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PREFACE

In the information age, massive quantitiies of information are generated every sec-

ond. Some of the information generated, news, for example, is meant to be available

to all who are interested in it. However, often information must be kept private or

only shared between specific parties. In the latter case, information security is es-

sential. There are various ways to protect information. One of the technical ways is

cryptography, which is an area of interest for mathematicians, computer scientists,

physicists, and information theorists. One new area in cryptography, a physical layer

security method called quantum key distribution, has attracted much attention re-

cently. Quantum key distribution establishes correlated random data between two

parties in a way that an eavesdropper can obtain no information on this data. This

thesis presents a detailed analysis of two proposed systems for quantum key distri-

bution that allow for significantly higher clock rate operation and for lower cost than

current systems. The first system uses amplified spontaneous emission as a source

for continuous variable quantum key distribution. It inherits the security of other

continuous variable quantum key distribution systems. The second system is based

on discretely signaled continuous variable quantum key distribution and has required

the development of security proofs. This second system is specifically designed in

order to speed up necessary post-processing.
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CHAPTER I

INTRODUCTION

Cryptography is the study of secure transmission of information over an unprotected

channel. Technically, there are two families of methods in cryptography. The first

and largest family, mostly studied by mathematicians and computer scientists, uses

mathematical methods to modify binary strings of information. Good examples there

are cryptographic protocols such as DES, RSA, digital signature and so on. The com-

mon feature of those protocols is that they all make use of mathematical methods

to provide hoped-for security. Currently used methods are believed to be secure,

though none are associated with a full mathematical proof of security. The other

family, which has attracted much attention recently, uses physical methods for cryp-

tography. Compared to the first family, the second one requires a specific physical

implementation, nevertheless, can be proved to be unconditionally secure.

1.1 Digital cryptography

In this section, we will review two groups of digital cryptography, i.e., private key

cryptographic systems and public key cryptographic systems.

1.1.1 Private key cryptographic systems

For private key cryptographic systems, the encryption and decryption process use

the same shared key. The main advantage for private key cryptographic systems

is that the encryption and decryption are simple and can happen at a very high

rate. However, since the encryption and decryption require a common shared private

key, key distribution becomes a problem. Typical private key cryptographic systems

include DES, AES and IDEA.
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Essentially, private key cryptographic systems mix key and plain text in a compli-

cated but deterministic way. The encryption process usually takes several rounds. In

each round, a sub-key and the plain text are mixed up by an algorithm consisting of a

series of substitution and permutation procedures. After several rounds, the original

plain text is undecipherable. Security in this case is based on the assumption that

due to the complexity of encryption, the best attack is an exhaustive search for the

key. In Fig. 1 we show one encryption round of IDEA [32].

Figure 1: An encryption round of IDEA

1.1.2 Public key cryptographic systems

For public key cryptographic systems, encryption and decryption use different keys.

The encryption process uses a public key that is available to any interested party.

However, only the person who has the private key is able to decrypt messages that

are encrypted with the public key. The main advantage of public key cryptographic

systems is that there is no need for key distribution. However, compared to private key

cryptographic systems, public key cryptographic systems are more computationally

2



intensive and thus encryption and decryption take a much longer time. Typical public

key cryptographic protocols are the RSA and El-Gamal cyrptosystems. Public key

principles are also used for other cyptographic primitives such as the Diffie-Hellman

key exchange protocol, and the Digital Signature Algorithm. The security of these

protocols is typically based on an unproven assumption that is generally considered

to be true. For example, RSA is based on the generally believed proposition that

the factoring of very large numbers cannot be done in a number of operations that

is a polynomial function of key length. Thus with large enough numbers, one may

hope that these protocols will be secure. A typical public key cryptographic system

is shown in Fig. 2[33].

Figure 2: A typical public key cryptographic system

1.2 Physical layer security

In this section, we will give a review of quantum key distribution, which is the best

developed branch of physical layer security. The fundamental idea of physical layer

security is that noise in a communications channel between the sender Alice and an

eavesdropper, who we call Eve, induces errors on Eve’s data. Intelligent use of the

channel between Alice and the intended receiver, Bob, allows transmission of data

during the times when Eve makes mistakes.
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1.2.1 Quantum key distribution

Quantum key distribution (QKD) systems [1, 2, 3] make use of optical quantum

fluctuations to establish shared secret keys between two legitimate users (Alice and

Bob) such that an eavesdropper (Eve) who makes optimal physical measurements

can know, on average, none of the bits of the secret key. Because optical quantum

fluctuations are universal and their properties are mathematically precise, it is pos-

sible to quantify the information between Alice and Bob as well as between Alice

and Eve, and Bob and Eve. Thus one may arrive at a communication system where

security is provable by fundamental principles if the protocol is followed correctly. A

typical system works in the following way. After a number of samples of a correlated

random variable are obtained by means of quantum measurements, a reconciliation

phase assures agreement of Alice and Bob’s data. Finally, a privacy amplification

phase uses universal hash functions to eliminate Eve’s potential partial information

at the cost of shrinking the length of Alice and Bob’s shared data.

The most famous quantum key distribution protocol is BB84 proposed in 1984. In

BB84 QKD protocol, two communicators make use of two sets of non-orthogonal basis

for encoding quantum states. By random switching of the encoding basis, two com-

municators will be able to know if an eavesdropper is observing the channel because

quantum noise introduced by an eavesdropper making measurements, resulting in in-

creased error rate. In Fig. 3, we show the encoding and decoding scheme proposed

in BB84.

If Alice and Bob’s encoding and decoding basis is the same, then they keep the

bits as a part of the secure key. If their encoding and decoding basis are different, they

simply abandon that time slot. Since the eavesdropper can’t know Alice’s encoding

basis in advance and she can’t measure it 100% precisely due to the limitations in fun-

damental quantum mechanics, any of eavesdropper’s effort on obtaining information
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Figure 3: The encoding and decoding scheme in BB84 QKD protocol

on the key will result in an interference of the quantum state, which will be discov-

ered by Alice and Bob by comparing Alice’s sent information and Bob’s measurement

result.
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CHAPTER II

A QUANTUM KEY DISTRIBUTION SYSTEM BASED

ON AN AMPLIFIED SPONTANEOUS EMISSION

SOURCE

2.1 Motivation for amplified spontaneous emission quan-
tum key distribution

An alternative to the quantum key distribution system described in the previous

chapter is to use homodyne detection instead of photon counting. This method

can potentially lead to higher rate operation due to the large bandwidth of p-i-n

photodiodes. Unlike photon counters, p-i-n photodiodes require no dead time to

reset the detector after a measurement is performed. Potentially, such systems, called

continuous variable quantum key distribution, could operate at 10 GHz clock rates or

even higher. Here continuous variable refers to the fact that homodyne measurement

results in a continuous real-valued spectrum as opposed to the discrete spectrum of

photon counting measurements. Continuous variable systems have speed advantages,

but each measurement can be thought to include noise from the electromagnetic

vacuum. This always present noise results in lower performance as distances become

great. A traditional CVQKD diagram is shown in Fig.4[7].

This chapter describes a physical system that can simplify continuous variable

quantum key distributions. The key idea is that most CVQKD systems require that

the coherent state signals sent over the channel be sent with a probability governed

by a Gaussian probability in the complex plane in order to maximize the mutual

information between Alice and Bob. The improvement is to take advantage of the fact

that amplified spontaneous emission (ASE) is already perfectly Gaussian distributed
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Figure 4: Traditional CVQKD diagram

in each mode.

2.2 Description of the amplified spontaneous emission based
QKD protocol

A schematic of the ASE-based QKD is presented in Fig. 5. Next, we will describe

our protocol step by step.

Step 1: Alice splits broadband thermal light emitting from the source. The split-

ter transmission coefficient for the thermal light propagating towards Alices detectors

is η1. The rest of the light is sent to Bob through a lossy quantum channel.

Step 2: After splitting, both parts consist of a portion of the same example of

a mixed state. Their classical fluctuations are the same (which have a total vari-

ance VX), but their quantum noise is independent. Alice and Bob synchronize their

measurements to a local oscillator beam generated by a laser, and measure with to-

tal efficiencies ηm and ηc respectively, where ηc includes channel propagation losses.

For Alice, she makes a heterodyne measurement on both quadratures. For Bob, he

randomly switches between two quadratures and makes a homodyne measurement.

Step 3:After an alignment and channel characterization procedure, and after

collecting their measurement outcomes, Alice and Bob communicate on a classical

7



channel to perform reverse reconciliation and privacy amplification, resulting in a

final secure key.

