x 34K ME x 
31 33 3 .  N KF x F x G u

Coil current 

The coil currents are measured variables.  The output matrix to select these states 

is used in the design of the state estimation algorithm. 

 I  Ky Ix . (5.58) 

Amplifier voltage 

The dimensionless amplifier voltage is given by: 

 33 3V  Ky C x D u , (5.59) 

where 
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  (5.60) 

Power calculation.

 33

3

1 ,

.

amp jmax jmax

amp jmax jmax





  



C I

D I

G
G

 

The power consumed at each time step is 2I R  where the terms are summed 

over the number of coils.  A dimensionless quantity

computed as the following. 

 . (5.61) 

t Model 

The coil model can be analyzed as a stand alone model for both tim

frequency response.  The following equations reduce the state space descriptor model in 

Eq. (5.57) to a stand alone case.  The only change required from the fully coupled model 

is to set the terms for eddy current and vibration effects to zero.  The state space 

equations for the stand alone coil circuit model are given by.   

. (5.62) 

Converting from descriptor to standard state space form gives 

 u . (5.63) 

where  and .  The output variables for the coil model are 

coil current and am

matrices given in Eqs. (5.58) and (5.60).   

In addition to the inductances formulated in this chapter, the coil circuit model 

depends on the data for the resistor and amplifier p

 proportional to power can be 

 TK Kx x=E

Time and Frequency Response of the Coil Circui

e and 

33 33 3 K KE x F x G u

K K K Kx A x B

 A E F

 

133 33K  133 3K  B E G

plifier voltage which are computed from the state by the output 

arameters.  When the equations are 
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converted to dimensionless variables, these amplifier ga

combine into a ratio, , which is the only new parameter needed to model the coil 

circuit.  The feedback gain, in this sense, is not the steady state relationship between the 

input to the amplifier and output current.  The feedb

constant of the coil circuit.  Also, since the amplifier is m

feedback, the gain parameter also determines the steady state offset of the circuit.  Based 

on the amplifier’s specifications for ±3 dB for 0 Hz to 20,000 Hz, the gain is chosen to 

give a frequency constant for the basic inductive resis

qs.  (5.7) and (5.16). 

in and resistance parameters 

ampG

ack gain determines the frequency 

odeled with only proportional 

tive circuit of 20,000 Hz.  The gain 

which gives this frequency constant can be solved from the E

   
,

,,

1L C amp

inductive j KK
j jj j L


  

 
GG R R

L . (5.64)  

Solving this equation for the gain and using the value of self-inductance of a coil 

calculated by FEMM, ,
K
j jL  for j=6  gives the following estimation of the gain parameter. 

 . (5.65) 

ol can be solved by substituting 

this gain into the differential equation and solving for steady state.  Setting the derivative 

to zero in Eq. (5.62) and using the definition of  and  from Eqs. (5.54) and (5.56) 

 value for the steady state error.   

 

41 0.4312 10 2 20,000 1 4.4192KL         G , ,amp j j inductive j

The steady state error for the proportional contr

33F 3G

gives the following

0.8155
1ampSS

    u G
amp Kx G

. (5.66) 

A simulation generated by MATLAB for coil current in response to a step change 

in the demand is shown in Figure 5.1.  In this transient, the current demand for j=6 is 

 188



energized while the other demands are held steady at zero.  The amplifiers in the other 

circuits remain on in an effort to maintain the current at the demand of zero.  The 

dynamics of the active coil circuit are basically the same as an isolated coil, resistor and 

amplifier.  The current follows an exponential rise to the demand current.  The multiple 

he 

ctance between a coil and its adjacent neighbors is about 

25% of its self-inductance.  This coupling is dimini

circuit which works to cancel any induced current.  With a high feedback gain, the 

induced curren  top of one 

zero.  

 

ery 

t the scale shown.  The 

results when other coils are energized with a step dema

only on

coils add a coupled behavior which can be seen in the response.  The magnetic field 

generated by the active coil generates an electric field in the opposite direction in t

other coils.  The mutual indu

shed by the feedback control of the 

t can be nearly canceled.  The current in coils j=5 and 7 lie on

another.  The current drops to about -0.075 following the step and then returns to 

The amplitude of the induced current in coils farther from the energized coil is smaller.  

The current in coils 4 and 8 responds more strongly to the induced current in coils 5 and 7

than to the current in the energized coil.  The current in those coil increases by a v

small amount.  Coils farther away have no perceptible current a

nd are essentially the same, so 

e coil is shown.   
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Figure 5.1:  Step response of coil current from st
coil circuit model 

voltage which then decays down to the steady state value.  The peak voltage

generat e 

 its power supply.  

Typically, a transistor is limited to about 40 volts across a single stage.  The peak voltage 

of  in dimensionless units from the figure can b

dimens

.67) 

and alone 

Figure 5.2 shows the amplifier voltages for the same step transient.  For the 

energized coil, the voltage response to a step in current demand is a spike in amplifier 

 that can be 

ed by the amplifier is the most limiting quantity for high speed performance of th

actuator.  The maximum voltage that an amplifier can generate is limited by the “rail” 

voltages of the amplifier power supply applied at the power terminals of the output 

transistors.  The output of the amplifier saturates at the voltage of

,6 4.5Amp v e converted into the 

ioned quantity. 

  ,6 ,6 1.5 4 4.5 27 voltsAmp L C AmpI     V R R v  (5
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Figure 5.2:  Step response of amplifier voltage from stand 

Even though the feedback gain parameter is roughly estimated, the simulated 

voltage is within a reasonable range, and the transient behavior is consistent with the 

expected behavior of an audio amplifier. 

The frequency response of the coil circuit can also be simulated using the stand

alone model.  

alone coil circuit model 

 

for a single energized coil versus 

frequency.  The top line is the response of current in the active coil.  The other coils show 

the effect of the induced current from the active coil.  The shape of the energized coil is 

approximately that of a first order lag response representing an isolated inductive 

resistive circuit.  However, the shape is not precisely first order due to the presence of 

other coils.  The gain parameter in Eq. (5.65) is determined using just the coil’s self 

inductance.  The mutual inductance also acts on the coil current retarding the current 

response.  The mutual inductance between coils spreads the energy to the other coil 

Figure 5.3 shows the current in each loop 

 191



circuits and creating a response over range of frequencies about the corner frequency 

defined by the self-inductance.  This effect is evident in the coil current frequency 

response as the amplitude plot begins to drop below the 20,000 Hz point but drops more 

gradually than a first order system.  The energy transferred to the neighboring coil 

circuits is evident in the induced currents that rise from zero at DC to peak at the break 

frequency and then drop as the drive current drops. 
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Figure 5.3:  Frequency response of coil current for stand 
alone coil circuit model 
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g 

tance 

ft at the break frequency.  On a finer 

scale plot, the peak of the phase can be observed to be 0.7 radians.   

The frequency response of voltage over current is shown in Figure 5.4.  The 

voltage response of an isolated inductive resistive circuit has a behavior of a lead-la

component.  The derivative action comes from the coil inductance and the proportional 

action from the voltage drop across the load resistor.  The effect of the mutual induc

on the voltage is to smear out the lead effect slightly.  On the scale shown, the phase 

angle of the active coil shows very little positive shi
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Figure 5.4:  Frequency response of amplifier voltage for 

 

coil current model 
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Combined Vibration, Magnetic and Coil State Space Model 

The individual subsystem models have been prepared for a very straightforward 

assembly by defining each subsystem in the descriptor form using a predefined format for 

the state vector and coefficient matrices specified in Eq. (1.10).  The combined system is 

assembled by inserting the matrices in Eqs. (3.44), (4.87) and (5.57) into a single system 

matrix.  The descriptor form of the state space system is rewritten here.  Matrices that 

have been determined to be zero matrices or the identity matrices in the modeling are 

indicated as such in the completed system model. 

 

 
 
 
 
 
 

 (5.68) 

The main outputs needed for the control system modeling are coil current and 

displacement of the free end.  The voltage of the amplifier is also determined to ensure 

that the control system does not to give an unrealistic voltage demand.  The formulae to 

compute the measured values from the state variables and inputs are written here for 

completeness of the full system model.  A cross reference to the equation number of the 

defining equation is given to tie the outputs of the full model to their derivation. 

Displacement, Eq. (3.52)
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Amplifier voltage, Eq. (5.58) 
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 (5.70) 

Coil current, Eq. (5.60) 

  I Ky 0 0 I 0 x  (5.71) 

The descriptor form is converted to standard state space form by the algebraic 

solution of the system.  The MATLAB program solves the state matrices using the “\” 

operator rather than matrix inversion to compute the conventional state space coefficient 

matrices.  The low order models of vibration and magnetics are used in the simulation.  

The maximum orders of the low order case for magnetics are:  radial, kmax=1; azimuthal, 

mmax=1; and axial, pmax=10.  The maximum order for the vibration model is nmax=10. 

A time simulation shown in Figure 5.5 is a step change transient analogous to the 

step changes in Figure 3.3 and Figure 4.14.  The effect of adding the coil circuit to the 

model is subtle but significant.  The effect of the proportional gain in the amplifer model 

is to decrease the amplitude by the steady state error.  The mutual inductance with 

neighboring coils adds to the magnetic drag from the eddy current model.  As a result of 

the increased drag, the displacement shows more rapid decay of the ringing following the 

step than in Figure 4.14.  The first order rise in current leads to a slower response to the 

input step with the slope of the initial rise being slightly lower.  The lines for the first and 

last coils are delayed so

greater than the coils in the middle of the rod because of the flux peak at either end.  The 

magnetic flux peaks at the ends of the actuator rod because of the high permeability 

mewhat more than the rest.  The inductances of the end coils are 
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material used in the return path.  The net effect that is evident from the figure is that the 

coil circuit dynamics increase the magnetic drag and filter the current demand through a 

low pass filter.  Both effects work against the improvements in actuator speed that can be 

achieved with the multi-coil actuator. 
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  Step change for combined vibration, magnetic 
and coil circuit model.   

Figure 5.6 shows the coil current response to a step in a single coil.  In this 

transient, the coil closest to the wall, j=10, is energized.  The coil on the end is chosen to 

show the acoustic pulse passing through each coil as it travels the length of the rod.  The 

wave passing effect is not as easy to follow when other coils are energized because a coil 

Figure 5.5:
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in the middle of the rod generates two pulses traveling in opposite directions.  The coil 

current in the coil adjacent to the energized coil, j=9, is mainly affected by the induction 

fro  its neighbor.  The induction from the energized coil driv

The effect of the magnetostrictive strain pulse travels through the ninth coil and appears 

ll negative trace.  The traveling pulse appears on the 

current traces for the other coils also as it travels down the actuator rod. 

The figure for coil current is an indication of the behavior of the multi-coil 

actuator as a sensor.  The peak current from

 

coil cur

duced 

m es a negative current in j=9.  

as a small positive peak on the overa

 the magnetostrictive pulse is about 10% of 

the step current.  This result, as shown, gives a very measurable effect.  An even higher

response can be obtained by lowering the amplifier gain.  The potential for applications 

of the multi-coil device as a high speed, high amplitude acoustic sensor is evident from 

this plot. 

The induced response of coil current due to the coupling of the acoustic pulse to 

rent is detrimental to the high speed performance of the device as an actuator.  

The induced current represents energy which is lost from the acoustic wave and is 

dissipated by the coil circuit’s resistance.  The high speed response of the actuator is 

improved by increasing the amplifier gain so that the amplifier works against the in

current keeping the coil current closer to zero.  Increasing the amplifier gain also 

increases the frequency constant of the circuit model, which improves high speed 

performance. 
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Figure 5.6:  Step response of coil current from combined 
vibration, magnetics, and coil circuit model 

Figure 5.7 shows the frequency response for displacement for a unit current 

demand applied to each coil.  This plot is comparable to the frequency response plots 

shown in Figure 3.5 and Figure 4.15. 

The attenuation of the response by the coil circuit is even more apparent in the 

frequency response than in the step change transient.  The amplitude of the first peak is 

approximately 0.2 which is down from 0.45 in the model of magnetics and vibration in 

Figure 4.15 dow e reduced 

response is due to the filtering effect of the resistive inductive circuit and the steady state 

error fr

n from 0.65 in the plot of vibration alone in Figure 3.5.  Th

om the proportional gain modeling of the amplifier.   
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Figure 5.7:  Frequency response of displacement to current 
demand for combined vibration, magnetics, and coil circuit 

model
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 202

The frequency response of coil current to a demand applied to a single coil circuit 

is shown in Figure 5.8.  This trace is similar to Figure 5.3 but with the additions of the 

effects of vibration and eddy current models. 

The frequency response of coil current can be divided into three frequency 

sections.  The frequency response below 1000 Hz is the steady state response.  The 

dynamics of the actuator do not come into play.  The middle range between 1000 and 

20,000 is characterized by interactions among the vibration and eddy current subsystem 

models giving complex character to the response.  The high range response is dominated 

by the filtering of the coil circuit model.  The energized coil’s amplitude response in the 

top line of the fi ing around 

1000 Hz.  The mutual inductance effects start at

respons eddy 

. 

 

as the control algorithm 

optimizes the distribution of current to different coils to increase speed although not so 

much as the vibration model alone would have indicated. 

gure is characterized by the gradual drop in amplitude start

 about this value.  The high frequency 

e is not accurate because of the limited number of terms in the vibration and 

current models.  The lack of high frequency terms is unimportant in light of the 

attenuation from the coil circuit model

Despite the heavy attenuation that has been discovered through modeling of the

eddy current and coil circuit, the multi-coil actuator still has dynamics that can be 

exploited for high speed response.  The range of frequency response that is targeted for 

enhancement in this research is from the first resonance at about 2500 Hz up to about 

10,000 Hz.  In this range, the frequency response of coil current and displacement show 

some differences in amplitude and phase that come into play 
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Figure 5.8:  Frequency response of coil current to a current 
demand in j=6 
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The conclusion that can be reached from the results of full system model is that 

the enti

ith 

ns of eddy current and amplifier dynamics 

are con ded 

r 

Frequency response of displacement for high speed actuator model, 

re actuator system needs to support the frequency response objective.  A very high 

frequency response from 25,000 to 100,000 Hz is possible using the ten coil actuator w

the vibration model but not when the limitatio

sidered.  To gain very high frequency response, the actuator must be subdivi

into more pie segments as indicated in Figure 4.16 to reduce eddy current and a faste

amplifier must be used.  As an indication of the response that could be achieved with 

these modifications to the design, the frequency response plot for 32 pie segments rather 

than four and amplifier gain set a factor of twenty higher is shown in Figure 5.9:  

0 16



figure shows that high frequency response is obtainable with the proper choice of desig

parameters. 

   and .  This 

n 
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Figure 5.9:  Frequency response of displacement for high 

speed actuator model, 0 16

   and , 20amp highspeed amp G G
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Summary of Coil Circuit Model 

A coil circuit model is derived in this chapter which describes the dynamics of the 

coil, amplifier, and load resistor.  The current controlled amplifier in the model is 

approximated as a proportional device that has gain in units of resistance so that the 

resulting circuit is an inductive-resistive circuit.  The inductive-resistive formulation 

generates a single state variable representing the current for each circuit.  The model of

the coil includes voltages induced by all current density distributions in the model 

including the effects on the coil from other coils and from the modal distributions of eddy

current and magnestostrictive strain.  An innovative method of calculation of the 

inductance coefficients for the modal current density distributions using the reciprocity 

 

 

principle is developed.  The reciprocity method of calculation requires only the modal 

current density distribution and a steady-state FEMM calculation of the magnetic 

potential distribution in the rod resulting from each coil current to calculate the 

inductance coefficients. 

Stand alone calculations in the time and frequency domain illustrate the inductive 

resistive behavior of the coil circuit and the inductive coupling of coils to each other.  

Simulations combining the vibration, magnetics and coil circuit models illustrate the full 

open loop system response.  The simulations of current in coils that are not energized 

show the current generated as an acoustic pulse passes through the coil.  This behavior 

gives the effectiveness of the actuator as a sensor.  The induction effect from 

magnetostrictive strain also contributes to the magnetic drag.  The increased attenuation 

of the displacement due to the circuit’s contribution to drag is shown by the frequency 
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response of displacement to current in comparison to the response of vibration and 

magnetic simulations without the coil circuit. 

An innovative test of the coil circuit model is devised using Green’s first identity 

for vector fields.  The test gives an equality between coupling coefficients from the 

vibration, magnetic, and coil models that can be checked.  A constant proportionality 

between pairs of state space coefficient matrices is derived.  Since the coefficients in each 

part of model are derived independently, the test uses each model to check the other two. 
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CHAPTER 6 

MODEL PREDICTIVE CONTROL FOR THE 

MAGNETOSTRICTIVE ACTUATOR 

 

The purpose of a control system is to alter the natural dynamics of a device for

specific desired effect.  In the case of the magnetostrictive actuator, the goal is to take 

advantage of the spatially distributed inputs of the multi-coil device to overcome th

limitation of the actuator’s vibration resonance and extend the frequency range over 

which the actuator can respond effectively and accurately to demands.  The spatia

distributed inputs provide different amplitude and phase responses at the tip of the 

actuator as a function of frequency as shown in Figure 5.5 and Figure 5.7.  The demand

to the individual coils can be timed so that their collective effects arrive simultaneo

move the end of the actuator along a desired trajectory.  The individual coils are

timed to cancel undesirab

 a 

e 

lly 

s 

usly to 

 also 

le effects of reflected wave motion.  The coils can each act 

individ

tiple coils 

amplitude and frequency using less power than a single coil actuator.  This calculation 

ually to cancel the reflected wave that results from actuation as the wave front 

passes through each coil.   

The research in this dissertation investigates whether multiple coils are more 

effective than a single coil for fast actuation.  Before embarking on the time domain 

control algorithm problem to investigate the improvement, a simpler problem in the 

frequency domain can be formulated to show the theoretical advantage of mul

over a single coil.  The actuator problem can be optimized in the frequency domain to 

show that a multiple coil actuator can track a sinusoidal reference signal of given 
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linear motion.  The frequency domain 

optimiz

de 

onsumed for the single and multiple coil cases makes a quantitative argument for the 

effectiveness of the multi-coil design. 

The main objective of this chapter is the derivation of a control algorithm that 

uses the multiple coils effectively in a practical, real-time control system.  Following a 

reference trajectory is a control problem that falls under the general heading of tracking 

or servo problems.  The optimal frequency response shows a positive phase angle 

between the optimal current demand and the tip displacement.  Positive phase suggests 

that the control algorithm should look ahead to the future reference trajectory specified 

for the actuator response and should provide a feedforward signal that anticipates the 

required future response.  The need for tracking and feedforward action points toward 

model predictive control (MPC) as a candidate strategy for the control design.  MPC falls 

into the same general category of optimal control as linear quadratic control (LQC) 

because the optimization is also based on a quadratic performance index.  The model 

predictive control strategy is a mathematical technique which uses a model of the plant to 

predict the behavior of the plant from the current time to a future time horizon.  The 

describes the advantage of the multi-coil actuator in terms of an improvement in the

efficiency of converting electrical energy into 

ation is an algebraic problem equivalent to finding the minimum of a parabolic 

surface in a jmax dimensional space where jmax is the number of coils.  This is a 

relatively easy problem to understand and to solve.  The single coil problem can be ma

to track the reference sinusoidal signal but does not have any additional degrees of 

freedom for optimization or minimization of power.  The comparison of the power 

c



strategy adjusts the inputs from the current time to the prediction horizon to minimize the 

quadra

The m odel predictive 

control strategy; however, some difficulties are encountered.  The main mathematical 

difficulty is that the actuator has more inputs available than variables controlled to 

setpoints.  The excess means that the steady state for the problem is underdetermined.  

The underdetermined situation can also be described as a system that has spare degrees of 

freedom.  Most control processes are designed to have the same number of inputs (or 

manipulated variable) as variables controlled to setpoints.  Such systems are called 

“square” systems.  The spare degrees of freedom problem is unusual in model predictive 

control literature.  The main new contribution to control theory in this dissertation comes 

from working out the resolution to the problems of steady state offset and non-

equilibrium distribution of current that can occur because of the spare degrees of 

freedom.  The problem is resolved by incorporating approaches analogous to 

conventional proportional and integral error feedback into the model predictive method. 

In addition to the calculation of demands for the control law, the control system 

must provide estimation of full state from the available measurements and must deal with 

the problem of time delay.  The combined model of vibration, magnetics, and coil circuits 

developed in Chapters 3, 4, and 5, when reduced to the low order case, has forty state 

variables.  The prototype actuator system only measures eleven variables. Since the 

control algorithm requires the full state vector of forty state variables, it must be 

estimated from the available measurements.  A standard Kalman estimator based on the 

tic performance index.   

ulti-coil actuator control design can be based on the basic m
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linear model of the actuator is developed for the real time control program.  Conventi

estimation techniques are used for designing the estimator feedback gain. 

The speed of response of the actuator depends, in part, on the size of the time ste

of the real time system.  The calculations in the control and estimation algorithm c

consume a substantial amount of the computational time.  With the hardware used for the 

experimental system, a number of compromises in the estimation and control algori

have to be made in the interest of reducing the computation time.  The approximatio

include reducing the order of the state space system (by a quasi-steady approximation) 

and using a single step calculation of th

onal 

p 

an 

thm 

ns 

e estimation algorithm rather than a prediction 

and cor ed 

d and 

 

g 

ed 

 

nd 

 set 

of simulated transients.  The simulated results provide a clearer evaluation of the multi-

rection step.  The model reduction is a compromise between the time step need

for high speed control and the fidelity of the estimation and control computations. 

The time delay of the digital system must also be addressed.  The digital control 

system consists of a computational loop of operations in which the data are sample

converted from analog values to digital, the state estimation and next set of values of the

coil current demands are computed, and then the demands are converted back into analo

form and sent to the amplifiers.  The total time delay for the loop is significant compar

to the time scale of interest.  The current value of control demand is consequently based

on a sample of data that may be several time steps old.  The control algorithm must 

account for the time delay by predicting the behavior of the actuator over the 

computational delay.  This prediction task is grouped with the estimation calculations a

is based on the linear prediction model of the actuator. 

The results for the control design developed in this chapter are presented for a
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coil design than the experimental results in Chapter 7.  The benefit of the multi-coil 

design only becomes fully realized when the time step is on the order of the time for an 

acousti

 

ied 

Literature Survey on Control of Magnetostrictive Actuators and 

Model Predictive Control 

The survey of research related to control of magnetostrictive actuators covers two 

separate subject areas.  First, topics related to control using magnetostrictive actuators are 

covered.  The history of magnetostrictive actuators is briefly traced leading up to current 

research which shapes the response of the actuator using models based on the physics of 

the process.  This survey establishes the state of the art of control theory using 

magnetostrictive actuators and places the current work in context of the broader field.  

The second area is the discussion of model predictive control (MPC).  Although a 

relatively recent development, model predictive control has enjoyed broad application in 

industry.  The advantage of the method for the application of fast actuation is that model 

predictive control includes both feedforward and feedback elements in a unified but 

relatively simple mathematical structure.  The main goal of the literature survey is to 

establish links to the basic references on model predictive control that provide the 

c wave to pass through a single coil.  The fastest time step that can be achieved 

with the prototype hardware is a factor of ten slower than this desired time step.  The 

simulations using a smaller time step show the capability of the actuator without the

limitation of the particular hardware available for the experiment.  Simulations of the 

actuator with model reduction and the hardware time step are also shown for comparison 

to the examples using the full model with faster sampling to validate the model simplif

model. 
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underlying theory.  The application literature is also reviewed for a few examples of 

applications that are mathematically similar to the multi-coil actuator, such as systems 

with vi

Magnetostrictive actuator control 

Following the first reports of Terfenol in the literature, a number of publications 

in the 1980’s investigated potential applications for the new giant magnetostrictive 

material.  Most of the publications involved using the material in applications such as 

valve actuation, micro positioning, or vibration dampening which would require a 

feedback circuit.  The early articles focused on the feasibility of the application based on 

the Terfenol’s material properties without actually placing the device in a feedback loop 

[6, 59].  The earliest research that placed a prototype actuator in a feedback application 

seems to be Hiller who gave a description of using a simple proportional feedback of 

position error to cancel a vibration disturbance applied to the base of the actuator while at 

the same time tracking a reference position signal [60].  An article by Greenough [5] 

describes efforts to compensate for nonlinearities and load dependent gain in the Terfenol 

response.  The article describes shaping the response with two feedback controllers and 

indicates a digital implementation using a “transputer”.  Mathematical details of the 

control algorithm are not given.  Hall reported a compensation algorithm for a prototype 

device in which a measured acceleration signal was fed back through a proportional-

differential control to compensate for the nonlinearity of the magnetostrictive material 

through classical feedback [43].  Hall’s control scheme is a model-based control system 

that incorporates a theoretical transfer function of the actuator’s open loop response to set 

brational modes, and for instances in which the spare degrees of freedom problem 

is addressed.   
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the system gain.  The idea of Hall’s design was to overcome Terfenol’s nonlinearities

gain shifts due to load and temperature by incorporating linear feedback so that the 

actuator’s compensated response matched the ideal linear device more closely.   

In an early application of Terfenol to vibration control, Bryant reported a desig

for vibration control of a table supported by three Terfenol actuators[7].  This is perha

the first example in which the control scheme involved a multi-input and multi-output 

arrangement.  In the experiment, the three-legged platform was mounted on a shaker 

table which acted as a disturbance.  The feedback control was designed to maintain a 

steady ta

 and 

n 

ps 

ble top surface while vibration was applied by the shaker table.  The physics of 

the problem involves complex coupled vibration dynamics in three dimensions.  The 

control design, however, was not based on a physical model of either the actuators or 

table dynamics.  Instead, a proportional-integral-differential feedback was applied and 

then tuned manually by trial and error techniques to obtain an approximate classical 

control algorithm.  The feedback was then refined by an artificial neural network control 

that adaptively adjusted the response for greatest attenuation.   

Moon developed a structural vibration control method using magnetostrictive 

actuators [61].  An experimental system consisting of a simple aluminum beam supported 

on each end by a magnetostrictive actuator was used for experimental verification of the 

concept.  The vibration model of the beam has similar mathematical properties to the 

vibration component of the multi-coil actuator but in a much lower frequency range.  The 

first resonance of the beam occurs at 50 Hz.  In Moon’s mathematical model of the 

system, the magnetostrictive actuators are proportional devices. 
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A number of characteristics set the proposed multi-coil actuator apart from the

early controls.  The common characteristic of the early Terfenol actuator applications is

that the frequency range is well below the first resonance of the actuator.  At low 

frequency, the a

 

 

ctuator can be satisfactorily modeled as a linear, instantaneous 

component.  The advantages that are brought out by multiple coils are only evident when 

the bandwidth extends above the first longitudinal resonance.  Also, the magnetostrictive 

device given in the literature is a single-input, single-output system.  The only 

multivariate problems occur when multiple actuators are employed.  Separate actuators 

do not involve magnetic coupling among the inputs and lack the coupled sensing and 

actuation dynamics of the multi-coil device. 

 

.  

 

coil 

Compensation for hysteresis and saturation nonlinearities  

Recent efforts in control of magnetostrictive actuators have centered on handling

the saturation and hysteresis of the magnetostrictive material.  Hughes and Wen 

recognized the applicability of Preisach operators (on-off operator with dead band like a 

thermostat) to represent the hysteresis of piezoceramics and shape memory alloys [20]

Their paper went on to suggest an open loop, inverse operator to compensate for the 

nonlinearities.  Smith proposed a similar model of the hysteresis and a feedback control 

of a cantilevered beam using optimum control theory to compensate for the nonlinear

response of a magnetostrictive actuator [33].  The vibration of the cantilever beam is a 

process model in the same mathematical family as longitudinal vibration of the multi-

actuator.  Smith applied this control scheme in a practical application to control chatter 

and vibration in the cutting tool of a milling operation.  He presented a control algorithm 

with two types of compensation, an inverse operator for the saturation nonlinearity and 
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feedback control to compensate for hysteresis in the magnetostrictive positioner [62].  

Nealis applied robust control techniques to Smith’s nonlinear model to improve the 

rejection characteristics of the feedback portion of the design [63].  Tan and Bara

noise 

s 

combin

r.  

g 

ar 

or 

e 

ensate for them.  The 

nonline

of 

 

ble.  The difficulty of the 

ed an inverse of the Preisach operator with the inverse of the saturation 

nonlinearity in the forward loop of a controller in a static compensation algorithm.  This 

differs from the previous controls in that the feedback portion of the control is nonlinea

Ventakaraman with Tan and Krishnaprasad extended Tan’s earlier work by developin

an approximate inverse operator that includes a rate-dependent dynamic model of 

hysteresis as part of the inverse compensator [64]. 

The inverse control schemes can be thought of as compensating for the nonline

material properties in much the same way that a pair of eyeglasses compensates for po

focus of the eye.  The inverse of the mathematical shape of the response is applied to th

demand as a pre-filter resulting in an overall linear response.  The experimental and 

simulated results give good evidence of the success of the algorithms in representing the 

nonlinear processes and the ability of inverse operators to comp

ar control research is complementary to the present research in the multi-coil 

actuator.  The nonlinear control applies a very successful approach to the material model 

but then treats the actuator without spatial distribution effects.  The multi-coil actuator 

handles the spatial distribution of properties with detailed spatially distributed models 

the magnetic field and vibrational stress and strain but then approximates the 

magnetostrictive material properties as linear.  A combined model representing both

nonlinearity and spatial distributions seems mathematically feasi
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Background on model predictive control 

The model predictive control (MPC) method is a recent development in control 

theory but has become widely applied in control of chemical plants and oil refineries.  

The basic formulation that is used as the starting point for the control algorithm in this 

research can be found in standard texts on the subject[12, 13].  Either of these two 

references provides sufficient background on the basic MPC method.  The approach used 

in the multi-coil actuator is the simplest case given in the early chapters of these texts, an 

unconstrained problem with no random disturbances.  The history of development and 

65].  This article, 

s 

ic 

ed model is the number of calculations that the hysteresis modeling adds to the 

control algorithm.  A combined model is recommended for future work. 

references to the current trends are given in a survey of the field [

originally written in 1998, has been updated and republished several times as new 

research has been added to the field.   

The multi-coil actuator is a special case of predictive control because the number 

of inputs is greater than the number of variables controlled to a setpoints.  The situation i

generally described as non-square and possessing spare degrees of freedom.  The bas

textbook references do not provide much information on this class of problems.  

Maciejowski [12] mentions the topic briefly in a section listing problems “which are 

potentially very important, but which are mostly still at the research stage.”  For spare 

degrees of freedom, he suggests solving a steady-state problem to compute an optimum 

steady state distribution of inputs based on a steady state cost function.  The control 

problem is then modified to use the steady state optimum values as the setpoints for any 

spare inputs.  The control problem with augmented setpoints is square.  In their survey 
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paper, Qin and Badgwell discuss non-square systems and mention the technique of 

squaring the system by using a steady state optimization to calculate auxiliary setpoints.  

Rossiter [13] specifically does not address non-square problems in his monograph. 

states, “When MPC is applied to a nonsquare system the precise objectives and 

associated tuning are process dependent and nongeneric; hence, we omit this topic.”  

Published applications of non-square systems are fairly rare and are lacking in any 

mathematical generality.  Two examples mentioning non-square problems in recent wor

are Magni [66] and Shead [67].  The example problem in the Magni paper involves

fermentation process with two inputs and a single o

 He 

k 

 a 

utput.  The control scheme involves 

append

blem 

Similar control problems 

The actuator control problem presents a unique combination of features and 

requirements because of the novelty of the design itself.  One would not expect to find 

control research that is closely related.  However, problems from other fields have similar 

mathematical properties.  The survey sought related problems both to gain the benefit of 

ing integrators to the system model to guarantee no steady state error.  The same 

mathematical idea, but with a different method of introducing the integrators, is used in 

this dissertation’s design of the actuator control.  Shead’s paper is primarily about a 

technique for handling fewer actuators than setpoints.  The particular non-square pro

that Shead addresses is a heavy oil fractionator in which the system changes from square 

to insufficient in degrees of freedom because one or more actuators fails or reaches a 

limit.  Shead’s scheme, which he calls the operability method, involves steady state 

optimization of a variable to an interval rather than a setpoint.  Shead points out that the 

operability method can be applied to the spare degrees of freedom problem also. 
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their research in solving the difficulties of the actuator control and to determine whether

the present control research would have wider applicability.  The main ch

 

aracteristic of 

the actuator to achieve the higher speed actuation is to exploit the higher vibrational 

modes.  To devise a control system, the vibration is expressed in a modal model and 

modern optimal control techniques are applied.  The search found two research areas that 

share the same modeling and control approach: active structure control and 

thermoacoustic combustion control. 

The most closely related field is the active control of structures which is described 

in detail in Gawronski’s monograph, Advanced Structural Dynamics and Active Control 

of Structures[22].  One of the practical applications for active structural control is in 

positioning large satellite tracking antennae and radio telescopes that must be aimed 

toward a target.  Vibration in such systems can be best expressed as a modal plant model, 

similar mathematically to the vibration model of the actuator, and the control can be 

derived from the state space form of the equations.  The radio telescope structure is very 

lightly damped and the vibration interferes with receiving a precise signal.  The similarity 

of the structural dynamics problem is the representation of the dynamics of the antenna as 

a modal model with multiple inputs and outputs for sensing and controlling both the 

positioning and the vibration.  The structural dynamics problems are different from the 

multi-coil actuator in several significant ways.  The number of sensors and actuators in 

the structural system is usually designed to be equal so the control system does not 

encounter the problem of spare degrees of freedom.  The frequency range of the 

structural vibration problem is much lower.  The dominant frequencies occur below 300 

Hz.  This means that the dynamics of the actuators tend to be much faster than the 
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structural dynamics, and the actuators can be modeled as proportional devices with n

dynamics of their own that are important to the control problem.  The actuators are point 

sources of force and do not have a mathematical analogy to the coupling of inputs 

through a diffusion process like the magnetic field.  However, the main differenc

objective of control.  In the actuator, the goal is to move the tip rapidly, usually from 

o 

e is the 

closed 

.  

g a 

e 

archers 

in the field of active structure control as a simple academic problem leading to more 

complex vibration control applications. The transverse vibration in the cantilevered beam 

and longitudinal vibration in the actuator rod are mathematically the same problem.  

Hanagud applied the piezoceramic devices to a cantilevered beam to investigate sensing 

and controlling vibration [68].  His aim was to develop an active control method for 

to open and then back.  The technique is to use the distributed controls to put 

energy into the high frequency modes and then to draw the kinetic energy rapidly back 

out again.  Damping the high frequency modes works against the desired speed of 

response.  For the antenna aiming problem, the natural damping is very light and 

vibration is unwanted.  The control objective is to take energy out of the vibration modes

The control approach is to design an algorithm that damps each mode specifically.  The 

control algorithm drives the amplitude of the targeted mode to zero, in effect, applyin

setpoint of zero to the state variable for the mode’s amplitude.  Nevertheless, the design 

process and computations follow along similar lines and use similar mathematical tools.  

The active structural control work was found to have a number of useful parallels to th

actuator problem.  In particular, the techniques used in this research for balanced 

realization and model reduction are based in part on the methods given by Gawronski.   

The cantilevered beam problem has been investigated by a number of rese
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vibration in the vertical stabilizer of high performance aircraft.  Multiple piezoelectric 

devices are used so the vibration case is a multivariate problem like the actuator, and the

modal vibrational model and optimal performance index in his example are similar to

actuator problem.  Again, the differences are in the objective of control, damping vers

speed, and the frequency range of interest.  The control method that Hanagud chose for 

the design the structural feedback in the cantilevered beam is the linear quad

(LQC) method. 

 

 the 

us 

ratic control 

ect 

 

amps 

 burners 

ntrol 

A comparison between LQC and MPC methods for vibration control of a 

cantilevered beam using piezoelectric sensors and transducers is given by Nelson [69].  

His study found that the MPC method gave superior results.  Another comparable asp

of his study to the present work is that he also encountered problems with DC offset 

using the MPC and reformulated the cost of control effort in terms of the control demand 

rather than the change in demand as is usually done in MPC. 

Another problem that bears a mathematical similarity to the actuator problem is 

thermoacoustic combustion.  Schuermans combined a modal model of the combustion 

chamber acoustics with an impulse model of the flame front.  The dynamics of the 

combustion are represented by a distribution of straight delays in which the delay is a

Gaussian distributed variable.  Schuermans’ acoustic model combines a series of one-

dimensional flow elements to represent moderately complex geometries of combustion 

chambers in the state space format.  The control method designs an algorithm that d

each acoustic mode individually.  The Schuermans’ example problem contains 24

and, at most, two controlled modes so the problem has the property of spare degrees of 

freedom.  He uses the Moore-Penrose pseudo-inverse in calculating the optimum co
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gains.  The pseudo-inverse is a method of solving a least squares optimization problem.

Schuermans comments that the number of sensors and actuators need not be the same.  

The terminology of the combustion control problem is very different than the actua

problem but the underlying mathematics is actually very similar.  The main differences 

between the combustion and the actuator problems are that the frequency range of 

interest is lower and the objective of the thermoacoustic problem is to draw energy ou

the high frequency modes rather than put energy into those modes. 

  

tor 

t of 

Optimization in the Frequency Domain 

The actuator problem is a case of “spare degrees of freedom” in which the number 

of inputs exceeds the number of controlled variables.  This situation occurs less 

frequently than square systems in which the inputs and outputs are equal in number or the 

situation in which the number of controlled variables exceeds the number of inputs.  It 

seems plausible that spare degrees of freedom should offer some advantage in control, 

but the literature on control offers very little in the way of general guidance on the 

devising such a control system.  This section provides a simple algebraic optimization of 

the spare degrees of freedom problem in the frequency domain that is based on 

minimizing the energy consumed by the actuator while following a sinusoidal reference 

signal exactly.  The derivation serves as a mathematical illustration of the advantage that 

the spare degrees of freedom situation presents.  The optimization in the frequency 

domain finds the optimum input distribution for the multi-coil actuator in amplitude and 

phase as a function of frequency. The response of the single coil actuator following the 

same signal is also determined to show the conditions under which the multiple coils give 

an advantage and to calculate the magnitude of the improvement as function of 
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frequency.  The frequency domain solution for the single coil is an algebraic equation 

that does not involve optimization.  The frequency domain solution provides insight into 

the control advantages that can be gained by applications with spare degrees of freedom 

and how multiple inputs work. 

A general frequency response function with spare degrees of freedom can be 

represented as the following equation.  The output, in this case, is a scalar while the input 

is a vector.  This is the version of the equation that is needed for the actuator problem, but 

a more  

 

 general case could be devised in which the output is also vector, but lower

dimension than the input.  The optimization solution presented here does not depend in 

any unique way on the actuator transfer function other than the characteristic that it is a 

multi-input, single-output transfer function.  The frequency response function can be 

thought of as an arbitrary vector function.  The multi-input, single-output problem can be 

written as simply; 

     Ny i i i   T u . (6.1

In this notation, the underscore is used to indicate a frequency response transform of the 

time domain function.  The frequency response function for the actuator is obtained from

the state space model as the following. 

 

) 

 

 
     1

i i
i

 



   P P P PC I A B D T

u
. (6.2

y iN

) 

In the actuator problem, the controlled variable is  y iN  which is a scalar 

variable representing the displacement of the free end of the actuator at a given driving 

frequency,  .  The control input,  iu , is a vector of current demands which are 

applied at the amplifier inputs.  The model of the actuator is given by the linear state 
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space coefficient matrices, PA , PB , PC , and PD , which represent the coupled dynamics 

of the vibration, eddy current, and coil circuit models.  The frequency response, ( )iT , 

a row vector of scalar transfer functions representing the dynamics of the displacement

response to each of the individual current inputs.  At any given frequency, the transfer 

function,  iT , can be evaluated to yield a set of complex constants.  The basic 

is 

in 

frequency dom in control problem  to find a set of inputs that give the desired reference 

 

 

a

value of the controlled variable. 

 is

       r i y i i i     N T u . (6.3) 

In the frequency domain, the reference signal,  r i , is a sinusoidal signal of 

ramplitude,  and frequency,  , in radians per second.  The unknowns are the control 

inputs in the equation,  iu .  For a square system, the reference value problem in 

Eq. (6.3) has a single unique solution.  For example, if the input is a scalar like the 

output, then the solution is given by 

      1
u i T i r i   . (6.4) 

In control literature, this is ca amics solution.  The dif  

the control problem with spare degrees of freedom is that the number of unknowns in 

Eq. (6.3) is greater than the number of equations and the problem has no unique solution.  

In the general case for the spare degrees of freedom, some of the solutions

undesirable.  The problem can be made unique, and the spare degrees of freedom

put to good use by adding a requirement for the solution of Eq. (6.3) to also mi

some useful performance index.  The typica athematically easiest) c

minimize is a quadratic function.   

lled the inverse dyn

l (and m

ficulty of

 would be truly 

 can be 

nimize 

ondition to 
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 †1

2
u u=F . (6

The frequency input is a complex number so the quantity, 

.5) 

†u , represents the 

complex conjugate and transpos  ue of .  In the actuator problem, the quadratic term is the 

sum of nal  the squares of the current demands.  Power applied to the actuator is proportio

to the sum of squared currents so minimizing F  represents the minimum power 

demand to the actuator.  In a more general derivation, the performance index could 

include a weight matrix, †1
u Ru=F .  Since the inputs in the actuator problem al

matrix for this problem.  The problem now is to minimize  subject to the reference 

multipliers [70].  T

2
l 

represent equal power sources, it makes sense r the weight matrix to be the identity 

condition in Eq. (6.3).  Optimization with a cons t can be solved using Lagrange 

he method of Lagrange m ltipliers solves an auxiliary function, , 

that contains the original performance index plus the constraint tim

multiplier.  Minimizing this auxiliary function and satisfying the constraint equation 

gives the solution to the constrained optimization problem.  The auxiliary optimization 

problem with the Lagrange multiplier term is the following. 

fo

train

u

F

F
es the Lagrange 
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 (6.6) 

th respect to the input 

 

The optimum is found by taking the partial derivative wi

and setting it equal to zero. 
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Taking the complex conjugate of both sides gives the solution for the optimum

 

0

u u T u

=
F

 (6.7) 

 

input.   

