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SUMMARY 
 

Manganese has been used as a T1-weighted MRI contrast agent in a variety of 

applications. Because manganese ions (Mn2+) enter viable myocardial cells via voltage 

gated calcium channels, manganese-enhanced MRI (MEMRI) is sensitive to the viability 

and the inotropic state of the heart. In spite of the established importance of calcium 

regulation in the heart both prior to, and following, myocardial injury, monitoring 

strategies to assess calcium homeostasis in affected cardiac tissues are limited. This study 

implements a T1-mapping method to obtain quantitative information both dynamically 

and over a range of MnCl2 infusion doses. In order to optimize the current manganese 

infusion protocols, both dose dependent and temporal washout studies were performed. A 

non-linear relationship between infused MnCl2 solution dose and increase in left 

ventricular free wall relaxation rate (∆R1) was observed. Control mice also exhibited 

significant manganese clearance over time, with approximately 50% decrease of ∆R1 

occurring in just 2.5 hours. The complicated efflux time dependence possibly suggests 

multiple efflux mechanisms. Using the measured relationship between infused MnCl2 and 

∆R1, absolute Mn concentration ICP-MS data analysis provided a means to estimate the 

absolute heart Mn concentration in vivo. We have shown that this technique has the 

sensitivity to observe or monitor potential Ca2+ handling alterations in vivo due to the 

physiological remodeling following myocardial infarction. Left ventricular free wall ∆R1 

values were significantly lower (P = 0.005) in the adjacent zone, surrounding the injured 

myocardial tissue, than healthy left ventricular free wall tissue. This inferred reduction in 

Mn concentration can be used to estimate potentially salvageable myocardium in vivo for 

future therapeutic treatment or evaluation of disease progression. 
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CHAPTER 1 

INTRODUCTION 

 
 
 

Intracellular calcium is a central regulator of cardiac contractility and viability (1). 

Calcium (Ca2+) entry through L-type Ca2+ channels into cardiac myocytes is known to be 

the initiating event of the excitation-contraction coupling process (2,3). Calcium entering 

cells during each action potential must be pumped out of the cell to maintain composition 

of the cytosol at a steady state. There are two known mechanisms to remove Ca2+ from 

cardiac cells (4), either via the sodium-calcium exchanger (NCX), or via the plasma 

membrane Ca2+-ATPase (PMCA) (5). 

Alterations in myocyte Ca2+ handling appear to be centrally involved in the 

dysfunctional characteristics of the failing heart (6). It has been demonstrated that the 

principle cause of diminished cardiac performance in the failing heart is due to abnormal 

intracellular Ca2+ handling impairing cardiomyocyte contractility (7,8). During ischemia 

the sodium-hydrogen exchange mechanism can lead to intracellular sodium overload. 

This in turn leads to reduced calcium efflux and/or increased calcium influx via the 

sodium-calcium exchanger mechanism, resulting in intracellular calcium overload (9). 

Cell death can result from one of several mechanisms following elevations in intracellular 

calcium concentration. Examples of these mechanisms include protease activation, 

membrane rupture, cell contracture, and gap junction dysfunction (9,10). 

Following myocardial infarction there is progressive myocardial remodeling 

characterized by left ventricular dilation, contractile dysfunction and myocyte 

hypertrophy. There are also altered expressions of contractile, calcium-handling, and 
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extracellular matrix proteins (11). Similarly, myocardial ischemia appears to have 

significant negative effects both on acute and chronic cardiac remodeling and on damage 

to other organs, including the vascular endothelium (12,13), kidney (14), skeletal muscle 

(15,16), and brain (17).  

In spite of this established importance of calcium regulation in the heart both prior 

to, and following, myocardial injury, monitoring strategies to assess calcium homeostasis 

in affected cardiac tissue are limited. In addition, there are currently no in vivo techniques 

available to study calcium fluxes dynamically over the myocardium. This present study 

proposes using a T1-mapping manganese-enhanced MRI technique, with the goal of 

studying changes in calcium uptake due to myocardial injury in both the myocardial 

infarction injury site and also in the adjacent zone, surrounding the infarcted region. Such 

a technique could allow for identification of potentially salvageable myocardium and for 

differentiation between ischemic, hibernating and stunned myocardium. 

 

1.1 Manganese (Mn2+) as an MRI contrast agent 

 

One potential technique for assessing intracellular calcium is to use a surrogate 

marker with a comparable ionic radius, such as manganese (Mn2+). Mn2+ is an excellent 

candidate due to its similar chemical properties to calcium; additionally, its shortening of 

the T1 relaxation time allows it to serve as an MR contrast agent (18,19). As a result of 

these chemical properties, Mn2+ has the potential to enter viable myocardium via voltage 

gated calcium channels (20-22), accumulating in the myocytes in an additive fashion 
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(23,24). These factors combined make Mn2+ a useful molecular agent for the study of 

calcium flux. 

In its ionic form, Mn2+, along with other elements from the transition metals and 

the lanthanide series, exacts a dramatic effect on relaxation properties of water. There are 

multiple components that compromise the MRI signal following interaction of these ions 

with excited 1H nuclei. The longitudinal relaxation time, T1, of the 1H nuclei can be 

shortened following interaction of the ionic dipoles with the nuclear 1H dipole. The 

magnitude of this interaction depends on the approach distance between 1H and the ion, 

which may be large and lead to a small interaction if the ion is part of a larger molecule, 

such as deoxyhaemoglobin (deoxyHb). The duration of the coupling between the 1H and 

ionic dipoles, the correlation time, also affects the magnitude of the dipole-dipole 

interaction. If the ion is not chelated, as is the case with MnCl2 used in this study, it will 

have a wide range of rotational velocities compared to the excitation frequency of 1H, so 

the dipole-dipole interaction will be weaker.  

For suitable rotational rates, the correlation time will depend on the electron spin 

relaxation time of the agent (25), where slower electronic relaxation results in greater 

coupling of the dipoles. Electron spin relaxation times for ionic Mn2+ and Gd3+ are 

relatively slow, in the range of 10-8 – 10-10 seconds (26,27).  

Mn2+, with a relatively long spin relaxation time, will tend to stimulate spin-flip 

transitions effectively and is useful for enhancing contrast positively on T1-weighted 

images. At higher concentrations, Mn2+ is also useful for increasing T2 relaxation (28). 