Figure 5: The experimental setup for QKD protocol based on ASE

The light source that used in our scheme is amplified spontaneous emission (ASE).

ASE is regarded as superposition of the contribution of different small sources [31].

We can number those sources as j = 1, ..., N . When N is very large, the density

operator of the entire filed can be written as,

ρ =
1

π〈n〉
∫

e−|α|
2/〈n〉|α〉〈α|d2α, (1)

which is a Gaussian superposition of coherent states. The weight function may be

written as,

P (α) =
1

π〈n〉e
−|α|2/〈n〉, (2)

which indicates that the two quadratures of the ASE is Gaussian distributed.

The key component in the scheme is the beam splitter that Alice uses to split the

output of ASE. The beam splitter has two effects. First, it guarantees Alice always

have a better guess on Bob’s measurement result than the eavesdropper when Alice
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and Bob employ a reverse reconciliation afterwards. This means when the transmis-

sion ratio of this beam splitter is within some range, we can use information theory

to prove that Alice always has a better signal noise ratio than the eavesdropper does.

Therefore, in this case, Alice and Bob will be able to have positive secrecy capacity

and build up a secure key. The other reason why a beam splitter is employed is to

split the output of the ASE is that Alice can manually select the transmission of the

beam splitter to maximize the secrecy capacity with Bob. The optimal transmission

ratio is influenced by the quantum efficiency of Alice’s detection and the quantum

efficiency of the channel as well.

Next, we will discuss our continuous variable QKD protocol. To begin with, we

first introduce some basic notations of quantum field in our scheme.

We suppose the output of ASE is âs, with both quadratures gaussian modulated.

It can be presented in another form,

âs = S + N̂s, (3)

where S = X + iP is a complex random variable with X and Y being gaussian

distributed real random variables. N̂s is a vacuum quantum field.

Alice then use a beam splitter to split the signal. Let’s assume the other input

mode of the beam splitter is vacuum denoting as N̂BS, then the two outputs of the

beam splitter can be denoted as,

âA =
√

η1âs +
√

1− η1N̂BS,

âc =
√

η1N̂BS −
√

1− η1âs, (4)

where the subscript A denotes the mode sending to Alice’s detector and subscript c

denotes the mode sends to the quantum channel.

The effect of a lossy quantum channel is equivalent to a beam splitter whose

transmission ratio is exactly the same as the quantum efficiency of the channel. Fur-

thermore, we assume that the channel only introduces loss into the quantum state
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that is transferring on the channel but doesn’t introduce any extra noise. Based on

this assumption, we can constrain the action that can be taken by the Eavesdrop-

per, also called Eve. Since Alice and Bob are able to make some kind of quantum

measurements to estimate the physical parameters, such as the quantum efficiency

and correlation coefficient of Alice and Bob’s data, of the quantum channel, Eve’s

eavesdropping strategy must not violate those parameters of the channel. For a lossy

but noiseless quantum channel, the best strategy for Eve is to replace the lossy chan-

nel with a lossless one and use a beam splitter, whose transmission ratio is exactly

the same as the quantum efficiency of the channel, to split the input quantum state

so that either Alice or Bob isn’t aware of the existence of Eve because the physical

parameters of the channel are not changed by Eve. Then Eve sends one output mode

of the beam splitter to Bob and reserves the other mode. Eve’s beam splitter is indi-

cated in Fig. 5 where a beam splitter with transmission efficiency ηc is placed on the

channel. Finally, Eve will be able to manipulate and measure her reserved quantum

state. We can write Bob’s received quantum mode as,

âB =
√

ηcâc +
√

1− ηcN̂c

âE =
√

ηcN̂c −
√

1− ηcâc. (5)

At this stage, Alice, Bob and Eve make quantum measurements and then they

have some data in common forming classical correlations. For simplicity, we assume

that those three parties all make homodyne measurements on only one quadrature of

the quantum field. In practice, the quantum efficiency of Alice and Bob’s homodyne

detector is not perfect. The quantum efficiency of Bob’s detector can be included in

the quantum efficiency of the channel and we let the quantum efficiency of Alice’s

detector be ηm. Then Alice’s measured quantum mode can be written as,

â′A =
√

ηmâA +
√

1− ηmN̂m (6)

Those measurements result in some correlated data among Alice, Bob and Eve.
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Finally, Alice and Bob can perform reverse reconciliations and privacy amplification

to distill the final key.

2.3 Security analysis

In this section, we will analyze the security of our proposed experimental scheme.

The security analysis will be done based on Shannon information theory. We will

compare our result with those general proofs on continuous variable quantum key

distribution and show that a system following our protocol is secure against gaussian

and non-gaussian individual and collective attacks.

Let Alice, Bob and Eve’s measurement results be gaussian distributed random

variables RA, RB and RE. Then those random variables can be expressed as following,

RA =
√

ηmη1X +
√

ηmη1RX +
√

ηm(1− η1)RBS

+
√

(1− ηm)Rm

RB = −
√

ηc(1− η1)X −
√

ηc(1− η1)RX

+
√

η1ηcRBS +
√

1− ηcRc

RE =
√

(1− η1)(1− ηc)X +
√

(1− η1)(1− ηc)RX

−
√

η1(1− ηc)RBS +
√

ηcRc. (7)

The mutual information between Alice and Bob is calculated to,

I(A; B) = − log2(1− ρ2
RARB

), (8)

where ρRARB
is the correlation coefficient between Alice and Bob’s measurement re-

sults. The correlation coefficient can be calculated as

ρ2
RARB

=
cov2(RA, RB)

Var(RA)Var(RB)
, (9)

where cov(RA, RB) is the covariance of RA and RB. Var(RA) and Var(RB) is the

variance of RA and RB. Thus the mutual information between Alice and Bob is

I(A; B) = −1

2
log2{1−

η1ηcηm(1− η1)V
2
X

(η1ηmVX + 1)[ηc(1− η1)VX + 1]
}. (10)
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Here VX is the variance of gaussian distributed random variable X. Similarly, we can

get the mutual information between Eve and Bob,

I(B; E) = −1

2
log2{1−

ηc(1− η1)
2(1− ηc)V

2
X

[(1− η1)(1− ηc)VX + 1][ηc(1− η1)VX + 1]
}. (11)

The secrecy capacity between Alice and Bob is

∆I = I(A; B)− I(B; E)

=
1

2
log2{

[(1− η1)VX + 1](η1ηmVX + 1)

[(1− η1)(1− ηc)VX + 1][(ηc + η1ηm − η1ηc)VX + 1]
}

(12)

Using Eq.(12), we will be able to find an optimal η1 to maximize the secrecy

capacity between Alice and Bob. The optimal η1 and the corresponding secrecy

capacity is plotted in Fig. 5, where we assume ηm = 0.75, VX = 100 and the variance

of quantum noise is normalized to 1. We also compared our result with the secrecy

capacity of traditional CVQKD schemes.
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Figure 6: Optimal η1 and the corresponding secrecy capacity. In the figure, the
green curve denotes the optimal η1 to maximize the secrecy capacity. The red curve
corresponds to the secrecy capacity in our scheme and the blue curve is the secrecy
capacity for traditional CVQKD schemes. (ηm = 0.75, VX = 100, Vvac = 1)

¿From the figure, we can see that our secrecy capacity is lower than the secrecy

capacity of traditional CVQKD schemes. This results from the fact that in our
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scheme, Alice measures one quadrature of the quantum field. This measurement

noise lowers the correlation between Alice and Bob’s measurements. Traditional

CVQKD schemes do not have this uncertainty on the transmitting side. Therefore,

in traditional CVQKD schemes, Alice has a better estimation of Bob’s measurement

result and thus has larger mutual information with Bob. As consequence, the secrecy

capacity drops when ASE instead of modulators is used for signal source. However,

because the bandwidth of ASE is much larger than the bandwidth of modulators, the

potential final secret key rate is also larger.

It is important to discuss how those general proofs[15, 17, 16, 19] on continuous

variable QKD can be applied to our scheme. First of all, let’s briefly review those

security proofs on continuous variable QKD. Grosshans proved that continuous vari-

able QKD is secure against non-gaussian attacks[15]. Navascués[17] deduced security

bounds for continuous variable QKD based on a general result of the secure key rate

by Christandl[18]. Grosshans then proved that continuous variable QKD is secure

against collective attacks[16]. Finally, Garćıa-Patrón and Navascués proved the un-

conditional optimality of gaussian attacks against continuous variable QKD[19, 20].

