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Abstract

In this paper we analyze the effect of four possible alternatives regarding the prior distri-
butions in a linear model with autoregressive errors to predict piped water consumption:
Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student’s t-Scaled Beta
two. We show the effects of these prior distributions on the posterior distributions under dif-
ferent assumptions associated with the coefficient of variation of prior hyperparameters in a
context where there is a conflict between the sample information and the elicited hyperparam-
eters. We show that the posterior parameters are less affected by the prior hyperparameters
when the Studentized-Gamma and Student’s t-Scaled Beta two models are used. We show
that the Normal-Gamma model obtains sensible outcomes in predictions when there is a
small sample size. However, this property is lost when the experts overestimate the certainty
of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea
to use Student’s t distribution as the prior distribution, because we obtain small posterior
predictive errors. In addition, we find that the posterior predictive distributions using one
of the versions of Student’s t as prior are robust to the coefficient of variation of the prior
parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution
of the variance concentrated near zero when there is a high level of confidence in the experts’
knowledge: this implies a narrow posterior predictive credibility interval, especially using
small sample sizes.

JEL Classification: C11, C53
Keywords: Autoregressive model, Bayesian analysis, Forecast, Robust prior

∗Department of Economics, School of Economics and Finance, Universidad EAFIT. email:
aramir21@eafit.edu.co

†Department of Statistics, Universidade Federal do Rio de Janeiro. email: jcardonj@dme.ufrj.br
‡Department of Mathematics, University of Puerto Rico. email: lrpericchi@uprrp.edu



1 Introduction

Although the concepts of Bayesian analysis hold true for any sample size, it is interesting to

examine the effects of the prior distributions on the posterior distributions given different sam-

ple sizes. In particular, it is well known that the prior distributions play a relatively greater

role than do the data when the sample size is small (Greenberg, 2008). Therefore, the effect of

the prior distributions on Bayesian inference is enormous when there are few data, and under

this circumstance, the method that is chosen to build the prior distributions is very relevant.

More specifically, we analyze the effect of four possible alternatives regarding the prior distri-

butions in a linear model with autoregressive errors: Normal-Gamma, Normal-Scaled Beta two,

Studentized-Gamma and Student’s t-Scaled Beta two. We study the effect of these prior dis-

tributions on the parameters and predictive posterior distributions under different assumptions

related to the coefficient of variation of the prior parameters.

The concept of probability from a Bayesian point of view is associated with the uncertainty

of the occurrence of an event. In this scenario, the experts’ degree of belief about an event can be

tackled from either a subjective or objective perspective. The construction of prior distributions

based on the subjective approach should be adopted in scenarios where it is tenable (Berger,

2006). However, this methodology is strongly influenced by the experts’ perception of reality

(Garthwaite et al., 2004); and unfortunately, experimental exercises have shown that human

beings use heuristic strategies to make statistical statements which lead to biased affirmations

(Kahneman, 2011). It does not matter which technique is used, the main objective in science is

to maximize the process of learning from observation. This observation can be compiled from

data or from the researcher’s experience. However, what happens when there is a conflict be-

tween the sample information and the prior distributions? A possible solution is to use robust

priors (Fúquene et al., 2009, 2012). In particular, we perform an elicitation procedure with

experts from the main piped water company of the Metropolitan Area of Medelĺın (Colombia),

and obtain the mean prior elasticities associated with the average household consumption of

piped water from stratum four of this service.1 As will be shown, there is a conflict between the

1The residential consumers of utilities in Colombia are classified by strata. This is done in order to give
subsidies to poor people who are in strata one and two. On the other hand, rich people, who are in strata five
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elicited parameters obtained from the experts’ beliefs and the sample information. Therefore,

robust prior distributions are of great help to obtain sensible outcomes under this circumstance.

The main goal in this paper is to show the effects on the parameters and predictive posterior

distributions of four different combinations of prior distributions in a linear model with autore-

gressive errors applied to the piped water consumption in the Metropolitan Area of Medelĺın

(Colombia). We analyze the effects on this model of different sample sizes in a context where

there is a conflict between the sample information and the elicited parameters.

We show that the posterior localization parameters are less affected by the prior hyperpa-

rameters when the Studentized-Gamma and Student’s t-Scaled Beta two models are used. In

addition, the Normal-Gamma model generates sensible outcomes in predictions when there is

a small sample size (10 observations). However, this property is lost when the experts overes-

timate the certainty of their knowledge of the phenomenon. In case the experts greatly trust

their beliefs, it is a good idea to use Student’s t distribution as the prior distribution because

we obtain small posterior predictive errors. In addition, we find that the posterior predictive

distributions using a Student’s t as prior are robust to the coefficient of variation of the prior

hyperparameters. Finally, it is shown that the Normal-Gamma model has a posterior distribu-

tion of the variance concentrated near zero when there is a high prior coefficient of variation:

this implies a narrow posterior predictive credibility interval, especially with small sample sizes.

After this introduction, we outline the principal statements about our model in Section 2.

Section 3 shows the principal outcomes of our analysis. And finally, we make some concluding

remarks in Section 4.

2 Bayes regression with autoregressive errors

We study the average household piped water consumption of strata four in the Metropolitan

Area of Medelĺın (Colombia). We propose a linear model with autoregressive errors due to

and six, have to pay contributions to the system in order to subsidize the poor. Finally, people who are in the
medium strata (three and four) do not pay any contribution or obtain any subsidy.
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having time series data which imply an inertial effect on consumption. We have quarterly data

from 1985 to 2010, and estimate the model (Eqs. 1 and 2) with different sample sizes and prior

distributions.

log {cmet} = β0 + β1log {It}+ β2 {nt}+ β3log {pt}+ µt (1)

where

µt = ϕµt−1 + ϵt (2)

t = 1, 2, . . . , T and ϵ
i.i.d∼ (0, σ2

ϵ ).

log {cmet}: natural logarithm of the average consumption of piped water.

log {It}: natural logarithm of average real income of household.

nt: average number of people in household.

log {pt}: natural logarithm of the real price of piped water.