The use of Mn2+ to produce shortening of the spin-lattice relaxation time, T1, was 
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proposed soon after the conception of using NMR for radiological imaging. In 1973 

Lauterbur (29) used Mn2+ to shorten T1 in a pure water sample. 

 

1.2 Manganese-enhanced MRI (MEMRI) 

 

Alterations in myocyte Ca2+ regulation may be critical for both the mechanical 

dysfunction and the arrhthmogenesis associated with congestive heart failure (30,31). 

Recent advances have improved the feasibility of studying ischemic heart disease with 

MRI (32). MR contrast agents can be applied in a variety of ways to improve MRI 

sensitivity for detecting and assessing injured myocardium, and have the potential to be 

used to detect regional differences in cellular viability within the injured heart. Contrast 

enhanced perfusion MRI has been used to explore disturbances in both large 

(angiography) (33) and small (myocardial perfusion) (34) coronary arteries. It is known 

that the size of the abnormal signal area on Gd-enhanced T1-weighted MRI correlates 

well with infarct area (35). However, the size of the nonperfused area on first-pass 

perfusion images is often smaller than the final infarct area. Therefore, there is a need to 

obtain other measures of cell viability. 

The application of Mn2+ contrast enhancement to cardiac MRI, either in the form 

of paramagnetic free manganese (e.g. MnCl2), or in a chelated form (e.g. manganese 

dipyridoxyl diphosphate, MnDPDP), allows for the potential monitoring of calcium 

dynamics, of particular importance in the infarcted heart. Chelation of the paramagnetic 

ions decrease their rotational velocity and increase the correlation time, both beneficial in 

increasing T1 relaxation. However, chelates also alter the approach distance, decreasing 
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the contrast agent’s effect on T1. In order to achieve the same relaxation effects as free 

ions, larger doses of the chelate need to be administered. A valuable added benefit of 

using a chelate is that, for less chemically-reactive but toxic metals such as Gd3+ and 

Mn2+, the chelated complex is excreted from the body within a timescale that greatly 

decreases the toxic side effects. However, the slow release of Mn2+ from chelates, as 

compared to free ions, make the quantitative study of Mn2+ influx rates more 

complicated.  

Manganese-enhanced MRI (MEMRI) has been employed in a wide range of 

biological studies including the study of neuronal activity (36-38), function (39,40), 

plasticity (41), and the neural circuitry involved in more complex cognitive and 

emotional processes (42). Recently it has also been applied to studying in vivo axonal 

transport rates in Alzheimer’s disease models (43,44). MEMRI has been used in other 

areas to label lymphocytes and B-cells (45) and to detect beta-cell activation (46).  

Additionally, MEMRI has been used to detect cell viability in the ischemic 

heart (47-49). A study to assess whether normal myocardial tissue can be differentiated 

from infarcted tissue using contrast agent Mn-DPDP has been conducted in rats (50). 

Infusion of various doses of the Mn2+ chelate demonstrated that Mn2+ was retained in the 

viable myocardium, but was shown to have rapid clearance from the infarcted region. 

This demonstrated the ability of the contrast agent to differentiate infarcted tissue from 

viable tissue. Similarly, in its free paramagnetic form MnCl2 has been shown to 

demarcate infarcted zones in mice (51) and dogs (52). 

More recently work has been completed studying the relaxation enhancing 

properties of MnDPDP in the human myocardium (53). In this particular study by Skjold 
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et al., R1 measurements were calculated for the myocardium of fifteen healthy patients 

using an inversion recovery (IR) turbo fast low-angle shot (FLASH) sequence, both 

before and at various time points post i.v. MnDPDP injection. Left ventricular wall R1 

values increased on average 37% one hour following a MnDPDP dose of 5 μmol/kg, the 

clinical liver dose. This elevation remained for approximately two hours, before a gradual 

decline lasting over 24 hours. Varying the dose of MnDPDP injections did not cause the 

R1 values to increase linearly. 

Following this work, Skjold et al. (47) performed a study on patients with recent 

myocardial infarction. The aim was to see if regions of the left ventricular wall would 

show signs of reduced R1 compared to healthy myocardial tissue after a low dose of 

MnDPDP. The results showed that reduced wall thickening at the infarction site was 

associated with reduced contrast enhancement. In contrast, the remote regions showed 

larger increases in R1. This is most likely due to the selective and slow Mn accumulation 

in viable myocytes. Conclusions drawn from this work suggest that the demarcation of 

infarcted myocardial regions is possible with manganese-based MRI contrast. The 

combination of low doses of MnDPDP with R1 mapping techniques can reliably identify 

infarcted regions. One potential advantage of using Mn2+ over Gd3+ in contrast enhanced 

studies is that Mn2+ could allow for the study of calcium fluxes. Also, Mn2+ could have 

the sensitivity to detect changes in calcium fluxes, not only in the infarcted region but 

also in the adjacent zone surround the MI site. 

Mn2+ infusion in mice has been shown to lead to significant signal enhancement 

in T1-weighted cardiac MRI (23). It has also been demonstrated that MEMRI is sensitive 

to changes in inotropy (23), consistent with the model that Mn2+-induced enhancement of 
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cardiac signal can be used to detect changes in the rate of calcium influx into the heart. 

While an essential element for the normal physiological functioning in all animal species, 

with an estimated safe and adequate daily dietary intake (ESADDI) of 2 – 5 mg Mn/day 

in adults (54), at high concentrations Mn2+ is know to be cardiotoxic (55). Previously, a 

dose-dependent study (23) determined a range of Mn2+ infusion doses that result in large 

signal enhancement without affecting the left ventricular ejection fraction or heart rate.  

 

1.3 T1-Mapping Cardiac MEMRI in the study of calcium homeostasis alteration 

 

In order to determine the relationship between the MnCl2 infusion dose and the 

calculated absolute tissue relaxation times due to Mn2+ uptake in murine cardiac 

myocytes, a quantitative imaging technique is required.  

T1-mapping protocols provide such a quantitative technique, allowing for 

estimations of absolute T1 values. Experiments aimed to measure tissue T1 and T2 

relaxation times were conducted as early as 1971, where discriminations between normal 

tissue and malignant tumor specimens were discerned from their relaxation times (56). In 

the late 1970’s Mansfield et al. extended these techniques to imaging biological 

structures (57,58). 