†u T . (6.8) 

The Lagrange multiplier can be obtained by substituting the solution for u  into 

Eq. (6.3). 

 
 

†. T T
 (6.9

Solving for 

r i T u
) 

  and inserting the result into Eq. (6.8) gives the final result. 

 
†

r T
u . (6.10) 

†T T

This remarkably simple solution gives a clear insight into the advantage of multi-

coil actuator.  The complex conjugate has the opposite phase angle to the original 

variabl

 . (6.11) 

This result gives the mathematical basis for the intuitive notion that the demand 

should lead the demand function by the same phase angle that the response of 

e.   

†  T T

Ny  lags 

that demand.  The input function’s angle cancels the output lag giving a response with 

zero phase error. 
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The amplitude of the input also has the exp

Eq. (6.10) of can be written as the absolute magnitude of the vector squared  

ected response.  The denominator of 

†

2 ru
T

. (6.12) 

Taking the magnitude of both sides gives.  

 
T

 
1

T

This equation sho agnitude of the input must follow the reciproca

proportionately larger to maintain the same amplitude.   

For the multi-coil actuator to be more efficient at high frequency than the single 

coil, the power consumed by the multi-coil actuator must be less than the power 

consumed by the single coil actuator while tracking the same reference input.  The p

consumed by the actuator can be obtained by substituting the optimum back into the 

equation for F .  

ru . (6.13) 

ws that the m l of 

the magnitude of the frequency response function.  If the frequency response diminishes 

with frequency, which is the case for most physical systems, then the input must become 

ower 

 
† 2

†
† †

1 1

2 2 2

r r r         

T T
u u

T T T T T T
=F

†
. (6.14) 

For comparison, the power consumed by a single c

obtained.  This solution can be derived from the original transfer function by setting all 

the inp

oil actuator can also be 

uts equal to the same value.   

 227



     

1

1

1

N
singley i i u i 

 
 
  
 
 
 

T


  . (6.15) 

This equation can be simplified by writing the summation in terms of an average 

value of the transfer function vector. 

     1


1

1

u

T i i
n



 
 
 

1

 
 
 

where un  i

T


s the number of inputs.  Note that the average is not in bold font, indicating 

that it is a scalar.   

With only a single degree of freedom, the reference condition can be solved for 

the sing e

. (6.16) 

le coil probl m, but no additional optimization is possible.   

   N single ur y i n T  singlei u . (6.17) 

Since the average is a simple complex number the equation can be solved for 

singleu . 

 single
u

r
u

n T i
 . (6.18) 

The power consumed by the single coil actuator is given by  
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Substituting the reference solution gives  

   

2 2

1n r r
 

2 2
u

single
u un T i n T i 

 F . (6.20) 

The fundamental question of the research project is whether the power consumed 

by the m  than the power for the single coil 

actuator for the same response.  In the simplest possible term

evaluating whether the following inequality is true. 

ulti-coil actuator with optimal input is less

s, the dissertation reduces to 

 
?

singleF F . (6.21)

Substituting Eqs. (6.14) and  (6.20) into Eq. (6.21) provides the answer to the 

question and shows by how much the power is reduced.  
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The next few steps solve for an equivalent expression that can be more readily 

interpreted.  First, the reciprocal of both sides is taken.  This operation requires that th

inequality be reversed.  Common fa

 . (6.22) 

e 

ctors are all positive so they may be canceled without 

changing the direction of the inequality.  After making these changes, Eq. (6.22) becomes 

the following. 

  2†
?

un T i T T . (6.23) 

The equation is equal to the f

 

ollowing. 
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The following identity can be defined by multiplying both sides of Eq. (6.16) by 

†T . 
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 (6.25) 

The following identity can be defined by taking the complex conjugate of both 

sides of Eq. (6.25).  Since the right hand side is the product of two complex numbers, and 

not a vector, the operation is commutative. 

1
 
 

†
1
†

2 † †
uT n T T   . (6.26) 
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T T T n T
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Now, subtract Eqs. (6.25) and (6.26) from the inequality in Eq. (6.24)  

 

un 
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The right hand side of Eq. (6.24) can be writt

†

†T†
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n T T T T T
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 . (6.28) 

After inserting this equation into Eq. (6.27) and bringing all terms to the left hand 

side, it becomes evident that the equation can be factore
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The top line can be factored for T and the seco

 

nd line can be factored for T  
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Factoring again yields an expression that is clearly positive or zero. 
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In this form, the inequality is clearly true.  In addition, the only way that equality 

can hold is if  
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. (6.32) 

This condition for equality says that the only way that a multi input device 

operating with optimum inputs can consume the same power as the single actuator device 

(all inputs operating in unison) is when all the elements in the vector  are equal for 

all frequen e among 

the transfer functions from the average can be used to make the multi-coil actuator work 

more efficiently than the single coil actuator.  As the difference of each input from the 

average increases, the gain in efficiency also increases.  A corrolary can show that the 



 iT

cies.  For the multi-coil actuator, any difference in phase or amplitud
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multi-coil actuator can move faster than a single coil if both are constrained with same 

power. 

To illustrate the magnitude of the efficiency improvement, the power parameters, 

 and F singleF

tem m

are plotted versus frequency in Figure 6.1.  The transfer function model is 

ll sys odel (vibration, magnetics, and coil current using the low-order number 

s) shown graphically in Figure 5.7.  Figure 6.2 shows the ratio .  This 

figure shows that the m

vibration model and that ratio ranges between 10 and 100 in this frequency range. 

the fu

of term /singleF F

aximum improvement occurs in the resonance region of the 
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Figure 6.1:  Power required for multi-coil and single coil 
actuators, nominal design 
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Figure 6.2:  Ratio of single coil to multi-coil power, 
. 

The multi-coil actuator shows significant reduction in power in the range from 

 to 

 multi-coil actuator.  The enthusiasm for this success should be moderated 

by the observation that at 10,000 Hz even the multi-coil actuator requires nearly 100 

times the power at 0 Hz to maintain the full amplitude response.  This level of power is 

not feasible.  The increase in power is primarily a consequence of the magnetic drag due 

to eddy current.  The improvement is more feasible if the actuator is modified as shown 

in Figure 5.9 for high speed design with more pie segments and faster amplifiers.  Figure 

/singleF F

1  110  with the ratio shown in Figure 6.2 of a factor of 20 to 50 less power 

required by the

6.3 shows the optimum power for the high speed design 
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Figure 6.3:  Power required for multi-coil and single coil 
actuators, high speed design 

The power in the high speed design at the upper frequency range of the multi-coil 

actuator remains in a feasible range, within a factor of ten of the DC power.   

The derivation of the optimum input for the frequency response problem in this 

section is one of the main conclusions of the dissertation.  The derivation and numerical 

results show very clearly that the multi-coil actuator meets the expected potential for a 

faster device than the single coil.  However, some shortcomings of the frequency analysis 

should be pointed out.  The main point is that matching the displacement and the 

reference trajectory exactly using the Lagrange multiplier method does not lead to a 

robust control al n the reference 

and the displacement must be tolerated to reduce the power requirement and make the 

control less sensitive to noise and modeling errors.  The control strategies that are 

considered in the following section use a cost function including both control error 

(difference between reference and measure) and control effort (power demand) to balance 

out the desirable features of robustness, tracking, and minimizing the power.  The degree 

gorithm.  In practice, a small amount of difference betwee
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of improvement shown by this optimization in the frequency domain may be considered 

the maximum achievable improvement in power without consideration of robustness. 

Model Predictive Control Strategy 

The frequency domain analysis in the previous section provides a simple, 

analytical result that shows that the multi-coil actuator can produce a given amplitude 

response while consuming less power than a single coil actuator, or alternatively, a multi-

coil actuator can give higher amplitude response for a fixed input power.  The frequency 

response results prov ent in the 

actuator response if there are differences in the phase and gain response to the different 

inputs; how

improve ent in th

  

ple 

 

ed results show the advantage of 

multiple coils more clearly than the experimental because the time step of the simulated 

transient is not restricted by the hardware limits of the experimental system.  

Just as in the frequency domain analysis, the control objective for the actuator is 

to find the input demand versus time for the ensemble of coil inputs so that the actuator 

tip follows a specified trajectory while consuming the minimum electrical power.  To 

e the multi-coil concept can always provide an improvem

ever, it is difficult to judge how well that advantage translates into 

m e time response.  The operation of the multi-coil actuator as a practical 

device requires a real-time control design that takes advantage of the timing of the inputs. 

This section derives a servo control design for the actuator and provides exam

transients to illustrate the benefit of multiple input coils in following typical wave forms

that might be needed for applications such as a operating a valve or canceling vibration.  

The same strategy is used to provide the control algorithm for both simulated and 

experimental results.  This chapter gives the simulated results of the closed loop system.  

Experimental results are given in Chapter 7.  The simulat
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demonstrate improvement, the multi-coil control concept has to be compared against a 

well-tuned, conventional single coil actuator.  The goal of the comparison is to show that 

the minimum power for the multi-coil actuator is significantly less than the single coil 

and that high frequency response can be achieved with realistic current and voltage from 

the driving amplifiers.   

The model predictive control algorithms for single coil and multi-coil actuator are 

designed using the same approach.  The simulation models for both cases are also the 

same.  The singl o the multi-

coil mode that was used in the frequency domain section.  The same current demand is 

applied

mputed as 

the sum

 

ifier.  

 

the 

e coil model is implemented using the same modification t

 to each amplifier of the multi-coil model thus causing all circuits to operate in 

unison as if the actuator were a single coil.  The voltage of the single coil is co

 of the voltages across the individual coils as if the coils are wired in series.  It 

should be noted that other approaches to convert the multi-coil model to an equivalent 

single coil model are possible.  The dynamics of ten individual coil circuits each with an

amplifier operating on the same input signal is not precisely the same as a single coil 

circuit with one uniform coil along the full length, one load resistor, and one ampl

The advantages of the approach taken are that it is simple to implement, involving 

multiplication by a column of ones, and gives little chance for an error to affect the 

comparison.  The control designs are equivalent in the sense that the performance index

that is optimized involves the power applied to the coil and the same weighting of 

control error. 

The following sections start with a brief review of the conventional derivation of 

the prediction equations and model predictive control.  These equations follow the usual 
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practice of formulating the prediction model in terms of the change in input at each time 

step.  Simulated results are generated to show how the predictive control is able to use the 

anticipated trajectory to project the optimum current demands and improve on the 

response of the single coil actuator.  Then, the undesirable attributes of the conventional 

MPC for a control problem with spare degrees of freedom are demonstrated.  A series of 

modifications to conventional predictive control are then presented that lead to a 

resolution of the problems and a suitable control algorithm for the system with spare 

degrees of freedom.  Each variation of the control algorithm is simulated in closed loop 

form for both the multi-coil and single coil actuator to compare their responses. 

of the e

ons 

 time case 

which c

 

General Equations for Model Predictive Control 

The MPC method starts with the state space form of the plant model but then 

algebraically manipulates that form to eliminate the state variable, x.  The predictive form 

quations depends on the current state of the system (an initial condition) and all 

future inputs, u, but not explicitly on the predicted states.  The MPC prediction model is 

only different from the standard state space system in the form of the equations.  The 

underlying plant model is the same as the state space model.  The prediction equati

are particularly useful for solving the minimization problem because the only unknown 

variables appearing in the performance index are the control demands, thus avoiding the 

algebraic difficulty of additional dependent variables in the performance index.  

The predictive control problem is almost always solved for the discrete

an be written for a general state space system as the following, 

1 1

1 1 1

.

.
i i i

i i i

 

  

 
 

x Ax Bu

y Cx Du
 (6.33) 

 238



where i is the index for the advancement of time, it i t  .  The overlap of nomenclature

with the usage of i as the imaginary constant and as the time index in this section is 

unfortunate but is tolerated since subscript in the discrete time problem is not likely to b

confused with the imaginary constant.   

The predictive co

 

e 

ntrol formulation follows the notation and derivation given by 

Rossite

es 

r [13] for model predictive control.  The output at each step can be obtained by 

substituting the state from the preceding step.  The following equations illustrate a seri

of substitutions relating x to x  and , ,
0i i 0i 0 0 01 2 Hi i i i    

i

u u u  and eliminating the 

0

The solution represents the response over the prediction interval from 0i  to the time 

horizon at 0

 index refers to the current time.  intervening state variables on the right hand side.  The 

Hi i . 

 
0 0 01 1i i i  x Ax Bu . (6.3

  
0 0 0

2
1 2.i i i 

  

  

A Ax Bu Bu

A x ABu Bu

 (6

  
0 0 0

2

3 2
1 2 3.i i i i  

   

   

A A x ABu Bu Bu

A x A Bu ABu Bu

 (

4) 

.35) 

0 3i  6.36) 

 

 

0 0 0

0 0 0

2 1 2

1 2

i i i

i i i

  

 

 x Ax Bu

0 0 0

0 0 0 0

3 2 3

1 2

i i i

i i i

  

 

 x Ax Bu

  

1 2H H H

0 0 0 0 0 01 2 1H H Hi i i i i i i i i     

These equations can be written more compactly if the inputs at each time point are

i i i      x A x A Bu A Bu ABu Bu . (6.37) 

 

stacked in a single vector.  The notation draws on the MATLAB “:” notation in the 
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subscript to indicate that the vector includes a range of values over time.  The length of 

the vector is H ui n  by 1.  

0

0

0 0

0

2

1: H

H

i 

1i

i i i

i i



 



 
 
    
 
  

u

u

u

u



The output vector, state vector, and reference trajectory can be similarly stacke

in single-column vectors.   

0 0 01 1 1i i i       
     

x y r

. (6.38) 

d 

 0 2
.

i  



r

r

 (6.39) 

.40) 

0 02 2
; ;

i i

i

       

    

x y
x y r

x y

0 0 0 0 0 01: 1: 1:H H Hi i i i i i i i          
       

0 0 0H H Hi i i i i i       

The group of equations from Eq. (6.34) through (6.37) can be written as a single 

matrix equation. 

 
0 0 0 0 01: 1:

1

.
H H

H H

i i i i i i i

i i

   



   

    
   
   
   

A B 0 0

A AB B 0
x x u

0

A A B AB B




  


 (6

The output vector can be written by multiplying each term by the C matrix and 

adding the pass-through D term. 

2   
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  (6.41) 

0 0 0 0 01: 1:

1

H H

H H

i i i i i i i

i i

   



   

    
   

   



CA CB 0 0

y x u
0

CA CA B CAB CB

0

  


0 01:

2

Hi i i 



 
 

   
       

  

0

CA CB D 0 0

CA CAB CB D 0
x

CA CA CB D

 




.



u

The first term on the right is the “free” output and represents the trajectory of 

0 0:

0

2

1

;

H H

i

i i

   

   

 


 

 

  
 
 

CA CAB CB 0

D 0 0

D 0
u

0 0 D

0

B CAB









  


0 01: Hi i i 

Hi i iy  if all the future inputs were zero.  It is multiplied by the current state of the pl

which serve an

ant 

s as  initial condition to the prediction.  The second term represents the 

effect of the future inputs on the output.  The output at the first time step, y
0 1i  , depends 

only on the input at the first time step, .  The second output depends on the inputs at 

the first and second time steps.  The last step depends on all t

horizon preceding it.  The transformation matrices are constants.  Conventional 

nomenclature in predictive control names these arrays P and H. 

 




. (6.42) 

Equation (6.41) can be rewritten in terms of the matrices of Eq. (6.42).  

 

0 1i u

he time steps in the time 

2

1

;

H Hi i 

  
      
  
     

CA CB D 0

CA CAB CB D 0
P H

0

CA CA B CAB CB D




  





0

0 0 0 0 01: 1:H Hi i i i i i i    y Px Hu . (6.43) 
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The form given in Eq. (6.43) is the most useful for the multi-coil actuator 

problem; how , convenever tional model predictive control is formulated in terms of the 

change in input per time step rather than the input itself.  The change in input is given by  

The  formulation is advantageous for square systems or in cases in which the 

number of inputs is less than the nu

 systems or it has the least squares offset 

for system in which the number of outputs that are being controlled exceeds the inputs.  

Unfortunately, the  formulation is a source of difficulty in solving the actuator 

problem with spare degrees of freedom.  For the spare degrees of freedom problem

 formula does not minimize power which can result in an undesirable, unequal 

ibu

i e system toward the minimum power distribution.   

The presentation of predictive control theory starts with the conventional 

for ulation and shows that the multi-coil actuator can achieve a faster r

single coil actuator.  Then, the undesirable properties of the  formulation are 

illustra s 

 approach that satisfactorily resolves the problem with 

multiple inputs and a single output. 

A minor revision to the matrices converts Eq. (6.43) from the  formulation to 

the equivalent  formulation.  First, we define the integrator and differentiator 

matrices.  The integrator matrix in discrete time is given by 

 1 . (6.44) 
0 0 0i i i i i i    u u u

Δu

mber of outputs.  The resulting MPC law for the Δu

formulation does not have any offset for square

 

, the 

Δu

ves th

Δu

distr tion of power among the control inputs.  The problem is that no cost term in the 

Δu  cost index dr

Δu  

m esponse than a 

Δu

ted.   The derivation then reverts back to the formulation in u  to introduce a serie

of modifications to the basic MPC

 u

Δu
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0

0

0

0

0

i

i

i

i

i

F

F

F

F

F










. (6.45) 

The integrator matrix gives rectangular integration of the input vector over time.  

The second term is the initial condition for the integral.  Each integral requires one past 

value from the point prior to the horizon interval.   

The corresponding differentiation matrix is given by  

 

0 0

0 0

0 0

0 0

0 0

1 1

2 2

3 3

4 4

5 5

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

i i

i i

i i

i i

i i

F f

F f

F f

F f

F f

 

 

 

 

 

                                             

0 0
0

0 0

0 0

0 0

1 1

2 2

4 4

5 5

1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

i i

0 03 30 1 1 0 0 0

0 0 0 1 1 0

i i

f F

f F 

i

i i

i i

i i

f F F

f F

f F

 

 

 

 

                                                    

Conveniently, the integrator and differentiator matrices are inverses of one 

u

differentiator matrices are given the following names in the form

. (6.46) 

another.  For the multi-input case, each “1” and “0” in the integration and differentiator 

matrices becomes an identity matrix of square dimension . The integrator and 

ulation.   

 . (6.47) 

n

u Hn i

 
 
   

 
 
  

I 0 0 0 0

I I 0 0 0

S I I I 0 0

I I I I 0

I I I I I


 

u Hn i
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I 0 0 0 0

I I 0 0 0

D 0 I I 0 0

0 0 I I 0

, (6.48) 

  0 0 0 I I

where each I in the matrices is an  identity matrix.   

A special identity matrix is needed to represent the initial conditions as a matrix 

multiplication. 

u u

 

n n

u Hn i

 
 
  

 
 

I

I

I


. 

0 0:

 

 

 

I

(6.49) 

Thus, the forward and inverse relationships between 
Hi i i 0 0:u Δuand 

Hi i i  are given 

by 

 0 0 0 0 0

0 0 0 0

1: 1:

1: 1:

,
H H

H H

i i i i i i i

i i i i i i

   

   

 u SΔu Iu
 6

Inserting the definitions of the integrator and special identity matrices into

(6.43) gives the prediction equation in terms of Δu . 

 

.Δu Du
( .50) 

 Eq. 

 
0 0 0 0 0 01: 1:H Hi i i i i i i i     y Px H SΔu Iu . (6.51)

In the nomenclature of Macie

 

jowski, this system is written as  

 , (6.52) 

where  and 

0 0 0 0 0 01: 1:H Hi i i i i i i i     y Px ΘΔu Τu

Θ HS Τ HI . 
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Equations (6.43) and (6.52) are the basis for the optimization calculations in 

conventional MPC.  The equations depend on an initial state vector, , and an initial 

position for the control input, , which are known at the start of the prediction interval.  

The predictive control schem  finds the inputs 

x

0i
u

e
0 01: Hi i i Δu

0i

 (or 
0 01: Hi i u i ) that minimize a 

quadratic perform

problem, an estimator of the state is needed.  A Kalman estimator is designed in 

APPENDIX J

prototype actuator. 

Quadratic Performance Index for Model Predictive

The minimization of a quadratic performance index is the fundamental 

mathematical technique in optimal control theory to design both linear quadratic 

regulators and estimators.  The minimization of a quadratic performance index is at the 

heart of model predictive control as well.  The quadratic performance index is convenient 

for optimization because, after taking the partial derivatives, the problem which remains 

derivation of the basic MPC algorithm presented here owes mainly to Maciejowski, but 

innumerable similar versions of the basic derivation are av

version presented here is the simplest case with no random disturbances and no 

constraints on the control inputs or outputs.  The main deviation from the standard MPC 

problem which is developed for the multi-coil actuator is the special case with spare 

degrees of freedom.  This special case is not affected by the omission of the constraints 

ance index.  The solution of the minimization problem is the subject of 

the next section.  When the full state is not directly measureable, as in the actuator 

 for the actuator to complete a control design that can be realized on the 

 Control 

to be solved to find the optimum is the solution of a linear system of equations.  The 

ailable in the literature.  The 
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and random disturbances.  These terms can be included in a more general formulation of 

the problem without changing the results developed here regarding spare degrees of 

freedom. 

As presented by both Rossiter and Maciejowski, the customary optimization 

ange in the input, , and 

the con

 Δuproblem in predictive control is based on minimizing the ch

trol error, r y [12, 13]. 

 
H

. (6.53) 

The specification of the performance index in terms of 

  
0 0 0 0 0 0 0 0 0 0 0 01: : 1: : 1: 1:H H H H H

TT
i i i i i i i i i i i i i i i i i i           Δu RΔu r y Q r y=F

r y  allows the trajectory 

of the reference input r to enter the equation.  The re

varying.  By including the control error in the cost function, a difference in the tracking 

accurac

tegy in which the output is constrained to follow the reference exactly is considered in 

a later section. 

The performance index is written using square weig

weight matrices may be chosen on a number of different mathematical bases.  In 

predictive control, it is sometimes advantageous to vary the weight with time so that near 

term estimates are more lightly weighted than far term.  However, the decision to 

introduce time-based weighting is usually the result of simulatio

apparen cases, the weights 

are set initially to be equal over time and that choice is never c

ut are n led to h e the same range, the weight matrices are also used to 

correct the scaling, in effect using the weight matrices to normalize the variables.  In the 

actuator development problem, the state space model has been formulated in 

ference trajectory may be time-

y is tolerated if there is a corresponding reduction in the control effort term.  A 

stra

ht matrices, R and Q.  The 

ns in which it becomes 

t that a time-varying weight addresses some problem.  In most 

hanged.  When the output 

and inp ot sca av
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dimens 1.  

Hence the weight matrix for the inputs is chosen as, .  The control output in the 

actuator problem is the scalar displacement.  Each output in the prediction interval is 

weighted.  The relative weight between the inputs and outputs is still undetermined.  The 

relative weight between contro

parameter to determine the trade-off between the closeness of the tracking and the 

sensitivity to noise.  In this respect, the wei uch the same way 

as in conventional feedback control design.  These design decisions for the performance 

index mean t and 

 method 

ctuator, 

The simplified weighting scheme gives the following cost function. 

.54) 


 

The quadratic form emerges after expanding the output term and rearranging the 

equation.  The equation is written as the following 

ionless variables so that the input, u, and output, y nominally range from 0 to 

The inputs are all equal in their contribution to the power consumed so it makes some 

sense for the weights of the all inputs (i.e. coil currents) over all time to be the same.  

R I

l error and control effort is commonly used as a tuning 

ghting in MPC is used in m

hat we can set 2qQ I  where the relative weight between inputs 

outputs, 2q , is a constant to be determined by experimentation.  The basic MPC

does not provide a guarantee of stability.  Most systems, including the multi-coil a

become unstable if 2q  is chosen too large. 

    
0 0 0 0 0 0 0 0 0 0 0 0

2
1: 1: 1: : 1: 1:H H H H H Hi i i i i i i i i i i i i i i i i iq            Δu Δu r y r y=F . (6

The performance index is converted into a quadratic function of the input by 

substituting in the predictive model as defined in Eq. (6.52).   

 
 
 

0 0 0 0 0 0 0 0 0 0

2

.

H H H H

TT

  r Px ΘΔu Τu

F
 (6.55)

TT

0 0 0 0 0 0

1: 1: 1: 1:

1: 1:H H

i i i i i i i i i i i i i i

i i i i i i i i

q       

   

   Δu Δu r Px ΘΔu Τu=
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2

1: 1:2

T

T T
i i i i i i i i

q

q    

   

  

r Px Τu r Px Τu

Δu Θ r Px Τu

=F
 (6

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

1: 1:

2
1: 1: .

H H

H H

H H

i i i i i i i i i i

T T
i i i i i iq

   

    Δu I Θ Θ Δu

.56) 

In this equation, 
0 01: Hi i i r , x , and u  are known constants.  The changes in 

input, 

0i 0i

0 01: Hi i i Δu

index.  The quadratic form

hand side is a constant vector

, are the quantities that are to be adjusted to minimize the performance 

 is clearly evident 

, the second term

in the equation.  The first term on the right 

 is linear in
0 01: Hi i i Δu , and the th

secon

ird term is 

d order in 
0 01: Hi i i Δu .  Taking the partial derivative of the performance index with 

respect to the input vector and setting each partial to zero provides the necessary 

condition for an extremum.  The extremum condition yields a system of H ui n equations 

with the same number of unknowns.   

 
0 01: Hi i i 




0
Δu

=
F

. (6.57) 

     (6.58) 
0 0 0 0 0 0

2 2
1: 1:2 2

H H

T T T
i i i i i i i iq q        Θ r Px Τu Δu I Θ Θ 0 . 

At least formally, the solution for 
0 0: Hi i iΔu  that minimizes the performance index 

is the following. 

0 0 0 0 0 0

1

1: 1:H H

T

i i i i i i i i



   

The optimal solution using the matrix inverse is theoretically valid, but the 

calculation using the matrix inverse is a poor choice numerically.  The matrix, TΘ Θ , 

inherently poorly conditioned.  For values of 2q  that are high enough to give good 

tracking, the inverse operation is nearly singular and Eq. (6.59) gives inaccura

 . (6.59) 

is 

te results.  

   2T Tq q   Δu Θ r Px Τu I Θ Θ
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The difficulty with the near singularity of the prediction matrix can be mitigated by 

reformulating the optimization problem as a least squares problem.  The least squares 

form of the quadratic minimization avoids taking any inverses or forming the product 

TΘ Θ .  The least squares solution is stable and numerically accurate to the convergenc

criteria of the solution algorithm even if TΘ Θ  is singular.  To put the predictive contr

optimization problem in the form of a least squares problem, the first step is to formulate 

the quadratic cost minimization as an over-determined system of linear equations.  An 

abbreviated version of the derivation found in Maciejowski [12, p. 77] is presented 

The least squares computation method is used to solve this and all subsequent variations 

of the MPC optimization problem.   

A vector is formed in which the elements of the performance index are stack

one on top of the other.   

 1: 1:i i i i

i i

q    
   



r Px Τu ΘΔu

Δu

e 

ol 

here.  

ed 


 (6.60) 

he minimum 

ance index corresponds to the m m length of this vector.  In other words, the 

cost function is given by the following square length of the vector. 
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The performance index is given by the square length of the vector.  T
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1: 1:
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1:
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  Δu

ΘΔu r Px Τu   =F
Δu

ΘΔu r Px Τu Δu

ΘΔu r Px Τu

 

  



 (6.61) 

 249



0 01: Hi i i ΔuThe  that gives the minimum length of the vector is given by least 

squares solution of the following system of equations. 

 .62) 

is the r

  (6.63) 

rm, the n

duals 

an im

a that MATLAB includes a special arithmetic 

operator, “\” in addition to the normal four arithmetic operators;  “+”, “-”,“×”, “/”, to 

indicate a least squares problem.  In MATLAB notation, the least squa

Eq. (6.63) is written as 

 

  0 0 0 0 0 0

0 0

1: 1:

1:

H H

H

i i i i i i i i

i i i

q    

 

   
 

ΘΔu r Px Τu


  
δ

Δu
, (6

where esiduals vector.  The vector can be separated into a sum of two parts. 

 
0 01: Hi i i

qq
 

   
 
    

r Px ΤuΘ

I 0

In this fo umber of unknowns is u hn i .  The number of equations is 

2 u hn i  .  The least squares solution of Eq. (6.63) minimizes the length of the resi

vector.  The least squares solution to a system of linear equations is such portant 

mathematical problem in matrix algebr

δ  

0 0 0 01: Hi i i i i   Δu δ

res solution to 

0 01: Hi i i    
 

Δu
I

q Θ  
0


0 0 01: Hi i i i

 iq  
  0

. (6.64)

Using this

r Px Τu
 

 form of the solution to the quadratic cost minimization tells MATLAB 

to bring to bear the numerical techniques of the least squares solution r

inversion on equation to be solved  

A control law in terms of a fixed gain matrix can be obtained by separating the 

least squares calculation into two parts.  The first part contains the solution of the least 

squares problem of involving constant matrices.  This part of the solution can be pre-

ather than matrix 
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computed and stored.  The second part is a multiplication by a vector containing the 

varying components in the equation.  The bulk of the optimal control computation is 

expended in solving the least squares problem.  The reformulated version of the contro

epresents a substantial computational savings over Eq. 

time-

l 

law r (6.64). 

 

q 

 

Θ

IFull   K

 
0 0 0 0 0 01: 1:H Hi i i Full i i i i i

q

   



 

I

0  (6.65)

A simple multiplication shows that Eq. 

.

.


 

  Δu K r Px Τu

 

(6.65) is equivalent to Eq. (6.64).   

The concept of the receding horizon means that the control is optimized over the 

time interval from 0 1i   to 0 Hi i  but only the values of  are actually used.  The 

optimiz

nly requires the firs , from 

.  The number of online calculations can be  by selec

 that is n

 
0 1i Δu

t set of control in

 reduced

, and discarding the rest of the m

ation starts over at 
0 2i Δu  and recomputes over the interval from 0 2i   to 

1i i  .  The receding h0 H

Eq. 

the FullK

Mathem

orizon o

mpute 

puts, Δ

atrix.  

0 1i u

(6.65) ting just the part of 

eeded to co
0 1i Δu

atically, this operation can be performed by multiplying both sides of Eq. (6.65) 

by a matrix  I 0 0 . 

 
   

 

0 0 0

0 0 0 0

0 0 0 0

1 1:

1:

1: ,

H

H

i i i i

Full i i i i i

u i i i i i

  

 

  



 

  

Δu I 0 0 Δu

I 0 0 K r Px Τu

K r Px Τu



   (6.66) 

where  u F K I 0 0 K

nsions, u un n .  The number of 

also be obtained by using the MATLA

ull .  I and 0 are the identity and zero matrices with 

dime 0 matrices is .  Of course, the matrix can 

 rows of .  

1Hi 

B “:” operator to select the firs

uK

Kt un Full
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The fin m of the ing 

l law for MPC is analogous to 

classical proportional control or conventional LQC control. 

The control law required requires three inputs:  

al for MPC law is a proportional gain matrix multiplying a time-vary

vector.  The proportional gain matrix form of the contro

0 01: Hi i i r

 control inpu

whic

ry f

of the state, and  which is the current value of the t.  In the experimental 

system, the current value of the state comes from a Kalman estimator with a predictor to 

advanc the 

estimated state are given in APPENDIX J.  However, the estimation can be avoided in 

the preliminary simulations to simplify the test case and focus just on the control 

problem.  The separation principle applies to MPC so the Kalman estimator can be 

designed later without affecting the design of the MPC.   

The following equations summarize the calculation of the simulated model.  The 

calculation consists of three parts, 1) the calculation of the new control increment, 2) 

integration of the control increment, and 3) the calculation of the new state. 

 

i

 (6.67) 

h is the reference 

trajecto rom the current time to the prediction horizon, 
0i

x  which is the current value 

0i
u

e from the delayed measurement point to the current time.  The equations for 

1 1:

1 1

.

.
Hi u i i i i

i i i

   

 

  

 

Δu K r Px Τu

u u Δu

1 1.i i i  x Ax Bu

The observed variables for displacement, Ny ; voltage, Vy ; and coil current, Iy are 

computed from the formulae given for the open loop models in Chapter 5 in Equations 

(5.69), (5.70), and (5.71). 
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Simulated Results Using Conventional MPC Design 

In the following test calculations, the combined actuator model including the 

dynamics of vibration, eddy current, and coil current is used as the plant model.  The 

particular version is the low order model with the best estimate parameters for the 

prototype actuator.  In the design of the MPC given by Eq. (6.66), the simulations are 

calculated without an observer as if the state, , were measured

The calculations are shown for a discrete time solution in which the time step is 

 actuator.  

The hig  

artif  limit e of .   

eters en in b

0i
x .   

substantially faster than can be achieved with the experimental setup for the

her speed sampling is chosen to show the performance achievable with predictive

control without the icial ation of the sampling tim  the experimental system

The physical param for the state space actuator model are giv  Ta le 2.8.  

In addition, the tuning parameters for the MPC system design are given in Table 6.1.  A 

derivation of the time step and the prediction horizon are given in APPENDIX H.   

Table 6.1:  Actuator modeling and control design parameters for predictive control 

Parameter Value Description 

40 Number of states.  (The low order model 
is used:  10 coil currents, 10 eddy current 
modes, 10 second order vibration 
modes). 

sn  

10 Number of control inputs (i.e. amplifier 
demand signals). 

11 Number of observations (10 coil currents 

un  

y

and 1 displacement).   
n  

120 Prediction horizon 

1000 Relative weight for control error to 

Hi  

ST  2×10-6 s Time step** 

control input  

2q  

 

                                                 
** Time step for simulated transients 
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The test transients consist of a suite of three reference trajectories:  the step 

change transient, the square pulse transient, and the swept frequency sine wave. 

Step change transient 

The step change transient is perhaps the most widely used test case in time 

a t.  

.  

e 

inputs well before the actual step occurs.  The 

anticipa

s for the ten 

coil and single coil simulations.  Both models follow the reference closely.  The multi-

coil actuator rises faster than the single coil.  The peak veloci

factor of 1.89 faster for the multi-coil.  Overshoot and settling time are also less for the 

and computed by the MPC 

g a line on the outer edge of the envelope of traces for the 

multi-coil curren ately the same 

dom in control analysis.  The 100 % step change is, in effect, the fundamental transien

All other transients can be constructed by summing a series of smaller, individual steps

The main features of MPC that are evident in the step change results also apply to the 

more complex wave forms that are presented next.  The step change test case is 

programmed with a quiescent interval slightly longer than the prediction horizon 

preceding the step change.  This quiescent interval shows that the predictive aspect of th

MPC algorithm begins to affect the control 

tory behavior is the main advantage that MPC possesses over conventional 

feedback control. 

Figure 6.4 shows the reference trajectory and the calculated response

ty at the time of the step is a 

multi-coil actuator.  Figure 6.5 shows the current dem

algorithm for both multi-coil and single coil.  The single coil current is similar in 

magnitude but follows alon

t.  Each coil current for the multi-coil actuator is approxim

magnitude or slightly smaller than the single coil current.  The plots of tracking and 
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current show that the multi-coil actuator provides a modest improvement in both cu

and tracking results.   
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Figure 6.4:  Multi-coil and single coil actuators tracking a 
step change reference trajectory 
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Figure 6.5:  Current demand for step change for multi-coil 
and single coil actuators 
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The difference between the multi-coil and single coil performance is more evident 

m 

 index 

ncy 

ise 

fort and control accuracy.  The weighting factor, q, which is the 

relative

ption.  

s a 

in the plots of voltage and power.  Figure 6.6 shows the power in the coil.  Maximu

power for the transient, which occurs at the time of the step, is a factor of 8.60 higher for 

the single coil than the multi-coil.  This is a significant difference but is a smaller 

improvement than the factor of 10 to 50 predicted by the frequency optimization in 

Figure 6.2.  The difference is a consequence of choosing a different performance

for the MPC optimization than for the frequency domain optimization.  The freque

domain optimization constrains the response to follow the reference exactly, whereas the 

MPC balances control error against control effort allowing the displacement to vary from 

the reference to reduce the change in the demand.  The output represents a comprom

between control ef

 cost of the control effort to control error, has been selected for these transients to 

give close tracking between the measured response and the reference but not to give 

indistinguishable lines.  The compromise yields a low gain on high frequency errors and 

relatively smooth control inputs.  In the time domain results, the difference between the 

multi-coil and single coil is a combination of speed of response and power consum

The speed of the multi-coil actuator is a factor of 1.88 faster, and the peak power i

factor of 8.60 less.  In contrast, the frequency optimization, the entire difference is 

contained in the power ratio.   
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Figure 6.6:  Power for step change for multi-coil and single 
coil 

The voltage plot in Figure 6.7 shows an even larger improvement for the multi-

coil.  In this figure, the peak dimensionless voltage of the single coil is 400 which 

corresponds to an actual voltage of 400 1.5 4 2400V
singley I R V      .  The single coil 

voltage is a factor of 11.5 higher than the highest multi-coil voltage.  The peak voltage 

necessary for the single coil is considerably greater than the voltage that an audio 

amplifier can produce.  In contrast, the peak voltage of the multi-coil in dimensioned 

variabl

.  

 is 

es is on the order of 200 V which is also high but close to feasible for an amplifier.  

The peak voltage can be changed by adjusting the weight factor, q, in the cost function

Lowering q reduces the peak voltage but also reduces the maximum speed.  The relative 

benefit in voltage between the single and multi-coil remains roughly the same as q

tuned. 

The multi-coil improvement in voltage comes largely from subdividing the coil 

not from the optimal control of the spatial distribution of coils.  Each of the individual 

coils in the multi-coil actuator has one tenth the inductance of the single coil.  Since the 
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inductive voltage is proportional to the inductance, the voltage is reduced by a factor of 

ten by subdividing alone without considering the effect from the optimal control of the 

individual coils.  The point of this plot is that a faster response cannot be achieved w

single coil actuator by increasing the gain alone.  The voltage becomes too high.  The 

subdivision of the coils is necessary to reduce coil voltage even if the multi-input multi-

output control algorithm is not used.  

ith a 
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Figure 6.7:  Voltage across amplifier for multi-coil and 
single coil 

In Figure 6.2, the group of coil currents from the MPC controller track closely 

together but do not follow identical paths.  The currents follow roughly parallel tracks 

that are shifted in time with respect to one another, but the pattern is not easy to see.  The 

trend of the group of currents is more evident in a three dimensional plot in which coil 

current is plotted versus the time and the coil index.  The surface plotting routine 
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interpolates and smoothes the coil current as if the index were a continuous variable; 

nevertheless, the three-dimensional plot shows the trends of the current distribution in the 

coils m il 

s 

far 

ing created in the rod.  The magnitude of the 

current demand rises as the step approaches, reaching a peak at the time of the step.  

Following the step, the contro

resonance.  A zig-zag pattern plateau st rrent demand following the step 

cancels  In 

 

e 

 

ore clearly than the two-dimensional plot.  Figure 6.8 shows the same data for co

demand given in Figure 6.5 but plotted this time in a three-dimensional plot.  The plot i

turned so that time increases from right to left to give a better viewing angle of the 

current distribution.  Lighting and shading effects are used to bring out the details of the 

surface.  The transient can be divided into four phases:  the pre-step preparation phase, 

the step, the wave cancellation phase, and the final plateau.  The step occurs at t=5×10-4 

seconds.  The current begins to respond at t=2.6×10-4 when the step demand enters the 

end of the prediction horizon.  The pre-step phase appears as a zig-zag pattern of ridges 

as energy is added to the wave front be

l system draws the kinetic energy from the rod to stop the 

eps in the cu

 the kinetic energy in the wave as it reflected back and forth along the actuator. 

the final phase a quiescent plateau is formed starting from a diagonal ridge beginning 

about t=6×10-4   

Figure 6.8 shows how the multi-coil actuator achieves the large improvement in

power compared to the single coil.  The angle of the diagonal ridges in the j-t plan

corresponds to the acoustic wave speed.  The anticipatory action of the MPC begins to

add energy to a wave front when the step enters the prediction horizon.  The wave front is 

timed so that it reaches the tip at the time of the step.  Energy is added to the wave front 

exactly in phase with the energy already stored in the wave.  No energy is added that 
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cancels the high frequency components.  Following the step, the feedback effects ar

designed to damp out acoustic oscillations with the same use of spatial distribution of 

current in the coil to draw kinetic energy out of the rod.  This period of stopping the 

motion appears first as a bumpy, quilted surface just after the impulse wave passes 

through just before the step.  This period extracts high frequency kinetic energy from the 

rod.  Following the step in the reference trajectory, the control algorithm produces a zig-

zag pattern of steps in demand that bring the rod to rest.   

e 

 

Figure 6.8:  Current demand versus coil index and time 

The model used to calculate the results in Figure 6.8 uses the best estimate desi

parameters for the prototype.  This model has fairly high magnetic damping which ha

be overcome by the input current.  Even more advantage for the multi-coil actuator c

gn 

s to 

an 
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be gained if the actuator design is modified to reduce the magnetic drag due to eddy 

currents by subdividing into more laminations or if faster amplifiers (or smaller load 

resistors) are used to make the electronic circuit faster. 