µt: autocorrelated stochastic perturbation.

We must estimate β1 and β3, which are the income and price demand elasticities, and β2,

which is the semi-elasticity of piped water consumption with respect to the number of people in

the household. In addition, ϕ captures the inertial effect on consumption.

Initially, we assume that the prior distributions are β ∼ NK(β0, B0), ϕ ∝ N (ϕ0, σ
2
ϕ0
)Iϕ∈(−1,1)

and σ2
ϵ ∼ IG(α0/2, δ0/2) where Iϕ∈(−1,1) denotes the indicator function of the set (−1, 1)

(Chib, 1993). It can be shown that the posterior distributions are β|yt, xt, σ2
ϵ , ϕ ∼ NK(β̄, B̄),

σ2
ϵ |yt, xt, β, ϕ ∼ IG(α1/2, δ1/2) and ϕ|yt, xt, β, σ2

ϵ ∝ N (ϕ̄, σ̄2
ϕ)Iϕ∈(−1,1) where yt = log {cmet},

xt = [1, log {It} , nt, log {pt}]′ and

B̄ =

[
σ−2
ϵ

{
x1x

′
1

1− ϕ2
+

T∑
t=2

(xt − ϕxt−1)(xt − ϕxt−1)
′

}
+B−1

0

]−1

(3)

β̄ = B̄

[
σ−2
ϵ

{
y1x1
1− ϕ2

+

T∑
t=2

(xt − ϕxt−1)(yt − ϕyt−1)

}
+B−1

0 β0

]
(4)

α = α0 + T (5)
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δ = δ0 +
(y1 − x′1β)

2

1− ϕ2
+

T∑
t=2

(
(yt − ϕyt−1)− (xt − ϕxt−1)

′β)2
)

(6)

σ̄2
ϕ =

(
σ−2
ϵ

T∑
t=2

(yt−1 − x′t−1β)
2 + σ−2

ϕ0

)−1

(7)

ϕ̄ = σ̄2
ϕ

(
σ−2
ϵ

T∑
t=2

(yt − x′tβ)(yt−1 − x′t−1β) + ϕ0σ
−2
ϕ0

)
(8)

In addition, we use as prior distributions for β a tK(β0, B0, 2). This is a robust prior dis-

tribution (Fúquene et al., 2009). Moreover, we use as prior distribution for the variance a

SB2(0.5, 0.01, 100), which is a “non-informative” distribution. The idea is to analyze the conse-

quences for the posterior parameter and predictive distributions associated with different prior

distributions. We do not get any analytical solution in these circumstances.

2.1 The hyperparameters of the prior distributions

Following Gelman (2006), we use a “non-informative” prior distribution in the variance param-

eter. It is well known that the IG(e, e) distribution implies an improper prior when e → 0, and

so in our analysis we use σ2
ϵ ∼ IG(0.001, 0.001) as the prior density for the variance parame-

ter; however, we use informative distributions in the case of localization parameters, then the

hyperparameters of these prior distributions must be fixed. Therefore, we employ elicitation

techniques in order to assign the proper values to these hyperparameters. We elicit an expert

from the most important public utility company in the Metropolitan Area of Medelĺın (Colom-

bia). This person has worked in the company for 12 years, and her work is directly related to

forecasts of piped water consumption in the residential sector. So, we guess that this person is

an expert in this service.

Regarding the elicitation procedure, the main objective is to convert the expert’s knowledge

into probabilistic statements: a mean elasticity or semi-elasticity in this case. The fundamental

steps in this process are (Kadane and Wolfson, 1998):

1. Establishing the general framework of the elicitation process.
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2. Checking the consistency of the expert’s statements.

3. Obtaining a mean of elicited parameters.

An important issue in an elicitation process is how people perceive reality, and the way that

people assign statistical statements to events. In particular, people use heuristics to make sta-

tistical statements, and these heuristics can cause bias (Tversky and Kahneman, 1974, 1973).

Obviously, these heuristics are based on the available information, where recent events have a

more important impact than past events. Furthermore, people make estimates by starting from

an initial value that is adjusted to yield a final answer. Generally, this adjustment is typically

insufficient. This phenomenon is reinforced by conservatism, which means that the updating pro-

cess of prior statistical statements, given new information, is lower than the statements deduced

from the Bayes theorem. Moreover, Tversky and Kahneman (1971) have shown that individuals

incorrectly think that the characteristics of any sample are the same as the characteristics of

the population, even in the case of small samples. Finally, Fischhoff and Beyth (1975) have

shown that prior knowledge of an event causes some distortions in the memory that can affect

the elicitation procedure. As we can see, the elicitation procedure has a lot of shortcomings;

we try to take into account all these in our elicitation process. However, it is quite difficult to

accomplish this task.

Our analysis is focused on the income and price demand elasticities, and the semi-elasticity

regarding the average number of people living in the household. The reason is that these pa-

rameters are more approachable by the expert’s knowledge. Regarding the covariance matrix,

Beach and Swenson (1966) have shown that experts have difficulty giving information about a

covariance matrix. Furthermore, Keren (1991) shows that experts have a tendency to overes-

timate their knowledge regarding parameters, which implies narrow credibility intervals. As a

consequence, we assume that there is no covariance between the parameters, and additionally,

we analyze different scenarios of the variance of parameters.

On the other hand, we estimate this model using quarterly data from 1985 to 2010 where the

source of this dataset is Empresas Públicas de Medelĺın, the most important public utility service
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company in Medelĺın (Colombia). The estimation is done for stratum four in the Metropolitan

Area of Medelĺın.

