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SUMMARY 

 

Quaternary ammonium compounds (QACs) are organic molecules that are 

extensively used in domestic, agricultural, healthcare, and industrial applications as 

surfactants, emulsifiers, fabric softeners, disinfectants, pesticides, corrosion inhibitors, 

and personal care products. As a result, QACs are ubiquitous contaminants found 

worldwide in both engineered and natural systems. QACs are toxic to aquatic organisms 

and cause co-selection for antibiotic resistance, thus providing a reservoir of antibiotic-

resistant bacteria, as well as antibiotic resistance genes in QAC-polluted environments. 

The objectives of the research presented here were to: a) systematically assess the fate 

and toxicity of QACs using quantitative structure-activity relationships (QSAR); b) 

evaluate the biotransformation potential of QACs under aerobic, anoxic and anaerobic 

conditions; and c) assess the potential toxicity of QACs biotransformation products. Nine 

QACs, belonging to three homologous groups -- monoalkonium, dialkonium and 

benzalkonium chlorides -- were the target QACs. The QACs critical micelle 

concentration (CMC) was determined. Then, the CMC was used as a descriptor to derive 

relationships between QAC structure and partitioning to biosolids as well as acute 

Microtox® toxicity. QACs with low CMCs had a relatively high adsorption affinity for 

biosolids and a lower toxicity than QACs with higher CMCs, which suggests that QACs 

that are more mobile and more (bio)available are more toxic. The biotransformation 

potential of benzalkonium chlorides (BAC) -- the most commonly used QACs found in 

engineered and natural biological systems -- under aerobic, methanogenic, nitrate 

reducing, and fermentative conditions was evaluated using bioenergetics and batch 
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bioassays. The aerobic BAC biotransformation involved sequential dealkylation and 

debenzylation steps resulting in the formation of benzyl dimethyl amine, and dimethyl 

amine, respectively. The bacterial community involved in the aerobic BAC degradation 

was mainly composed of species belonging to the Pseudomonas genus. All QACs tested 

were recalcitrant under methanogenic conditions and inhibited methanogenesis at and 

above 25 mg QAC/L. Under nitrate reducing and fermentative conditions, BAC was 

transformed to alkyldimethyl amines via an abiotic reaction known as modified Hofmann 

degradation and a biotic reaction known as fumarate addition, respectively. Both 

reactions are based on a mechanism known as nucleophilic substitution. The discovery of 

BAC transformation by the above mentioned two reactions is the first ever report to 

document QAC transformation under anoxic/anaerobic conditions and delineate the 

transformation pathway. This research contributes to a better understanding of the 

environmental and human health risks associated with QACs by providing systematic 

information on physical, chemical and biological processes that determine the fate and 

effect of QACs in engineered and natural systems. 
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CHAPTER 1 

INTRODUCTION 

 

Quaternary ammonium compounds (QACs) are organic compounds that contain 

four functional groups attached covalently to a central nitrogen atom (R4N+). These 

functional groups (R) include at least one long chain alkyl group and the rest are either 

methyl or benzyl groups. QACs are among the High Production Volume Chemicals 

(HPVs, i.e., chemicals manufactured in or imported in amounts equal to or greater than 

one million pounds per year) found on the lists of both the U.S. Environmental Protection 

Agency (U.S. EPA) and the Organization for Economic Co-operation and Development 

(OECD). QACs are extensively used in domestic, agricultural, healthcare and industrial 

applications as surfactants, emulsifiers, fabric softeners, disinfectants, pesticides, 

corrosion inhibitors and personal care products (Garcia et al., 1999; Steichen, 2001; 

Patrauchan and Oriel, 2003). The 2004 world-wide annual consumption of QACs was 

reported as 500,000 tons (CESIO, 2004) and was expected to reach or exceed 700,000 

tons (Steichen, 2001). 

N+

R1

R3

R4R2

X-

  

Figure 1.1. General molecular structure of a QAC (R represents a functional group, X- 
represents a counter ion such as Cl-, Br-, or NO3

-) 
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 About 75% of the QACs consumed annually are released into wastewater 

treatment systems whereas the rest is directly discharged into the environment. As a 

result, QACs are ubiquitous contaminants found worldwide in sewage (Merino et al., 

2003; Clara et al., 2007; Kreuzinger et al., 2007; Martinez-Carballo et al., 2007), 

industrial wastewater (Kreuzinger et al., 2007; Martinez-Carballo et al., 2007), effluents 

of laundries and hospitals (Kummerer et al., 1997; Kreuzinger et al., 2007; Martinez-

Carballo et al., 2007), treated wastewater (Ding and Liao, 2001; Clara et al., 2007; 

Kreuzinger et al., 2007), sewage sludge (Martinez-Carballo et al., 2007; Sutterlin et al., 

2007), surface waters (Ding and Liao, 2001; Ferrer and Furlong, 2001; Merino et al., 

2003; Kreuzinger et al., 2007; Martinez-Carballo et al., 2007) and aquatic sediments 

(Ferrer and Furlong, 2002; Kreuzinger et al., 2007; Martinez-Carballo et al., 2007) at 

levels that may threaten biological treatment and environmental systems. Despite the fact 

that QACs are listed as HPV chemicals and consumed extensively in everyday 

applications, making them ubiquitous pollutants, crucial information on their toxicity and 

environmental fate does not exist. 

QACs are toxic to aquatic organisms at environmentally relevant concentrations 

(Kummerer et al., 1997; Nalecz-Jawecki et al., 2003). The fate of QACs in aerobic 

biological systems has been studied. QACs are biodegradable in biological systems such 

as activated sludge systems, surface waters, soil and groundwater under aerobic 

conditions. The half-lives of aerobic degradation of QACs in such systems vary 

extensively from hours to months depending on the QAC concentration and structure, 

microbial acclimation and presence of QAC resistant/degrading microorganisms. Certain 

microorganisms that are resistant to QACs and capable of QAC degradation have been 
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isolated (van Ginkel et al., 1992; Nishihara et al., 2000; Patrauchan and Oriel, 2003; 

Takenaka et al., 2007). However, the aerobic QAC degradation mechanisms/pathways 

and the toxicity of the resulting products are not clear.   

On the other hand, QACs rapidly and strongly sorb onto a wide variety of 

materials including biomass, sediments, clays, and minerals such as halides, sulfides, 

sulfates, and oxides. Indeed, sorption generally outcompetes biodegradation in aerobic 

compartments in the environment and therefore QACs are transferred to anoxic/anaerobic 

compartments such as anaerobic digesters and aquatic sediments (Boethling, 1994; Ying, 

1999). It has been reported that QAC concentrations in municipal anaerobic digesters 

may range from 4,000 to 10,500 ppm (mg/kg dry solids) (ECETOC, 1993; Garcia et al., 

1999; Ying, 1999) and their concentrations in sediments typically exceed an enrichment 

factor of 500 (Valls, 1989; Fernandez et al., 1991; Sun et al., 2003; Martinez-Carballo et 

al., 2007).  So far, there is no evidence of biotransformation of QACs, except the 

esterquats (QACs with ester bonds, i.e., O=C-OC) and natural QACs such as choline, 

under anaerobic/anoxic conditions (Battersby and Wilson, 1989; Federle and Schwab, 

1992; Garcia et al., 1999; Garcia et al., 2000; Tezel et al., 2006; Tezel et al., 2007), most 

likely because of the highly reduced nature of the QAC structure. Moreover, QACs are 

inhibitory to anaerobic microbial processes such as methanogenesis. In spite of the fact 

that QACs are present in anoxic/anaerobic biological systems, their fate and effect under 

these conditions have been largely unexplored to date. 

 The bactericidal properties of QACs are well established and microorganisms 

which are resistant to QACs and can utilize them as energy source under aerobic 

conditions have been isolated. QAC utilizing bacterial species such as Pseudomonas 
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fluorescens and Aeromonas hydrophila contain QAC resistance genes (e.g., qacE) which 

occur on the same mobile genetic elements, such as Class 1 integrons and plasmids, 

known to confer antibiotic resistance (Gaze et al., 2005; Schluter et al., 2007. Hence, 

selection for QAC resistance may cause co-selection for antibiotic resistance, providing a 

reservoir of antibiotic-resistant bacteria, as well as antibiotic resistance genes in QAC-

polluted environments. The spread of antibiotic resistance is an alarming, continuing 

problem worldwide (WHO, 2000; Josephson, 2006; Pruden et al., 2006; Singer et al., 

2006; Weber et al., 2007; Smith et al., 2008), and a critical human health challenge 

(Maillard, 2007). Therefore, the fate and effect of chemicals such as QACs, which have 

the potential to persist in the environment, cause toxicity and induce antibiotic resistance 

genes and facilitate the transfer of antibiotic resistance in the environment, must be 

thoroughly investigated.

  The overall objectives of the research presented here were to (1) supply 

systematic information on the fate and toxicity of QACs using quantitative structure-

activity relationships, and (2) evaluate the biotransformation potential of QACs under 

aerobic, anoxic and anaerobic conditions as well as the toxicity of biotransformation 

products.  

The specific objectives and the approach followed in this research were: 

(1) Assessment of fate and toxicity of QACs in biological systems by using 

quantitative structure-activity relationships (QSAR) approach.   

 Approach: A global structure-specific descriptor was identified and used to 

evaluate the biosolids partitioning and toxicity of QACs with different structures.   
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(2) Evaluation of biotransformation potential of QACs in biological systems, 

identification of QAC biotransformation pathways, and assessment of the potential 

toxicity of the resulting compounds.   

 Approach (three steps): 

Step 1: Bioenergetic calculations were used to evaluate the biotransformation 

potential and the pathway of QACs under aerobic, anoxic and anaerobic conditions.   

 Step 2: Biotransformation experiments were performed to evaluate the 

biotransformation potential and pathway of QACs under aerobic, anoxic and anaerobic 

conditions.   

 Step 3: The Microtox® toxicity assay was performed to evaluate the toxicity of 

QACs and their biotransformation products.   

 The research commenced with the selection of representative QACs to be used in 

this study based on their consumption rate, frequency of occurrence in engineered and 

natural biological systems, and molecular structure. Nine QACs, belonging to three 

groups -- monoalkonium, dialkonium and benzalkonium chlorides -- were selected as the 

target QACs. The critical micelle concentration (CMC) of these QACs was determined. 

Then, the CMC was used as a descriptor to derive relationships between QAC structure 

and partitioning to biosolids as well as toxicity. The effect of environmental constituents, 

such as anions and natural organic matter, on the QAC toxicity was also evaluated. The 

biotransformation potential of QACs under aerobic, methanogenic, nitrate reducing and 

fermentative conditions was evaluated using bioenergetics and tested in batch 

biotransformation experiments. In addition, the inhibitory effect of QACs under 

methanogenic and nitrate reducing conditions was systematically investigated. QAC 
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transforming biotic and abiotic conditions, as well as the transformation pathways (at 

least the initial, activation steps) and products were identified to the extent possible. 

 This research contributes to a better understanding of the environmental and 

human health risks associated with QACs by providing systematic information on 

physical, chemical and biological processes that determine the fate of QACs in 

engineered and natural systems. Therefore, it may facilitate the development of strategies 

to mitigate adverse effects of QACs and to aid industry, as well as state and federal 

regulatory agencies in the development of sound policies and risk assessment strategies. 

 

 6



CHAPTER 2 

BACKGROUND 

 

2.1. Quaternary Ammonium Compounds (QACs) 

 QACs are produced by a nucleophilic substitution reaction of alpha-olephines or 

fatty alcohol originated tertiary amines by an alkyl halide or benzyl halide (Boethling, 

1994; Dery, 2001). The quaternization reaction of tertiary amines results in an organic 

molecule that contains four functional groups (R) covalently attached to a central 

nitrogen atom. The synthesis pathway of benzalkonium chlorides is given in Figure 2.1. 

 

RCH2CH2OH RCH2CH2Cl

RCH2CH2N(CH3)2

RCH=CH2 RCH2CH2Cl

RCH2CH2N+(CH3)2

CH2C6H5

Cl-

Fatty Alcohol Fatty Alkyl Chloride

Alkyldimethylamine

Linear alpha-olefin Fatty Alkyl Chloride

Alkylbenzyldimethyl QAC

(CH3)2NH

(CH3)2NH

(CH3)2NH/catalyst

C6H5CH2Cl

HCl

HCl

 

Figure 2.1. Synthesis pathway of alkylbenzyl dimethyl ammonium chloride (Dery, 2001) 

 

QACs can be classified in three major groups depending on the type of the 

functional groups: monoalkonium, dialkonium and benzalkonium halides (Table 2.1). 
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Table 2.1. Representative QAC groups, their general structure and abbreviations used in 
this study (X is a halide counter-ion) 
 

QAC Group Molecular Structure Abbreviation 

Monoalkonium halides 

 

CnTMA-X 

Dialkonium halides 

 

DCnDMA-X 

Benzalkonium halides 

 

CnBDMA-X 
N+

CH3

CH3

CnH2n+1

X-

N+CH3

CH3

CnH2n+1

CnH2n+1

X-

N+CH3

CH3

CH3

CnH2n+1

X-
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QACs are large molecules having molecular weights typically between 300 and 400 

g/mole and are composed of two distinctly different moieties: hydrophobic alkyl groups 

and a hydrophilic, positively charged central N atom, which retains its cationic character 

at all pH values. The two moieties affect the QACs’ physical and chemical properties 

(Boethling, 1994). 

 QACs have distinct physical/chemical properties, which are conferred by their 

substituents, mainly the alkyl chain length. QACs may be freely soluble or insoluble in 

water. The aqueous solubility of QACs decreases as the hydrophobicity or the alkyl chain 

length of the molecule increases. For instance, the aqueous solubility of DC8DMA-Cl, 

DC10DMA-Cl, DC12DMA-Cl, DC14DMA-Cl, DC18DMA-Cl is 8100, 700, 77, 12 and 2.7 

mg/L, respectively (Boethling, 1994). Likewise the critical micelle concentration (CMC) 

of QACs, which affects the efficiency of many surfactant-related applications, decreases 

as the alkyl chain length of the molecule increases. For example, the CMC of C12BDMA-

Cl, C14BDMA-Cl, C16BDMA-Cl is 3, 2 and 0.5 mM, respectively (Garcia et al., 2006). 

Other physical/chemical properties that can affect the fate of QACs in the environment, 

such as octanol-water and organic carbon-water partitioning, are influenced by the 

molecular structure of the QACs. The sorption of QACs on organic surfaces, such as 

biomass and sediment, increases as the alkyl chain length increases. On the contrary, as 

the alkyl chain length of the molecule decreases, ionic interactions become dominant and 

favor the sorption of QACs onto ionic surfaces, such as clay minerals.  

The physical and chemical properties of QACs strongly affect not only their fate 

but also their toxicity and biodegradability in both engineered and natural systems. In 

fact, large quantities of QACs with different molecular structures are consumed and 
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released into the environment. Therefore, methodical assessment of the environmental 

risk associated with each QAC molecule is extensively difficult. For that reason, 

development of quantitative structure-activity relationships for QACs is desirable and is 

one of the objectives of this study. Hereafter, an extensive review on the occurrence of 

QACs, mainly monoalkonium, dialkonium and benzalkonium salts, their inhibitory 

effects and toxicity to living organisms, and their biodegradation potential in engineered 

and natural systems is presented in the sections that follow.   

2.2.  Applications and Implications of QACs 

2.2.1.  Demand and Consumption of QACs 

 QACs are designated as the ultimate work-horse of the surfactant industry. They 

are on the High Production Volume Chemicals list of the USEPA. The world-wide 

annual consumption rate of QACs was reported as 0.5 million metric tons in the 6th 

World Surfactants Congress held in Germany (CESIO, 2004) and this rate was expected 

to reach 0.7 million metric tons (Steichen, 2001). While the demand for QACs is usually 

found to be 10% of the total surfactant demand, they nevertheless represent an 

irreplaceable category of surfactants for over two centuries (Steichen, 2001). 

 QACs possess surface-active properties, self-assembly characteristics, detergency 

and antimicrobial properties. The unique physical/chemical properties of QACs have 

resulted in a variety of uses and a high level of popularity in domestic and industrial 

applications as surfactants, emulsifiers, fabric softeners, disinfectants, pesticides, phase-

transfer catalysts and corrosion inhibitors (Figure 2.2) (Boethling, 1994).    

 10



 

 

66%

2%
8%

2%

16%

6%

Fabric softeners
Asphalt additives
Biocides
Textiles
Organo-clays
Oil-field chemicals

 

Figure 2.2. Distribution of QAC use in the market (Boethling, 1994) 

 

QACs are the major active ingredient of fabric softeners (20-30 wt %). The most 

common softener active ingredients that are commercially viable in today’s marketplace 

are (i) dialkonium salts, (ii) diethylenetriamide compounds and (iii) ester quaternary salts. 

The first group has the highest demand in the market, however ester quaternary salts are 

good substitutes for the dialkonium salts since they are readily biodegradable and less 

toxic than the dialkonium salts. QACs are also utilized for fabric softening and soil 

removal purposes in laundry detergents. Laundry detergents that also provide fabric 

softening utilize relatively simple QACs such as monoalkonium salts with an alkyl chain 

length of 12 to 18 carbons (Zachvieja, 2001).  

QACs reduce surface and interfacial tension by sorbing to a surface or an 

interface such as hair and skin. The adsorption ability of QACs onto organic surfaces 

makes the use of QACs extremely important in the personal care industry. Skin care 

products and hair conditioners contain mainly alkyl QACs (including mono-, di- and tri-
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alkonium salts), ethoxylated and ester QACs in their formulations (Tang, 2001). 

QACs are also used in paper processing to produce tissue paper or fluff pulp, 

which are used in diapers, toweling, napkins and facial and toilette tissue products. It is 

known that QACs, such as dialkonium salts are effective chemical debonding agents in 

paper. QACs interact with the natural fiber-to-fiber bonding that occurs during the paper-

making process. The hydrophobic and hydrophilic moieties of the QACs interact with the 

fiber surface, reduce the inter-fiber bonding, and form a thin lubricant layer. This 

reduction of the inter-fiber bonding, together with the lubricating effect, gives a soft feel 

to the paper. In the mechanical fluff pulp process, QACs protect the fibers against 

damage and reduce the defibration energy needed (Bergstrom, 2001).  

QACs are extensively used as bioactive agents. They exhibit a broad spectrum of 

antimicrobial activity over a wide range of pH and are used in domestic, industrial, 

agricultural and medical applications as wood preservatives, pesticides, fungicides, 

sanitizers/disinfectants, and hard-surface cleansers. They are effective against a variety of 

bacteria, fungi and viruses at very low concentrations (Table 2.2). When QACs are used 

as disinfectants, the applied concentration is typically between 400 and 500 ppm and 

almost always below 1000 ppm (e.g., 0.1% w/v  in Lysol®) (Tiedink, 2001).   

The use of QACs as biocides in wood preservation formulations is a common 

application. QACs are used either by themselves or in combination with other modern 

biocides, such as fungicides, bactericides or insecticides. The most commonly used 

QACs are dialkonium and benzalkonium chlorides (Tiedink, 2001).  
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Table 2.2. Biocidal activity of alkyl (C12-16)benzyl dimethyl and didecyl (C10)dimethyl 
ammonium chlorides  
 
Microorganism Minimum Bactericidal Concentration (ppm) 

 C12-16BDMA-Cl DC10DMA-Cl 

Enterococcus faecium 30 10 

Staphylococcus aureus 40 10 

Escherichia coli 100 25 

Pseudomonas aeruginosa 700 250 

Salmonella typhimurium 150 40 

Proteis mirabilis 300 200 

Campylobacter jejuni 45 4 

Legionella pneumophila 80 30 

Listeria monocytogenes 25 5 
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QACs are used in agricultural formulations as biocides and adjuvants. The 

consumption of C12-16BDMA-Cl, DC10DMA-Cl, DC8-10DMA-Cl and DC8DMA-Cl as 

biocides in the State of California in 2003 was 3394, 1176, 157 and 79 kg, respectively 

(www.pesticideinfo.org). Many pesticides are insoluble in water and not active as they 

applied individually, however QACs (as adjuvants) enhance the solubility, rain fastness 

and penetration of pesticides as they are applied together with the pesticides. Typical 

QAC concentrations in agrochemical tank-mixed sprays range from 0.05 to 0.5% v/v 

(Gustavsson, 2001). 

QACs are used in the production of organoclays. Organoclays are produced by 

the displacement of the inorganic cations on a clay mineral (i.e., morillonite or hectorite) 

by organic cations. The organic cations used in the manufacturing of organoclays are 

QACs such as dialkonium and benzalkonium salts. Organoclays are used in a number of 

different formulations such as oil-based drilling fluids, printing inks, oil based paints, 

latex polymers and nail polishers (Hoey, 2001). Organoclays are able to adsorb organic 

molecules from both aqueous systems and air and are used in landfill liners, groundwater 

remediation (Boyd et al., 1988) and in air filters.  The annual demand for organophilic 

clays, which typically contain 40% by weight of QACs, is around 16% of the QAC 

market (Figure 2.2). 

Oil-field applications of QACs include anti-swelling/clay stabilization, foaming, 

silt suspension, corrosion inhibition, biocides and demulsification (Witco Corporation, 

1995; Akzo Chemicals Inc., 1998).  

One of the new applications for QACs is phase-transfer catalysis. Many organic 

syntheses are carried out in which one reactant is dissolved in an aqueous solution and 
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the other in a hydrophobic organic phase. QACs act as phase-transfer catalysts and 

mediate the reaction at the interface between the two phases or after one of the solutes 

has passed through the interface and entered the other phase. QACs are believed to show 

better selectivity, greater rate increase, and cost less than other types of phase transfer 

catalysts. Benzalkonium and monolakonium salts are used extensively as phase transfer 

catalysts (Boethling, 1994).  

2.2.2.  Distribution of QACs in the Environment 

QACs have been extensively used in many industrial, domestic and agricultural 

applications over two centuries. Their production and consumption rates are increasing as 

they find new applications. On the other hand, QACs are inevitably released into the 

environment at the production stage or at the end of the consumption of the QAC-bearing 

products. QACs are, therefore, ubiquitous contaminants. Moreover, available data 

suggest that QACs are extensively accumulated in aquatic sediments, however, 

information on residues of QACs in aquatic sediments near sites of industrial or domestic 

effluent discharge are scarce. The concentration of QACs in domestic wastewater, 

effluent wastewater, sewage sludge and surface water has been reported as 0.5, 0.05, 

3000, and 0.04 ppm, respectively (Schmitt, 1994). 

Random samples of sewage from treatment plants in Switzerland, which have 

various inputs from metallurgical processes or textile industry, had QAC levels ranging 

from 0.04 to 0.45 ppm (Michelsen, 1978). Huber (1979) and Kupfer (1982) described 

monitoring studies in Germany, and Wee (1984) determined the levels of dialkonium 

chlorides in untreated sewage and final effluent from a plant in the United States. The 

QAC concentrations in the influent and effluent sewage ranged from 0.05 to 1.3 ppm and 

 15



0.01 to 0.2 ppm, respectively. The concentrations of monoalkonium chlorides were 

monitored in composite sewage samples in England and Germany. The total 

monoalkonium chloride concentration in the influent and effluent sewage was 0.13 ppm 

and 0.03 ppm, respectively.  A recent study conducted in Austria to survey QAC 

concentrations in influents of five different wastewater treatment plants reported QAC 

concentrations ranging from 1 to 170 ppb (Martinez-Carballo et al., 2007). On the 

contrary, the QAC concentrations would be higher in the effluents of specific industrial 

facilities, such as paper processing, textile and food processing (1-40 ppm, based on the 

data obtained during a screening study for a poultry processing facility in Georgia), than 

the influents of municipal wastewater treatment plants. Kummerer et al. (1997) analyzed 

benzalkonium chlorides in highly complex effluent samples from different sized 

European hospitals. The measured concentrations were between 0.05 and 6.03 ppm. 

Although the reported QAC concentrations are low in the wastewater, many studies 

delineating the effect and biodegradability of QACs in wastewater treatment systems 

have worked at concentrations ranging from 10 to 100 mg/L. Therefore, one would 

expect high QAC concentrations in the wastewater treatment systems or surface waters 

receiving influents from industrial applications that use QACs extensively.  

Levels of QACs in receiving waters are typically in the low microgram per liter 

range. Huber (1979) reported QAC concentrations of 5 to 20 ppb in the Main River in 

Germany.  Schneider and Levsen (1983) found that the concentrations of dialkonium 

chlorides in sewage and surface water samples collected in Germany were 0.35 to 0.48 

ppm and 6 to 12 ppb, respectively. Likewise, 5 to 30 ppb of monoalkonium chloride 

concentration was reported in the random samples collected from several rivers in the 
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United States (Wee and Kennedy, 1982; Wee, 1984). Lewis and Wee (1983) 

subsequently conducted a follow-up study, in which samples were collected at various 

distances downstream from wastewater treatment facilities. Mean dialkonium chloride 

levels were <2, 24, 17, and 33 ppb for Millers River (MA), Otter River (MA), Blackstone 

River (MA) and Rapid Creek (SD). The concentration of DCnDMA-Cl in the samples 

collected at distances from 4.4 to 55 miles downstream from the wastewater treatment 

plants ranged from 191 to 100 ppb.  