Square pulses 

The square pulse transient is a sequence of three, nearly square pulses.  The pulses 

are, by design, not quite square.  The step is actually a steep ramp.  The duration of the 

ramp is the chosen to be the time step of the experiment setup, 70 µs.  The use of a fixed 

ramp rate makes comparisons of results using different time steps more meaningful.  In 

particular, the peak voltages and currents are more nearly comparable to simulations in 

which the time step is set equal to the experimental time step.   

The ramp is a milder transient than the step change.  Figure 6.9 shows even closer 

tracking for both single and multi-coil for the transient than the step change.  The 

reference and multi-coil displacements are covered by the single coil in the figure. 
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Figure 6.9:  Multi-coil and single coil actuators tracking 
three square pulses 
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The power and voltage in the square pulse case shown in Figure 6.10 and Figure 

6.11 follow similar trends as the step change transient.  Since the ramp rate is slower in 

this case, the difference between multi-coil and single coil is less pronounced.  

Nevertheless, the maximum power and voltage of the ten coil controller are lower than 

the single coil case and are feasible levels for real amplifiers. 
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Figure 6.10:  Power for square pulses for multi-coil and 
single coil 
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Figure 6.11:  Vo quare pulses for 
multi-coil and single coil 

Figure 6.12 gives the three dimensional view of the coil current demand for the 

transient.  The features of the transient due to each step in the three pulses overlap with 

one another thus giving more complex patterns but the understanding of the features is 

basically the same as in the single step change.  The four phases of the MPC’s control 

response that were introduced to explain the features of the step change transient show up 

in the three pulse transient as well.  A ridge of current precedes each edge of a pulse that 

anticipates the step.  A spike is generated in the coil at the free end at the time of the step.  

The cancellation phase to draw energy out of reflected waves follows the step.  The 

pulses are close enough together that the effects of each step have not decayed away 

completely before the next pulse begins.  The results of the three pulse transient address 

the question of whether the actuator can handle an arbitrary wave form as well as it 

ltage across amplifier for s
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performs on a single isolated step change transient.  The results show that the complexity 

of the three pulse transient does not introduce any new types of features or lead to 

undesirable transient performance by the control algorithm.  The anticipatory ridges 

leading up to the steps are evident at the edge of each pulse.  The ridges are less sharp 

than for the step change because the pulse edge is actually a steep ramp.   

 

Figure 6.12:  Current demand versus coil index and time 
for square pulse transient 

Swept Frequency Sine Wave 

In this transient, the reference trajectory is a sine wave in which the frequency 

gradually shifts.  The purpose of the transient is to show the amplitude of the actuator 

response over a range of frequencies in the time domain.  The transient gives similar 

information about the discrete time control algorithm performance that a Bode plot gives.  

The time domain is used rather than discrete frequency response because the predictive 

aspect of the control algorithm cannot be represented in a traditional frequency response. 
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The transient demonstrates the ability of the actuator to respond to an oscillatory 

demand with shifting frequency or phase in applications such as vibration cancelation or 

combustion instability.  The duration of the transient is 2.2×10-3 seconds.  The frequency 

increases linearly from 0 to 10,000 Hz over the transient.  The target for the research 

project for the multi-coil actuator is to increase the frequency response to 10,000 Hz.  

This transient shows that goal is met by this design.  The Nyquist frequency for the time 

step ( 62 10s s  ) used in the simulations is 250,000 Hz.  This is sufficiently small tha

time step effects are not evident in the results.  The time step is sufficiently small that 

decreasing it does not change

T t 

 the results. 

The 

e wave above 9000 Hz.   

Figure 6.13 shows the reference signal, and the response for the ten coil and 

single coil actuator.  The axis is labeled with frequency rather than time to relate the 

results to the frequency response.  The frequency, , corresponds to 0 .   

frequency  corresponds to 32.2 10 s  .  The single and multi-coil 

actuators match the reference so closely that only the topmost line is visible up to 

approximately 7000 Hz where the single coil actuator begins to fall off.  The multi-coil 

actuator lies on top of the reference except for just the tips of th

0 Hz  t s

10,000 Hz  t
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Figure 6.13:  Tracking for swept frequency transient 

The power for the transient is shown in Figure 6.14.  As in the previous transients, 

the power of the single coil is significantly higher than physically realizable.  The power 

for the multi-coil is also somewhat higher than what may be achievable with audio 

amplifiers.  This is an indication that the weighting of the control error, q, may be too 

high for the actual prototype. 
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Figure 6.14:  Power for swept frequency transient 

The three-dimensional plot of current demand versus index and frequency (tim

is shown in Figure 6.15.  The frequency starts on the right side at a frequency of 0 Hz.  

The distribution of current is uniform in the j dimension, indicating that each coil 

receives the same demand.  The shape in the coil direction changes as the frequency 

increases.  At the high frequency end of the plot, the shape is approaching the ridge-like 

shape seen for the step change.  This shape means that the distribution of current 

demands is approaching equal magnitude sine waves with a constant phase shift between 

each coil demand.  The am

e) 

ount of phase shift corresponds to the acoustic propagation 

delay.  The high frequency result confirms the “phasing” that Neumeier anticipated when 

this project was conceived [71].  The intermediate results are different than simple phase 

shift.  The profile in the coil index direction gradually shifts from a flat profile through 

range of changing harmonic profiles until the ridge-like phased response is reached at 

high frequency.  At frequencies near the first resonance, the profile is the quarter sine 

wave profile.  As frequency increases, higher spatial harmonics are energized giving 

other wave-like profiles.  This aspect of the plot gives a visual illustration of the physics 
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of the optimum current distribution and the coupling between specific spatial modes and 

the frequency of the stimulus.  From the point of view of the control design, the transient 

shows a smooth, equal amplitude tracking throughout the frequency range and success in 

meeting the goal of increasing the frequency response of the actuator in the targeted 

frequency range. 

 

Figure 6.15:  Current demand for swept frequency transient 

The non-uniform power distribution problem 

The results for conventional MPC presented thus far are completely sa

and are successful in showing that the multi-coil actuator is capable of achieving a fas

response at practical levels of power and voltage than a single coil actuator.  The previou

transients do not demonstrate the shortcomings of the conventional change-drive

scheme to handle the spare degrees of freedom situation.  The spare degrees of freedom

mean that there is not a unique equilibrium state for the actuator.  One of the 

consequences of the change driven cost function of the conventional MPC is that the 

system can come to rest at any combination of control inputs for which the control error

tisfactory 

ter 

s 

n MPC 
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is zero.  This is an undesirable situation because many combinations of current 

distribution that give zero control error could damage the actuator or amplifiers.  This 

problem is discussed more fully later in this section.  It is important to devise a control 

algorith

 gorithm 

nds are 

ain 

m that handles all conceivable dynamic conditions successfully and drives the 

current demand toward the uniform distribution of current demand at steady state.  The 

non-uniform power distribution problem is first demonstrated with a transient simulation 

and illustrative calculations and then modifications are introduced to the MPC al

to resolve the problem. 

The step change transient can be used to demonstrate that the actuator can come 

to rest satisfying the control error requirement perfectly while the current dema

not uniform.  The step change reference trajectory from Figure 6.4 can be simulated ag

except that the initial condition for the current demands are as follows, 

 0 1, 1, 1, 1, ... 1T    u .  The displacement for the modified case is identical to the 

response shown in Figure 6.4 so the plot is not repeated.  The current demands are the 

same shape as in Figure 6.5 except that they are offset up and down by the initial 

conditions.  The initial, non-uniform distribution of current persists for the duration of the 

transient and would continue on indefinitely.  The conventional change-driven MPC 

scheme does not drive a non-uniform distribution of current in the coils toward a uniform 

distribution (equal current in each coil) at steady state. 
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Figure 6.16:  Current demand for step change transient 
m starting fro  1, 1, ... 1  0 1, 1,T   u

The problem with the change-driven optimization can be traced to the 

performance index.  The problem can be illustrated by evaluating the equilibrium 

condition using Eq. (6.33) and Eq. (6.66).  At equilibrium, the control error, 

, in Eq. 
0 0 0 01: 1: 0

H Hi i i i i i   r y

(6.66) at equilibrium



 

 does not change so .  The actuator can come to rest with 

a non-uniform power distribution.  The equilibrium condition for the system can be 

solved to show that anhe multi-coil actuator does not have a unique equilibrium..  At 

equilibrium, the state system is steady at an equilibrium value as given by the following 

equation. 

(6.33) is satisfied exactly at the current time and all future 

points by the current value of the control, .  Also, actuator current calculated by Eq.
0i

u

:i iΔu
0 0

0
Hi
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  (6.68) 

Eliminating the state vector gives the following equation.   

 

.eqBueq eqx Ax

.eq eq r Cx Du

  1
eq

     . (6.69) 

For the actuator with spare degrees of freedom, Eq. 

r C I A B D u

(6.69) constitutes one 

equation with nu control inputs as unknowns.  Any combination of inputs satisfying 

Eq. (6.69) also satisfies Eq. (6.63) exactly.  All the residuals of the least squares problem 

in Eq. (6.63) are exactly zero.  This is clearly a minimum for the performance index, but 

it is not a unique minimum.  The problem of equalizing the distribution of current is not

addressed by the performance index for the change driven MPC.  The lack of a unique 

minimum power solution at steady state is a significant problem for safe control of the

actuator because some solutions that satisfy Eq. 

 

 

ately equally to 

each coil.  Hence, the matrix in Eq. (6.69) is g

 

(6.69) yield a power distribution that 

would destroy either the amplifiers or the actuator.  Consider the following numerical 

example of the non-equilibrium problem.  The system responds approxim

iven by 

   1 1
1 1 1 1 1 1 1

    C I A B D . (61 1 1
10

.70) 

At full stroke, output is given by 1 r y .  The steady state, the equilibrium 

condition for full stroke can be satisfied bination of positive or negative 

currents adding to ten.  For example, n of coil current in which  and 

all other control inputs are zero satisfies Eq. .  Equation (6.63) is al ed by 

the asymmetric current distribution at steady state and yields zero residuals.  The power 

by any com

a distributio

(6.69)

T u u

1

consumed by that distribution is given by 100  and all of the power is deposited in 

10u 

so satisfi
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the first coil.  This current distribution exceeds both the coil’s and amplifier’s rated 

current.  The magnetic field in the energized segment of the rod exceeds the saturation 

limit for the magnetostrictive material.  An even higher power would be gener

actuator if a combination of negative and

ated in the 

 positive numbers was chosen.  In practice, the 

actuato

ent nearly†† evenly among the individual coils.  For full stroke output, 

y=1, the current distribution that produces ful

is appr

r would drift along the surface defined by Eq. (6.69) until a damaging 

combination of inputs was encountered. 

The optimum distribution from the standpoint of power consumption is to 

distribute that curr

l stroke and consumes the minimum power 

oximately 

 

1

1



 
1  
 
 
 

u


. (6.71

The power consumed by this current distribution is 10T u u .  Power is a factor o

10 less than the previous non-uniform

) 

f 

 example and is distributed uniformly along the rod.  

The go

unique 

based on .  This performance index minimizes the incremental change in power at 

                                                

al of the control algorithm should be to force a non-uniform distributions toward 

the uniform, minimum power condition at steady state.  Optimizing power (rather than 

increment in power) solves the problem of spare degrees of freedom and gives a 

and desirable steady state condition.  

The problem with the conventional MPC algorithm lies in the performance index 

TΔu Δu

 
†† The actual optimum distribution is not quite a uniform distribution due to end effects and the location of 
the coils with respect to the rod in the actuator design.  The coils are not equally effective at moving the 
actuator tip.  The precise distribution is close to uniform and the distinction is unimportant for analyzing 
the spare degrees of freedom problem. 
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each

s to base the cost of control in the 

performance index on  rather than .  The following section starts by 

n

in the p

res power 

ol 

ntrol schemes correct the 

equilibrium problem but create different problems of their own.  The last variation which 

 step.  There is no penalty in the cost for an unequal distribution for the absolute 

magnitude of the current.  The solution to the problem i

Tu u TΔu Δu

introducing the  formulation in the cost index and then, in a series of further 

modifications, deals with other problems that arise due to the modification. 

Alternatives to Standard MPC to Address the Spare Degrees of Freedom Problem 

Only minor modifications to the conventional MPC are needed to generate an 

acceptable control performance for the actuator with spare degrees of freedom.  Three 

alternatives are presented in this section.  All three involve using Tu u  rather tha

Tu u

 TΔu Δu  

n the erformance index.  When Tu u  is the input cost in the performance index, the

optimization drives the distribution of current to the uniform distribution as required for 

minimizing power thus rectifying the problem with the TΔu Δu  optimization.   

The three approaches are 1) the least squares power with an exact trajectory 

tracking, 2) least squares power and proportional control error, and 3) least squa

and proportional and integral control errors.  The least squares power refers to the Tu u  in 

the cost function rather than .TΔu Δu   The square proportional and square integral co

errors are the form of the reference tracking error in the cost function.  We will 

abbreviate the names of the schemes sometimes as: 1) exact, 2) proportional error, and 3) 

proportional-integral error.  These approaches can be viewed as an evolution of the 

problem resolution over time.  The first two alternative co

ntr
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includes the control error and the integral of the control error in the cost function so that 

Least squares power with exact trajectory.   

The exact trajectory method is a time domain version of the frequency domain 

exact trajectory control algorithm minimizes  subject to the constraint 

it is analogous to classical proportional-integral control. 

optimization presented at the beginning of this chapter.  The performance index for the 

Tu u r y  at every 

point in the prediction horizon.  Interestingly, this case represents an extension of the type 

of solution presented by Book [72] and Kwon and Book [73] called inverse dynamic 

tracking control.  The proposed exact trajectory case combines inverse dynamics with 

model predictive control.  The non-uniform current distribution problem is handled by 

this formulation. 

The optimization with the control error constraint is solved using the method of 

Lagrange multipliers [70] just as in the frequency domain optimization.  The exact 

trajectory requires that each output in the prediction horizon conform exactly to the 

reference.  The number of constraints is equal to the number of points in the prediction 

horizon.  The set of constraint equations is solved exactly at each point from the current 

time to the prediction horizon.  The optimization then minimizes the sum of squares of 

current at each predicted point.  The performance index for the exact trajectory with the 

auxiliary constraint for the exact trajectory is given by the following:  

 
0 0 0 0 0 01: 1: 1:2 H H H

T
i i i i i i i i i i      u u λ r y=F 

0 01:

1
Hi i 

 , (6.72) 
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where  is a vector of Lagrange mulitipliers that appends the constraint equation at each 

point in the prediction horizon to the performance index.  Substituting the prediction 

equatio e the following: 

λ

n from Eq. (6.43) into Eq. (6.72) giv

  r Px Hu  (6.73) 
0 0 0 0 0 0 0 0 01: 1: 1: 1:

1

2 H H H H

T
i i i i i i i i i i i i i       u u λ =F

Taking the partial yields 

 

0 . (6.74)  
0 0

0 0

1:
1:

H

H

T
i i i

i i i
 

 





u λH

u
=

F

Solving for the control input gives 

 . (6.75) 

The Lagrange multipliers can be evaluated by substituting into the constraint 

equations.  The constraint equation can be written as 

 

0 01: H

T T
i i i  u H λ

0 0 0 01: 1:H Hi i i i i i    r y 0 . (6.76) 

Equation (6.43) can be used to write Eq. (6.76) in term

unknown control input.  

s of known inputs and the 

 
0 0 01:0 0 0 01: 1:H Hi i i i i i     r y Px Hu

Hi i i i  . (6.77) 

Thi q. (6.62). 

 

his system can be written as a matrix eq

s problem can be formulated as least squares problem analogous to E  

First, we write the problem as two vector equations in vector unknowns. 

 0 0

0 0

1:

1:

.
H

T T
i i i

i i

 



 u H λ 0

Hu
 (6.78)

0 0 01: .
H Hi i i i i   r Px

T uation. 
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0 0

0 0

1:

1:

H

H

T
i i i

T
i i i

 

 

    
 

0i

         

u 0I H
rH 0 λ Px

. (6.79) 

This system of equations is square and consists of an equal number, , of 

equations and  unknowns.  Despite the problem being square

using the least squares operator, “\”, to take advantage of the numerical robustness of the 

MATL

 1u hn i 

, the solution can be solved 

AB’s least squares method.  

 


0 01: H

T
i i i

T

    
  
 

u I H

H 0λ



0 0 01: Hi i i i 


  r Px

. (6.80) 
0

The exact trajectory method can be converted to a

using the same procedure as in Eq. (6.65) and Eq. (6.66).   

 

 gain matrix applied at each step 

T

Full

 
  

I H
K

 H 0

 

.

.

 
 

 

0

u K r Px
0 0 0 0 01: 1:H Hi i i Full i i i i   

 I  (6.81) 

irst time step is given by the same types of Reducing the full matrix to just the f

matrix multiplication as in Eq. (6.66) give the following: 

    x , (6.82) 

  
0 0 0 01 :i Exact i i i i  u K r Px , (6.8

where 

0 0 0 0 0: 1H Hi i i Full i i i i  u I 0 0 K r P: 

3) 

 Exact FullK I 0 0 K .  I and 0 are the identity and zero matrices with 

dimensions resting result that the exact scheme gives the same form u un n .  It is an inte

of control law as the conventional MPC and is derived by very analogous mathematical 

steps.   
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Test ca

trol 

e is 

d finite pre

 r may 

g that the exact trajectory scheme is not even stable 

for the e coil 

e 

e 

lculations using the exact scheme 

The exact scheme is suggested as a starting point for the evolution of the con

algorithm, but the strategy is not expected to yield good control.  Confining the trajectory 

exactly to the reference trajectory is an unnecessarily difficult constraint.  The schem

particularly sensitive to small perturbations.  Noise is amplified with a very high gain.  

Very small perturbations due to numerical modeling error an cision arithmetic 

can be expected to yield extraordinarily noisy esults.  Even though a noisy response 

be expected, it is somewhat surprisin

single coil actuator.  However, this turns out to be the case.  Since the singl

actuator is unstable, only the results of the multi-coil actuator are shown.   

To illustrate the performance, the three square pulse transient is simulated.  Figur

6.17 and Figure 6.18 show the response of the ten coil actuator model for the exact 

trajectory control law in Eq. (6.83).  The actuator model, data, and reference transient ar

the same as used for the conventional MPC problem.  The initial conditions for the 

current inputs are the problematic case,  
0

1, 1, 1, 1, ... 1T
i    u .  The noise of the system 

response is decreased by using a larger time step so the simulations are run using 

67 10sT    seconds.  Using the same time step as the conventional MPC, 62 10sT   , 

gives extraordinarily high spikes in current at the corners of the pulses. 

Figure 6.17 plots the reference trajectory and simulated displacement.  As

required by the exact trajectory control law, the two lines are exactly equal so that only 

the simulated displacement is visible.  

 

le in the noise of the coil currents.  The case is 

really two transients.  The first part is the response to the initial condition in which the 

Figure 6.18 shows the current demand; however, 

the individual traces are not discernib
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proportional error drives the uneven distribution of current in the initial condition toward 

zero.  The second pa

The non-uniform current distribution problem is clearly solved as the initial unequal 

distribution in current demand is driven to zero by the time  seconds.  The 

current demands however display wide swings that are clearly undesirable and do not 

match the smooth ridges predicted by the conventional MPC.  The perturbations 

stimulating the noise in the current in this simulation are due to the inaccuracy inherent in 

finite precision arithmetic.  Actual control applications in which instrumentation noise is 

also present would be even noisier.   

rt shows the response to the three square pulse reference trajectory.  

, 30.1 10t  
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Figure 6.17:  Exact trajectory reference tracking 
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Figure 6.18:  Current demand for exact trajectory control 

Despite solving the non-uniform current distribution problem, the exact trajecto

formulation turns out not to yield satisfactory control because of sensitivity to noise.  To 

e problem, the algorithm should have very low gain at high frequency 

while maintaining the equilibrium power distribution that the exact solution has at low 

frequency.  To achieve this objective, an alternative cost function is introduced using th

weighted square of the control error in the cost function

ry 

address the nois

e 

 instead of the exact tracking 

constraint. 
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L q

 algorithm can be devised by replacing  in the conventional 

MPC cost function of Eq. (6.53) with u.   

 

The cost function is essentially a version of the linear quadratic cost function of 

conventional optimal control.  If the reference is set to zero  and the 

east s uares power and proportional control error.   

Another control  u

  
0 0 0

2
1:H H

TT
i i i i i  y r y=F

0 0 0 0 0 0 0 0 01: 1: 1: 1: 1:H H H Hi i i i i i i i i i i i iq          u u r . (6.84) 

0 0

0 0 0 01: 1:

1: Hi i i  r 0

H Hi i i i i i   y Cx , then the performance index can be written as  

 
0 0 0 0

2
1: 1:0 0 0 01: 1:H H

T
i i i i i i    u u x=F

H H

T T
i i i i i iq   C Cx . (6.85) 

The cost function in Eq. (6.84), which we refer to as the proportional error cost 

function, allows the optimization scheme to balance the control error with control effort 

over the prediction horizon.  With this formulation, a control error is tolerated if the 

power consumption is reduced.  This optimization scheme is m

exact tr s n.  In the limit 

as  increases to infinity, the proportional control scheme approaches the same result 

oise sensitivity) as the exact trajector e.  Because the cost depend

uch less noisy than the 

ajectory when the proportional weight factor, q , is properly cho e2

y schem

2q

(including n

0 01:

s on 

0 01:H Hi i i u , it can be expected that this cost function also solves the equilibriT
i iu i um 

current distribution problem.  However, the p

problem

trol error problem 

follows the same steps as Eq. (6.54) through (6.63) except that  and  are 

roportional error approach causes a different 

.  The proportional error scheme leads, just as it does in LQC, to a steady state 

offset between the reference and controlled variable.   

The minimization solution of the input power and square con

, ,Δu Θ Τ
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replaced by  and .  The first step in the solution is to substitute the predictive 

model defined in Eq.  into Eq. (6.84).  

  

um solution is given by 

, ,u H

1:
T
i i

The optim

0

(6.43)

q    
0 0 0 0 0 0 0 0 0 01: 1: 1: 1: .

H H H Hi i i i i i i i i i i i i i           

u u

r Px Hu r Px Hu

=F
0 0 0 01:

2

H Hi i i i

T

   
 (6.86)

0 01:

0
Hi i i 


u

=
F

 and can be solved by matrix 

inversion, but, as in the change driven derivation, the least squares formulation is 

preferred for num rical calculation.  The least squares formulation of Eq. (6.86) is found 

by minimizing the length of the following vector. 

e

 
 

0 0 0 0 01: 1:H Hi i i i i i iq    

0 01: Hi i i 

  
 
  u

r Px Hu
 (6.87) 

The m m length vector s given by the least squares solution of the following 

over-determ  of equations. 

8) 

inimu

ined system

 
 

0 0 0 0 0

0 0

1: 1:

1:

H H

H

i i i i i i i

i i i

q q   

 

  
  

Hu Px r
δ . (6.8

  u

Equation (6.88) can be factored to separate the unknown vector 
0 0: Hi i iu  

 
0 0 0

0 0

1:i i i iqq  
  

    

Px rH

I 0
 . (6.89) 

 

1:
H

Hi i i     u δ

Equation (6.89) can be minimized by MATLAB’s least squares operator. 

0 01: Hi i i

q
 

 

 

H

I
 q

0 0 01: Hi i i i 
 

  u  
  

r Px

0
. (6.90) 
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The remaining steps obtain the constant gain matrix for a proportional control law 

following the same procedure as Eq. (6.65).  First, the constant matrices involved in t

least squares operation are separated from the time-varying portion. 

he 

 
Full

q 
  
 

H
K

I

 
0 0 0 0 01: 1:

.

.
H Hi i i Full i i i i

q

   

 
 
 

 

I

0

u K r Px

 (6.91) 

As in Eq. (6.66), the co  step is obtained by selecting 

the first nu columns of . 

 

ntrol vector for the next time

 FullK

 
   

 

0 0 0

0 0 0

0 0 0

1 1:

1:

1: ,

H

H

H

i i i i

Full i i i i

P i i i i

  

 

 



 

 

u I 0 0 u

I 0 0 K r Px

K r Px



  (6.92) 

where  P FullK I 0 0 K  is the gain matrix for the proportional error scheme.  

The gain matrix for the least squares with proportional error is exactly the same form as 

the conventional change driven MPC algorithm and the exact algorithm.  Only the values 

of the matrix are different. 

Test Calculations Using MPC with Proportional Error 

The step change transient is used to illustrate the performance of the MPC scheme 

based on the proportional error cost function.  The weighting factor has the same value 

used in the conventional, change-driven MPC.  The value is chosen to be .   

The init

2 1000q 

ial condition for the current is chosen to be  ... 1T 0 1, 1, 1, 1,  u

rror cost function is able to drive the non-uniform

 to 

assess how well the proportional e  
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current

t 

non-uniform di

the 

 used for the conventional MPC, , is 

used fo

s toward a uniform distribution.  The rest of the parameters are the same as given 

in Table 6.1.   

Figure 6.19 and Figure 6.20 give the simulated results for the tracking and curren

demand.  The current demand results show that proportional error control scheme 

addresses the two problems that have been identified so far.  In Figure 6.20, the initial 

stribution of current quickly approaches the uniform current distribution 

which demonstrates that the problem of non-uniform current distribution is solved by 

proportional controller.  In Figure 6.20, the noise seen in the exact scheme has been 

significantly reduced.  The time step 62 10sT  

r these calculations. 
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Figure 6.19: Tracking for proportional error control 
algorithm on step transient 
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Figure 6.20:  Current demand for the proportional error on 
the step change transient 

The proportional error strategy introduces a new problem which is evident in the 

trackin  g results.  The control error does not approach zero asymptotically at steady state. 

Figure 6.19 shows that the final steady state value for y deviates slightly from the 

reference.  The source of the offset is the cost function.  The least squares optimization is 

a compromise between the norm of control effort, Tu u , and the norm of the control error 

T    r y r y  so that the sum is minimized.  At  non-zero reference condition, the 

 control error against the 

 any

Tu u  value is non-zero.  The minimization algorithm balances the
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power oes term so that neither is exactly zero at the minimum.  Hence, the control error d

not approach zero asymptotically.   

The steady state offset can be calculated analytically.  The steady state condition 

is given by the condition at which u , y , and r are all steady at their equilibrium 

ns.  Since the outputs are all steady, 1i i  x x x , Eq. conditio

93) 

Let  and then write the equation for equilibrium as  

 (6.94) 

 performance index equation can be obtained by the 

following steps.  

 

(6.33) can be solved for 

relationships between the equilibrium variables. 

 
1

 



   (6.
 

 

1
,

.y



 

   

 

x I A B D u

C I A Bu

  1  M C I A B D

y  Mu . 

The u  that minimizes the

   2 TT q        u u r y r y=F . (6.95) 

Substitute in Eq. (6.94) to eliminate y . 

    2 TT q        u u r Mu r Mu=F . (6.96

Take the partial derivative with respect to the vector u . 

 

) 

   22 2T q
  



   


u r Mu M 0
u

= . (

Solve for u . 

TF
6.97) 
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  (6.98) 

 

 
 

2 2

12 2

.

.

T T T

T T

q q

q q

 



 

 

 

u I M M r M

u I M M M r

Insert the result back into the equilibrium model.  In our problem, the output and 

reference are scalars so the equation can be written as a ratio. 

  12 2 T Ty
q q

r

  M I M M M . (6.99) 

in the 



Equation (6.99) can be evaluated numerically using the actuator model to show 

the offset for the step change.  The offset calculated from Eq. (6.99) is the value as 

simulated results shown in Figure 6.19. 

 0.9862
r

y 


trajectory control.  In general, a steady state offset cannot be tolerated in servo control so

another modification must be introduced to address the steady state offset problem.  The 

last variation in model predictive control introduces integral error to the performance 

index.  Stabilizing the integral term guarantees that the control error approaches zero 

asymptotically.  This approach is developed in the next section. 

Other differences in the performance can also be noted.  The tracking of the 

reference in 

. (6.100) 

The steady state offset can be made arbitrarily small by increasing the weight on 

the control error, ,but this re-introduces the noise problem which was seen in the exact 

 

l MPC algorithm in Figure 

6.4:  M

2q

Figure 6.19 is slightly slower than the conventiona

ulti-coil and single coil actuators tracking a step change reference trajectory.  The 

difference in speed is due to the change in cost function. Since the average magnitude of 

TΔu Δu  is smaller than the magnitude of Tu u , the effective weight of control effort 
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versus control error in the cost function is shifted toward control effort by the revised cost

function.  The increase in the control effort term means that cost optimum occurs for a 

higher value of control error resulting in less control action.  The weight factor on the 

control error, 2q , is tuned in the research by trial and error to

 

 give best results for the 

proport

ency transient in Figure 6.21 shows the attenuation of the 

ional control scheme and held constant in all other control schemes. 

The swept frequ

response as frequency increases. 
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Figure 6.21:  Swept frequency response for the proportional 

 actuator begins to fall off at 3000 Hz and then 

levels off again at about the 8000 Hz.  The fre

control

ins to drop at 3500 Hz and continues downward until flattening out at 

error MPC. 

The response of the multi-coil

quency response of the proportional error 

 scheme is lower than the conventional MPC in Figure 6.13 at all frequencies.  

The multi-coil beg
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0.7 amplitude at 8000 Hz.  The response indicates the weight on the control error is 

effectively less relative to the control effort (now in terms of input power) in the 

proport

e by increasing  for the proportional 

scheme.  The tuning for the proportional schem

effectively lowers the feedback gain relative to the gain of conventional MPC control 

using the same numerical value of the weight factor.  The lower gain is a better choice for 

a real system because the maximum current demand is lower and remains within a 

feasible range for real amplfiers and because the algorithm has lower sensitivity to noise. 

or   

inate 

an approach that is analogous to classical 

integral action can be implemented to achieve the same effect by adding the square of the 

integral control error to the cost function.   

The purpose of including integral action in the controller is to counteract any 

steady state offset that may occur in the control. The offset calculated in Eq. (6.100) is 

simply due to the proportional error control scheme.  The offset can also be caused by 

gnetost r 

odeled temperature dependence of the magnetostriction constant.  The 

temperature of the material changes due to heating from ohmic and hysteretic losses in 

the magnetostrictive material, causing the d33 coefficient to change.  In the experimental 

results, changes as large as 40% in the magnetostriction constant have been observed in 

ional scheme than the conventional MPC.  This is a difference in tuning.  The 

response could be made the more nearly the sam 2q

e using the same value 2 1000q   

Least squares power and proportional and integral control err

Applying integral action to the control error is the classical method to elim

steady state offset.  In predictive control, 

modeling error.  The ma rictive actuator is particularly subject to modeling erro

because of the unm
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calibration tests.  The integral control action described in this section corrects for offset 

due to both calibration and the proportional error formulation. 

In the predictive control method, integral action is added by including the square 

of the integral of the control error in the performance index.  A similar approach is used 

with LQC controller by D’Azzo to solve the LQC problem with steady state o

tracking control applications [74, p. 630-631].  Magni included an auxiliary integrator of 

the control error in his MPC scheme [66].  Integrating the control error gives a term in the 

performance index which increases over time when any offset is present.  Stabilizing the 

error drives the error itself to zero asymptotically.   

In the following performance index, the integral action is added to performance 

index from Eq.(6.84). 

  (6.101) 

where 

ffset in 

integral 
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qP  and  are the weights for proportional and integral action.  The notation for 

the upper limit of the integral term means a vector of integrals in which the upper limit 

ranges over the prediction horizon.  The vector can be written explicitly as the following. 
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. (6.102) 

Each integral term can be converted into a summation over the discrete time steps.   
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The summation representing the integra
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sT

l term can be divided into two time 

inte :  the interval up to the current time and interva

endpoint of the prediction horizon.   

rvals l from the current time to the 
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The evaluation of the first term is a straightforward summation of past control 

errors.  

  
0

0 ' '
' 0

i

i s i i
i

E T


  r y . (6.105) 

This term is calculated as a running total in the control 

additional state variable in the discrete model. 

 .106) 

diction 

horizon and is part of the solution that can be

 (6.107) 

where  is the integration matrix that sums the control error fro

row of  contains a group of 1’s over the elements that are summ d to perform the 

integration at that time step.   

program as if it were an 

 
0 0 0 01i i s i iE E T r y   . (6

The second integration segment involves the control inputs in the pre

 varied to reach an optimum control.   
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. (6.108) 

 as a least squares problem.  In the following equation, the 

time-varying terms 

The objective now is to rearrange terms in Eq. (6.107) so that the solution to the 

cost minimization can be posed

0 01: Hi i i r , , and  are grouped as a vector.  The terms involving 

the unknown control input, 

0i
x

0 01:

0i
E

Hi iu i   are also factored.  The vector form of the integral 

can be written as  
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0i

past integral to each term.   

 

The integral term, , term is multiplied by a column vector of ones to add the E
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To make the proportional and integral terms in the performance index parallel in 

form to the integral term, the proportional error term can be written as a function of the 

same stacked vector of  
0 01: Hi i i r , 

0i
x , and 

0i
E .  The proportional error is given by th

equation 
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The integral term, 

12) 


0i
E , term is multiplied by a column vector of zeros in this case 

to fill out the PP  ma e width as the .  The control optimization can now 

be defined as a least squares problem.  The vector whose length is minimized for the 

proportional-integral control is the following. 

(6.113) 
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 . (6.114) 

The motivation for the grouping of terms is now apparent because the least 

squares problem can be written as a vector problem analogous to Eq. (6.89) 

 

The remaining steps solve for the gain matrix by the same steps as the pr

derivations.  The control gain is determined by the least squares solution to the following

over-determined system of equations. 
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Solving by least squar plied by a time varying 

vector. 

 

es gives a constant matrix multi
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The constant part of the control law can be separated from the time-varying 

components. 
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The remaining step is to extract the ain matrix for the next time step in 

the same way as in Eq.(6.92). 
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This control law can be evaluated using the same equations in Eq. (6.67) plus the 

equation for the integral error, , from Eq. (6.106).  The control is calculated from the 

control law in Eq. (6.118). 

Test calculations using MPC with proportional and integral error 

The suite of three transients for step, pulse and swept frequency with plots 

showing the refer and for the 

proportional and integral MPC algorithm are collected in Figure 6.22 through Figure 

6.30.  The same three transients have been presented for the conventional MPC earlier in 

this chapter.  The transients show that the performance of the conventional MPC has been 

maintained in the final algorithm while solving the problems of non-uniform current 

0i
E

ence tracking, power, and three-dimensional current dem
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distribution, noise, and steady state offset.  The features of the control response are 

largely the same as the conventional MPC.  The discussion of the control features for the 

conventional system also applies to these transients so limited discussion of the results is 

needed.  Certain differences do occur as a result of the integral error term. 

In general, the tracking of the proportional-integral MPC is slower than the 

conventional MPC.  The single coil is a great deal slower and has lower cutoff frequency 

response than the multi-coil.  The performance index causes the controller to balance the 

optimization between tra of the effective 

ifference in weight in the performance index, the improvement of multi-coil over single 

coil in this set of transients is shifted more toward better tracking rather than reduced 

power.  The power consumption of the single coil is a factor of two higher than the multi-

coil whereas it is a factor of eight in the conventional MPC results.  On the other hand, 

the speed of the multi-coil actuator on the step response in Figure 6.22 is three times 

faster than the single coil where it is less than twice as fast for the conventional MPC.  

The attenuation in frequency response in the swept frequency transient in Figure 6.28 

shows the single coil actuator dropping down to a negligible response above 7000 Hz 

while the multi-coil ac e 

10,000 Hz.  It is important to realiz  between the conventional MPC 

and the proportional-integral are primarily tuning differences.  The same level of tracking 

is achievable with either design with the proper choice of weight factors.  The weight 

factors have been held constant despite the change in the formulation of the cost function 

because there is no formula for equivalent tuning.  The tuning is a trial and error process.  

The tuning parameters are held constant to eliminate any bias in the selection. 

cking and power consumption.  Because 

d

tuator continues to respond with 70% of full amplitude up to th

e that the differences
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The multi-coil actuator shows very precise tracking of the reference in the step 

change and pulse transients.  The overshoot is negligible and the settling time is on the 

order of 5×10-5 seconds.  The single coil actuator has noticeably poorer control 

performance.  The performance of the multi-coil design represents results that could be 

achieved in practice.  The parameters of the amplifiers and magnetostrictive actuator are 

realistic estimates.  The time step is quite fast, 2×10-6 seconds, but is achievable, not with 

the prototype control hardware, but with digital signal processing computer hardware.  

On the whole, this is an extraordinarily fast, accurate actuator that is feasible to build. 
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Figure 6.22:  Tracking the reference for proportional-
integral MPC on a step change 
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Figure 6.23:  Power for proportional-integral MPC on a 
step change 

 

 

Figure 6.24:  Current demand for proportional-integral 
MPC on a step change transient 
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Figure 6.25:  Tracking the reference for proportional-
integral MPC on a three pulse transient 
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Figure 6.26:  Power for proportional-integral MPC on a 
three pulse transient 
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Figure 6.27:  Current demand for proportional-integral 
MPC on a three pulse transient 
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Figure 6.28:  Tracking the reference for proportional-
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Figure 6.29:  Power for proportional-integral MPC on a 
swept frequency transient 



 

Figure 6.30:  Current demand for proportional-integral 
MPC on a swept frequency transient 
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Summary of the MPC Development 

The MPC algorithm with proportional and integral error terms is the final form of 

the control algorithm.  The control algorithm and model demonstrate the capability of the 

multi-coil concept to operate with much less power and voltage than a single coil actuator 

with a comparably tuned controller.  Depending on tuning the control design, the multi-

coil actuator can operate faster than a single coil while using the same power or can 

operate with less power for following the same transient.  The MPC algorithm produces a 

simple proportional control law that can be readily implemented in real time.  Work 

remains on the control algorithm to deal with the practical limitations of incomplete 

measurements of the state of the system and time delay.  APPENDIX I, APPENDIX J, 

and APPENDIX K deal with model reduction, the Kalman state estimator and the Smith 

predictor, and the combined cont tation on the prototype.  

 

e 

ed 

 that 

r.  The plots of power and 

voltage of the single and multi-coil actuator show that the multi-coil actuator is an order 

rol system for implemen

However, the development of a proportional-integral control algorithm marks the 

conclusion of the theoretical development of an improved actuator.  The results show that

the idea is feasible and demonstrate how it works.  The fundamental problems of 

modeling the device and designing a control system which optimizes the response hav

been completed successfully.  The control results show how a control design can take 

advantage of the dynamic characteristics of the multi-coil actuator to achieve improv

speed of response and reduced power.  The essential step of the research is to show

multi-coil actuator provides significant improvement over the single coil actuator, 

improvement that cannot be achieved with a single coil actuato



of magnitude less for both parameters.  The levels of power and voltage for the single 

coil are not physically achievable. 

The model predictive control using various combinations of proportional error, 

integral error, control input and the change in control input suggest that a more general 

form of the MPC cost function can be defined that may have broader application than the 

actuator problem.  Various orders of integration and differentiation of the control error or 

control input can be included in the cost function by raising the integration and 

differentiation matrices to a corresponding power in the cost function over the prediction 

horizon.  The linear combination of the integral and differential terms is, in effect, a 

digital filter.  The MPC can be tuned for robustness to error as a function of frequency by 

tuning the filtering parameters.  Development of robustness in the MPC using filter 

design techniques is suggested as future work.
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CHAPTER 7 

THE MULTI-COIL ACTUATOR EXPERIMENTS 

 

The experimental results from the multi-coil actuator prototype system provide 

the final test for the dissertation problem.  The experimental system is limited by the 

minimum sampling time that can be achieved with the input and output boards for the 

control computer.  Despite the time step limitations of the hardware, the experimental 

results provide a valid, if limited, demonstration of the effect of multiple coils.  The main 

goal is to provide experimental verification of the simulation results of the actuator and 

controls that are presented in Chapter 6.  The experimental confirmation of the modeling 

and controls provides some assurance that the simulated results using a faster time step 

are an accurate pre  faster control 

system

 

 at the experimental system’s time step are given in 

APPEN  

diction of the performance that can be achieved with a

.   

Two groups of transients are presented: open loop and closed loop.  The open 

loop transients are generated by providing a pseudo-random binary sequence (PRBS) as 

the current demand to each coil.  The PRBS transients are performed without any control 

feedback from the MPC algorithm.  These results are used for confirming the modeling

of the actuator.  The closed loop transients present the same suite of three reference 

trajectories that are used in the MPC development in Chapter 6 to illustrate the 

performance of the control algorithm on the prototype actuator.  Predicted transients 

using the simulation model operating

DIX K.  The closed loop transients are the step change, three square pulse, and
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swept frequency.  These transients provide the evidence that the benefits of inc

speed and reduced power of the multi-coil actuator can be observed experimentally. 

This chapter also describes the hardware and software for the prototype sys

The actuator is a modified version of a commercially available magnetostrictive actua

The prototype control system is a general-purpose, laboratory computer system equippe

with input and output boards which convert data from analog measurements to digital 

data for processing and the convert the control system demand back into analog to contro

the prototype actuator.  The software for the digital control system retrieves the mea

data from the data acquisition system, performs the computations for estimation and 

model predictive control, issues the control 

reased 

tem.  

tor. 

d 

l 

sured 

commands, regulates the timing of the main 

control

Experimental System 

The experimental system consists of the prototype actuator, the power electronics 

for driving the coils, the control computer with input and output devices, and the sensing 

devices for measuring the displacement and coil current.  The circuit for each coil 

consists of the coil in the actuator, a 4 ohm load resistor, and one channel of a power 

amplifier.  Figure 7.1 is a schematic of the system.  To simplify the representation of the 

wiring for ten coils, the schematic borrows Simulink’s mux and demux symbols for 

multiplexing, and de-multiplexing composite signals.  The heavy lines represent a 

composite signal containing ten cables.  In the actual experiment, the signals are not 

multiplexed.  Each of the ten cables is routed point to point.   

 loop, and logs data for post-processing.   
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Figure 7.1:  Schematic of experimental system 
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Figure 7.2 shows the prototype actuator built by Etrema to Georgia Tech’s 

specification.  The features of the prototype are described in Chapter 1. 