In order to prove that our protocol inherits those security proofs, we should note

that the maximal possible mutual information between Bob and Eve only depends on

the energy inputting to the channel and the channel’s quantum efficiency. Now let’s

assume that those previous results prove that for input energy Ec and quantum effi-

ciency ηc is secure for the normal continuous variable QKD scheme. It implies that for

Ec and ηc, we have ∆I > 0 for Alice and Bob. In our scheme, we let the input energy

to the channel and the channel efficiency remains the same as Ec and ηc. Therefore,

the mutual information between Bob and Eve doesn’t change. The only difference is

that in traditional CVQKD schemes, Alice knows exactly the precise value of both

quadratures but in our schemes, there remains some uncertainty for Alice to deter-

mine the average value of the quadrature. For traditional CVQKD schemes, we let
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the average value for one quadrature to be X and The mutual information between

Alice and Bob to be I(X; B). For our scheme, the mutual information of Alice and

Bob is I(A; B). Apparently, I(A; B) < I(X; B) always satisfies for arbitrarily signal

variance and quantum efficiency of the channel. However, we can do the following

manipulations. We can arbitrarily increase the variance of the output of ASE and

change the transmission coefficient of Alice’s beam splitter keep the input energy of

the channel, e.g., the variance of the signal at the input side, Vc = (1 − η1)VX a

constant. Then we can write Alice and Bob’s correlation coefficient in the form of Vc,

ρ2
RARB

=
ηV 2

c

(Vc + 1−η1

η1ηm
)(ηcVc + 1)

. (13)

For traditional CVQKD schemes, the correlation coefficient is

ρ2
XRB

=
ηcV

2
c

Vc(ηcVc + 1)
. (14)

We can plot the mutual information between Alice and Bob as a function of η1 in

Fig. 7,
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Figure 7: The mutual information between Alice and Bob as a function of η1 (ηm =
0.75, Vc = 10, Vvac = 1). The blue curve is the mutual information between Alice and
Bob in our scheme and the brown line is the mutual information between Alice and
Bob in traditional CVQKD schemes.

It is very easy to check that when η1 → 1,i.e. When VX →∞ we get

lim
VX→∞

I(A; B) = I(X; B). (15)
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In other words, ∃VX and corresponding η1 that make ∆I > 0 for given Ec and ηc.

Therefore, those secrecy results in previous work for continuous variable QKD can

also applied to our scheme.

2.4 Experimental Issues

There are several issues that could happen in experiment need to be considered. The

first issue is the fluctuation of polarization. The fluctuation of polarization can be

compensated by polarization controllers that are placed before homodyne detectors.

Since the fluctuation of polarization is not very rapid, what we need to do is adjust

those polarization controllers to maximize the output of homodyne detectors when

we start the experiment and make some periodically tiny calibration later.

Another issue is the fluctuation of phases. If the phase of the local oscillator

doesn’t accord with the phase of the signal beam, Alice and Bob will measure different

quadratures and thus the mutual information between them will drop. However, since

Eve can always measure the same quadrature as Bob, the fluctuation of phase actually

doesn’t decrease Eve’s information on Bob’s measurement result. As a result, the

secrecy capacity between Alice and Bob drops as some phase fluctuation introducing

into the system. Next we will give mathematical analysis on how the phase fluctuation

influence the secrecy capacity of the system and compare our scheme with previous

continuous variable QKD schemes.

Let the difference of the phase between the local oscillator and signal is δθ. Since

Eve always measures the same quadrature as Bob does, it is convenient to assume

that Alice’s local oscillator has a phase drift δθ from her signal beam. Then, Alice’s

measured random variable becomes

R′
A = cos δθRA + sin δθ(Y + RY ), (16)

where Y is random variable that denotes the quadrature orthogonal with X and RY
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is the corresponding quantum noise. The correlation coefficient between Alice and

Bob’s measurement results is

ρR′ARB
=

η1ηcηm(1− η1)V
2
X cos2 δθ

(η1ηmVX cos2 δθ + η1ηmVY sin2 δθ + 1)[ηc(1− η1)VX + 1]
(17)

Then we can find optimal secrecy capacity for different channel efficiency ηc. For tra-

ditional CVQKD schemes, the correlation coefficient between Alice and Bob’s mea-

surement results becomes

ρ′XRB
=

ηc cos2 δθV 2
c

(VX cos2 δθ + VY sin2 δθ)(ηcVX + 1)
, (18)

where Vc = (1−η1)VX is the energy that Alice sends into the quantum channel. Then

we can compare the two difference cases in Fig. 8.
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Figure 8: Comparison of the secrecy capacity between our scheme and traditional
CVQKD schemes. The blue curve is for traditional CVQKD schemes and the red
curve is for our scheme. We let ηc = 0.5, VX = VY = 100, ηm = 0.75.

We can see that there are almost no differences in secrecy capacity for our scheme

and traditional CVQKD schemes. In other words, as long as we can control the phase

drift within π/4, we will be able to run the system at a relative low rate without any

devices calibrating the phase. In this situation, the performance of our system is

almost equivalent to traditional CVQKD schemes.

Finally, we briefly discuss the availability of fast detector in our system. As we

have mentioned, the bandwidth of the signal source is very large in our scheme. In
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order to improve the final key rate, we also have to increase the bandwidth of the

detection subsystem. FPGAs can greatly improve the bandwidth of the detection cir-

cuit. Furthermore, some efficient reconciliation and privacy amplification algorithms

are also available.
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CHAPTER III

A QKD PROTOCOL BASED ON DISCRETELY

SIGNALED CONTINUOUS VARIABLE QUANTUM KEY

DISTRIBUTION

We propose a protocol for discretely signaled CVQKD that is designed for simple

implementation with normal network hardware and with the goal of improving rec-

onciliation speed. The protocol uses reverse reconciliation only and can optionally

use post-selection. We prove security for collective attacks on a lossy, noisy channel.

The novel contributions of this thesis are the combination of discrete signaling with

tomography on a subset of data to restrict Eve’s attacks, the use of novel analytical

and computational techniques for calculating collective security with channel excess

noise, and the level of attention that is paid to reconciliation speed in the design and

analysis.

3.1 Previous work

Systems that measure arrivals of single photons are called discrete variable systems,

while those that use homodyne or heterodyne detection to measure the continuous-

valued electromagnetic field and are called continuous variable systems[12]. Discrete

QKD is well developed in terms of security analyses, experiments, and commercial

products. One important avenue of research for QKD systems seeks to improve

rates. The counting rate limitations for non-cryogenic detectors are 15 MHz for Si

photon counters and new greatly improved counter speed of approximately 100 MHz

for InGaAs photon counters. These limits are due to dead times required to clear

avalanche carriers, which produces spurious afterpulsing counts.
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Unlike photon counters, homodyne and heterodyne detectors do not require dead

times and thus continuous variable QKD (CVQKD) systems [13, 4, 14] are in prin-

ciple scalable to standard telecom rates, such as 10 GHz. However, homodyne and

heterodyne measurements see at minimum the presence of vacuum noise manifesting

itsself as Gaussian distributed randomness with noise power that remains constant

as signals attenuate with length. This limits the achievable secure link length to a

smaller distance than is achievable for discrete QKD. Thus CVQKD may be preferable

at short and medium distances.

One may divide CVQKD systems into those that use continuous signaling [4] and

those that use discrete signaling[22]. Continuous signaling, where Alice sends 2 in-

dependent Gaussian distributed random variables in the x and y quadratures of the

field, is the most studied because proofs against individual and collective attacks exist

[16, 17, 19, 20]. These proofs exist because the Gaussian-distributed coherent states

reach the channel capacity between Alice and Bob and also allow for quantification of

Eve’s knowledge. An individual attack describes manipulation of individual timeslots

and optimal quantum measurement by Eve on light in that timeslot, while collective

attacks describe manipulation of individual timeslots and optimal joint measurement

of several or many timeslots. State-of-the-art continuously signaled experiments pro-

vide security against collective attacks, and demonstrate final key rate limited to

2 kB/sec [7]. This limitation is due not to the physical layer, but to the time re-

quired to implement reconciliation on a typical microprocessor. Attempts to increase

speed have led to proposals for post-selection, and recently to a protocol that can be

proved secure against collective attacks if infinite dimensional conditional homodyne

tomography can be implemented on a subset of data[21]. It has been clear to many

CVQKD researchers that a discretely signaled CVQKD protocol would be advanta-

geous in terms of simplicity and several have been proposed. However, it has been

pointed out that the security of discretely signaled systems under collective attacks
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remains an open problem for the practical case of excess noise in the channel[6].