Quantitative MEMRI T1-mapping has been applied to numerous fields, for 

example MEMRI T1-mapping has been used to improve neuronal tract tracing techniques 

(59). In neuronal tract tracing Mn2+ causes a wide range of T1 changes, varying from 

short T1 values at the injection site, to longer values in more distant regions. In this 

particular study Chuang et al. (59) used a Look-Locker T1-mapping protocol that 
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displayed the sensitivity to detect the full range of T1 values with full brain coverage in a 

reasonable time. It was concluded that the use of quantitative techniques in MEMRI 

should allow for the study of more extensive pathways, and should allow for 

administration of lower Mn2+ doses. 

T1-mapping has also been applied to the study of the common neuropsychiatric 

condition hepatic encephalopathy (HE) (60). Within clinically relevant acquisition times 

significant correlations between the change in T1, due to deposition of manganese, and 

HE severity have been shown in the globus pallidus, the caudate nucleus, and the 

posterior limb of the internal capsule. 

In many MEMRI experiments there are a large range of T1 values within the field 

of view (FOV), such as those experienced in the mouse brain following systemic 

administration of MnCl2 (61). T1 weighted images need to be optimized in order to detect 

a specific range of T1 values. However, it is not typically possible to detect the complete 

range of T1 values using just one protocol, and acquisition of multiple images is required. 

Similarly, small changes in T1 values could provide important information that T1 

weighted imaging techniques do not have the sensitivity to detect. Utilizing a quantitative 

technique provides a greater sensitivity to a wide range of T1 changes, and also allows for 

reduced doses of Mn2+ to be administered. By reducing the dose, potential cardiotoxic 

and neurotoxic effects caused by high levels of Mn2+ can be minimized. Spin-echo 

inversion recovery (IR) techniques can be used to estimate T1 values, but the long echo 

times (TE) required in this sequence cannot be used with the relatively fast heart rate of 

the mouse. 
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The goal of using a quantitative technique within this study is to estimate the 

delivery of Mn2+ to viable myocardium in vivo, with applications to assess regional Mn2+ 

handling alterations in a myocardial infarction model. In 1970, a commonly used method 

to calculate T1 values was introduced by Look and Locker (62,63), whereby T1 relaxation 

times can be estimated using a periodic train of excitation pulses, sampling multiple time 

points during signal recovery. This method can significantly reduce scanning time 

without sacrificing accuracy, and has been shown to have almost the same efficiency as 

the spin-echo IR method in terms of the SNR per unit time (59,64). Following the 

description of Look-Locker (LL) T1-mapping presented by Chuang et al.(59), multiple 

time points are sampled during the relaxation following an inversion pulse separated by 

the interexcitation interval τ. This sampling is achieved using RF×N  pulses of the same 

flip angle (FA), α. Both Look and Locker (63) and Brix et. al (65) derive an expression 

for the signal evolution in the above LL T1-mapping protocol. The partially relaxed 

longitudinal magnetization, )(nM , before each excitation pulse, can be described by an 

exponential recovery with time constant *
1T . 

[ ] 1,,1,0,)0()()()(
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The T1 value for each pixel can be calculated by obtaining *
1T  from a three-

parameter fit to equation 1, and substituting this into equation 2. However, this assumes 

that the exact FA is known for each pixel, which is a poor assumption. Due to 

inhomogineities in the B1 field caused by imperfect excitation pulses and the RF coil 

profile, the FA differs from the intended value. This can be overcome by taking the 

relationship between )(∞M  and )0(M , with T1 being simplified to )(/)0(*
1 ∞MMT  

when *
1T<<τ , as shown by Steinhoff et. al (66). Chuang et al. (59) demonstrate how 

)0(/)( MM ∞ , *
1T , and therefore T1, can be obtained independent of knowing the precise 

FA, and without the requirement that τ  and Td, the delay time between the inversion and 

the first excitation pulse of a slice, are short. This is achieved under the assumption that 

the longitudinal magnetization before each inversion pulse has reached steady state. 

Such a Look Locker T1-mapping MRI pulse sequence is applied in this study, 

with a total imaging time per T1 map of approximately 43 minutes. The study aims to 

characterize the relationship between the infused MnCl2 dose and the absolute tissue 

relaxation times, which could be used to optimize current manganese infusion protocols 

by minimizing the potential toxic effects of Mn2+ while still achieving adequate signal 

enhancement. By fitting this dose dependent data to ex vivo absolute Mn concentration 

values it could be possible to produce Mn concentration maps and to quantify the 

manganese content in vivo. 

In order to obtain reliable relaxation rate data and accurate dose dependent 

calibrations the T1 maps must be acquired at the appropriate time. The T1-map sequence 

should not be initiated until after assumed blood pool washout, and acquisitions should be 

minimized during any periods of rapid temporal signal washout that may occur. Blood 
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pool washout has been estimated to occur over the order of approximately 15 minutes in 

a canine model (52). In this present study a temporal signal washout curve was produced 

from T1 maps acquired at multiple time points post-infusion. The form of this curve could 

also provide information about the manganese efflux mechanisms. 

One of the primary goals of this study is to characterize the efficacy of MEMRI 

T1-mapping in assessing the dynamic features of calcium response due to myocardial 

injury in a small murine model. To achieve this Mn concentration map data was acquired 

for a myocardial infarction model allowing for estimates of the absolute Mn 

concentration both within the injury site and in the adjacent zone. The sensitivity of this 

technique could be used for potential pre-clinical and translational models to allow for 

treatment monitoring and for identifying potentially salvageable myocardium. 
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CHAPTER 2 

MATERIALS AND METHODS 
 
 
 

2.1 Animal Preparation 

 

Manganese-enhanced MRI experiments were performed in adult male C57Bl/6 

mice (5-13 weeks old, mean ± SD weight 22.6±2.2 g) following the guidelines of the 

Animal Care and Use Committee and the Animal Health and Care Section of the Institute 

(Medical College of Georgia, Augusta, GA, USA). The animals were initially 

anesthetized with a mixture of medical air, oxygen (1:1), and 2.5% isoflurane, positioned 

prone upon the animal cradle and maintained at 1.25±0.32% isoflurane throughout the 

MRI session. This protocol was established to maintain a relatively constant level of 

anesthesia and heart rate (460±30 bpm) during the MRI experiment. A custom made 

water bed was placed in the mouse cradle to maintain a constant temperature of 37.8 °C 

throughout imaging. 