 

Figure 7.2:  Prototype actuator mounted in test stand 

The amplifiers for the experimental setup consist of five, dual-channel, AE 

Techron Model LV608 modules.  The LV608 is a modified version of the Crown Macro-

Tech 602.  The Crown amplifier is usually found in high-power audio applications.  The 

Crown amplifier offers excellent dynamic range and overload protection.  The amplifiers 

can supply 290 watts rms into 4 ohms with less than 0.1% total harmonic distortion at 

rated power at 20,000 Hz.  These amplifiers are rack mounted and are wired to a patch 

panel built for the experiment to facilitate interfacing the amplifiers to the actuator and 

the control computer.  The load resistors in the coil circuit are each 4 ohm wire-wound, 

power resistors rated for 4 amperes. 

The LV608 amplifiers provide several configuration choices.  The LV608 is a 

dual-channel device but may be operated with the two channels bridged to double the 
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voltage or in parallel to double the current of a single channel.  In the actuator 

experiment, the LV608’s are operated as two independent channels with each channel 

configured as a DC-coupled, voltage-to-current converter.  The input for an audio 

amplifier is normally configured as AC coupled.  Any DC level in the input signal

blocked by a small capacitor and large shunt resistor in the input stage.  Only the time-

varying component of the input signal passes

 is 

 through to the output stage.  In the actuator 

experim

 

 

nd 

.  

 boards are installed in the control computer.  The computer system 

ent, a DC offset is required to bias the magnetic field of the actuator so that the 

actuator operates in its linear region for magnetostriction.  The DC coupling of the 

LV608 bypasses the capacitor in the input stage and permits the DC component of the 

input signal to pass through to the output.   

Another modification to the usual audio amplifier configuration is to select 

current-controlled feedback.  A typical audio amplifier produces an output voltage 

proportional to its input voltage.  The current controlled amplifier or transconductance 

amplifier produces an output current proportional to the input voltage.  In the actuator

experiment, the current feedback works to counteract any current induced in the coil by 

inductive coupling to other coils and eddy currents and causes the coil current to track

control demand more closely.  Without the current controlled compensation, the induced 

current would otherwise work against the desired axial variation of magnetic field that is 

set at the amplifier input and increase the magnetic drag. 

The control computer for the performing the control algorithm computations a

logging data is an Intel Pentium 3 operating at 150 MHz.  The input board is a 

PowerDAQ PD2-MF-64-1M/12L and the output board is a PowerDAQ PD2-AO-32/16

The input and output
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operate

ontrol 

 

) 

y 

t 

 

 

er, (20-

state) s trol 

s under a proprietary, real-time operating system called QNX.  QNX is a 

derivative of Unix with extensions for real time data acquisition and control.  The c

program to implement data logging and the linear state space controls is written in C

specifically for the experiment.  The PowerDaq data acquisition system comes with a 

library of C routines for controlling the data acquisition process.  These routines are 

accessed as needed in the prototype control program.  Data from the tests are recorded 

into a file that can be transferred by Ethernet data link using FTP (file transfer protocol

to a Windows-based PC for data analysis and plotting using MATLAB.  To minimize the 

computational load, no screen display output capabilities are used on the control 

computer.  The same program can run either the closed loop or open loop experiments b

selection of a switch setting at the start of a run. 

Both the control computer and the I/O boards are slower than ideal for the 

actuator application.  Either one alone would limit the time step of the experimental 

system to larger values than the simulations of Chapter 6 indicate are needed for taking 

advantage of the multi-coil actuator.  The limiting time step of the current experimental 

hardware is fixed by the settling time of the analog to digital conversion on the 

PowerDAQ data acquisition boards.  If faster time steps are attempted with the curren

system, the sampled data do not have time to settle to a steady value giving erratic data. 

The speed of the computer for performing the control algorithm on the control computer

is also a potential limitation on the current system.  The control computations take place 

in parallel with the data sampling.  The computation loop with the reduced-ord

ystem consumes nearly the full time step of 70 microseconds on the con
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computer.  The computation would become the critical path if the I/O speed were 

increased.   

The time step limitation of the experimental system is not a major technical 

obstacle for future research.  The computer and data acquisition boards are approximately

ten years old.  Commercial digital control hardware is available today that can achieve

the sampling rates needed to gain the full benefit of the multi-coil actuator.  Consumer 

grade microprocessors available today are factors of 20 to 30 or even 50 times faster than 

the computer used for this experim

 

 

ent.  The PowerDaq line of data acquisition boards 

made by United Electronics now has individual digital to analog converters that can 

sample 12 bit results at 2 megahertz.  The boards are available with as many as eight A/D 

converters on a single board to process multiple channels in parallel rather than 

multiplexing all channels through a single A/D converter as on the experimental setup.  

Hence, the sampling time could be reduced as low as 0.5 microseconds with newer 

hardware. 

Sensor dynamics have not been considered in the theoretical actuator model.  The 

measured variables consist of the ten current signals and the displacement.  A voltage 

signal proportional to current is an output of the amplifier.  The current signal is patched 

directly to the input of the PowerDaq board.  No sensor dynamics or signal processing are 

needed for the current measurement.  The sensor dynamics for the displacement 

measurement however need to be considered in the experimental results.  The 

displacement measurement system shown in Figure 7.1 consists of two components, the 

optical probe and the signal processing filter.  The actuator displacement is measured by 

a Philtec Fiber Optic displacement probe (Philtec Model D63).  The displacement probe 
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measures the gap between the tip of the probe and a mirrored surface using the metho

reflectance.  A polished aluminum reflective surface attached to the actuator’s lead screw

provides a high reflectivity surface to produce a good signal to the detector. The ou

the displacement probe produces a decreasing voltage versus gap.  The actuator’s 

displacement measu

d of 

 

tput of 

rement is set so that the operating point is at the steepest part of the 

downward curve at approximately 4 volts.   

The full-scale voltage signal for the measured displacement when all the coils are 

changed in unison from the minimum to maximum current (0.75 A to 2.25 see Table 2.9) 

yields a maximum change in the probe’s signal from 4 to 3.75 volts.  The difficulty that 

the displacement probe’s sensing response presents for displacement measurement is that 

the resolution of the analog to digital conversion is reduced to a 0.25 volt interval out of a 

10 volt range (-5 to +5 volts).  A signal conditioning filter (Krohn-Hite Model 3364 

Filter) is used to remove the DC offset and apply a constant gain to expand the sensor 

voltage range to full scale of the analog to digital converter’s range.  The front panel 

settings of the filter are set for a fourth order Butterworth filter with gain of 20 to 40 dB 

and cutoff frequency of between 10 and 50 Hz.  The gain of 40 dB corresponds to an 

algebraic multiplier of 100 which increases the displacement signal from a single coil to 

full scale of the analog to digital converter for the PRBS tests.  A smaller gain is used for 

the reference suite of transients in which the displacement involves multiple energized 

coils yielding larger displacements.  The experimental system uses a filter inversion 

algorithm to recover an estimate of the actual displacement from the filtered displacement 

signal.  APPENDIX L discusses the modeling of the Krohn-Hite filter and the Philtec 

displacement probe 
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The real-time software for the control experiment is limited to the essential 

operations because of the need to run the program as fast as possible.  The control 

calculations are contained in an iterative loop that reads data from the experiment, 

computes the control, and outputs the control demands to the experiment.  The control 

computation consists of a loop calculation to implement the matrix multiplications for th

estimator and controls.  The control program runs with all processes and interrupts 

control computer disabled except the control program.  The timing of the control loop 

uses the processor’s clock as the timing device.  Two sources of error in the timing of th

loop can potentially affe

e 

on the 

e 

ct the control loop.  First, while the CPU clock speed is a 

repeata

 the 

ially 

’s 

r for the 

control

a maximum lim

um 

ble measurement of time, the time per cycle is only approximately known.  The 

rated CPU speed is used in the program for the clock time.  The clock rate may vary from 

the rated by a few percent.  This clock rate error is not a significant source of error for

control program because repeatability is the main issue.  Another source of potent

larger timing inaccuracy is the loop count per time step.  At the end of each control loop

computations, the clock cycles are read iteratively until the number of cycles for the time 

step is exceeded.  The timing of the control loop is approximate because the number of 

cycles for each loop can vary (for unknown reason) from the desired numbe

 loop.  Because of this variability in machine cycles, the control program simply 

restarts the control test if the number of cycles in a time step exceeds it 

specified in the control program.  Hence, the time per step varies between the minim

and maximum number of clock cycles per time step specified in the program. 

The process for verifying the programming of the control program is a 

comparison of the matrix calculations in the C program to the same MATLAB 
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calculation in the simulated transients in Chapter 6.  For the control program test, the da

acquisition portion of the C program is replaced by a simulation program of the actu

so that the  program and MATLAB program perform ame computation by 

different coding.  The verification is not quite exact because the matrices are transferred

from MATLAB to the C program as text files with decimal values of the coefficients 

which can differ in the least significant bits from the binary versions of the coefficie

ta 

ator 

C  exactly the s

 

nts.  

The co re 

ime by the 

MPC a

ulated 

that 

 

  In the 

nefit 

mparison of the C and MATLAB simulations shows that the simulated results a

the same to 4 or 5 decimal digits. 

Experimental Results 

The experiment results for both open and closed loop modes of operation are 

presented in this section.  The control demands for the open loop cases are given by 

predefined series of values.  The closed loop demands are computed in real-t

lgorithm using the measured data from the actuator system.  Results from two 

types of transients are shown.  In the first group of results, a pseudo-random binary 

sequence (PRBS) is used to stimulate the actuator in open loop fashion.  The 

displacement and current from the PRSB transient for the experimental and sim

actuator are compared to show how well the model reproduces the actual device.  The 

second group of transients is the same suite of three reference transients used in Chapter 

6 to illustrate the performance of the MPC algorithm.  These results are used to show 

the benefit from optimum control of the multiple coils is evident in the experimental

results.  For a comparison, the reference transients are run in open and closed loop.

open loop reference transients, all amplifiers are driven with the reference trajectory 

signal in unison so that the multi-coil actuator acts like a single coil device.  The be
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of the optimization of the multi-coil device, although weaker than the results at high 

frequency sampling rates in the simulated results of CHAPTER 6, is evident in a slight 

reduction in power in the multi-coil devices in comparison to the single coil.  The

magnitude of the effect is consistent with pred

 

icted results using the  time 

step sho

Pseudo-random binary sequence 

The pseudo-random binary sequence (PRBS) is a series of demand values that are 

random sequence gives a wide, flat spectral density for a given time step and sample size.  

most rigorous test of a model’s fidelity.  The PRBS test is frequently used to stimulate a 

process to develop a system model by the method of system identification.  The original 

system identification from MATLAB’s System Identification Toolboox to refine the 

e 

original engineering data so the system identification calculations were not completed.  

actuator.  The only parameter change introduced by the PRBS transient is a minor tuning 

sed in setting the 

amplifier feedback gain, is reduced from atch of 

the rise time of the measured current.  As discussed in Chapter 5, tuning the cut-off 

frequency is expected because the amplifier parameter depends on the load and needs to 

 670 10 ssT  

wn in APPENDIX K. 

randomly chosen as either 0 or 1 using a numerical random number generator.  The 

Comparing a model and experiment using the PRBS transient is generally considered the 

plan for the PRBS experiment was to analyze the actuator modeling data using ‘grey box’ 

parameter estimates for the coefficients in the constitutive relationships of the 

magnetostrictive material.  The modeling results turned out to be satisfactory with th

The transient results are presented for the PRBS for the experiment and simulated 

of the amplifier gain.  The cut-off frequency for the amplifier, which is u

 20,000 Hz to 10,000 Hz to improve the m
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be determined experimentally.  Reducing the amplifier cut-off frequency makes the 

amplifiers slower and has a significant effect on the actuator performance.  Slowing the

amplifier response has the effect of reducing the benefit that can be gained by the multi-

coil actuator because the current signals cannot rise as sharply to create precisely defined 

wave fronts.  The amplifier dynamics are a design parameter of the system that must be 

considered in future work to achieve the desired frequency response of the overall 

system.  The results in Chapter 6 are computed using the 20,000 Hz parameter for the 

amplifiers.  The predictions for the experimental system in  reflect the lowered cut-off 

frequency parameter.   

The PRBS is generated by the MATLAB function, idinput, and downloaded to the

control computer.  The sequence of 0’s and 1’s generates a current demand of either 0

or 2.25 ampères in dimensioned 

 

 

.75 

units.  For the test case, the sequence is applied to a 

single c

he 

same 

il 

 

 The 

d experimental results are given in Figure 7.3, Figure 7.4, 

oil demand at a time while all other coil demands are held constant at the 

minimum value for the current range (0.75 amps).  The minimum current provides t

magnetic bias needed for the magnetostrictive material to be in its linear range.  The 

pseudo-random sequence is applied to each coil in a separate transient.  The multi-co

actuator gives a nonlinear response if the unenergized coils are not biased. 

For comparison, the PRBS transient is also applied to the simulation model of the

actuator from Chapter 5.  The time step for the simulated transient is 61.4 10sT s   to 

eliminate any potential accuracy problems due to undersampling.  The intermediate 

values of the simulated results also provide information about the high frequency 

components of the response that are not evident in the slower experimental results. 

comparisons of the simulated an
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and Fig

otal 

 an

give the m s test.  This fidelity of the samp tive of the 

entire test. 

odel of displacement in Figure 7.3

major peaks of ient.  The fit is best for coil 10 and becom s progressively poorer 

for coils 8 d wn to 2.  The increase in error versus position is believed to be the result of 

an approxim tion of the boundary condition used for the vibration m odel 

assumes no load on the actuator even though the ma

ic load on the ma

ty of the multi-coil actuator

make it faster than the single coil is the difference in amplitu  response of the 

rate the difference in time response am

combine the PRBS transients for coils 2, 4, 6, 8, and 10 on the sam

displacem  Figure 7.3 are plotted again on Figure 7.6 .  The 

simulated re Figure 7.6 show the expected time dela plitude 

among the individual coils that result from the spatial distribution of the inputs.  The 

experimental results in Figure 7.7 show the same overall shape for the peaks as the 

calculated response but lack the time resolution to see the time delay for each coil 

individually.  The difference in resolution of the time response illustrates the handicap 

ure 7.5.  The total number of data samples in each transient needs to be an even 

power of two for signal processing.  The length of the PRBS transient consists of a 

sample of 132 8192  time steps of the experimental system at 670 10sT s   for a t

duration of 0.5734 seconds.  Only a short segment of that data can be shown in the 

figures.  The chosen segment has a long step d then a series of fast on-off steps that 

le shown is representa

 gives a very good comparison of the 

e

odel.  The m

ss of the actuator push rod, friction, 

gnetostrictive rod.   

 that is exploited by the MPC to 

de and phase

ong the coils, we 

e plot.  The 

 and Figure 7.7

y and variation in am

odel a rigorou

The m

 the trans

o

a

and preload spring contribute a dynam

The important proper

individual coils.  To illust

ent data from

sults in 



that the sampling time presents to the MPC for achieving significant performance 

improvement.  The modeling, on the other hand, is successful.  The overall character of 

the response is clearly the same.  The two figures demonstrate that the prototype multi-

coil device possesses a degree of differentiation in the timing of response that is 

accurately represented by the actuator model. 

The current in each energized coil is also compared in Figure 7.4.  The only 

parameter that is adjusted in the model is the amplifier cut-off frequency.  That change 

was made on the basis of the comparison in Figure 7.4.  Before tuning the cut-off 

frequency parameter, the rise time for model’s current was substantially faster than the 

experiment.  The time constant of the inductive resistive circuit response is increased by 

decreasing the cut-off frequency, yielding the comparison that is shown.  The plot for the 

current in the coil adjacent to the energized coil is shown in the Figure 7.5.  This plot 

shows the effect of induced voltage on the coil. 

The fidelity between the model and the experimental results is quite good 

considering that the speed of the transient is at the limits of monitoring capability for the 

data acquisition system.  The results shown here are the “raw” comparison.  The 

engineering esti or the 

amplifier parameter) are not changed to improve the fit.  No evidence of major 

unmodeled dynamics appears in the results.  The main features of the transient are 

evident in both the model and experimental results but perhaps have different magnitude.  

This result suggests that a task to refine parameter estimates in the model using system 

identification could significantly improve the comparison.   

mates for the parameters which were made initially (except f
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The modeling approximations that are introduced in the development are 

confirmed.  The approximation to linearize the magnetostrictive properties in Chapter 2 

and the homogeneous approximation of the eddy current’s boundary condition in Chapter 

3 appear to be satisfactory.  The circuit model approximating the feedback gain of the 

amplifier as a linear device appears to be a valid approach as indicated by the comparison 

of predicted and measured current for the energized coil.  The peaks of induced current in 

the coil adjacent to the energized in Figure 7.5 are overpredicted by the model by about a 

factor of two.  The reason for this is not known.  The modeling error is not significant to 

the test.  The induced current is quite small re tive to the current in the energized c il.  

The deviation in current in the unenergized coils appears more significant because it is 

not shown in comparison to a full scale current.  The comparison could mean that a 

higher value for the permeability parameter of the magnetostrictive rod is needed or that 

unmodeled dynamics in the current sensing circuit or current feedback circuit of the 

amplifier should be identified.   

In the presentation of results, the measured data are time-shifted two steps to 

correct for measurement delay as closely as possible and line up the input with the 

response in time.  The experimental data indicate that perhaps a fractional time step 

would yield a better comparison. The time shift in the Smith predictor in the control 

algorithm is rest explains the 

choice of an integer value, but the Smith predictor could be changed to use a fractioinal 

time step with some more complicated prediction mathematics.  The time shift appears 

greater in the displacement results than in the current results.  Hysteresis in magnetization 

also manifests as an apparent time delay in transients involving step changes and would 

la o

ricted to integer steps of the experimental time step which 

 318



affect displacement more than current.  Including a model of hysteresis could also 

improve the time comparison.   

The conclusion to be drawn from the PRBS test is that the model of the actuator 

system is largely successful and could easily be improved by tuning for a better fit.  Since 

the control results hinge on the underlying model, it could be argued that the PRBS 

results are more significant indication of the success of the mulit-coil actuator than the 

closed loop results in the following section. 
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Figure 7.3:  Displacement for simulated and experimental 
models on PRBS transient 
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Figure 7.4:  Current in energized coil for PRBS transient 
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Figure 7.5:  Current in coil adjacent to energized coil for 
PRBS 
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Figure 7.6:  Calculated displacement for coils 2, 4, 6, 8 and 
10 on PRBS transient 
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Figure 7.7:  Measured displacement for coils 2, 4, 6, 8 and 
10 on PRBS transient 
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Closed loop reference tracking transients 

The same three transients that are used in Chapter 6 to illustrate the performance 

of the MPC algorithm in simulated cases are repeated in this chapter using the prototype 

actuator.  The transients include the step change, three square pulses, and swept 

frequency transients.  The actuator model used to design the proportional-integral MPC 

for the experimental system is the reduced order controller with 20 states.  The control 

algorithm in the experimental system includes the Kalman state estimator and Smith 

predictor described in APPENDIX J.  The combined controller is described in 

APPENDIX K   

The data and parameters for the control algorithm are as close as practical to the 

parameters for the cases in Chapter 6 at the faster time step but cannot be the same.  The 

prediction horizon is the same duration rounded to the nearest integer number of time 

steps as in Chapter 6.  The time delay is the value observed in the PRBS transients.  The 

weights on the proportional and integral error in the MPC optimization are reduced based 

on the predicted effect of time step on tuning that is described in APPENDIX K.  The 

control algorithm for the experiment is tuned for stability and low sensitivity to noise.  

The tuning is adjusted by setting the weight on the control error in the MPC optimization 

algorithm.  The weight for the proportional error in the experimental system control is 

, whereas the weight for the simulations in Chapter 6 with a faster time step is 

 

state offset from the proportional error.  The tuning choice for slower, more stable 

response is evident in all the experimental runs.  The steady state offset from proportional 

2

1000Pq  .  The reduction in the control error term of the cost function improves the 

damping of the control response but it also results in slower response and greater steady

100Pq 

2
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control also increases.  A corresponding effect from reducing the weight is that the pow

term is more significant in the cost function than the control error.  The op

er 

timization 

emphas

Table 7.1:  MPC algorithm  parameters 

Variable Value Units Description 

izes a reduction in power rather than reduction in control error in the results 

presented.  Numerical values for the key parameters in the MPC design calculation are 

given in Table 7.1. 

2
Pq  100 (-) Proportional error weight factor 
2
Iq  2000 / sT s Integral error weight factor  
2

-2 7

0.001 (-) Estimator weight factor Eq  

Df  0.1 (-) Displacement weight factor in estimator 

Hi  3 (-) Prediction horizon, (number of time steps)

Kn  2 (-) Time delay (number of time steps) 

sT  670 10   Time step 
ns  20 (-) Number of states in reduced order model  

 

Another tuning difference between the simulated results and the experiment

that the integral error of the measured displac

 is 

ement has to be disabled.  The measured 

signal for displacement goes through the Krohn-Hite

 inversion 

 integral error is a false error signal 

that dri s.  

th  

ny 

                                                

 filter and then is processed by the 

digital inverse filter.  The resulting estimate of displacement drifts with respect to the 

actual displacement due to small differences between Krohn-Hite filter and the

of that filter in the control system.  The build-up of the

ves the current demand off center and potentially could damage the amplifier

Removing integral action over past measured variables eliminates the problem with e

false drift in the displacement sensor but also removes the correction of the signal for a

 
7 The integral weight is only used on the portion of control error integrated over the prediction horizon.  
See discussion of the heading for  
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true offset between the reference signal and the actual displacement.  Eliminating the 

integration of measured displacement error means that steady state errors are not 

compen

ured data and the integral 

over the prediction horizon that does not depend on the m

of the error over the predicted time horizon is retained in the control algorithm because it 

is not affected by the signal processing error.  However, it has a small effect on the steady 

state offset because the prediction time interval is short and the integral action does not 

have time to accumulate error.  Moreover, the integral error calculated over the prediction 

horizon has no effect on the offset due to measurement error because predictions are not 

dependent on the measurement error.  The predicted interval only works to counteract the 

offset to proportional control.  The drift in calibration of the actuator due to temperature 

variation accounts for most of the steady state offset observed between the measured 

ent measurement is calibrated periodically in 

es 

fter the closed loop data were taken, additional tests of the model 

equatio

t 

sated in the experimental results.  In the MPC, the integral error actually consists 

of two terms, the integral over past values that depends on meas

easurements.  The integration 

trajectory and the reference.  The displacem

the experiments, but the effect of miscalibration is still evident in the closed loop results. 

The model used in computing the MPC matrices for the closed loop control cas

in this section is not exactly the same as the model shown in the PRBS or the simulated 

results in Chapter 6.  A

ns were constructed to verify the modeling and programming.  In particular, the 

Green’s identity tests in Appendix G were developed.  In the course of evaluating the tes

results, several minor programming errors and poor approximations were identified in the 

model.  These errors were corrected in the simulation cases in Chapter 3 through 6 and 

the PRBS cases in this chapter; however, the closed loop experimental results presented 
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ty of re-assembling the experimental system.   

ces between the experimental and corrected MPC 

demand

ubt.  The co

 oal of 

e 

 

time step are reasonable predictions of future experiments with a faster computer 

system.  The modeling errors actually give an inadvertent benefit.  The results with a 

known error in the model show that the control algorithm is robust to a certain class of 

in this chapter dissertation are not repeated with the corrected model owing to the 

difficul

The effect of the modeling errors on control is assessed in the APPENDIX N.  

The assessment is a test in which the measured data from the closed loop transient are 

processed by the final corrected MPC algorithm to compute the output that the corrected 

outputs.  The demands which are computed from the corrected MPC design model are 

compared to the demands from control algorithm actually used in the experiment.  The 

computation shows that the differen

s, while significant, are not so severe as to bring the fairly modest conclusions 

about the experimental results into do ntrol performance is certainly improved 

by greater fidelity, but at the available speed of the experimental system, no strong 

conclusions from the experimental results about the invention are possible.  The g

the experimental testing is to verify that the actuator behaves as expected in this 

experimental system.  The conclusion can be drawn based on the group of results despit

the modeling errors.  The model and controls behave as expected and the results and 

programming developed here can be used as the basis for future research using faster 

hardware to provide a more conclusive statement about the actuator performance.  The

open loop experiments, in which modeling errors have been corrected, show that the 

corrected model is sufficiently accurate that simulated results of the multi-coil using a 

faster 



modeling errors.  The optimization is affected by the modeling error, but the solution 

remains stable and continues to provide effective, if suboptimal, control. 

The model data are plotted in a group of three figures for each transient.  The first 

and second are line plots that show the terms in the cost function for the control error and 

the control effort.  The performance index in the MPC optimization combines the square 

of the difference between the reference trajectory and the measured displacement, 

 which represents the control error and the power demand,  2
r y 2

/ unu  which 

represents the control effort.   

The first plot in each set is the reference trajectory plot that shows the input 

reference signal, r, and the actuator’s displacement response, y.  The time delay in the 

measured displacement is removed by shifting the measured data by the computational 

delay so that the outputs to line up with actual time at which they were recorded.  For 

comparison, the corresponding experimental results from the open loop case are also 

shown on the r es the 

reference trajectory as the input to each coil, 

 , (7.1) 

causing all coils to ope  a single coil actuator 

without any compensation.  This is slightly different than the single coil with 

compensation presented in Chapter 6 for comparison. 

The second plot compares the power from closed and open loop cases.  The 

power term is actually the demand for power computed from the current demand as 

eference trajectory.  The open loop case for the experiment us

 ( )u t r t,open j i i

rate in unison.  The open loop case simulates

2
/ unu  where u is the dimensionless demand and  is the number of coils.  The demand un
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for power differs from the actual power delivered by the amplifier output to the actuator 

by the delay contributed by the amplifier.   

The open loop power in the same figure is numerically equal to .  By Eq. (7.1), 

the power for the open loop can be calculated as the following. 

 

2r

2 2/open un ru . (7.2) 

This value is plotted on the power plot for comparison. 

The third plot in the set of experimental results for each transient is the three 

dimensional current demand plots for the closed loop cases.  The plot shows current 

demand versus coil index and time for the transient.  The current demand plot for the 

MPC algorithm illustrates how the optimization distributes the current in space to 

minimize the power and reference tracking error.  The three dimensional plot gives a 

visualization of the spatial distribution effects resulting from the multi-coil actuator.   

Discussion of the step change transient 

The experimental step change event provides the same type of information about 

multi-coil actuator performance as the transient with faster time step, , in 

Figure 6.4 thro e given in 

Figure K.7 through Figure K.15. 

The actuator’s reference tracking is shown in Figure 7.8.  The magnitude of the 

displacement is slightly different between the open loop and closed loop response.  The 

difference is a consequence of the calibration of the experiment and the steady state offset 

that occurs with proportional control.  Because of the filtered displacement measurement, 

the integral error cannot be used to correct for the offset.  The shape of the response other 

62 10sT  

ugh Figure 6.15.  Predicted results for the slower time step ar



than amplitude is almost the same for open and closed loop in both speed and settling 

time.   

The power consumed is shown in Figure 7.9.  The power of the closed loop settles 

out at a lower value because of the steady state offset inherent in proportional control.  

The power to hold the displacement at the lower value is correspondingly less. The power 

plot indicates one slight advantage for the multi-coil design.  The rate of change of power 

is less.  The current demand for the multi-coil actuator changes more gradually which is 

less demanding on the amplifiers.  

The three dimensional plot of the current demand is shown in Figure 7.10.  The 

 

d of 

 one 

 other to optimize total power for the transient in a profile that is 

shaped t the 

MPC algorithm using a time step of sT  does not produce the zig-zag pattern of 

current demand leading up to the step change that characterizes the simulated cases at 

faster time step, 62 10sT   , in 

670 10 

Figure 6.24.  This distinctive zig-zag feature of the 

control algorithm is the clearest evidence of how the multi-coil actuator achieves its

enhanced performance.  The behavior is not possible in the slower case because the time 

step for the experiment is almost as long as the time for a pulse to travel from one en

the actuator to the other.  However, the distribution of input energy shifts subtly from

end of actuator to the

 like the second spatial mode for vibration.  This behavior is evidence tha

algorithm continue to seek an optimum current distribution despite the increase in time 

step. 
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Figure 7.8:  Open and closed loop response of displacement 
on step change transient for prototype actuator 
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Figure 7.9:  Open and closed loop response of power on 
step change transient for prototype actuator 
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Figure 7.10:  Closed loop current demand versus coil index 
and time on step change transient 
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Discussion of the three square pulse transient 

The three square pulse transient is presented in Figure 7.11, Figure 7.12, and 

Figure 7.13.  The simulated results for the same transient executed with faster time step 

are given in Figure 6.9 through Figure 6.12.  The predicted results for the actuator 

response at the same slower time step are given in Figure K.10 through Figure K.12.   

The open loop displacement in Figure 7.11 is significantly larger than the closed 

loop.  At the same time, the power in Figure 7.12 shows that the power consumed by the 

open loop is correspondingly higher.  The MPC finds an optimum that uses less power 

but accepts a larger control error.  This effect is a consequence of the weight factors that 

sacrifice tracking accuracy for stability.  The error in the model used for the MPC design 

discussed in APPENDIX N may also contribute to the diminished experimental response.  

The predicted response for the same transient in APPENDIX K shows considerably 

larger amplitude response for the closed loop control.  The control algorithm in the 

experimental system is designed with a modeling error that underpredicts magnetic drag.  

The current demand produced by the experimental system is therefore smaller than 

needed to overcome the actual drag.  The result is the lower amplitude displacement 

shown in the figure. 

The open loop experimental results for displacement in Figure 7.11 and 

corresponding predic e K.10 provide a 

useful validation of the model.  The expe and predicted displacements are 

remarkably close.  The predicted response for displacement in the closed loop in Figure 

K.10 is considerably higher in amplitude than the closed loop displacement in the 

experimental results ntrol experiment 

ted open loop using the corrected model in Figur

rimental 

in Figure 7.11.  It is believed that repeating the co



 

with the corrected th

like the pred

334

e control model would yield higher amplitude displacement response 

ictions. 

The three dimensional current demand in Figure 7.13 shows the same shifting of 

current from one end of the actuator to the other that is seen in the step change transient.  

The results are very similar in overall shape to the predicted current demand as well.  The 

general agreement in the current demand suggests that the programming of the algorithm 

is correct and only a correction of the actuator modeling matrices is needed for closer 

comparison. 

Three square pulses
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Figure 7.11:  Open and closed loop response of 
displacement on three square pulses for prototype actuator 
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Figure 7.12:  Open and closed loop response of power on 
three square pulses  for prototype actuator 

 

Figure 7.13:  Closed loop current demand versus coil index 
and time on three square pulse 
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Figure 

 goes 

Discussion of the experimental  swept frequency transient 

The range of frequencies in the swept frequency transient in Figure 7.14, 

7.15, and Figure 7.16 is less than range in the corresponding transient for the fast time 

stsep transient in Figure 6.28, Figure 6.29, and Figure 6.30 because of the slower time 

step.  The swept frequency reference trajectory is constructed so that the frequency

from 200 Hz   to 
1

3571 Hz
4 sT

    over a time span of 0.012 seconds.  The sw

frequency transient for the fast time step simulation ranges fro

ept 

m 0 to 10,000 Hz in a 

transient lasting 0.0022 seconds. The upper end of the frequency range in the 

experimental transient is half the Nyquist frequency which is the maximum frequency 

that can be reached.  The data in the reference signal exhibit a deterioration of the 

representation of the sinusoidal shape at the upper limit of the discrete sampling 

frequency range.  The purpose of the transient is to provide a strenuous test for the 

actuator that simulates a wide frequency range.  No particular attention is given to the 

lack of a sinusoidal shape at the upper frequency end.  Both the prediction with slow time 

step in Figure K.13, Figure K.14, and Figure K.15 and the experiment in Figure 7.14, 

Figure 7.15, and Figure 7.16 are given the same stimulus so the experimental and 

predicted results are comparable.   

The swept frequency transient offers evidence that a faster experimental system 

would be able to take full advantage of the benefit of the multi-coil actuator shown in 

Chapter 6 with the faster time step.  The amplitude of the closed loop displacement, 

although less than the reference, is nearly constant from the beginning of the transient to 

the end.  The upper end of frequency at 3571 Hz is well beyond the first resonance at 

2747 Hz.  The amplitude of the open loop response goes nearly to zero at the upper end 



of frequency.  The distribution of current to the coils successfully overcomes the high 

frequency attenuation tha pen loop response. 

he three dimensional plot of current demand in Figure 7.16 shows that the 

spatial distribution of dem

t reduces the amplitude of the o

T

and approaches the shape of the second mode of vibration at 

the upper end of the frequency range.  This spatial distribution is the same shape seen in 

the fast time step results at comparable frequency. 

The results of the swept frequency transient are very encouraging that the 

performance of the actuator could achieve the high frequency goals of the design if the 

sampling time were sufficiently fast. 

Swept Frequency 
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Figure 7.14:  Open and closed loop response of 
displacement on swept frequenc

actuato
y transient for prototype 
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Figure 7.15:  Open and closed loop response of power on 
swept frequency transient for prototype actuator 
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Figure 7.16:  Current dem nd v sus il in ex a
tran

a er co d nd time for closed loop system on swept frequency 
sient 

 



Summary of the Experimental Results 

The experimental results produce three main findings.  First, the modeling is 

validated.  The developed model of the actuator and controls reproduces the dynamic 

perform

r 

 in the 

 in 

ance for sampling data and computing the algorithm on the prototype system’s 

hardware.  The performance of the control hardware shows what components need to be 

ance in the prototype actuator system.  The agreement between experiments in 

this chapter and predictions in both open loop and closed loop operation gives 

considerable confidence that the greater performance improvements predicted with a 

faster time step can be realized with faster computer hardware.  The approximations in 

the model, such as linearizing the magnetostriction process, approximating the eddy 

current field as homogeneous on the rod boundary, and modeling the amplifier as a linea

feedback device, are also validated.  No significant unmodeled dynamics are 

encountered. 

Second, the experimental multi-coil prototype reduces power and/or improves 

tracking as specified in the performance index.  The magnitude of the improvement

multi-coil actuator at the experimental time step is predictably modest, but the optimum 

sought by the MPC algorithm does not vanish.  The benefits of the MPC optimization 

gradually degenerate as the time step increases.  The control then approaches the same 

control that one would get with a single coil.  No numerical problems are encountered

the calculating the control matrices for the algorithm or in calculating the stable closed 

loop demands in the real-time experiment on the control computer. 

Third, the control algorithm can be implemented successfully in a digital 

computer and executed in real time.  The experiment quantifies the maximum 

perform
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upgrad l 

 

rithm 

ed for a more complete test of the actuator.  Based on the timing of the contro

program calculation and the sampling rate of the data acquisition system in the 

experiment, a revised experiment can be designed with very precise specification of the

performance of the amplifiers, computer, and data acquisition hardware.  As an added 

benefit, the experiment also forces the research to address the problems of model 

reduction, measurement delay, and state estimation to produce a workable control 

algorithm.  The experiment shows that these features can be added to the MPC algo

without affecting the performance of the multi-coil actuator. 
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CHAPTER 8 

CONCLUSIONS 

 

This research investigates whether a multi-coil magnetostrictive actuator offe

significant advantage in speed over a conventional single coil actuator.  The result of the 

study shows that an optimally controlled multi-coil actuator is a more efficient linear 

motor and is capable of tracking a rapidly changing reference signal more closely while 

using less power than a single coil actuator.  For example, in a numerical simulation of a 

step change transient, the multi-coil actuator responds three times faster than a 

comparably tuned single coil while using less than half the peak power.  Similar results 

are obtained for a three pulse transient simulating a multi-pulse fuel injection.  A swept 

frequency transient shows that the multi-coil actuator responds with more than 60% of 

full amplitude from 0 to 10,000 Hz.  The amplitude of the single coil actuator is the same

as the multi-coil at 0 Hz but progressively less as frequency increases.  Above 7000 Hz, 

the amplitude of the single coil response is less than 10%.  Visualizations of the control 

input on the example transients using three dimensional plots present the results in a form 

that leads to an understanding of how the distributions of input over space and time along 

the rod can lead to a more efficient actuator design.  The plots show that the inputs to 

individual coils can be timed to account for the acoustic propagation delay between input 

and output and thus give an optimum response. 

The contributions of the thesis are the prototype of the multi-coil actuator with 

design features to minimize eddy current, a mathematical model that couples the effects 

of vibration, eddy current, and coil current, an optimal control algorithm based on model 

rs a 
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predictive control strategy, and experimental system to verify the modeling and control.  

The modeling results presented as time and frequency domain simulations provide an 

understandings the physics of the process and give confidence that the model produces 

reasonable results.  The modeling and controls are presented with the details of the 

derivations so that the future research can build upon this work.  The model derivations 

are also verified extensively using mathematical tests of the solutions that have been 

developed as part of the research. 

Investigating the multi-coil actuator has led to advances in modeling techniques 

for magnetostrictive actuators.  As in many engineering problems, the important 

dynamics cannot be isolated in a single equation or physical phenomenon.  The overall 

process y 

s 

state 

ion of 

 of the magnetostrictive actuator involves coupled systems for the vibration, edd

current and coil currents.  All of these processes have significant effects on the actuator 

dynamics within the time scale for high speed actuation.  The model development show

how the coupling coefficients between the processes can be developed from a first 

principles derivation starting from the fundamental laws of physics and using the 

constitutive equations of magnetostriction.  The solutions to the vibration and magnetics 

equations give formulae for the coupling coefficients that are integrals of products of 

mode functions.  The integrals can be evaluated numerically or analytically for the 

space model.  The coil current model makes an innovative use of a two-dimensional 

finite element magnetic modeling code (FEMM) of the multi-coil actuator to obtain the 

steady state magnetic field distribution of the coils.  FEMM’s detailed representat

the actuator geometry and materials gives the coil field a much greater fidelity than 

would be available if the coil field were solved with the simplified geometry that can be 
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handled analytically.  The magnetic field distributions, represented as tabular functions of 

coil index and position, are used in calculating the coupling coefficients between the 

three m s to 

f 

having 

s, ten 

r 

 actuator.  Simulations in the time 

and fre

o the 

 

 

odels.  The analytical formulation using one-dimensional modal function

represent the vibration and three dimensional modal functions for the magnetic field o

the eddy current leads to a compact solution of the modeling problem which in turn is 

essential to solve the optimal control problem numerically.  The state space model 

a total of forty state variables is shown to provide adequate accuracy for the control 

study.  The forty state model contains twenty states associated with vibration mode

states for eddy current modes, and ten states representing coil current.  The order of the 

model is sufficiently low and the mathematical properties of the resulting state space 

matrices are sufficiently well-conditioned that the control calculations present no 

numerical problems.   

The model development and open loop transients using the model are the basis fo

understanding the efficiency advantage of the multi-coil

quency domain using the vibration model, both as stand alone simulation and 

combined with the eddy current and coil current models, lead to an understanding of the 

acoustic propagation effect that underlies the advantage of the multi-coil actuator.  

Energy added to the vibration process by coil current must propagate from the coil t

tip at the sound of speed in the actuator.  The time delay between energy input and its 

effect on displacement must be accounted for in the control system algorithm.  Similarly, 

the frequency response results illustrate that the actuator’s response to different coils can

be out of phase with one another because of the propagation delay effect.  The input 

energy is lost if the wave generated by one coil cancels the wave by another coil.  The
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cancellation mechanism for energy loss is the property of the actuator that can be 

overcome by multiple coils.  Energy from each coil can be timed so that its effect is a

maximum to achieve the desire response and does not cancel the energy from other coils. 

T

 

  

he full system model combining vibration, eddy current, and coil current models 

shows dy 

 

n 

lone 

e vibration plus eddy current to 0.22 for vibration, eddy current, and 

coil cu t 

 

 

the significance of the eddy current and coil current as loss mechanisms.  The ed

current draws energy from the vibration model and coil model through induction and 

dissipates that energy rapidly in ohmic losses.  The simulations that combine the eddy

current with vibration show that high frequency response is greatly attenuated by the 

magnetic drag of eddy currents.  The coil currents have a similar magnetic drag effect.  