In order to increase distance, the technique of post-selection has been proposed

for CVQKD [8, 9, 10, 11]. In post-selection schemes, only a subset of the data is

used. By post-selection, Alice and Bob obtain a signal-to-noise ratio advantage over

Eve. CVQKD experiments have been implemented using post-selection systems with

post-selection[9, 10, 11], but without security proofs. Although Gaussian attacks have

been proved to be optimal against continously signaled CVQKD systems, the opti-

mal attack for post-selection based CVQKD protocols is unknown yet. The recent

progress on the security analysis of post-selection [21] gave a proof of a post-selection

protocol when there is excess gaussian noise introduced into the channel. The pro-

tocol presented in their paper requires full state conditional tomography. Therefore,

theoretically an infinite number of tomographic measurements is to be made.

In order to permit faster and longer links, one needs to overcome the following

obstacles. First, a very efficient reconciliation protocol is needed. Although theoreti-

cally, reverse reconciliation enables CVQKD links of infinite distance, as CVQKD link

length increases, the minimum reconciliation efficiency required for positive secrecy

capacity, β0, approaches 1. This differs from discrete QKD. Second, reconciliation

needs to be simple and fast. In order to correct errors between Alice and Bob, one

usually seeks continuous variable based error correction codes to be as efficient as

possible. However, highly efficient error correction codes are also slow. In addition,

codes for binary symmetric channel are usually the simplest and fastest. By turn-

ing the continuous variable based error correction problem into a binary based error

correction problem, several advantages come. First, it is easier to find corresponding

error correction codes working at a rate very close to Shannon limit while keeping

a lower decoding complexity. Furthermore, if the required error correction efficiency

is lowered for a given distance, then we may be able to find a reconciliation code

with corresponding lower efficiency but greater speed. As a result, the distance and
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throughput of CVQKD systems would be greatly improved.

3.2 Description of the quantized input-quantized output CVQKD
protocol

According the previous discussions, binary reconciliation is attractive in order to im-

prove CVQKD distance and speed. In 2006, Namiki proposed a CVQKD scheme

using discrete encoding and post-selection[22]. Although the protocol then results

in binary reconciliation, the security analaysis was only developed for individual at-

tacks. Second, the experimentally relevant case of excess noise in the channel was

not treated. This case is important because system imperfections typically result in

some additional noise present, which should be treated for security purposes as if Eve

controls it. Third, for low channel efficiency, the possibility of selecting a quantum

state is low enough that most of the measurements are discarded.

In order to obtain positive secrecy capacity, it is desirable that Alice and Bob

nearly achieve the capacity of the channel given the signal-to-noise ratio. Recently, a

new result of classical information theory [23] shows that for a lossy gaussian channel

with given signal-to-noise ratio, when Bob quantizes the received data, the optimal

way for Alice to encode data is to also send quantized data. Specifically, under the

condition that Bob performs binary quantization, Alice needs only send binary data

and achieve the channel capacity. This result is significant for reverse-reconciliation

CVQKD because it indicates that if Bob quantizes the data received, then Alice

doesn’t need to send gaussian modulated signals but should send binary signals.

The quantized input-quantized output(QIQO) CVQKD protocol is described be-

low:

Step 1: Alice randomly picks up a random variable xk ∈ {1, 2, 3, 4} and encodes

a coherent state |ϕxk
〉k ∈ {|α1〉 = |r + ri〉, |α2〉 = |r − ri〉, |α3〉 = | − r + ri〉, |α4〉 =

|− r− ri〉},where r is a positive real number depending on Bob’s signal-to-noise ratio

and k denotes the index of time slot, and sends it through a lossy and noisy quantum
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Figure 9: Alice’s encoding scheme in which she only sends four different coherent
states.

channel. Alice’s encoding scheme can be described in Fig. 9.

Step 2 Bob receives a quantum state from the quantum channel. With probability

p, each measurement is assigned to channel characterization, where Bob randomly

chooses a local oscillator phase φk of 0, π/4 or π/2, makes a homodyne measurement

and records the real result[27]. With probability 1− p, that measurement is assigned

a data collection index k, where Bob randomly chooses a local oscillator phase φk of

0 or π/2 before performing homodyne detection. If his measurement result is greater

than T , where T ≥ 0 is Bob’s decision threshold, then he quantizes the result to

qk = 1. If Bob’s measurement result is less than −T otherwise, he quantizes the data

to qk = −1. For other cases where his measurement result is between −T and T , Bob

quantizes his data to qk = 0. When qk = 0, the data from the corresponding time

slot won’t be selected in the post classical processing. We note here that we have

added post-selection into the protocol. When T = 0, it reduces to the case without

post-selection.

To summarize these two steps, Alice uses random QPSK signaling but Bob’s

collected data are digitized BPSK.

Step 3: When all quantum communication has been finished, Bob reveals to
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Alice which time slots that were used for characterization phase measurements. Alice

reveals to Bob the state that she has sent for those time slots. Then Bob performs

conditional quantum tomography for each one of the four particular coherent states

that Alice sent. Only three different collection angles are required to achieve a good

estimate of the received state[27]. We know that without Eve, the channel can be

modeled as a beamsplitter with two inputs, one of which is Alice’s output to the

quantum channel and the other one is the excess channel noise mode.

b̂ =
√

ηâ +
√

1− ηε̂n, (19)

where b̂ is the output of beamsplitter going to Bob’s detectors. For any field quadra-

ture of Bob, we have

Q̂b =
√

ηQ̂a +
√

1− ηQ̂εn . (20)

Assume pb(q), pa(q) and pεn(q) are the possibility distributions of the three quadra-

tures, we have

pb(q) = pa(
√

ηq) ∗ pεn(
√

1− ηq), (21)

where * is a convolution. By Fourier transform techniques, we can simply get pε(q)

once we know pa(q) and got pb(q) from tomography. Therefore, we can also reconstruct

ρ̂εn based on quantum tomography on ρ̂b. For the protocol, Bob does quantum

conditional tomography for all four cases. Then Bob can reconstruct ρ̂εn for all four

cases. The protocol requires that the reconstructed ρ̂εn for all four cases to be the

same. Otherwise, Alice and Bob abort the protocol.

Step 4: For each data collection time slot, Bob reveals the local oscillator phase

that was chosen. If Bob used φk = 0, then Alice records ak = 1 for the case where

xk = 0 or xk = 1 and ak = −1 for the case where xk = 2 or xk = 3. If Bob used

φk = 1
2
π, then Alice records ak = 1 for the case where xk = 0 or xk = 2 and ak = −1

for the case where xk = 1 or xk = 3.
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Step 5: Bob sends checkbits to Alice over a public channel, i.e. reverse reconcil-

iation. The reconciliation is strictly one-way.

Step 6: Alice and Bob perform privacy amplification to distill the final secure

key.

3.3 Security analysis

In this section, we analyze the security of the QIQO CVQKD protocol against col-

lective attacks, where Eve interacts with incoming quantum states individually and

makes joint multi-timeslot measurements after knowing Bob’s measurement basis.

The security of CV QKD systems can be guaranteed by fundamental limits of the

noise coming from the quantum measurements. However, since the quantum channel

can always introduce some excess noise, this amount of noise could potentially have

been introduced by Eve, and may thus weaken the security of the system. We treat

the excess channel noise rigorously. We divide this section into two subsections. In

the first subsection, we analyze the simpler case where there is no excess channel

noise but Bob’s homodyne detector has a given quantum efficiency and Bob also has

some additive gaussian electronic noise. We will give analytical solution for this case.

In the second subsection, we analyze the case where channel excess noise is present.

For collective attacks, the secrecy capacity between Alice and Bob in bits per

channel use is defined to be

∆I = I(A; B)− χ(B; E), (22)

where I(A; B) is the mutual information between Alice and Bob. For the binary

symmetric channel in our protocol, I(A; B) can be completely determined by the

signal-to-noise ratio of Bob. I(A; B) can be calculated as Eq. 23 and Eq. 24,

eAB = 1− 1√
2π

∫ √
SNR

−∞
e−

x2

2 dx. (23)
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I(A; B) = 1− h(eAB), (24)

where h(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function.