QACs adsorb strongly on suspended solids such as minerals, biomass and 

inorganic particles and are transferred to anaerobic digesters or aquatic sediments.   For 

instance, mean concentrations of DCnDMA-Cl’s in anaerobically stabilized sludge 

samples from five different municipal sewage treatment plants in Switzerland were 3670, 

960, 470, and 210 ppm (mg/kg-dry) in 1991, 1992, 1993, and 1994, respectively 

(Fernandez et al., 1996), whereas, ppb levels were found in the sewage as discussed 

above. It was also reported that QAC concentrations in anaerobic digesters may range 

from 4000 to 10,500 ppm (mg/kg-dry solids). Lewis and Wee (1983) obtained sediment 

samples from Rapid Creek at distances from 0.8 to 88 km downstream from a sewage 

outfall.  DCnDMA-Cl levels averaged 23 ppm over 18 samples. Fernandez et al. (1991) 

found that DCnDMA-Cl was a ubiquitous contaminant in coastal sediments collected near 

Barcelona, Spain (Fernandez et al., 1991). Utsunomiya et al. (1989) reported the levels of 

QACS in river water and sediment samples from Japan. Levels of QACs in influent 

sewage, river water and sediment were 0.10 to 0.15, 0.05 and 6.2 to 69 ppm, respectively. 

Sun et al. (Sun et al., 2003) studied the fate of QACs in a river running through Toyama 

City, Japan. They found that total influx of QACs into the river was 1.4 g/min, and the 
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concentration was between 0.01 and 0.02 ppm. The QACs in the sediment samples were 

500 times higher than that found in the river water. In another study, it was reported that 

DCnDMA-Cl was present at 0.63 ppm in surface water and 9.7 ppm (0 to 0.6 m depth) 

and 7.4 ppm (0.6 to 1.2 m depth) in the sediment at a pond that had been receiving 

untreated wastewater from a laundromat since 1962 (Federle and Schwab, 1992). 

Dialkonium chlorides were also detected in drinking water samples derived from river 

water and groundwater in England.   

Based on the information presented above, QAC fluxes and expected QAC 

concentrations in engineered and natural systems are shown in Figure 2.3.   

2.2.3.  Toxicity and Inhibitory Effects of QACs in Biological Systems 

As mentioned above, QACs are used extensively in domestic and industrial 

applications. About 75% of QACs consumed end up in wastewater treatment plants 

(Figure 2.3). The EC50 values for C16TMA-Br and C12BDMA-Cl obtained from a 

respirometric assay conducted with activated sludge ranged between 10 and 40 mg/L 

(Reynolds et al., 1987). The EC50 of C14-18TMA-Cl for unacclimated sludge determined 

based on the inhibition of [14C]glucose uptake was 28 mg/L (Larson and Schaeffer, 

1982). Another study showed that DC10DMA-Cl inhibited the COD removal in a rotating 

biological contactor at concentrations above 20 mg/L and the biofilm was totally 

eliminated at 160 mg/L. Overall, these studies suggest that QACs are unlikely to manifest 

significant toxicity in wastewater treatment at the levels normally expected. However, 

sudden discharges of QACs resulting in temporarily high levels in treatment plants could 

upset plant function. Microorganisms that have resistance to QACs and utilize them as 

the energy source at high concentrations have been identified (e.g., Pseudomonas spp.).  
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Figure 2.3. Schematic representation of QAC fluxes and expected QAC concentration 
levels in different compartments of engineered and natural systems calculated based on 
the global QAC consumption  
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On the other hand, many wastewater treatment plants practice biological nutrient removal 

and they use anaerobic, anoxic and aerobic biological units. A variety of physiologically 

different microorganisms participate in the wastewater treatment process, therefore the 

response of each species to QAC inhibition is expected to be different. For instance, 

QACs are particularly toxic to nitrifiers. Benzalkonium chloride was inhibitory to a 

mixed nitrifying culture at 10 to 15 mg/L with a non-competitive inhibition coefficient 

equal to 1.5 mg/L (Yang, 2007).  

QACs have high affinity to adsorb onto (bio)solids. Generally, adsorption 

outcompetes biodegradation in aerobic biological treatment systems and therefore QACs 

are transferred to anaerobic digesters as part of the primary and waste activated sludge 

(Boethling, 1994). It was reported that QAC concentrations may reach up to 50 mg/L in 

anaerobic digesters of sewage treatment plants (ECETOC, 1993; Garcia et al., 1999). 

QAC concentrations may exceed these levels in biological treatment systems of industrial 

facilities, such as food processing, that extensively use QACs. Under anaerobic 

conditions, there is no evidence of mineralization of QACs that contain alkyl or benzyl 

groups (Battersby and Wilson, 1989; Federle and Schwab, 1992; Garcia et al., 1999, 

2000), most likely because of the highly reduced nature of these substituent groups. 

Moreover, QACs are inhibitory to anaerobic microbial processes such as methanogenesis 

(Battersby and Wilson, 1989; Garcia et al., 1999, 2000). Tezel et al. (2006) investigated 

the effect of four QACs – DC8DMA-Cl, DC8-10DMA-Cl, DC10DMA-Cl and C12-

16BDMA-Cl – on a mixed mesophilic methanogenic culture. It was reported that all 

QACs tested in this study had short- or long-term inhibitory effects on the mixed 

methanogenic culture at 25 mg/L and above. Methanogenesis was more sensitive to QAC 
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inhibition than acidogenesis. The inhibitory impact of the individual QACs on the 

methanogenic activity decreased according to the following series: DC8DMA-Cl > DC8-

10DMA-Cl > C12-16BDMA-Cl > DC10DMA-Cl. Thus, QACs with the shorter alkyl chain 

length are the most inhibitory QACs. Moreover, it was concluded that the inhibitory 

effect of QACs was inversely proportional to their adsorption affinity on the biomass or 

their hydrophobicity (Tezel et al., 2006; Tezel et al., 2007). Similar results were reported 

by Garcia et al. (1999).  

About 25% of QACs consumed are discharged into the environment (Figure 2.3). 

The effect of monoalkonium and dialkonium QACs on the aquatic microbial 

communities in a lake ecosystem was investigated and the results showed that QACs 

elicit ecologically significant responses at concentrations below 1 mg/L and mainly 

heterotrophic bacterial activity was affected (Ventullo and Larson, 1986). Tubing and 

Admiraal (1991) examined the effect of DC18DMA-Cl on natural populations of bacteria 

and phytoplankton from the lower River Rhine and reported significant decreases in the 

growth rate of bacterioplankton and in the photosynthetic rate of phytoplankton at a 

nominal DC18DMA-Cl concentration 0.03 to 0.1 mg/L (Tubbing and Admiraal, 1991). 

Nye et al. (1994) investigated the heterotrophic activity in a soil ecosystem treated with 

C16TMA-Br. Addition of C16TMA-Br to the soil resulted in increased lag periods and 

decreased rates and extends of mineralization of 14C-labeled organic compounds as a 

result of toxicity toward Gram-negative soil microorganisms (Nye et al., 1994).     

QACs are toxic at ppm levels and lower to aquatic organisms including algae, 

fish, mollusks, barnacles, rotifers, starfish, shrimp, and others. Toxicity of 15 QACs (with 

molecular weights ranging between 313.5 and 547.0 g/mole) were investigated in four 
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bioassays, such as Microtox, Spirotox, Protoxkit F and Artotoxkit M, comprising a 

bacterium (Vibrio fischeri), two ciliated protozoa (Spirostomum ambiguum and 

Tetrahymena thermophila), and an anostracean crustacean (Artemia franciscana). The 

Microtox® assay acute toxicity EC50 values for tested QACs  ranged between 0.6 to 50 

µM (0.24 to 21.5 mg/L at the average QAC molecular weight of 430.25 g/mole). The 

results indicated that QACs had high toxicity against the bioindicators tested and were 

toxic not only to bacteria, but also to non-target protozoa and crustacea. It was also stated 

that the toxicity of QACs decreases as the alkyl chain length increases, since the 

hydrophobicity of QACs with longer alkyl chain length increases resulting in low 

bioavailability and high partitioning with organic or negative charged surfaces (Nalecz-

Jawecki et al., 2003).  

Algae represent a group of organisms which appears to be very sensitive to 

QACs. The EC50 values of CnTMA-Br and CnTMA-Cl for algae range between 0.03 and 

0.38 mg/L. On the other hand, EC50 values for dialkonium QACs range between 0.05 and 

18 mg/L, therefore the toxicity of dialkonium QACs is less than the toxicity of 

monoalkonium QACs (Lewis, 1991; Utsunomiya et al., 1997). Benzalkonium QACs are 

toxic to aquatic organisms below 1 mg/L.    

The toxicity of QACs to fish and invertebrates has also been studied. It was 

reported that all QACs are acutely toxic to aquatic invertebrates and fish as indicated by 

EC/LC50 values below 1 mg/L by affecting the reproduction and larval growth and 

development (Lewis, 1991; Boethling, 1994; Utsunomiya et al., 1997). The no observed 

effect concentration (NOEC) for Daphnia exposed to DC18DMA-Cl and C12TMA-Cl in 

river water was 0.38 and 0.065 mg/L, respectively (Lewis, 1991). According to 
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Kummerer and co-workers (1997), the LC50 of CnBDMA-Cl to fish is between 0.5 and 

5.0 ppm, and the toxicity to daphnids is even higher, with an LC50 from 0.1 to 1.0 ppm 

(Kummerer et al., 1997). Data retrieved from the European Center for Ecotoxicology and 

Toxicology of Chemicals (ECETOC) and U.S. EPA Ecotoxicology (ECOTOX) databases 

using the OECD Application ToolBox (OECD, 2008) showed that monoalkonium, 

dialkonium and benzalkonium chlorides are toxic to aquatic organisms, i.e., bacteria, 

algae, fish, invertebrates, etc. The minimum, maximum and median of reported EC50 

values are 37 pg/L, 58 mg/L and 0.5 mg/L, respectively (Figure 2.4).  
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Figure 2.4. Histogram of reported EC50 values for monoalkonium, dialkonium and 
benzalkonium chlorides for aquatic organisms. Data obtained from the European Center 
for Ecotoxicology and Toxicology of Chemicals (ECETOC) and the U.S. EPA 
Ecotoxicology (ECOTOX) databases using the OECD Application ToolBox  
 

QACs are widely distributed in the environment and are detected in drinking 

water. They are the main active ingredients of many household products and cosmetics.  

As a result of these widespread uses, humans are exposed to them with almost all body 

surfaces and cavities and QACs have the potential to be adsorbed, inhaled, and ingested. 
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In general, the acute (single-dose) toxicity of QACs is characterized, at lethal doses, by 

peripheral paralysis and central nervous system stimulant-like effects. In chronic 

(multiple-dose) studies, the toxic effects of QACs commonly consist of adverse effects 

on body weight or growth, reduced food consumption, dehydration, and increased 

mortality (Drobeck, 1994). Several human fatalities due to exposure to benzalkonium 

QACs have been reported over the years. Xue et al. (2004) investigated the distribution 

and disposition of CnBDM-Cl following oral administration (PO) and intravascular 

jugular vein (W), femoral artery (FA), femoral vein (FV) and jugular artery (JA) 

administration in rats along with pathological examinations. In this study, toxic doses of 

250 and 15 mg/kg of CnBDM-Cl were used for PO and intravascular administration, 

respectively. The fatal effects of CnBDM-Cl appeared soon in JV-, FV- or JA-rats, but 

took hours in PO or FA-rats. No rat receiving benzalkonium chloride via FA survived 

longer than 1 day. The PO-rats that aspirated benzalkonium chlorides into their lungs had 

some systemic symptoms and higher blood and tissue concentrations of benzalkonium 

chloride. The blood benzalkonium chloride levels and kinetics were similar among the 

different routes of intravascular administration, but the lung and kidney levels were 

higher in JV-rats. Pathological examinations confirmed severe congestion and edema in 

the lungs and kidneys (Xue et al., 2004).  

2.2.4.  QAC Related Antimicrobial Resistance Mechanisms as a Challenge to Human 

Health   

QACs have been actively deployed as antimicrobial agents since the 1930s in 

many clinical, industrial and domestic applications. As a result, bacterial resistance to 

QACs has become a serious problem. Many aerobic and facultative microbial species that 
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acquire resistance to QACs and co-resistance to many other disinfectants, antibiotics, 

solvents and metals have been isolated not only in hospitals and food processing facilities 

but also in environments polluted with QACs (Maillard, 2007).  

The mode of action of QACs against bacterial cells involves perturbation of lipid 

bilayer of the bacterial cytoplasmic membrane and the outer membrane of Gram-negative 

bacteria. Such action leads to a progressive leakage of cytoplasmic components out of the 

cell. Low concentrations of QACs bind to anionic sites found on the membrane surface, 

cause cells both to lose osmotic regulation capability and to leak potassium ions and 

protons. Intermediate levels of QACs inhibit membrane-located processes such as 

respiration, solute transport, and cell wall biosynthesis. The high concentrations kill cells 

by disintegration of the membranes and release of cytoplasmic contents and coagulation 

of proteins and nucleic acids. At the molecular level, action involves the association of 

the cationic quaternary nitrogen with the head groups of the acidic-phospholipids within 

the membrane due to ionic interactions. The hydrophobic tail (alkyl groups) then 

integrates into the lipid core with hydrophobic interactions. Such interactions increase the 

surface pressure in the exposed layer of the membrane and decrease membrane fluidity. 

The membrane undergoes a transition from fluid to liquid crystalline state and loses its 

osmoregulatory and physiological functions. As a result, QACs penetrate into the cell and 

reach their target cites of action (Maillard, 2002; Gilbert and Moore, 2005). QACs are 

also involved in the inhibition of respiratory enzymes and the dissipation of proton 

motive force (PMF) which affect the microbial metabolism, active transport, oxidative 

phosphorilation and ATP synthesis in bacteria (Knox et al., 1949; Maillard, 2002). 

Many aerobic and facultative microorganisms acquire resistance to QACs by 
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changing the composition of their outer membrane proteins (Loughlin et al., 2002; Tabata 

et al., 2003), fatty acids (increase in saturated fatty acids) (Guerin-Mechin et al., 1999; 

Guerin-Mechin et al., 2000; Dubois-Brissonnet et al., 2001), lipids (Loughlin et al., 

2002), lipopolysaccharide, cell wall surface hydrophobicity and the zeta potential of the 

cell surface or the acquisition or hyperexpression of certain multidrug efflux pumps 

(Poole, 2002). These QAC resistance mechanisms are very similar to resistance 

mechanisms to hydrocarbons (Sikkema et al., 1995; Van Hamme et al., 2003), metals and 

antibiotics (Poole, 2002; Poole, 2005). 

The efflux-mediated QAC resistance mechanism has gained significant interest 

since it has a genetic origin and is transferable among unrelated microbial species. The 

efflux-mediated resistance to QACs generally confers the co-resistance to multiple 

antimicrobials such as antibiotics and is facilitated by multidrug efflux pumps. Multidrug 

efflux pumps mediate the transfer of a biocide from inside to the outside of the cell. 

Multidrug efflux systems are categorized into one of five classes, small multidrug 

resistance family (SMR), drug/metabolite transporter (DMT) superfamily, the major 

facilitator superfamily (MFS), the ATP-binding cassette (ABC) family, the resistance-

nodulation-division (RND) family, and the multidrug and toxic compound extrusion 

(MATE) family (Putman et al., 2000). Several QAC efflux determinants have been 

identified and the majority of these determinants are plasmid-encoded such as QacC/D, 

QacE∆1, QacG, QacH, QacJ and QacA/B (Poole, 2005). 

Multidrug efflux determinants of QAC resistance in Gram-positive bacteria 

include QacA/B, NorA (a multidrug transporter implicated in fluoroquinolone 

resistance), NorB and MdeA which are MFS efflux systems; EmrE, QacE∆1, QacG, 
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QacH and QacJ which are SMR efflux systems; and MepA which is a MATE family 

efflux system (Table 2.3).  A study conducted on methicillin-resistant Staphylococcus 

aureus (MRSA) strains isolated between 1999 and 2004 in Japan revealed that MRSA 

contains the qacA/B gene and over expression of this gene reduces the susceptibility of 

this organism to QACs. The qacA/B gene has been detected also on plasmids bearing β-

lactamases and heavy metals resistance determinants in clinical isolates. Studies of 

clinical S. aureus isolates showing reduced susceptibility to CnBDMA-Cls have 

demonstrated enhanced expression of the NorA multidrug exporter in some of these, with 

a significant increase in fluoroquinolone resistance. Moreover, QAC-resistant S. aureus 

often showed cross-resistance to fluoroquinolones as a result of increased norA  

expression, in deed QACs seemed to more effectively select NorA-expressing mutants 

than did fluoroquinolones. Another MFS multidrug transporter, MdeA, has been 

identified in S. aureus and again QAC-resistant laboratory isolates overproducing this 

protein showed a modest cross-resistance to several antibiotics (Huang et al., 2004).       

Efflux systems able to accommodate biocides, including QACs, in Gram-negative 

bacteria are also multidrug transporters (Table 2.3). Efflux determinants in Gram-

negative bacteria are generally chromosomally-encoded (except qacE, qacE∆1, qacF and 

qacG) in contrast to that of Gram-positive bacteria. qacE, qacE∆1, qacF and qacG are 

associated with potentially mobile integron elements (Class 1 integrons) which are 

recombination and expression systems that capture genes as a part of a genetic element 

known as gene cassette. Many cassettes with known functions confer antibiotic or QAC 

resistance. Especially, qacE∆1 is widely distributed among both Gram-negative and 

positive bacteria, however a correlation between this determinant and QAC resistance is  

 27



Table 2.3. Multidrug efflux determinants of QAC resistance 

 

Efflux Determinant Organism 
Gram-positive  
QacA Staphylococcus aureus 
QacB Staphylococcus aureus 
Smr Staphylococcus aureus 
QacE∆1 Staphylococcus aureus, Enterococcus faecelis 
QacG Staphylococcus aureus 
QacH Staphylococcus aureus 
QacJ Staphylococcus spp. 
MdeA Staphylococcus aureus 
NorA Staphylococcus aureus 
NorB Staphylococcus aureus 
MepA Staphylococcus aureus 
Gram-negative  
QacE Klebsiella pneumoniae, Pseudomonas aeruinosa 
 
 
QacE∆1 

P. aeruginosa, P.fluorescens, Pseudomonas spp. P. 
vulgaris, P.stuartii, Escherichia coli, K. pneumoniae, 
S. enterica, H. paylori, S. marcescens, Vibrio spp., 
Campylobacter spp., E. cloacae, S. maltophilia, C. 
freundii, Aeromonas spp., M. morganii. 

QacF E. aerogenes, E. cloacae 
QacG P. aeruignosa, A. salmonicida 
EmeA E. feacelis 
EmrE E. coli 
EvgA E. coli 
MdfA E. coli 
NorM Neisseria meningitides, N. gonorrhoeae 
PmpM P. aeruignosa 
SugE E. coli 
YhiUV-TolC E. coli 
AcrAB-TolC E. coli 
CmeABC Campylobacter jejuni 
CmeDEF C. jejuni 
SdeXY S. marcescens 
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not clear yet. A number of the MATE (NorM of Neisseria spp., PmpM of P. aeruginosa), 

and RND (AcrAB-TolC, AcrEF-TolC and YhiUV-TolC pumps of E.coli; SdeXY pump 

of S. marcescens) family multidrug transporters implicated in antibiotic resistance have 

been shown to contribute to QAC resistance. The RND family exporter, MexCD-OprJ, a 

significant determinant of fluoroquinolone resistance in laboratory and clinical isolates, is 

inducible by QACs. The strains of E. coli, including E. coli O157:H7 adapted to 

CnBDMA-Cls in vitro show a multiple antibiotic-resistant mutants expressing the RND 

family AcrAB-TolC exporters (Poole, 2005). It was reported that QAC resistant E.coli 

mutant OW66 is resistant to multiple QACs (Paraquat, cetyl pyridinium chloride, 

CnBDMA-Cls), antibiotics (ampicilin, amoxicillin, kanamycin, etc.) heavy metals (Co, 

Cu) and hydrocarbons (dodecane, decane, cyclohexane etc.), although the actual 

resistance determinant was not determined (Ishikawa et al., 2002). The SMR family 

EmrE multidrug exporter of E. coli also accommodates QACs (Poole, 2005). A 

Pseudomonas fluorescens isolate contaminating a batch solution of CnBDMA-Cls and 

showing high-level resistance to multiple QACs has been reported (Nagai et al., 2003). 

The same type pseudomonad containing qacE and qacE∆1 on its class 1 integron has 

been isolated from a QAC polluted site of a textile mill (Gaze et al., 2005).   

Among the multidrug efflux genes, qacE∆1 has attracted significant interest since 

it is widespread in Gram-negative bacteria due to its presence in the 3` conserved 

segment of most Class 1 integrons and usually co-exists with other efflux genes in the 

same integron. Class 1 integrons (Figure 2.5) consist of a 5` conserved region consisting 

of an integrase gene, int1, encoding a site-specific recombinase, an attI site where 

cassettes are integrated, and a promoter, Pant, that regulates the expression of gene 
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cassettes. The antibiotic resistance genes that integrons capture are located on gene 

cassettes. Gene cassettes contain a protein coding region and a recombination site known 

as a 59-be site, attC, which is responsible for the orientation of integration (Figure 2.5). 

The cassettes exist as free, circular DNA but cannot be replicated or transcribed in this 

form. 

 

 

igure 2.5. General structure of a Class 1 integron and a gene cassette and the mechanism 
of antibiotic resistance gene insertion into a Class 1 integron  
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gron (Figure 2.5). The gene on the cassette is then bound by the attI site on the 5` 

conserved region and by attC on the 3` conserved region. The 3` conserved region of an 

integron may have one of three backbone structures. The first backbone type consists of a
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Tn402 (In16)-like arrangement consisting of a tni module containing three transposition 

genes and a resolvase gene. The second, In5 type consists of qacE∆1, sul1 (sulfonamide 

resistance gene), orf5, orf6 (open reading frames), and a partial tni module, tni∆, 

consisting of two transposition genes. The third, In4 type carries just qacE∆1, sul1

and orf6 (Partridge et al., 2002; Gaze et al., 2005). 

A Class 1 integron may contain more than o

, orf5 

ne args belonging to different gene 

cassett

 

Pseudo maculans 

ntibiotic 

 

 

, 

frA15, 

s, 

es at the same time and these args may confer resistance to a wide variety of 

antibiotics/biocides such as β-lactams (e.g., blaP, oxa), streptomycin and spectinomycin 

(e.g., aadA), aminoglycosides (e.g., aadB, aacA, aacC), chloramphenicol (e.g., catB, 

cmlA), trimethoprin (e.g., dfrA, dfrB) and disinfectants (qacE) (Hall and Collis, 1998).

Recently, several bacterial species including Pseudomonas fluorescens, 

monas spp., Aeromonas hydrophila, Enterobacteriaceae, Serratia protea

and Serratia spp. that contain qacE∆1 have been isolated from a QAC polluted 

environment near a textile mill. This study is an important example that shows a

resistance may not reside in only clinical species but spread in the environmental systems

and QACs seems to be the major facilitator of antibiotic resistance in the environment. 

Again recently, but more striking, clinical and environmental isolates of Vibrio cholerae

and V. parahaemolyticus that were isolated between 1991 and 1996 in different 

provinces of Angola were reported to be resistant to ampicillin, chloramphenicol

trimethoprim, sulfamethoxazole, and tetracycline. They also contained a large 

conjugative plasmid (p3iANG) with a set of three class 1 integrons harboring d

blaP1, and qacH-aad48 cassettes, which code for resistance to trimethoprim, β-lactam

quaternary ammonium compounds, and aminoglycosides, clustered in a 19-kb region 
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(Ceccarelli et al., 2006). These two studies indicate that class 1 integrons are indicativ

antibiotic and QAC resistance and contribute to the circulation of these multiple-drug 

resistance genes in the environment among various bacteria. For that reason presence o

QACs in the environment possess a high level risk for human health.    
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 Most uses of QACs lead to t

directly into the environment. The fate of QACs in aerobic biological treatment system

and receiving waters has been studied and the results of these studies have been reviewed

extensively (Boethling, 1994; van Ginkel, 1996). These studies indicated that QACs are 

degraded under aerobic conditions and up to 90% of QAC removal by means of 

biodegradation is reported in engineered and natural systems. In fact, the half-liv

aerobic ultimate degradation of QACs vary extensively from hours to months depending

on the QAC concentration, structure, microbial acclimation and presence of QAC 

resistant/degrading microorganisms. The alkyl chain length not only determines the

physical/chemical properties of the QACs, but also may have a decisive role in the fa

and effects of these compounds in the environment. Under aerobic conditions, the 

biodegradability of QACs generally decreases with the number of alkyl groups as R

R3MeN+< R2Me2N+< RMe3N+< Me4N+. Moreover, substitution of a methyl group with a 

benzyl group can decrease biodegradability further (Ying, 2006). A comparison of the 

degradation rates of benzalkonium chlorides and monoalkonium bromides under aerobi

conditions was undertaken. The rate of degradation of C12BDMA-Cl, C14BDMA-Cl and 

C16BDMA-Cl, and C12TMA-Br, C14TMA-Br and C16TMA-Br was inversely related to 
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the length of alkyl group (Cn) and substitution of benzyl group decreased the rate as wel
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16BDMA-Cl was found to be the most recalcitrant of the tested compounds, 

with a plateau at only 30% degradation after 10 days. Likewise, it was reported that th

aerobic degradation of QACs was dependent on the length of the alkyl group; however 

the number alkyl groups had a more pronounced effect on biodegradability. For example

dialkonium QACs were degraded five times more slowly than monoalkonium QACs (van 

Ginkel and Kolvenbach, 1991). 