A tail vein line for manganese infusion was introduced after anesthesia. A 60 mM 

MnCl2 solution was produced by dissolving MnCl2 crystals in saline. For the dose 

dependent study, MnCl2 was infused into control mice at doses ranging from 25 to 297 

nmoles/g total body weight (BW). This dose range had previously been shown not to 

cause cardiac depressive effects (23). For the temporal washout study, a single dose of 

282.57±5.96 nmoles/g BW was infused into the control mice. All infusions were 

completed at a constant rate of 0.6 ml/hr with the aid of a syringe pump (KD Scientific 

Inc., Holliston, MA, USA). 
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2.2 Myocardial Infarction Model 

 

For the myocardial infarction study the mice were divided into three experimental 

groups: control (n = 6, 22.57±3.24 g), sham-operated (n = 21, 23.06±2.48 g) and 

myocardial infarction (MI) (n = 6, 23.24±1.02 g). The control group underwent no 

surgical procedures. The sham-operated and MI groups were anesthetized with an 

intraperitoneal ketamine/xylazine cocktail and placed in a supine position. A midline 

cervical incision was made to intubate the trachea. The intubated mice were connected to 

a rodent ventilator (CWE Inc., Ardmore, PA, USA) and were ventilated at a respiratory 

rate of 90 breaths per minute. The chest was opened by middle thoracotomy at upper 

sternum, between the fourth and fifth ribs. The sham-operated mice underwent open chest 

procedures without ligation of the left anterior descending (LAD) coronary artery. In the 

myocardial infarction studies, myocardial infarcts were produced by permanently ligating 

the LAD. The LAD was ligated at a position ~1 mm below the left auricle with an 8-0 

polypropylene monofilament suture (Ethicon Inc., Somerville, NJ, USA). The mice were 

allowed to recover in a recovery chamber at 38 ºC, and then were rested prior to imaging 

sessions. 

Imaging was performed 13±4 days and 12±6 days post-surgery for the MI and 

sham-operated groups, respectively. The date range for imaging the MI mice was chosen 

from survival data for mice that have undergone MI surgery, according to the previous 

experiences within the lab. At approximately 10-13 days post-surgery the survival curve 

for MI mice has been observed to reach a plateau, suggesting an ideal time to image. 
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From prior experience it was also determined that at shorter times post-infarction 

the heart is going through a remodeling process involving multiple inflammatory 

processes. The inflammatory cells (i.e. macrophages) are also known to uptake Mn2+ 

(45). Imaging at this early time point post-infarction has therefore been reserved for 

future studies. Conversely, at long times of approximately 30 days post-infarction the 

mice experience heart failure. 

The aim of this study is to characterize the efficacy of MEMRI T1-mapping for 

assessing alterations in calcium homeostasis. To accomplish this aim, cardiac images 

were acquired at two time points, pre- and post- myocardial infarction, in a small murine 

model. The post-MI time point was chosen to emphasize calcium alteration after MI, 

while avoiding the pathological complexity of heart failure at later times. 

For MnCl2 administration in the myocardial infarction study, a tail-vein infusion 

line was placed and all three groups of mice were infused with 282.50±4.00 nmoles/g 

BW MnCl2 at a constant rate of 0.6 ml/hr. 

 

2.3 MRI 

 

Images were acquired on a 7.0-T 20-cm horizontal bore BioSpec MRI 

spectrometer (Bruker Instruments, Billerica, MA, USA) equipped with a micro imaging 

gradient insert (950 mT/m). Animal setup procedures followed those previously 

described (23). A standard Bruker volume coil (35 mm inner diameter, Bruker 

Instruments, Billerica, MA, USA) was used to transmit and receive at 1H frequency (300 

MHz). ECG and respiratory signals were monitored by a physiological monitoring 
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system (SA Instruments, INC., Stony Brook, NY) with the ECG signal used to gate the 

MRI Gradient Echo Flow Compensation (GEFC) pulse sequence (67). All images were 

gated to be acquired directly after the ECG R-wave at end-diastole. For the MI group 

accurate gating was achieved due to regular ECG signals in our imaging timeframe post-

infarction. The ECG signal is expected to become more problematic at longer times as 

the MI progresses. Breathing artifacts were minimized by securing the mouse in a custom 

made mouse holder. 

Short axis images were acquired for the control and sham-operated mice midway 

through the left ventricle and perpendicular to the long axis of the heart. In the 

myocardial infarction group the short axis was again defined perpendicular to the long 

axis of the heart, but located at the area with the greatest LV wall-thinning due to the 

injury. This was typically within 1 mm of the center of the ventricle. The imaging 

parameters were as follows: matrix = 128 x 128; TE = 3.5 ms; TR = 35 ms; slice 

thickness = 1.0 mm; FOV = 3.0 x 3.0 cm; flip angle = 60° and six averages. The 

repetition time, TR, for the gradient echo sequence was purposely set at a time shorter 

than the RR period (130±2 ms). The true repetition time for the imaging sequence was 

therefore the RR period. 

Both pre-MnCl2 and post-MnCl2 T1 maps were acquired with a ECG-gated, flow-

compensated Look-Locker MRI pulse sequence (matrix = 128 x 128; TE/TR = 2.5 ms/10 

sec; slice thickness = 1.0 mm; FOV = 3.0 x 3.0 cm; NA = 2; inversion time = 9 ms; 

average echo interval = 130 ms; number of echo images = 50; flip angle = 10°) as 

previously described (59). The echo interval was set as the approximate mean RR period 

observed prior to the execution of each T1 map sequence. The initial echo per repetition 



16 

was gated, with the subsequent echo pulses separated by the constant echo interval. The 

T1 value estimations are therefore not affected by any RR period fluctuations that may 

occur during TR. Post-infusion T1 maps were acquired approximately 5 mins after 

completion of the infusion to allow for assumed Mn2+ blood pool clearance. The total 

imaging time per T1 map was approximately 43 minutes. T1 maps were acquired both 

pre-MnCl2 infusion and post-MnCl2 infusion to allow the calculations of change in T1 

relaxation rate, ∆R1, due to the infusion. 

 

2.4 Analytical Procedures 

 

Control mice were sacrificed immediately after imaging. Absolute manganese 

content for heart and blood samples were measured by inductively coupled plasma-mass 

spectrometry (ICP-MS) analysis (CANTEST Ltd., North Vancouver, BC, Canada). 