We can observe the mean of the elicited parameters in Table 1. As we can see in this table,

there is a conflict between the elicited mean and the sample information. For instance, the

elicited mean of the price demand elasticity is equal to -0.10 while we obtain -0.17 using sample

information. The former value means that according to the expert’s information, an increment

of 10% in the price implies a reduction of 9.5% in the water consumption. On the other hand,

the same price’s increment implies a reduction of 15.6% using the sample information. It can

be a good idea to use robust prior distributions under such circumstances (Fúquene et al., 2009).

3 Results

We assign different levels to the prior variances σ2
βi

in all our models, so that (σβi
/βi) ∗ 100% =

{10%, 30%, 60%, 100%, 130%}. We also perform our estimations with different sample sizes.

Given that we have data from 1985q1 to 2010q3, we take the last observations to perform our

estimations with n = {10, 100}. The idea is to study the impact of different prior models and

sample sizes on the posterior parameter and predictive distributions.2

We use the Metropolis-Hastings algorithm to perform all our estimations (Metropolis et al.,

1953; Hastings, 1970). Therefore, we know from the theory of Markov chains that our chains

eventually converge to the stationary distribution, which is also our target distribution. Sub-

sequently, we implement some visual and formal tests to check this assumption. In particular,

we make autocorrelation graphs of the chains and carry out the Gelman and Rubin (1992) test,

and find a good mixing of our chains.3

2All our estimations are performed in the R package (R Development Core Team, 2011) and JAGS (Just
Another Gibbs Sampler, http://mcmc-jags.sourceforge.net/).

3All tests are performed in the library coda (Plummer et al., 2012) in the R package, and are available upon
request.
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3.1 Posterior location parameter estimates

First, we show the posterior parameter estimates on varying the variance level and sample size

for four models: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student’s

t-Scaled Beta two.

Normal-Gamma Model

As we can see in Tables 2, 3 and 4, the coefficient of variation of the hyperparameters implies

a high degree of variability between the posterior median estimates of each parameter. This

phenomenon is greater with a large sample size because a large sample size can give more ev-

idence against prior information. As a consequence, small changes in the variance level of the

hyperparameters may cause large changes in estimates of the posterior coefficients. On the other

hand, when there is a small sample size, the posterior coefficients’ medians are anchored to the

elicited parameters, and the coefficient of variation does not matter in most cases. This fact is

present although we use “non-informative” prior distributions for the variance of the models.

Finally, we can observe from these tables that a high level of coefficient of variation means a

wider inter quantile range. In this case, the range decreases with the sample size.

Normal-Scaled Beta two Model

Regarding the posterior estimates of the localization parameters using a Normal-Scaled Beta two

model, we practically observe the same pattern that we saw in the Normal-Gamma model (see

Tables 5, 6 and 7). However, the evolution in the posterior parameter estimates when the prior

coefficient of variation changes is more consistent in the Normal-Scaled Beta two model. More

specifically, there are some abrupt changes in the Normal-Gamma model when the coefficient of

variation is 130%, especially when there is a small sample. This phenomenon is not evident in

the Normal-Scaled Beta two model.
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Studentized-Gamma Model

If we compare the Normal-Gamma model or the Normal-Scaled Beta two model with the

Studentized-Gamma model, we find that the Studentized-Gamma model converges faster to

the sample information than the other two models, and additionally, the posterior median pa-

rameters using this model have less variability when the level of variance fluctuates. That is,

the Studentized-Gamma model is less affected by the prior hyperparameters. This phenomenon

is particularly relevant when the sample size is large and the prior variance is small compared

to the prior mean. See Tables 8, 9 and 10.

Student’s t-Scaled Beta two model

Regarding the Student’s t-Scaled Beta two model, we find similar outcomes as with the Studentized-

Gamma model. See Tables 11, 12 and 13.

The main conclusion of these exercises is that when there is a small sample size, the prior

hyperparameters have a huge effect on the posterior outcomes: this effect might be a little bit

mitigated when the Studentized-Gamma and Student’s t-Scaled Beta two models are used when

the expert’s beliefs have a high degree of uncertainty associated with them.4

3.2 Posterior predictive distribution

Despite the fact that we have data from 1985q1 to 2010q3, we estimate our models using 2009q3

as the last observation, with different sample sizes n = {10, 100} from this observation. Then,

we evaluate the predictive capacity of our models using the data from 2009q4 to 2010q1.

Perhaps the most relevant finding from this exercise is that the posterior predictive distri-

butions using the Studentized-Gamma model and Student’st-Scaled Beta two model as prior

distributions are basically the same, that is, these posterior distributions are robust to the co-

efficient of variation of the prior parameters. Therefore, we just show in Table 14 the results of

4We can see in the Annex (5) the box plots associated with the coefficients under different models and different
sample sizes (see Figs. 1, 2 and 3).
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the posterior predictive distribution when (σβi
/β0i) ∗ 100% = 10%.

As we can see in Table 14, the posterior prediction error using the Studentized-Gamma

and Student’s t-Scaled Beta two models are smaller than when using the Normal-Gamma and

Normal-Scaled Beta two models when the level of coefficient of variation is small, as well as

the sample size. The average errors are 46.5% and 48.3% in the case of the Normal-Gamma

and Normal-Scaled Beta two models, while those errors are 19.9% and 18.7% in the case of the

Studentized-Gamma and Student’s t-Scaled Beta two models. However, for the former models,

this pattern changes when the coefficient of variation increases. Specifically, the average error

decreases from 37.6% and 37.9% (when the coefficient level is 30%) to 13.4% and 12.6% when

this coefficient is 60% (see Table 15).