χ(B; E) is the Holevo information between Bob and Eve, which is definined to be

χ(B; E) = S(ρ̂E)−
∑

i

piS(ρ̂E|q=i), (25)

where S(ρ̂E) is the von Neumann entropy of Eve’s mixed state. ρ̂E|q=i is Eve’s mixed

state given Bob’s measurement result and pi is the probability that Bob’s measure-

ment is i. For our binary symmetric case, we can rewrite χ(B; E) to be

χ(B; E) = S(ρ̂E)− 1

2
S(ρ̂E|q=−1)− 1

2
S(ρ̂E|q=1) = S(ρ̂E)− S(ρ̂E|q=1) (26)

3.3.1 Analytical solution for no excess channel noise case

When there is no excess channel noise, Bob’s received state is a coherent state given

Alice sent a particular quantum state. When the tomographic subset verifies Bob’s

received state, Eve’s only possible attack is a beam splitter attack, where Eve replaces

the lossy channel with a perfect one and uses a beam splitter to simulate the lossy

effect of the channel. Suppose the quantum efficiency of the quantum channel is η,

then Bob’s received quantum states are |√ηαi〉 and Eve’s received quantum states

are |√1− ηαi〉. It is straight forward to give the expression for ρ̂E,

ρ̂E =
4∑

i=1

1

4
|
√

1− ηαi〉〈
√

1− ηαi|. (27)

The second term of χ(B; E) relates directly to the error rate of the binary sym-

metric channel. Let’s consider the case where Bob chose φ = 0 as the phase for

homodyne detection. Given Bob’s quantized data q = 1, the possibility that Alice

sent |α1〉, |α2〉, |α3〉 and |α4〉 are p1|q=1 = 1
2
(1−eAB), p2|q=1 = 1

2
eAB, p3|q=1 = 1

2
(1−eAB)

and p4|q=1 = 1
2
eAB respectively. Therefore, the second term of χ(B; E) is
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ρ̂E|q=1 =
4∑

i=1

pi|q=1|
√

η − 1αi〉〈
√

η − 1αi|. (28)

The error rate eAB is directly related to the signal-to-noise ratio of Bob. Suppose

the vacuum variances of both quadratures are 〈∆X2〉 = 〈∆Y 2〉 = VS = 1
4

and the

variance of electronic noise is Vel, then variance of Bob’s detection noise is

VB = VS + Vel. (29)

The signal-to-noise ratio then reads,

SNR =
u2

i

VB

, (30)

where ui = <{√ηηmαi} is Bob’s average value of X quadrature when Alice sent

αi. ηm is the detection efficiency of the homodyne detector. Combining Eq. 29 and

Eq. 30, we have

SNR =
<2{√ηηmαi}

VS + Vel

. (31)

Together with Eq. 23, we calculate the error rate of the binary symmetric channel

between Alice and Bob. Combining the above equations, we get the analytical ex-

pression for the secrecy capacity between Alice and Bob for the case where there is

no excess noise.

3.3.2 Numerical simulation for the general case with excess channel noise

In the case where there some excess noise is introduced into the quantum channel,

the analysis is more complicated. Here numerical simulations are required. We will

prove that with small amounts of excess noise, the security of the QIQO CVQKD

scheme can still be guaranteed.

3.3.2.1 Validity of channel model

We will show that Eve’s optimal collective attack is the entangling beamsplitter attack

(see Fig. 10), where Eve replaces the lossy fiber with a lossless channel and mixes one
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Figure 10: Model of the transmission channel. ρ̂εn and ρ̂εr , density matrices pro-
duced by Eve’s EPR source; ρ̂a, density matrix of signal sent by Alice, ρ̂b and ρ̂b′ ,
density matrix before Bob’s detector inefficiencies and that after detector inefficien-
cies. ρ̂εn′ , density matrix post-beamsplitter, measured by Eve, and ρ̂hom density
matrix of equivalent mode consisting of light lost to detector inefficiencies. τ is the
gain of EPR source, η is the channel efficiency, and ηm is Bob’s detector efficiency.

of two entangled beams (ρ̂εn) on a beamsplitter while additionally monitoring one of

the outputs (ρ̂εr). Conditional homodyne tomography serves to make the optimality

of the entangled beamsplitter attack provable.

First of all, we need to note that Eve’s attack is a unitary operator which maps

the product state of Eve’s original ancillary state and Alice’s output state into the

input state to Bob’s detectors and final ancillary state. If the input ancillary state

and Alice’s output state are given, and the output states of the unitary operator are

also given, then the unitary operator can be regarded as a black box. In this case,

the internal structure of the black box doesn’t matter because the secrecy capacity of

the system is only a function of the output of the black box. In another word, only

the output quantum state matters and how the state was generated doesn’t matter.

Eve’s unitary operation can be denoted as

|Φi〉 = M̂(|Ψ〉E ⊗ |αi〉), (32)

where i denotes Alice’s picked state and |Ψ〉E denotes Eve’s original ancillary states.

Then Bob’s incoming density matrices are given by a trace over Eve’s Hilbert space

ρbi
= TrE(|Φi〉〈Φi|). (33)
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Figure 11: Any Eve’s attack operator M̂ can be decomposed into three sub-operators
Ô,P̂ and Q̂, which give the same output quantum states.

We know that ρbi
can be obtained by quantum conditional tomography and according

to Eq.19, each b̂i can be expresses as a superposition of Alice’s mode and another

excess noise mode, we can decompose M̂ into three different unitary operators Ô, P̂

and Q̂. Ô creates ρ̂εn from Eve’s original ancillary states

ρ̂εn = Trr[Ô
†(|Ψ〉E〈Ψ|)Ô], (34)

where Trr denotes the trace over the rest Eve’s state beside εn. The role of operator

P̂ is to interact ρ̂εn with |αi〉 on a beamsplitter to create ρbi
. P̂ can be written as

P̂ =




−√η
√

1− η

√
1− η

√
η


 . (35)

The role of Q̂ is to map the final state back to |Φi〉. We have

Q̂ = M̂Ô†P̂ †. (36)

Since for all four cases, M̂ and Ô, P̂ , Q̂ give the same output, the decomposition is

therefore equivalent to the unitary operator M̂ . The idea of decomposition can be

found in Fig.11.

We note here that the operator Q̂ is a post-processing on Eve’s states. According

to quantum data processing theorem[24], this operation doesn’t increase Eve’s acces-

sible information. Therefore, we can safely only consider the system without Q̂ since
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Q̂ can only decrease Eve’s accessible information. In anther word, considering ρεr

and ρε′n is enough for calculating Eve’s accessible information.

3.3.2.2 Mathematical description of the channel model

As an example, we calculate an representative case where the excess channel noise is

thermal. If the channel noise is not thermal, as long as we reconstruct ρεn , we still

can use the same method to calculate the secrecy capacity. In Fig.10, ρ̂εn is Eve’s

input mode to the operator P̂ . Whatever Bob’s state, he can infer Eve’s input mode

because he also knows Alice’s sent state. Mathematically, ρ̂εn can be written as,

ρ̂εn = (1− τ 2)
∞∑

n=0

τ 2n|n〉〈n|. (37)

In the Schroedinger picture, let’s assume Eve’s State is a pure state |Ψ〉εn,εr , where

the subscript εr denotes the rest of the system modes besides εn. One should note

that although the notation here implies that Eve is using a two mode state, Eve is

not actually limited to a two mode state. The quantum tomography only guarantees

that the input mode εn to the beamsplitter be a thermal state. Subscript εr denotes

Eve’s arbitrary number of modes, that remain besides εn. Since Eve’s entire quantum

state is pure, the condition in Eq. 38 must satisfy,

ρ̂εn = Trεr(|Ψ〉εn,εr〈Ψ|), (38)

Without loss of generality, one can assume |Ψ〉εn,εr has the form in Eq. 39,

|Ψ〉εn,εr =
√

1− τ 2

∞∑
n=0

τn|n〉εn|φ(n)〉εr , (39)

where 〈φ(n)|φ(n′)〉 = δn,n′ .

Similar to other security proofs of CVQKD schemes, we make use of an entangle-

ment based picture. We assume Alice also has a entanglement source that generates

the quantum state in Eq. 40,
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|ψ〉A =
4∑

i=1

1

2
|αi〉a|i〉a′ , (40)

which is a two mode state. In mode a′, the state is expressed in the Fock basis and

in mode a the state is expressed in the coherent basis. Alice then makes a photon

number counting measurement on mode a′, which projects the state of mode a into

one of the four coherent states, i.e., ρ̂a = Tra′(A|ψ〉a,a′〈ψ|A) =
∑4

i=1
1
4
|αi〉a〈αi|, which

corresponds to the case where Alice randomly chooses one of the four coherent states

and sends it through the quantum channel. The quantum state of the entire system

becomes

|Φ〉 = B̂b,hom(ηm)B̂a,εn(η)|ψ〉A|Ψ〉εn,εr |0〉hom, (41)

where B̂b,hom(ηm) and B̂a,εn(η) denote the unitary operator of BS1 and BS2.