 Certain microorganisms t

These microorganisms are Xanthomonas  (Dean-Raymond and Alexander, 1977), 

Pseudomonas B1 (van Ginkel et al., 1992), Pseudomonas fluorescens TN4 (Nishih

al., 2000), Aeromonas hydrophila sp.K (Patrauchan and Oriel, 2003), and Pseudomonas 

spp. strain 7-6 (Takenaka et al., 2007) which were isolated from either sewage or soil. 

 Two biotransformation pathways, which are different from each other in terms o

initial attack on alkyl chain, have been observed for monoalkonium, dialkonium and 

benzalkonium chlorides (Figure 2.6): (1) hydroxylation of terminal C (ω-hydroxylatio

which is not adjacent to central N, followed by multiple β-oxidations, progressing toward

the hydrophilic moiety, resulting in liberation of two carbons in each β-oxidation cycle 

from the alkyl chain of a QAC and (2) hydroxylation of C that is adjacent to central N (α

hydroxylation) followed by the central fission of the molecule resulting in separation of 

the hydrophobic from the hydrophilic moiety. The microbial attack to a QAC starts on 

the alkyl chain. Activation of the alkyl chain is commenced with NADH-dependent 

hydroxylation of either ω- or α-carbon of the alkyl group by a monooxygenase enzym

the presence of oxygen. Activation of the alkyl chain of a QAC is very similar to the 
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activation of alkanes under aerobic conditions. A comparative pathway of hexadecane

 

  

 

 

Figure 2.6. Two biotransformation pathways observed for tetradecyl benzyl dimethyl 
mmonium chloride under aerobic conditions 
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and hexadecyl trimethyl ammonium degradation is given in Figure 2.7.   

A bacterium, Xanthomonas sp., capable of utilizing the monoalkonium QAC 

C10TMA-Br as the sole carbon and energy source was isolated (Dean-Raymond and 

Alexander, 1977). The products of C10TMA-Br biotransformation were identified as 9-

carboxynonyl and 7-carboxyheptyl trimethyl ammoniums. Identification of these 

carboxyalkyl trimethyl ammonium salts verifies that the metabolism of C10TMA-Br 

includes ω-hydroxylation followed by β-oxidation of the alkyl moiety (Pathway 1). In 

another study, a bacterium, tentatively identified as Pseudomonas sp. that grows on 

monoalkonium chlorides with alkyl chain lengths ranging from C12 to C18 was obtained 

through enrichment in a continuous culture inoculated with activated sludge. Growth on 

monoalkonium chlorides resulted in the production of trimethylamine. The 

transformation of monoalkonium chlorides therefore is proposed to follow NADH 

dependent α-hydroxylation of the alkyl moiety followed by a central fission of the Calkyl-

N bond (dealkylation) (Pathway 2, Figure 2.7.B) (van Ginkel et al., 1992). The aldehyde 

formed as a result of the chemical hydrolysis of the Calkyl-N bond was converted into an 

alkanoate which underwent successive β-oxidation resulting in the complete oxidation of 

the alkyl chain. However, the biotransformation of trimethylamine has not been achieved 

with this strain. Another demonstration of the Calkyl-N fission as the first degradation step 

of monoalkonium QACs with a mixed culture of microorganisms was presented by 

Nishiyama et al. (Nishiyama et al., 1995). In contrast to the previous findings, however, a 

recent study proposed the degradation of monoalkonium QACs, i.e., C12TMA-Br, by 

Pseudomonas sp. strain 7-6, isolated from a wastewater treatment plant, via dual 

pathways. Besides the fission of the Calkyl-N bond, Pseudomonas sp. strain 7-6 initiates  
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the degradation via hydroxylation of the methyl group and cleavage of the Cmethyl-N bond 

(demethylation).  

The biotransformation of dialkonium QACs by Pseudomonas fluorescens TN4 

(Nishihara et al., 2000) and Achromobacter sp. (van Ginkel, 2004) was found to occur in 

a similar fashion, by two consecutive dealkylations resulting in the formation of dimethyl 

amine as the end product.  

None of the isolates described above was able to grow on the non-alkyl 

containing amines such as trimethyl amine and dimethyl amine after dealkylation, most 

probably due to the lack of methylmonooxygenases. In fact, symbiosis of at least two 

species is necessary for a complete mineralization of monoalkonium and dialkonium 

QACs to ammonia and carbon dioxide under aerobic conditions (Kim et al., 2001; Kroon 

and van Ginkel, 2001).     

A biotransformation pathway of benzalkonium chlorides by Aeromonas 

hydrophila sp. K was recently reported (Patrauchan and Oriel, 2003). This pathway is 

similar to that of mono and dialkonium chlorides and commenced with a dealkylation 

step resulting in the formation of benzyl dimethyl amine (BDMA) as the first 

intermediate. This bacterium is also capable of growing on benzyl dimethyl amine as sole 

carbon and energy source and converts it to benzyl methyl amine, benzyl amine and 

ammonium by following two demethylations and a debenzylation, respectively. On the 

other hand, van Ginkel (2004)demonstrated an alternative benzalkonium chloride 

biotransformation pathway in a mixed culture. Based on his findings, benzalkonium 

chlorides are transformed into benzyl dimethyl amine, dimethyl amine and ammonia 

following consecutive dealkylation, debenzylation and demethylation steps which 
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involve three microorganisms that utilize the alkyl chain, the aromatic moiety and the 

dimethyl amine, respectively (van Ginkel, 2004). 

Overall, the biotransformation pathways of QACs indicate that biotransformation 

is mostly commenced with the cleavage of Calkyl-N bond irrespective of the type of QACs 

and the degradation of the produced alkanals proceeds via β-oxidation for complete 

mineralization. Once the alkyl chain is removed from a QAC, the QAC loses its toxicity. 

On the other hand, hydrophilic compounds such as trimethyl amine, dimethyl amine and 

benzyl dimethyl amine, formed after the dealkylation are utilized by other 

microorganisms. Obtaining sustainable microbial consortia that can mineralize a QAC to 

ammonium and carbon dioxide is difficult because QACs are biocides and are very toxic 

to microorganisms that are not capable of resisting them. QAC degraders are generally 

resistant to QACs and the ones that degrade the biotransformation products may not be. 

However, many studies performed with mixed cultures showed the ultimate degradation 

of QACs whereas none of them investigated the community structure of a QAC 

degrading consortium. 

2.3.2.  Anaerobic Biotransformation 

QACs are rapidly and strongly sorbed onto a wide variety of materials of 

environmental relevance such as biomass, sediment, clay, and minerals. Indeed, sorption 

generally outcompetes biodegradation in aerobic environments and therefore, QACs are 

transferred to anoxic/anaerobic compartments such as anaerobic digesters, as part of the 

primary and waste activated sludge, and aquatic sediments (Boethling, 1994). Under 

anaerobic conditions, there is no evidence of mineralization of QACs that contain alkyl or 

benzyl groups (Battersby and Wilson, 1989; Federle and Schwab, 1992; Garcia et al., 
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1999, 2000), most likely because of the highly reduced nature of these substituent groups. 

Moreover, QACs are inhibitory to anaerobic microbial processes such as methanogenesis 

(Battersby and Wilson, 1989; Garcia et al., 1999, 2000; Tezel et al., 2006, 2007).  

On the other hand, diethylester dimethyl ammonium chloride (DEEDMA-Cl), a 

recent analog of dialkonium chlorides was completely degraded by anaerobic digester 

sludge in a standard test based on biogas formation (Giolando et al., 1995). DEEDMA-Cl 

differs structurally from dialkonium chlorides by the inclusion of two ester linkages 

between the ethyl and alkyl chains. These ester linkages allow DEEDMA-Cl to be rapidly 

and completely degraded in standard laboratory screening tests and a range of 

environmental media such as sludge, soil and river water with half-lives ranging from 0.8 

to 18 days. Likewise, it is known that natural QACs such as choline and betaine can be 

ultimately degraded under anoxic/anaerobic conditions (Neill et al., 1978; King, 1984). 

As a result, QACs in which the hydrophobic moieties are linked to the head group with 

ester bonds (esterquats), choline, betaine (natural QACs), and those in which alkyl chains 

are linked directly to N+ have a different fate under anoxic/anaerobic conditions. The 

latter are recalcitrant under these conditions. 

QACs possess alkyl, benzyl and/or methyl functional groups. As discussed above, 

the initial step in QAC biotransformation is very similar to that of the hydrocarbon 

degradation under aerobic conditions. Moreover, similar types of microorganisms 

participate in the biotransformation of both types of compounds under aerobic conditions. 

Relatively recently it was discovered that both aliphatic and aromatic hydrocarbons can 

be degraded under anoxic/anaerobic conditions by the fumarate addition mechanism 

(Heider et al., 1998; Spormann and Widdel, 2000; Van Hamme et al., 2003; Suflita et al., 
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2004; Davidova et al., 2005; Callaghan et al., 2006; Heider, 2007; Washer and Edwards, 

2007; Winderl et al., 2007; Callaghan et al., 2008; Grundmann et al., 2008). Under this 

pathway, biotransformation of hydrocarbons involves the integration of a fumarate 

molecule to the alkyl group of alkylbenzenes or to the subterminal C atom of alkanes. 

The enzymes that catalyze the fumarate addition to hydrocarbons are benzylsuccinate 

synthase (Bss) and alkylsuccinate synthase (Ass). These enzymes are glycyl radical 

enzymes that are grouped in the pyruvate-formate lyase (Pfl) superfamily and have 

catalytic subunits with a strong homology to Pfl (Coschigano et al., 1998; Krieger et al., 

2001; Callaghan et al., 2008; Grundmann et al., 2008). The fumarate addition to toluene 

catalyzed by Bss is given in Figure 2.8 (Widdel and Rabus, 2001; Himo, 2002; Himo, 

2005) and follows: (1) the glycyl radical (-NH-●CH-CO-) of Bss acquires a hydrogen 

atom from a neighboring cysteine residue (-SH) creating a thiyl radical (-S●); (2) the thiyl 

radical abstracts a hydrogen atom from toluene and creates a toluyl radical; (3) this 

radical attacks the double bond of fumarate producing a benzylsuccinyl radical 

intermediate; (4) a hydrogen atom is transferred to benzylsuccinyl radicals from cysteine 

yielding benzylsuccinate, and (5) glycine is converted to glycyl radical by transferring a 

hydrogen to thiyl and the enzyme is reactivated.  

Following this unusual addition reaction, the C-skeleton of the hydrocarbon is 

reorganized and goes into β-oxidation metabolism (Figure 2.9). Such biotransformation 

pathways have been observed to take place under Fe(III)-reducing, denitrifying, sulfate 

reducing and methanogenic conditions.  
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Figure 2.8. Scheme of fumarate addition to toluene by benzylsuccinate synthase (Bss) 
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Figure 2.9. Biotransformation of toluene by the fumarate addition mechanism under 
anoxic/anaerobic conditions 
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Other terminal electron acceptors shown to be used during anaerobic hydrocarbon 

metabolism include manganese oxides, soil humic acids, anthraquinone-2,6-disulfonate 

and fumarate.  

QACs may be completely mineralized through fumarate addition mechanism 

under anoxic/anaerobic conditions. For instance, complete mineralization of a 

benzalkonium chloride, C14BDMA-Cl, was successfully simulated using the University 

of Minnesota-Biocatalysis/Biodegradation Database-Pathway Prediction System (UM-

BBD-PPS) (http://umbbd.msi.umn.edu/predict/) (Wackett and Ellis, 1999; Ellis et al., 

2000; Hou et al., 2003) (Figure 2.10). According to this pathway, fumarate is added to a 

methylene carbon that connects the benzene ring to the quaternary nitrogen of 

C14BDMA. The resulting product, which is fumarate added C14BDMA or (2R)-2-

((dimethyl(tetradecyl)ammonio) (phenyl)methyl)succinate (abbreviated as C14BDMA*, 

hereafter), is activated by coenzyme A (CoA), followed by rearrangement of the 

C14BDMA* skeleton. The rearrangement results in the separation of the benzyl group 

from the C14BDMA* yielding tetradecyldimethyl amine (C14DMA) and 

benzalsuccinylCoA (BS-CoA). Then, C14DMA and BS-CoA are utilized as carbon and 

energy source via β-oxidation after further metabolized through consecutive fumarate 

addition and benzoyl-CoA pathways, respectively (Heider et al., 1998; Boll et al., 2002; 

Gibson and Harwood, 2002; Davidova et al., 2005). Although the fumarate addition 

mechanism is a promising pathway of QAC degradation under anoxic/anaerobic 

conditions, no attempt has yet been made to delineate the biotransformation potential of 

QACs via this mechanism. 
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Figure 2.10. Predicted biotransformation pathway of C14BDMA by the fumarate addition 
mechanism using UM-BBD-PPS (annotations in parentheses represent the UM-BBD-PPS 
rules applicable to the corresponding reaction)  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1. General Analytical Methods 

3.1.1.  pH 

All pH measurements were performed using the potentiometric method with a 

ATI Orion Model 370 digital pH meter (Orion Research Inc., Boston, MA) and a gel-

filled combination pH electrode (VWR International, West Chester, PA). The meter was 

calibrated weekly with pH 4.0, 7.0, and 10.0 standard buffer solutions (Fisher Scientific, 

Pittsburg, PA). 

3.1.2.  Oxidation-Reduction Potential (ORP) 

ORP measurements were performed using an ATI Orion Model 370 millivolt 

meter and a Sensorex combination ORP electrode (Sensorex Co., Garden Grove, CA) 

which is a platinum electrode with an Ag/AgCl reference electrode in a 3.5 M KCl gel. 

The meter and electrode output were periodically checked using saturated quinhydrone 

solutions prepared in pH 4.0, 7.0, and 10.0 buffers. To obtain ORP values with reference 

to the standard hydrogen electrode, a correction factor of +220 mV was added to the 

instrument reading values.   

3.1.3.  Ammonia 

Ammonia concentration was measured using the distillation method described in 

Standard Methods (Eaton et al., 2005). The samples were centrifuged at 12,000 rpm for 

15 minutes and filtered through a 0.2 µm nitrocellulose membrane filter (Fisher 

 45



Scientific, Pittsburgh, PA). The ammonia distillation was performed using a Labconco 

distillation apparatus (Labconco Corp., Kansas City, MO). The distillate then was titrated 

with 0.2 N H2SO4 and the ammonia was quantified. 

3.1.4.  Total and Soluble Chemical Oxygen Demand (tCOD and sCOD) 

COD was measured using the closed reflux, colorimetric method as described in 

Standard Methods (Eaton et al., 2005). An aliquot of 3 mL digestion solution composed 

of 4.9 g K2Cr2O7, 6 g HgSO4, 6 g Ag2SO4 and 500 mL H2SO4 was transferred to HACH 

COD digestion vials (HACH Company, Loveland, CO) and then 2 mL of sample was 

added to the vial. After tumbling the vial for 4-8 times, the content in the vials was 

digested at 150oC for 2 hours and then cooled down to room temperature. The absorbance 

was measured at 620 nm with a Hewlett-Packard Model 8453 UV/Visible 

spectrophotometer (Hewlett-Packard Co., Palo Alto, CA) equipped with a diode array 

detector, deuterium and tungsten lamps and a 1 cm path length. Samples were centrifuged 

and filtered through a 0.2 µm nitrocellulose membrane filter if the sCOD was measured, 

otherwise well-mixed samples were used after appropriate dilution for tCOD 

measurements. All samples were prepared in triplicates and a calibration curve was 

prepared using 1 g/L standard solution of potassium hydrogen phthalate (KHP).  

3.1.5.  Dissolved Organic Carbon (DOC) 

DOC measurements were performed using a Shimadzu TOC-5050A Total 

Organic Carbon Analyzer (Shimadzu Scientific Instruments Inc., Columbia, MD) 

equipped with a non-dispersive infrared detector for the analysis of total, organic and 

inorganic carbon of liquid samples. Liquid samples were filtered through 0.2 µm PVDF 

filters, acidified below pH 2.0 using a 0.2 N HCl solution and purged with CO2-free air 
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for 2 minutes. Triplicate measurements were performed for each sample using 25 µL 

injection volume. Carbon analysis was based on catalytic combustion of the sample at 

680oC. A calibration curve was prepared using 1g C/L standard solution of KHP. 

3.1.6.  Total and Volatile Solids (TS and VS) 

Total solids content of samples were determined according to procedures outlined 

in Standard Methods (Eaton et al., 2005). Samples were weighed in pre-ignited (550oC) 

and cooled ceramic crucibles using an Ohaus AP250D Analytical Balance (precise to 

±0.02 mg up to 52 g, and to ±0.1 mg between 52 and 210 g). The samples were then 

dried at 105oC for 24 hours in a Fisher Isotemp Model 750G oven. After drying, the 

crucibles were transferred to a desiccator until cooled, and then the dry weight was 

measured. If VS were to be determined, the crucibles were transferred to a Fisher Isotemp 

Model 550-126 muffle furnace and ignited at 550oC for 20 minutes. After ignition, the 

samples were cooled in a desiccator and the remaining solids weight was measured. TS 

and VS were then calculated using the equations below. 

 

)L(volumeSample
))mg(weighttareCrucible())mg(C105afterweightCrucible()L/mg(TS −°

=  

 

)L(volumeSample
))mg(C550afterweightCrucible())mg(C105afterweightCrucible()L/mg(VS

o−°
=  

3.1.7.  Total and Volatile Suspended Solids (TSS and VSS) 

 TSS and VSS were determined according to procedures described in Standard 

Methods (Eaton et al., 2005). Whatman GF/C glass fiber filters (47 mm diameter and 1.2 
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µm nominal pore size; Whatman, Florham Park, NJ) were washed with deionized (DI) 

water and ignited at 550oC for 20 minutes in a Fisher Isotemp Model 550-126 muffle 

furnace before use. The filters were than cooled in a desiccator and weighed. Samples of 

known volume were filtered through the glass fiber filters. The filters were then rinsed 

with 10 mL DI water to remove dissolved organics and inorganic salts. The filters 

containing the samples were dried at 105oC for 90 minutes. After cooling in a desiccator, 

the dry weight was recorded and the filters containing the dry samples were ignited at 

550oC for 20 minutes. After ignition, the samples were cooled down in a desiccator and 

the weight was measured. TSS and VSS concentrations were then calculated using the 

equations below.  

 
)L(volumeSample

))mg(weighttareFilter())mg(C105afterweightFilter()L/mg(TSS −°
=  

 

)L(volumeSample
))mg(C550afterweightFilter())mg(C105afterweightFilter()L/mg(VSS

o−°
=  

 

3.1.8.  Total Gas Production 

Total gas production in closed assay bottles and large volume reactors was 

measured by either the gas-water displacement method or with a VWR Pressure/Vacuum 

transducer (resolution –1 atm to 1.974 atm with an accuracy of 0.002 atm). 

3.1.9.  Gas Composition 

 The gas composition was determined by a gas chromatography (GC) unit (Agilent 

Technologies, Model 6890N; Agilent Technologies, Inc., Palo Alto, CA) equipped with 
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two columns and two thermal conductivity detectors. Methane (CH4) and dinitrogen (N2) 

were separated with a 15 m HP-Molesieve fused silica, 0.53 mm i.d. column (Agilent 

Technologies, Inc.). Carbon dioxide (CO2), nitric oxide (NO) and nitrous oxide (N2O) 

were separated with a 25 m Chrompac PoraPLOT Q fused silica, 0.53 mm i.d. column 

(Varian, Inc., Palo Alto, CA). Helium was used as the carrier gas at a constant flow rate 

of 6 mL/min. The 10:1 split injector was maintained at 150oC, the oven was set at 40oC 

and the detector temperature was set at 150oC. All gas analyses were performed by 

injecting a 100 µL gas sample. The minimum detection limits for CH4, CO2, NO, N2O 

and N2 was 500, 800, 500, 7 and 50 ppmv, respectively. 

3.1.10.  Volatile Fatty Acids (VFAs) 

 VFAs (C2 to C7, i.e. acetic, propionic, iso-butyric, n-butyric, iso-valeric, n-valeric, 

iso-caproic, n-caproic and heptanoic acids) were measured after acidification of filtered 

samples with a 2.5% H3PO4 solution containing 1.5 g/L acetoin as the internal standard 

(sample:acid, 2:1 volume ratio) using an Agilent 6890 Series GC unit equipped with a 

flame ionization detector and a 35-m Stabilwax-DA, 0.53-mm I.D. column (Restek, 

Bellefonte, PA). Samples used for the measurement of  VFAs were prepared by 

centrifugation at 10,000 rpm for 30 minutes and filtration through 0.22-µm PVDF 

membrane filters before acidification. The minimum detection limit for each acid 

mentioned above was 0.25, 0.10, 0.03, 0.02, 0.10, 0.08, 0.02, 0.02, 0.05 mM, 

respectively.  

3.1.11. Organic Acids, Alcohols and Carbohydrates 

 Non-flame ionizable organic acids (formic, oxalic, citric, malic, pyruvic, lactic, 

succinic and fumaric acids), alcohols (methanol, ethanol, and buthanol), and 
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carbohydrates (glucose) were measured with a HP 1100 Series HPLC (Hewlett Packard, 

Palo Alto, CA) unit equipped with an Aminex HPX-87H ion exclusion column (300 × 

7.8 mm)(Bio-Rad, Richmond, CA) and an Agilent 1100 Series UV/visible diode array 

and refractive index detectors (Agilent Technologies, New Castle, DE). A 0.01 N H2SO4 

solution was used as the mobile phase with a flow rate of 0.6 mL/min and the column 

was maintained at 65ºC. The samples were centrifuged and the supernatant was acidified 

with 0.2 N H2SO4 in a 1:1 ratio, and filtered through 0.2 µm membrane filters before the 

analyses. Organic acids were detected by the UV detector at 210 nm wavelength, whereas 

detection of alcohols and carbohydrates was achieved by the refractive index detector. A 

sample chromatogram of organic acids is given in Figure 3.1.  

3.1.12.  Anions 

 Chloride (Cl-), nitrite (NO2
-), bromide (Br-), nitrate (NO3

-), phosphate (PO4
3-), and 

sulfate (SO4
2-) anion concentrations were determined using a Dionex DX-100 ion 

chromatography unit (Dionex Coorporation, Sunnyvale, CA) equipped with a suppressed 

conductivity detector, a Dionex IonPac AG14A (4x50mm) precolumn, and a Dionex 

IonPac AS14A (4x250 mm) analytical column. The unit was operated in autosupression 

mode with 1mM NaHCO3/8mM Na2CO3 eluent and a flow rate of 1 mL/min. All samples 

were filtered through 0.2 µm membrane filters prior to injection. The minimum detection 

limit for each anion listed above was 0.03, 0.02, 0.03, 0.04, 0.02 and 0.05 mM, 

respectively. 
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Figure 3.1. Sample LC chromatogram of organic acids 
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3.2. Analyses of QACs and Related Compounds 

 Analytical methods to quantify QACs and their potential transformation products 

such as benzyl amines and alkyl amines developed during this study are summarized in 

this section. 