We show in Table 15 that the average errors in the Normal-Gamma model decrease with

the variance level, that is, a large coefficient of variation implies a small prediction error. In

particular, a coefficient of variation equal to 130% gives an average prediction error equal to

6.32% in this case. This pattern is not clear in the case of the Normal-Scaled Beta two model,

where the average error has a ‘U’ form, that is, low and high levels of the coefficient of variation

imply high predictive errors, while medium values of the coefficient of variation give low levels

of predictive errors. Furthermore, we can see from these tables that the credibility intervals of

the Normal-Gamma model are the narrowest when the coefficient of variation is large. This is

explained by the posterior estimation of the model’s variance (see subsection 3.3).

Those outcomes are apparently not intuitive because we established in the previous subsec-

tion that with a small sample, the posterior parameter estimates from the Studentized-Gamma

and Student’s t-Scaled Beta two models are less affected by the hyperparameters than are those

of the Normal-Gamma and Normal-Scaled Beta two models. The reason why we get better pre-

dictive result using a Normal-Gamma model with a high degree of uncertainty about experts’

beliefs is due to the constant parameter. Forecasts are so sensitive to this parameter; unfortu-

nately, this coefficient is normally omitted in structural elicitation procedures.
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Table 1: Parameter estimates: Elicited and sample information.

Parameter Elicitation Data

β̂1 0.10 0.16

β̂2 0.30 0.43

β̂3 -0.10 -0.17

Table 2: Summary of posterior distributions for the income elasticity β1 under different levels
of prior variance

σβ1
β1

∗ 100%

Sample size Variance level σβ1
β1

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.0659 0.0930 0.0997 0.1066 0.1374
30% -0.0179 0.0812 0.1010 0.1208 0.2238
60% -0.1609 0.0595 0.1005 0.1422 0.3471
100% -0.2389 0.0331 0.1006 0.1686 0.4614
130% -0.4085 0.0238 0.0949 0.1656 0.5637

n = 100

10% 0.0612 0.0936 0.1002 0.1070 0.1402
30% -0.0024 0.0910 0.1100 0.1294 0.2082
60% -0.0171 0.1234 0.1495 0.1752 0.3025
100% -0.0307 0.1365 0.1670 0.1974 0.3622
130% 0.0194 0.1446 0.1729 0.2021 0.3683

Table 3: Summary of posterior distributions for semi-elasticity of number of people β2 under
different levels of prior variance

σβ2
β2

∗ 100%

Sample size Variance level σβ2
β2

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.1941 0.2791 0.2994 0.3197 0.4143
30% -0.0344 0.2384 0.3006 0.3612 0.6387
60% -0.3979 0.1994 0.3181 0.4415 0.9692
100% -0.7992 0.1702 0.3689 0.5668 1.4537
130% -0.8933 0.1679 0.2980 0.4472 1.5784

n = 100

10% 0.2045 0.2843 0.3042 0.3240 0.4243
30% 0.3611 0.4602 0.4798 0.4993 0.5843
60% 0.3803 0.4537 0.4695 0.4861 0.5666
100% 0.3783 0.4522 0.4699 0.4877 0.5625
130% 0.3787 0.4479 0.4634 0.4788 0.5500
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Table 4: Summary of posterior distributions for price elasticity β3 under different levels of prior
variance

σβ3
β3

∗ 100%

Sample size Variance level σβ3
β3

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.1380 -0.1067 -0.1000 -0.0933 -0.0633
30% -0.2132 -0.1199 -0.0996 -0.0798 0.0135
60% -0.3385 -0.1373 -0.0969 -0.0582 0.1441
100% -0.4925 -0.1625 -0.0935 -0.0269 0.2533
130% -0.5166 -0.1484 -0.0648 0.0174 0.4133

n = 100

10% -0.1366 -0.1068 -0.1001 -0.0932 -0.0657
30% -0.2296 -0.1468 -0.1305 -0.1138 -0.0401
60% -0.2418 -0.1642 -0.1476 -0.1306 -0.0496
100% -0.2434 -0.1675 -0.1483 -0.1293 -0.0384
130% -0.2538 -0.1638 -0.1470 -0.1303 -0.0545

Table 5: Summary of posterior distributions for income elasticity β1 under different levels of
prior variance

σβ1
β1

∗ 100%

Sample size Variance level σβ1
β1

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.0635 0.0931 0.1000 0.1066 0.1351
30% -0.0128 0.0795 0.0999 0.1194 0.2131
60% -0.1121 0.0604 0.0998 0.1408 0.3246
100% -0.3340 0.0320 0.1018 0.1674 0.4575
130% -0.3607 0.0152 0.0994 0.1860 0.5839

n = 100

10% 0.0625 0.0935 0.0999 0.1068 0.1396
30% 0.0058 0.0908 0.1092 0.1287 0.2125
60% 0.0067 0.1230 0.1492 0.1756 0.2833
100% 0.0050 0.1358 0.1676 0.1974 0.3438
130% -0.0203 0.1396 0.1720 0.2031 0.3730
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Table 6: Summary of posterior distributions for semi-elasticity of number of people β2 under
different levels of prior variance

σβ2
β2

∗ 100%

Sample size Variance level σβ2
β2

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.1864 0.2803 0.3000 0.3204 0.4136
30% -0.0849 0.2419 0.3020 0.3622 0.6313
60% -0.2827 0.2055 0.3243 0.4433 0.9787
100% -0.6325 0.1704 0.3689 0.5708 0.4614
130% -1.0461 0.1664 0.4175 0.6659 1.8176

n = 100

10% 0.1768 0.2837 0.3041 0.3246 0.4139
30% 0.3555 0.4604 0.4800 0.4996 0.6019
60% 0.3708 0.4529 0.4692 0.4850 0.5693
100% 0.3654 0.4522 0.4692 0.4869 0.5767
130% 0.3699 0.4526 0.4696 0.4865 0.5736