The current induced by other coils and by vibration in the rod is lost in that circuit’s 

resistance.  The simulations of the step change and frequency response show that 

magnitude of the loss mechanism at high frequency for the coil circuit’s drag effect is o

the same order of magnitude as the eddy current loss.  For example, the amplitude 

(normalized to unit gain) at the first resonant peak drops from 0.65 for the vibration a

case to 0.45 for th

rrent models.  The combined system simulations demonstrate that the eddy curren

and coil current dynamics cannot be neglected in designing a control algorithm.  The 

combined process simulation also suggests that very high frequency response (e.g., above

10,000 Hz) is not possible with the prototype actuator, but an actuator that is designed 

with more segments of lamination or perhaps as a wound tape of magnetostrictive 

material could achieve even faster response than the prototype results presented in this

study.  
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The major approximations in the model are the linearization of const

equations of magnetostriction and approximation the boundary condition of eddy curr

itutive 

ent 

field on

 of 

and 

o 

g the homogeneous boundary 

conditi

se 

ary 

r 

the 

 

 the surface of the rod as homogeneous.  Both of these approximations greatly 

simplify the model and are shown to be valid for this initial study.  Further refinement

the model with more exact approximations is possible.  For example, the Preisach 

operator method of modeling hysteresis can be added to the simulation.  This type of 

nonlinear model has been successfully applied to lumped models of magnetics 

control.  By adding spatial dependence to the operator, the technique could be applied t

the multi-coil actuator model.  The difficulty of the Preisach model of hysteresis is the 

problem of nonlinear control of the resulting actuator model.  The second major 

approximation in the model is the homogeneous boundary condition for the eddy current 

model which accounts for perhaps 10% error in the magnetic field under worst 

conditions.  The error can be made much smaller by applyin

on approximation at the outer surface of the flux return path rather than on the 

surface of the actuator rod.  The magnetic field is much lower at this boundary becau

most of the magnetic flux is contained with the return path.  By neglecting a bound

term that is much smaller, the magnetic field in the interior of the rod is subject to smalle

error giving a much more accurate approximation to the overall magnetic field.  The 

difficulty in extending the region of solution to include the coil and return path is that 

modal functions are multi-region functions and thus are much more complicated 

algebraically. 

The main objective of the research is to show that a multi-coil actuator, if 

optimally controlled, can achieve a significant improvement over a single coil actuator. 
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r 

nvolves 

dditional parameter of the system is optimized.  To show how the spare degrees of 

freedom works to make a multi-coil actuator track more closely or use less power than a 

single coil, a derivation is offered in this dissertation for an optimization of the actuator 

response in the frequency domain.  The problem is to find the current distribution among 

the coils that causes the displacement to track a sinusoidal reference signal exactly while 

the sum of squares of current demand is a minimum.  The solution of the optimization 

problem illustrates the advantage of the multi-coil actuator.  The phase of the optimum 

current for each coil with respect to the reference turns out to be the negative of the phase 

between the displacement and the coil current demand.  In other words, the optimal coil 

current demand must lead the reference by the same amount of time that the displacement 

lags the coil current demand.  The net phase from reference demand to displacement is 

then zero.  The amplitude of the optimum demand is the reciprocal of the amplitude of 

the transfer function between displacement and current.  In other words, if the output 

response to a particular coil is less than the average of all coils (at a given frequency), the 

optimum current demand to that coil is proportionately less.  For comparison, the ratio of 

The second half of the research problem is to use the mathematical model of the actuato

in a model-based control strategy to determine whether additional coils provide any 

significant advantage.  The control problem is a tracking problem in which the objective 

is to find the coil current demand that causes the displacement to follow a reference 

trajectory.  The multi-coil actuator control problem is somewhat unusual since it i

multiple inputs controlling a single variable to a reference condition.  This 

underdetermined situation, called spare degrees of freedom, gains its advantage over a 

system with equal number of inputs and outputs by distributing the spare inputs so that 

some a



po  

coil actuator tracking th ted.  The results show 

that ten to 100 times more power is consumed by the single coil actuator than the multi-

coil in the frequency range from the resonance to 10,000 Hz.  This calculation shows the 

theoretical maximum efficiency of the multi-coil design relative to the single coil.  The 

actual improvement that can be realized in the time domain control is less because of 

finite sample time and because the exact tra g assumed in the frequency domain 

optimization turns out to be very sensitive to oise.  The actual optimal control problem 

in the time domain is solved by th rol for a discrete time model of 

the actuator in the research also. 

A model predictive control algorithm is developed to realize a practical control 

system that takes advantage of the multi-coil actuator.  The predictive aspect of the model 

predictive control allows the algorithm to look ahead to the future reference trajectory 

and anticipate the current control demand that optimizes the future response.  The 

predictive aspect of the control compensates for the acoustic wave transport delay 

between the coil inputs and the displacement.  The optimized control design puts energy 

into the rod’s vibrational model in advance of a change in the reference position so that 

the resulting displacement arrives at the time required by the reference trajectory.  

Simulated transients using a computation time step that is small compared to the acoustic 

propagation time show the advantage of the multi-coil actuator on a range of transients 

including step change, three square pulses, and swept frequency.  The simulated 

transients show an order of magnitude better power, voltage, and reference tracking with 

the multi-coil actuator than a single coil actuator with similarly tuned predictive control.  

wer consumed by an optimally controlled multi-coil actuator and the power of a single

e same sinusoidal reference signal is calcula

ckin

 n

e model predictive cont
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The current and voltage for the mul sible for conventional amplifiers, 

ne of the incidental contributions of this research is a modification of 

conventional m  

change in input demand and proportional error.)  The resulting control law for the 

modified performance index is t is no more difficult than 

.  The 

ate the actuator performance.  

The modified model predictive control algori

any con

imental 

search 

ti-coil 

 and logging the 

e design of the prototype multi-coil actuator is presented as part of 

this research.  The prototype includes ten coils arranged axially in a modified version of a 

com ercial magnetostrictive actuator.  The prototyp

actuators because of design features to reduce eddy currents that would otherwise prevent 

the actuator from achieving the desired frequency response.  The innovative features 

ti-coil device are fea

whereas the current and voltage for the single coil case are not. 

O

odel predictive control to accommodate the spare degrees of freedom

situation.  The modification is to use actuator input demand, proportional control error 

and integral control in the quadratic performance index that is optimized over the 

prediction horizon.  (In contrast, the conventional model predictive control uses the 

 a proportional gain matrix tha

the conventional control law for implementation in the real time control algorithm

model predictive control algorithm for the multi-coil actuator is a matrix multiplication 

that can computed at the high speed needed to demonstr

thm is a general result that is applicable to 

trol application with spare degrees of freedom. 

A prototype actuator was designed and built for this research and an exper

system assembled to test the concept.  The experimental system for the actuator re

consists of a prototype mul actuator, the electronics to power the multiple, and a 

digital control system for computing the real-time control program

experimental data.  Th

m e actuator differs from commercial 
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include laminating the a tuator rod in fouc r, quadrant-shaped cylinders and the use of low 

conductivity materials.  The other major com

rcial it her available in laboratory resources or purchased for this 

project. 

The experimental system is limited by its sampling speed in demonstrating the 

high speed actuator performance.  The control system is limited to a time step greater 

than 70 µs by the settling time of the analog to digital conv

tely ten times greater than the time for a pulse to 

travel through a single coil.  Consequently, the experim

demands to individual controls with the tim .  

e 

closed loop experiments.  The stimulus for the open loop is a pseudo-random binary 

sequence as the current demand at the amplifier.  This pseu

test tha

mparison, presented without tuning the input data to 

improve the match, confirms that the model is satisfactory.  The comparison between 

model and data can be improved in future work by applying techniques of system 

ponents in the experimental system are 

comme ems that were eit

ersion of the digital input 

board.  This time step is approxima

ental system cannot input current 

e differences that provide the improvement

Despite the time step limitation of the hardware, the experimental results provide a valid, 

if limited, verification of the simulation results.  The experimental results confirm the 

modeling and controls and provide assurance that the simulated results using a faster tim

step are an accurate prediction of the performance that can be achieved with a faster 

control system.  

The experimental system is used to confirm the modeling in both open loop and 

dorandom input is a stringent 

t exercises the full frequency response of the actuator model within the limitations 

of the sampling time.  The co
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identification to fit the parameters of the model such as the constants of the 

magnetostrictive constitutive equations and amplifier gains to the experimental data. 

Some additional features of control need to be developed for the closed-loop, real-

time ex l 

reduction to reduce computation time, adds a

state of h 

he Smith predictor formulation in 

conjunction with model predictive control is an original contribution that has not been 

reported previously.  The real-time control algorithm with the added features is simulated 

num rically at the fast time step needed to show that the advantage of

algorithm is not compromised by the additional features of the real-time control program.  

The co

redict results for the experiment.   

The experimental tests of the multi-coil actuator confirm the modeling, show that 

the model predictive control with proportional and integra

develo

reference trackin t

e 

imental time step is 

predictably modest, but the optimum sought by the model predictive control algorithm 

periment.  The control algorithm for the real-time experiment includes mode

 Kalman state estimator to predict the full 

 the actuator from the measured variables, and develops a new type of Smit

predictor to correct for digital time delay.  T

e  the control 

ntrol program and simulated plant are also executed at the time step of the 

experimental system to p

l error and other features 

ped in this research can be implemented in a real-time control system, and 

demonstrate the advantage, insofar, as possible with the available sampling time, that a 

multi-coil actuator reduces power and/or improves the g capability of he 

actuator.  The agreement between experiments and predictions in both open loop and 

closed loop operation gives confidence that the greater performance improvements 

predicted with a faster time step can be realized with faster experimental hardware.  Th

magnitude of the improvement in the multi-coil actuator at the exper
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doe

gracefully a  increas s.  The multi- oil control r ponse approaches the same 

control that one uld in e e ua ormance 

f a rea ce 

at components need to be upgraded for a more 

complete test of the multi-coil actuator performance.  The timing on this experimental 

system can be extrapolated to the sampling rates and process

tests to demonstrate the predicted performance enhancement that the multi-coil actuator 

offers.

s not vanish.  The benefits of the model predictive control optimization degenerate 

s time step e c es

wo  get with a s gle coil.  Th xperiment q ntifies the perf

o l-time system for sampling data and computing the algorithm.  The performan

of the control hardware shows wh

or speed needed in future 
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APPENDIX A 

MAGNETOSTRICTIVE CONSTITUTIVE EQUATIONS TESTING 

 

ne of the convenient mathematical properties of the matrix form of the 

magnet w 

Matrix transformation test 

O

ostrictive constitutive relationships is that many identities can be found that allo

the original nine element linear constitutive relations and the various manipulated 

versions to be compared with each other to check the algebra.   

A simple test for the derived magnetostrictive matrices, HY , κ , and Sμ , in 

H Tcomparison to the original nine component matrices, , and s , d μ  can be constructed 

by closing the algebraic loop back to the starting point. 

 
,B = κ S +

. 

S

H

μ H
 (A.1) 

T Y S κH

Consider a case with no external load, steady state, and a specified magnetic field.  

Since the problem is steady state, no unbalanced forces may act on the rod.  The 

magnetostrictive forces balance the elastic forces at every point; h

everywhere must be zero,

ence, the stress 

  0T

 Eq. 

.  From this condition, the equilibrium condition for the 

strain and magnetic field from (2.13) is obtained by inserting  into the second 

relation in Eq. (A.1). 

  (A.2) 

Insert Eq. (A.2) into the top equation of the magnetostrictive relations in Eq. (A.1). 

T 0

  1

,

.


 



H

H

0 Y S κH

S Y κH
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1

1
.







    

H S

H S

B κ Y κH +μ H

κ Y κ +μ H
 (A.3) 

From the definition of  in Eq. (2.18),  

. (A.4) 

κ

 S d H 

Insert  0T  into Eq. (2.13), 

 
.


T

B = d 0 T+μ H
 (A.5)  

= μ H

Equate Eq. (A.3) and Eq. (A.5), 

 T  1    
H Sκ Y κ +μ H μ H . (A.6) 

Equation (A.6) gives the identity, 

    1 1   T H S

  
μ κ Y κ +μ H I . (A.7) 

ngs the equation back to the starting point and provides a quick 

numerical check of the programming of the formulae in the MATLAB program for 

transforming the magnetostrictive relationships.  The test can be applied

dimens tive equations.  Data from Table 2.2 and 

Table 2.3 are evaluated using the identity matrix test.  The MATLAB calculation gives 

the identity matrix to machine precision for both Table 2.

By analogous steps, the following identity should also hold. 

 

This result bri

 to both the three-

ional and the two dimensional constitu

2 and Table 2.3. 

   1 1
'

     
S H TI μ -d s d μ . (A.8) 

This test gives the identity matrix to machine accuracy for both three-dimensional 

and two dimensional cases. 
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Constant volume test  

The validity of the approximation of constant volume used in reducing the 

constitutive relation for the vibration can be te

induction and evaluating the volume change.  In this test, no external stress is applied.  

The approximation is valid if the volume is constant or nearly so.  The first step is to 

define the volume change in terms of the components of strain.   

The volume of an unperturbed volume element in Cartesian coordinates is  

 z . (A.9) 

The volume change under the six element stress and strain formulation in 

Cartesian coordinates can be computed as 

sted by applying an axial magnetic 

V x y   

   

 

1 2 31 1 1 .S S S x y z      

Taking the ratio of the volumes in Eq. 

1 1

yx z
p

yx z

V x x y y z z

x y

 

 

                 
 

            

) to eliminate 

x y z    

1 x y z
z

     
 (A.10) 

x y z    (A.10) and (A.9

makes the equation dimensionless. 

  1 21 1 1pV
S S S

V
    3 . (A.11) 

The strains under the application of magnetic field can be evaluated numerically 

by Eq. 

which gives .  Equations (A.2) and (A.11)

using this maxim  along with the data in Table 2.3

(A.2) for any vector, H.  A maximum magnetic field can be evaluated using the 

maximum current, 2.25A , and number of turns in the coil, 6614 turns/mT  , maxI 

14882 Az maxI  

m value of zH

/mH T

u

 can be evaluated 

 and Table 2.4.  The 
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result for the strains and the volume ration are given in Table A.1  This test confirms that

a maximum axial field results in negligible volume change, thus justifying the constan

volume approximation. 

Table A.1:  Volume change for six element matrices for an applied magnetic field 

[Amp/m] 
1 2 3

 

t 

H S  S  S  /pV V  

0 
0

14882

 
 
  

. 

-4 -4 -3-0.789×10 -0.789×10 0.1637×10 1.000005933 

 

 thin ring is given by 

z

The constant volume test can be applied in cylindrical coordinates also.  The 

volume of a

 

 

2 2

22

2 .

V r r r

r r r z

r r r z







      
      

    

  (A.12) 

 

The perturbed volume is given by 

 

 

2

rr r z

          

        

 (A.13) 

The uniform density approximation gives the following relationship. 

22 1 1 1r r z
p rV r r r z

r r z
                        

1 2 1 1 .r r zr r r z
                          

 r r

r r

 


. (A.

Thus, the term in square brackets in Eq. (A.13) can be written as 

14) 
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 2 1 2 1 1r rr r r r
                

 

 1 2 .r r r
   

 (A.15) 

r
r r r r

              

  

 

r 

Making this substitution into (A.13) gives  

 

 

2

2

1 2 1

2 1 1

r z
p

r z

V r r r
r z

r r r z
r z

 

 

                 

                 

z

 (A.16) 

Taking the ratio of pV V gives 

 

 
 

2

2

2 1 1

2

1 1

r z

p

r z

r r r z
V r z
V r r r z

r z

 



 

             
   

             





 (A.17) 

 

In terms of the strain elements, this ratio can be written as the following. 

   1 1pV
S S    (A.18) 

 .19) 

e test app ylindrical version of the 

constitutive relations gives the same result as

n 

 volume is constrained to be constant.  The constraint 

is approximate because second order terms are neglected in Eq. (2.48).  The validity of 

2

rr zzV

From the orthotropic symmetry, the strains in all directions in the x-y plane are 

equal. 

1 2rrS S S   (A

Hence, the constant volum lied to the c

 given in Table A.1. 

The constant volume approximation in Chapter 2 gives a relationship betwee

radial and axial strain in which the
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this approximation can be assessed by inserting the strain relationships from Eq. 

into Eq. (A.18).   

(2.51) 
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imation 

in Eq. (2.48).  Inserting the numerical value, , from Table A.1 

gives the following estimate assessment of the accuracy of the constant volume 

express

1
1 1

2

rr zz

zz zz

V

V

S S    
 

 

31
zzS

The expression is accurate to first order as expected based on the approx

-3
3 0.1637 10zzS S  

ion with second order effects. 

   2 3-310 0.9999999953   (A.21) -33 1
1- 0.1637 10 0.1637pV
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APPENDIX B 

SOLUTION OF THE VIBRATION PROBLEM BY INTEGRAL 

TRANSFORM 

 

This appendix gives the solution to the damped wave equation by the integral 

transform method.  The coefficients that couple the vibration model to the magnetics 

model and the coil circuit model are computed.  Test calculations are also shown to verify 

the derivations and coding. 

position using the product of orthogonal spatial functions and

functions.  The amplitude functions become the state space variables of the state space 

model.  

The governing equation and boundary conditions are derived

damped wave equation with a distributed source. 

The derivation finds a solution for the displacement of the rod from a neutral 

 time dependent amplitude 

 in the main text as a 

Governing equation 

 
22 2

12 2
2 .

2 1

N N Nx x x h

t t

 
  

             
 (B.1 
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Boundary conditions 
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1, .
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Initial conditions 
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The integral transform method described by Özişik [27] can be applied to 

,0
0.

Nx 


 (B.3) 

Eq. (3.25)to reduce the equation to an ordinary differential equation in time.  The integral 

transform for   is defined as the following. 

   
1
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0

t Z d X  .    (B.4) 

The inverse transform is given by 
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The transform function,  ,nZ   , is the solution to the associated homog

ordinary differential equ

eneous 

ation a undary conditions in which nd bo n  is a parameter. 
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and eigenvalues satisfy the differential equation and the 

 

The eigenfunctions 

boundary conditions 

     2 1
n

n 
, sin ; ; 1, 2, 3,

2n nZ n       .  (B.8) 

The normalization constant for  ,nZ    is  
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Applying the integral transform solution to each term reduces the problem to an 

ordinary, second-order differential equation in 

the second and third lines arises as a consequ

conditi

the transformed variable.  The last term on 

ence of the nonhomogeneous boundary 

on term. 

 

    
       

 

 

     

2

1

1

0

0

2

sin 1 1, .

N N N

n

t

d h t








  






 
 
 

 

    


) 

2

1

1

1
1

, 2

,
sin sin 1,

,

n n n n n

n n

n

t t

h t
d h t

h t



  


    









  

 
  

 



 X X X

 (B.10

Rearrange and simplify 
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The integral on the right hand side inv



 X X X

olves results for  .h t  which are 

calcula ode.  For numerical accu ration, it is 

preferable not to differentiate the FEMM data before integr

integrand,

ted using the FEMM c racy of the integ

ating.  The 

 sin n

h  




, can be integrated by parts to recast the al in terms of h.  integr
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 of the transformed 

system.  Conveniently, the boundary conditio

 

     



Substituting Eq. (B.12) into Eq. (B.11) gives the basic form

n terms cancel. 
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 (B.13) 

d 

 right.  The remaining work is to transform the right hand side 

into a summation consisting of fixed coefficients that dep

distribution functions and the 

is a function of all three spatial variables whereas the 

   
 

 X X

The modeling equation is neatly divided into the vibration model on the left an

the coupling term on the

end only on the spatial 

time-varying state variables from the magnetic and coil 

circuit models.  The magnetic field distribution functions are obtained from the solution 

to the magnetic problem Appendix D.   The axial component of field in the magnetic 

model  ,h t  function is just a 

function of the axial variable.  The magnetic field is averaged over the rod cross section 

to reduce the dimensions.  The magnetic field consists of the parts of field from

current e.  The 

is incorporated into the equation by the definition of the 

magnetostrictive coefficients.  If the constitutive relation had been form

magnetic induction as the input rather than field, the strain term would have appeared 

explicitly on the right hand side. 

 true 

s.  It may be surprising that the strain does not appear on the right hand sid

field due to strain 

ulated with 
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The integration for the radial average can be shown more clearly by performing 

the operations separately.   
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,k m

result.  The radial and axial integrations can performed analytically, but the resulting 

formula includes a Bessel function that is not provided in the MATLAB library.  The 

radial integration is performed by numerical quadrature rather than by the evaluation of 

the analytical solution. 

 

  
    

J

X .


 
 

 

 

The integration of the radial and azimuthal terms and associated normalization 

factors yields a matrix of constants.  A grouped constant, , can be defined to hold the 

  

P

 
     

1

,

0
,

0

.
,

k m

k m
m

d

P
N N N




   

     

 J

 (B.16
,

4 m

k m m m p

) 

The simplified form of  ,Hh t  can be written in terms of the array of constants 

 in     , , ,
1 1 1

, s
pmax mmax kmax

H M
k m p k m p

p m k

h t t P  
  

       
   X . (B.17) 
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The t ly from a 

table of magnetic field values com

ransverse average of the FEMM term is also computed numerical

puted by FEMM and stored. 
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e r l a ge the x d o t th  is en the llowing    
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lly us p

r combination of the 

normalized coil currents and the 



The notation for radial averaging is indicated by a breve, diacritical mark, “˘”, 

superimposed on the variable.  The average is computed numerica ing Sim son’s 

rule integration. 

The coil component of the field can be written as a linea

 ,
FEMM
R jx 

 functions. 

      ,,
jmax

FEMM K FEMM
j R jh t x t x 

1j

  
. (B.20) 

The results of the averaging operations can be inserted into the transformed 

differential equation Eq. (B.13).   
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The terms on the right hand side are evaluated individually.  The first term 

 is 

evaluated by integrating the series solution analytically term by term. 

 

accounts for the eddy current’s field, the second the coil’s field.  The first term
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e eigenfunctions are not orthogonal so each product is non- ero. 
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The formulae for the eigenvalues are the following.   
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Th  formese ulae may be inserted into Eq. (B.23) to evaluate the limits of the 

integral. 
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Noting that and  simplifies the numerator considerably.  

In the following equation, the first step inserts the zero terms in the numerator and the 

second step recovers the formula for the eigenvalues.   

  sin 0n   sin 0p 
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This result may be serte 2). 
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Equation (B.27) expresse fro tion mode to the 

(k,m,p)-th eddy current m es.  ne the eddy current 

mode’s amplitude functi   Th ctors in the linear combination are 

constan s that are properties of the modal solution of the cylindrical geometry.  No 

material properties are involved in the coefficients nor are any dimensions of the rod. 

lving the coil currents is the following.  This term 
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s the coupling m the n-th vibra

od The result is a li ar combination 

ons. e multiplying fa

t

The term from Eq. (B.21) invo

is integrated numerically using the FEMM results. 
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Another coefficient matrix can be defined using the result of the integral. 
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Inserting  into Eq. (B.28) gives the more compact for

 n j

,n jQ m of the equation. 
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 368

int, all the necessary equations to solve the vibration model are specified 

in indicial form.  The results of Eq. (B.27) an

to form tion mode. 

At this po

d Eq. (B.30) can be inserted into Eq. (B.13) 

 a complete, albeit unwieldy equation for the time dynamics of a vibra
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 for the displacement is obtained by the summation of the products of 

the amplitude and the modal functions. 
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where 
 2 1

; 1, 2, 3,
2n

n
n





    and 

1
( )

2nN  

 

.  The state variables in this 

solution are the amplitude functions, .  Equation (B.31) is a linear equation for the 

state derivatives of the vibration mo agnetics model supplies the states for the 

eddy current states, odel supplies the coil current state variables, 

N
n tX

del.  The m

, and the coil m , ,
M
k m p tX

K
jx . 

The dimensioned form of the displacement can be obtained by inverting the linear 

transformation in Eqs. (2.75) through (2.77). 
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The dimensioned strain can also be written in terms of the dimensionless 

amplitude functions. 
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Test Calculations of the Vibration Model 

The test calculations evaluate the vibration model against several theoretical 

results. 

Steady state calculations 

The state space model can be solved at steady conditions as a test of the 

derivation.  The steady state case provides a test of both the normalization approach and 

the coding of the model.   

The model’s steady state is obtained by setting all the time derivatives in 

Eq. (3.44) to zero.   

 . (B.35) 

Solving for , we have 

 x . (B.36) 

Inserting this solution into the o la for tip displacement yields 

 

12 130 N K
SS SS F x F x

Nx

  112 13N K
SS SS


 x F F

utput formu
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 C F F . (B.37) 
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Any array of currents may be inserted into Eq. (B.37) to evaluate the 

displacement of the actuator.  A problem with all coils energized at their maximum 

normalized current, 1
K
SS jmaxx 1 , gives a condition approximating the infinite solenoid 

and should give approxim ity.  Applying the test ve

the vibration problem odal order  yields a numerical value of  

The steady state elongation can also be solved using the original wave equation 

setting all time derivatives to zero.  This steady solution is the solution to the following 

system of equations. 

ately un

 with m

ctor to the system matrices of 

10nmax 

 1.0421 (B.38) SSy 

Steady state governing equation 
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Boundary conditions 
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SSd

The solution is obtained by integrating twice. 
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The undetermined coefficients are found by evaluating the boundary conditions, 

  (B.42) 

The solution for the steady problem is thus  
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The steady state magnetic field is given by the FEMM solution.  Any field 

distribution can be evaluated using Eq. (B.20). 
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The steady state displacement as a function of the normalized coil currents is 

given by the following. 
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 (B.45) 

Evaluating this condition at the free end yields a second calculation of the 

position at the free end that just involves integrating the FEMM cases.  The result is 

evaluated numerically by applying Simpson’s rule to the FEMM cases for each energized 

coil.   
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 (B.46) 

The result for a case with all coils energized,  for all j, is the following 

numerical value. 

  (B.47) 

Equation (B.47) gives an excellent comparison with Eq. (B.38).  The fact that the 

steady state elongation for both solutions is somewhat more than unity is a result of the 

normalization.  The normalization is set by the field for an infinite solenoid, .  

Since the actuator is finite and has a flux return path, the actual field in the actuator 

, 1K
SS jx 

 1 1.0419.N
Ax 

H T I 
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differs from the infinite solenoid.  This difference is calculated by the FEMM model.  A 

portion of the field follows the closed loop around the rod and return path forming a 

magnetic circuit.  Since the permeability of the materials in the return path is somewhat 

higher than Terfenol-D, magnetic field is somewhat peaked at each end of the actuator 

rod.   

The displacement for any set of values for the coil currents can be calculated by 

Eq. (B.37) and Eq. (B.46).  Table B.1 lists a number of cases and the displacement 

 All 

 of 

e.  The 

deviations between the solutions in the two rightmost columns are an ind e 

steady state accuracy of the modal solution.  The worst deviation occurs f

this case, all the current is in the first coil which is

is particularly poor when the function fitted does not satisfy the sam

as the modal function.  The modal function 

calculated by the two methods.  The cases are all constructed to give , 10K
SS jx  . 

of the cases should give approximately one unit steady state displacement.  The 

displacement is not exactly one unit because the coils are not equally effective because

end effects in the actuator geometry; however, the two solutions should be the sam

1

jmax

j

ication of th

or case 4.  In 

 the coil at the free end.  The Fourier fit 

e boundary condition 

 cos n   is zero at the free end.  Hence, all 

cases with a significant current in the first coil can be expected to have poor steady state 

accuracy.  This is the only major drawback to the modal approach.  Of course, accuracy 

is improved by increasing the number of axial modes. 
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Table B.1:  Steady state accuracy of the modal vibration model 

 Coil index 
Steady state 
displacement 

Case 1 2 3 4 5 6 7 8 9 10 SSy  N
Ax  

1 1 1 1 1 1 1 1 1 1 1 1.0316 1.0618 

2 2 2 2 2 2 0 0 0 0 0 1.0034 1.0624 

3 0 0 0 0 0 2 2 2 2 2 1.0598 1.0611 

4 10 0 0 0 0 0 0 0 0 0 0.7588 1.0530 

5 0 10 0 0 0 0 0 0 0 0 1.0712 1.0640 

6 0 0 10 0 0 0 0 0 0 0 1.0532 1.0650 

7 0 0 0 10 0 0 0 0 0 0 1.0684 1.0652 

8 0 0 0 0 10 0 0 0 0 0 1.0655 1.0650 

9 0 0 0 0 0 10 0 0 0 0 1.0619 1.0649 

10 0 0 0 0 0 0 10 0 0 0 1.0697 1. 650 0

11 0 0 0 0 0 0 0 10 0 0 1.0591 1. 50 06

12 0 0 1.0704 1.0636  0 0 0 0 0 0 10 0 

13 0 0 0 0 0 0 0 0 0 10 1.0381 1.0471 

14 2 0 2 0 2 0 2 0 2 0 1.0035 1.0623 

15 0 2 0 2 0 2 0 2 0 2 1.0597 1.0612 

 
 
The steady state test is only influ ome of the matrices in the model.  

Only the matrices multiplying the current or displacement states, , and , are 

involved in the calculation.  The matrix, , which couples coil curre

the main item that is checked is by the steady state calculation. 

Eigenvalue test 

The eigenvalues of the state space problem can be calculated directly from the 

indicial differential equation Eq. (B.31) as the roots of the following. 

 

enced by s
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.  (B.48) 
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The analytical eigenvalues are given by 
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where 1i   .  These eigenvalues can be compared to the eigenvalues calculated 

numerically by MATLAB for the  matrix for the vibration model. 

 . (B.50) 

Table B.2 gives the first ten complex eigenvalues from Eq. (B.49) and Eq.(B.50).  

For the test calculation,  and the number of axial modes in the MATLAB m del is 

  The o that the 

o le as an odd multiple of the fundam ntal frequency as n 

h n uses a value of  in calculating the 

ces.  r

off frequency of 10,000 Hz.  The eigenvalues of the m

e programming of the 

 and 

NA

 
11 12

det det 0N s
s

s

  
    

I F F
I A

I I

0.1 

re recognizab

e MATLAB calculatio

corresponds to a frequency of 13,750 Hz, which is

ula.  The calculation provides 

o

10nmax  .

imaginary part is m

increases.  T

actual matri

analytical form

matrices, F

values as shown are divided by the first resonance, 1 , s

e

odal model agree exactly with the 

1 2 2747.1  

 just a little above 

a convincing test of th

To give a sense of the frequency range, the eigenvalue fo  5n   

the target of a cut-

11 12F . 



Table B.2:  Comparison of eigenva uation from the analytical formula 

and system matrix 

lues, n , of wave eq

Index Eigenvalues /   1n

n Analytical Matrix 

1 0.1 ± 0. 9950i 0.1 ± 0.9950i 

2 0.1 ± 2.9983i 0.1 ± 2.9983i 

3 0.1 ± 4.9990i 0.1 ± 4.9990i 

5 0.1 ± 8.9994i 0.1 ± 8.9994i 

6 0.1 ±10.9995i 0.1 ±10.9995i 

8 0.1 ±14.99

4 0.1 ± 6.9993i 0.1 ± 6.9993i 

7 0.1 ±12.9996i 0.1 ±12.9996i 

97i 0.1 ±14.9997i 

10 0.1 ±18.9997i 0.1 ±18.9997i 

9 0.1 ±16.9997i 0.1 ±16.9997i 

 

 

Fourier series approximation tests 

The coupling coefficients between the vibration model and the magnetic and coil 

models represent force applied to the rod by an external forcing function on the 

displacement modes of the vibration model.  If a steady state problem is constructed for 

the rod displacement, it is clear that the coupl

l function.  Equation (B.26) gives a series of 

coefficients that fit the sine function using a cosin

.   

n

ing coefficients are the coefficients of a 

Fourier series that approximate the externa

e series.  For a finite number of terms, 

the following is approximately true

  cosA sin
nmax

p pn 
1n

 


  , (B.51) 
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where  

  2 2

2 p
pn

p n

A


 
 . (B.52) 

s 

e cosine 

series a

isons on each plot are the original sine function and the 

(B.51).  The cosine series



Comparing the original sine function to the Fourier series checks the 

programming of the matrix coefficients and tests the sufficiency of the number of term

to reproduce the input curve.  The comparison is shown in Figure B.1 for thre

pproximations to the sine function with three values of  the wave number, 

1, 3, and 10p  .  The compar

 is shown for 10nmax   and 20.   cosine series in Eq. 
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Case 2:  3sin    
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Case 3:  10sin    

Figure B.1:  Comparison of Fourier fit of the cosine series 
to sine function
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Equation (B.29 e average axial field 

 

 x . (B.53) 

 

) leads to a Fourier series representation of th

due the energized coils from the FEMM distribution which can be compared with the

original FEMM distribution from Eq. (B.20). 

1

jmax
FEMM FEMM K

R j j
j

   ,h x  

   cosinv n jh x   ,

1 1

2jmax nmax
n jFEMM K

j n n

Q

 

Figure B.2 shows the comparison of the Fourier fit and the original FEMM 

function for Eqs. 

 . (B.54) 

  (B.53) and (B.54).  The Fourier series is shown for nmax=10 and 20.

The case number refers to the distribution of input currents, K
jx , as given in Table B.2.  

The first case with all coils energized illustrates the problem of fitting a nonhomoge

source function with a homogeneous modal function.  The fit at the homogenous right 

boundary is not accurate.  The average behavior is c

neous 

orrect. 

ot 

ks 

The second plot shows the peak for a single energized coil at level 2.  This pl

shows the local distribution of magnetic field and some effect from the boundary 

condition approximation. 

The third plot shows the field for coil current pattern of alternating on-off coils.  

The case shows the effect of magnetic diffusion to spread out and attenuate the flux 

localization that is being used to cause an axial distribution of magnetic field.  The pea

and valleys of the field profile are the effect that distributes energy along the rod.  
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Case 5:  Coil 2 energized 
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Figure B.2:  Comparison of Fourier fit of magnetic field to 

Case 15:  Alternating coils energized.  2, 4, 6, 8, 10. 

FEMM distribution 
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Vibration model order comparison 

The truncation error in the modal solution can be assessed by a group of cases in 

which the order is varied. The step change transient shown in Figure 3.3 can be repeated 

varying the number of vibration modes in the solution.  The transients are calculated 

using the stand alone vibration model given by Eqs. (3.54) through (3.59).  Results for 

nmax=10, 20, 40, and 80 are shown in Figure B.3 through Figure B.6. 

The traces become progressively smoother and the trace of coil 1 moves closer to 

the rest of the coil responses as nmax increases.  Both effects are indications of the 

expected reduction of truncation error as order increases.  The lowest order system, 

nmax=10, is used in the control simulations to keep the model as small as possible but 

with an understanding of the magnitude of the truncation error. 
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Figure B.3:  Step change transient for vibration model, 
nmax=10 
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Figure B.4:  Step change transient for vibration model, 
nmax=20 
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Figure B.5:  Step change transient for vibration model, 
nmax=40 
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Figure B.6:  Step change transient for vibration model, 
nmax=80 
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APPENDIX C 

FEMM MODELING 

 

The Finite Element Magnetic Modeling (FEMM) code, written by David Meeker 

[35], solves static and low frequency problems in magnetics.  The following description 

of the code is an abbreviated version of the description given in the FEMM user manual.  

The nomenclature in this derivation is slightly

The equations solved by FEMM are based on Maxw

ntial.  Other magnetic variables, such as 

magnetic field, magnetic induction, and eddy

l numerically.  The magnetostatic problem can be derived in 

terms of magnetic potential from Maxwell’s equations, the constitutive relations, and the 

definition of magnetic potential.  The needed equatio

  

su to the lin

 modified from Meeker’s to coincide with 

the nomenclature used in this dissertation. 

ell’s equation.  The equations 

are formulated in terms of the vector pote

 current density are obtained by 

differentiating the potentia

ns are Maxwell’s equations, 

 H J , (C.1)

 0 B , (C.2) 

bject ear constitutive relation, 

1 μ B H . (C.3)  

The ve

C.4) 

Substituting Eq. 

 

ctor potential is defined as  

  B A . (

(C.3) and Eq. (C.4) into Eq. (C.1) gives 

 1  μ A J . (C.5) 
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 384

blem solves for A that satisfies 

Eq. C.5) and the boundary conditions in the presenc

 to Eqs. (C.1) through (C.3), the harmonic problem requires another 

one of 

 ( e of the source current. 

FEMM also solves the harmonic case, in which the source currents are 

sinusoidally varying functions of time.  The harmonic problem can be reduced to an 

equation that is algebraic in frequency by the Fourier transformation in time. 

In addition

Maxwell’s equation,  

 
t

   B
E , (C.6

 J E . (C.7) 


) 

and Ohm’s law in differential form, 

Substituting Eq. (C.4) into Eq. (C.6) and rearranging gives an equation that can be 

integrated. 

 0
    
A

E . (C.8
t 

) 

The integral is given by  

 
t

 A
E C , (C.9) 

where C represents an undetermined constant function of integration.  The electric field 

can be eliminated in favor of current density using Eq. (C.7).   

 srct
     


A

J JV . (C.10) 

Meeker defines the constant function as the sum of two terms.  



 src   C JV . (C.11

where V  is an externally applied voltage gradient and 

) 

srcJ  is an externally applied 

Combining Eqs. 

current source. 

 

(C.5), (C.10), and (C.11) gives the time dependent potential 

problem. 

 1
srct



A       μ A JV . (C.12) 

gebraic 

m.  The forcing functions are assumed to be 

sinusoidal functions of a single frequency, .  The time derivative becomes an algebraic 

multiplication,

The harmonic problem converts the differential time dependence into an al

function by the Fourier or phasor transfor



i
t





.  The transformed variable is a function of frequency rather than 

time.  The transformed variables are indicated by an underscore applied to the 

transformed variable. 

  1
srci       μ A A V J . (C.13) 

This differential equation is only slightly different than the static problem in 

Eq. (C.5) and can be solved by comparable, finite-element methods. 

The FEMM problem is further simplified by considering only two-dimensional 

problems, either axisymmetric or planar.  In either of the geometries which are solved by 

FEMM, two of the three components of A  are exac lyt  zero, so the problem reduces to a 

scalar equation.  The non-zero component of A  is the axial direction for the planar case

or the azimuthal dir ion for the axisymmetric case.   

 

ect
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F

 

different regions of the device being simulated, the source current distribution, and the 

boundary conditions.  The dimensions for the FEMM model of the actuator are obtained 

from drawings of the prototy  by Etrema.  The mechanical design 

drawing, shown in 

d assumes that the 

nly change made by Etrema to the drawing was erasing the dimensions.  The external 

imensions of the device are known to be to scale with the drawing.  Some error is 

inevitably introduced into the FEMM calculations by the inaccuracies of measuring the 

drawing, but this is the best information available.  

The material properties needed for the simulation are the permeabilities and 

conductivities of each material.  Most materials are available from the library of materials 

in the FEMM code.  A magnetic stainless steel (416 stainless) is used for the return path 

in the actuator design.  A nonmagnetic stainless steel (304 stainless) is used for the case 

and other parts.  A high permeability, low conductivity material called T4 is used to turn 

the flux at the end of the rod.  The T4 is a proprietary material whose properties were 

provided by Etrema.  The properties of Terfenol-D are derived in Chapter 2 from 

published data. 

 

EMM Model of the Multi-coil Actuator 

The input to the FEMM code includes the dimensions and material types for

pe actuator supplied

Figure C.1:  Mechanical design drawing of prototype actuator, was 

supplied without internal dimensions by Etrema to protect their proprietary actuator 

designs.  The geometrical data were estimated by measuring the drawing and scaling the 

results by the external dimensions of the actual device.  The metho

o

d



 

Figure C.1:  Mechanical design drawing of prototype 
actuator 
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The actuator problem requires an infin

t 

large distances, a magnetic device’s field approaches asymptotically the field of a simple 

device such as a dip

dipole.  To represent this field on a fixed boundary, a large volume about the device is 

defined.  The boundary condition is then specified as a mixed boundary chosen to 

represent the asymptotic limit of the dipole field on the surface.  The boundary on the 

central axis is specified as A=0 which comple

FEMM

tuator model consisting of the geometrical and material data is 

reta  read-only file to protect against unintentional saving of changes.  The cases 

are run by loading the standard model and then changing any problem-dependent 

parameters.  The code can be executed interac

languag

ru  if parameters need to be changed.  The LUA language provides output 

utilities to write results to an external file.  This feature is used to generate results that can 

be imported into MATLAB for plotting or calculation of the state space model. 

FEMM also provides a graphical interface to display results interactively.  The 

FEMM interface is used to generate the plots for this 

ite boundary condition.  FEMM provides a 

special technique to approximate the infinite or open boundary on a finite domain.  A

ole, quadrupole, or higher order device depending on the symmetry 

of the current distribution.  The long axial rod dimension with coils all arranged axially 

means that, from a great distance, the field of the actuator is closely approximated by a 

tes the boundary conditions needed for the 

 problem. 

The FEMM ac

ined in a

tively or in a batch mode using a scripting 

e called LUA.  The FEMM cases for this research usually involved a large 

number of related runs so all the production calculations were conducted using LUA 

scripts.  The LUA scripts and the model file provide a convenient way to recreate 

previous ns

section.  In all other sections of this 
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report, graphics for computed results are generated with MATLAB which are vector 

format.  The FEMM plots are in the form of bit mapped images which have limited 

resolution. 

The geometry of the actuator model drawn using FEMM’s input processor is 

shown in Figure C.2.  The left axis of the image is the centerline of the actuator.  The 

e infinite boundary. semi-circular region around the actuator approximates th

 

Figure C.2:  FEMM mode

A close up of the top part of the actuator showing material names and the finite 

element mesh is shown in Figure C.3.  The material “copper” is an unenergized coil.  The 

materia

for the magnetic field used in the actuator model.   

 

l of the actuator geometry 

l “copper with current” is energized.  The mesh is specified to be finer in the rod 

region to give smooth results 
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Figure C.3:  Detail of the upper part of the FEMM model
illustrate the mesh and block names 

 

 to 

Figure C.4 shows the distribution of flux for the same model.  A single coil, third

from the top, is energized.  The plot shows the magnitude of induction, B , as a colored 

density plot.  The lines of induction (direction of the flux) are shown as a contour map. A 

close-up is shown to give a better view of the energized region. 
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Figure C.4:  Map of density and flux contour lines of 
magnetic flux for a static current case 

 

A FEMM Model of an Infinite Pie-shaped Cylinder 

be used to simulate the transverse area of an 

infinite, pie-shaped cylinder.  The special cas

sim arity between the equation for magnetic field an

FEMM’s two-dimensional problem space. 