3.2.1. Chemicals 

Benzalkonium chlorides (CnBDMA-Cl: 32% C12BDMA-Cl, 40% C14BDMA-Cl, 

8% C16BDMA-Cl, 10% ethanol and 10% water (% w/w)), didecyl dimethyl ammonium 

chloride (80% DC10DMA-Cl, 10% ethanol and 10% water (% w/w)), dioctyl dimethyl 

ammonium chloride (80% DC8DMA-Cl, 10% ethanol and 10% water (% w/w)) and octyl 

decyl dimethyl ammonium chloride (80% DC8-10DMA-Cl, 10% ethanol and 10% water 

(% w/w)) were obtained from Lonza Inc. (Williamsport, PA). Dodecyl benzyl dimethyl 

ammonium (C12BDMA-Cl, > 99%), tetradecyl benzyl dimethyl ammonium (C14BDMA-

Cl, > 99%) and hexadecyl benzyl dimethyl ammonium (C16BDMA-Cl, > 97%) chlorides, 

benzyl methyl amine (BMA, > 97%), benzyl amine (BA, > 99.5%), tetradecyl dimethyl 

amine (C14DMA,  > 95%) and hexadecyl dimethyl amine (C16DMA > 95%) were 

obtained from Fluka (St. Louis, MO). Benzyl dimethyl amine (BDMA, > 99%) and 

dodecyl dimethyl amine (C12DMA,  > 95%) were purchased from Aldrich Chemical 

Company (St. Louis, MO) and Acros Organics (Morris Plains, NJ), respectively. Dodecyl 

trimethyl ammonium (C12TMA-Cl, >99%), tetradecyl trimethyl ammonium (C14TMA-Cl, 

>99%) and hexadecyl trimethyl ammonium chlorides (C16TMA-Cl, >99%) were acquired 

from TCI Chemicals (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan). Molecular 

structures, formulas and weights are given in Table 3.1. 
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Table 3.1. Chemicals used in this study 

 

 
Quaternary Ammonium Compounds Formula Molecular Weight 

  mole-1 

Monoalkonium Chlorides (CnTMA-Cl)   

Dodecyl trimethyl ammonium chloride 

 
C15H34NCl 

 
263.9 

 

Tetradecyldimethyl amine  

 
C17H38NCl 

 
291.9 

Hexadecyldimethyl amine  

 
C19H42NCl 

 
320.0 

   
Dialkonium Chlorides (DCnDMA-Cl)   

 

Dioctyl dimethyl ammonium chloride 

C18H40NCl 306.0 

Octyl decyl dimethyl ammonium chloride 
C20H44NCl 334.0 

 

Didecyl dimethyl ammonium chloride 

C22H48NCl 362.1 

   
Benzalkonium Chlorides (CnBDMA-Cl)   

Dodecyl benzyl dimethyl ammonium chloride 

C21H38NCl 

 
 

340.0 

Tetradecyl benzyl dimethyl ammonium chloride 

C23H42NCl 

 
 

368.0 

Hexadecyl benzyl dimethyl ammonium chloride 

C25H46NCl 

 
 

396.1 

N+C12H25
Cl-

N+C14H29
Cl-

N+C12H25
Cl-

N+C14H29
Cl-

N+C16H33
Cl-

N+C16H33
Cl-

N+C8H17

C8H17

Cl-

N+C8H17

C1 0H21

Cl-

N+C10H2 1

C1 0H21

Cl-

g 
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Table 3.1 (Continued) 

Amines Formula Molecula Weightr  
  g mole-1 

Dodecyl dimethyl amine 
C14H31N 

 
213.4 

Tetradecyl dimethyl amine  
C16H35N 

 
241.5 

Hexadecyl dimethyl amine  
C18H39N 

 
269.5 

Benzyl amine 
C7H9N 

 
107.2 

Benzyl methyl amine 
C8H11N 

 
121.2 

Benzyl dimethyl amine 

C9H13N 

 
 

135.2 

 

NC12H25

NC14H29

H2N

NC16H33

HN

N

 

3.2.2. Disulfine Blue Pair-Ion Extraction Method (DSB-PIX) 

 Routine, non-specific quantification of QACs in whole and centrifuged culture 

samples was performed using a previously reported and modified disulfine blue pair-ion 

extraction method (HMSO, 1981). According to this method, an anionic dye-QAC ion 

pair is formed, which is then solvent extracted, and the color intensity in the solvent 

phase is measured spectrophotometrically. Analyses were carried out in 25-mL test tubes 

by adding 5 mL of acetate buffer, 2 mL of dye solution and 2 mL of the sample. The 

acetate buffer included 115 g anhydrous sodium acetate and 35 mL glacial acetic acid in 

1 L DI water. The dye solution was prepared by dissolving 0.16 g of Patent Blue VF 

(Acros Organics, N.J., USA) in 2 mL ethanol and diluting to 250 mL with DI water. 
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Addition of 10 mL of methylene chloride to the 25-mL test tube resulted in the formation 

of a biphasic solution that was tumbled for 24 hours in order to achieve complete transfer 

of the dye-QAC ion pair into the solvent phase. The bottom solvent layer was then 

transferred into 2-mL clear glass vials and the color intensity measured with a UV/Vis 

HP model 8453 spectrophotometer equipped with a diode array detector (Hewlett-

Packard Co., Palo Alto, CA, USA). The QAC concentration was quantified based on 

sample absorbance at the characteristic maximum wavelength of 628 nm and previously 

prepared calibration curves for each individual QAC at a concentration range 0 to 30 

mg/L. Methylene chloride was used as the blank for all spectrophotometric analyses. The 

minimum method detection limit was 0.2 mg/L. Culture samples without any QACs, and 

DI water were analyzed using the same procedure and the resulting spectra did not have 

any background interference. Major QAC transformation products reported so far include 

tertiary and secondary amines which are positively charged at neutral pH (discussed in 

Chapter 2). Interference of these compounds with the quantification of QACs with the 

DSB-PIX method is insignificant (Figure 3.2). 

3.2.3. Extraction of QACs from Biological Media   

 Extraction of QACs from biological media is challenging since QACs bind to 

organic material by both ionic and hydrophobic interactions. Therefore, both interactions 

have to be overcome. The extraction method described here therefore was designed to 

achieve a high degree of recovery of analytes from biological media by (1) elimination of 

hydrophobic interactions between QAC and biosolids with a water miscible solvent such 

as acetonitrile; (2) elimination of ionic interaction between QAC and biosolids through 

cation exchange; (3) forming a counter-ion (an anion) mediated hydrophobic ion-pair;  
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Figure 3.2. Extent of interference by protonated amines on the disulfine blue ion-pair 
extraction method (DSB-PIX) measurements. 
 

 

and (4) transferring this ion-pair into a polar solvent (ethyl acetate) (Figure 3.3). 

 QACs and alkyl amines in 2.5 mL samples were extracted with a mixture of 1 mL 

of 100 mM AgNO3, 1.5 mL of acetonitrile and 2.5 mL of ethylacetate. The recovery of 

each analyte by this method is between 97 and 102%. The ethyl acetate extraction 

efficiency for benzalkonium chlorides by using different salt combinations and no salt 

and acetonitrile is given in Table 3.2. The maximum extraction efficiency without any 

interference was obtained by using AgNO3 and acetonitrile as the extraction mixture, 

therefore this mixture was used througout the study. 

 3.2.4. High Performance Liquid Chromatography of QACs   

Benzalkonium chlorides as well as benzyl dimethyl amine (BDMA), benzyl 

methyl amine (BMA) and benzyl amine (BA), which are possible BAC transformation 

products, were measured using a HP 1100 Series HPLC (Hewlett Packard, Palo Alto,  
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Figure 3.3. Mechanisms involved in QAC recovery from biological media by 
liquid/liquid extraction 
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Table 3.2. Ethyl acetate extraction efficiency for C12BDMA-Cl, C14BDMA-Cl and 
C16BDMA-Cl from biological media containing 2.5 g VS/L 
 

Modifier C12BDMA-Cl C14BDMA-Cl C16BDMA-Cl   Interference

No ACN/No Salt 0.0±0.0 0.0±0.0 0.0±0.0 + 

ACN Only 92.3±2.5 91.2±2.5 96.7±3.0 + 

100 mM AgNO3 73.4±2.0 80.4±2.1 119.2±2.1 - 

100 mM KH2PO4+ACN 
(40:60) 95.0±2.7 97.5±2.7 96.8±2.9 + 

100 mM KNO3+ACN  
(40:60) 97.6±1.9 98.7±1.8 98.6±1.7 + 

100 mM NaNO3+ACN  
(40:60) 97.9±0.7 99.1±0.8 97.9±1.5 + 

100 mM NH4NO3+ACN 
(40:60) 98.3±1.9 99.5±1.8 98.3±1.8 + 

50 mM Co(NO3)2+ACN 
(40:60) 96.4±1.3 98.3±1.2 90.9±3.7 + 

100 mM AgNO3+ACN 
(40:60) 97.4±1.9 99.0±1.8 97.5±2.2 - 

100 mM HNO3+ACN  
(40:60) 97.6±1.9 98.5±1.9 97.6±2.3 + 
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CA) unit equipped with a Phenomenex Luna SCX column (250 x 4.6 mm, 5µ) 

(Phenomenex, Inc., Torrance, CA) followed by a Polaris C18A column (50 × 4.6 mm, 3.2 

µ) (MetaChem Technologies Inc., Torrance, CA). A Phenomenex SCX SecurityGuard 

cartridge (4 × 3.0 mm) was used as a precolumn. A 60:40 (v/v) mixture of acetonitrile 

and 50 mM phosphate buffer (pH 2.5) was used as the mobile phase at a flow rate of 1.0 

ml/min and the columns were maintained at 35ºC. Detection was achieved with a HP 

1100 series UV-Vis diode array detector at a wavelength of 210 nm. The molar response 

factor for each analyte at 210 nm was 21.8±1.2 area unit/µM. The minimum detection 

limit for C12BDMA-Cl, C14BDMA-Cl, C16BDMA-Cl, BA, BMA, and BDMA was 1.57, 

2.55, 4.36, 1.13, 1.46 and 1.21 µM, respectively. An example HPLC chromatogram of 10 

µM analytes is given in Figure 3.4. 

3.2.5. Liquid Chromatography-Mass Spectrometry of QACs   

Monoalkonium and dialkonium chlorides, and alkyl dimethyl amines, such as 

dodecyl (C12DMA), tetradecyl (C14DMA) and hexadecyl (C16DMA) dimethyl amines, 

along with the benzalkonium chlorides were measured using an Agilent 1100 Series LC 

unit equipped with a Polaris C18A column (50 × 4.6 mm, 3.2 µ) and an Agilent 1100 

Series LC/MSD mass spectrometry (MS) detector. A gradient elution was applied using 

0.01% (v/v) formic acid in DI water (A) and 0.01% formic acid in acetonitrile (B) as 

mobile phases at a flow rate of 1.0 mL/min (Figure 3.5(A)).  The column was maintained 

at 35ºC. MS analysis was conducted by electrospray ionization in positive mode at 70 eV 

fragmentation voltage with a mass scan range of m/z 50-500. The drying gas (nitrogen) 

flow was 13 L/min at 350ºC, the nebulizer pressure was 50 psig, and the capillary voltage 

was 4000 V. Sample LC-MS chromatograms showing each analyte elution order and its 
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retention time are given in Figure 3.5 (B-E). The monitored ions of the target analytes are 

presented in Table 3.3. 
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Figure 3.4. Sample HPLC chromatogram of benzalkonium chlorides (dodecylbenzyl 
dimethyl ammonium chloride (C12BDMA-Cl), tetradecylbenzyl dimethyl ammonium 
chloride (C14BDMA-Cl), hexadecylbenzyl dimethyl ammonium chloride (C16BDMA-
Cl)), benzyl amine (BA), benzyl methyl amine (BMA), benzyl dimethyl amine (BDMA) 
and benzyl trimethyl ammonium chloride (BTMA-Cl). The bromide peak is given as the 
reference for a non-retained analyte. 
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Figure 3.5. Applied mobile phase gradient (A) and sample LC-MS chromatograms of 10 
µM monoalkonium (B), dialkonium (C), benzalkonium (D) chlorides and alkyl dimethyl 
amines (E) 
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Table 3.3. LC/MS monitored ions of target analytes 

3.3. General Procedures 

3.3.1. Methanogenic Culture Media  

Analyte m/z parent ion

C12TMA-Cl 228.3 

C14TMA-Cl 256.3 

C16TMA-Cl 284.3 

DC8DMA-Cl 270.3 

DC8-10DMA-Cl 298.3 

DC10DMA-Cl 326.4 

C12BDMA-Cl 304.3 

C14BDMA-Cl 332.3 

C16BDMA-Cl 360.4 

C12DMA 214.2 

C14DMA 242.3 

C16DMA 270.3 

 
 

 

sed in this study was sustained in medium which 

supplie

ere prepared by adding the first six ingredients in Table 3.4 to 8 L 

DI wat

 

A mixed methanogenic culture u

d necessary nutrients, trace metals, and vitamins. The composition of the culture 

media is shown in Table 3.4. Resazurin was used as a redox indicator (ORP < -110 mV) 

(Gerhardt et al., 1994). 

Culture media w

er in 9-L Pyrex serum bottles. The bottles were then autoclaved at 250oF (121oC) 

and 21 psi (1.43 atm) for 45 minutes. After autoclaving, the bottles contents were purged

with helium for 1.5 hours in order to strip oxygen from the media. After purging, and 

while the media were still warm, the rest of the ingredients listed in Table 3.4 were 
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added. 

 3.3.2. Aerobic Culture Media   

this study were sustained in growth media shown in 

Table 3

Aerobic cultures used in 

.5. The media was utilized without autoclaving. 
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Table 3.4. Composition of media for the mixed methanogenic culture used in this study 

Compound/Solution Concentration 
K2HPO4 0.9 g/L 
KH2PO4 0.5 g/L 
NH4Cl 0.5 g/L 
MgCl2·6H2O 0.2 g/L 
Trace metal stock solution 1 mL/L 
1 g/L resazurin stock 2 mL/L 
Vitamin stock solution 1 mL/L 
CaCl2·2H2O 0.1 g/L 
FeCl2·4H2O 0.1 g/L 
NaHCO3 3.5 g/L 
Na2S·9H2O 0.5 g/L 
  
Trace metal stock solution Concentration 
ZnCl2 0.5 g/L 
MnCl2·4H2O 0.3 g/L 
H3BO3 3.0 g/L 
CoCl2·6H2O  2.0 g/L 
CuCl2·2H2O  0.1 g/L 
NiSO4·6H2O 0.2 g/L 
Na2MoO4·2H2O  0.3 g/L 
  
Vitamin stock solution Concentration 
Biotin  0.2 g/L 
Folic Acid 0.2 g/L 
Pyridoxine hydrochloride 1.0 g/L 
Riboflavin  0.5 g/L 
Thiamine  0.5 g/L 
Nicotinic Acid  0.5 g/L 
Pantothenic Acid  0.5 g/L 
Vitamin B12  0.01 g/L 
p-Aminobenzoic Acid  0.5 g/L 
Thioctic Acid  0.5 g/L 
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Table 3.5. Composition of media for the mixed aerobic culture used in this study 

Compound Concentration 
K2HPO4 600 mg/L 
KH2PO4 335 mg/L 
CaCl2·2H2O 67.5 mg/L 
MgCl2·6H2O 135 mg/L 
MgSO4·7H2O 267.5 mg/L 
FeCl2·4H2O 67.5 mg/L 
Trace metal stock solution 0.67 mL/L 
  
Trace metal stock solution Concentration 
ZnCl2 0.5 g/L 
MnCl2·4H2O 0.3 g/L 
H3BO3 3.0 g/L 
CoCl2·6H2O  2.0 g/L 
CuCl2·2H2O  0.1 g/L 
NiSO4·6H2O 0.2 g/L 
Na2MoO4·2H2O  0.3 g/L 
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CHAPTER 4 

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS FOR 

QACS 

 

4.1. Introduction 

 Predictive quantitative structure-activity relationship (QSAR) analysis was 

developed to predict the biological activity of a variety of chemicals by using their 

physical and chemical properties defined by the molecular structure (e.g., functional 

groups) (Hansch et al., 1995). A descriptor which reflects the physical and chemical 

properties of a certain compound is identified and used to define relationships between 

the structure and the magnitude of its biological activity. For this reason, a descriptor has 

to be a comprehensive parameter which represents electronic, steric, and hydrophobic 

properties of a chemical, which in turn determine its (re)activity. The magnitude of the 

descriptor and the activity of a group of chemicals that contains a limited number of 

homologues are determined by either experiments or models and the relationship between 

the descriptor and the activity is generally analyzed by using linear regression. The 

correlation between the descriptor and the activity is then interpreted to estimate the 

activity of different chemicals for which the descriptor magnitude is known. QSAR is 

therefore a useful method to obtain information on the activity of a wide set of chemicals 

by using the information that is obtained for a limited set of chemicals. After the QSAR 

technique was introduced in 1962, it has been deployed for many applications such as 

drug discovery, adsorption, phase distribution, metabolism and excretion  (ADME) 

evaluation of pharmaceuticals, evaluation of mutagenesis and carcinogenesis, 
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toxicity/ecotoxicity, and environmental fate of a wide variety of chemicals (Hansch et al., 

1995).   

Sustainable development became a key concept in the world as the consumption 

of the world’s limited natural resources and environmental pollution significantly 

increased since the industrial revolution. Given the environmental and human health 

impacts of anthropogenic chemicals and formulations, management of raw materials, 

production and formulation, consumption and disposal of these formulations as well as 

understanding their environmental impact with a “cradle-to-grave” approach is a must. 

Therefore, QSAR is a simple and useful tool that can be pursued in the exploitation of 

chemicals as well as in determining their environmental impact and risk. 

QACs are a group of compounds which contain homologues with a relatively high 

structural variety (Chapter 2). Tones of QACs with different molecular structures are 

consumed and released into engineered and natural systems. Each QAC structure has its 

own fate in these systems, therefore a comprehensive assessment of environmental risk 

associated with QACs is difficult. In turn, using QSAR is a promising approach to 

understand the fate and impact of the QACs in both engineered and natural systems.  

The high affinity of QACs to sorb on biological matrices and their biocidal 

activity are major factors that determine their fate and impact in biological systems. 

However, until recently, there has been limited work on QSAR modeling of biosolids 

partitioning and toxicity of QACs (Garcia et al., 2001; Roberts and Costello, 2003; 

Garcia et al., 2004) and these works are not comprehensive and conclusive.  

The objectives of the research reported in this chapter were to (a) define and 

evaluate a structural descriptor for QACs; and (b) develop relationship between the 
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identified descriptor and biosolids partitioning of QACs on different municipal 

wastewater sludges and toxicity for QACs using Microtox® toxicity assay. 

4.2. Materials and Methods 

4.2.1.  Target compounds 

Monoalkonium, dialkonium and benzalkonium chlorides were used. Homologues 

within each of these QACs groups differ in terms of alkyl chain length. The QACs used 

in this part of the study were dodecyl (C12TMA-Cl), tetradecyl (C14TMA-Cl) and 

hexadecyl (C16TMA-Cl) trimethyl ammonium chloride, dioctyl (DC8DMA-Cl), 

octyldecyl (DC8-10DMA-Cl) and didecyl (D10DMA-Cl) dimethyl ammonium chloride, 

and dodecyl (C12BDMA-Cl), tetradecyl (C14BDMA-Cl) and hexadecyl (C16BDMA-Cl) 

benzyl dimethyl ammonium chloride (see Chapter 3 for their description). 

4.2.2.  Critical Micelle Concentration (CMC) Analysis  

The critical micelle concentration (CMC) of each QAC in DI water was measured 

by using a method described by Dominguez et al. (1997) which is based on the 

tautomerism of benzoylacetone (BZA) (Dominguez et al., 1997). According to this 

method, BZA exists as a mixture of ketonic and enolic tautomers (Figure 4.1) in aqueous 

solutions which have characteristic wavelengths at 250 and 315 nm, respectively.  

The concentration of enolic tautomer increases in the solution when a surfactant 

concentration reaches its CMC value and above since the enolic form is taken up by the 

surfactant micelles, the reaction proceeds forward (Figure 4.1). When the concentration 

of the enolic tautomer is plotted against the logarithm of the QAC concentration, the  
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Figure 4.1. Distribution of BZA tautomers (A) and corresponding enolic tautomer 
absorbance at different QAC concentrations (0.08-8.3 mM in the cuvette) (B) 
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break-point of the line signifies the QAC concentration at which the micelles start to 

form, which in turn defines the CMC value (Figure 4.1B).  

CMC analyses were performed in 2.5-mL, 1-cm UV-Vis cuvettes. Aliquots of 0.4 

mL of aqueous BZA solution (0.7 mM) prepared by diluting a 30 mM BZA solution (in 

dioxane) in DI water were added to each cuvette. Then, 2 mL of a QAC solution at a 

concentration range from 0.1 to 100 mM (0.08-83 mM in the cuvette) were added. The 

cuvettes were sealed with caps and gently agitated for 2 minutes. When the mixture in the 

cuvettes reached equilibrium after 10 minutes at room temperature, the concentration of 

the enolic tautomer was quantified based on sample absorbance at the characteristic 

maximum wavelength of 315 nm after running blank samples prepared for every QAC 

concentration, which contained 0.4 mL of DI water in place of aqueous BZA solution. 

The sample absorbance at 315 nm was plotted against the logarithm of QAC 

concentration, and the break-point of the line which corresponds to the CMC value of 

each QAC was determined. 

4.2.3.  1-Octanol/Water Partitioning (Kow) Analysis  

 The 1-octanol/water partitioning coefficient of each QAC was determined by 

using the tumble-tube method developed in our laboratory based on OECD Test No.123 

method (OECD, 2006). The test was performed in 25-mL serum tubes, which received 20 

mL 1-octanol saturated DI water containing 10 µM of a QAC and 4 mL DI water 

saturated 1-octanol. The tubes were then sealed with Teflon-lined butyl stoppers and 

aluminum caps. The content in each tube was agitated by tumbling at 6 revolutions per 

minute for either 1 or 6 days in the dark at 22oC in order to reach equilibrium of QACs 

between the two phases. At the end of each agitation period, 1.5 mL of sample from each 
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layer was transferred to 1.8-mL amber glass HPLC vials and the QAC concentration was 

determined by the LC-MS method described in Chapter 3. The Kow value was then 

calculated using the following equation. 

water

oltanoc1
ow ]QAC[

]QAC[
K −=                                     (Equation 4.1) 

In order to quantify the QAC recovery from both the water and 1-octanol phase, 

the QAC concentration in each phase was multiplied by the phase volume and summed 

up. The so obtained QAC mass was then normalized to the QAC mass in a control which 

contained the same QAC concentration in 20 mL DI water. The mean total mass recovery 

for all QACs was 107±15% (n = 54) (Figure 4.2). Equilibrium between the two phases 

was reached in 1 day of agitation since the Kow values obtained after 1 and 6 days of 

agitation were very similar having an average coefficient of variation of 5 ± 6% (n = 48).  

4.2.4.  Biosolids Partitioning Assays 

Partitioning of C12TMA-Cl, C16TMA-Cl, C12BDMA-Cl and C16BDMA-Cl on 

different types of municipal sludge (i.e., primary (PS), waste activated sludge (WAS), 

mesophilic digested sludge (MDS), and thermophilic digested sludge (TDS)) was 

evaluated in a shake-flask adsorption isotherm assay. The PS, WAS, and MDS were 

obtained from the South Cross Bayou Water Reclamation Facility in Pinellas County, 

Florida, whereas the TDS was acquired from the Regional Plant 1, operated by the Inland 

Empire Utilities Agency (IEUA) located in Ontario, California. The characteristics of the 

sludge samples used in this study are given in Table 4.1. Dilute sludge samples with 1 

g/L VS concentration were prepared with tap water in 4 L glass bottles. The pH of each 

sludge sample was adjusted to 7.0. In order to inhibit any biological activity and prevent  
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Figure 4.2. Normalized total QAC mass recovered from both the 1-octanol and water 
phase at the end of the partitioning assay 
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Table 4.1. Characteristics of undiluted sludge samples used in the adsorption isotherm  
 

bbreviations
 

Parameter PS WAS MDS TDS 

pH 5.55 6.61 6.95 7.30 

TS, g/kg wet sample 25.0 67.0±1 33.8±0.1 32.8±0.1

VS, g/kg wet sample 19.7 44.0±1 22.0±0.1 20.4±0.1

VS/TS, % 78.8 65.7 65.1 62.2 

Total COD, g/g VS 2.3 1.9 1.8 1.8 

Soluble COD, g/L 4.56 2.5±0.1 0.60 1.50 

VFAs, mg COD/L 1,400 567 50±5 75±7 

Carbohydrate, g/g VS 0.39 0.48 0.38 0.49 
Protein, g/g VS 0.30 0.46 0.47 0.43 
Total fat, g/g VS 0.31 0.06 0.15 0.07 
Total Kjeldahl nitrogen (TKN), g N/g VS 0.06 0.08 0.10 0.10 
Ammonia, mg N/L 243 460±13 495±16 719±58 
Total phosphorus, g P/g VS 0.04 0.11 0.11 0.12 

A : PS, primary sludge; WAS, waste activated sludge; MDS, mesophilic 

digested sludge; TDS, thermophilic digested sludge  
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possible biotransformation of the QACs, sodium azide (NaN3) was added to all sludge 

samples to a final concentration of 200 mg/L. Each bottle was sealed with a rubber 

stopper, and then flushed with helium gas for 15 min. The partitioning assays were 

performed in 250-mL Erlenmeyer flasks. Seven sets of flasks for each QAC and sludge 

sample were prepared by mixing 145 mL of diluted sludge having a fixed VS 

concentration, with 5 mL of QAC solutions at 1.5, 2.25, 3.0, 4.5, 6.0, 7.5 or 9.0 g QAC/L, 

respectively. The initial QAC concentration in each flak was 50, 75, 100, 150, 200, 250 

and 300 mg/L, respectively. All initial QAC concentrations were below their respective 

CMC values. The flasks were sealed with rubber stoppers and agitated on a orbital shaker 

at a rate of 190 rpm in the dark at 22oC for 24 hours. The total and liquid phase QAC 

concentration was measured at the end of 24 hours by the DSB-PIX method described in 

Chapter 3. The mass of QACs on the sludge solids was calculated by subtracting the 

liquid phase QAC concentration from the total QAC concentration. The liquid-phase 

QAC concentrations were plotted against the solid-phase QAC concentrations, and the 

resulting data points were fitted to the Freundlich isotherm equation given below.   

q = KF Cn                                            (Equation 4.2) 

In equation 4.2, q is the equilibrium QAC concentration on the sludge solids (mg 

QAC/g VS), C is the equilibrium QAC concentration in the liquid phase (mg QAC/L), KF 

is the capacity factor ((mg/g VS)(L/mg)n), and n is the Freundlich exponent. The two 

adsorption constants (KF and n) were determined by non-linear regression based on 

equation 4.2. 
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4.2.5.  Microtox® Toxicity Assays  

 The acute toxicity of the selected QACs was assessed using the standard 

Microtox® test. The Microtox® system consists of the Azur Environmental M500 

Analyzer with Microtox® Omni Software (Strategic Diagnostics Inc., Newark, DE). The

acute toxicity is measured by determining the change in luminescence of Vibri

a marine bacterium that naturally emits luminescent light, at different toxicant 

concentrations. All QAC samples were adjusted to 2% NaCl before analysis in order to 

maintain the proper osmotic pressure (ionic strength of 342 mM) for Vibrio fischeri. 