Bob then makes a homodyne measurement on mode b′. Each measurement results,

by the state reduction postulate of quantum mechanics, in the rest of the system is

collapsing into a pure quantum state. Suppose Bob’s homodyne measurement results

in a real-valued number X, then the system collapses into the state

|ΞX〉 =
b′〈X|Φ〉√

〈Φ|X〉b′〈X|Φ〉
, (42)

Tracing over Alice’s mode a′ and the hom mode, one obtains Eve’s density matrix

given the measurement result X,

ρ̂X
E = Tra′,hom(|ΞX〉〈ΞX |). (43)

The probability that ρ̂X
E is generated is

p(ρ̂X
E ) = 〈Φ|X〉b′〈X|Φ〉. (44)

Eve’s density matrix ρ̂E is then of the form Eq. 45,

ρ̂E =

∫
p(ρ̂X

E )ρ̂X
E dx (45)
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Experimental homodyne measurements result in classical electronic noise, result-

ing in a real value measurement rB = X+Nel that is the sum of X, from the homodyne

measurement, and Nel, which is a Gaussian distributed random variable denoting the

electronic noise. Without post-selection, the protocol requires that Bob quantize rB

according to its sign. If rB > 0 Bob sets q = 1, otherwise, Bob sets q = −1. We are

interested in the conditional density matrix of Eve given Bob’s quantization result.

Without loss of generality, we only analyze the case in which q = 1.

Because the system begins in a pure state, Eve’s density matrix becomes a function

of Bob’s homodyne measurement result X. However, Bob’s quantization result not

only depends on X, but also depends on Nel, which is independent of X. We can

always regard Eve’s conditional density matrix as a superposition of different ρ̂X
E with

different probability p(ρ̂X
E |q = 1). Therefore, Eve’s conditional density matrix can be

written as Eq.46,

ρ̂E|q=1 =

∫
p(ρ̂X

E |q = 1)ρ̂X
E dx. (46)

We are now interested in p(ρ̂X
E |q = 1). According Bayes’ theorem,

p(ρ̂X
E |q = 1) =

p(ρ̂X
E )p(q = 1|ρ̂X

E )

p(q = 1)
. (47)

We have the expression for p(ρ̂X
E ) from Eq. 44 and because of Alice’s symmetric

signaling, we have p(q = 1) = 1
2
. p(q = 1|ρ̂X

E ) also depends on Vel, which is the

variance of the electronic noise.

p(q = 1|ρ̂X
E ) =

1√
2πVel

∫ X

−∞
exp(− x2

2Vel

)dx. (48)

Next we deduce eAB. According to Eq. 23, in order to obtain eAB, we have to

calculate the signal-to-noise ratio of Bob. When the quantum channel is introduced

with some excess thermal noise, Bob’s noise is actually made up of three different

parts. The first part is the vacuum noise, whose variance is always 1
4
. The second

part is the electronic noise, whose variance is Vel. And the third part is the thermal
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noise. The variance of the thermal noise depends on τ , which is the squeezing factor

of Eve’s EPR source, and η, which is the quantum efficiency of the channel. Let the

average thermal photon number be 〈nth〉. We have

〈nth〉 = (1− τ 2)
∞∑

n=0

nτ 2n =
τ 2

1− τ 2
. (49)

Then Bob’s noise variance reads

VB = VS +
1

2
(1− η)ηm〈nth〉+ Vel. (50)

Using Eq. 50 and Eq. 30, we can get the expression for signal-to-noise ratio for the

case with excess noise, which is

SNR =
<2{√ηηmαi}

VS + 1
2
(1− η)ηm

τ2

1−τ2 + Vel

. (51)

3.3.3 QIQO CVQKD with post-selection

As discussed in the Section 1, the practical limitation on the key generation rate of

CVQKD systems is computational time for reconciliation. Treating the channel as if

it were symmetric binary channel for reconciliation purposes, the complexity of error

correction codes used in reconciliation decreases. Suppose that for a given code, the

code length is N and the code rate is R = (1− ε)C, where C is the channel capacity,

in this case decoding time complexity is function of ε and N . Typically, it grows

polynomially with N . It has also been conjectured in [25] that per-bit complexity of

message-passing decoding of LDPC code over any ”typical” channel, such as binary

erasure channel or binary symmetric channel, is O(log 1
π
) + O(1

ε
log 1

ε
), where π is the

decoding error rate. So the closer the code approaches the Shannon limit, the more

complex the code. In other word, the requirement of high β0 leads to very complex

codes. Even so, the decoding error probability drops only polynomially with code

length for LDPC codes, so that this requires even more time complexity to reduce

the block error rate to suitable levels.
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Figure 12: Bob’s decision rule under post-selection. Here σS =
√

VS and σel =
√

Vel.

For the proposed QIQO CVQKD scheme, in order to have positive secrecy capac-

ity, Bob’s signal-to-noise ratio must be very low, i.e., around 0.5, which causes eAB

to be very high, i.e., around 25%. In order to fit the error rate to the requirements of

those good codes, we need to modify eAB while also changing β0 little. Post-selection

satisfies these requirements.

Bob’s final measurement result is rB = X + Nel when electronic noise is included.

According to the proposed protocol, when rB > 0, Bob quantizes it into q = 1,

otherwise Bob quantizes it into q = −1. With post-selection, we set a threshold

T > 0. Bob’s quantization rule is modified as follows: for the case rB > T , he

quantizes q = 1, for the case −T ≤ rB ≤ T , he sets q = 0 and for the case rB < −T ,

he sets q = −1. Finally, Alice and Bob discard data where q = 0 and only make error

correction on those data where q 6= 0. Bob’s decision rule for post-selection can be

visualized in Fig. 12:

In order to get the expression for ρ̂E under post-selection, we need to reevaluate

the probability of each ρ̂X
E . We denote the new possibility as p(ρ̂X

E |q 6= 0). Using
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Bayes’ theorem, it is rewritten to be

p(ρ̂X
E |q 6= 0) =

p(q 6= 0|ρ̂X
E )p(ρ̂X

E )

p(q 6= 0)
(52)

The first term of the numerator can be expanded as

p(q 6= 0|ρ̂X
E ) =

1√
2πVel

[

∫ −(T−X)

−∞
exp(− x2

2Vel

) +

∫ −(T+X)

−∞
exp(− x2

2Vel

)]. (53)

The second term of the numerator can be had from Eq. 44. The denominator is the

probability of selecting a result. It directly relates to the amplitude of the signal ui,

the variance of noise VB and the T , and can be written as:

p(q 6= 0) =
1√

2πVB

[

∫ −(T−ui)

−∞
exp(− x2

2VB

) +

∫ −(T+ui)

−∞
exp(− x2

2VB

)]. (54)

ρ̂X
E can be therefore written as

ρ̂X
E =

∫
p(ρ̂X

E |q 6= 0)ρ̂X
E dx. (55)

One must next calculate p(ρ̂X
E |q = 1). According to Eq. 47, several terms must be

calculated. The first term on the numerator is exactly the same as Eq. 44. The second

term of the numerator can be expanded to

p(q = 1|ρ̂X
E ) =

1√
2πVel

∫ −(T−X)

−∞
exp(− x2

2Vel

)dx. (56)

Having obtained the preceding probabilities, we get χ(B; E) according to Eq. 26.

Finally, we calculate eAB for post-selection. The symmetry of the states implies

that the error rate is the same. So for simplicity, we only calculate the error rate

when Alice encodes |α1〉. We obtain:

eAB =
p(q = −1|Alice encodes|α1〉)

p(q 6= 0)
=

∫ −(T+ui)

−∞ exp(− x2

2VB
)

∫ −(T−ui)

−∞ exp(− x2

2VB
) +

∫ −(T+ui)

−∞ exp(− x2

2VB
)
.

(57)

The secrecy capacity for post-selection is obtained straightforwardly. We present

numerical simulation results and compare them to the case without post-selection in

Fig. 14.
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Figure 13: The secrecy capacity and required reconciliation efficiency for the system
without post-selection.

We note that the post-selection we have proposed does not require high rate multi-

bit A/D conversion. It requires only a hard threshold decision. For the case where

T = 1, almost 10% of the data is selected. Therefore, if the clock rate is high enough,

post-selection will not be the factor that limits the system.

3.4 Discussion of results

In this section, we discuss results. The numerical simulation gives the results in

Fig. 13.