The infinite pie-shaped cylinder problem means that the cylinder and coil are 

infinite and uniform in the axial direction.  Under this geometry, the solution does not 

vary axially.  The solution of the FEMM infinite cylinder problem is approximately the 

A general, three-dimensional model of the pie-shaped cylinder cannot be 

simulated using FEMM because FEMM is limited to two-dimensional problems either, 

r-z or x-y; however, the x-y problem can 

e requires a trick in recognizing the 

il d the equation for vector potential in 
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same as the model of the finite actuator when all coils are energized and the flux is 

evaluated at the axial midplane.  The approximation of th

is valid since the actuator is a long, thin rod.   

The simplifying characteristic of the infinite cylinder problem is that the field on 

the surface of the rod is uniform and independent of any currents on the interior of the 

rod.  The field on the surface is equal to the in

s 

 

e actuator as an infinite cylinder 

finite solenoid field, H TI , independent z

of any eddy current on the interior of the rod.  For the infinite, uniform coil and cylinder, 

the homogeneous boundary condition is an exact equation, not an approximation as it i

for the finite rod.  Because of this simplification, the infinite cylinder problem can be 

solved as a boundary value problem for magnetic field.  Even with this simplification, a 

trick is needed to use FEMM to solve the infinite cylinder problem.  The trick is that the 

differential equation for magnetic field problem turns out to be mathematically the same

equation as the equation for A  that FEMM solves in x-y geom trate this 

useful r

 

etry.  To illus

esult, consider the magnetic field equation for the actuator rod from Eq. (4.25).   

2 2 2
, , , , ,

2 2 2 2

1 R z R z R z R z R z N
R R R

H H H H H
K

r r r r z t
  


    

    
    

 . (C.14) 

Dropping the effects of magnetostriction,  and the axial term0NK  , 
2

,

2
0R zH

z

 


  

(because of the infinite cylinder idealization), the equation becomes the following. 

2 2
, , , ,

2 2 2

1
0R z R z R z R z

R R

H H H H
 

   
    . 

r r r r t   
(C.15) 

Transforming the independent variables from r   to x y  gives 

 
2 2

, ,

2 2

R z R z R z
R R

H H H ,

x y t
 

  
 

  
. (C.16) 
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The axial component of vector potential can be put into the same form.  Starting 

with Eq. (C.12), we first assume a pie-shaped region of an isotropic material with 

permeability and conductivity, R  and  and set the current source and voltage gradient 

term o.   

R

s to zer

   R R t
      A

A . (C.17) 


By a well-known result, we can use the matrix identity 

 

 A , (C.18)     2     A A

and assert a permissible constraint on A, 

  . (C.19)

Equation (C.17) becomes 

 

0 A

2
R R t

   

A

A . (C.20) 

With planar symmetry, the assumption is that the shape in the x-y plane is infinite 

in the axial direction (out of the page).  Hence, the x and y components of A must be zero, 

, and 0x yA A 
2

2
0zA

z

 


.  Substituting these terms into Eq. (C.20) gives 

 
2 2

z zA A
2 2

z
R R

A

x y t  
. (C.21) 

Thus, the differential equation for the magnetic potential, Eq. (C.16) a

nd , the current density in the rod can be obtained from the B field 

of the FEMM problem.  The boundary condition 

shaped region is given by the formula for the infinite solenoid.   

    

nd the 

equation for magnetic field, Eq. (C.21), are exactly the same.  Furthermore, because 

 A B  a   H J

magnetic field at the surface of the pie-
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 inf zA H T I   , (C.22

where T is the turns per meter and I is the current per turn.  This uniform boundary 

condition can be specified in FEMM as a harmonically varying boundary, thus producin

a time-varying magnetic field that generates eddy currents on the interior of the pie-

shaped cylinder. 

The difference between the magnetic field problem which we are using and 

FEMM’s intended vector potential problem is the direction that current is flowing

) 

g 

 in the 

case being represented.  For the potential problem that FEMM was designed to solve, the 

current sources and voltage gradients and any resulting eddy currents are in the axial or 

out-of-page direction.  The magnetic field problem represents a case in which current is 

circulating around the pie-shaped segment in paths parallel to the page. 

Figure C.5 illustrates the pie-shaped model as it is represented in the FEMM 

preprocessor program.  The interior arcs are defined so that the contours may be used in 

the postprocessor as lines along which the field and current are plotted. 

Terfenol

Terfenol

Terfenol

 

Figure C.5:  FEMM layout of pie-shaped cylinder 
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As an example of the FEMM calculation of the pie-shaped cylinder, a harmonic

case is presented in which the amplitude of the boundary c

 

onditions is specified as 

1T I  , and the frequency is set as 42 2500 1.57 10      radians per second.

The FEMM results for current density are shown in Figure C.6.  The color density in this

plot represents the magnitude of current density (in the interpretation of this problem).  

The contours represent the lines of current density.  The current flow is a maxi

the center of each boundary segment.  The current density is zero in each corner.  The 

FEMM legend labels the results as 

zH    

 

mum near 

B  in units of Tesla.  For our purposes, the results 

should be interpreted as J  in A/m . 2

 

Figure C.6:  Current density for a segment calculated by 
FEMM cwith 

A FEMM plot of potential along a contour can also 

the magnetic field, .  The contour is along the radial line bisecting the pie-shaped 

region (shown as a red line in Figure C.6).  Figure C.7 shows the real, imaginary, and 

2 2500    

be shown which represents 

zH
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absolut reted as e magnitude of zA  in units of Webers per meter which should be interp

zH  in units of amperes per meter for the special interpretation of the results used here. 

|A|, Wb/m

1

Re[A], Wb/m
Im[A], Wb/m

0.5
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The FEMM results for the pie-shaped infinite cylinder are us

benchmark for the modal solution to the pie-shaped cylinder.  The FEMM cases are able 

to verify the derivation and the programming of radial and azimuthal modes of the modal 

magnetic model.  These comparisons are given in APPENDIX D. 

 
 

Figure C.7:  FEMM plot showing magnetic field along a 
radial line for case 2 2500    

ed primarily as a 
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APPENDIX D 

SOLUTION OF THE MAGNETIC DIFFUSION EQUATION 

The Three-Dimensional Integra

The magnetic diffusion equation, derived in the main text is repeated here for 

conve

l Transform Method 

nience. 

22 2

 

2
2 2 2 2

2
2 .

M M M M
R gH H H
r1 H

R R g
L

gFEMM N
R R g

x x x

T I

    



x

) 

The integral transform solution to the magnetic diffusion equation in Eq. (D.1) involves 

three spatial transformations for the azimuthal, radial, and axial variables.  Because of the 

dependence of the radial modes on the azimuthal modes through the order of the Bessel 

function, the solution is considerably more convenient if the azimuthal transformation is 

performed first.  The azimuthal transform and its inverse are given by 

r
z t

r
r x K

  
     

 

        

  

 (D.1

  
0

( , , , ) ( , , , ) ,M M
H H



x t x t d
0

          , 

  

(D.2) 

 
   

1

,
, , ,, , ,M

H
M
Hx t x

N

 
t  








   . (D.3) 

The transform function is the solution to the associated homogeneous ordinary 

differential equation and boundary conditions in which   is a parameter. 

 
2

2
2

( , )
( , ) 0

d         . 
d

(D.4) 
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( ,0) 0.
 0, 0.  

 
 (D.5) 

The solutions for  and   are the eigenfunctions and eigenvalues respectively of the 

azimuthal problem.  The following solutions satisfy the differential equation and the 

boundary conditions. 

      , sin ; 2 1 ; 1, 2, 3,m m m m m
           (D.6) 

0

For the pie-shaped segment, the angle is given by 0 2

   and 2, 6, 10, ...m 

eigenvalues for 

The 



inated by the requirem


0

2, 4, 6,


   also satisfy the boundary conditions and differential 

equation but are elim en

about t

t that the magnetic field must be symmetric 

he 0 / 2  radius.  The proof of symmetry is not shown but can be obtained by 

showing that the problem is unchanged by a rotation of 0  and by reflection about the 

/ 20  axis. 

 ,m The normalization constant for  is  

 
   

0

2sinm mN d


   
0

0 .
2


 (D.7) 

inverse are given by 

 

 

A second integral transform for the r variable can be applied.  The transform and 

     
,

1

,

0

, , , , , , ,
m k m

M M
H k m m H mx t R x t d              . (D.8) 
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    ,, , , ,k mMx t R ,

1 ,

, , ,

, m

M
H m

H m k m
k k m m

x t

N 

  
    

 







The radial transform in Eq. 

 . (D.9) 

(D.8) is indicated by stacking the ~ on top of the 

previous symbol.  The eigenvalue of the azimuthal transform, m , gives the order of the 

Bessel equation.  The associated homogeneous spatial problem for  , ,
m k mR    is 

m . Bessel’s equation of order 

     
2

, 2
, , ,2

,1
, ,m

m m

k m m
k m k m k m

dRd
R R

dr d


 

     
  

 
   

 
 0   . (D.10) 

The boundary conditions for the radial eigenfunctions are the following. 

1) 

The solutions are Bessel’s functions, 

 
,m

m

k m
 (D.1

 
 ,

,1 0.

, .k m

R

R



 



 

 ,m k m  J  and  ,
m k m Y .  The functions of the 

second kind are eliminated by the requirement that the magnetic field be bounded at 

0  .  The radial functions are given by  

    ,m m k mR  , ,k m   =J , (D.1

where the eigenvalues, ,k m , are the roots of the equation  

m k m

and the order of the Bessel function is given by:  

2) 

 , (D.13) 



 , 0 J

 1, 3, 5,m




  .  The normalizatio
0

n 

constant for the r transform,  , ,k m mN    is given by the integral. 
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2

2
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 (D

  transform is similar to the   transform. 

    
1
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  . (D.15) 
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Z
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 t


  . (D.16) 

The transform function is the solution to the associated homogeneous ordinary 

differential equation and boundary conditions in which   is a parameter. 

 
   

2

2
2

,
, 0

p

p

d Z
Z

d

 
  


  . (D.17) 

 
. 

( ,0) 0.

, 0

p

p L

Z

Z z








 (D.18) 

The eigenfunctions and eigenvalues are chosen to satisfy the differential equation 

and the boundary conditions 

 .  (D.19) 

Unlike the azimu

   , sin ; ; 1, 2, 3,p p pZ p p        

thal transform, the odd functions are retained for the   transform.   

The normalization constant for  ,pZ    is  

 
   

1
2

0

sin

1
.

2

p pN d 



 z
 (D.20) 
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The three spatial integral transforms are applied to the differential equation for 

H
Mx  in Eq. (4.41) one at a time.  The transforms of the spatial derivative terms are 

evaluated by using Green’s theorem and applying the boundary conditions of the 

problem.  Applying the transformation of the azimuthal variable to the differential term 

give the following. 
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The remaining terms in Eq. (4.41) are unchanged by the transformation.  The governing 

equation after applying the integral transform in the   direction is given by the 

following. 
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The transformation of the right hand side of the equation is indicated by the overbar.  A 

subscript “m” is added to indicate the index of the transformation.   

The next transformation removes the radial dependence.  Applying the integral 

transformation in the radial variable defined in Eq. 

,2 2 2

2 2, , ,

H m m

gH m FEMM N

r z

x t

   

  

  

 

s 

(D.8) to the first two terms in 

Eq. (D.22) yields the following expression.  The simplified result on the right hand side i

obtained using Green’s theorem and the boundary conditions. 
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The remaining terms in Eq. (D.22) are unchanged by the transformation. 
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, ,R R g k m k mt T I 

The final transformation to remove the axial variable follows the same pattern as the 

other two and leaves an ordinary differential in the thrice transformed magnetic field.  

The result is an ordinary differential equation in t  with parameters , , ,k m m  and p . 
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The notation using three supe
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rimposed diacritical marks to indicate the three successive 

transfo o

be replaced by

rmations is clumsy.  To simplify the notation, let the triply transf rmed variables 
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 , , , , , ,M k m p M k m pK
K . (D.28

The eigenvalue terms for the radial and axial transformations

) 

 are grouped as a single 

parameter.  The new parameter has units of radians per second. 
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Incorporating the new notation into Eq. (D.25) and simplifying gives an ordinary 

differential equation. 
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In this equation,  is a scalar function of time and represents the amplitude of the (k, 

m, p) mode of the m gnetic field due to eddy current.  The  term is used as the state 

variable in the modal magnetic model.  The other derivative terms on the left hand side 

represent the coupling of the (k, m, p) mode to the vibration model and the coil model.  

These coupling te esponding state 

variables and coup

are evaluated in the remainder of this section. 

The full solution by the integral transform method consists of a summation of the 

amplitude functions and the associated modal shapes. 
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M
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rms can be evaluated as a linear combination of the corr

ling coefficients from the vibration and circuit models.  These terms 
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the evaluation of the transforms, and .  These terms 
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can be evaluated by integrating the transformation equation.  We begin with the FEMM
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terms.  The integral transform of the FEMM term can be written as follows 
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The FEMM results are computed in dimensioned units for field and position so it 

is necessary to convert the FEMM dimensioned variables to dimensionless before 

performing the integration. 
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Substituting the result given in Eq. (4.39) which represents the FEMM
RH  as the 

superposition of individual shape functions for the magnetic field due to each coil give

the following.  
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The triple integral yields a four-dimensional array of const

time.  We can define a coefficient matrix for convenience.  The subscripts k, m, p 

indicate the magnetic mode for radial, azimuthal, and axial components.  The subscript j 

points to the energized coil. 

 

ants that is independent of 
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The azi thal integration can be performed analytically since the FEMM results do not 

depend on 

mu

 . 

  0cos 2m

  
0

0 0

sin m
m m

d


   
 

   . (D.36) 

Thus, the coefficient can be written as the following. 
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The coil current’s contribution to the mode di

written

 t . (D.38) 

The solution for  requires z  as a function of the currents in the 

individ

coil is energized with a steady current density 

(Ω

coils are sp

case and the values for the ma corded in

z plane from 

fferential equation in Eq. (D.30) can now be 

 as  

jmax

   , , , , ,
1

FEMM K
k m p k m p j j

j

t x


  X

, , ,k m p j

=0 Hz) equivalent to a current of one am

 , ,FEMM
R jH r

pe

gnetic field are re

ual coils.  To obtain the distributions, a series of FEMM cases are solved in which 

the coils are energized one at a time.  Each 

re per turn (   1I t  ) while the rest of the ,C j

 a 

ecified to have zero current.  The FEMM calculations are performed for each 

two-dimensional grid in the r-

0 gr r   and .  The grid spacing is 3.175×10-4 m (0.0125 in) 

axially and 6.35×10-5 m (0.0025 in) radially.  This mesh size gives an array of 471 by 101 

points over the axial and radial dimensions of the rod.  The results are written to a file 

which is then transferred into MATLAB to perform the integration in Eq. (D.37).  The r-z 

integration is performed using two-dimensiona

0 Lz z 

l Simpson’s rule for numerical integration 

[75]. 
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The physical meaning of the coefficient is the

electrom

 ma odes themselves represent fixed 

distribu

 coefficients diminish as 

the indices increase which m frequency m des receive a smaller fraction 

of the energy.  The frequency constant,  which is  E

the decay rate of the mode.  Energy entering the higher modes decays away exponentially 

with th

causing the energy that would have entered those modes to 

decay away immediately.  In effect, the truncatio

with the large decay constants as having infinite decay constants.   

The coupling coefficients between the eddy current field and the field generated 

by strain are derived by a similar triple integr

Chapte f 

d analytically.  The axial functions are 

trigonometric series for both magnetics and vibration, but the boundary conditions for the 

two problems are different.  The vibration modes are not orthogonal to the m

modes.  Thus, each vibration mode couples with each current mode.  The transformation 

of the vibration submodel solution is given by

, , ,k m p j  

gnetic field.  The m

eans that higher 

, ,k m

 fraction of the 

otive force from the time-varying current in the j-th coil that goes into the (k, m, 

p) mode of the eddy current’s

tions of field that, when linearly combined with the associated amplitude 

function, sum to give the field due to eddy current.  The ,k m , ,p j

o

given byp , q. (D.29), represents 

is rate constant.  The decay rate also increases with the indices; therefore, higher 

frequency modes dissipate their energy more rapidly than the lower modes.  Truncating 

the series is equivalent to 

n is the same as approximating the terms 

al transformation.  The vibration model in 

r 3 is a modal solution for strain versus position.  The integration of the product o

the two spatial functions can be solve

agnetics 

: 
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where Nx  is the displacement variable in dimensionless form.  The modal solution to the 

vibration problem is given by Eq. (D.40) from Appendix B.  The equation is repeated 

here for reference.  
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  and the normalization factor for the 

modal function is given by 
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Since  ,x t  does not depend on   or  , the radial and azimuthal integral 

transformations in Eq. (D.39) can be evaluated independent of the vibration model given 

in Eq (D.40).  The formula for the integral of the Bessel function is too long to reproduce.  

It can be obtained with MATLAB’s Symbolic Toolbox [34].  The integrals can be 

collected into a coefficient. 
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The remaining integrations in Eq. 
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uated by substituting in the 

modal form from Eq. (D.40) and integrating analytically. 
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Reassembling the individual integrations from Eqs. (D.42) and (D.42) and rearranging 

the result into the form required for Eq. (D.39) gives the following equation. 
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Let the following coefficient matrix be defined to group the constants for future use.  The 

coefficient is defined by extracting the constant factors from Eq. (D.44) 
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Inserting the coefficient names into Eq. (D.44) gives the following 
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Equation (D.30) can be written in terms of the state variables and coefficient 

matrices from E pation of 

writing the system in the descriptor form of the state space model defined in Eq. (4.91). 

 X .  (D.47) 

q. (D.38) and Eq. (D.46).  The terms are re-ordered in antici
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Test Calculations of the Magnetic Field in the Pie-Shaped Cylinder Model 

A number of stand alone calculations can be performed with the magnetic model 

to check the solution and to gain insight into the physical processes being modeled.  The 

test calculations are based on limiting cases in which the magnetic model solution must 

approach a known distribution.  One type of limiting case can be constructed by allowing 

the driving frequency to approach infinity.  Either a vibration mode or a coil current can 

be driven with infinite frequency.  In either case, the magnetic induction in the interior of 

the rod must approach zero.  The eddy current uction must build sufficiently to cancel 

the source distribution exactly.  Since the series solution for the eddy current induction 

distribution is truncated, the cancelation is approximate.  The test cases can be used to 

confirm the derivation and programming of the vibration and coil current coupling 

coefficients and to determine number of terms in the series that are needed for a valid 

approximation of the source distribution.   

Another type of limiting case can be constructed by considering the solution when 

the rod length approaches infinity.  The infinite rod case can be modeled using the 

FEMM code by usi agnetic solution 

approximating the infinite rod can be evaluated using the modal magnetic model by 

simply energizing all coils and evaluating the solution at the axial midplane.  Since the 

rod is long and thin, the field at the axial midplane approaches the FEMM infinite rod 

distribution.  

 ind

ng the trick described in APPENDIX C.  A modal m
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Spatial Distribution of Magnetic Field at Infinite Frequency for Coil Current and 

Vibration 

Coil current case 

First, consider the case of the magnetic field in which the frequency of the applied 

coil current approaches infinity.  In this test case, the vibration is set to zero.  

Mathematically, the vibration can be forced to be zero by choosing the magnetostriction 

coefficient to be zero,  so that the vibration term in Eq. (D.47) is zero.   
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When the actuator is stimulated using coil current with infinite frequency, the 

eddy current builds sufficiently to cause the magnetic field in the interior of the actuator 

to be zero.   
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The amplitude function from Eq. (4.79) at infinite frequency is given by 
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Using these two facts, we obtain the following equation from Eq. (4.82) for a case 

in which the j-th coil is energized and all other coils are not energized. 
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The left hand side is the coil’s field calculated by FEMM.  The right hand side is 

the eddy current field calculated from the modal solution.  The relationship is only 
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approximately equal because the eddy current series is truncated to a finite number of 

terms.  The summation on the right hand side is also the inverse of the transform given by 

Eq. (D.35).  To indicate the inverse transform the function, the function on the right hand 

e can be called,  , ,FEMM
INV jx r zsid , and compared that with the original FEMM results.  The 

inverse transform is given by 
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The test calculation compares the modal solution to the original FEMM distribution to 

determine how closely the following approximation holds. 
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Figure D.1 and Figure D.2 show the coil’s magnetic field in a rectangular r-z 

plane for cases with energized coils at j=1 and 5.  The figure in the top pane is coil’s 

magnetic field calculated by FEMM,  , ,FEMM
R jx r z .  The figures below are the invers

transforms of the field, 

e  

 , , ,FEMM
INV jx r z

ximum

mmax=10; and axial, 

 kmax=1; azimuthal, 

, calculated u

 orders of the dime

mm

sing Eq. (D.52) for the high and low 

order models.  The ma nsion of the high order case are:  radial, 

uthal, um orders of the low 

order case are:  radial,

transfo

kmax=10; azim pmax=20.  The maxim

ax=1; and axial, pmax=10.  The inverse 

rm includes   dependence because the modal result varies in the azimuthal 

direction due to truncation error.  In the axial section view, the cutting angle is positioned 

at the azimuthal midplane of the pie-segment, 0

2 4

    .  The aspect ratio for the plots 

 411



is set so that the r-z region suggests a long thin rod, but the dimensions are not to scale.  

The scale of the radial direction is expanded slightly to show the radial dependence more 

clearly. 
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Figure D.1:  Comparison of coil’s magnetic field from 
FEMM and inverse transform, coil index, j=1 
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and its inverse transform; coil index, j=5 
Figure D.2:  Comparison of magnetic fields from FEMM 
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 415

lso 

erse transform results are noticeably more oscillatory 

in spac

se 

ncy 

endent 

. (4.82).  For finite frequency, the factor is less than one and diminishes with 

higher order terms because the frequency constant, , increases with order.   

 

The plots for energized coils at j=1 and 5 are representative of the results for all 

ten coils.  The figures for j=1 and 10 are close to mirror images.  The shapes for j=2 

through 9 are all approximately the same.  The figures show that the field spreads axially 

above and below the region of the coil that generates it.  The FEMM field peaks at either 

end of the rod because of the high permeability of the return path.  The FEMM field a

has a slight peak at the outer cylindrical surface of the rod adjacent to the energized coil 

compared to the centerline. The inv

e that the original FEMM results.  The results appear to be correct in an average 

sense, but the series solution does not converge closely to the original function even for 

the high order case. The non-homogeneous boundary condition near the edge is the cau

of the somewhat bumpy fit.  While the fit does not look impressive, the accuracy of the 

inverse transform fit is not a major concern in the actuator model.  The infinite freque

case converges more slowly than any finite frequency.  Consider the frequency dep

factor in Eq

, ,k m p

, ,

1
k m p

i

i


 




. (D.54) 

The infinite frequency cases in Figure D.1 and Figure D.2 represent the worst case 

comparison for convergence.  The actual frequency range of interest is between 0 and 

10,000 Hz.  Over this range, the field due to the eddy current is much closer to 

homogeneous on the rod surface, and the solution converges more rapidly.  The main 

point of the test is to provide evidence that the numerical integration which is used to 



obtain  is programmed correctly.  This is indicated by the fact that the average 

behavior of the fit is correct. 

To compare the quantitative results more closely, the values of 

, , ,k m p j

 , ,FEMM
R jx r z and 

 , , ,FEMM
INV jx r z

plot.  Figure D.3

for energized coil, 

midplane of the pie-seg

for the low and high order cases can be plotted along a line on the same 

 and Figure D.4 compare in the axial and ra

j=5.  In the radial direction, the angle that is chosen for the plo  is the 

ment, 

dial directions respectively 

t

0

2 4

     and the midplane of the energized coil, 5  .  

ial plot, the same angular position is shown and the radial posFor the ax

0.6

ition is set at 

   near the minimum of the eddy current field in the transverse plane.  
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Figure D.3:  Comparison of radial fit of FEMM by the 
inverse transform for high and low order models for 

energized coil, j=5 
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Figure D.4:  Comparison of axial fit of FEMM by the 
inverse transform for high and low order models for 

energized coil, j=5. 

Vibration driven case 

The vibration driven case is constructed in a similar fashion to the coil current 

case.  As the vibration frequency approaches infinity, the eddy current induction must 

match the induction from vibration. The idea of an infinite frequency of vibration 

requires some mental ingenuity to conceive.  The source term in the diffusion equation is 

chosen to be a single spatial vibration mode.  The limiting case is constructed by 

increasing the frequency of that mode to infinity.  In reality, each spatial mode is 

speed of sound in the material, and the harmonic chosen.  The infinite frequency case is a 

purely mathematical construction.  For a physical interpretation, one can imagine it as the 

effect of a material whose density can be decreased (or its Young’s modulus increased) at 

will.  The infinite frequency is the limiting case as the density is decreased to zero while 

keeping all other properties the same. 

associated with a single, particular frequency that is determined by the length the rod, the 
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The description of t rent from the coil problem 

becaus tic induction 

and magnetic field.  By the conventional definition, a magnetization is not a magnetic 

fiel s and eddy 

nt 

canceli r 

tion are simply proportional.  In the case of 

vibration, the strain produces magnetization. 

magnetic induction, B, must be zero rather than the magnetic field, H.  To make this 

point with an equation, the induction at the limiting frequency is given by the following 

 5) 

where in this case H is the field from eddy current and M is the total magnetization due 

to the strain and to the ferromagnetic properties of the material.  The magnetic induction 

from strain is canceled by the eddy current’s induction.  

 



he vibration problem is diffe

e it is necessary to be precise about the difference between the magne

d even though it has the same units.  Only real currents, such as coil current

current, produce magnetic field.  The magnetization produced by strain does produce 

magnetic induction (magnetic flux density) and can be thought of as an equivalent curre

density.  In the case of a coil current with infinite frequency, we can speak of the field 

ng, but in reality, it is induction that goes to zero.  For real currents and linea

magnetic materials, the field and induc

 The vibration case requires that the 

 lim lim 0 B H + M . (D.50  
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where 

 H + M H + M + M

) 

M  is the magnetic susceptibility.  The constitutive equation for magnetostrictgive 

materia )

 

ls gives the following equations for the terms in Eq. (D.56 . 

  1  + . (D.57)0R M
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Setting the net axial component of induction to zero and setting coil current to 

zero yields the terms for eddy current and strain. 

 . (D.58) 
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The transformations for dimensionless units for magnetic induction are given in 

Chapter 2.  The following is the transformation for magnetic induction. 
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Applying the transformation for induction to the first term in Eq. (D.59

e transformation as the magnetic field. 
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Applying the same transformation to the magnetization due to strain term gives 
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The dimensionless transformations for z and z  from Eq. (4.54) an

inserted into Eq. (D.62) to give the dimensionless magnetization as a function of the 

dimensionless strain. 

 

d Eq. (4.63) can be 
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The limiting case for frequency can now be written in terms of the transformed variables.  
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    lim , , , 0M
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Now we want to evaluate the terms in the equation using the modal solutions for 
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vibration and eddy current.   

Using an identity defined in Chapter 2, 33H
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 , and the modal soeff
lution of the 

vibration model from Eq. (D.40), the magnetization can be written as 
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A single vibration mode can be selected for the purposes of the mathematical test.  

Let the vibration in n n   be defined as a harmonic driving function with frequency   

while all other modes are zero. 

   1N
n  X . (D.6

The p
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hasor transform of  for the single vibration mode is then  
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Equation (D.47) can be transformed selecting only the n-th vibration mode and 

setting the coil current term to zero. 
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Thus, the magnetic field due to eddy current at infinite frequency of the vibration 

is given by inserting Eq. (D.70) into Eq. (4.80). 
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e Equating eddy current and vibration terms gives the comparison that serves as th

test of the vibration model. 
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unction on the right is the three-dimensional, inverse transform of the The f

function on the left.  Following the nomenclature of the coil model, this quantity is called 

the inverse transform of the cosine function. 
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The vibration case can be compared in a surface plot in the same way as the coil 

case.  The cosine forcing functions  3cos    and  5cos    are shown in F

Figure D.6.  The cosine function is shown in the top panel the lower two panels are the 

n 

 plotted along an axial line.  The same three 

mode cases are shown as in Figure D.5 and F

igure D.5 and 

inverse transform for the high and low order solutions.  

Figure D.7 compares the high order and low order and the original cosine functio

on the same figure.  The magnetic field is

igure D.6. 
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Figure D.5:  Comparison of magnetic fields from a 
vibration mode and its inverse transform; mode index, n=3. 
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Figure D.6:  Comparison of magnetic fields from a 
vibration mode and its inverse transform; mode index, n=5. 
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Figure D.7:  Comparison of high and low order inverse 
transforms to vibration forcing function 
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Infinite frequency for the state space results 

To check the state space matrices, the limiting case at infinite frequency can be 

applied again.  The descriptor form of the state space model in Eq. (4.93) can be written 

as 

 M . (D.75) 

Assuming the vibration term is zero gives an equation that can be solved for the magnetic 

field vector. 

 . (D.76) 

Using the formula for field at the midplane from Eq. (4.89) gives the following definition 

of an output variable representing the average field at each axial elevation,

43 41 44  K M NE x x F x F x  

44 43M M K x F x E x 

 j  .   

        , , , ,
1 1 1 1

sin
pmax jmaxmmax kmax

M K
j k m p k m p j j R j

p m k j

y t P x t xFEMM
j   

   

     X . (D.77) 

This equation can be written as a state space output equation in a state space by the 

following variable definitions 

  M Ky Cx Dx . (D.78) 

The observation matrices are obtained by comparison of Eqs. (D.77) and (D.78). 

  , , sinj l k m p jC P   , (D.79) 

where , and    1 1l k kmax m mmax p      

  , ,
FEMM

j j R j jD x    . (D.

Equations 

80) 

(D.76) can be transformed by the Fourier transformation and solved for 

the eddy current amplitude functions.  The equation in terms of the state variables is 
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Inserting this result

 (D.81) 

 into the transformed version of Eq. (D.78) gives  

   144 43i i 
      

Ky C I F E D x . (D.82) 

 

The limit as    simplifies Eq. (D.82) to the following. 

43   

This result gives a relationship among the matrices that can be calculate

 1 43 I D CE . 

The equation is not exact because of truncation error.  Equation (D.84) serves as a

test of the programming of the matrices.  Figure D.8 and Figure D.9 are surface plots of 

the elements of Eq. (D.84) to illustrate the approximation to the identity 

K0 CE D x . (D.83) 

d as a test. 

(D.84) 

 

matrix produced 

by the q

energy 

uantity, 1 43D CE , when the matrices are defined for the low order and high 

order models. 

The diagonal in Figure D.8 gives a peak just a little less than one which shows 

that the matrix for the high order system is reasonably close to the identity matrix.  The 

same plot for the low order case in Figure D.9 gives a lower value on the diagonal and 

noticeable more bumps on the off-diagonal locations.  This plot is an indication of the 

lost through truncation of the high frequency modes. 
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Figure D.8: Approximation to identity matrix for high order 
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Infinite cylinder problem 

Another limiting case is the case in which length of the actuator rod is infinite.  

 C.  The corresponding 

calculation using the modal magnetic model is a case in which all coils are energized and 

the field is evaluated at the axial midplane of the rod, 

This simplifies the magnetics problem to a planar, x-y problem.  The FEMM calculation 

of the infinite, pie-shaped cylinder is described in APPENDIX

0.5  .  The frequency dependent 

amplitude values are given by Eq. (4.79).  The series solution is evaluated using 

Eq. (4.75). 

Figure D.10 shows the comparison of the FEMM infinite cylinder case and the 

modal models with all coils energized.  The case is evaluated at a frequency of 10,000 

Hz.  The plot shows the FEMM result and the high and low order modal magnetic 

solutions for the real and imaginary components.  The high order solution shows 

excellent agreement and generally confirms the derivation and programming of the modal 

solution.  The modal solution converges quickly and thus the results are substantially 

better than the infinite frequency results.  Ano

for the infinite rod geometry, the homogeneous boundary condition approximation used 

for s 

exactly zero on the boundary for the infinite cylinder case. 

s 

f 

 in a 

iffe

ther reason the agreement is good is that, 

 the magnetic field is not an approximation at all.  The eddy current’s magnetic field i

The low order solution proves to be a satisfactory approximation to the shape a

well.  The imaginary component of the low order solution, shown in the lower panel o

Figure D.10, is slightly less accurate than the real component.  This is expected since the 

imaginary part is related to the derivative of the eddy current flux.  Truncation error

series solutions always increases with d rentiation in time or spatial variables. 
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t 

al 

a satisfactory approximation in 

both tim

 

e 

y 

frequen

The low order model consists of just a single mode for the radial and azimuthal 

dependence of the magnetic field (kmax=1 and mmax=1).  The fact that the first mode 

approximates the spatial distribution flux reasonably well at 10,000 Hz suggests that, for 

all frequencies up to 10,000 Hz, the shape of the spatial distribution for the eddy curren

field is approximately fixed and all profiles for the field, for both imaginary and re

components, only vary in amplitude.  This turns out to be 

e and frequency domain.   

Figure D.11 illustrates the shape function for the real component of field in the 

transverse plane for FEMM, the high order model, and the low order model.  The purpose

of the plot is to show the similarity in appearance between the three cases.  This figur

indicates that the fundamental mode for the radial and azimuthal components of the edd

current is sufficient to represent the dynamics for frequencies up to 10,000 Hz.  This 

approximation improves at lower frequency but, of course, breaks down at higher 

cy. 
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Fi  gure D.10:  Comparison of magnetic field calculated by
the FEMM infinite cylinder model to the high and low 

order modal magnetic models on a radial line  
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Figure D.11:  Comparison of real component of magnetic field spatial distributions from 
FEMM infinite cylinder, high order model, and low order model. 
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APPENDIX E 

EDDY CURRENT DENSITY DISTRIBUTION 

Algebraic Solution for the Eddy Current Density Distribution 

The eddy current density distributions are used in the calculation of inductance 

coefficients between coil and eddy currents.  The solution for the eddy current density 

distribution is similar in form to the magnetic field series and is based on that solution.   

The differential equations for the radial and azimuthal components of eddy 

current are derived in CHAPTER 4.   
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The goal of the derivation is to use Eq. (E.1) and Eq. (E.2) to find series of the 

following general form. 
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The eigenvalues of the functions are assumed, for the moment, to be the same as 

the eigenvalues of the magnetic field solution.  This assumption is verified after solutions 

are obtained. 



( , , , )j t   The problem is to relate the icients in functions and coeff  and 

( , , , )rj t    t (D.31),  the 

n of the axial magnetic field due to eddy current is the following. 

 

o the corresponding solutions for the magnetic field.  From Eq. 

solutio  

         
     

,

, ,
1 1 1 ,

sin sin

,

pmaxkmax mmax

H k m p
k m p k m m m pN N N

, , , mm k m pM Mx t t
     

      . (E.5) 

accomplished by applying the integral transform

     

J
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The next step is to eliminate bz in Eq. (E.1) in favor of  H tX .  This can be , ,k m p

 to the differential equation for M
Hx .  The 

differential equation for the eddy current magnetic 

dimensionless variables can be written as the following. 

field from Eq. (4.43) in terms of  
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The three-dimensional integral transform for the ma

 of Eq. (E.6).  The result was previously obtained in APPENDIX D with 

the result given by Eq. (D.25).  The left hand

gnetic field solution can be applied to 

the left hand side

 side simplifies to the following. 
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The right hand side of Eq. (E.6) can be written as a transformed variable, 
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 (E.7) 

 , ,k m p tB  

       
01 1

, , ,sin sinm k m p k m p

b
rd drd t



           J B . (
0 0 0

mt     
E.8) 

Substituting Eq. (E.7) and Eq. (E.8) into Eq. (E.6) gives the following formula for the 

transformed magnetic induction. 
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Thus, the inverse transform of an be written in t
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lutions for current density can be 

matche

Applying the derivative operations on the left hand side of Eq. (E.1) to the series 

solutions in Eq. (E.3) and Eq. (E.4) gives the following partial derivatives 

d with the elements of the solution in Eq. (E.10) to determine the functions and 

constants in the solution.   
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It is desirable for Eq. (E.1) to hold term-by-term.  We propose tentatively that the 

If the series solutions are equal term-by-term, then the following equalities for the modal 

 

J
12) 

two series are equal term-by-term to see if a solution can be found under this constraint.  
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functions must hold so that the azimuthal and axial dependence can be factored out of 

each term.   

    cosr m m     . (E.1

m m

3) 

   sin     . (E.14) 
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For these functions, the normalization constants for the radial and axial modes of current 

density and eddy current field are equal. 
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Now we write term-by-term equality for Eq. (E.1) canceling out the common factors 
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From Eq. (E.19) it is evident that if the system

) 

he problem is reduced to finding the constants of proportionality and the form 

for the radial functions that asatisfy the equat

radial functions.  The constants can be absorbed into the proportionality constant between 

, , and .  We may set the N’s equal with no loss of 

generality. 

 is to be solvable then the amplitude 

functions must be proportional to one another.   
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Simplifying Eq. (E.19) using the equality defined for the normalization constants, 

Eq.  gives the following:  (E.21)
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The next step is to use Eq. (E.23) to eliminate the  ,k mR    term from Eq. (E.22).  We 

differentiate Eq. (E.23). 
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Substitute Eq. (E.24) into Eq. (E.22). 
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Rearranging and canceling factors yields the following equation. 

 

   

  
 

2

2 2
,, ,2

, 2
0.m

r

H
k mR g p k m p

m k m
L r

r t

z t
   




 
 

   
 

JX
J

 (E.26) 

n (

, ,2 2

1 m
k m r k m

d d
R R

d d

     
   



     


, , ,k m p

Equatio E.26) makes it clear that  , ,k m p tX  and  , , ,r k m p tJ  must be proportional for a 

solution to exist.  One more rearrangement puts the equation in a form that has a 

recognizable solution.  First, the derivative term is expanded.  
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g that result into Eq. (E.26) gives 
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Now, if we set following terms equal, then we have a s

 

olution for Eq. (E.28). 
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Substituting the solution back into the differential equation gives 
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This equation can be recognized as one of the forms of the generalized Bessel equation 

derived by Douglas and reported in [27].  The generalized Bessel equation is defined as 

an equation of the following form. 
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Comparing coefficients of Eq. (E.31) and Eq. (E.32) we find the following system of 

equalities must hold for the generalized Bessel equation to be applicable. 
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Solving for the parameters of the generalized Bessel equation gives 
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The solution to the generalized Bessel equation is given by 

pm p     J Y . (E.35

Hence, the radial function for the current density problem is given by. 
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 that the solution is finite over the region to eliminate the 

coefficients.  Each term can be evaluated as the solution approaches zero.  For quadrant 

shaped segments, 

We use the condition 2C  
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The solution must be bounded at 0

(E.38) 
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The boundary condition for the radial function comes from the requirem

current can pass the insulated boundaries of the pie-shaped segment.  This means that the 

radial current on the cylindrical boundary must be zero and that the radial mode must be 

2 0C 

ent that no 
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homog

(E.40) 

 . (E.41) 

The urrent solution gives the same radial eigenvalue equation as the mag

problem.  Similarly, the boundary conditions on azimuthal current require that the current 

density

eneous on the boundary.  These boundary conditions result in the following 

eigenvalue equation  

   0R   . r

 , 0.
m k m  J

 c netic field 

 into the radial faces at 00 or   also be zero.  Hence, azimuthal eigenvalues 

are defined by  

 
,
 (E.42) 

This is the same eigenvalue equation for the azimuthal function as found in the magnetic 

field solution. 

Now we turn to the radial function for the azimuthal current, 

   
 

0

0

0 0

sin 0.

m

m

   
 

   



 ,k mR   .  We 

need to   evaluate the proportionality constant between  , ,k m p tX  and  , , ,k m p tJ  and find

the function,  ,k m

H

R r  , which satisfies the differential equations.  We substitute the 

solution for the radial current mode from in Eq. (E.30) and the proportionality con

Eq. (E.29) back into the conservation of charge equation, Eq. (E.23).  We solve this 

equation for  

stant of 

,k mR r . 
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From this result, we deduce that only the product, 

   


  



JX
J

  
J

   , , , ,k m p k mt R   J , is 

uniquely determined by the equation.  The apportioning between the two factors is 

arbitrary.  The following two factors are chos

 

en. 

     ,

, , 1 ,
m

m

m k m

k m k m k mR 
 

  
    



 
  
  

J . (E.44) 
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X
J

. (E.45) 

Equation (E.45) can be solved for the proportionality constant for the amplitude function. 

    
2 2

, , , , ,2 2
,L k mz  

The solution for the current density can be written as the following series solution using 

the functions and constants that have been derived.   

 

1 R g p M
k m p k m p

r
t t

  
   J X . (E.46) 

 442



         

     

2 2

2 2
1 1 1 ,

,
, 1 , sin sinm

m

pmaxkmax mmax
R g p

k m p L k m

m k m
k m k m m p

r

z




 


  
     

  



 
  

 
 

J
J , ,

,

( , , , ) 1

.
,

M
k m p

m k m m p

j t

t

N N

  




   

  



   



  

X  (E.47) 

N

 



 
       

     

2 2

1 1 1 ,

, , ,
.