Different sample dilutions ranging from 1 to 2  were tested for 5 and 15 minutes 

exposure times. The luminescence emitted at different QAC concentrations was 

compared to that of the control, which consisted of 2% NaCl in DI water (pH 6.5-7.0) 

having no QACs. The effective concentration of a toxicant (QAC) that causes the bac

to emit light at 50% of the control is the EC  concentration. The 95% confidence rang

and r  values were calculated by linear regression of the data (x-axis: log of QAC 

concentration; y-axis: log of the fractional change in fluorescence after the sample w

 

o fischeri, 

teria 

e 

as 

added and incubated for 5 or 15 minut

in the c

 of 

 The effect of natural organic matter (NOM) (Aldrich humic acid, Aldrich 

Chemical Company, St. Louis, MO) on QAC toxicity was tested by using the standard 

7

50

2

es taking into account the change of fluorescence 

ontrol).  

 The Microtox® assays performed to assess the effect of different anions (counter-

ions) on QAC toxicity followed the same procedure described above. However, a 342 

mM couner-ion salt solution was used to maintain the same osmotic pressure instead

NaCl. 
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Microtox® assay. Every assay vial, including the control, received NOM at a target 

4.3. Results and Discussion 

concentration along with 2% NaCl.   

4.3.1.  Critical Micelle Concentration   

QACs are cationic surfactants and as all surfactants do, QACs form mic

Micelle formation is triggered by the coexistence of polar and hydrophobic moieties in 

the same molecule. In a polar solvent such as water, the polar moiety tends to interact

with the solvent, whereas the hydrophobic moiety is repelled. When the surfactan

concentration increases in a solution, the attraction between the hydrophobic moieties of 

the surfactant molecules prevails and results in the formation of bi-phasic aggregates 

called micelles. Therefore, a micelle contains a hydrophilic region that faces and interacts 

with the surrounding polar solvent, and a hydrophobic region, which is protected from 

the solvent. The affinity of a surfactant to form micelle is defined by a parameter c

critical micelle concentration (CMC), which is the threshold surfactant concentration at 

which micellization begins. Micelle formation results in abrupt changes in the physical 

properties of a so

elles. 

 

t 

alled 

lution, such as surface tension, electrical conductivity and detergency. 

nd 

modeling for surfactants as described above. 

, the 

 

QAC molecule and this difference gives a specificity to a QAC molecule. In this section, 

The CMC of a surfactant is defined by its electronic, steric and hydrophobic properties 

given by the molecular structure. Given the fact that CMC is related with the physical a

chemical properties of a surfactant molecule, it is a promising descriptor to be used in 

QSAR 

 All QACs posses a polar head group containing a cationic nitrogen. In fact

hydrophobic regions containing long-chain alkyl and benzyl groups are different in each

 76



the CMCs of nine QACs belonging to three QAC groups were measured and are give

Table 4.2. 

n in 

The CMC values of the target QACs covered a wide range from 0.58 to 21.13 

mM with a median of 2.55 mM (n = 9) (Figure 4.3). The measured CMCs were 

s which were determined utilizing conductivity 

and sur und 

d 

nium 

ese 

f 

 

 micelle formation (Rodriguez et al., 

002). 

 

consistent with previously reported value

face tension methods (Table 4.2). The lowest CMC in each QAC group was fo

for the QACs which have the longest alkyl chain length within the homologous group 

(Figure 4.4). These values are for C16TMA-Cl (1.31 mM), DC10DMA-Cl (1.50 mM) an

C16BDMA-Cl (0.58 mM) which belong to monoalkonium, dialkonium and benzalko

chlorides, respectively. On the other hand, the highest CMC in each QAC group was for 

the QACs which have the shortest alkyl chain length within the group (Figure 4.4). Th

values are for C12TMA-Cl (21.13 mM), DC8DMA-Cl (16.48 mM) and C12BDMA-Cl (3.8 

mM) which belong to monoalkonium, dialkonium and benzalkonium chlorides, 

respectively. The dependence of CMC on the alkyl chain length suggests that the 

hydrophobicity of the QACs has a significant effect on the CMC. 

The CMCs of benzalkonium chlorides were significantly lower than the CMCs o

monoalkonium chlorides with the same alkyl chain length (Table 4.2 and Figure 4.3). 

Given this fact, not only the alkyl chain length but also the addition of a benzyl group to

the polar head results in the decrease of CMC, most probably due to the electron 

withdrawing property of the benzene ring which in turn reduces the polarity and the 

hydration sphere of the head group and facilitates the

2
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Table 4.2. Critical micelle concentrations of target QACs determined in this study and 
reporte

a Previo
b

d

 

 

 

d in the literature at 298 oK 

 

QACs CMC  
a(mM)

Monoalkonium Chlorides  

C12TMA-Cl 21.13 (20.00b) 

C14TMA-Cl 5.62 (4.50 ) 
b

Dialkonium Chlorides  

DC8DMA-Cl 16.48 (NA)c 

DC8-10DMA-Cl 2.55 (NA) 
d

Benzalkonium Chlorides  

C12BDMA-Cl 3.80 (8.1e) 

C14BDMA-Cl 1.72 (2.0 ) 
e

b

C16TMA-Cl 1.31 (1.40 ) 

DC10DMA-Cl 1.50 (1.85 ) 

e

C16BDMA-Cl 0.58 (0.5 ) 

usly reported values in parenthesis 
 (Jalali-Heravi and Konouz, 2003) 

c NA, not available 
 (Lianos et al., 1983) 

e (Gonzalez-Perez et al., 2001) 
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Figure 4.3. Measured CMC values of monoalkonium, dialkonium and benzalkonium 

 

 

 

chlorides 
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4.3.1.1.Effect of Alkyl Chain Length on CMC 

The micelle formation is enhanced by the hydrophobicity of the surfactant. In an 

homologous series of surfactants, the affinity for micellization increases and the CMC 

decreases with an increase of the alkyl chain length. As a general rule, the CMC 

decreases by a factor of ca. 2 on adding one methylene group (-CH2-) to the alkyl chain. 

Alkyl chain branching, double bonds, aromatic groups or some other polar character in 

the hydrophobic region produce sizable changes in the CMC (Hiemenz and Rajagopalan, 

1997). 

At constant temperature, the effect of addition of a methylene group to the alkyl 

chain on CMC can be expressed using the Stauff-Klevents empirical formula (Gonzalez-

Perez et al., 2001) as follows. 

nCMClog BA −=                                (Equation 4.3) 

where n is the total number of carbon atoms in the unbranched alkyl chain and A and B 

are empirical regression constants. A is dependent on the polarity of the headgroup, 

whereas B represents the magnitude of CMC decrease per added methylene group to the 

The empirical regression constants for 

 analysis (Figure 4.4). A and B values obtained for monoalkonium, dialkonium 

and benzalkonium chlorides were 1.96 and 0.30, 2.29 and 0.26, and 0.05 and 0.21, 

spectively (Figure 4.4). These values are consistent with previously reported values 

opecky, 1996). Benzalkonium chorides have lower CMCs than monoalkonium 

chlorides with the same alkyl chain length. In order to reach the same CMC as that of 

benzalkonium chlorides, monoalkonium chlorides have to have more carbons on the alkyl  

alkyl chain (Gonzalez-Perez et al., 2001). 

monoalkonium, dialkonium and benzalkonium chlorides were determined by using linear 

regression

re

(K
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Figure 4.4. The effect of the alkyl chain length (n) on the CMC of (A) monoalkonium, 

 
(B) dialkonium and (C) benzalkonium chlorides  
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chain (Figure 4.5) because of the presence of the benzyl group in the benzalkonium 

chlorides. The benzyl group accounts for, on average, two extra carbons in the alkyl 

chain length for benzalkonium chlorides when the alkyl chain length is longer than 5 and 

shorter than 18 carbons (Figure 4.5) (Kopecky, 1996). However the benzyl group effect 

on the CMC decreases as the chain length increases and the CMC becomes the same for 

benzalkonium and monoalkonium chlorides at a 21-carbons chain length. On the other 

hand, dialkonium chlorides have higher CMCs than monoalkonium chlorides with the 

same alkyl chain length. In order to reach the same CMC, dialkonium chlorides have to 

have an average of four more carbons on the alkyl chain (Figure 4.5) because the carbons 

on the dialkonium chlorides are located in two alkyl chains which have lower chain 

lengths than the total carbon number, which in turn makes the molecule less hydrophobic.   

The benzalkonium chlorides have the lowest A value among all QACs (Table 

4.2), which indicates that their head group is less hydrophilic than the ones of other 

QACs because of the benzene ring effect as explained above. The constant B in the 

Stauff-Klevens relation accounts for the free energy for the methylene group to transfer 

from the aqueous phase to the micellar micro-phase and can be defined by using the 

equations given below (Hiemenz and Rajagopalan, 1997). 

            (Equation 4.4) headpolarCHCH
0
mic GGG)1n(G

32
∆+∆+∆−=∆

A
RTcmc

G)1n(
ln 2CH ′+

∆−
=χ                           (Equation 4.5) 

here ∆G mic (J/mol) is the Gibb’s free energy of micellization, ∆GCH2, ∆GCH3 and 

∆Gpolar head (J/mol) is the Gibb’s free energy of methylene, methyl and polar head transfer 

from the aqueous phase to the micelle, respectively. The χcmc is the critical micelle  

0w

 82



 

Figure 4.5. Change in CMC with respect to the alkyl chain
of the number of carbon atoms in the alkyl chain that satisfies the same CMC for 
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concentration expressed in terms of molar fraction (χcmc = CMC/55.5, where 55.5 is the 

molar concentration of 1L water assuming a specific gravity of water equal to 1 at 298.15 

oC). R (J/mole·oK) is the ideal gas constant and T (oK) is the absolute temperature. The 

constant A� can be defined by using the equation below. 

02.4A303.2B303.2
RT

G
RT
G

A headpolarCH3 −+−=
∆

+
∆

=′            (Equation 4.6) 

The constants A and B were previously defined in Equation 4.3. By using Equation 4.5, 

the Gibb’s free energy to transfer one methylene (∆GCH2) from the aqueous solution to 

the monoalkonium chloride micelle is –1.71 kJ/mole which is very close to a previously 

reported value of –1.72 kJ/mole (Hiemenz and Rajagopalan, 1997). On the other hand, 

the Gibb’s free energy to transfer one methylene (∆GCH2) from the aqueous solution to 

the dialkonium and benzalkonium chloride micelles is –1.48 and –1.20 kJ/mole, 

respectively. Transfer of one methylene to either dialkonium or benzalkonium chloride 

micelles is more difficult than to transfer it to a monoalkonium chloride micelle. This is 

because of the steric effects exerted by the presence of two hydrophobic hydrocarbons 

attached on the quaternary nitrogen in dialkonium and monoalkonium chlorides. As a 

result, addition of two carbons to monoalkonium chlorides leads to a more pronounced 

CMC decrease than the addition of two carbons to dialkonium and benzalkonium 

hlorides (Figure 4.4 and Table 4.2).  

s well 

efined by its 1-octanol/water partitioning coefficient (Kow). Kow is also widely used in 

QSAR modeling of biosolids partitioning, bioaccumulation and toxicity for a variety of 

organic compounds. Because of this reason, we examined the effect of hydrophobicity on 

c

 The major driving force of micellization of QACs is the hydrophobic interaction 

between their alkyl groups (Kopecky, 1996). The hydrophobicity of a compound i

d
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CMC of QACs and evaluated the extent of CMC dependence on hydrophobicity in order

to assess the potential use of CMC in QSAR instead of K

 

eveloped by Meylan and 

Howard and Hansch and Leo (Hansch and Leo, 1979; Meylan and Howard, 1995). 

Comparison between the experimentally determined and calculated Kow values was done 

 

ow

. These 

ow h 

-

o 

ion 4.3 correlates with the Gibb’s free energy for 

ow. 

 The Kow values of QACs were either determined experimentally or calculated 

using two different atom/fragment contribution methods d

in order to determine if the current Kow estimation methods are appropriate to derive 

QSAR models.  

 The log Kow values of the target QACs ranged from 0.28 to 2.97 with a median of

1.50 (n = 9) (Table 4.3). The measured log K  values are consistent with previously 

reported values (Table 4.3). The highest log Kow in each QAC group was found for the 

QACs which have the longest alkyl chain length within eqach homologous group

are C16TMA-Cl (1.50±0.06), DC10DMA-Cl (2.56±0.01) and C16BDMA-Cl (2.97±0.03) 

which belong to monoalkonium, dialkonium and benzalkonium chlorides, respectively. 

On the other hand, the lowest log K  in each QAC group was found for the QACs whic

have the shortest alkyl chain length within each homologous group. These are C12TMA

Cl (0.36±0.07), DC8DMA-Cl (0.28±0.22) and C12BDMA-Cl (0.59±0.04) which belong t

monoalkonium, dialkonium and benzalkonium chlorides, respectively.  

As discussed above, B in Equat

the transfer of one methylene from water to the QAC micellar core. Equation 4.3 can be 

used to determine the Gibb’s free energy for the transfer of one methylene from water to 

1-octanol. Addition of a methylene to the alkyl chain of QACs has a more pronounced 

effect on Kow than on the CMC since the B value for Kow ranges between 0.3 and 0.6  
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study and reported in the literature at 298 K 

c 

 

Table 4.3. 1-Octanol/water partitioning coefficients of target QACs determined in this 
o

 

QACs log Kow a 

Monoalkonium Chlor des  i

C12TMA-Cl 0.36±0.07 

14TMA-Cl 0.70±0.05 

DC DMA-Cl 0.28±0.22 (NA)  

l

C12BDMA-Cl 0.59±0.04 (0.95 ) 

C

 

a Previously reported values in parenthesis 
b (Ying, 2006) 
NA, not available 

d (Hansch et al., 1995) 

C16TMA-Cl 1.50±0.06 (1.81b) 

Dialkonium Chlorides  

8
c

DC8-10DMA-Cl 1.54±0.06 (NA) 

DC10DMA-Cl 2.56±0.01 (NA) 

Benzalkonium Ch orides  
d

C14BDMA-Cl 1.67±0.02 (1.81d) 

C16BDMA-Cl 2.97±0.03 (2.11d) 
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(Figure 4.6), whereas B is between 0.2 and 0.3 for CMC (Figure 4.4). Such results 

ggest a less hydrophobic and a more polar nature of the QAC micelle core than the 

th 

nd the log Kow than between alkyl chain length and the log CMC (Figure 4.4 and Figure 

4.6), suggests that other interactions apparently contribute to QAC micellization besides 

the hydrophobicity, such as ionic interactions associated with the polar head of QACs. In 

fact, Kow is limited in representing overall interactions which are significant in QSAR 

modeling of biosolids partitioning and toxicity of QACs. 

The most popular environmental QSAR tools, such as the EPISuite and the 

OECD Application Toolbox (OECD, 2008; Syracuse Research Corporation, 2007) utilize 

log Kow values calculated using the atom/fragment contribution method developed by 

Meylan and Howard (Meylan and Howard, 1995) and are integrated into KOWWIN® 

(version 1.06) (Syracuse Research Corporation, 2007) to predict the toxicity and 

bioconcentration factor of chemicals as well as their distribution in environmental 

compartments. In fact, this method overpredicted the log Kow values of the target QACs 

igure 4.7B). The difference between the predicted and measured log Kow values was 

ts that the error is systenatic but non-specific 

e residual, which is the difference between the predicted and 

easured log Kow values for a particular QAC used in this study, ranges from 0.9 to 2.4 

 = 9) (Figure 4.7A). The residual for monoalkonium chlorides was less than that for 

ialkonium and benzalkonium chlorides, which suggests that all carbons, no matter how 

lose to the polar head or how they are aligned in the molecule, are treated in a same way  

 

su

octanol medium (Kopecky, 1996). Noting a better correlation between alkyl chain leng

a

(F

constant and equal to ca. 1.76 which sugges

fo . Thr the target QACs

m

(n

d

c
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Figure 4.6. Effect of the alkyl chain length (n) on Kow of (A) monoalkonium, (B) 

 
dialkonium and (C) benzalkonium chlorides  
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igure 4.7. (A) Residual and (B) graphical comparison between measured and predicted 
eylan 
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and the effect of the polar head on the hydrophobic groups of a QAC molecule is not 

taken into account by this method.  

In search for the best available log Kow estimation method, a method developed 

by Hansch and Leo (1979) was identified as the most precise one. According to this 

method, log Kow values are calculated conceptually by breaking the molecule down into 

its simplest fragments (i.e., -CH3, -CH2-, -C7H7, >N+< , etc.), summing their partial Log 

Kow values (referred to as f) and applying factors F to allow for variation in how the 

fragments are combined together in the whole molecule. Based on this, the overall log 

Kow equation can be written as follows: 

                              (Equation 4.7) 

where “a” is the number of occurrence of fragment “i” and “b” is the number of 

applications of factor “j”. Hansch and Leo (1979) defined specific bond factors (F) for 

ionic organics, specifically for protonated amines and quaternary ammonium compounds, 

by taking the effect of the polar head on the hydrophobicity of the attached alkyl chain 

into account. Therefore, the values of F were determined depending on the position of the 

carbon atom in the alkyl chain. 

This complex method not only accounts for the hydrophobicity exerted by each 

carbon fragment but also includes the effect of the polar head on the hydrophobicity of 

ccounted for in the previously described method. The overall equation to estimate the 

log Kow values of QACs is given below.  

logKow = fN+ + fCl- + aCH3fCH3 + aCH2fCH2 + aC7H7fC7H7 + b1F1 + b2F2 + b3F3

               +  b4F4 + b5F5 + b>

∑∑ +=
j

1
jj

i

1
iiow FbfaKlog

carbons depending on their locations nearby the polar head. Such interactions are not 

a

6F>6                                                        (Equation 4.8) 
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The contributions of each fragment and bond factor to log Kow of QACs are giv

in Table 4.4. 

en 

sing 

 

 of CMC on hydrophobicity (Figure 4.9). The 

relationship between CMC and Kow can be expressed as follows: 

The log Kow values calculated using the Hansch and Leo method had a better 

agreement with the measured log Kow values (Figure 4.8B) than the ones calculated u

the Meylan and Howard method (Figure 4.7B). All residuals were less than 0.5 units 

(expressed as absolute value) (Figure 4.8A). The close agreement verified the importance

of the polar head group on the chemical properties of QACs.  

 Good correlations between CMC, measured, and calculated Kow values were 

achieved, which verifies the dependence

owKlogCMClog DC −=                            (Equation 4.9) 

h the 

4.3.1.2.Effect of Counter-ions on CMC 

 

 
 
 

where C is the intercept and D is the slope of the regression line. D correlates wit

partitioning intensity of QACs between 1-octanol and water. The correlation between 

CMC and log Kow values calculated using the Hansch and Leo method and measured log 

Kow values is better than the log Kow values calculated using the Meylan and Howard 

method. 

The presence of an anion (counter-ion with respect to the positive charge of the 

QACs) in an aqueous solution of QACs almost always facilitates the micellization and

leads to a lower CMC value. The high affinity of anions to bind on the polar head of  

 
 

 91



 
 

 
Table 4  
Leo method  

 

 

.4. log Kow contribution of fragments and bond factors used in the Hansch and

 

 

Fragment/Bond Factor Contribution (Unitless) 

 

 

 

 

fN+ -3.40 

fCl- 

fCH3 0.89 

2

F4 -0.35 

F5 -0.30 

0.06 

fCH2 0.66 

fC7H7 2.51 

F1 -0.90 

F  -0.60 

F3 -0.45 

F>6 -0.27 
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Figure 4.9. Relationship between CMC and (A) calculated Kow values using the Meylan 
and Howard method, (B) calculated Kow values  using the Hansch and Leo method and 
(C) measured Kow (Dashed lines represent 95% confidence intervals) 
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QACs results in a decrease of its polarity and an increase in its hydrophobicity. 

Thermodynamically, addition of a counter-ion in a QAC solution decreases the Gibb’s 

free energy for the transfer of the polar head from the aqueous solution to the QAC 

micelle (∆Gpolar head, as expressed in Equation 4.4). The effect of counter ions on the CMC 

of QACs can therefore be expressed by an equation similar to Equation 4.3 as follows 

(Gaillon et al., 1999). 

   ioncounterClogCMClog −β′−= E                       (Equation 4.10) 

where E is the intercept and β' is the slope of the linear regression line which correlates 

with the degree of association of the micelle with counter ions. 

The effect of four monovalent inorganic (i.e., Cl-, NO2
-, Br- and NO3

-) and an 

organic (i.e., acetate, CH3COO-) counter-ion on the CMC of benzalkonium chloride (a 

mixture of C12BDMA-Cl, C14BDMA-Cl and C16BDMA-Cl ) was tested at concentrations 

up to 50 mM and the results are given in Figure 4.10. The log CMC decreased at a rate of 

0.108, 0.179, 0.211, 0.228 and 0.261 per 10 mM of Cl-, NO2
-, Br-, CH3COO- and NO3

-, 

respectively (Figure 4.10). These results and the trend were comparable with the ones 

reported by Gaillon et al. (1999) for monoalkonium chlorides. The results suggest that 

not only the concentration but also the type of counter-ion affect the CMC. The order of 

counter ion binding to the positive micelles was as follows: Cl- > NO2
- > Br- > CH3COO- 

> NO -; that is, larger anions that are more polarizable bind to QACs more effectively and 

4.3.2.  Assessment of Biosolids Partitioning of QACs  

3

result in the decrease of CMC (Figure 4.11) (Hiemenz and Rajagopalan, 1997).       

 

 Biosolids are mainly composed of lipids, carbohydrates and proteins which have 

ionic and hydrophobic properties. Therefore, QACs have a high affinity to accumulate on  

 95



 

Figure 4.10. Effect of (A) Cl-, (B) NO2
-, (C) Br-, (D) CH3COO- and (E) NO3

- on the CMC 
of benzalkonium chloride at concentrations up to 50 mM (Dashed lines represent 95% 
confidence intervals) 
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Figure 4.11. Effect of counter-ion electro-negativity expressed by its retention time on 
ion chromatography (IC) and size on the CMC of benzalkonium chloride  
 

 

biomolecules via both ionic and hydrophobic interactions. These interactions define the 

fate of QACs in engineered and natural biological systems.  

Adsorption of four QACs, representing the least and the most hydrophobic QACs 
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ium and benzalkonium chlorides 

.e., C1

among those used in this study, belonging to monoalkon

(i 2TMA-Cl, C16TMA-Cl, C12BDMA-Cl and C16BDMA-Cl), on  primary (PS), 

waste activated (WAS), mesophilic digested (MDS) and thermophilic digested sludge 



(TDS) biosolids was investigated at QAC concentrations up to 300 mg/L (< CMC). 

Preliminary adsorption kinetic assays showed that equilibrium was reached in more than 

3 hours, but less than 24 hours for all sludge types and QACs used in this study (Ismail et 

al., 2008). Freundlich adsorption isotherms and the estimated parameter values (KF, 

capacity factor/sorption affinity and n, Freundlic exponent) are given in Figure 4.12 and 

Table 4.5, respectively. The Freundlich isotherm model represented well the QAC 

adsorption on municipal sludge biosolids since the regression coefficients of the non-

linear fits were above 90% (Table 4.5). In all cases, the value of n was less than 1 which 

indicates that at higher and higher QAC concentrations, adsorption free energy becomes 

weaker and weaker so that it becomes more and more difficult for additional QAC 

molecules to sorb. This occurs in cases where sorbent adsorption sites are occupied 

instantly at low sorbate concentrations and the remaining binding sites are less accessible 

to the sorbate molecules. Such isotherms are encountered in adsorption processes that 

involve hydrophobic (e.g., sorption to activated carbon) and/or ionic (e.g., sorption to 

clay mineral) interactions between sorbate and sorbent which is the case in QAC sorption 

to biosolids (Schwarzenbach et al., 2003). In fact, n values showed some variability 

between the sludges although the composition (lipid, carbohydrate and protein fractions 

of VS) of all sludges is relatively similar (Table 4.1). The n values for PS (0.71±0.10) and 

WAS (0.75±0.08) were higher than the n values for MDS (0.56±0.02) and TDS 

(0.56±0.09), which indicates that the adsorption sites of PS and WAS solids are more 

omogeneous than the sites of MDS and TDS solids. Therefore QAC sorption to PS and h

WAS is a continuum, whereas active sorption sites of MDS and TDS are occupied at very 

low QAC concentrations. This argument is true since sludge digestion results in more  
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Figure 4.12. Freundlich adsortion isotherms for C TMA-Cl, C BDMA-Cl, C TMA-Cl 

mesophilic digested sludge at 1 g VS/L 

 

12 12 16
and C16BDMA-Cl at equilibrium with (A) thermophilic digested sludge and (B) 
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Table 4.5. Freundlich adsorption isotherm constants for QAC phase distribution in 

digested sludges

 

municipal primary and waste activated sludges, as well as mesophilic and thermophilic 

 

b Mean ± standard error (number of data points = 8). 

2

a

a At 24 h adsorption equilibration period. 