Several observations are in order. First, as expected, it is clear that excess noise

reduces secrecy capacity and lowers β0. This is as expected because we assumed that

Eve could make use of the excess noise and thus achieve higher mutual information
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Figure 14: The secrecy capacity, required reconciliation efficiency and the error rate
on the BSC channel of the system with post-selection
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with Bob. Secondly, it is also clear why β0 increases with increasing signal-to-noise

ratio. This is because at higher SNRs, the signal amplitude increases, which leads

Eve to better discrimination between the four states sent by Eve. In order to take

advantage of coding, we require a relatively low β0 and thus we require error correcting

codes that work at low SNR. However, at low SNR, the error probability of the binary

symmetric channel increases. As discussed in the previous section, very good codes

have been found for binary symmetric channels but they are very sensitive to the error

probability of the channel. In order to make those codes applicable to our case, we use

post-selection on Bob’s received data so that the secrecy capacity (per retained bit)

between Alice and Bob goes up dramatically, the error probability (per retained bit)

drops dramatically, while the required β0 remains almost constant. For 25km QIQO

CVQKD, a threshold of T = 1 is set for post-selection. This leads to postselection of

10% of Bob’s data. For 50km QIQO CVQKD, a threshold T = 2 leads to retention

of about 1% of Bob’s data. For example, with a broadband source with a symbol

rate of 10GS/sec, the retained 1 GS/sec and 100 MS/sec for 25km and 50km QIQO

CVQKD respectively. Therefore, the post-selection would not limit the clock rate of

the system. For 25km QIQO CVQKD with post-selection, the ideal working region

is at a signal-to-noise ratio about 0.25, where the secrecy capacity is 0.2bit/channel

use, the error probability is less than 10% and the required β0 is about 60%. For

50km QIQO CVQKD, the ideal working region is at signal-to-noise ratio about 0.15,

where the secrecy capacity is 0.15bit/channel use, the error probability is less than

10% and the required β0 is about 75%.

We have also made initial simulations on a simple error correction code and com-

pared the results to previous CVQKD experiments based on post-selection. For 25km

QKD, after the post-selection process, we have an error rate about 7% on the BSC

channel. We then use a standard unoptimized LDPC code that corrects all the er-

rors. Running on a Mac laptop, we were able to decode at a processing rate of 600
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kbps at an reconciliation efficiency of β = 80%. The secrecy key rate per chan-

nel use when we take the inefficiency of the error correction code into account is

∆I = βI(A; B) − χ(B; E) = 0.1 at 25km at signal-to-noise ratio 0.45. This results

after privacy amplification in a final key rate of 60 kbps at 25km with channel loss

70%. This provides a speed-up by a factor of 25 over the existing experiment that

uses a protocol secure against collective attacks.

Recently, we have become aware of a security analysis on binary modulated

CVQKD system has been posted[26] after we presented most of these results[30].

That protocol uses two-state modulation instead of four-state modulation. It does

not require quantum tomography. Instead, inequalities and maximum eigenvalues

are found to get a upper bound for Eve. The inequalities result in an upper bound

less tight than that found in this paper, which makes that protocol more sensitive to

channel excess noise. We also compare out result with [11], which is limited to 50km

with no excess noise. but our scheme can go more than 50km with excess noise and

still has high secrecy capacity.

3.5 Numerical simulation techniques

It is difficult to obtain analytical solutions for continuous variable quantum state, be-

cause it has infinite dimension. Unlike those protocols based on gaussian modulation

of signal, discrete modulation only gives conditional gaussian states instead of global

gaussian states. If the global state, such as ρ̂E, is not Gaussian, it’s difficult to find

a analytical solution for von Neumann entropy when there excess noise is introduced

into the channel. Fortunately, as long as the amount of excess noise is small, it’s still

possible to get numerical solutions.

¿From Eq. 39, one may see that if Eve’s two mode quantum state is expanded

into Fock spaces, there would be infinite number of terms. But one may truncate

the state into finite number of terms since when τ is small, the amplitudes for large
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photon numbers are so small that those terms are negligible. For this simulation, we

have the excess noise about 0.005 of one shot noise unit and this leads to τ = 0.033

for 25km and τ = 0.0167 for 50km. Using only the first three terms of the expansion

is then justified. In other words, the terms up to 2 photons are preserved. We let

EMAX = 2 denoting the maximal number of photons.

Now we can approximate Eve’s two mode state using the form in Eq. 58:

|Ψ〉εn,εr =
√

1− τ 2

EMAX∑
n=0

τn|n〉εn|φ(n)〉εr . (58)

Then mode εn is interacted with mode a. However, since the quantum state in mode

εn is represented in Fock space, it needs to be transformed into coherent form so that

the operation of BS1 is performed on two coherent states and the outcome of the

operation is also coherent states. Here we use another approximation where |n〉 is

represented as the superposition of n + 1 coherent states[28].

|n, r〉 = c(r)

√
n!e

r2

2

(n + 1)rn

n∑

k=0

e
2πi
n+1

k|re 2πi
n+1

k〉, (59)

where c(r) is used to normalize |n, r〉. We have

|n, r → 0〉 = |n〉. (60)

The accuracy of the approximation is

1− |cn|2 =
n!

(2n + 1)!
r2(n+1) + o(r4(n+1)), (61)

where |cn|2 is the probability amplitude of |n〉 in |n, r〉. In practice, we set r = 0 for

|0〉 and r = 0.1 for other Fock states.

Thus, we write |Φ〉 in Eq. 62,

|Φ〉 = c(r)
√

1− τ 2

4∑
j=1

1

2
|j〉a′

EMAX∑
n=0

τn|n〉εr

√
n!e

(rn)2

2

(n + 1)(rn)n

n∑

k=0

e
2πik
n+1 |√ηm(

√
ηαj +

√
1− ηrne

2πik
n+1 )〉b′

|
√

1− ηm(
√

ηαj +
√

1− ηrne
2πik
n+1 )〉hom|

√
1− ηαj −√ηrne

2πik
n+1 〉ε′n .

(62)

39



We first trace over a′ mode to get the density matrix of mode b′, ε′n, εr and hom.

ρ̂b′,ε′n,εr,hom = Tra′(|Φ〉〈Φ|) =
4∑

i=1

1

4
|Ωi〉〈Ωi|, (63)

i.e., the density matrix for mode b′, ε′n, εr and hom is made up of 4 different pure states

|Ωi〉 depending Alice’s measurement of the photon counting on mode a′. This exactly

corresponds to the case in which Alice prepares one of the four coherent states and

sends it to Bob. For each of the |Ωi〉, Bob then make a homodyne measurement on

his mode b′. As have been discussed, the outcome of the homodyne measurement is a

gaussian distributed continuous random variable with average value ui = <(
√

ηηmαi)

and variance VS. Physically, for each of the |Ωi〉, Bob’s measurement outcome has

infinite possibilities. However, only those values distributed close to ui occur with

high possibility. As an approximation, out simulation only takes the value in the

range of [ui− 6
√

VS, ui +6
√

VS]. Another approximation is that instead of processing

the continuous data in the range [ui − 6
√

VS, ui + 6
√

VS], we divided it into XMAX

bins with equal widths and made un approximation that Bob’s measurement only has

XMAX different possibilities instead of infinite possibilities. Suppose each bin has

left bound lbi,k and right bound rbi,k, with 1 ≤ k ≤ XMAX. Then the measurement

result is Xi,k = (lbi,k + rbi,k)/2 with possibility p(Xi,k) = 1√
2πVS

∫ rbi,k

lbi,k
exp(− (x−ui)

2

2VS
)dx.