 

2.5 Data Analysis 

 

T1-mapping 

The T1 value of each pixel was calculated using a custom-written C++ program 

(59). The signal recovery of each pixel was fitted from the 50 echo images by the three-

parameter Levenburg-Marquardt non-linear curve-fitting algorithm. Region-of-interest 

(ROI) analysis was performed on the 2D T1 maps using AMIDE (68) to calculate the 

average regional T1 value. In the case of the control and sham-operated mice, ROI tools 

were used to select a region of interest within the left ventricular free wall (LV Wall). To 
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quantitatively assess the dynamic features of the calcium response due to the myocardial 

injury additional regions of interest were defined for the MI group. The adjacent zone 

ROIs were defined in the regions of the LV Wall immediately surrounding the injury site, 

starting at the outer boundary of the left ventricular thinning and extending approximately 

1.5 mm into the viable tissue. An additional ROI, the myocardial infarction ROI (MI), 

was created within the injury site of the left ventricular free wall. In vivo ∆R1 values were 

calculated as (post-MnCl2 infusion R1) – (pre-MnCl2 infusion R1), where the relaxation 

rate, R1, is defined as 1/T1. ∆R1 values are quoted as a mean ± standard deviation, in units 

of (1/sec). 

Knowing the MnCl2 infusion dose, the ex vivo absolute manganese values were 

correlated to the in vivo ∆R1 values, allowing for an estimate of the absolute Mn content 

in the heart. From this information in vivo absolute Mn concentration maps were 

produced based on a relationship between R1 values in the LV Wall and interventricular 

septum post-infusion, and the absolute Mn elemental analysis results. 

 

 

Statistics 

The differences in manganese induced relaxivity changes between the three 

animal groups in the myocardial infarction study were assessed using ANOVA with a 

Bonferroni correction test between sub-groups. The threshold for significance was set at 

α = 0.05. Differences between individual groups were assessed using a two-tailed t-test, 

with the significance threshold set at p < 0.05. 
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CHAPTER 3 

RESULTS 
 
 
 

Sample ECG gated short-axis cardiac MRI images for a control mouse are shown 

in Figure 1. Figures 1a and b show the T1-weighted signal intensity enhancements pre- 

and post-MnCl2 infusion, respectively. Figures 1c and d show the corresponding T1 maps 

pre- and post-MnCl2 infusion, respectively. At this MnCl2 dose of 280 nmoles/g BW 

there is significant signal intensity enhancement in the myocardium following MnCl2 

infusion. For the control mice, a region of interest (ROI) was created for the left 

ventricular free wall (LVWall), Figure 1b. T1 values were obtained from both pre-MnCl2 

infusion T1 map ROIs and post-MnCl2 infusion T1 map ROIs and ∆R1 was calculated as 

the difference between these two T1 values (∆R1 = ∆(1/T1)).  

 

3.1 Concentration Dependent Study 

 

In order to produce in vivo Mn concentration maps, two pieces of information are 

required. One is the dependence of manganese infusion dose on LV Wall relaxivity, and 

the other is the absolute tissue Mn concentration following manganese infusion. The 

effect of altering the infusion dose on LV Wall ∆R1 is shown Figure 2, with the data 

summarized in Table 1. The post-MnCl2 infusion T1 map sequence was initiated 

approximately 5 minutes post-infusion. The summarized T1 map data points are shown as 

triangles in Figure 2, with the sample size and uncertainty (±1 SD) shown. The first two 
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Figure 1 - Example short-axis heart images for a control mouse. (a) T1-weighted pre-
MnCl2 infusion image; (b)T1-weighted post-MnCl2 infusion image; (c) pre-MnCl2 
infusion T1 map; (d) post-MnCl2 infusion T1 map. (b) shows the locations of the 
interventricular septum (S), left ventricular free wall (LVWall), liver (L) and chest wall 
(CW) 

 
 
 

columns in Table 1 display the grouped MnCl2 infusion doses and corresponding LV 

Wall ∆R1. The sample sizes are displayed in parentheses. ∆R1 values ranged from 0.16 

/sec for the lowest dose regime, up to an average of 4.61 /sec for doses above 197 

nmoles/g BW  

Also shown in Figure 2 and Table 1 are the elemental analysis results for the heart 

tissue and blood sample absolute manganese concentrations. Absolute manganese 
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Figure 2 - Effect of altering the dose of infused MnCl2 on left ventricular free wall 
relaxivity (triangles). The x-axis shows the total dose of infused MnCl2 normalized to 
mouse BW. The y-axis shows the relaxivity change, ∆R1, pre- vs. post-MnCl2 infusion. 
As a function of dose, two linear dose uptake regions were noted, along with a plateau 
region above 197 nmoles/g BW. The least square fits are shown with total MnCl2 
infusion dose, X, in nmoles/g BW. Comparison of this data to the total heart manganese 
concentration (μg/g dry) as determined by ICP-MS (squares) is also shown. This plot can 
be used to estimate the Mn concentration in vivo 

 
 
 
concentration values were quantified using ICP-MS, and are shown in columns 3-5 of 

Table 1. 

Three regions can be fit to Figure 2. At MnCl2 infusion doses, X (nmoles/g BW), 

below 197 nmoles/g BW two linear uptake regimes can potentially be fit to the data, 

intercepting at 61 nmoles/g BW. Above 197 nmoles/g BW, the relaxivity enhancement 

reaches a plateau. Within this physiological steady state any further increase in MnCl2 
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Table 1 - Dose dependent T1 map ∆R1 values for the LV Wall are shown in columns 1 and 2. ICP-MS absolute blood and heart 
manganese values from mouse samples are displayed in columns 3-5. LV Wall ROI absolute Mn concentrations from the calculated 
concentration maps are given in the final column. 