 

 

 

 

 

 

QAC KF (mg/g VS)(L/mg) n r  n 

Primary Sludge    
C12TMA-Cl 1.28 ± 0.24b 0.64 ± 0.03 0.992

C12BDMA-Cl 4.73 ± 0.86 0.83 ± 0.04 0.993 
C BDMA-Cl 20.73 ± 1.90 0.76 ± 0.03 0.996 
    
Waste Activated Sludge    
C12TMA-Cl 0.95 ± 0.15 0.70 ± 0.03 0.995 
C TMA-Cl 21.19 ± 3.32 0.69 ± 0.05 0.986 
C12BDMA-Cl 3.81 ± 0.67  0.86 ± 0.04  0.994
C16BDMA-Cl 18.89 ± 2.16 0.74 ± 0.04 0.993
    
Mesophilic Digested Sludge    
C12TMA-Cl 3.14 ± 1.29 0.56 ± 0.08 0.932 
C16TMA-Cl 48.36 ± 4.21 0.54 ± 0.03 0.983 
C12BDMA-Cl 10.76 ± 2.09 0.58 ± 0.05 0.989 
C16BDMA-Cl 82.03 ± 24.13 0.56 ± 0.12 0.922 
    
Thermophilic Digested Sludge    
C12TMA-Cl 2.86 ± 1.49 0.64 ± 0.11 0.923 
C16TMA-Cl 49.88 ± 6.24 0.48 ± 0.03 0.989 
C12BDMA-Cl 9.76 ± 1.44 0.63 ± 0.03 0.992 
C16BDMA-Cl 99.66 ± 20.85 0.48 ± 0.07 0.936 

 
C16TMA-Cl 28.90 ± 3.29 0.61 ± 0.03 0.992 

16

16
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loamy and colloidal solids which have heterogeneous structure that also results in poor 

sludge settleability. n values of QACs, in fact, were similar for a specific sludge sorbent 

which indicates that n depends mainly on sorbent properties and less on the sorbate.  

The adsorption capacity factors were expressed in terms of molar QAC 

concentration (KF) in order to better compare the KF values obtained in this study to those 

previously reported (Table 4.6). The KF values for both monoalkonium and 

benzalkonium chlorides increased with increasing alkyl chain length for each municipal 

sludge. In turn, benzyl containing homologues had higher KF values than non-benzyl 

containing QACs. According to these results, the affinity of individual QACs to adsorb 

on municipal biosolids forms the following series in descending order: C16BDMA-Cl, 

C16TMA-Cl, C12BDMA-Cl and C12TMA-Cl.  The adsorption affinity of a particular 

QAC, in fact, was similar for every municipal sludge tested in this study and comparable 

with previously reported values (Garcia et al., 2004; Garcia et al., 2006) (Table 4.6). 

These results suggest that adsorption affinity is mainly dependent on the QAC structure 

and less on the sorbent type/composition when the QAC affinity is normalized to the VS 

concentration. 

 A satisfactory correlation between CMC and KF was obtained for each sludge 

sorbent used in this study (Figure 4.13). The relation between CMC and KF was 

expressed using an equation similar to Equation 4.9 as follows: 

CMClogKlog F gF −=                             (Equation 4.11) 

where F is the intercept and g is the slope of the regression line. The reciprocal of g 

correlates with the adsorption intensity. Noticing that the F and g values for all sludges 

were similar, indicates the significance of the sorbate on adsorption affinity rather than  
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Table 4.6. Comparison of sorption affinities of monoalkonium and benzalkonium 
hlorides for different sludge sorbents 

a (Garcia et al., 2004); bromide salts of monoalkonium chlorides were used 
b (Garcia et al., 2006) 
 

the sludge type. On the other hand, when Equations 4.9 and 4.11 are compared, the D and 

1/g values had to be the same if the adsorption is driven solely by hydrophobicity. 

However, the 1/g value (ca. 1) is higher than the D value (ca. 0.5). This result indicates 

that other processes such as ionic interaction between the QAC polar head and ionic sites 

of biosolids are also included in the QAC sorption mechanism besides the hydrophobic 

teractions. On the other hand, the pattern of KF dependence on alkyl chain length 

alkonium chlorides is similar to the pattern of 

According to these results, the 

dsorption affinity increases with increasing alkyl chain length. The benzyl group further 

nhances the adsorption affinity but the benzyl group effect diminishes as the total carbon 

umber of the alkyl chain increases. For all practical purposes, the adsorption affinity of 

onoalkonium and benzalkonium chlorides becomes the same when the alkyl chain 

contains 18 or more carbons. The same observation was made while the effect of the  

c
 
Sludge sorbents KF (mmol/g)(1/mM)n 

 C12TMA-Cl C16TMA-Cl C12BDMA-Cl C16BDMA-Cl

PS 0.17±0.03 3.05±0.35 1.76±0.32 4.93±0.45 

WAS 0.18±0.03 3.55±0.56 1.69±0.30 3.99±0.46 

AS 0.32a 6.89a 1.59b 6.44b 

MDS 0.28±0.11 3.48±0.30 0.93±0.18 5.83±1.71 

TDS 0.38±0.20 2.47±0.31 1.11±0.16 4.52±0.95 

 

in

(Figure 4.14) for monoalkonium and benz

CMC dependence on alkyl chain length (Figure 4.4). 

a

e

n

m
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Figure 4.13. Relationship between CMC and adsortion affinity of monoalkonium and 
benzalkonium chlorides on (A) PS, (B) WAS, (C) TDS and (D) MDS (Dashed lines 
represent 95% confidence intervals) 
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monoalkonium and benzalkonium chlorides on different sludge sorbents 

Figure 4.5). 

Figure 4.14. Effect of the alkyl chain length (n) on the adsorption affinity of 

 

 

alkyl chain length on the CMC was considered in previous sections of this chapter (see 

In conclusion, QACs have a high sorption affinity for municipal biosolids. The 

affinity depends mainly on the QAC structure rather than the sludge composition. QACs 

with a longer alkyl chain adsorb more than QACs with a shorter alkyl chain. The benzyl 

group enhances adsorption. The mechanism of QAC sorption on biosolids is complex, 

but both hydrophobic and ionic interactions are probably in effect. The CMC represents 

both hydrophobic and ionic properties of QACs and is thus an effective descriptor for 

QSAR modeling of biosolids partitioning of QACs. 

ALKYL CHAIN LENGTH (n)

2 4 6 8 10 12 14 16 18

K F
(m

m
ol

 Q
AC

/g
(1

/
10

100

 [
 V

S
)

m
M

A
 Q

C
)n ]

0.01

0.1

1 Benzalkonium

Monoalkonium

2

R2 = 0.962

R  = 0.899

Be
l-group 

effnzy ect

Garcia et al. 
2004 and 2006 

 104



4.3.3.  Assessment of QAC Toxicity   

The 5- and 15-minute acute toxicity of monoalkonium, dialkonium and 

benzalkonium chlorides to the bioluminescent marine microorganism Vibrio fischeri was 

investigated and the results are given in Table 4.7.  

 

Table 4.7. Results of the Microtox® acute toxicity assay (5- and 15-min) of 
monoalkonium, dialkonium and benzalkonium chlorides 

 

a Values in parenthesis are 95% confidence intervals  

 

The 5-min EC  values of the target QACs ranged from 0.19 to 1.22 mg/L with a 

median at 0.38 mg/L (n=9) whereas the 15-min EC  values were between 0.12 and 0.66 

mg/L with a median at 0.25 mg/L (n=9). These results show that the toxicity of QACs 

increases as the exposure time increases, meaning that a certain exposure time is 

Compound 5 min-EC50 (mg/L) 15 min-EC50 (mg/L) 

Monoalkonium Chlorides   

C12TMA-Cl 0.26 [0.25-0.33]a 0.19 [0.16-0.23] 

1.22 [1.08-1.37] 0.56 [0.38-0.83] 

Dialkonium Chlorides   

DC10DMA-Cl 0.49 [0.48-0.51] 0.25 [0.18-0.35] 

16

C14TMA-Cl 0.90 [0.87-0.94] 0.40 [0.38-0.43] 

C16TMA-Cl 

DC8DMA-Cl 0.20 [0.16-0.27] 0.12 [0.08-0.17] 

DC8-10DMA-Cl 0.28 [0.21-0.36] 0.17 [0.12-0.23] 

Benzalkonium Chlorides   

C12BDMA-Cl 0.19 [0.14-0.27] 0.14 [0.09-0.21] 

C14BDMA-Cl 0.38 [0.31-0.48] 0.27 [0.20-0.36] 

C BDMA-Cl 0.92 [0.73-1.16] 0.66 [0.50-0.86] 

 

50

50
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necessary for QACs to reach the target sites. Noting that as discussed above, QAC 

adsorption reaches equilibrium after 3 hours, the exposure time is important if the mode 

of toxicity is related to adsorption to and dissociation of cell membrane. The EC50 values 

obtained in this study are consistent with previously reported values obtained using the 

same toxicity assay (Leal et al., 1994; Garcia et al., 2001; Nalecz-Jawecki et al., 2003; 

Sutterlin et al., 2008). The lowest EC50, which indicates the highest toxicity, in each QAC 

group was found to be QACs with the shortest alkyl chain length within an homologous 

group. These are C12TMA-Cl , DC8DMA-Cl and C12BDMA-Cl which belong to 

monoalkonium, dialkonium and benzalkonium chlorides, respectively. On the other hand, 

the highest EC50 values in each QAC group was found to be QACs which have the 

longest alkyl chain length within an homologous group. These are C16TMA-Cl, 

DC8DMA-Cl and C12BDMA-Cl which belong to monoalkonium, dialkonium and 

benzalkonium chlorides, respectively (Figure 4.15 and Figure 4.16). According to these 

results, the toxicity of QACs forms the following series in descending order: C12BDMA-

Cl > DC8DMA-Cl > C12TMA-Cl > DC8-10DMA-Cl > C14BDMA-Cl > DC10DMA-Cl > 

C14TMA-Cl > C16BDMA-Cl > C16TMA-Cl, at 5 minute exposure time. However, the 

order changed as the exposure time increased and became as follows: DC8DMA-Cl > 

C12BDMA-Cl > DC8-10DMA-Cl > C12TMA-Cl > DC10DMA-Cl > C14BDMA-Cl > 

C14TMA-Cl > C16TMA-Cl > C16BDMA-Cl. The correlation between CMC and toxicity 

was poor for a 5-minute exposure time with an r2 equal to 0.19, but became better for a 

5-minute exposure time (Figure 4.17). In both cases, QACs with a higher CMC value 1

were more toxic than the ones with a lower CMC value. The mode of action of QACs 

against bacteria involves perturbation of cytoplasmic membrane, inhibition of respiratory  
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Figure 4.15. The 5-minute acute toxicity EC  values of monoalkonium, dialkonium and 

obtained using the Microtox® assay (Error bars represent 95% confidence intervals) 

 
50

benzalkonium chlorides to the bioluminescent marine microorganism Vibrio fischeri 
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4.16. The 15-minute acute toxicity EC50 values of monoalkonium, dialkonium and
benzalkonium chlorides to the bioluminescent marine microorganism Vibrio fischeri 
obtained using the Microtox® assay (Error bars represent 95% confidence intervals) 
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Figure 4.17. Relationship between the CMC and EC  values of monoalkonium, 

exposure time (Error bars represent 95% confidence intervals) 

50
dialkonium and benzalkonium chlorides at (A) 5-minute, (B) 15-minute and (C) 1-day 
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enzymes and dissipation of proton motive force (Maillard, 2002). Which one 

redominates may depend on the QAC structure as well as the exposure time. The 

bserved effect of exposure time on QAC toxicity, therefore, is attributed to the 

difference between the mode of toxicity that each QAC structure exerted. 

The EC50 values obtained for 5 and 15-minutes exposure times were extrapolated 

to obtain EC50 values for 1-day exposure time for each QAC by using a modified Chick-

Watson equation as follows: 

(EC50
n)(texposure) = 0.5                                     (Equation 4.12) 

The value of 0.5 indicates the 50 percent viable cells which in turn was defined as a 

constant since EC50 was used. The toxicity of QACs at 1-day exposure time forms the 

following series: C12TMA-Cl > DC8DMA-Cl > C14TMA-Cl > DC8-10DMA-Cl > 

C16TMA-Cl > DC10DMA-Cl > C12BDMA-Cl >C14BDMA-Cl > C16BDMA-Cl. The 

correlation between the CMC and EC50 for a 1-day exposure time was better than the 

previous ones with an r2 equal to 0.78 (Figure 4.17), indicating that chronic toxicity can 

be modeled more accurately by using CMC than the acute toxicity. 

 The (bio)available QAC concentration reaches a maximum at the CMC. Any 

agent or factor that decreases the CMC also diminishes the available QAC concentration. 

As the available QAC concentration decreases so does the biocidal activity. It was 

emonstrated that anions decrease the CMC of QACs by reducing the polarity of the head 

xicity of benzalkonium chlorides was investigated at 342 mM counter-ion 

p

o

d

group and in turn increase the hydrophobicity of the overall molecule as they form ion 

pairs with the QACs. The effect of counter-ions, such as Br-, NO3
- and acetate, on the 

to
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concentration by using the Microtox® assay (the maximum achievable counter ion 

oncentration that does not affect the performance of the Microtox® assay).  

None of the counter-ions tested significantly affected the toxicity of the 

benzalkonium chlorides at each exposure time (p > 0.05) (Figure 4.18). This result 

indicates that QACs are toxic at such low concentrations that counter-ions do not affect 

their (bio)availability. Sutterlin et al. (2008) also reported no effect of anionic surfactants 

which are stronger electrolytes than the inorganic anions, to the toxicity of benzalkonium 

chloride using the Vibrio fischeri as the test organism (Sutterlin et al., 2008). Accounting. 

Considering that inorganic anions are present in both natural and engineered biological 

systems, their contribution to QAC toxicity is negligible. 

 Natural organic matter (NOM) is another major constituent in engineered and 

natural systems. NOM is known to chelate cationics and decrease their bioavailability 

(Schwarzenbach et al., 2003). Given the cationic nature of QACs, the effect of NOM on 

the toxicity of benzalkonium chlorides was tested at concentrations up to 100 mg/L. 

 NOM decreased the toxicity of benzalkonium chlorides for both 5- and 15-minute 

exposure time (Figure 4.19). The toxicity is linearly and negatively correlated with the 

NOM concentration. That is, as the NOM concentration increases the toxicity of 

benzalkonium chlorides decreases. The toxicity decreases at a rate of 0.007, 0.009 and 

.150 per mg NOM/L for a 5-minute exposure time and 0.004, 0.006, and 0.07 per mg 

e

enzalkonium chlorides tested. These results suggest that not only ionic interactions 

etween QACs and NOM that cause chelation of QAC by the NOM, but also  

c

0

NOM/L for a 15-minute exposure time (Figur  4.20). The most pronounced effect was 

found for the C16BDMA-Cl, which is the most hydrophobic QAC among the 

b

b
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igure 4.18. The effect of 342 mM Br-, CH3COO- and NO3
- on the toxicity of (1) 

12BDMA-Cl, (2) C14BDMA-Cl and (3) C16BDMA-Cl for (A) 5-minute and (B) 15-
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Figure 4.19. The effect of NOM at different concentrations (10-100 mg/L) on the toxicity 
of (1) C12BDMA-Cl, (2) C14BDMA-Cl and (3) C16BDMA-Cl for (A) 5-minute and (B) 
15-minute exposure time (Error bars represent 95% confidence intervals) 
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Figure 4.20. Relationship between NOM concentration and EC50 of (1) C12BDMA-Cl, (
C

2) 
e 14BDMA-Cl and (3) C16BDMA-Cl for a (A) 5-minute and (B) 15-minute exposure tim

(Error bars represent 95% confidence intervals) 
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hydrophobic interactions, such as adsorption of QAC to dissolved NOM, affect the 

(bio)availability of QACs, especially the most hydrophobic ones. 

4.4. Summary 

 The critical micelle concentration of nine QACs belonging to three QAC groups 

was determined. The factors that affect the CMC, such as alkyl chain length, 

hydrophobicity and counter-ions were identified and their impact on CMC was 

quantified. The QACs tested had different CMCs ranging from 0.58 to 21.13 mM. In 

general, QACs with longer alkyl chain lengths had lower CMCs than the ones with 

shorter alkyl chain lengths. The length of alkyl chain affected mainly the hydrophobicity 

of the QACs. As a result, the CMC correlated well with the log Kow which was either 

measured or calculated using the Hansch and Leo method. Micellization was positively 

correlated not only with the alkyl chain length and hydrophobicity, but also with the 

counter-ion concentration. The presence of counter-ions, such as Br-, NO2
-, CH3COO- 

and NO3
-, decreased the CMC of QACs to some extent. The order of counter-ion binding 

to the QAC micelles was as follows: Cl- > NO2
- > Br- > CH3COO- > NO3

-; that is, the 

larger anions that are more polarizable bind to QACs more effectively and result in a 

decrease of the CMC. 

 The CMC was used as a descriptor in QSAR modeling of biosolids partitioning 

nd toxicity, which are two important end-points that determine the fate and impact of 

ludges with 

different characteristics, i.e., primary, waste activated, mesophilic digested and 

a

QACs in engineered and natural biological systems. The adsorption affinity of 

monoalkonium and benzalkonium chlorides to four different municipal s
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thermophilic digested sludges, was tested. The acute toxicity of QACs was determined 

using the Microtox® assay.   

The QACs tested in this study had a high sorption affinity for biosolids and their 

affinity depended mainly on the QAC structure rather than the biosolids chemical 

composition. QACs with lower CMCs had a higher adsorption affinity for biosolids than 

QACs with higher CMCs. This result suggests that QACs with high CMCs are more 

mobile in engineered and natural systems than the ones with lower CMCs. On the 

contrary, QACs with a high CMC were more toxic than the ones with low CMCs. The 

combination of these two facts brings out a detrimental environmetal impact associated 

with QACs, that is, QACs which are more mobile and (bio)available are more toxic. The 

presence of anions has no significant effect on the toxicity. On the other hand, NOM 

decreases the toxicity of QACs. Quantitative sorption and toxicity information obtained, 

along with the QSAR approach developed in this study, would help to better determine 

the environmental impact of QACs. 

 116



CHAPTER 5 

BIOTRANSFORMATION OF BENZALKONIUM CHLORIDE 

UNDER AEROBIC CONDITIONS 

 

5.1. Introduction 

 Biotransformation of monoalkonium, dialkonium and benzalkonium chlorides 

mainly commences with the cleavage of the bond between the alkyl group and the 

quaternary nitrogen. The monooxygenase catalyzed degradation of the produced alkyl 

aldehydes proceeds via β-oxidation for the complete mineralization, whereas the 

hydrophilic amines, such as trimethyl amine, dimethyl amine, and benzyl dimethyl 

amine, formed after the dealkylation of monoalkonium, dialkonium and benzalkonium 

chlorides, respectively, are converted to ammonium and carbon dioxide. Once the alkyl 

chain is removed, the toxicity is reduced and the resulting products are more bioavailable.  

 The microorganisms that are capable of using QACs as carbon and energy source 

are mainly classified in the genus Pseudomonas (Dean-Raymond and Alexander, 1977; 

Geftic et al., 1979; van Ginkel et al., 1992; Nishihara et al., 2000; Kaech and Egli, 2001; 

Nishiyama and Nishihara, 2002; Takenaka et al., 2007; Liffourrena et al., 2008). Other 

species that can catabolize various QACs are Xanthomonas sp. (Dean-Raymond and 

Alexander, 1977) and Aeromonas sp. (Patrauchan and Oriel, 2003).  

 Benzalkonium chlorides (BAC) are a group of QACs that are extensively used in 

various domestic and industrial applications (U.S. Environmental Protection Agency, 

2006) and are the most predominant QACs found in engineered and natural systems 

(Kummerer et al., 1997; Clara et al., 2007; Kreuzinger et al., 2007; Martinez-Carballo et 
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al., 2007; Martinez-Carballo et al., 2007). Until recently, few studies had focused on the 

biotransformation/biodegradation of BAC (Patrauchan and Oriel, 2003; Qin et al., 2005). 

The biotransformation pathway of benzalkonium chlorides by a pure culture of 

Aeromonas hydrophila sp. K was recently reported (Patrauchan and Oriel, 2003). 

According to the results of this study, BAC biotransformation commences with the 

fission of the alkyl group from the quaternary nitrogen resulting in the formation of 

benzyl dimethyl amine as the first intermediate. This bacterium is capable of growing on 

benzyl dimethyl amine and converts it sequentially to benzyl methyl amine, benzyl amine 

and ammonia by following two demethylations and a debenzylation. In contrast, van 

Ginkel (2004) demonstrated an alternative BAC biotransformation pathway in a mixed 

culture. Based on this pathway, BAC is transformed into benzyl dimethyl amine, 

dimethyl amine and ammonia as a result of dealkylation, debenzylation and 

demethylation, which hypothetically involves three microorganisms that utilize the alkyl 

chain, the benzyl group and the dimethyl amine, respectively (van Ginkel, 2004). 

However, the microbial community capable of BAC degradation according to the above 

pathway was not described in that study. On the other hand, Kummerer et al. (2002) 

demonstrated that members of genus either Acinetobacter or Pseudomonas were selected 

in an activated sludge microcosm upon exposure to BAC (Kummerer et al., 2002). In 

another example, as a response to application of a nonionic surfactant in a hydrocarbon 

contaminated soil, a Pseudomonas population, which could utilize both hydrocarbons and 

the surfactant dominated (Colores et al., 2000). Pseudomonas was also the predominant 

genus among the microbial community isolated from a QAC-contaminated environment 

(Gaze et al., 2005). 
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 The objectives of the research reported in this chapter were to: (a) assess the 

biotransformation mechanism and kinetics of C14BDMA-Cl, which is the most common 

and predominant BAC detected in engineered and natural systems, by using bioenergetic 

calculations and biotransformation experiments; and (b) elucidate the microbial 

community structure of a mixed culture maintained using C14BDMA-Cl as the sole 

carbon and energy source. 

5.2. Materials and Methods 

5.2.1.  BAC Enrichment Culture 

 A suspended growth mixed, aerobic culture was developed using as inoculum a 

contaminated sediment sample collected at the Bayou d’ Inde, a tributary of the Calcasieu 

River, near Lake Charles, Louisiana. The bayou and adjacent marshes are contaminated 

by hazardous substances, including polycyclic aromatic hydrocarbons (PAHs), metals, 

polychlorinated biphenyls (PCBs), dioxins/furans, and other hazardous compounds 

released from chemical manufacturing and petroleum refining facilities 

(http://www.darrp.noaa.gov/southeast/bayou_dinde/index.html). The culture was initially 

developed using a mixture of dextrin/peptone in order to sustain a diverse heterotrophic 

microbial community (Yang, 2007) and was fed-batch with 50 mg/L of BAC. 

Subsequently, using the mixed culture as inoculum, another BAC-degrading culture was 

enriched which has been maintained for almost two years using the benzalkonium 

chloride mixture as the sole carbon/energy source supplemented with stoichiometric 

levels of NH4NO3 as the nitrogen source (referred to as BAC enrichment culture). 

 The BAC enrichment culture has been maintained in a 2-L Pyrex® reactor with a 

total liquid volume of 1.6 L, a residence time of 14 days, fed once a week with media and 
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200 mg BAC/L (in the feed solution). The steady-state pH and VSS concentration of this 

culture was 6.9 and 137.6 mg/L (2.41±0.31x109 cells/mL, measured by using DAPI 

staining). 

5.2.2.  Energetics Calculations 

The standard Gibb’s free energies of formation (∆Gf
0’) of QACs have not been 

published. A group contribution method developed by Mavrovouniotis (1990) was used 

to calculate ∆Gf
0’ values of QACs and potential QAC transformation products using 

Equation 5.1.    

0
i,f

i

1
i

0
f GaG ′′ ∆=∆ ∑                                   (Equation 5.1) 

where, a is the number of occurrence of group i and ∆Gf,i
0’ is the standard Gibb’s free 

energy of formation of group i. The calculated ∆Gf,i
0’ values are given in Appendix B. 

∆Gf
0’ values of other compounds involved in reactions of interest were obtained from the 

literature (Thauer et al., 1977; Rittmann and McCarty, 2001). The standard Gibb’s free 

energies of half-reactions (∆G0’) and oxidation-reduction reactions (∆Greac
0’) without cell 

synthesis were calculated by using Equation 5.2 according to the method described by 

Rittmann and McCarty (2001). 

0
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1
k

0
p,f

j

1
j

0
reac

0
kj

GrGp)Gor(G ′′′′ ∆−∆=∆∆ ∑∑              (Equation 5.2) 

 where, p is the molar fraction of product j and r is the molar fraction of reactant k 

whereas ∆Gf,p
0’ and ∆Gf,r

0’ are the standard Gibb’s free energies of formation of products 

and reactants, respectively.  
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5.2.3.  Batch Biotransformation Assay 

A batch assay was performed to delineate the biotransformation potential and 

kinetics of C14BDMA-Cl as well as its potential biotransformation products reported by 

Patrauchan et al. (2003), i.e., benzyl dimethyl amine (BDMA), benzyl methyl amine 

(BMA) and benzyl amine (BA), and two other QACs which were C14TMA-Cl and benzyl 

trimethyl ammonium chloride (BTMA). The latter compounds are homologues of  

C14BDMA-Cl having either no benzyl (C14TMA-Cl) or long-chain alkyl group (BTMA). 

The assay was performed in 250-mL Erlenmeyer flasks. A sample of 1.5 L BAC 

enrichment culture, collected at the end of 7-day feeding cycle, was centrifuged at 10,000 

xg and the pellet was washed and resuspended in an equal volume (1.5 L) fresh 

autoclaved culture media with a composition given in Chapter 3. The pH of the 

resuspended culture was adjusted to 7.0 with sodium bicarbonate.  