Table 7: Summary of posterior distributions for price elasticity β3 under different levels of prior
variance

σβ3
β3

∗ 100%

Sample size Variance level σβ3
β3

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.1371 -0.1068 -0.1001 -0.0933 -0.0586
30% -0.2238 -0.1196 -0.0997 -0.0793 0.0101
60% -0.3085 -0.1386 -0.0978 -0.0571 0.1335
100% -0.4442 -0.1600 -0.0920 -0.0264 0.3101
130% -0.5624 -0.1727 -0.0874 0.0020 0.4302

n = 100

10% -0.1465 -0.1071 -0.1003 -0.0935 -0.0631
30% -0.2360 -0.1462 -0.1293 -0.1124 -0.0361
60% -0.2443 -0.1656 -0.1482 -0.1308 -0.0552
100% -0.2624 -0.1679 -0.1492 -0.1304 -0.0452
130% -0.2596 -0.1676 -0.1491 -0.1310 -0.0358
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Table 8: Summary of posterior distributions for income elasticity β1 under different levels of
prior variance

σβ1
β1

∗ 100%

Sample size Variance level σβ1
β1

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.2142 0.0917 0.0998 0.1083 0.2472
30% -0.4500 0.0770 0.1006 0.1248 0.6259
60% -0.9284 0.0535 0.1027 0.1504 1.3464
100% -1.4976 0.0184 0.0993 0.1795 1.7151
130% -2.2123 0.0008 0.1012 0.2055 2.5727

n = 100

10% 0.0144 0.0980 0.1060 0.1178 0.2741
30% 0.0108 0.1076 0.1289 0.1561 0.3632
60% -0.0203 0.1201 0.1479 0.1787 0.3350
100% -0.0274 0.1279 0.1602 0.1920 0.3620
130% -0.0204 0.1320 0.1639 0.1963 0.3693

Table 9: Summary of posterior distributions for semi-elasticity of number of people β2 under
different levels of prior variance

σβ2
β2

∗ 100%

Sample size Variance level σβ2
β2

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.2311 0.2758 0.2999 0.3250 1.0916
30% -0.9980 0.2422 0.3093 0.3825 3.9549
60% -2.1270 0.2084 0.3435 0.4977 3.1598
100% -2.9453 0.1784 0.4012 0.6646 5.6110
130% -3.1843 0.1614 0.4375 0.7750 4.3472

n = 100

10% 0.3822 0.4737 0.4907 0.5056 0.5654
30% 0.3712 0.4598 0.4761 0.4934 0.5648
60% 0.3789 0.4568 0.4738 0.4899 0.5656
100% 0.3893 0.4566 0.4733 0.4907 0.5810
130% 0.3768 0.4550 0.4726 0.4908 0.5726
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Table 10: Summary of posterior distributions for price elasticity β3 under different levels of
prior variance

σβ3
β3

∗ 100%

Sample size Variance level σβ3
β3

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.2422 -0.1081 -0.1002 -0.0923 0.1166
30% -0.7944 -0.1241 -0.0993 -0.0733 0.9372
60% -0.8128 -0.1416 -0.0943 -0.0429 2.8426
100% -1.6399 -0.1654 -0.0874 -0.0015 3.1558
130% -2.1081 -0.1802 -0.0806 0.0308 3.0872

n = 100

10% -0.2328 -0.1360 -0.1171 -0.1055 -0.0694
30% -0.2537 -0.1567 -0.1389 -0.1219 -0.0457
60% -0.2558 -0.1628 -0.1452 -0.1275 -0.0499
100% -0.2425 -0.1650 -0.1469 -0.1284 -0.0310
130% -0.2480 -0.1666 -0.1474 -0.1274 -0.0341

Table 11: Summary of posterior distributions for income elasticity β1 under different levels of
prior variance

σβ1
β1

∗ 100%

Sample size Variance level σβ1
β1

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.1746 0.0918 0.0999 0.1079 0.3159
30% -0.4358 0.0747 0.1000 0.1248 0.7921
60% -1.3186 0.0535 0.1016 0.1506 1.4169
100% -1.4947 0.0149 0.0966 0.1768 1.9064
130% -1.7872 0.0001 0.1012 0.2001 2.1374

n = 100

10% 0.0428 0.0983 0.1063 0.1123 0.3598
30% 0.0009 0.1076 0.1291 0.1562 0.3357
60% -0.0367 0.1207 0.1489 0.1785 0.3618
100% -0.0241 0.1288 0.1608 0.1926 0.3414
130% -0.0460 0.1317 0.1648 0.1983 0.3823
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Table 12: Summary of posterior distributions for semi-elasticity number of people β2 under
different levels of prior variance

σβ2
β2

∗ 100%

Sample size Variance level σβ2
β2

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.2711 0.2771 0.3006 0.3250 1.0675
30% -0.7706 0.2396 0.3111 0.3890 3.0840
60% -1.4452 0.2059 0.3380 0.4984 4.3999
100% -1.5909 0.1763 0.3953 0.6618 3.3711
130% -2.1597 0.1844 0.4546 0.7829 5.0511

n = 100

10% 0.3785 0.4712 0.4892 0.5044 0.5654
30% 0.3649 0.4598 0.4774 0.4935 0.5651
60% 0.3814 0.4576 0.4745 0.4915 0.5742
100% 0.3857 0.4563 0.4731 0.4911 0.5916
130% 0.3569 0.4565 0.4743 0.4923 0.5739

Table 13: Summary of posterior distributions for price elasticity β3 under different levels of
prior variance