,
m

pmaxkmax mmax
R g p

k m p L k m

m k m m p k m p

r
j t

z



 
  

  

   
 

 

 (E.48

2 2

,

( , , , ) 1

cos sin

r

M

r m r k m m r p

t

N N N

      
    

 





  

J X
) 

The current density modes can be written as dimensioned vector function as the 

following 
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 (E.49) 

The method of solution assuming term-by-term equality of the series is not a 

rigorous procedure.  In this case, it can be shown by direct substitution that the modal 

functions in Eq. (E.47) and (E.48)  are solutions to the eddy current differential equations 
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in Eq. (E.1) and Eq. (E.2).  Hence, in this particular case, the procedure yields a solution

The substitution into the differential equation is performed using a symbolic math 

program as a test of the magnetic and eddy current modal functions in the following 

section on testing. 

.  

Testing the Current Density and Magnetic Field Modes by Analytical Substitution 

The modal distribution for current density supplies all components of the vector 

and can be substituted back into the algebraic and differential equations.  This process 

generates the corresponding modal functions 

that the solution of the 

axial component of magnetic field and the cu

also ge

al 

.  

tiation and multiplication required for the back 

substitu

 W

function as a product.  In equations not involving a time differentiation, the amplitude 

function cancels.  From Eq. (C.10), the magnetic potential is for a mode is given by  

for magnetic vector potential, magnetic 

induction, and magnetic field.  Starting with any of the equations, the series of 

differential operations forms a closed algebraic loop returning back to the starting 

function.  This series of operations can be used as a test to verify 

rrent density formulae are correct.  The test 

nerates the other modal functions which are used in other tests.   

The process of substituting and differentiating is readily handled by symbolic 

mathematics programs such as the MATLAB Symbolic Toolbox.  Given the differenti

equation, the Symbolic Toolbox fails to solve for the modal functions for current density

However, it can readily handle the differen

tion.  Thus, the algebra of this test can be done by computer which is less subject 

to error than the derivation by hand that found the eddy current distribution functions. 

The series of operations for the analytical loop of substitutions can be collected 

from previously obtained results. e will write the spatial function and the amplitude 
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The equation for the mode function has no external current or source.  Equation 

(C.12) gives the potential from its derivative.   

       1 , , , ,
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X

X . (E.5
t

1) 

The solution to the spatial part of the differential equation is an eigenvalue 

problem.  The solution of the magnetic field equation in Eq

integral transform in Eqs. (D.1) through (D.25) is an application of the eigenvalue 

property.  Applying similar steps to Eq. (E.51) gives the same eigenvalue. 

s (4.8) through (4.17) and its  
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Solving for the potential gives 
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The magnetic field is obtained by the constitutive relation.   

   1

, , , ,
M S M
k m p k m p


H μ B . 
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L k m
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.53) 

The magnetic induction can be obtained from the magnetic potential by applying 

the curl operation.   

(E.55) 

The analytical loop is closed by applying the curl one more time. 

.

M M

 

B A

B A
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 and 

  The following equations give the res

The final step in Eq. (E.56) returns the original current density, 

Eq. (E.49).  The complete vector solutions of the magnetic potential and magnetic field 

are documented here for use in other parts of the dissertation. 

This series of differential and algebraic operations has been programmed using 

the Symbolic Toolbox of MATLAB to generate vector functions for MA , , ,k m p

p , given in  

, ,
M
k m pB

, ,
M
k m pH . ults of the symbolic processing program.  
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Tes

Cylinder 

The test cases for the current density s

problem

eck the 

 




 
 
 


p z
 

   

t Calculations for the Modal Model of the Magnetic Field in the Pie-Shaped 

olution use the FEMM infinite cylinder 

 as a comparison to check the derivation and assess the order of the solution 

needed for control.  The comparison applies the same method that was used to ch

magnetic model and follows the same line of reasoning. The current distribution is 

evaluated using the series solution for ( , , , )j t     given by Eq. (E.47) for the high and 

low order models.  The amplitudes as a function of frequency are given by Eq. (4.79).  

The current density function for the modal model is evaluated with all coils energized at 

the midplane of the actuator.  The FEMM infinite cylinder model calculates the magnetic 

potential (which can be interpreted as the magnetic field) by the finite element method 
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and then FEMM’s post-processor is used to differentiate the field to get magnetic 

induction (which can be interpreted as current density).   

Figure E.1 compares the azimuthal current density, ( , , , )j     , from the 

infinite pie-shaped cylinder calculated by FEMM to the series solution along a radial l

The real component is shown in the top p

ine.  

anel and the imaginary component in the bottom 

panel.  As in the test calculations for magneti

to verif se  

su

se. 

e 

sit

son e urr r s. 

x plots is very close to the same.  This calculated result is the 

justification for using the low order model in the control calculations. 

c field, the purpose of the high order case is 

y the derivation and the programming.  The low order case is plotted to as ss the

fficiency of the low order case for control calculations.  As in the magnetic field cases, 

the comparison is excellent for the high order case and sufficient for the low order ca

Additionally, the real and imaginary components can be plotted in three-

dimensional plots.  The real and imaginary components are more constructive than th

usual amplitude and phase because of the significance of the sign of the current den y in 

compari  to th  coil c ent fo cing the eddy current from the outside radiu

In Figure E.2, the top panel is the FEMM result for the real component of 

azimuthal current density.  The lower two panels are the modal series solution for the 

high and low order cases.  Figure E.3 shows the same comparison for the imaginary 

components.  The purpose of these figures is to illustrate that the shape of all of the 

distributions in all si
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Figure E.1:  Comparison of azimuthal current density 
calculated by the FEMM infinite cylinder model to the high 

and low order modal models on a radial line  

 449



 

 

 

Figure E.2:  Comparison of real component of azimuthal 
eddy current density distributions from FEMM infinite 

cylinder, high order model, and low order model. 
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Figure E.3:  Comparison of imaginary component of 
azimuthal eddy current density distributions from FEMM 
infinite cylinder, high order model, and low order model 
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APPENDIX F 

INDUCTIVE COUPLING MODEL 

 

The objective of the inductive coupling m

Eq. (5.8)

 co ling model begins with Maxwell’s equations,   

odel is to find an equation in the form of 

 that relates the coil voltages to the coil currents, vibration modes and eddy 

current modes. The inductive up

  J , (F.1) H

t

  

B

E , (F.2) 

the line , 

 0 , (F.3) B

arized constitutive relation between the magnetic field from Chapter 2

 SB = κS +μ H , (F.4) 

and Ohm’s law, 

 . (F.5) 

The magnetic vector potential is defined as: 

. (F.6) 

The derivation starts by substituting the definition of A from Eq. (F.6) into 

Eq. (F.2). 

J E

 A B 

 
t




A
. (F.7)  

 
  E

 . (F.8) 

The order of operations for the time derivative and curl of A can be reversed. 

  E A
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Collecting terms and applying the distributive property to the curl operation gives

   0  E A . 

:  

(F.9) 

This expression can be integrated to yield, 

 , (F.10) 

where is a scalar potential function analogous to a constant of integration in scalar 

calcu e determined from the boundary conditions of the problem.  In this 

formulation, the term  represents a voltage gradient imposed by an external source.  

enclature anticipates that this quantity is related to the coil 

gion in which an external voltage gradient is imposed; so, 

 within the coil region. 

Substituting the conductivity relation from Eq. (F.5) into (F.10) for the electric 

field intensity gives a relationship in terms of the current density, . 

 

  E A V

V
lus to b

The use of the 

 V

 nomV
voltage.  The coil is the only re

 is zero everywhere exceptV

J

1


  J A V . (F.11) 

Let us first consider how , can be integrated to yield 

ed 

 the voltage gradient, V
K

jV  in .  In the coil, the current 

uctor.  The 

e 

ts 

 

CHAPTER 5the voltage across the coil which is term

density distribution is determined by the arrangement of insulation and cond

insulation of the wire forces the flow of electrons to follow a helical path.  On a very fin

length scale, the current density in a cross-sectional area of the coil varies with position 

across the insulation and conductor.  At very high frequency, the current density even 

varies across the cross-sectional area of the conductor due to skin effects.  These effec

are negligible in the actuator analysis.  The length scale for the variation in current
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density across the coil is on the order of the diameter of the conductor.  The magnetic 

induction effects that are important to the actuator are integral averages of the induction

over the cross sectional areas of the rod and the coil which are about 100 times larger 

than the wire diameter.  Also, the current density does not vary along the length of the 

wire since there is negligible capacitance in the wire and the displacement current has 

been neglected.  Hence, from the standpoint of the ma

 

gnetic induction acting on the coil, 

the cur

resent the current density in the 

azimuthal direction along the direction helical c

rent density can be assumed to have a uniform average value at every point in the 

r-z plane through each coil region.  Let ( )J t  rep

oil and let A
  be the vector  of the 

potential in the azimuthal direction.  T

in the a

hus, Eq. (F.11) can be written as a scalar equation 

zimuthal component of current density and vector potential. 

 
1

( )J t A
r  

   
 
 V

 (F.12) 

Let us now consider the physical meaning of the potential gradient.  One turn of 

the coil conductor may 

 

be considered to be centered in an area of the r-z plane.  

The individual turns in the coil ha

this dis

 of volume of the ent is 

l k

 conductor segm

r z 

ve the same cross-sectional area.  For the purposes of 

cussion, the turns are numbered with l and k to indicate the position in the r-z 

plane.  The differential length of an element rd .  

Because the insulation confines the current to the helical coil, the voltage gradient only 

has a component in the azimuthal direction.  The voltage gradient in cylindrical 

components across the differential length segment is 
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Integrating along one circular turn of the coil gives the voltage on that turn. 
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 (F.14) 

where is the voltage across the (l,k)-th turn.  Each turn is connected in series to the 

next, so o e coil 

volume. 

 

lkV

 the t tal voltage across the j-th coil is the summation of all the turns in th

2

, ,
ˆ

0

K
l k l k jrd



       eV V V . (
l k l k

where K

F.15) 

j
V represents the total voltage across the j-th coil.  Now, we want to convert the 

e integral.  Let the number of turns per unit length in the coil be , 

re in the coil region be  and the inner and oute

coil be 

summation to a volum

the overall length of the wi

T

Lz , r radii of the 

gr  and cr .  All the coils in the actuator are as med to be the same in area and 

number of turns.  The area of one turn can be obtained in terms of overall dimensions 

coils by the following calculation. 

su
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The numerator of the first line is the area of the coil region in the r-z plane.  The 

denominator is the total number of turns for all coils combined.  The ratio is the area

turn.  Multiplying the left side of (F.15) by the left side of (F.16) and the right by the right 

gives 

 

 per 

 2
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ˆ c g K
lk l k j

l k

r r
rd r z
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      eV V . (F.17) 

Because the areas of the individual conductors are small and the voltage gradient 

varies smoothly, the double summation on the left hand side can be replaced by a double 

integral giving an integral over the coil volume.  The smoothness assumption is valid for 

frequencies at which skin effects in the conductor are not important.  
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0

j c

j g

z r
c gˆ, K

jr z rd dr dz     e . (F.18) 

al is to at the 

 

z r

r r
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V V

The reason for arranging the voltage term as a volume integr  show th

voltage across the coil can be computed by integrating Eq.(F.12) over the coil volume.  

The particular volume for the j-th coil is indicated by adding the j subscript. 

 
, ,

1c g K
r r   JVV ˆ

C j C j

j

V V

dV dV
T r  

        A e . (F.19) 

The current density in the coil and the coil’s conductivity are constant over the 

volume so the second term in the integral on the right hand side can be performed by 

inspection. 
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,

,
,ˆ

C j

C j
C j

CV

J
e dV V  


J . (F.20) 

The volume of the coil, , can be written in terms of the length and the cross 

sectional area of the conductor. 

,C jV

 ,C j wireV r z   l . (F.21) 

where wirel  is the total length of the wire in the coil winding.  The implication of deleting 

the subscripts on the right-hand-side is that the volumes of all coils are the same.  The 

index on the left hand side is retained to indic

magnit

The current in the wire can be obtained from the definition of current density.  

 

ate a particular volume’s location, not the 

ude of the volume.  When current density is integrated over a coil’s volume, the 

subscript is used to indicate which coil is meant.   

  ,ˆ ˆ
K
j K

j C

c g

I T
e I e

r z r r
  

  
J j . (F.22) 

 

The integral for the current density in terms of current can be derived by 

substituting the definitions from Eq. (F.21) and Eq. (F.22) into Eq. (F.20). 

,C j

K

C CV

L

 
J

The resistance of the le of w re

ˆ C
je dV I   . (F.23) 

ngth i  in ohms is given by:  

 wire
C

wire CS 
 lR , (F.24) 

where Swire is the area of one turn of the conductor within  andr z   wirel  is the length of 

the wir ae in the coil.  Since the coil’s resist nce is small compared to the load resistor, 
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accuracy in estimating the wire resistance is not important in the model.  It is sufficient to 

approximate the conductor area as the square area of the turn.   

 
 c g

wire

r r
S r z

T


    . (F.25) 

Hence the current density integral can be written in terms of known parameters of the 

actuator. 

 
,

,ˆ C c gC j K
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r r
e dV I
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J
 

C j CV

R
. (F.26) 

By assumption, the coils are all identical in size and number of turns.  

Consequently, all coils have the same resistance.  No coil subscript is added to the 

resistance parameter for the coil, , since all coils are the same.  Solving for the 

voltage in Eq. (F.19) gives the following:   

CR

  
,

ˆK K
j j Ce dV I

r r
 

  AV R . 
C jVc g

T
(F.27) 

This is the result needed for computing the inductance in Eq. (5.28) 
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APPENDIX G 

SOLUTION OF THE INDUCTANCE COEFFICIENTS 

 

The general form of the solution of the induced voltage is given by Eq. (5.43).  

This appendix provides the derivation of the formulae for each set of inductances.  The 

solution is divided into sections corresponding to the coil-to-coil inductance, coil-to-edd

current mode inductance and the coil-to-vibration mode inductance.  Each section s

with the corresponding equation from Eqs. 

y 

tarts 

 a formula 

that can be evaluated numerically.  The method uses the reciprocity principle so that 

current density distributions and FEMM potential calculations can be used to evaluate 

inductance integral. 

Inductance Calculations 

Inductance from coil to coil 

The 

(5.31) to (5.33) and concludes with

,
K
j jL   coefficient represents the coupling between the j-th coil and the j’-th 

coil.  The integration of potential over a volume is a feature built into the FEMM code so 

the  coefficients are evaluated numerically using the tabular values computed by 

FEMM solution to the actuator magnetics. 
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In the following equation, the limits of the coil volume integral are expli

stated.  In the second line, the integration over 

citly 

  is carried out and dimesionless 

variables are substituted in for the radial and axial integration. 

    

 

    

1

1

2

,

0 0

2

1

2

j g

j

c

j g

j

z r

j j j

z z rL C c g

r

g L FEMM
j g L

zL C c g

T

r r

Tr z

r r







 



,

, .

K FEMM

r

L A r z rdrd dz

A r z d d



    










  

 

 

 

R R

R R

The FEMM integration of potential is used to evaluate Eq. (G.2).  The FEMM 

results are written to a file which can then be read by MATL





  

 

 (G.2) 

AB for use by the actuator 

simulat

Inductance from eddy current to coil 

The formula for the eddy current to coil inductance coefficient can be rewritten as 

the following using the equation for the FEMM case’s current density d

 

ion model. 

istribution. 

     , , , , ,
ˆ, , , ,M M FEMM

j k m p k m p j

V

L r z A r z dV
I

 
   f eR R . 

1

RL C

(G.3) 

The radial component of current density does not contribute to the dot product 

inside the integral because the FEMM potent

integra  

segment is identical.  

The integration over one pie-segment can be 

compute the integral.  In the next line, the limits of integration are changed to 

ial only has an azimuthal component.  The 

tion in three dimensions can be written out explicitly for evaluation.  The 

azimuthal integration is over the full circle of the rod, but each pie 

multiplied by the number of segments to 

00    , 

and a multiplier, 
0

2


, for the number of pie segments is added to the integration. 
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The azimuthal component of eddy current can be obtained from the current 

density functions in Eq. (4.123). 
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The azimuthal integration can be performed analytically because z

does no

 ,FEMM
jA r  

t depend on  .  
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The final version of the formula is obt

dimensionless variables. 

ained by converting the integration to 
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R R (G.8) 

The quantity inside the integral is com

Simpso el.  

The FEMM calculations are performed for each coil case.  The values for the vector 

potential are recorded in a two-dimensional grid in the r-z plane from

puted by the same numerical integration by 

n’s rule as the corresponding coupling coefficients in the magnetic field mod

 0 gr r 

.35

 and 

.  The grid spacing is 3.175×10-3 m (0.0125 in) axially by 6

in) radially.  This rectangular mesh size gives an array of 471 by 101 points over the 

ensions of the rod.  The values of 

0 L 

radial and axial dim

z z ×10-5 m (0.0025 

 ,FEMM
jA r z  are written by FEMM 

to a file   

Inductance from vibration to coil 

The changing magnetization generated by vibratio

varying magnetic field that induces a voltage in the coil.  The inductance coefficients 

between the coil and the vibration modes can be computed by the same approach as the 

coupling to the eddy current modes.  The magnetization must first be 

equivalent current density distribution to use the formulations for inductance in Eq. (5.33) 

and the reciprocity relation in Eq. (5.34).  The definition of magnetization is the 

following: 

 

 which is then transferred into MATLAB to perform the integration in Eq. (G.8). 

n in the rod creates a time-

converted into an 

  B μ H M . (G.9) 

The linear constitutive relation for the magnetostrictive material is: 
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 S B μ H κS . (G.

By comparing the two, the magnetization due to the magnetostrictive effect can be fo

to be  

   1N S 
M

10) 

und 

μ κS . (G.11) 

The superscript N conveys the connection of the magnetization component to the 

vibration model.   

Ampère is credited with first recognizing that magnetization could be treated as 

an equivalent current density distribution [48].  Moreover, since the other terms for coil 

and eddy current which generate magnetic fields are in units of current 

converting the magnetization due to strain to an equivalent current density distribution 

puts all the magnetic effects in the same units so they can be more readily compared.  The 

equivalent current is defined as a distribution 

as the m

distribution combines a surface current and a current density distribu

the magnetized material.  The surface current component in terms of the magnetization is 

given by 

, (G.12) 

where MN is the magnetization and is the 

of the m

. (G.13) 

density, 

of current density that gives the same field 

agnetized material.  In the general case, the equivalent current density 

tion in the interior of 

 ˆN N
n K M e

ˆne  outward normal unit vector from the surface 

agnetized material.  If the magnetization varies in the interior of the magnetized 

material, an equivalent current density in the interior is given by 

 N N J M
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The equivalent current for magnetization is not a real current in the sense of a free 

flow of electrons which produces resistive losses.  The equivalent current is the net flow 

of the electrons traveling in bound orbits of the individual ferromagnetic atoms.  The 

equivalent current is quite real in the sense that it gives exactly the same magnetic field 

and ind

ms of the strain 

by inserting the solution to the vibration model from

constant volum ated as uniform in 

the transverse direction.  Hence,  is a function only of z and t and not r and 

uction as the magnetized material. 

The vector components of the magnetization can be written in ter

 Chapter 3 into Eq. (G.11).  In the 

e approximation in Chapter 2, the strain was approxim

NM  .   
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. (G.14) 

e equivalent surface current on the cylindrical surface of the rod is given by 

applying the formula in Eq. (G.12).  The outw

surface

ard normal unit vector on the cylindrical 

 of the rod is ˆ ˆ
n re e . 

 ,ˆ eff zN N z
r

R z
ˆ

 


  


K M e e . (G.15) 

As expected, only an azimuthal component of surface current remains on the rod 

pie segment.  The radial term does not contri

outer surface.  A similar component of surface current is present on the radial face of the 

bute to induction because the coil’s potential 

function has only an azimuthal component.  The dot product of a radial vector and 

azimuthal vector gives zero because the vectors are normal to one another. 
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The interpretation of the magnetization due to strain as a surface current was 

anticipated in the derivation of magnetic field when the conventional symbol for 

current, K, was used in Eq. (4.22) to designate the same group of strain components.  For 

compactness in the subsequent derivations, the scalar tangential component of  is 

used to represent the equivalent surface current.  In this notation the direction of surface 

current flow is understood to be the azimuthal direction on the cylindrical face and radial 

on the radial face of the pie segment.  The axial position, z, and time, t, are shown 

explicitly as the independent arguments of surface current to emphasize that the constant 

volume approximation eliminates the dependence in the transverse dir

 

surface 

NK

ection.   
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, eff z zN
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K z t
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. (G.1

The current density in the interior of the rod is zero by the formula of Eq. (G.13

The partial derivative term

z t 
6) 

).  

s are zero because  ,N
zM z t  does not depend on r or   
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J
 . (G.17) 

The function, , physically represents an infinitesimally thin sheet of current 

on the cylindrical surface the rod whose magnitude varies axially with the strain.  The 

units of the function are current per unit length.  The surface current can be converted to a 

current density using the Dirac delta function.  The magnitude of the surface current in 

amps per unit area is infinite at the surface of the rod, but zero everywhere else. 

 

NK

      ˆ, , ,N N
gr z t K z t r r  J e . (G.18) 



The distribution function for l is given in Eq. (B.34).  the vibration mode
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The leading coefficient is the scaling factor for the surface current density 

distribution.  For compact notation, let th

 X
 (G.19) 

e factor be grouped as a constant.  

 ,eff z eff

H
R eff

T I

Y

 




The surface current density distribution is a linear combination of the amplitude 

functions and current density distributions functions.   

,
1

nmax

n N n
n

By comparison to Eq. (G.19), the current density distribution function for an 

equivalent current due to magnetization is given by the following: 

K  . (G.20) 

 H . (G.21) 
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The equation for the inductance between coil and vibration mode is obtained by 

incorporating (G.22) into Eq. (5.43).   
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 f e

) 

The volume integral converts to a surface integral through integral properties of 

the Dirac delta function. 
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The azimuthal integration can be carried out since the integrand does not depe
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Converting the variable of integration to dim

form of the coefficient.  This formula can be evaluated using Simpson’s rule for 

integra

ensionless variables gives the final 

tion in one dimension.  The spacing of the axial points for the FEMM potential is 

the same as in the previous case.  There are 471 points spaced 3.175×10-5 m (0.0125 in) 

apart. 
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 R R . (G.26) 

Test Cases for the Coil Inductances Using Green’s Identity 



Green’s first identity for vector fields can be used to find relationships between 

the coefficient matrices for coils, vibration, and eddy current derived in Chapters 3, 4 and 

5.  The relationships serve as a test of the derivation and programming of the model.  

Rothwell [46] gives a form of Green’s identity that is suitable for the test cases.  The 

identity can be written as the following. 

       
V S

dV dS              Φ Ψ Φ Ψ Φ Ψ  . (G.27) 

The Green’s identity is extraordinary in its generality.  The vector fields,  and 

, in Green’s identity can be any vector fields that are differentiable.  The volum V, 

Φ

e, Ψ



can be any volume in space and the rresponding surface of the same 

potential fields due to a coil, vibration, or eddy current.  Any two of the three vector 

potenti

ing 

e 

. 

surface, S, is the co

volume.  To create a test of the model, the fields in Eq. (G.27) may be chosen to be the 

al fields may be chosen for a comparison test.  Thus, relationships between F

and 31F , 41F  and 14F , and 34E  and 43E  based on Green’s identity can be found.   

The testing aspect of applying Green’s comes from the independence in the 

derivations of the pairs of coefficients.  One of the basic methods of computer model 

testing comes from solving a problem two different and independent ways and co

the results.  The value in such tests is that mistakes are not likely to be exactly the sam

in both derivations. 

Coil current and vibration test 

Let Φ  be the potential due to coil j calculated by FEMM.  In the following 

formula, the coil current amplitude function is set equal to unity for the j-th coil, 

  1KX , while all other coil currents are zero

13  

mpar

t j

   ˆ,j
FEMMA r z eΦ . (G.28) 
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Φ

Let Ψ  be the potential due to strain from the n-th vibration model.  The potenti

itself has not been derived for strain, but the test does not need it.  We only need the 

magnetization due to strain.  From Eq. (G.14), the magnetization is given by 

 (G.29) 

al 
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By assumption of a uniform average density in the transverse plane, the 

magnetization only has a non-zero component in the axial direction.  The second part of 

the condition recognizes that any material outside the rod does not produce any 

ef r 

con enience in evaluating the right hand side

a single

 

k

zM e




 
   


Ψ . 

magnetization due strain.  The magnetization is d ined as zero on the boundary fo

v  of Eq. (G.27).  To get the magnetization for 

 mode, we substitute in the vibration models in dimensioned units 
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 one mode for the test case.  Let  and  for .     1N
n t X   0N

n t X n n 

 
 

, ˆ ; 0

0 ; 0 or .

eff z eff n n
z g LH

cos

R eff n

g L

e r r z z
Y N

r r z z z

 
    

   

Ψ  (G 

k T I   

.32) 

The leading coefficient is defined as a grouped constant in Eq. (G.20).  The 

normalization constant for the trigonometric function is given by   1

2nN   .  A 

simplified equation can be written as the following. 
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0 or 0 or
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K e r r z z

r r z z z

     
  

We define the volume of integration for Green’s identity as the rod volume

evaluate the right hand side of Eq.  

  Ψ  (G.33) 

 and 

e rod, 

 

The jump condition at the boundary gives a Dirac delta function when the curl is 

applied. 

 r e

(G.32).  Since Ψ  is zero on the surface of th

the integral is zero.   

    0 0.
R RS S

dS dS           Φ Ψ Φ  (G.34)

      ˆ2 cosn n gK r        Ψ . (G.35) 

Inserting the terms defined by Eqs. (G.33) and (G.29) on the left hand side of 

Green’s identity and the terms defined by Eqs. (G.28) and (G.35) on the right hand side 

gives the following equality.  On the left hand side, only the axial terms survive the dot 

product. 

 
g V

 (G.36) 

It is fairly easy to use the definition of magnetic potential, , 

and Stokes’ theorem

the mod  
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plete test of 

e

ft 

ight. 

 to show that this equation holds; however, a more com

el can be found by solving for a relationship between the coupling matrices.  Th

goal is to find a relationship involving the 13F  coefficients using the integral on the le

and a similar expression involving the 31F  coefficients from the integral on the r
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ately 

 Eq. (B.19) of the vibration model 

derivation, the integral of m

average magnetic field, 

(G.37) is evaluated first.  A series of substitutions from 

the derivation of the vibration model can be inserted into the expression that ultim

replace the integral with the 13F  coefficient.  From

agnetic field can be written in terms of the dimensionless, 

FEMM  ,R jx 
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From Eq. (B.29), 

 d   
1

, ,

0

cos FEMM
n j n n R jQ x



    


 


. (G.40) 

From Eq. (3.41), 
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Combine Eqs. (G.40) and (G.41), 
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Insert Eq. (G.42) into Eq. (G.39) to give the left hand side of Green’s identity 

from Eq. (G.36) in terms of .  
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The right hand side of Eq. (G.36) can be similarly transformed to give a factor 

proportional to 
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 (G.44) 

Solve Eq.  (G.26) for the term on the right hand side of Eq. (G.44).   
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uctance is equal to the negative of the state coefficient 

matrix, 31 N
j n j n, ,F L  . 
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Equate t e the Green’s 

identity test equation.   

he right hand sides of Eq. (G.43) and Eq. (G.46) to complet
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This comparison is the Green’s identity test for the coil and vibration models.  

After evaluating the coefficients, the modeling program checks them by calculating the 

ratio of the left hand side over the right hand side.  The test gives ratios that are between 

0.9994 and 1.0004.  The values for two rows of coefficients, j=1 and 6, and n=1 through 

10, are plotted in Figure G.1 which shows how closely the coefficients match.  The 

differences between the coefficients stem from differences in the numerical integration of 

the coefficients in Eq. (G.40) and Eq. (G.45). 
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Figure G.1:  Green’s identity test of coefficients f
vibration and coil models 

rom 

Coil current and eddy current test 



The Green’s function test for coil current and eddy current finds the 

proportionality constant to compare the coefficients,  and .  The Green’s identity 

test for coil and eddy current coefficients is similar to the previous section; however, the 

situation is more complicated because fewer of the terms are exactly zero.  The eddy 

current field has non-zero terms in all three directions and the coil’s magnetic field is 

non-zero in radial and axial directions.  Hence, the dot product in the first term in 

Eq. (G.27) includes both radial and axial terms.  The integrand for the surface terms on 

the right hand side of Eq. (G.27) can be shown to be zero on the radial and cylindrical 

faces of the rod but it is nonzero on the end faces.  While the extra terms add complexity, 

their values turn out to be small when evaluated.  The main contribution to the integral 

turns out to be the axial terms in the dot product of the first term of Eq. (G.27) and the 

azimuthal term

The coil current term bration problem.  The  is 

the potential due to coil j calculated by FEMM. 

 

34E 43E

 in the dot product in the second term. 

s remain the same as in the coil vi Φ

  ˆ,FEMM
jA r z eΦ . (G.48) 

 

   

   

 

, ,

, ,

ˆ ˆ, ,

1
ˆ ˆ, ,

, .

FEMM FEMM
r j r z j z

FEMM FEMM
R r j r z j

R

FEMM
R j

B r z e B r z e

H r z e H r z e

r z




  

z

 
  

 


Φ

μ H

 (G.49) 

The solution for the magnetic field due to eddy current in all three directions is 

found in Appendix E.  To select a single mode for the eddy current, let the 

and let all other amplitudes be zero.  The (k,m,p)-th mode for eddy current field be 

, , ( ) 1M
k m p t X  
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written as a vector.  The mode indices are added to indicate the selected mode and the 

component direction.   

 ê  (G.50) 

The modal solution for all three components of the magnetic field is given in 

Eq. (E.58).   That solution is repeated here. 

, , , , , , , , , , ,ˆ ˆM M M M
k m p r k m p r k m p z k m p zH e H e H     Ψ H

 

 

     

 

     

,
, 1

,

2
, ,

, , ,

2

,

,

sin cos

,

, ,
cos cos

,

m

m

m

m

k m
k m

gg R p p
m

L Lg k m
m

g

k m m k m m p

M
k m p pk m

m
g Lg R p

L m k m m p

k m

g

r

rr z

z zr r

r r

N N N

r z T I zr

r zr

r z N N N

r

r












  
 




    

 
 

 
   





  
       

  
        
  

     
       





H

J

J

J

J  

     ,

sin sin

,

p
m

L

m k m m p

z

z

N N N


 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
        

 
 

. (G.51) 

The  term is equal to the current density distribution for a single 

mode. 

  . (G.52) 
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The Green’s identity for the coil current and eddy current test can be written 

compactly in terms of vector quantities. 

 

, ,

 (G.54) 

On the left hand side of Eq. (G.54), only the axial and radial components of the 

fields contribute to the integral.  The azimuthal component of  is zero which 

eliminates that part of the dot product.  We can substitute the axial and radial mode 

functions from Eq. (G.51) into the left hand side of Eq. (G.54).  Because of the length of 

the expression, the radial and axial terms are separated into individual integrals.   
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Radial term 
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Axial term 
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(G.56) 

The surface integral terms can be evaluated by substituting in the potential 

definiti

7) 

blem’s homogeneous boundary condition.  Co

first ter

ons as well.  

  , , , , , , , ,ˆ ˆ ˆ ˆ ˆ,
R R

FEMM M FEMM M FEMM M
j k m p n j z k m p r j r k m p z nA r z e e dS A H e A H e e dS        H . (G.5

The axial component of the magnetic field due to eddy current, , , ,z k m pH , is zero 

on all surfaces by the pro

S S

M

nsequently, the 

m in the integrand is zero.  The vectors normal to the surface are ˆ ˆn re e  on the 

cylindrical surface and ˆ ˆne e  on the radial surface.  Consequently, the surface integ

on those faces of the rod are zero.  However, the end faces are not zero.  The formula for 

the surface integral on the faces on the top and bottom of the rod can be written as the 

following.   

rals 
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The radial term’s volume integral term from Eq. (G.55) and the surface integral 

terms from Eq. (G.58) are not zero but turn out to be small.  The small terms are collected 

on the right hand side of Eq. (G.54) into a single variable for compactness in the algebra 

and retained until the terms are evaluated numerically.  Let  
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 (G.59

The axial volume integral in Eq. (G.56) is related to 43E  and  from 

) 

Eq. (4.88) and Eq. (D.35).  Those equations give the following similar integral 

expression. 
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The next steps convert the right hand side of Eq. (G.60) to match Eq. (G.56).  

First, the integration limit on 

    (G.60) 

  is changed from integration over an interval from 

00 to   to integration around the full circle.  Because each segment is identical, we 
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can multiply the left hand side by the number of segments, 
0

2


, and change the limits on 

the integral on the right to the 0   to 2 . 
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Now, the variables of integration, and 

  

     

J
1) 

  , are changed to the dimensioned 

variables, r and z, to match the integration in Eq. (G.56). 
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To complete the transformation, both sides are multiplied by the constant 
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) 

After applying this mu tion, the right hand side of Eq. (G.62) now is equal 

to the left hand side of th  (G.54).   

ltiplica

e Green’s identity in Eq.
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(G.64) 

The right hand side of Eq. (G.54) can be evaluated in terms of .  From 
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34E

Eq. (G.3) we can determine that the right hand side of Eq. (G.54) is given by 

FEMM

N
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From the state space model equations in Eq.(5.51) 
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M M
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       34
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A r z e r z dV I ER R . (G.67) 

The Green’s identity for the coil current and eddy current coefficients is given b

inserting Eqs. (G.59), (G.64) and (G.67) into Eq. (G.54).   

) 

C j l

y 

 

, , ,ˆ, , ,j k m p L     f

        , ,l, j L C j l l jE I E    . (G.68) 

  The differences between the 

coeffic

-8 

dentity.  

provides reassurance that the model derivation and programming are correct. 

2 2
43 34

0 ,

2

,
g L R

k m m m p

r z T I

N N N

 
    

 R R

All three terms in the balance can be evaluated numerically.  To show 

representative results, Figure G.2 gives a comparison of the terms in Eq. (G.68) for the 

range of indices:  1, 2; 1,2;k m p  1 10; and 5.j 

ients are normalized by the maximum coefficient.  The normalized differences 

range from -0.0086 to 0.009.  The parameter, , ,l j  ranges in value from -1×10-9 to 4×10

which is five orders of magnitude smaller than the other terms in the Green’s i

Figure G.2 shows that the coefficient terms are very close.  The close comparison 
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Figure G.2:  Green’s identity test of coefficients from 
magnetics and coil models, coil index, j=6; magnetic mode 

indices, k=1,2; m=1,2; p=1-10. 

The Green’s identity test for eddy current coefficients and the vibration 

coefficients provides the reciprocal relationship between 14F  and 41F .  Neither of these 

coefficients appears in this chapter, but the test is based on Green’s identity so the 

14 41

coefficients.  Nevertheless, the comparison 

Eddy current and vibration test 

calculation is included here.  The coefficients for  and  both involve the same 

analytical integral so the test does not give a completely independent evaluation of the 

of the calculated model coefficients does 

com are the terms multiplying the integral an

proceed by substituting the current and potential distributions into the Green’s identity 

and identifying the coefficients as terms in the integrations. 

F F

p d provides a test of the programming.  We 
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The vibration field and current density

Equatio

 

 give the Ψ  terms in Green’s identity.  

ns (G.33) and (G.35) give the magnetic field and current density terms for the 

vibration model.   

  ˆ2 cos ; 0n n z g L .
0 ; 0 org Lr r z z z

     
Ψ

K e r r z z     
 (G.69) 

In this problem, the current density on

contributes to the integral. 

 

 the radial face of the pie segment 

         0ˆ ˆ ˆ2 cosn n r g rK e r r e e                 Ψ . (G.70

The Φ  terms in the Green’s identity correspond to the magnetic vector potential 

and magnetic induction for the eddy current density distribution.   
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k m p r zΦ A . (G.71) 

(G.72) 

These terms are derived in Appendix E and are given by Eq. (E.57) and (E.58).   
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The Green’s identity can be simplified by eliminating the zero terms.  The 

integrand for the surface term is zero on a

sin sin

,

m

N N N

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 

 

    

 
4) 

ll faces because of either the homogeneous 

 483



boundary condition for the eddy current’s ma

normal

cond 

term in the Green’s volume integral only contains an azimuthal term because of the 

vibration’s equivalent surface current density only has an azimuthal term.  Hence, the 

Green’s identity for vibration and eddy current reduces to two terms.  The first term in 

the volume integral is given by 

gnetic field or the dot product with the 

 surface vector.  The first term in the Green’s volume integral only has an axial 

term in the dot product because the vibration’s field only has an axial term.  The se
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In the next line, the integration variables are converted to dimensionless variables,

the integration limit on the 
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  variable is converted to a single pie segment (with 

appropriate multiplier), and the terms are regrouped to match the terms used in the 

derivations of coefficients calculated elsewhere in the model. 

 

 

   

     
   

0

2

1

0 0

1

0

2

sin
2 m

g L RV r z T I K

d d


 



 

      ,

0 , ,

sin cos .

V

k m m

m k m m p

n p n

d

N N N

d



    

     

 



    



 Φ Ψ

 (G.76) 

The azimuthal and axial integrations can be performed analytically to yield. 
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Equation (B.16) defines the term on the middle line as ,k mP , and Eq. (3.42) 

defines the state space cient. 
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 (G.77) 
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Thus, the first integral can be written in terms of 14
,n lF  as the following.  
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The second term in the volume integral i

 

n Green’s identity in Eq. (G.27) can be 

written as the following.  The volume integral

and the multiplier for the number of segments. 

 

 is given by the volume of the pie segment 
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 (G.80) 

This expression does not directly resemble the integral solved in the magnetic 

model for .  It can be converted into an integral just like Eq. (G.76) to show that 

equality is m intained, then that formula is used to get the equivalence between  and 

tep is to recognize that, by Stoke’s theorem, an integral over the 

transverse area  on the right is the same as an integration around the perimeter of the pie 

41F

a

.  The first s

41F

14F
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shaped segment.  Let the perimeter be called .  After factoring out the magnetization 

term which depends only on z from the inner integral, the path integral can be written as 

the following. 
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Stoke’s theorem allows the perime ral to be replaced by a surface integral. 
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The equation can be made a volum gral again over the full rod volume. 

  (G.83) 

The definition of magnetic potential can be used to convert the potential term into 

a magnetic field term.  After taking the dot product, the integral is exactly the same s the 

first term
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z z k m pdV M e dV     Φ Ψ A

 a

 in the Green’s identity from Eq. (G.75).  
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This is reassuring, but we still want to find a relationship between the coefficients 

r 41F  and 
14F .  The previous formula for this integral in Eq. 

 (G.84) 

fo in 

ip. 

(G.75) can be used aga

to find the relationsh
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The terms can be rearranged and grouped so that they can be recognized as the 

terms in Appendix F and Chapter 4 used in the  and  calculations. 41F 14F
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Equation (D.42) defines the term on the middle row as ,k m .   
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ral in the bottom line of Eq. (G.86),    
1
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.  Equation (D.43) gives th

The integ  is the 

integral that is in common between the  and e analytical 

solution. 
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Equation (D.45) defines the coefficient  

  
, 33 ,

, , , 2 2

2eff z n p k m
k m p n

R p n

d  
  


 


. (G.89) 



33
eff

H
The identity in the magnetostrictive properties, 
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 , can be used to 

eliminate .  Substituting Eqs. (G.87), (G.88) and (G.89) into Eq. (G.86) gives a 

formua in te s of the model parameters and the coefficient, 

d
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From the state space coefficient definitions for the magnetic model in Eq. (4.88), 

this gives: 
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Equating (G.79) and (G.91) and canceling like terms gives: 
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14 41
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F . (G.92) 

This test gives an exact match to machine accuracy.  This is expected since the 

formulation of the coefficient matrices are computed with analytical integrals that are 

exactly the same.
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APPENDIX H 

TIME STEPS AND TIME HORIZON 

 

The appropriate time step and the time

 are 

 

ly be detected.  The 

horizon recedes as the solution advances so that the M

the reference input over fixed time interval just ahead of the current time.  The horizon is 

chosen based on the decay time of the proble

are the valu

 

ys away.  Setting the horizon too near into the future gives suboptimal 

performance since future effects are not sufficiently anticipated.  Setting the horizon too 

far ahead offers no advantage to the control and increases the computational load 

unnece the 

t  

 horizon are functions of the dynamics of 

the system being controlled and can be determined from scaling analysis.  The values

estimated in this section. 

The prediction horizon is the time in advance of the current time over which the 

control response is optimized.  The full duration of the transient need not be included in 

the predictive horizon.  The usual practice in predictive control is to estimate forward to a

horizon at which the effect of the next control input could just bare

PC algorithm is always acting on 

m.  The time decay constants of the process 

real part of the complex eigen es of the process model.  The time decay 

constants are a measure of how quickly energy that is added to the system through

control inputs deca

ssarily.  The horizon does not need to extend beyond some (small) multiple of 

longest time decay constant of the problem.  For the actuator, the decay cons ants of the

vibration modes (the negative real part of the smallest complex eigenvalue) are the 

longest time constants.  Evaluating the eigenvalues of the full model by MATLAB 

produces the value -0.46×104. 
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-41 1

2.17 10
Re min( ) 0.46 10

s     . (H.1

In the simulations, the prediction horizon is chosen to be slightly longer to show 

the feedforward aspect of predictive control somewhat better.  Th

4 e
) 

e value is set to be 

 time steps in the prediction interval from 0 to  is given by the following 

formula. 

-42.4 10 s  

ber of

.  This horizon gives about two full reflections of the anticipatory wave.  

The num 

 H
s

i


The time step is chosen by the frequency of the highest vibration that we wish to 

model.  An order of magnitude faster sampling than the highest frequency

gives adequate resolution of the wave form.  The goal of the research is to achieve a 

frequen

ast an order of magnitude less than the period of the target frequency.  