Six culture series, used to determine the biotransformation kinetics of the 

individual compounds given above, were prepared by transferring 99 mL of resuspended 

culture along with 1 mL of 10 mM solution of an individual compound into each flask. 

The initial concentration of each compound in the corresponding culture was about 100 

µM. The VSS concentration in all cultures was 78.7±5.3 mg/L.  The cultures were 

agitated at 190 rpm on a rotary shaker and incubated at room temperature (22-23oC) over 

night. The cultures in which the compounds were depleted, were re-amended with the 

corresponding compound at the same initial concentration. The time course concentration 

of each compound in the corresponding culture was monitored.  

A dilute culture was prepared by using 40 mL of inoculum and 59 L culture 

media in a 250-mL Erlenmeyer flask and was amended with 1 mL of 10 mM C14BDMA-
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Cl. The VSS concentration of the dilute culture was 31.5±2.8 mg/L. This culture was 

used to elucidate the mechanism of C14BDMA-Cl biotransformation. All the 

biotransformation experiments were performed without replicates. 

5.2.4.  Phylogenetic Analysis of the BAC Enrichment Culture 

A sample of 30 mL BAC enrichment culture was centrifuged at 10,000 rpm and 

the pellet was resuspended in 250 µL sterile 0.85% NaCl solution. DNA of the culture 

suspension was extracted using the UltraCleanTM Soil DNA Isolation Kit according to the 

manufacturer’s instructions (MoBio Laboratories Inc., Solana Beach, CA), which 

includes a bead-beating and a spin-column purification step. Extracted DNA was 

confirmed by gel electrophoresis and quantified using NanoDrop Spectrophotometer 

(NanoDrop Technologies, Wilmington, DE). Bacteria 16S rDNA of extracted DNA was 

amplified by PCR using TaKaRa Ex TaqTM Kit (TaKaRa Bio USA, Madison, WI). The 

final concentrations of each chemical in the reaction mixture were: TaKaRa Ex Taq 

polymerase (1 unit), Ex Taq Buffer (1x), dNTPs (0.25mM each), DNA template (30 ng or 

1 µL), 27F forward primer (27F: 5’-AGAGTTTGATCCTGGCTCAG-3’) (0.2 µM), and 

1522R reverse primer (1522R: 5’-AAGGAGGTGATCCARCCGCA-3’) (0.2 µM). PCR 

conditions included an initial denaturation at 95oC for 2 min and 60oC for 2 min, 

followed by 35 cycles at 95oC (1min), 52oC (1min) and 72oC (1min), with a final 

extension at 72oC for 10 min. Amplified 16S rDNA was electroporated on 0.7% agarose 

gel (SeaKem LE Agarose, Lonza Inc., Williamsport, PA), stained with ethidium bromide, 

UV-illumunated (GelDOC2000, Biorad, CA) and purified using Qiaquick Gel Extaction 

Kit (Qiagen Inc., Valencia, CA).  
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Purified 0.2 µg of 16S rDNA was ligated into a TOPO TA cloning vector pCR2.1 

(Invitrogen Corporation, Carlsbad, CA) and the vector was electroporated into 

electrocompetent E.coli cells. The cells were spread on LB plates containing 50 µL/mL 

ampicillin and 64 µg/mL X-gal and incubated at 37oC overnight. White colonies grown 

on the plates were transferred onto new LB plates containing 50 µL/mL ampicillin and 

were incubated at 37oC overnight. Individual colonies were picked and then transferred 

into 100 µL of sterilized DI water and boiled at 100oC for 15 minutes (boil-preps). The 

16S rDNA insert in each clone was amplified by PCR using 1 µL of boil-prep as the 

DNA template, and M13F (5’-GTAAAACGACGGCCAG-3’) and M13R (5’-

CAGGAAACAGCTATGAC-3’) primers, as described above. PCR conditions included 

an initial denaturation at 95oC for 2 min, followed by 25 cycles at 95oC (1min), 52oC (1 

min) and 72oC (1 min), with a final extension at 72oC for 7 min. A 5 µL of PCR amplicon 

of each clone was analyzed on 0.7% agarose gel as described above in order to verify the 

right insertion of the 16S rDNA. The amplicons with the right inserts were selected and 

digested with MspI restriction enzyme. Restriction fragment length polymorphism 

(RFLP) band pattern of each amplicon was analyzed on 2% agarose gel and the clones 

with unique band patterns were grouped. Based on the grouping, a rarefaction curve with 

95% confidence intervals was generated by using EstimateS v8.0 software package 

(Corwell, 2006). The 16S rDNA of each unique clone was sequenced at the Washington 

University Genome Sequencing Center (St. Louis, MO). The nucleotide sequences of 

individual inserts were trimmed, edited and assembled with CLC Main Workbench v.4.0 

(CLC Bio, Denmark). Sequences were initially aligned using the BLASTN suite (Zhang 

et al., 2000) available through the National Center for Biotechnology Information. 
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Sequences were checked for chimeras using Chimera Check v.2.07 from Ribosomal 

Database Project II (Cole et al., 2003). Sequences from this study and their three closest 

neighbor sequences identified in Small Subunit Reference (SSURef) datasets were 

subsequently aligned using CLUSTAL W (Higgins et al., 1994). At least 640 nucleotides 

were included in the phylogenetic analyses of bacterial clones. A bootstrapped neighbor-

joining tree with 5000 samplings was created in MEGA v4.0 software package (Tamura 

et al., 2007) using the Jukes-Cantor Model (Jukes and Cantor, 1969). 

5.3. Results and Discussion  

5.3.1.  Energetics of QAC Biodegradation 

The standard Gibb’s free energies of half-reactions and oxidation reactions for 

monoalkonium, dialkonium and benzalkonium chlorides are given in Table 5.1 and 5.2. 

The Gibb’s free energy of the QAC half-reactions is between 28.8 and 29.1 kJ/eeq, which 

is close to the ∆G0’ of acetate, and the difference in ∆G0’ within a group was minor 

(Figure 5.1). On the other hand, the free energy of QAC oxidation was between –9704 

and –15239 kJ/mol QAC. Therefore, biodegradation of all QACs is energetically feasible 

under aerobic conditions and complete QAC mineralization should yield an average 

energy of 107.5 kJ per electron equivalent (eeq). Recalling that the mean electron 

equivalent of monoalkonium, dialkonium and benzalkonium chlorides is 102, 120 and 

130 eeq/mol, biodegradation of benzalkonium chlorides is energetically more feasible 

than the biodegradation of dialkonium and monoalkonium chlorides. In fact, the presence 

of other hydrophobic groups along with the alkyl group, such as benzyl and another alkyl 

group, is known to decrease the biodegradability of QACs because of the steric hindrance 

exerted by these functional groups (Ying, 2006). The highly reduced structure of QACs, 
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their high adsorption affinity/low bioavailability and toxicity are other factors that limit 

QAC biodegradation in engineered and natural biological systems.   

 
 
 
 
Table 5.1. QAC half-reactions and their Gibb’s free energy at pH 7 and 298 oK 

Half-Reactions ∆G0’ 
 kJ/eeq
Monoalkonium Chlorides  

C12TMA: OH
90
30NHC

90
1eHNH

90
1CO

90
15

2341542 +↔+++ +−++  29.1 

C14TMA: OH
102
34NHC

102
1eHNH

102
1CO

102
17

2381742 +↔+++ +−++  29.0 

C16TMA: OH
114
38NHC

114
1eHNH

114
1CO

114
19

2421942 +↔+++ +−++  28.8 

  
Dialkonium Chlorides  

DC8DMA: OH
108
36NHC

108
1eHNH

108
1CO

108
18

2401842 +↔+++ +−++  28.9 

DC8-10DMA: OH
120
40NHC

120
1eHNH

120
1CO

120
20

2442042 +↔+++ +−++  28.8 

DC10DMA: OH
132
44NHC

132
1eHNH

132
1CO

132
22

2482242 +↔+++ +−++  28.7 

  
Benzalkonium Chlorides  

C12BDMA: OH
118
42NHC

118
1eHNH

118
1CO

118
21

2382142 +↔+++ +−++  28.7 

C14BDMA: OH
130
46NHC

130
1eHNH

130
1CO

130
23

2422342 +↔+++ +−++  28.6 

C16BDMA: OH
142
50NHC

142
1eHNH

142
1CO

142
25

2462542 +↔+++ +−++  28.6 
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Table 5.2. QAC oxidation reactions and their Gibb’s free energy at pH 7 and 298 oK 

Oxidation Reactions ∆G0’ 
 kJ/mol QAC
Monoalkonium Chlorides  
C12TMA: OH15NHCO15O5.22NHC 24223415 ++↔+ ++  -9704 

C14TMA: OH17NHCO17O5.25NHC 24223817 ++↔+ ++  -10987 

C16TMA: OH19NHCO19O5.28NHC 24224219 ++↔+ ++  -12257 
  
Dialkonium Chlorides  
DC8DMA: OH18NHCO18O27NHC 24224018 ++↔+ ++  -11567 

DC8-10DMA: OH20NHCO20O30NHC 24224420 ++↔+ ++  -12902 

DC10DMA: OH22NHCO22O33NHC 24224822 ++↔+ ++  -14179 
  
Benzalkonium Chlorides  
C12BDMA: OH17NHCO21O5.29NHC 24223821 ++↔+ ++  -12676 

C14BDMA: OH19NHCO23O5.32NHC 24224223 ++↔+ ++  -13952 

C16BDMA: OH21NHCO25O5.35NHC 24224625 ++↔+ ++  -15239 
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Figure 5.1. Schematic showing the positions of CO2/QAC and O2/H2O redox couples on 
the electron tower and the standard free energy upon complete oxidation of QACs to CO2 
under oxic conditions (QACs represent monoalkonium, dialkonium and benzalkonium 
chlorides which have average half-reaction free energy equal to 28.9 ± 3.5 kJ/eeq) 
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5.3.2.  Biotransformation Kinetics and Pathway of C14BDMA-Cl  

 C14BDMA-Cl was utilized completely resulting in transient BDMA in the time 

course of the first incubation without experiencing a lag-phase (Figure 5.2). C14TMA-Cl, 

the non-benzyl containing homologue of the C14BDMA-Cl was utilized without a lag 

phase within 24 hours as well (Figure 5.3). The transformation of this compound yielded 

trimethyl amine which was qualitatively verified by the extensive fishy smell produced 

during the C14TMA-Cl biotransformation. Trimethyl amine formation from 

monoalkonium chloride transformation was previously reported (van Ginkel et al., 1992). 

In contrast, BTMA, the non-alkyl containing homologue of the C14BDMA-Cl, was not 

degraded throughout the incubation period (Figure 5.4). The recalcitrance of BTMA 

under aerobic conditions has been previously reported (Bayer Corporation, 2003). These 

results suggest that the alkyl moiety is the site for the first catabolic attack on a QAC 

molecule resulting in the cleavage of the Calkyl-N bond which liberates the alkyl moitety 

as an aldehyde and forms a tertiary amine compound such as BDMA (Figure 5.2). The 

absence of an alkyl group may result in the recalcitrance of a QAC molecule. 

The assay performed with a dilute culture showed that BDMA was the first 

product of C14BDMA-Cl transformation and formed at equimolar concentration of 

C14BDMA-Cl degraded (Figure 5.5). The BDMA transformation started after a 30 hours 

lag in the dilute culture having 31.5 mg VSS/L. On the other hand, the lag was about 10 

hours in the culture series having 78.7 mg VSS/L (Figure 5.6A). Taking the effect of 

biomass concentration into account, the lag reported above for the two culture series was 

similar. Observing a considerable lag for the BDMA biotransformation while an active 

C14BDMA-Cl degradation was progressing, suggests that C14BDMA-Cl and BDMA  
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Figure 5.2. Time course of C14BDMA-Cl transformation and formation and consumption 
of BDMA in the BAC enrichment culture amended with C14BDMA-Cl 
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Figure 5.3. Time course of C14TMA-Cl transformation in the BAC enrichment culture 
amended with C14TMA-Cl for the first time 
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Figure 5.5. Time course of C14BDMA-Cl transformation and formation and consumption 
of BDMA in a dilute BAC enrichment culture amended with C14BDMA-Cl 
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Figure 5.6. Time course of (A) BDMA, (B) BMA and (C) BA transformation in the BAC 
enrichment culture amended with BDMA, BMA and BA for the first time 
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biotransformation was achieved by different groups of microorganisms, i.e. C14BDMA-

Cl degraders and BDMA degraders.  

The biotransformation of two potential BDMA transformation products reported 

by Patrauchan et al. (2003) which are BMA and BA, was also tested. Both compounds 

were degraded in 40 hours. In fact, the transformation was achieved after a longer lag 

than that observed for the BDMA transformation (Figure 5.6). Given also that none of 

these compounds was detected in the BDMA-amended culture (Figure 5.6A) and the 

C14BDMA-Cl-amended culture (Figure 5.5), BMA and BA can not be the products of 

either C14BDMA-Cl or BDMA biotransformation by the BAC enrichment culture. 

The rate of C14BDMA-Cl, C14TMA-Cl, BDMA, BMA and BA transformation 

was determined in the culture series after the second amendment of the corresponding 

compound by using the Monod equation and applying non-linear regression fits to 

experimental data with the Igor Pro version 5.057 software package (WaveMetrics, Inc., 

Lake Oswego, OR). The biotransformation rate of each compound listed above was 6.9, 

34.0, 26.8, 15.8 and 16.3 µM/hour, respectively. The biotransformation rate of C14TMA-

Cl (Figure 5.7A) was five-fold higher than the biotransformation rate of C14BDMA-Cl 

(Figure 5.8), suggesting that substitution of the methyl group by a benzyl group decreases 

the biodegradation rate of a QAC due to steric hindrance resulting from the added 

ydrophobic benzyl moiety. In addition, the rate of BDMA biotransformation (Figure 

 

 

h

5.7B) was two-fold higher than that of BMA (Figure 5.7C) and BA (Figure 5.7D) 

ransformation. t
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Figure 5.7. Time course of (A) C14BDMA-Cl, (B) BDMA, (C) BMA and (D) BA 
biotransformation in the BAC enrichment culture and simulation of sequential 
C14BDMA-Cl, BDMA and BMA transformation as proposed by Patrauchan et al. (2003) 
(symbols represent the experimental data whereas lines represent model simulation
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Figure 5.8. Time course and model simulation of C14TMA-Cl transformation in the BAC 
enrichment culture 

 

 

The biotransformation rate of individual compounds obtained in this assay was 

used to simulate the sequential biotransformation of C14BDMA-Cl (C14BDMA-Cl → 

BDMA → BMA → BA), BDMA (BDMA → BMA → BA) and BMA (BMA → BA) as 

suggested by Patrauchan et al. (2003) using the Monod model as given below. 
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 In Equation 5.3, the first term is the accumulation rate, the second term is the 

)1i()1i( XSkXSkdS −− on 5.3) 

 is the consumption rate. S represents the molar 

pound (µM), t is the time (hours), k is the specific rate constant 

µmoles/mg VSS-hour), X is the initial biomass concentration (mg VS/L), KS is the half-

production rate and the third term

concentration of a com

(
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saturation concentration (µM), subscript (i-1) represents the reactant and i represents the 

product of each step of the sequential reaction. The simulations for each reaction were 

performed using the Igor Pro version 5.057 Ordinary Differential Equation (ODE) 

Toolbox  (WaveMetrics, Inc., Lake Oswego, OR). The integration of the system of the 

coupled ODEs was performed using the Bulirsch-Stoer integration method (Stoer and 

Bulirsch, 2002). 

 The results of the simulations suggest that observing none of the potential 

C14BDMA-Cl biotransformation products (i.e., BDMA, BMA and BA), in the course of 

the C14BDMA-Cl biotransformation by the BAC enrichment culture is acceptable (Figure 

5.7A) since the rate of utilization of these compounds was three- to four-fold higher than 

14 iting. On the contrary, BMA had to be detected as a product 

during the biotransformation of BDMA, but in fact it was not detected. This result 

sugges . 

-Cl in the 

BAC enrichment culture is given in Figure 5.9. The  C14BDMA-Cl biotransformation in 

the BAC enrichment culture involves a dealkylation step resulting in the formation of 

the rate of C14BDMA-Cl transformation, therefore the dealkylation reaction of 

C BDMA-Cl was rate lim

ts that BMA is not a product of either C14BDMA-Cl or BDMA biotransformation

Therefore, C14BDMA-Cl biotransformation does not follow the scheme reported by 

Patrauchan et al. (2003) in the BAC enrichment culture. 

 Based on the results presented here, the proposed pathway of C14BDMA

BDMA and tetradecanoate and BDMA is further transformed to dimethyl amine and 

benzoic acid by a debenzylation step. 
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Figure 5.9. Proposed pathway of C14BTMA-Cl biotransformation by the BAC enrichment 

 

 

The biotransformation of the highly toxic C14BDMA-Cl via the pathway 

demonstrated in this study or in the Patrauchan et al. (2003) study results in the formation 

of hydrophobic moieties such as BDMA, BMA and BA. The 15-minute acute EC50 

values of these potential C14BDMA-Cl biotransformation products obtained using the 

Microtox® toxicity assay were 340±44, 257±92 and 224±87 µM, respectively. These 

results indicate that the toxicity of these products is at least 250-fold less than that of the 

parent compound. Therefore, aerobic biotransformation following the above-described 

pathway is a promising process because it reduces the serious environmental impacts 

associated with QACs. 

ion Based on 16S rDNA Sequence Analysis

culture 

5.3.3.  Bacteria Community Composit  

Biotransformation of QACs has been demonstrated in many studies using 

acteria isolates. However, none of these studies, which investigated the mineralization 

QACs in mixed cultures, evaluated the microbial diversity in a QAC degrading culture. 
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Therefore, the objective of this part of the study was to evaluate the Bacteria community 

composition in the BAC enrichment culture which grows on BAC as the sole carbon and 

energy source. 

The microbial diversity in the BAC enrichment culture was determined by 16S 

rDNA phylogenetic analysis of the clone library derived from the DNA extracted from 

the culture. A clone library was constructed representing a total of acteria 16S rDNA 

clones. All clones were grouped according to the RFLP patterns. Rarefaction analysis 

was conducted to determine if a sufficient number of clones from the clone library were 

 to estimate the diversity within the clone library sampled (Figure 5.10).  

 

Figure 5.10. Rarefaction curve determined for different RFLP patterns of Bacteria 16S 
NA 
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The rarefaction curve did not reach saturation for the Bacteria rDNA library. 

Even though, additional sampling of the clones would be necessary to reveal the full 

extent of the diversity, several dominant RFLP groups were obtained. Therefore, the 

abunda

f 

 

ominant phylotype, BAC54, which is most similar to Pseudomonas nitroreducens (99% 

similarity) (Table 5.3). This phylotype comprised 36% of the total rDNA clone library. 

The other phylotypes, similar to BAC54, were BAC53, BAC106 and BAC37 and are 

closely related to Pseudomonas sp. WAI-21, Pseudomonas sp. Lin 2-2 and Pseudomonas 

sp. YG-1. The phylotypes that are listed above are designated as Group 1 (Figure 5.11) 

and are closely related to species that are capable of degrading simazine (P. 

nitroreducens, 99% similarity) (Hernandez et al., 2008), ethion (P. sp.strain WAI-21, 

98% similarity) (Foster et al., 2004), pyrrolidine (P. sp.strain YG-1, 99% similarity) (Cho 

et al., 2002) and catechol (P. sp. strain Lin 2-2, 99% similarity). Given the abundance of 

Group 1, 60% of the total rDNA clone library, and the metabolic diversity of the 

phylotypes that belong to this group, the dealkylation and debenzylation of C14BDMA-Cl 

ay be carried out by this group of bacteria in the BAC enrichment culture. 

nce of non-detected clones in the clone library was assumed to be much lower 

than the identified ones. 

 Analysis of the 47 rDNA Bacteria clones indicated a fair phylogenetic diversity in 

the clone library (Figure 5.11). A total of 9 distinct RFLP patterns were detected. All o

the sequenced clones belonged to the Proteobacteria (Table 5.3). Of these, 98% were 

related to Pseudomonas genus of γ-Proteobacteria, including the most numerically

d

m
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 BAC37

 P. sp. YG-1 (AF441203)

 BAC106

 P. sp. Lin 2-2 (EF061935)

 P. multiresinivorans (X96787)

 P. sp. R-24636 (AM083997)

 P. sp. AT (AM088476)

 P. sp. FP1-3 (DQ118952)

 P. sp. GD (EU233276)
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substitutions 

 

 

 

Figure 5.11. Phylogenetic tree of relationships of 16S rDNA clone sequences, as 
determined by distance Jukes-Cantor analysis, from BAC enrichment culture to selected 
cultured isolates and environmental clones. Bootstrap values represent 5000 replicates 
and only values greater than 50% are reported. The scale bar represents 0.05 
per nucleotide position. Methanosarcina barkeri was used as the out group 
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Table 5.3. Representative bacterial clones sequenced from 16S rDNA clone library of the 
BAC enrichment culture 
 

 

The remaining γ-Proteobacteria lineage comprised 38% of the total rDNA clone 

library and was designated as Group 2. This group contained phylotypes BAC52, BAC5, 

BAC114 and BAC34, which were closely related to species that belong to the 

Pseudomonas putida group of genus Pseudomonas. BAC 5, BAC 114 and BAC 34 were 

losely related to Pseudomonas putida GB-1 (99% similarity), F-1 (98% similarity) and 

leum 

metabolize hydrocarbon groups that are cleaved from BAC by Group 1 phylotypes. 

Phylogenic 
Group 

Clone 
designation

# of 
clones

Sequence 
length 
(bp) 

Nearest relative Similarity
(%) 

γ-Proteobacteria BAC54 17 1489 P. nitroreducens 99 

 BAC53 6 1489 P. sp. WAI-21 98 

 BAC37 3 1457 P. sp. YG-1 99 

 BAC106 2 640 P. sp. Lin 2-2 99 

      

 BAC52 9 1490 P. sp. ON3 98 

 BAC5 5 1489 P. putida GB-1 99 

 BAC114 2 1489 P. putida F1 98 

 BAC34 2 1490 P. putida KT2440 99 

      

α-Proteobacteria BAC60 1 1441 
C. Reyranella 

massiliensis 
99 

 

c

KT2240 (99% similarity) that are known for their ability to degrade various petro

hydrocarbons such as alkanes, naphtalenes, toluene and xylenes. Therefore, Group 2 

phylotypes may be present in the BAC enrichment culture due to their ability to 
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A clone, BAC60, which was closely related to a recently discovered α-

Proteobacterium, Candidatus Reyranella massiliensis strain URTM1 (Pagnier et al., 

2008) (99% similarity), was also identified in the 16S rDNA clone library. However the 

role of this phylotype in the BAC degradation was not speculated since the metabolic 

activity of the most related species, Strain URTM1, is not known. 

The terminology and the logical sequence used, in part, in the interpretation of the 

results presented here were adapted from Martinez et al. (2006). 

 5.4. Summary  

The biotransformation of C14BDMA-Cl under aerobic conditions was investigated 

in a batch assay using an enrichment culture developed from a hydrocarbon-contaminated 

sediment and growing on benzalkonium chlorides. The kinetics and the mechanism of the 

biotransformation were also investigated. The biomass-normalized rate of C14BDMA-Cl 

iotransformation was 0.09 µmoles/mg VSS-hour. The proposed C14BDMA-Cl 

biotran

unity in 

% 

suggests 

enrichm nt culture. 

b

sformation pathway involved sequential dealkylation and debenzylation steps 

resulting in the cleavage of the alkyl and benzyl groups and formation of benzyl dimethyl 

amine and dimethyl amine, respectively. The composition of the Bacteria comm

the BAC enrichment culture was determined by 16S rDNA phylogenetic analysis of the 

clone library derived from the DNA extracted from the culture. Although the full extent 

of Bacteria diversity in the 16S rDNA clone library was not revealed, numerous 

dominant RFLP groups were obtained. The vast majority of the sequenced clones (98

of the clone library) belonged to Pseudomonas genus of γ-Proteobacteria which 

that Pseudomonas spp. was responsible for the degradation of BAC in the BAC 

e
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CHAPTER 6 

BIOTRANSFORMATION POTENTIAL OF QACS IN A MIXED 

METHANOGENIC CULTURE UNDER 

FERMENTATIVE/METHANOGENIC CONDITIONS 

 

6.1. Introduction 

Most uses of QACs lead to their release into wastewater treatment systems or 

directly into the environment. QACs have high affinity to adsorb onto suspended organic 

and inorganic solids thus adsorption outcompetes biodegradation in aerobic biological 

systems. As a result, QACs are transferred to anaerobic biological systems such as 

anaerobic digesters as a part of the waste activated sludge and aquatic sediments. It was 

reported that QAC concentrations may reach 4-50 mg/L in anaerobic digesters of sewage 

treatment plants. QAC concentrations may exceed these levels in biological treatment 

systems or aquatic sediments receiving direct discharges of industrial facilities, such as 

food processing that extensively use QACs. Although QAC degradation is energetically 

feasible (∆Gr
’ = -5.4 ± 0.3 kJ/eeq) under methanogenic conditions (Figure 6.1) based on 

standard reaction free energies, there is no evidence of mineralization of QACs under 

anaerobic conditions most likely because of the highly reduced nature of QAC structure 

as well as their low bioavailability and high toxicity. In spite of the fact that the presence 

of QACs in anaerobic treatment systems is inevitable, their fate and effect under 

anaerobic conditions have not been studied extensively. In addition, information on the 

effect of QACs on specific physiological groups participating in the complex anaerobic 

digestion process is presently lacking. 
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Figure 6.1. Schematic showing the positions of CO2/QAC and CO2/methane redox 
couples on the electron tower and the standard free energy upon complete oxidation of 
QACs to CO2 under methanogenic conditions (QACs represent monoalkonium, 
dialkonium and benzalkonium chlorides which have average half-reaction free energy 
equal to 28.9 ± 3.5 kJ/eeq) 
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The objectives of the research reported in this chapter were to: (a) evaluate the 

potential inhibitory effect of selected QACs on acidogenesis and methanogenesis in a 

mixed, mesophilic (35°C) methanogenic culture; and (b) quantify the fate and phase 

distribution of the selected QACs in the same culture. Assays were conducted using 

serum bottles (batch) and a fed-batch reactor at a range of QAC concentrations. 