 

MnCl2 Infusion Dose 

(nmoles/g BW) 

LV Wall ∆R1 

(1/sec) 

MnCl2 Infusion 

Dose for Elemental 

Analysis (nmoles/g 

BW) 

Heart Absolute 

Mn 

Concentration 

(μg/g dry weight) 

Blood Absolute 

Mn 

Concentration 

(μg/ml) 

Concentration Map 

LV Wall ROI Data 

(nmoles/g) 

38.34±11.98 (n=3) 0.16±0.17 37.55±16.82 (n=2) 8.15±6.04 0.22±0.04 6.48±7.78 

65.46±8.16 (n=2) 0.33±0.29 - - - 12.22±8.87 

86.21±4.37 (n=5) 1.23±0.84 83.85 23.78 0.41 36.05±23.91 

108.33±8.09 (n=3) 1.96±0.34 108.87±11.36 (n=2) 53.87±3.31 0.41±0.03 63.16±10.65 

132.98±5.92 (n=4) 2.23±0.87 130.38 52.32 0.53 80.04±35.68 

156.17±7.01 (n=2) 3.67±0.15 156.17±7.01 (n=2) 72.72±1.03 0.55±0.09 114.52±13.04 

189.89±13.59 (n=2) 4.26±1.24 199.50 132.74 0.61 139.74±77.11 

230.40±15.10 (n=3) 4.83±2.02 243.17 151.35 0.69 166.41±77.11 

283.13±9.73 (n=6) 4.49±1.63 - -  221.97±131.13 
 
Values are expressed as mean ± SD, with sample size in parentheses 
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dose does not result in any apparent increase of ∆R1. The plateau occurs at ∆R1 = 

4.61±1.64 /sec. The best fit for the two phases below 197 nmoles/g BW have the form 

0.107-0.007X  R low1, =Δ  (r2 = 0.999) and 1.613-0.032X  R high1, =Δ  (r2 = 0.971) for the 

doses below and above 61 nmoles/g BW, respectively. This biphasic fit is consistent with 

findings from data from our lab taken in a rat model. The lower curve is fit under the 

assumption that 0  R1 =Δ  below 16.3 nmoles/g BW. This is deduced visually from Figure 

2 and is consistent with the fact that there is initially a non-zero volume of saline infused 

prior to Mn2+ entering the mice, inherent in the infusion line setup. For the average 

mouse weight of 22.6±2.2 g, the average dose of saline present in the infusion line is 

16.3±0.7 nmoles/g. The correlation between the infused MnCl2 dose, X (nmoles/g BW), 

and absolute heart Mn concentration, Y (μg/g dry weight), can be fit linearly with 

25.9-0.70X  Y =  (r2 = 0.94, Figure 3a). Similarly, the effect of altering the dose of 

infused MnCl2 on absolute blood sample manganese concentration, Z (μg/ml), yields a 

linear relationship of 0.160.002X  Z +=  (r2 = 0.93, Figure 3b). 

One of the primary goals for this study is to quantitatively estimate the absolute 

manganese map for the heart, in vivo. The data presented in Figure 2 shows the 

relationship between ∆R1 and the absolute heart manganese concentration, where the 

elemental analysis data points (square data point) are overlaid onto the dose dependent 

plot (triangular data points). Using the data obtained from this dose dependent study a 

myocardial relaxivity of 5.17 mM-1s-1 was estimated, based on the measured R1 values in 

the myocardium and from the elemental analysis measurements. Using this relaxivity, in 

vivo absolute Mn concentration maps (nmoles/g) were produced. The LV Wall ROI data 

for these maps are shown in the final column of Table 1. 
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Figure 3 - Effect of MnCl2 infusion dose on the total manganese concentration 
determined by ICP-MS for (a) the heart and (b) blood. The x-axis shows the total dose of 
MnCl2 infused. The y-axis shows the absolute manganese concentration in μg/g dry 
weight for the heart and μg/ml for the blood. Both plots show the linear least square best 
fit to the data 

 
 
 
3.2 Temporal Washout Study 

 

The feasibility of using the T1-mapping technique was also applied to study the 

manganese washout phenomena temporally. This is important because it will provide us 

with a quantitative means of measuring the rate of manganese efflux from the 

myocardium, and could also potentially provide information into individual compartment 

efflux rates. The temporal characteristics of ∆R1 post-MnCl2 infusion were studied in 

control mice infused at a single dose of 282.57±5.96 nmoles/g BW MnCl2. The washout 

period was examined from 0.2 – 99.2 hrs. Values of ∆R1 were calculated by subtracting 
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Figure 4 - Temporal Mn2+ washout curve. The x-axis shows experimental time course 
post-MnCl2 infusion, in hours. The y-axis shows the difference in relaxation rate, ∆R1, 
pre- vs. post-MnCl2 infusion. The insert plot shows the complete washout curve over an 
extended period of time 

 
 
 

the average baseline ROI R1 (  /sec,0.040.78  R LVWallbaseline,1, ±= from 33 control mice) from 

the post-MnCl2 infusion ROI R1 value. Figure 4 shows the temporal relationship of the 

Mn2+ washout curve in the LV Wall, while Table 2 summarizes the washout data for the 

LV Wall. The LV Wall ∆R1 signal has attenuated 50% in the first 2.5 hours post-infusion. 

Despite this initially rapid attenuation of the ∆R1 signal, there is a non-zero ∆R1 

value remaining until a few days post-infusion suggesting retention of the remaining 

Mn2+. During the first 9 hours post-infusion the washout data for this infusion dose can 

be fit exponentially with LV Wall -0.40·t
1  /sec)e(5.24  R =Δ  (r2 = 0.93, with t given in units 
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Table 2 - Temporal ∆R1 signal attenuation post-MnCl2 infusion in the LV Wall. 

 

Time Post-MnCl2 Infusion (hrs) LV Wall ∆R1 (1/sec) 

0.31±0.11 (n=7) 4.44±1.48 

1.35±0.30 (n=3) 3.65±1.08 

2.41±0.37 (n=5) 2.23±0.75 

3.33±0.04 (n=2) 1.04±0.29 

4.25±0.41 (n=3) 0.70±0.16 

6.33±0.08 (n=2) 0.63±0.36 

7.34±0.37 (n=5) 0.45±0.35 

9.22±1.11 (n=2) 0.59±0.39 

11.40±0.54 (n=5) 0.64±0.16 

13.19±0.62 (n=2) 0.36±0.03 

21.11 (n=1) 0.14 

46.07±3.30 (n=3) 0.07±0.04 

99.19 (n=1) 0.08 
 
Values are expressed as mean ± SD, with sample size in parentheses 

 
 
 
of hours). At longer times further data is required to produce an exponential fit to assess 

potential compartmentalization. This information provides a better imaging timeframe for 

the cardiovascular disease model in the current study, with eventual information on 

potential extrudability of Mn2+ from the myocardium.  

 

3.3 Myocardial Infarction Study 
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The final part of this study involved utilizing the T1-mapping method under 

cardiovascular disease conditions to examine the feasibility of applying such a technique. 