σβ3
β3

∗ 100%

Sample size Variance level σβ3
β3

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% -0.3930 -0.1080 -0.0999 -0.0913 0.2323
30% -1.0507 -0.1226 -0.0984 -0.0737 0.5060
60% -1.4826 -0.1412 -0.0942 -0.0439 2.1076
100% -1.6051 -0.1646 -0.0873 -0.0023 3.7133
130% -1.8982 -0.1818 -0.0813 0.0247 2.2815

n = 100

10% -0.2476 -0.1387 -0.1180 -0.1061 -0.0655
30% -0.2515 -0.1565 -0.1377 -0.1205 -0.0454
60% -0.2567 -0.1624 -0.1440 -0.1258 -0.0324
100% -0.2412 -0.1648 -0.1469 -0.1272 -0.0438
130% -0.2613 -0.1649 -0.1460 -0.1267 -0.0459
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Table 14: First level for prior variance of βi: ((σβi
/βi) ∗ 100% = 10%) and n = 10

Model Period Real value Predic. value Lower HPD interval Upper HPD interval Error rate

Normal-Gamma

2009 Q4 14.48 8.01 3.76 14.74 48.42%
2010 Q1 13.88 8.25 3.86 15.17 45.49%
2010 Q2 13.78 7.99 3.89 14.86 46.46%
2010 Q3 13.64 8.15 3.83 15.02 45.21%

Normal-Scaled Beta2

2009 Q4 14.48 7.54 3.66 13.45 50.40%
2010 Q1 13.88 7.76 3.76 13.83 47.35%
2010 Q2 13.78 7.52 3.65 13.43 48.38%
2010 Q3 13.64 7.68 3.72 13.69 47.07%

Studentized-Gamma

2009 Q4 14.48 16.38 12.28 20.77 15.07%
2010 Q1 13.88 16.86 12.68 21.39 22.11%
2010 Q2 13.78 16.34 12.23 20.71 19.55%
2010 Q3 13.64 16.68 12.51 21.13 22.86%

Student’s t-Scaled Beta2

2009 Q4 14.48 16.25 12.76 20.39 13.90%
2010 Q1 13.88 16.73 13.14 21.00 21.00%
2010 Q2 13.78 16.21 12.79 20.38 18.40%
2010 Q3 13.64 16.54 13.00 20.76 21.76%
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We can see in Table 16 that the average predictive error decreases with sample size. In

particular, we have average predictive errors of approximately 19% using the Normal-Gamma

and Normal-Scaled Beta two models, and errors near 4% using the Studentized-Gamma and

Student’s t-Scaled Beta two models when the sample size is 100 and the coefficient of variation

of the hyperparameters is 10%. On the other hand, if we use just 10 observations, the average

predictive errors are 47% in the case of the Student’s t models, but 19% using Normal models

(see Table 14).
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Table 15: Other levels for prior variance of βi: ((σβi
/βi) ∗ 100% = 30%, 60%, 100%, 130%) and

n = 10.

Model Period Real value Predic. value Lower HPD interval Upper HPD interval Error rate

Normal-Gamma: (30%)

2009 Q4 14.48 10.62 4.57 19.82 39.32%
2010 Q1 13.88 10.94 4.81 20.45 36.92%
2010 Q2 13.78 10.60 4.64 19.88 37.71%
2010 Q3 13.64 10.82 4.63 20.13 36.71%

Normal-Scaled Beta2: (30%)

2009 Q4 14.48 9.40 4.72 15.98 40.23%
2010 Q1 13.88 9.68 4.96 16.54 36.94%
2010 Q2 13.78 9.38 4.76 15.97 38.04%
2010 Q3 13.64 9.57 4.81 16.26 36.64%

Normal-Gamma: (60%)

2009 Q4 14.48 15.05 10.97 18.93 10.74%
2010 Q1 13.88 15.52 11.43 19.50 14.79%
2010 Q2 13.78 15.02 10.99 18.88 13.05%
2010 Q3 13.64 15.34 11.33 19.37 15.31%

Normal-Scaled Beta2: (60%)

2009 Q4 14.48 15.05 11.48 18.55 9.77%
2010 Q1 13.88 15.53 11.77 18.97 14.09%
2010 Q2 13.78 15.03 11.37 18.42 12.26%
2010 Q3 13.64 15.34 11.81 18.96 14.62%

Normal-Gamma: (100%)

2009 Q4 14.48 15.95 11.85 20.10 13.36%
2010 Q1 13.88 16.53 12.60 20.82 19.93%
2010 Q2 13.78 15.93 12.06 20.21 17.14%
2010 Q3 13.64 16.28 12.26 20.51 20.32%

Normal-Scaled Beta2: (100%)

2009 Q4 14.48 15.84 12.30 19.73 12.33%
2010 Q1 13.88 16.41 13.01 20.34 18.85%
2010 Q2 13.78 15.82 12.28 19.64 16.07%
2010 Q3 13.64 16.18 12.85 20.21 19.28%

Normal-Gamma: (130%)

2009 Q4 14.48 14.47 12.88 16.34 4.13%
2010 Q1 13.88 14.91 13.85 16.74 7.49%
2010 Q2 13.78 14.43 13.00 16.31 5.42%
2010 Q3 13.64 14.74 13.24 16.53 8.24%

Normal-Scaled Beta2: (130%)

2009 Q4 14.48 15.96 12.30 19.73 13.20%
2010 Q1 13.88 16.60 13.01 20.34 20.11%
2010 Q2 13.78 15.94 12.29 19.64 16.96%
2010 Q3 13.64 16.33 12.85 20.21 20.35%

Table 16: First level for prior variance of βi: ((σβi
/βi) ∗ 100% = 10%) and n = 100.