To give smooth plots in the time domain for t

chosen

T
. (H.2) 

 (in Hz) usually 

cy response from the actuator on the order 10,000 Hz.  A rule of thumb is to set 

the time step at le

he high frequency results, the time step is 

 to be a factor of 50 less than the reference period. 

 -61 1
2 10sT s    . (H.

steps needed in the p

50 10000
3) 

Combining the results of Eq. (H.1) and Eq. (H.3) determines the number of time 

rediction horizon.   

 
-4

-62 10H
sT 

2.4 10
120stepsi

    . (H.4) 

 490



APPENDIX I 

ODEL FOR REAL-TIME EXPERIMENT 

 

Even though the number of modes in the low-order actuator model derived in 

Chapters 3 and 4 were chosen to be as low as feasible, the control algorithm given in 

Chapter 6 involves too many mathematical operations to complete the calculations within 

the minim ’s control computer.  

Model reduction can be used to eliminate unnecessary

com e for the estimator and con

technique is a quasi-steady approximation in which the derivatives of fast states are set to 

zero and the fast states are solved as a set of algebraic equations rather than differential 

equations.  The method and the theory of model reduction for vibrational systems is 

discussed in Gawronski [22].  The method in 

h. 

The method for model reduction first calculates the 

model u

 

 

g the 

REDUCED ORDER M

um time step for the data sampling on the prototype system

 fast states and reduce the 

putational tim trols even further.  The model reduction 

this appendix follows Gawronski’s 

approac

balanced realization of the 

sing MATLAB’s balreal command.  The balanced realization is a linearly 

transformed state space system in which the transformation ensures that the 

controllability and observability grammians are equal.  The states in the MATLAB

balanced realization are arranged from slowest to fastest.  Once the balanced model is 

obtained, the MATLAB utility for model reduction, modred, can be used to eliminate fast

states by retaining the lower numbered states in the balanced realization and replacin

higher numbered states with a quasi-steady approximation. 
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The following calculation illustrates the model reduction based on the MATLAB 

function description.  The ordered balanced realization state space model can be 

subdivided into the slow part and the fast part. 

 

S

F

B

B
 (I.1) 

 are the slow and fast states respectively.  Setting  in the bottom 

(I.1) and solving for 

 u . (I.2) 

Inserti ouping the 

 and  terms gives  
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ate 

 

n has the effect of moving the eigenvalues of the 

elimina
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where  and S Fx x 

row of the state equation in Eq. 

0F x

Fx  gives the following equation. 

   1 1

F FF FS S FF F

  x A A x A B

ng this result into the state equation for Fx  in Eq. (I.1) and regr

Sx u

 

1 1

1

 




 

 (I.3

In general, the reduced order model can be expected to preserve the steady st

of the original problem but raise the high frequency response.  The high frequency is

affected because the model reductio

   

 

,

,

S SS SF FF FS S S SF FF F

S F FF FS S

       

   

x A A A A x B A A B u

y C C A A x Du



ted states to   and shifting the remaining state in the negative direction along 

the real axis. 

The singular values from the balance realization of the low order version of the 

combined vibration, magnetic and coil circuit model are plotted in Figure I.1.  Small 

singular values correspond to states that can be eliminated by model reduction.  
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Figure I.1:  Hankel Singular Values for Low Order Model 

The reduction presents a problem because the singular values do not provide a 

distinct break point between large and small values.  The only break occurs for values 

that are still too large to ignore.  The number of states to retain is dictated by the size of 

the matrix calculation that can be successfully computed in the prototype system within 

the 70 µs time step..  Based on the singular values of the system and the available 

computation time, the model is reduced to the first twenty states.  The effect of the 

reduction can be assessed by comparing the eigenvalues, and the time and frequency 

response of the full and reduced systems for open loop simulations.  The eigenvalues for 

the original and reduced system models are shown in Figure I.2. 
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Figure I.2:  Eigenvalues of full and reduced system models 

nd reduced m
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The reduced system’s eigenvalues have the expected shift to the left.  The most 

important dynamic terms for the actuator are the vibration modes represented by the 

complex eigenvalues.  The match between the full a odels appears 

satisfactory for these terms. 

Open loop simulations of the reduced order system in the time and frequency 

domain are shown in Figure I.3 through Figure I.8.  The full system model should be 

exactly the same as Figures 5.5, 5.6, and 5.7.  The only difference between the two is th

the results shown in this appendix have been balanced.  The balance and original system

should give the same results except for numerical deviations due to the improved 

numerical conditioning of the balanced model.   
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Figure I.3 and Figure I.4 give the response of displacement to steps in current 

demand.  The step occurs at t=0.7×10-3 seconds.  The plot corresponds to the Figure 5.5 

in the main text. 
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Figure I.3:  Step response of displacement for balanced, full 
system 
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Figure I.4:  Step response of displacement for reduced 
system 

The differences between the displacement response for the full and reduced 

systems are not discernable.  This is a good indication of that the reduction is satisfactory 

for the control application.   

The response of all of the coil currents to a step change in the tenth coil for the 

balanced and then reduced models are shown in Figure I.5 and Figure K.7. 
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Figure I.5:  Step response of coil current for full, balanced 
system 
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Figure I.6:  Step response of coil current for reduced 
system 



The response of the current in the energized coil, j=10, is essentially the same for 

the full and reduced models.  The response of coil 9 gives a noticeably smaller bump in 

current as the acoustic wave passes through it.  The responses other coils are very similar 

in shape and magnitude. 

The final comparison is the frequency response of the displacement to each coil 

current demand.  uency response 

covers the range of interest for the actuator, but does not extend to high enough frequency 

to show the point at which the reduced model’s response diverges. 

Figure I.7 and Figure I.8 give the two models.  The freq
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Figure I.7:  Frequency response of displacement to current 
demand for full, balanced model 
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Figure I.8:  Frequency response of displacement to current 
demand for reduced model 
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The overall shape identical between the 

full and re tem  e ental system is operated with a much slower time 

step than the results in th tion ter 6.  

less effect from o ctio nce the slow igh frequency 

effects.  On this basis, th

reduced system ith twe  states

 of the open loop response is essentially 

duced sys s.  The xperim

is sec  and Chap   The slower time step results in even

 the m de redu n si er time step eliminates h

e development of the experimental system proceeds using the 
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APPENDIX J 

STATE ESTIMATION AND TIME DELAY 

 

The model predictive control law depends on the full state of the actuator at the 

start of the prediction interval.  The experimental system cannot directly measure all the 

nor can it measure them instantaneously at the current time.  The time delay for a 

change in the control input to register with a corresponding change in the measured 

variables is observed experimentally to be two time steps.  To compensate for the time 

delay, the actuator model can be used to simulate forward from the time of the measured 

data to the current time.  This approach is a digital implementation of the Smith predictor 

[76].   

The main purpose of this section is to document the equations and nomenclature 

that are used to represent the time delay with the estimation and prediction operations.  

We particularly want to show how the tim

measurement dela s in the time 

index of the variables.   

A Kalma and works well 

with predictive control.  T al estimate of the 

system state.  According to the separation principle, the MPC controller can be developed 

and tested using a full state feedback as if all states are measured.  The estimator can be 

developed separately based on the state space model and the properties of the disturbance 

probability distribution.   

states 

e index of the variables is used to represent 

y.  The representation of time is handled through offset

n estimator is the most commonly used form of estimator 

he Kalman estimator provides an optim
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The Kalman estimator problem assumes that Gaussian-distributed, random 

disturbances are added to the measurements and the process inputs.  The optimal 

estimator then minimizes the difference between the actual plant state and the estimated 

state in the presence of the disturbances.  The Kalman design produces a set of correction 

gains for the estimator.  The Kalman estimator corrects the linear model of the plant 

using the error observed between the estimated values of measured variable and the 

actual measurements.   

This section starts by restating the form of the Kalman estimator given by 

MATLAB documentation of the kalman command and gives the data and tuning choices 

that are needed to realize a particular Kalman estimator for the actuator.  The estimator 

for the actuator model uses a standard MATLAB Control Toolbox routine for the Kalman 

estimator for discrete time systems, kalmd, to determine the feedback gain and 

innovations gain for the estimator for the model.  The inputs to the calculations and 

discussion of the equations that are used for the estimator are given in this appendix. 

The section also describes the method used to account for the time delay in the 

digital control experiment.  Digital control systems inherently have some finite delay 

between the time stem and the 

time at which a response to that measurement is generated.  The processing time consists 

of the time for analog to digital conversion of the measured variables, computation of the 

control outputs, and conversion of the control outputs from digital to analog.  In the 

experimental control computer, these three steps are performed by separate boards in the 

computer.  The inputs are read and converted from analog to digital values by a data 

acquisition board.  The computations take place on the central processor of the 

at which a measurement is read by the digital control sy
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motherboard.  Outputs are sent to a digital output board that converts the digital signals to 

analog and supplies a voltage signal to the amplifiers.  The input, computation, and 

output operations form a pipeline of processing steps.  Each board acts on a data value 

then passes the result along to the next module.  The board then operates on the next 

value of data received.  The boards operate in parallel but a data sample passes serially 

from one board to the next.  Because the data passes through multiple devices, the total 

time delay for a data an one time step of 

the control program.  The system identification experiments on the actuator system 

indicate that the time delay for the control computer used in the experiment is two time 

steps ( s ).  Control stability is very sensitive to time delay.  With 

the fairly long time step of the experimental system, an estimated time delay that is off by 

just one step can cause instability in the control response.  The control program on the 

control computers is designed so that the number of steps in the delay is a parameter that 

can be easily changed.  Experiments are conducted to verify that two time steps is the 

best choice for the time delay and to demonstrate stability.  In reality, the number of time 

steps in the dela pproximates 

the delay as an integer number of time steps. 

The most ac screte time 

systems involves a two step operation.  However, one of the simplifications used to 

reduce the number of calculations in the real-time control system is to simplify the 

estimator to a single step.  Both two step and single step estimation formulae are 

described in this appendix. 

 value to pass from input to output can be more th

62 140 10delay st T   

y is a non-integer quantity.  The implementation however a

Design of the Kalman Estimator 

curate way to calculate the Kalman estimator for di
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For the Kalman estimator, a distinction is made between the actual plant’s state 

space model and the state space model used in the estimator.  The matrices are denoted 

by adding a subscript M to the model system matrices and a P to the matrices 

representing the plant or actuator.  The difference between the actual plant and the state 

space model could conceivably include all sources of error including unmodeled 

In the numerical experiments that follow, 

odel state space matrices are used to test the ability to the control 

system to handle linear modeling errors in the coefficient matrices and to test the effect 

using a reduced order model for the estimator while retaining the original, full-order plant 

model.  The simulations include test cases in which the full-order plant model is coupled 

to the controller developed using the reduced order system matrices.  Calibration errors in 

the measurements and noise in both measurements and process are programmed in the 

simulation cases for testing purposes. 

For the purposes of the designing the estimator, the modeling equations can be 

written using the MA ses rather than as 

subscripts as we have done in the m

development very closely to the source material in the MATLAB documentation. 

 
1 .

 (J.1) 

The coefficient matrices for the Kalman estimator are the model state matrices, 

,

dynamics, parameter errors, and nonlinearity.  

different plant and m

TLAB notation with the time indices in parenthe

ain text.  This choice of notation ties this 

     1 ( 1) .M Mi i i i    x A x B u Gw

       1 1 ( 1) 1M Mi i i i i        y C x D u Hw v

, ,M M MA B C  and MD , and the disturbance model matrices, G and H.  The random 

disturbances, w and v, are zero-mean, Gaussian variables whose statistical properties are 



 

defined by their cov

the followin

term
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ariance matrices.  The covariance matrices of w and v are defined by 

g expected values. 

            ; ; .E i i E i i E i i            
T T Tw w Q v v R w v N  (J.2) 

The estimator depends on a model of the disturbance which are indicated by the 

s,  iGw  and    1 1i i  Hw v  in Eq. (J.1).  The noise covariance matrices and 

the matrices G and H form the input to the estimator design.  The following assumptions 

for the disturbances varaiables are the commonly made in Kalman estimat

absence of better information. 

 MG B . (J.3) 

H 0

The noise covariance matrices are used as tuning parameters.  The num

values in matrices are reduced to a small number of scalar parameters to s

tuning process.  The weight matrix for the control input disturbances, ER

matrix.  The weight matrices for the m ents, E , consists is a diagonal with the 

sam  weight value for each current measurement and different value for the displacement 

m r for the displacement measurement can be used to tune the 

estimator for displacement to track the measured displacement value more closely than 

the coil currents track their measurements.  These choices reduce the number of tuning 

param ters to just two scalar parameters, Eq  and fD. 

 E R I . (J.5) 

 2
E E

D

q

or design in the 

erical 

implify the 

, is the identity 

 

 

e

easurem

e

. (J.4) 

easurem Q

ent.  The facto

f

 
 





I 0
Q

0
. (J.6) 



 (J.7) 

o 

be larger and cause the estimator to track the measured values more closely.  The tuning 

parameters for the estimator are not critical.  The following values for the estimator are 

used.   

 . (J.8) 

 

L 

which is the Kalman filter gain matrix and M atrix.  Both 

gains are obtained from

equatio

the 

MATL

N 0 . 

Smaller values of the tuning parameters, Eq  and fD, cause the estimator gains t

2 0.001q E

 0.1Df  . (J.9)

The outputs for MATLAB’s kalmd operator for the discrete time estimator are 

 which is the innovations gain m

 MATLAB by solving the discrete-time, algebraic Riccati 

n.   

The general form of the Kalman estimator with innovations is given in 

AB documentation by the following pair of equations.   

 
 

   
ˆ ˆ( | 1) ( 1| 2) 1

ˆ1 ( 1| 1) 1 .v

i i i i i

i i i i

     

        M M

x A x B u

L y C x D u
 (J.10) 

 
       

M M

 
ˆ |

ˆ ( | ) v

ii i
i i

ii i

     
        

 
ˆ ( | 1) ,M M M M M

 

rocess variable 

counterparts.  The Kalman estimates for the state variables and the measurements are 

indicated by the cust he estimation 

variable with two indices separated by a vertical bar is the customary notation for 

   M M

uC I - MC I - C M D C My
x

yI - MC MD Mx
 (J.11) 

where ( )v iy  is the vector of measured variables.  The subscript, v, is added distinguish 

the measured variables with measurement error from their actual p

omary circumflex over the estimated variables.  T
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estimator equations.  The first index is the time index for the variable given.  The secon

is the time index for the data on which the variable depends.  The vertical bar suggests a

conditional dependence.  Hence, ˆ ( | 1)i i x  is the estimate of x̂  at time it  using data up to 

1it  .  Similarly, ˆ ( | )i ix  is the current estimate based on the current data.  Hence, the 

difference between the estimate in Eq. (J.10) and Eq. (J.11) is the time a

d 

 

ociated with 

easured variab e contro he first step, give y E

predictor st nd, in Eq. , is the corrector or innovations step.  The first 

eding es 

on. 

s.   

ss

m le and th

ep.  The seco

l input.  T

(J.11)

ˆ ˆ i

n b

1

1E i



q. (J.10), is the 

step depends on the measurements in the prec  time step.  The innovations step us

the current time step data to correct the estimate with the most recent informati

The estimator can be written more compactly by combining the constant matrice

 
 

( | 1) ( 1| 2)E i  v

i
i i

 
       

u
B

y
x A x

  

; (J.12) 

 i
     



 

ˆ |i i y u
ˆ | 1

ˆ | E E
v

i i
i i i

     
   

C x D
x y

, (J.13) 

where  

 E M E M M MA A B B LD; LC

 
;

 
 
 

M MMC
C D

L ; (J.14) 

 


. (J.15) 

Equations (J.12) and (J.13) are called the innovations form of the Kalman 

estimator.  Normally, this form is used for estimation.  However, the estimator is the part 

of the controls system calculation with the largest number of mathematical operations in 

the real time control system.  To reduce the computational load, an approximate form 

requiring only one equation can also be used.  The simpler calculation is less accurate 


E E


  


M M

M M

C I - I - C

I - MC MD M

 M D C MM
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tha the innovations form but requires fewer 

equation for

u

 

n mathematical operations.  The results for the 

simpler calculation are satisfactory for the actuator model.  The single mula 

ses Eq. (J.12) but with the current data. 

 
ˆ ˆ( | ) ( 1| 1)E E

i
i i i i  v i

 
     

 y

Numerical experiments using both forms of the estimator show little diffe

between them.  The simpler form of Eq. (J.16) is used in the experimental system. 

Time Delay 

design.  The next step is to show how the time delay is handled.  The approach is sim

u
x A x B . (J.16) 

rence 

The equations and data given in Eqs. (J.1) through (J.9) define the estimator 

ply 

to use the state space model to advance the Kalman estimated state from the delayed time 

at which the measurements are sampled to the current time.  The discrete time model can 

be simu

from the delay time to the current time that have already been calculated and sent to the 

The main problem in the estimator design is to find a systematic numbering 

scheme which represents the time relationships clearly and accurately.  The MPC design 

e.  The 

timing relationships are illustrated in Figure J.1.  In the figure,  is the current time, 

 is the next time step at which the new control is to be calculated,  is the time 

of the delayed measurements, and 

lated forward using the estimated state as a starting value and the control inputs 

actuator.   

is a function of variables distributed in time both before and after the current tim

0i

0 1i  0 ki n

0 Hi i is the time of the prediction horizon.  These 

points divide the time line into three regions.  Each time interval is different with respect 



to the variables that are known and those that are to be predicted.  In the time interval 

before the measurem rols inputs, u, and 

easurements, 

ent delay (prior to 0 ki n ), the reference, r, cont

vym , are all known.  In the interval from measurement delay to the current 

time, the reference and controls are k but measurements are not.  The states are 

estimated in this interval.  From the current e to the prediction horizon, the reference 

trajectory is the only variable known.  The easurements and controls inputs are not 

known and must be predicted.  The calculation of the MPC determines the control inputs 

over the entire prediction interval at e e step but only the control input for the next 

time step is actually used.   

This section is concerned with advancing the Kalman estimate of the state at 

 to an es ate at the current tim .  In the numbering scheme in Figure J.1, the 

 m

nown 

 tim

m

ach tim

e, i0 ki n

current

tim

easured data 

0

0( )vy i are delayed with respect to the actual process variable 

 0y i by n

 

k time steps. 

 ( )0 0v ky i y i n  . (J.17) 

Substituting in the time index, , into Eq. (J.16) and the current measured 

variable from (J.17) gives the Kalman estimate of the state using the most recent 

measurem e is the best Kalman estimate of the state but represents the plant 

from the  steps earlier than the cu

 

0 ki n

rrent state. 

0

 Eq. 

ents.  The valu

i

kn

 
 

0
0 0 01| 1) k

k k E k k E

i n
i n

i


ˆ ˆ( | ) (n i n i n

 
      

0v
 
 

u
x A B

y
x . (J.18) 
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Figure J.1:  Illustration of timing relationships in real-time control program 

The estimated state in Eq. (J.18) at the delayed time, , can be advanced to 

 using the control inputs from  to  are the same as 

the prediction formula given in Eq. t that the time delay,  replaces the 

prediction horizon, 

0 ki n

.  The equations0i   0 1ki n u

(6.40) excep

 0iu

kn

Hi .  The nomenclature using a double “^” is introduced to indicate an 

estimated and predicted variable. 

 . (J.19)    0 0 0 0 0
ˆ̂ ˆ1| | ( 1)k k M k k M ki n i n i n i n i n        x A x B u
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 (J.20) 

  

x A B u

B u

x

Following this pattern, the state at 0i  can be written as 

    
1

ˆ̂ ˆ| | ( ')
kn

nk nk i

i

i i n i n i n i n i


       . (J.21) 

Note that conditional time, 0 ki n , indicates the time at which the measurement 

correction was made.  Values after this time involve prediction. 

To be compatible with the MPC nomenclature, Eq. (J.21) can be rewritten using 

the subscript notation for the time index.  The conditional time variable,

0 0 0 0k k k MM Mx A x A B u k

, can be 

droppe  

i

 

 
0 ki n

d with  the understanding that a predicted variable, indicated by the double “^” is

conditional on the delayed measurement.   

 1 2ˆ̂ ˆnk nk nk  . (J.22) 
0 0 0 01:k ki i n M M i n     M M M Mx A x A B A B B u
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AND PROPORTIONAL-INTEGRAL MPC 

 

This appendix combines the reduced order model from 0, and the estimator and 

predictor equations from APPENDIX J and the proportional-integral control law from 

CHAPTER 6.  The combined system constitutes the control algorithm for the actuator.  

The computations reduce to three matrix equations that can be programmed in C for the 

real-time control program.  The main work is to rearrange the calculations to minimize 

the number of mathematical operations on the real-time computer.  

APPENDIX K 

COMBINING THE KALMAN ESTIMATOR, SMITH PREDICTOR, 

Estimator equation, Eq. (J.16) 

 
0

0 0 1ˆ ˆ k

k k

i n

i n E i n E

v i


  

 
   

  

u
x A x B

y
 . (K.1) 

Predictor equation, Eq.  (J.22) 

 i . (K.2) 

Proportional gain control law, Eq. 

0 0 0 0

1 2
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     M M M Mx A x A B A B B u

(6.118) 
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r

u K x . (K.3) 



The only term that is not defined in the above equations is the integrated error.  

The running total equation from Eq. (6.106) could be implemented using predicted 

measurements as the following, 

 . (K.4) 

but it is better to divide the integral into two parts, one part that depends only on the 

measured data and the second that depends on the predicted output over the delay 

interval.  The advantage to the revised formula is that the predictive part of the integral is  

replaced every time step with updated predictions so that errors do not accumulate in the 

integral.  This reduces the global error in the term.  The derivation can begin by dividing 

the discrete form of the integral from Eq. (6.105) into two parts.   
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    r y r y . (K.6) 

The fir ning total.  

Notice that  does not have a “^” indicating the variable does not depend on any 

estimated values. 

 
0 0k

. (K.7) 

The second part is calculated by substituting in the prediction formula for the 

output.  The prediction algorithm uses the Kalman estimation of the state at  and 

the control inputs over the delay time to compute a predicted difference.  This integral 

st term can be called, 
0 ki nE  , and can be implemented as a run

0 ki nE 

  
0

0 0' , ' 1 ,
' 0
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depends on control inputs, 
0

en computed and are in the 

quation sums the estimated values of the control error to obtain this part of the integral 

term.  T ation by a row vector of ones.  

ow that the 

integra trix multiplication operation. 

 

 

0 1:ki n i u

 a ma

1s

CB



, that have already be

pipeline to the  actuator but whose effects are not yet measured by the sensors.  The 

e

he summation operation is equivalent to a multiplic

The constant matrices can be grouped together to simplify the notation and sh

l can be represented as
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Combining Eq. (K.7) and (K.8) gives the estimated value of the integral error at 

the current time. 
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The control law in Eq (K.3) can now be evaluated by including Eq. (K.7) and 

(K.12) e 

ontrol program can be reduced by combining equations.  First the 

in the control algorithm.  However, the number of computations in the real tim
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To solve the equation for a compact form, multiply the matrices and regroup 
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For convenience, the following matrices are defined.   

  r E r rK K S K ;  (K.16) 
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The matrix multiplication can be reassembled in the following form. 
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ˆP I r x u E    K K K K K    . (K.20) 

g 

in 

ontrol ntrol inputs given all the known time-

This matrix equation combines the predictor model into the control law reducin

the number of equations to be evaluated.  This single matrix operation is a constant ga

 law that evaluates the next set of coc

dependent variables of the system.  The P IK  matrix in Eq. (6.118) can be evaluated for 

the state space model of the actuator using the equations given in this section.  

e is tuned by the selection of cost function weighting factors.  In the simulated 

The 

respons

 6 

are also ol algorithm,  and . 

results presented in this section, the same weighting factors that are used in CHAPTER

 with the estimator and predictor contr  1000Pq  10,000Iq 
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The control algorithm reduces to the following three equations.  These equations 

are pro or or 

e simulation of the actuator.  

 

grammed in an iterative loop to evaluate the control input for the real actuat

th

 v i
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e 

une the 

ict

effect o d 

lts v

interna op 

odel is simulated with the controls based on reduced model and compared with 

Simulated Results using the Reduced order Predictor and 

Proportional-Integral MPC. 

In this section, simulated results are given for a system model which combines th

MPCs with the Kalman estimator and Smith predictor.  The control algorithm is applied 

to the low-order plant model with forty state variable described in Chapter 5.  These 

ulations are used to test the model reduction and time delay features, to tsim

control algorithm for best results using the time step of experimental system, and to 

pred  results for the experiment.   

This appendix applies the modifications in series of comparative runs so that the 

f model reduction, time step, and tuning can be seen individually.  The simulate

resu erify the model reduction and time delay algorithms in a calculation in which the 

l variables from the simulated plant are available for comparison.  The closed lo

m
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simu ions in which the full model is used for the control design.  The model reductiolat n 

 only applied to the model used for control.  The plant model in both cases is the full 

model  order model from Chapter 5 in which 

arameters for the prototype system).  The estimated and predicted states can be 

compar

f results from the full and reduced system controls can be used to test the prediction, 

delay, a ose 

ariables test the implementation of the estimation and time delay equations from 

APPEN stem tests the 

hat can be 

 the advantage of the multi-coil actuation.  

 

dvantageous performance and the slower time step for the experiment.  The fast time 

step all  the 

ain text using a fast time step in which just MPC is applied without estimator and 

predict er so that the fast and 

step lim

odel and theory at the available speed with the argument that, if scaled up in speed, the 

is

(full model in this section refers to the low

vibration , magnetics, and coil current are represented with 40 states and best estimate 

p

ed with their actual counterparts in the simulation model.  Various combinations 

o

nd model reduction parts of the algorithm individually.  The comparisons of th

v

DIX K.  Comparing the controls from the full and reduced sy

approximation of model reduction on the control design. 

The effect of time step size is also considered.  The fastest time step t

achieved with the experimental system is considerably slower than the time step 

estimated in APPENDIX H for demonstrating

The simulations in this section are performed at the both the fast time step needed for

a

ows the results with estimator and predictor to be compared to the results from

m

or.  The model is programmed with time step as a paramet

slow time step cases are exactly the same except for the time step.  Because of the time 

itation of the experiment, we cannot prove the success of the actuator design 

performance experimentally.  The goal of the experimental results is to confirm the 

m
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pred ed benefit of the multi-coil actuator would hold.  The comparison of fast and slow

ep results show how much the a

ict  

time st dvantage of the multi-coil actuator is diminished 

r 

ontrol and estimation to give the best tuning at the experimental system the time step.  In 

genera l-

amped, smooth control response.  To reduce the feedback gain of the model predictive 

control

re made by trial and error using the simulation to provide appropriate settings for gains 

for the esign are diminished both 

 good control 

e K.1 shows the reference trajectory tracking for a step change using the fast 

e ram ).  The 

plotted lay of 

, measurement delay, 

i  and actual state variables are not shown in the plots, but results 

ive indistinguishable lines.  The full system and reduced system displacement lie on top 

of each other so that only the reduced system displacement is visible. 

by the time step.   

The slow time step simulations are also used to tune the control algorithms fo

c

l, the feedback gain must be reduced as time step increases to maintain a wel

d

, the weight applied to the control error must be reduced.  The weight adjustments 

a

experimental system.  The advantages of the multi-coil d

by the time step itself and by the de-tuning of the control speed to maintain

response. 

Figur

time step, ( 62 10 ssT   ).  The “step” is actually a fast ramp transient.  The duration of 

p is set equal to the time step of the prototype system, ( 70T  th 610 ss


 6T s .  The results for both 

 displacement variable is the “measured result” which includes the time de

the experimental system 140 10delay  

the full system and model reduction are shown on the same plot.  The lines track very 

closely which shows that the effect of model reduction on the fidelity of the results is 

ble.  Estimatedneglig

g
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(ns=40) and reduced system (ns=20) for the fast time step, 
Figure K.1:  Reference trajectory tracking for full system 

. 

n 

 62 10sT s 

Figure K.2 shows the current demands for the same transient with a compariso

of the full system and reduced system.  Each demand for the reduced system is shown as 

a dashed line of the same color as the corresponding full system demand.  The lines are 

distinct but the reduced system is clearly an acceptable approximation.   
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Figure K.2:  Current demand for the full system (ns=40) 
and reduced system (ns=20) control system, 

 62 10sT s  . 

The same transient can be repeated with the time step for the experimental system 

to see the impact of time step on the control and estimation.  XFigure K.3X and XFigure K.4X 

show the step transient in which the only change to the full and reduced system models is 

to increase the time step,  670 10sT s  .  Based on the acoustic propagation speed and 

the dimensions of a coil, the time step for the experimental system is at least a factor of 

ten slower than needed for effective use of the spatial distribution.  XFigure K.4 X shows the 

control demands that are calculated by the optimization algorithm.  The effect of the 

model predictive control is evident in the preparatory move of the coil current two steps 

prior to the time of the step.  In XFigure K.3X, the displacement rises rapidly at the time of 

the step.  The rise time for the displacement is faster than the open loop response; 
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however, the damping after the step is poor.  The response oscillates with a long settling 

time.  A slightly longer transient duration is shown in XFigure K.3 X than in XFigure K.1X to 

show the actuator coming to rest.  The feedback gain is effectively higher as step size is 

increased causing the feedback correction at each time step to overshoot the equilibrium 

giving the oscillatory response.  This performance suggests that the weight matrices 

should be reduced to reduce the feedback gain. 

Despite the poor tuning of the feedback, the full and reduced systems track 

closely together.  This indicates that neither the model reduction nor the time step 

increase affects the accuracy of the estimated system response or contributes to the noisy 

response. 

Examining the current demand plot closely shows that the coils are acting in two 

groups going in opposite directions.  Coils 1-6 move in the same direction and coils 7-10 

go in the opposite direction.  This dividing line corresponds to the node in the spatial 

response for the second mode of the vibration model.  The distribution of current demand 

indicates that the optimum control calculates that a high fraction of the energy should go 

into the second mode of the vibration model.  This result of the optimization strategy 

gives a fast rise time but is not successful at damping the vibration after the step. 

The step change is repeated a third time.  In this case the weight matrices are 

reduced, 2 100Pq   and 2 72.9 10Iq   .  This version of the control tuning gives reasonably 

fast rise time and moderate settling time after the step.
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Figure K.3:  Comparison of displacement for full and 
reduced systems at experimental time step using high 

weight factors 1000PQ   and 111 10IQ    
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Figure K.4:  Comparison of current demand for full and 
reduced systems at experimental time step using high 

weight factors 1000PQ   and 111 10IQ    
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Figure K.5:  Comparison of displacement for full and 
reduced systems at experimental time step using low 

weight factors 100PQ   and 72.9 10IQ    
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Figure K.6:  Comparison of current demandt for full and 
reduced systems at experimental time step using low 

weight factors 100PQ   and 111 10IQ    
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120BPredicted Response for the Experimental Time Step 

The benefits of the multi-coil actuator are significantly diminished by the time 

step of the experimental prototype.  This section is a transitional section that provides 

predicted results at the experimental time step and weight factor settings to show how 

much reduction in the benefit in increased speed and reduced power to expect in the 

experimental results in Chapter 7.  The group of three reference transients for step 

change, three square pulses, and swept frequency are modified to accommodate the time 

step.  The same reference trajectories are also used to stimulate the experimental system.  

The range of frequency in the swept frequency case is reduced because of the sampling 

time.  The model and prediction duplicate as closely as possible the configuration of the 

experimental system.  The time step, prediction horizon, weight matrices, and time delay 

are the same values used on the experiment.  The modeling matrices used in calculating 

the MPC matrices are slightly different than the experiment because of programming 

errors that were discovered after the experimental runs were completed.  The effect of the 

errors is discussed in XAPPENDIX NX. 

The model combines the full state actuator model (40 states) with the reduced 

order controller (20 states) including the Kalman estimator and the Smith predictor.  The 

amplifier gain is modified to match the experimental results in Chapter 7.  A summary of 

the parameters in the control model design are given in XTable K.1 
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Table K.1:  MPC algorithm parameters 

Variable Value Units Description 
2
Pq  100 (-) Proportional error weight factor 
2
Iq  2000 / sT s-2 Integral error weight factorF

8 
2
Eq  0.001 (-) Estimator weight factor 

Df  0.1 (-) Displacement weight factor in estimator 

Hi  3 (-) Prediction horizon, (number of time steps)

Kn  2 (-) Time delay (number of time steps) 

sT  670 10   Time step 

Mns  20 (-) Number of states in reduced MPC model 

Pns  40 (-) Number of states in plant model 

 

The results in XFigure K.7X through XFigure K.15X show the suite of three transients.  

Each transient is represented by a set of three plots, the reference tracking for the 

displacement, the power, and the control inputs.  Both open loop and closed loop results 

are simulated.  The control inputs for the open loop transient use the reference as the 

demand for the coil current. The open loop results represent the response of a single coil 

actuator with no compensation.    

The main point of the results is to show that the advantage of the multi-coil 

actuator is much diminished by the increase in time step.  The power and tracking 

between the open loop and closed loop are different but there is no significant advantage 

to the closed loop actuator.  The distribution of current plots shows that the optimum 

distribution is not the same as the uniform distribution but the effect on power and 

tracking is small.  The distribution of current demand in the shape of the second mode is 

evident in the frequency response curves. 

                                                 
8 The integral weight is only used on the portion of control error integrated over the prediction horizon.  
See discussion of the heading for  
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Figure K.7:  Open and closed loop response of 
displacement on step change transient for final model 
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Figure K.8:  Open and closed loop response of power on 
step change transient for final model 
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Figure K.9:  Current demand versus coil index and time, 
closed loop, on step change transient for final model. 
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Figure K.10:  Open and closed loop response of 
displacement on three square pulses for final model 

2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time − (s)

P
ow

er
,
|u
|2

Predicted power, T
s
=7010−6 s

 

 

Open loop
Closed loop

 

Figure K.11:  Open and closed loop response of power on 
three square pulses for final model 
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Figure K.12:  Current demand versus coil index and time 
closed loop on three square pulses for final model 
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USwept Frequency 
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Figure K.13:  Open and closed loop response of 
displacement on swept frequency transient for final model 
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Figure K.14:  Open and closed loop response of power on 
swept frequency transient for final model
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Figure K.15:  Current demand versus coil index and time for close loop system on swept frequency 
transient for final model 
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APPENDIX L 

99BMATHEMATICAL TREATMENT OF SENSOR DYNAMICS 

121BSensor and Signal Processing Dynamics 

The signal processing filter and the displacement sensor contribute dynamics to 

the displacement measurement that must be accounted for in the experimental data 

analysis.  The Krohn-Hite signal processing filter is configured as a high pass filter.  To 

illustrate the frequency dynamics of the filter, the calculated frequency response plot of a 

fourth order Butterworth filter with 50 Hz cut-off frequency is shown in XFigure L.1X.   
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Figure L.1:  Butterworth filter frequency response 

In the experimental results, the frequency range of interest is from 0 to 10,000 Hz.  

The filter affects experimental results as the system approaches steady state.   
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The Philtec displacement sensor has a dynamic response as well.  The sensor acts 

as a low pass filter.  The manufacturer’s data indicates that the filter’s dynamic response 

is approximately a three pole filter with 3 dB point at 20 kHz.  The sampling rates used 

for the experiment gives a Nyquist frequency of 7193 Hz.  The filtering effect of the 

displacement probe can be neglected in the experiment because sampling rate is well 

below the filter’s cut-off frequency.  For experiments involving frequency content in the 

20 kHz range, the displacement probe would come into play. 

 

122BModeling of the Displacement Measurement 

The Krohn-Hite filter can be modeled using the butter routine from the Signal 

Processing Toolbox of MATLAB.  The filter model can be appended to the state space 

model of the actuator so that the sensor dynamics are included in the control design of the 

experimental system.  The high pass Butterworth filter is usually written mathematically 

as a transfer function.  The formula for an n-th order filter is given by   

    1
2 1

n
B N

B n n
n n

s
y s G y s

s a s a s a



   

, (L.1) 

where  By s  is the output of the high pass filter,  Ny s  is the true displacement, n is the 

order of the high pass filter, and xa  is the k-th coefficient of polynomial in the 

denominator of the filter’s transfer function.  In the numerator polynomial, all terms of 

the Butterworth polynomial are zero except for the first term, ns .  The gain of the filter 

approaches BG  asymptotically at high frequency.   
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The polynomial coefficients for the Butterworth filter can be obtained from the 

MATLAB’s butter routine in which the low cutoff frequency is the input parameter.  The 

polynomial coefficients of the transfer function can be converted into an equivalent state 

space form. 

 
;

,

B B B B N

B B B B N

y

y y

 
 

x A x B

C x D


 (L.2) 

where Bx  is the state vector of the filter and , , ,B B BA B C  and BD  are the state space 

system matrices equivalent to the transfer function in Eq. X(L.1) X.  Note that pass through 

matrix, BD  for the Butterworth filter is not zero.   

The displacement output of the actuator model can be connected to the input of 

the filter.  The combined system is given by the following matrices. 

 

;

.

PP P P

B BB B
S

P
B B B

S B
y

      
       

      
 

    
 

A 0x x B
u

B C Ax x 0

x
D C C

x




 (L.3) 

where the actuator model is given by the state space system matrices, , , ,P P PA B C  and 

PD .  The system including the Butterworth filter model of the displacement measurement 

is used in the control design algorithm. 

The low frequency response of the filter affects the steady state measurement of 

displacement.  The Butterworth filter can be inverted to reconstruct the original 

displacement from the filtered measurement.  The inverse transfer function is obtained by 

swapping numerator and denominator polynomials.  A discrete time signal processing 

scheme can be created by converting the inverse of the transfer function into a state space 

model.  The control program uses the inverse filter in post-processing to recover an 
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approximation to the actual displacement for display.  The inverse filter output is plotted 

for the displacement in the experimental results. 

The total gain from reference input to displacement combines the magnitude of 

the magnetostrictive constant, the slope of the Philtec displacement probe, and the gain of 

the Knohn-Hite filter.  The three parameters, particularly the magnetostrictive coefficient, 

are subject to some variation over time and are treated as an experimentally determined 

parameter.  The experimental results are tuned by adjusting the total measurement gain 

parameter so that the experimental amplitude matches the calculated results. 
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APPENDIX M 

100BCONTROL PROGRAM OUTLINE 

 
1. Initialization of the screen routines. 

2. Initialize I/O board interface routines. 

3. Read control matrices and reference trajectory from file. 

4. Initialize control computations. 

5. Delay process to allow all disk operations to complete. 

6. Disable interrupts. 

7. Set control process priority to maximum. 

8. Start experiment loop. 

i. Read data values for coil current and displacement from input 

boards. 

ii. Convert data to normalized units. 

iii. Calculate the estimated state at the delayed time. 

iv. Get values of reference trajectory for prediction window. 

v. Calculate the control at the current time using MPC algorithm.  

(This step combines the MPC algorithm and the Smith predictor.) 

vi. Record measured and computed data in vector for post processing. 

vii. Send control demands to output board. 

viii. Check loop time.   

1. If time greater than final time, go to 9. Exit experiment 

loop. 
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2. If time step is greater than max time step, restart algorithm 

and return to 8. Start experiment loop. 

3. If time step is between min time step and max time step, 

increment counter and return to 8. Start experiment loop. 

4. Otherwise, return to viii. Check loop time. 

 

9. Exit experiment loop. 

10. Restore normal process priority. 

11. Activate disk processes. 

12. Write data to disk file. 

13. Check for another test case. 

i. If not last test Go to 8. Start of loop. 

ii. Else, go to 14. Exit program. 

14. Exit program. 
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APPENDIX N 

101BASSESSMENT OF MODELING ERRORS IN EXPERIMENTAL 

ACTUATOR’S MODEL PREDICTIVE CONTROL 

 

Several modeling errors were found in the state space model in mathematical tests 

conducted after the closed loop experiments were completed.  The errors all involved 

secondary effects in the coupling coefficients of state derivative terms.  The largest 

magnitude error was in the eddy current modeling and caused the magnetic drag to be 

underestimated.  This error has the effect of neglecting the magnetic drag.  The effect of 

the magnetic drag is evident in the results of the stand alone model of vibration in Figure 

3.5 and the model of vibration and magnetics together in Figure 4.15.   

The second largest error miscalculated the phase of voltage induced in the coils 

by the magnetostriction in the rod.  The voltage induced in the coils by magnetostriction 

is a very small term at the absolute magnitude.  The error caused the timing to be slightly 

different.   

The third largest error involved the calculations using FEMM results in integrals.  

The FEMM results were recorded at a mesh spacing in the radial direction that was too 

coarse for accurate integration of the magnetics coefficients.  The error was only apparent 

in high order radial modes of the magnetic model.  Since only the first radial mode is 

used in the final model, this error actually caused no noticeable effect.  

In XFigure N.1X, the control demands calculated by the corrected algorithm are 

compared to the demands recorded by the experimental system.  The demands calculated 

by the experiment are the actual closed loop demands sent to the actuator.  The corrected 
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demands are obtained in post-processing and have no effect on the experimental results.  

The differences between the two are evidence of the effect of the modeling errors on the 

control.  The differences are significant, amounting to 15% near the step, but the basic 

character of the response is the same.  The algorithm even with modeling errors achieves 

a degree of improvement in the cost function optimization.  The overall character of the 

demand is similar to the corrected and the displacement response is stable but clearly 

suboptimal.  The response of the model with error is similar to the effect of operating the 

actuator with a different load than considered in the design.  The response indicates a 

degree of robustness to changes in the actuator’s operating conditions. 

On the other hand, the errors are significant to validation of the model.  The 

comparison of the experimental and predicted on the PRBS transients is significantly 

better because of the modeling corrections. 
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