In vivo concentration map calculations were performed on a mouse myocardial infarction 

model to investigate the ability of quantitatively assessing dynamic changes in 

manganese uptake in various regions of myocardial injury. All three groups of mice, 

namely control, sham-operated and myocardial infarction, were infused with a single 

dose of 282.50±4.00 nmoles/g BW MnCl2. The mice were imaged at 0.25±0.05 hrs after 

the initial MnCl2 infusion, as indicated from the temporal washout study to avoid 

modulated Mn2+ retention. Figure 5 shows sample post-MnCl2 infusion T1 maps for (a) 

sham-operated and (b) myocardial infarction mice. The sham-operated mouse shows a 

well defined LV Wall and interventricular septum with relatively uniform manganese 

uptake throughout. In the MI model there is substantial LV Wall thinning at the injury 

site, accompanied by higher T1 values due to reduced uptake of Mn2+. 

The results of this study are shown in Figure 6, where the data is presented as the 

average ROI ∆R1 (solid horizontal line) ± SD (shaded box), with the data range (solid 

vertical line). Table 3 also shows these results, along with the statistical test results. The 

relatively large sample size for the sham-operated group resulted from the time required 

to optimize the surgical technique, in preparation for consistent MI production. Twenty-

one sham-operated surgeries were performed to ensure consistency in the technique 

before performing MI surgery. Imaging results for all of the sham operations were self-

consistent (i.e., there is no image-based trend between the time of surgery and the value 

of LV Wall ∆R1). 
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Figure 5 - Example short-axis post-MnCl2 infusion T1 map cardiac images for; (a) a 
sham-operated mouse, and (b) a myocardial infarction mouse. Significant LV Wall 
thinning can be seen for the MI mouse with longer T1 relaxation times relative to healthy 
myocardial tissue. (b) shows the interventricular septum (S), myocardial infarction 
adjacent zone (Adjacent Zone) and myocardial infarction injury site (MI) 

 
 
 
There is no statistically significant difference between the LV Wall ∆R1 values of 

the control (4.49±1.63 /sec) and sham-operated (4.62±2.34 /sec) mice (p = 0.91) 

suggesting that the procedure of opening the chest does not affect Mn2+ uptake within the 

heart. Comparing the control and sham-operated LV Wall ∆R1 values with the MI 

adjacent zone ∆R1 values using ANOVA, however, shows that there is a significant 

difference in relaxivity between the groups (p = 0.03). Cross-comparison of all of the 

groups individually with t-tests demonstrates that the MI adjacent zone ∆R1 (2.00±0.49 

/sec) is significantly less than the control and sham-operated groups (p < 0.05), with the 

MI injury site ∆R1 (0.97±0.39 /sec) being significantly less (p < 0.05) than all of the 

groups. These results demonstrate the sensitivity of this technique to determine altered 

manganese uptake, not only at the necrotic site but also within the adjacent zone. 

Calculating the in vivo Mn concentration map could allow for potentially salvageable 
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myocardium to be identified for future therapeutic treatment or prevention, in preclinical 

models. 

 
 
 

 

Figure 6 - The effect of myocardial injury on the uptake of Mn2+. Regions of interest 
were defined for the LV Wall in the control and sham-operated groups. ROIs for the MI 
model were also defined at the injury site contained within the LV Wall and in the 
myocardial infarction adjacent zone, immediately surrounding the injury site. Data is 
presented as the average ROI ∆R1 (solid horizontal line, /sec) ± SD (shaded box), with 
the data range shown (solid vertical line). 



29 

Table 3 - Average ∆R1 signal enhancement post-MnCl2 infusion for control, sham-
operated and myocardial infarction groups. For the myocardial infarction group ROIs 
were defined both for the myocardial infarction adjacent zone, surrounding the infarction 
site, and the infarcted site (MI). 

 

Group - Region of Interest (ROI) ROI ∆R1 (1/sec) 

Control – LV Wall 4.49±1.63 (n=6)†*‡ 

Sham-Operated – LV Wall 4.62±2.34 (n=21) 

Myocardial Infarction – Adjacent Zone 2.00±0.49 (n=6) 

Myocardial Infarction – MI Site 0.97±0.39 (n=6) 
 
Values are expressed as mean ± SD, with sample size in parentheses 
†p = 0.03 between all LV Wall groups (ANOVA, single factor) 
*p = 0.91 between control and sham-operated LV Wall groups (unpaired two-tailed t-test) 
‡p < 0.05 between every two group combination except the control and sham-operated 
LV Wall combination (unpaired two-tailed t-test) 
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CHAPTER 4 

DISCUSSION 
 
 
 

It has previously been shown (51) that T1-weighted MEMRI in a murine MI 

model provides clear delineation of the myocardial infarction site. The present study has 

demonstrated the quantitative ability of MEMRI T1-mapping in the murine heart to 

determine cellular viability in the vicinity of the myocardial infarction site. This could 

ultimately lead to an early in vivo indicator of viable treatment options depending on the 

state of the myocytes and their potential salvageability. 

T1-mapping of cardiac MEMRI has demonstrated enough sensitivity to provide 

quantitative information over the range of MnCl2 doses used in our experiment. By 

demonstrating the dynamic range of relaxivity changes over a range of MnCl2 infusion 

doses this method can provide a means of optimizing MnCl2 infusion protocols. Mn2+ is 

know to be cardiotoxic at high doses (55). However, we have demonstrated a large range 

of signal enhancement at subtoxic levels. Due to this fact, lower doses of MnCl2 can be 

used while still producing significant relaxivity changes.  

Results of the dose dependent study (Figure 2) not only allow for the design of 

contrast agent optimal doses to minimize toxicity concerns, but also allow in vivo 

estimates of absolute Mn concentration following LV Wall ∆R1 calculations. This 

technique can therefore be used to monitor the in vivo Mn levels non-invasively. One 

interesting observation is the non-linear relationship between the total MnCl2 infusion 

dose and the LV Wall ∆R1. Instead of a purely linear increase in signal intensity 

enhancement a plateau region occurs at a dose above 197 nmoles/g BW, likely due to 
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physiological effects. This is in good agreement with previously reported results (23). 

Following the same non-linear form as the total infusion dose, it is seen that above 

approximately 100 μg/g dry heart weight, the absolute Mn concentration also reaches a 

plateau. Within this plateau there is no increase in ∆R1 following an increase in absolute 

heart manganese concentration. As the infusion of MnCl2 increases, the absolute Mn 

content of the heart also increases (Figure 3a), but ∆R1 reaches a plateau at 4.61 /sec. 

The plateau effect can be potentially explained in a number of ways, either due to 

the limitations of Ca2+ uptake, or due to limited compartmentalization. The cellular 

binding sites could become saturated at a certain dose, limiting the uptake of Mn2+. 