The density matrix for mode ε′n, εr and hom can be approximately written as

ρ̂ε′n,εr,hom = Tr′b(ρ̂b′,ε′n,εr,hom) =
4∑

i=1

1

4

XMAX∑

k=1

p(Xi,k)
〈Xi,k|Ωi〉〈Ωi|Xi,k〉
〈Ωi|Xi,k〉〈Xi,k|Ωi〉

=
4∑

i=1

1

4

XMAX∑

k=1

p(Xi,k)|ψi,k〉〈ψi,k|, (64)

where |ψi,k〉 =
〈Xi,k|Ωi〉√

〈Ωi|Xi,k〉〈Xi,k|Ωi〉
. In order get ρ̂E, we further trace |ψi,k〉〈ψi,k| over

mode hom. For low signal-to-noise ratio, the average photon number in mode hom

is also low. If we use Fock basis to expand mode hom, we can neglect those quantum

states with large photon numbers. Suppose we can present mode hom in Fock space
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and only keep the states up to HMAX photons. Then

Trhom(ρ̂i,k
ε′n,εr,hom) =

HMAX∑
j=0

hom〈j|ψi,k〉〈ψi,k|j〉hom. (65)

Therefore, ρ̂E can be written as

ρ̂E =
4∑

i=1

1

4

XMAX∑

k=1

p(Xi,k)
HMAX∑

j=0

〈j|ψi,k〉〈ψi,k|j〉

=
4∑

i=1

1

4

XMAX∑

k=1

p(Xi,k)
HMAX∑

j=0

p(j|Xi,k)|εi,j,k〉〈εi,j,k|, (66)

where |εi,j,k〉 =
〈j|ψi,k〉√

〈ψi,k|j〉〈j|ψi,k〉
and p(j|Xi,k) = 〈ψi,k|j〉〈j|ψi,k〉. Here we ignored the

subscript for |j〉hom. We define a global possibility p(|εi,j,k〉) = 1
4
p(Xi,k)p(j|Xi,k), then

we can rewrite ρ̂E in the Eq. 67

ρ̂E =
∑

i,j,k

p(|εi,j,k〉)|εi,j,k〉〈εi,j,k|, (67)

where we omitted the subscript E used to describe the mode. The problem of calcu-

lating the von Neumann entropy S(ρ̂E) is equivalent to solving the eigenvalue of the

corresponding Gram matrix[29]. Each element of the Gram matrix is

Gijk,i′j′k′ =
√

p(|εi,j,k〉)p(|εi′,j′,k′〉)〈εi,j,k|εi′,j′,k′〉. (68)

The non-zero eigenvalues of G are equivalent to the non-zero eigenvalues of ρ̂E. Sup-

pose the non-zero eigenvalues of G are {λ1, λ2, ..., λn}, then

S(ρ̂E) =
n∑

i=1

−λi log2(λi). (69)

The next thing that we are interested in is p(|εi,j,k〉|q = 1) for calculating S(ρ̂E|q=1).

We first rewrite p(|εi,j,k〉|q = 1) according to Bayes’ theorem,

p(|εi,j,k〉|q = 1) =
p(q = 1||εi,j,k〉)p(|εi,j,k〉)

p(q = 1)
. (70)

What we need to calculate is just the first term of the nominator. This was calculated

as follows:

p(q = 1||εi,j,k〉) =

1√
2πVS

∫ rbi,k

lbi,k
exp[− (x−ui)

2

2VS
] 1√

2πVel

∫∞
0

exp[− (y−x)2

2Vel
]dydx

1√
2πVS

∫ rbi,k

lbi,k
exp[− (x−ui)2

2VS
]dx

. (71)
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ρ̂E|q=1 =
∑

i,j,k p(|εi,j,k〉|q = 1)|εi,j,k〉 we can calculate S(ρ̂E|q=1) following the Gram

matrix that we have discussed above.

For the post-selection case, we need to calculate p(|εi,j,k〉|q 6= 0). As what we’ve

done above, we first rewrite it according to the Bayes’ theorem.

p(|εi,j,k〉|q 6= 0) =
p(q 6= 0||εi,j,k〉)p(|εi,j,k〉)

p(q 6= 0)
. (72)

What we need to calculate is just the first term of the nominator. The method that

we used to calculate this term is

p(q 6= 0||εi,j,k〉) =

1√
2πVS

∫ rbi,k

lbi,k
exp[− (x−ui)

2

2VS
] 1√

2πVel
(
∫ −T

−∞ exp[− (y−x)2

2Vel
] +

∫∞
T

exp[− (y−x)2

2Vel
])dydx

1√
2πVS

∫ rbi,k

lbi,k
exp[− (x−ui)2

2VS
]dx

.

(73)

Then ρ̂E =
∑

i,j,k p(|εi,j,k〉|q 6= 0)|εi,j,k〉. We can then use the Gram matrix to calculate

S(ρ̂E).

In order to calculate S(ρ̂E|q=1) in the case with post-selection, we need to calculate

the possibility p(|εi,j,k〉|q = 1). We first rewrite it according to Bayes’ theorem, which

can be found in Eq. 70. But now the first term must be calculated differently. We

can calculate it as Eq. 74,

p(q = 1||εi,j,k〉) =

1√
2πVS

∫ rbi,k

lbi,k
exp[− (x−ui)

2

2VS
] 1√

2πVel

∫∞
T

exp[− (y−x)2

2Vel
]dydx

1√
2πVS

∫ rbi,k

lbi,k
exp[− (x−ui)2

2VS
]dx

. (74)

Finally, we can get ρ̂E|q=1 and calculate S(ρ̂E|q=1) according the above methods.

In order to demonstrate the accuracy of our numerical simulation results, we first

compare it with the analytical solution in the limit of no excess noise. Here we picked

up τ = 1 × 10−6 in our numerical simulation. It shows that the difference of ∆I is

only 6.5804× 10−7 between numerical simulation and analytical results.

In the end, we give the comparison of the result we get by setting different param-

eters, i.e., EMAX, XMAX, HMAX and rk. We can see that when EMAX > 2,

XMAX > 20, HMAX > 6 and rk < 0.1, we can see only tiny difference among
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Table 1: Differences of the secrecy capacity with ∆Iref . Here 25km denotes the
case of 25km QIQO CVQKD without post-selection. 25km-ps denotes the case of
25km QIQO CVQKD with post-selection. 50km denotes the case of 50km QIQO
CVQKD without post-selection. 50km-ps denotes the case of 50km QIQO CVQKD
with post-selection.

|∆Iref −∆I∗|

25km 25km-ps 50km 50km-ps
∆IXMAX=10 7.35× 10−5 9.97× 10−5 4.25× 10−5 1.04× 10−4

∆IXMAX=30 4.58× 10−6 5.84× 10−6 1.93× 10−6 5.46× 10−6

∆Ir=0.5 5.89× 10−5 4.01× 10−4 4.54× 10−5 3.50× 10−3

∆Ir=0.05 2.98× 10−6 8.23× 10−6 1.51× 10−6 9.42× 10−5

∆IEMAX=1 2.63× 10−6 2.42× 10−5 9.85× 10−7 9.78× 10−5

∆IEMAX=3 1.31× 10−7 5.60× 10−7 3.83× 10−10 1.22× 10−8

∆IHMAX=4 1.41× 10−5 3.16× 10−5 1.51× 10−6 9.42× 10−5

∆IHMAX=8 5.22× 10−8 9.26× 10−8 1.28× 10−12 7.28× 10−12

different simulations. We believe that the simulation results are accurate enough for

those parameters.

The simulation results with different parameters are shown in the TABLE 1. We

took the secrecy capacity obtained at 25km without post-selection with EMAX = 2,

XMAX = 20, HMAX = 6 and r = 0.1 as a reference and note it as ∆Iref . We give

the difference of ∆I∗ with the reference. We calculated |∆Iref −∆I∗| and put the

values into the TABLE 1.

¿From the results, we see that if we set EMAX = 2, XMAX = 20, HMAX = 6

and r = 0.1, we are already very close to the limit because if we further adjust the

parameters, we get much less differences. In our final results, we just set EMAX = 3,

XMAX = 30, HMAX = 8 and r = 0.05. We believe that these parameters give us

numerical simulation results that are extremely close to the exact results.
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CHAPTER IV

CONCLUSIONS

In this thesis, we have proposed an experimental continuous variable QKD scheme

that uses high bandwidth ASE as the signal source. This system has extremely high

bandwidth and low cost but does not improve the post-processing time required for

reconciliation. We have used information theory to analyze the security of our scheme

and compared our result with those previous results for traditional CVQKD schemes.

Finally, we showed that the results of security proofs for traditional CVQKD schemes

can also be applied to our scheme with simple arguments.

Second, we have proposed a quantized input-quantized output continuous variable

quantum key distribution protocol. By quantizing the data into binary, the decoding

complexity is dramatically decreased. We have given a general proof for general

collective attacks and shown numerical simulation results. In order to make the

proposed system compatible with the requirements of existing high efficiency and

high decoding speed codes, we have also proposed post-selection to allow choosing of

the error rate of the binary symmetric channel such that β0 remains constant.

For future works, the experiment has been undertaken. We are making use of

continuous wave instead of pulsed source in optical fibers. The continuous wave

benefits us with high bandwidth. The experimental work is to be included in my

PhD proposal.
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[17] M. Navascués and A. Aćın, “SecurityBounds for Continuous Variables Quantum
Key Distribution,” Phys. Rev. Lett., 94, 020505 (2005).

[18] M. Christandl, R. Renner and A. K. Ekert, quant-ph/0402131.
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