Model Period Real value Predic. value Lower HPD interval Upper HPD interval Error rate

Normal-Gamma

2009 Q4 14.48 11.92 8.01 16.78 21.48%
2010 Q1 13.88 12.28 8.23 17.26 18.15%
2010 Q2 13.78 11.90 7.99 16.75 19.17%
2010 Q3 13.64 12.14 8.11 17.05 17.91%

Normal-Scaled Beta2

2009 Q4 14.48 11.70 7.94 16.47 22.35%
2010 Q1 13.88 12.05 8.18 16.98 18.79%
2010 Q2 13.78 11.68 7.93 16.45 19.91%
2010 Q3 13.64 11.92 8.09 16.78 18.51%

Studentized-Gamma

2009 Q4 14.48 13.80 13.37 14.24 4.72%
2010 Q1 13.88 14.49 14.11 14.90 4.39%
2010 Q2 13.78 13.80 13.89 14.24 1.24%
2010 Q3 13.64 14.17 13.75 14.61 3.94%

Student’s t-Scaled Beta2

2009 Q4 14.48 13.81 13.39 14.28 4.62%
2010 Q1 13.88 14.51 14.08 14.88 4.49%
2010 Q2 13.78 13.81 13.37 14.23 1.30%
2010 Q3 13.64 14.19 13.75 14.64 4.05%

18



We show in Table 17 that a small increase in the coefficient of variation implies a significant

reduction in predictive error associated with the Normal-Gamma and Normal-Scaled Beta two

models. For instance, the average predictive error with a variance level of 30% is 3.84% and

3.83% using those models, respectively. These errors are 19.18% and 19.89% using a coefficient

of variation equal to 10%. In general, we can see from this table that the average posterior

predictive errors are similar for a specific cut-off in the coefficient of variation, this cut-off is

30% in this case. The explanation for this fact is related to the structural change in the pos-

terior estimations when there is more uncertainty in the experts’ beliefs. Therefore, it does

not matter if there is an increase in the sample size when the prior coefficients are so tied to a

specific value. This overestimation of the trust in the experts’ knowledge can cause a conflict

between the sample information and the experts’ beliefs, which might generate predictive errors.

Finally, the posterior predictive errors using the Normal distributions are comparable to

those from using Student’s t distribution when the sample size is 100 observations. Again, this

phenomenon is present once a high level of the coefficient of variation for the prior parameters

is achieved.

3.3 Posterior model’s variance estimates

We can see in Tables 18 and 19 that the posterior variance estimates in the Normal-Gamma

and Normal-Scaled Beta two models have a great level of variability between the coefficients of

variation. We also observe from these tables that the posterior median estimates of the variance

decrease with the coefficient of variation. There is a trade-off, where a high level of certainty

in the location parameters implies a small scale parameter. There is also an abrupt change in

the posterior median of the scale parameter when the coefficient of variation is 130% in the

Normal-Gamma model. This is the reason why the credibility interval in this case is too narrow.

Analyzing the Studentized-Gamma and Student’s t-Scaled Beta two models, one observes that

there is no relation between the level of prior uncertainty and the posterior scale parameter. As

we can see in Tables 20 and 21, the posterior median estimates of the variance of the models

are robust to the coefficients of variation of the location parameters.
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Regarding the sample size, we see in these tables that a small sample size implies a large

variance of the models. This is due to the fact that when there is a small sample size, the effect

of a non-informative prior distribution is greater on the posterior distribution compared with

the case where there is a large sample size.5

4 Concluding Remarks

We find in our application that the posterior predictive distributions using the Studentized-

Gamma or Student’s t-Scaled Beta two as priors are robust to the coefficient of variation of the

hyperparameters. Moreover, if experts greatly trust in their beliefs, we obtain small posterior

predictive errors using these distributions as prior.

Regarding the Normal-Gamma and Normal-Scaled Beta two models, we obtain sensible out-

comes in predictions when there is a small sample size. However, this property is lost when the

experts overestimate the certainty of their knowledge. Especially if a Normal-Gamma model is

used. In this particular model, the posterior distribution of the variance is concentrated near

zero when a high level of uncertainty about the experts’ beliefs are present, which implies a

narrow posterior predictive credibility interval, particularly with small sample sizes. This con-

clusion is in accordance with the results in the school example reported by Gelman (2006). This

phenomenon is less severe in the Normal-Scaled Beta two model.

5Fig. 4 depicts the box plot of scale parameters under different models and sample sizes.
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Table 17: Other levels for prior variance of βi: ((σβi
/βi) ∗ 100% = 30%, 60%, 100%, 130%) and

n = 100.

Model Period Real value Predic. value Lower HPD interval Upper HPD interval Error rate

Normal-Gamma (30%)

2009 Q4 14.48 13.86 13.27 14.49 4.36%
2010 Q1 13.88 14.54 13.97 15.11 4.77%
2010 Q2 13.78 13.86 13.27 14.47 1.85%
2010 Q3 13.64 14.23 13.61 14.84 4.38%

Normal-Scaled Beta2 (30%)

2009 Q4 14.48 13.85 13.22 14.49 4.42%
2010 Q1 13.88 14.54 13.94 15.11 4.72%
2010 Q2 13.78 13.85 13.25 14.49 1.86%
2010 Q3 13.64 14.22 13.60 14.86 4.32%

Normal-Gamma (60%)

2009 Q4 14.48 13.99 13.56 14.44 3.42%
2010 Q1 13.88 14.64 14.26 15.04 5.47%
2010 Q2 13.78 13.94 13.56 14.37 1.58%
2010 Q3 13.64 14.38 13.91 14.82 5.47%

Normal-Scaled Beta2 (60%)