Another explanation for the plateau phenomena could be due to a gradient effect whereby 

the cells become saturated and are unable to uptake more Mn2+. Similarly, Mn2+ could 

have an inhibitory effect on the Ca2+ channels, limiting the scope for Mn2+ uptake. 

Further observations are necessary to decipher the physiology of this phenomenon. 

The non-zero intercept in Figure 2 is in part due to the finite length of infusion 

tubing attached to the tail vein needle. A short, 9.9±0.4 cm, length of PE10 tubing 

containing saline solution connects the infusion needle to the MnCl2 infusion line. This 

length of tubing corresponds to an equivalent infusion dose of 16.3±0.7 nmoles/g BW 

MnCl2. This helps to validate our assumption for the low dose linear fit, where at doses 

below 16.3 nmoles/g BW there is assumed to be no manganese infusion and 0  R1 =Δ . 

Despite the number of applications of Mn2+ as an MRI contrast agent, little detail 

is known about the efflux mechanisms of Mn2+ from myocytes. The signal washout from 

the LV Wall is shown in Figure 4. After 2.5 hours 50% of the ∆R1 signal had been 

attenuated in the LV Wall, with a small non-zero ∆R1 remaining until a few days post-
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infusion. In comparison, it has been shown in a rat model that manganese is cleared from 

all the major organs within 24 hours (69). 

The form of this washout curve is still uncertain; numerical modeling of Mn 

transport may provide additional insight. The complicated form of this curve could 

contain information about the Mn2+ efflux mechanisms within the myocardium. 

Accumulation of Mn2+ in various compartments within the myocytes could explain the 

variations between the initially rapid washout and the sustained signal enhancement over 

a few days. Differences in individual compartment efflux rates would contribute to the 

washout curve. One potential efflux mechanism is via the sodium-calcium exchanger 

(NCX). The NCX is an important transporter for the regulation of intracellular Ca2+ 

concentration (70). By altering the characteristics of different efflux mechanisms, such as 

the NCX channel, it might be possible to further interrogate the form of the curve and the 

underlying physiology. This information, along with the use of physiological modulators 

such as pharmaceutical agents, could be critical for examining potential Mn2+ 

extrudability pathways. This technique could also provide a means of identifying Mn2+ 

efflux modulation due to myocardial injury. 

The myocardial infarction study utilized the optimal dose and timing properties 

acquired from the previous sections of this study. We are able to show statistically 

significant differences between healthy myocardial tissue, in the control and sham-

operated groups, and the MI adjacent zone in the MI group. Mn2+ had previously been 

shown to provide functional, pathological and viability data in myocardial tissue using 

T1-weighted imaging techniques in mice (51) and dogs (52). Manganese-dipyridoxyl 

diphosphate (MnDPDP), a Mn2+ releasing contrast agent (71), is currently approved for 
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clinical liver imaging. MnDPDP-enhanced images have demonstrated manganese 

retention in viable pig myocardium (72) with clearance of manganese from infarcted 

myocytes in a rat model (50). This behavior is consistent with MEMRI contrast. 

Recently, MnDPDP has been used as a viability marker in patients with myocardial 

infarction (47). However, more quantitative information was required to be able to assess 

the extent of damage to the myocardium, which we have demonstrated through the T1-

mapping protocol. 

Myocardial infarction causes physiological remodeling leading to potential Ca2+ 

handling alterations. This remodeling process can potentially be observed and monitored 

using manganese enhanced T1-mapping as shown by the sensitivity of our data. The 

injury site of the LV Wall showed a ∆R1 almost 5 times less than the healthy LV Wall of 

the control mouse. More interestingly, with respect to recovery of the injured tissue, this 

technique is sensitive to the reduced uptake of Mn2+ in the adjacent zone. During 

myocardial ischemia intracellular calcium concentrations increase due to increased Ca2+ 

influx and reduced efflux (9). However, our results show reduced Mn2+ uptake in both the 

MI site and adjacent zone. 

The phenomena of reduced Mn2+ uptake in both the MI region and the adjacent 

zone are complex to address. To date conflicting results have been reported in other 

studies. In vivo manganese enhanced MRI has observed signal attenuations in mice (51), 

rat (73) and larger mammalian species (74). However, in vitro studies have shown 

enhanced Ca2+ influx as a way of a compensatory process (75). 

Camellitti, et al. (76) have shown ex vivo results which demonstrate small islands 

of viable myocytes in ischemic regions. These islands could potentially explain the non-
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zero Mn2+ uptake in the ischemic regions. In the adjacent area we suggest that the volume 

of viable tissue is still reduced as compared to healthy LV Wall tissue of the control and 

sham operated mice. This could potentially explain the reduction of Mn2+ uptake in this 

area. Temporal responses to myocardial infarction could now be predicted in mice using 

this preclinical model, looking at the alterations in calcium handling with recovery. 
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CHAPTER 5 

CONCLUSIONS 
 
 
 

This study demonstrates that T1-mapping of cardiac manganese-enhanced MRI 

can be used to quantify in vivo Mn concentrations and define regions of potentially 

altered Ca2+ homeostasis in a myocardial infarction model. The effect of manganese 

infusion dose has been studied up to approximately 297 nmoles/g BW, with an initial 

slow uptake occurring below 61 nmoles/g BW, and a more rapid uptake until 197 

nmoles/g BW. At this dose the physiological steady state was achieved. 

Mn2+ washout has also been investigated in the LV Wall. The ∆R1 signal is 

attenuated to 50% of the steady state signal in approximately 2.5 hours post-infusion. 

There is still a ∆R1 effect remaining after a few days suggesting potential Mn2+ retention 

at the site. The overall washout progression warrants further investigation, but this 

technique could provide a potential way to examine the extrudability of Mn2+ from the 

myocardium. 

One motivation for this study is that myocardial infarction causes physiological 

remodeling leading to potential Ca2+ handling alteration. With the potential of using T1-

mapping and ICP-MS analysis to quantify the in vivo concentration of Mn, more insight 

into myocardial infarction adjacent zones may be provided. This technique could provide 

additional information such as: (1) optimization of the MnCl2 dose to minimize the study 

dose; (2) quantification of Mn concentration in vivo; (3) temporal response of myocardial 

infarction or ischemic-reperfusion model(s); (4) pharmacological efficacy; and (5) 

potential preclinical and translational models to monitor disease treatment. 
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