2009 Q4 14.48 13.99 13.54 14.43 3.41%
2010 Q1 13.88 14.65 14.24 15.04 5.48%
2010 Q2 13.78 13.95 13.53 14.36 1.59%
2010 Q3 13.64 14.39 13.92 14.84 5.48%

Normal-Gamma (100%)

2009 Q4 14.48 14.04 13.59 14.52 3.06%
2010 Q1 13.88 14.69 14.30 15.12 5.81%
2010 Q2 13.78 13.99 13.55 14.42 1.77%
2010 Q3 13.64 14.45 13.97 14.94 5.99%

Normal-Scaled Beta2 (100%)

2009 Q4 14.48 14.05 13.59 14.52 3.02%
2010 Q1 13.88 14.70 14.28 15.10 5.84%
2010 Q2 13.78 13.99 13.58 14.43 1.80%
2010 Q3 13.64 14.46 13.98 14.94 6.02%

Normal-Gamma (130%)

2009 Q4 14.48 14.11 13.71 14.53 2.61%
2010 Q1 13.88 14.74 14.38 15.11 6.20%
2010 Q2 13.78 14.05 13.68 14.43 2.02%
2010 Q3 13.64 14.52 14.06 14.95 6.49%

Normal-Scaled Beta2 (130%)

2009 Q4 14.48 14.06 13.62 14.54 2.93%
2010 Q1 13.88 14.71 14.31 15.13 5.93%
2010 Q2 13.78 14.00 13.60 14.43 1.83%
2010 Q3 13.64 14.48 13.98 14.97 6.16%

Table 18: Summary of posterior distributions for σ2 under different levels of prior variance
σβi
βi

∗ 100% for i = 0, 1, 2, 3. using Normal-Gamma model

Sample size Variance level
σβi
βi

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.8859 1.3122 1.4557 1.6196 2.4728
30% 0.3494 1.0643 1.2485 1.4487 2.6848
60% 0.1345 0.2669 0.3312 0.4241 1.9433
100% 0.1345 0.2553 0.3085 0.3819 1.4825
130% 0.0160 0.0346 0.0533 0.1193 1.0262

n = 100

10% 1.1642 1.5654 1.6543 1.7465 2.2771
30% 0.0777 0.0988 0.1046 0.1109 0.1450
60% 0.0439 0.0554 0.0587 0.0625 0.0851
100% 0.0434 0.0553 0.0587 0.0625 0.0892
130% 0.0400 0.0497 0.0522 0.0549 0.0745
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Table 19: Summary of posterior distributions for σ2 under different levels of prior variance
σβi
βi

∗ 100% for i = 0, 1, 2, 3. using Normal-Scaled Beta two model

Sample size Variance level
σβi
βi

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.8756 1.2859 1.4221 1.5849 2.5246
30% 0.3831 0.9822 1.1477 1.3338 2.5930
60% 0.1135 0.2447 0.2988 0.3731 1.4208
100% 0.1229 0.2374 0.2860 0.3487 1.2484
130% 0.1123 0.2380 0.2848 0.3499 1.0843

n = 100

10% 1.1630 1.5530 1.6420 1.7340 2.2550
30% 0.0746 0.0992 0.1048 0.1110 0.1508
60% 0.0452 0.0551 0.0584 0.0621 0.0849
100% 0.0447 0.0550 0.0583 0.0619 0.0876
130% 0.0442 0.0551 0.0584 0.0623 0.0881

Table 20: Summary of posterior distributions for σ2 under different levels of prior variance
σβi
βi

∗ 100% for i = 0, 1, 2, 3. using Studentized-Gamma model

Sample size Variance level
σβi
βi

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.1329 0.2555 0.3098 0.3842 1.4449
30% 0.1258 0.2567 0.3116 0.3862 1.7726
60% 0.1197 0.2536 0.3089 0.3803 1.3317
100% 0.1246 0.2558 0.3103 0.3825 1.7946
130% 0.1075 0.2541 0.3098 0.3836 1.5762

n = 100

10% 0.0448 0.0566 0.0602 0.0640 0.0878
30% 0.0431 0.0555 0.0591 0.0630 0.0878
60% 0.0421 0.0557 0.0590 0.0628 0.0898
100% 0.0422 0.0557 0.0591 0.0629 0.0859
130% 0.0423 0.0557 0.0584 0.0629 0.0845
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Table 21: Summary of posterior distributions for σ2 under different levels of prior variance
σβi
βi

∗ 100% for i = 0, 1, 2, 3 using Student’s t-Scaled Beta two model

Sample size Variance level
σβi
βi

∗ 100% Min. 1st Qu. Median 3rd Qu. Max.

n = 10

10% 0.1149 0.2400 0.2897 0.3531 1.2479
30% 0.1193 0.2394 0.2878 0.3511 1.4062
60% 0.1031 0.2391 0.2873 0.3522 1.2467
100% 0.1154 0.2370 0.2843 0.3467 1.0696
130% 0.1161 0.2386 0.2858 0.3502 1.3698

n = 100

10% 0.0435 0.0561 0.0596 0.0634 0.0851
30% 0.0444 0.0556 0.0589 0.0627 0.0929
60% 0.0426 0.0554 0.0587 0.0626 0.0831
100% 0.0428 0.0553 0.0587 0.0625 0.0848
130% 0.0437 0.0554 0.0587 0.0624 0.0908
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Figure 1: Posterior distributions for the income elasticity β1 under different levels of σ2
β1

and
n = 10, 30, 60, 100
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Figure 2: Posterior distributions for the semi-elasticity of number of people β2 under different
levels of σ2

β2
and n = 10, 30, 60, 100
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Figure 3: Posterior distributions for the price elasticity β3 under different levels of σ2
β3

and
n = 10, 30, 60, 100
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Figure 4: Posterior distributions for σ under different levels of σ2
βi

and n = 10, 30, 60, 100
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