6.2. Materials and Methods 

6.2.1.  Target Compounds 

Vigilquat® (VQ) and its four active quaternary ammonium ingredients were used 

in this study. VQ (Alec C. Fergusson, Inc., Frazer, PA, USA) is comprised of four QACs 

and ethanol as follows (molecular formula, % w/w): benzalkonium chloride (CnBDMA-

Cl; 3%), didecyl dimethyl ammonium chloride (DC10DMA-Cl; 1.35%), dioctyl dimethyl 

ammonium chloride (DC8DMA-Cl; 0.9%), octyl decyl dimethyl ammonium chloride 

(DC8-10DMA-Cl; 2.25%) and ethanol (1.5%). All individual QACs specified in the VQ 

formulation were defined in Chapter 3, section 3.2.1.  

6.2.2.  Mixed Methanogenic Culture 

A mixed, methanogenic culture, developed with inoculum obtained from a mesophilic, 

municipal anaerobic digester and maintained fed-batch with a 35-d solids retention time 

at 35°C was used as seed in all assays reported here. The culture was fed with 8 g/L 

dextrin and 4 g/L peptone (in the feed) and anaerobic culture media described in Chapter 

3. The culture was fed twice a week corresponding to an average organic loading rate of 

0.34 g COD/L-day. The steady-state gas-phase methane and carbon dioxide concentration 

of this culture was 60.7±0.5% and 39.2±0.4% (mean ± standard deviation), respectively. 
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The steady-state total (TS) and volatile solids (VS) concentration of this culture was 

6.9±0.3 and 2.2±0.1 g/L (mean ± standard deviation), respectively. 

6.2.3.  Batch Inhibition Assay 

A batch assay was performed to investigate the potential inhibitory effect of VQ, 

CnBDMA-Cl, DC10DMA-Cl, DC8DMA-Cl and DC8-10DMA-Cl on the mixed 

methanogenic culture. The assay was conducted in 160-mL serum bottles (100 mL liquid 

volume) sealed with rubber stoppers and aluminum crimps and flushed with helium gas 

for 15 min before any liquid addition. A sample of 80 mL of mixed liquor from the mixed 

methanogenic culture taken at the end of a 7-day feeding cycle was anaerobically 

transferred to each serum bottle along with 15 mL of culture media. A dextrin/peptone 

solution (D/P), which served as carbon/energy source, and QACs at desired 

concentrations were added and the total liquid volume was adjusted to 100 mL with 

deionized water (DI). The D/P COD in the bottles was 1200 mg/L. The first culture series 

included six bottles that were amended with VQ resulting in total QAC concentrations of 

10, 15, 25, 37.5, 50 and 100 mg/L. The other four culture series were prepared with 

CnBDMA-Cl, DC10DMA-Cl, DC8DMA-Cl or DC8-10DMA-Cl, respectively. Each culture 

series had five bottles that were amended with individual QACs resulting in total QAC 

concentrations of 10, 25, 50, 75 and 100 mg/L. The QAC concentrations were selected 

according to literature reports, which state that QAC concentrations in anaerobic 

digesters may range from 4 to 10.5 mg/g-dry solids (ECETOC, 1993; Garcia et al., 1999). 

For our culture, which had 6.12±0.02 g TS/L, this range corresponds to QAC 

concentrations from 25 to 65 mg/L. Based on the expectation that QACs will favor solids, 

their concentration range was increased to 100 mg/L. Two additional culture series were 
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prepared: seed blank and reference which consisted of only seed, culture media and DI 

water, and seed, culture media, DI water and D/P (1200 mg COD/L), respectively. Each 

culture series, including blank and reference, was prepared in triplicate. The initial pH in 

all culture series was 7.1±0.1. All culture series were incubated in the dark at 35°C and 

the bottles were agitated daily by hand. Throughout the incubation period, the total gas 

volume produced and its methane and carbon dioxide content were measured. At the end 

of the incubation period, the pH, volatile fatty acids (VFAs) concentrations, as well as the 

total and liquid phase QAC concentrations were measured. The total amount of methane 

and VFAs produced in each culture series throughout the incubation period was 

expressed in COD units. The COD processed as methane or VFAs was normalized 

relative to the total COD processed in the reference series and used to evaluate the 

inhibition of methanogenesis and acidogenesis in the culture series amended with QACs. 

6.2.4.  Phase Distribution Test 

The phase distribution of QACs in the mixed methanogenic culture was evaluated 

at the end of the batch inhibition assay. The total and liquid phase concentration of QACs 

was determined as described in Chapter 3. The liquid phase concentration of QACs was 

measured after 15 minutes of centrifugation of mixed liquor samples at 2800 rpm. The 

supernatant was transferred to a test tube and the concentration of QACs was quantified 

as described in Chapter 3. QACs accumulate on solids through chemisorption (Neu, 

1996). Although microbial cells possess limited adsorption sites for QACs, QACs form 

mixed-micelles or liposomes with microbial cells (Strevett et al., 2002). Adsorption 

isotherms such as Langmuir, that assume saturation of adsorption sites may not be 

applicable for QAC-biomass partitioning. The Freundlich isotherm which assumes that 
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there are multiple types of sorption sites acting in parallel, with each site type exhibiting a 

different sorption free energy and total site abundance, is therefore appropriate to 

simulate the adsorption of QACs on the biomass (Denyer and Maillard, 2002; 

Schwarzenbach et al., 2003).  

The Freundlich adsorption isotherm equation is as follows: q = KF Cn; where q is 

the QAC concentration on the biomass (mg QAC/g VS), C is the QAC concentration in 

the liquid phase (mg QAC/L), KF is the capacity factor ((mg/g VS)(L/mg)n), and n is the 

Freundlich exponent. The QAC concentration on the biomass was determined by 

subtracting the QAC concentration in the liquid phase from the total concentration and 

normalizing it to the initial VS concentration in the bottles (1.93±0.12 g VS/L equal to 

6.12±0.02 g TS/L). Experimentally determined data were fitted to the Freundlich 

isotherm equation and adsorption constants (KF and n) determined by using non-linear 

regression. 

6.2.5.  Inhibition Assay Using an Anaerobic Fed-Batch Reactor 

The potential inhibitory effect of VQ on the mixed methanogenic culture was 

further investigated in an anaerobic fed-batch reactor. This assay was performed in a 

2.25-L glass reactor which was sealed and flushed with helium gas for 30 minutes. A 

sample of 1.5 L of the methanogenic culture at the end of a 7-day feeding cycle was 

transferred anaerobically to the reactor along with 250 mL of culture media. The reactor 

was maintained in the dark in a 35°C constant temperature room and its contents were 

mixed using a magnetic stirrer. Seven feeding cycles were performed with this reactor 

(Table 6.1), each lasting 7, 7, 32, 100, 11, 8 and 10 days, respectively. In each cycle, the 

reactor was fed with a D/P solution, resulting in an organic loading rate of 1.2 g COD/L- 
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Table 6.1. Feeding protocol of the fed-batch reactor used to assess the long-term effect of 
Vigilquat® on a mixed methanogenic culture 
 

 Mean ± standard deviation; n = 2 

ycle. Vigilquat® was added at the beginning of the second and third cycles resulting in 

 that 

 

e. 

 

 

a D/P, dextrin/peptone solution; VQ, Vigilquat® 
b

 

Feeding 

Cycle 

Incubation 

Period 

(days) 

Amendmenta 

Calculated QAC 

Concentration in the 

Reactor 

(mg/L) 

Measured QAC 

Concentration in the 

Reactor 

(mg/L) 

1 7 D/P 0.0 0.0 

2 7 D/P + VQ 15.0 - 

3 32 D/P + VQ 30.0 - 

4 100 D/P 30.0 30.0±0.1b 

5 11 D/P 30.0 - 

6 8 D/P 30.0 - 

7 10 D/P 30.0 31.9±1.8 

 

 

c

15 and 30 mg/L of a total QAC concentration in the reactor, respectively. The VQ 

concentration was based on the results of the batch inhibition assay which indicated

VQ was not inhibitory at 15 mg/L but was inhibitory to methanogens at 30 mg/L. During

the feeding cycles, the total gas production was recorded and gas analysis for methane 

and carbon dioxide was performed on samples directly taken from the reactor headspac

Liquid phase analyses for pH, VFAs and QACs were performed on mixed liquor samples 

drawn from the reactor.  
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6.3. Results and Discussion 

.   Methanogenic Culture – Serum Bottle Assay6.3.1 Effect of QACs on Mixed  

The inhibitory effect of QACs on the mixed methanogenic culture was assessed 

using five culture series amended with different QAC concentrations. For the first series, 

the effect of VQ was assessed and the incubation period was 98 days. The final pH in all 

culture series amended with VQ was between 7.0 and 7.3, which was close to the final 

pH value of 7.2 in the reference and seed cultures. Profiles of methane, net carbon 

dioxide, and COD conversion are given in Figures. 6.2 and 6.4A, respectively. Long-term 

inhibition of methanogenesis was not observed at VQ concentrations of 10, 15, 25 and 

37.5 mg/L (Figure 6.2A). All COD processed was completely converted to methane in 

these series (Figure 6.4A). Nevertheless, the inhibitory effect of VQ on the 

methanogenesis was noticeable at 25 and 37.5 mg/L for an incubation period equal to or 

less than 40 days (Figure 6.2A). Methane production was initially depressed in these 

series, but finally recovered after 20 and 40 days of incubation, respectively (Figure 

6.2A). Nonetheless, methanogenesis was affected drastically in the series amended with 

an initial VQ concentration of 50 and 100 mg/L. The amount of methane produced in 

these series was noticeably lower than that of the reference (Figure 6.2A), whereas the 

net CO  production, which reflects the fermentative metabolic activity of the culture, was 

affected only in the series amended with an initial VQ concentration of 100 mg/L. 

Relative to the total COD processed in the reference series, about 34 and 3% of the total 

COD was converted to methane, whereas 68 and 72% was accumulated as VFAs in the 

50 and 100 mg VQ/L series, respectively (Figure 6.4A). Note that values of COD 

processed exceeding 100% reflect experimental error/differences between the QAC- 

2
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igure 6.2. Methane (A) and carbon dioxide (B) production profiles during the batch 
inhibition assay with Vigilquat® at different concentrations (0-100 mg/L) 
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Figure 6.3. Methane (A) and carbon dioxide (B) production profiles during the batch 
inhibition assay with (1) CnBDMA-Cl, (2) DC10DMA-Cl, (3) DC8DMA-Cl, and (4) DC8-

10DMA-Cl at different concentrations (0-100 mg/L) 
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Figure 6.4. COD conversion profiles relative to the reference series during the batch 
inhibition assay with (A) Vigilquat®, (B) CnBDMA-Cl, (C) DC10DMA-Cl, (D) 
DC8DMA-Cl , and (E) DC8-10DMA-Cl at different concentrations (0-100 mg/L) 
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amended and the reference culture series. These results show that methanogenesis and 

acidogenesis had different susceptibilities to VQ. Thus, high concentrations of QAC 

result in the accumulation of VFAs and a decrease of the COD removal efficiency, which 

may affect the stability of an anaerobic digester.  

The inhibitory effect of the four active QAC ingredients of VQ -- CnBDMA-Cl, 

DC10DMA-Cl, DC8DMA-Cl and DC8-10DMA-Cl -- was assessed using four culture series 

amended with different QAC concentrations. Incubation for all four series lasted for 109 

days. The final pH in all QAC-amended culture series varied between 6.8 and 7.3, which 

was close to the final pH value of 7.2 in the reference and seed cultures. Methane, net 

CO2, and COD conversion profiles in these series are shown in Figures 6.3 and 6.4, 

respectively and summaries including VFAs disitribution for each QACs are given in 

Table 6.2 to 6.5. Long-term inhibition of methanogenesis was not observed in all series 

with 10 mg QAC/L (Figure 6.3A). On the other hand, short-term inhibition of methane 

production was observed in the series amended with 10 mg/L DC8DMA-Cl, but methane 

production recovered between 10 and 30 days of incubation (Figure 6.3A3). All COD 

processed was converted to methane in all series with 10 mg QAC/L, but accounted for 

89±3% as compared to the reference series (Figure 6.4). 

CnBDMA-Cl and DC10DMA-Cl had no long-term inhibitory effect on 

methanogenesis at 25 mg QAC/L (Fig. 6.3A1). At this QAC concentration, alkyl benzyl 

had a short-term inhibitory effect on methanogenesis, but methane production recovered 

between 10 and 30 days of incubation (Figure 6.3A1). In contrast, methane production 

was inhibited drastically at 25 mg QAC/L in the series amended with DC8DMA-Cl and 

DC8-10DMA-Cl (Figure 6.3A3 and 6.3A4) and did not recover during the incubation  
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Table 6.2. COD utilization and products at the end of the incubation in mixed 
methanogenic culture amended with D/P and different initial CnBDMA-Cl concentrations 
(10-100 mg/L) 

CnBDMA-Cl  
(mg/L) 

Parameter 

10 25 50 75 100 
 

pH 

 

7.1 

 

7.1 

 

6.9 

 

6.9 

 

7.0 

Gas Composition (mL)      

  Total Gas 117.1 112.2 49.6 38.1 32.0 

  CH4 72.0 70.2 11.2 2.9 3.7 

  CO2 

  

40.7 38.6 33.1 30.4 22.1 

VFAs (mg COD/L)      

  Acetate -* 12.7 887.9 718.9 528.1 

  Propionate - - 628.7 960.5 237.5 

  iso-Butyrate - - - - 6.5 

  n-Butyrate - - 140.4 96.5 100.3 

  iso-Valerate - - - - - 

  n-Valerate - - 9.1 - - 

  TOTAL - 12.7 1666.1 1775.9 872.4 

     

COD processed (%)      

  VFAs 0 0.6 81.7 87.1 42.8 

  Methane 89.4 87.1 14.0 3.6 4.6 

  TOTAL 89.4 87.8 95.7 90.7 47.4 

 

 
 

* Below the minimum detection limits given in Chapter 3 
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Table 6.3. COD utilization and products at the end of the incubation in mixed 
methanogenic culture amended with D/P and different initial DC10DMA-Cl 
concentrations (10-100 mg/L) 
 

Parameters DC10DMA-Cl 
(mg/L) 

 10 25 50 75 10
 

pH 

 

7.1 

 

7.1 

 

7.1 

 

6.8 

 

6.9 

Gas Composition (mL)      

  Total Gas 120.3 121.2 115.4 36.7 35.9 

  CH4 75.0 78.1 76.6 4.1 7.8 

  CO2 

  

41.5 42.8 40.5 28.0 20.0 

VFAs (mg COD/L)      

  Acetate -* - - 592.6 335.9 

  Propionate - - 61.4 800.4 190.3 

  iso-Butyrate - - - - - 

  n-Butyrate - - 128.2 114.2 61.1 

  iso-Valerate - - - - - 

  n-Valerate - - - - - 

  TOTAL - - 189.6 1507.2 587.3 

     

COD processed (%)      

  VFAs 0 0 9.3 73.9 28.8 

  Methane 93.1 97.0 95.1 5.1 9.7 

  TOTAL 93.1 97.0 104.4 79.0 38.5 

 

0 

 
* Below the minimum detection limits given in Chapter 3 
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Table 6.4. COD utilization and products at the end of the incubation in mixed 
methanogenic culture amended with D/P and different initial DC8DMA-Cl concentrations 
(10-100 mg/L) 
 

 Below the minimum detection limits given in Chapter 3 

DC8DMA-Cl 
(mg/L) 

Parameter 

10 25 50 75 100 
 

pH 
 

7.1 
 

6.9 
 

6.8 
 

7.0 
 

7.2 

Gas Composition (mL)      

  Total Gas 114.0 71.8 44.8 27.6 15.5 

  CH4 69.5 27.5 4.0 1.6 0.7 

  CO2 

  

38.6 34.1 30.6 18.3 13.2 

VFAs (mg COD/L)      

  Acetate 24.1 846.6 855.0 432.9 95.7 

  Propionate -* 74.0 730.0 225.7 73.3 

  iso-Butyrate - - - - - 

  n-Butyrate - 100.8 123.0 52.1 38.4 

  iso-Valerate - - - - - 

  n-Valerate - 7.9 12.3 - - 

  TOTAL 24.1 1029.3 1720.3 710.7 207.3 

      

COD processed (%)      

  VFAs 1.2 50.5 84.4 34.9 10.2 

  Methane 86.4 34.2 4.9 2.0 0.8 

  TOTAL 87.5 84.7 89.3 36.9 11.0 

 
*
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able 6.5. COD utilization and products at the end of the incubation in mixed 
methanogenic culture amended with D/P and different initial DC8-10DMA-Cl 
concentrations (10-100 mg/L) 
 

* Below the minimum detection limits given in Chapter 3 

 

 

 

T

DC8-10DMA-Cl 
(mg/L) 

Parameter 

10 25 50 75 100 
 

pH 

 
7.0 

 
6.8 

 
6.8 

 
6.8 

 
7.3 

Gas Composition (mL)      

  Total Gas 113.6 66.8 40.3 38.9 11.8 

  CH4 71.5 29.4 3.6 5.2 0.1 

  CO2 

  

38.9 32.6 29.9 26.8 8.2 

VFAs (mg COD/L)      

  Acetate 24.0 754.2 668.5 502.4 158.3 

  Propionate -* 54.5 788.0 560.3 39.9 

  iso-Butyrate - - 73.8 - - 

  n-Butyrate - 86.7 141.7 78.4 37.0 

  iso-Valerate - - - - - 

  n-Valerate - 8.1 - - - 

  TOTAL 24.0 903.5 1672.0 1141.1 235.2 

      

COD processed (%)      

  VFAs 1.2 44.3 82.0 56.0 11.5 

  Methane 88.8 36.6 4.6 6.5 0.2 

  TOTAL 90.0 80.9 86.6 62.5 11.7 
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period. On the other hand, the net CO2 production was not affected in these ser

6.3B3 and 6.3B4). VFAs accum

ies (Figure 

ulated in these series and resulted in 51 and 44% of the 

total COD added to the system (Figure 6.4D and 6.4E). The predominant VFAs were 

acetate and propionate. These results show that DC8DMA-Cl, which has the shortest 

alkyl chain length as well as the highest CMC among all QACs tested in the present 

study, was the most inhibitory, which agrees with a similar conclusion drawn by Garcia 

et al. (1999). 

All QACs had a drastic inhibitory effect on methanogenesis at concentrations of 

50, 75 and 100 mg/L. CnBDMA-Cl inhibited methanogenesis but, the net CO2 production 

was not affected to the same extent at these concentrations (Figure 6.3A1 and 6.3B1). 

With increasing CnBDMA-Cl concentration, 82, 87 and 43% of the total COD 

accumulated as VFAs (Figure 6.4B and Table 6.2) and recovery of methane production 

was not observed during the long-term incubation period (Fig. 6.3A1). 

DC10DMA-Cl inhibited methanogenesis at 50, 75 and 100 mg QAC/L, as well. 

However, methane production recovered between 80 and 100 days of incubation in the 50 

mg QAC/L series. In contrast, recovery of methane production was not observed at 75 

and 100 mg QAC/L (Figure 6.3A2). The net CO2 production decreased at and above 75 

mg/L DC10DMA-Cl (Figure 6.3B2). About 95, 5 and 10% of the total COD was 

processed as methane and 9, 74 and 29% was processed and accumulated as VFAs at 50, 

5 and 100 mg QAC/L, respectively (Figure 6.4C and Table 6.3). 

tory than the other two QACs. 

ethanogenesis was totally inhibited at QAC concentrations of 50 mg/L and above 

igure 6.3A3 and 6.3A4). On the other hand, 84, 35 and 10% of total COD in the 

7

DC8DMA-Cl and DC8-10DMA-Cl were more inhibi

M

(F
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DC8DMA-Cl-amended and 82, 56 and 12% of total COD in the DC8-10DMA-Cl -

amended series was converted to VFAs and accumulated at 50, 75 and 100 mg QAC/L, 

respectively (Figure 6.4D and 6.4E and Table 6.4 and 6.5). Thus, with increasing 

DC8DMA-Cl and DC8-10DMA-Cl concentration above 50 mg/L, acidogenesis was 

severely inhibited and led to a very low COD conversion and removal. 

Inhibition of methanogenesis by various types of QACs has been reported by 

other researchers. In a previous study, Garcia et al. (2000) reported that di(hydrogenated 

tallow) dimethyl ammonium chloride did not affect the methane production in an 

anaerobic culture below 200 mg/L concentration (Garcia et al., 2000). Hexadecyl 

trimethyl ammonium bromide at about 60 mg/L inhibited the biogas production in 

cultures inoculated with anaerobic digester sludge, however, gas production recovered 

after 2 weeks of lag period (Battersby and Wilson, 1989). In another study investigating 

the effect of alkyl chain length of QACs on anaerobic degradation concluded that the 

toxicity of QACs to methanogens decreased with increasing alkyl chain length at 20 and 

40 mg/L (Garcia et al., 1999). These studies also showed that QACs were not degraded 

under methanogenic conditions. 

The results of this study confirm that the inhibitory effect of QACs on the mixed 

methanogenic culture is negatively correlated with alkyl chain length or positively 

correlated with the CMC as described in Chapter 4. DC8DMA-Cl was the most toxic 

among all tested QACs. Based on the results of the present study, the four QACs tested 

may be ranked as DC8DMA-Cl, DC8-10DMA-Cl, CnBDMA-Cl and DC10DMA-Cl in 

terms of decreasing toxicity. Moreover, methanogenesis was found to be more 

susceptible to QAC inhibition than acidogenesis. None of the QACs tested in this study 
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was biodegraded. The persistence of QACs in all series as well as their phase distribution 

determined at the end of the incubation period are discussed below. 

6.3.2.  Phase Distribution of QACs 

The phase distribution of QACs was evaluated in all QAC-amended series at the 

end of the incubation period of the above-described QAC inhibition assay. Figure 6.5 

shows the results from the QAC phase distribution test. For comparison, a 100% recovery 

line is drawn which shows the hypothetical distribution of an infinitely soluble substance 

and with zero adsorption to the solids. According to these results, all QACs were 

recovered by 100.9±13.6 (mean ± standard deviation, n = 50). Thus, all QACs were 

resistant to biodegradation under the methanogenic conditions applied in the present 

study. At a total QAC concentration of 10 mg/L, the fraction of QACs which 

accumulated on the solids ranged between 92 and 100%. However, the solid phase QAC 

fraction was between 28 and 75% at a total QAC concentration of 100 mg/L. It has been 

reported that in activated sludge, 95% of the QACs were adsorbed to particulate matter 

(Topping and Waters, 1982; Scott and Jones, 2000), which is similar to the results of the 

present study.  

The adsorption of QACs in the methanogenic culture was simulated with the 

Freundlich isotherm equation and estimated parameter values (KF and n) for VQ, alkyl 

benzyl, didecyl, dioctyl and octyl decyl are given in Table 6.6. According to these results, 

the affinity of individual QACs to adsorb on the biomass forms the following series in 

descending order: DC10DMA-Cl, CnBDMA-Cl, DC8-10DMA-Cl and DC8DMA-Cl. The 

adsorption affinity of VQ is between that of CnBDMA-Cl and DC8-10DMA-Cl. Since VQ 

is a mixture of four individual QACs and each QAC exhibits different adsorption affinity,  
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Figure 6.5. Phase distribution of Vigilquat®, CnBDMA-Cl, DC10DMA-Cl, DC8DMA-Cl
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Table 6.6. Freundlich adsorption isotherm constants for QAC phase distribution in a 

 
mixed methanogenic culture 

 

 and is driven by both charge interaction and hydrophobicity, our results 

agree w

 

KF  
 VS)(L/mg)n 

 
n 

 
R2 

 
QAC (mg/g

a Mean ± standard error 

 

 

the adsorption affinity of VQ represents the combined, overall affinity of the individual 

QACs in the mixture. As the alkyl chain length increases and CMC decreases, the affinity

of QACs to adsorb on biomass increases, which is consistent with their relative 

hydrophobicity as described in Chapter 4. Recalling that adsorption of QACs on biomass 

is chemisorption

Vigilquat® 9.5±0.4a 0.42±0.02a 0.997 

CnBDMA-Cl 12.8±3.2 0.31±0.09 0.940 

DC10DMA-Cl 13.9±3.3 0.29±0.08 0.920 

DC8DMA-Cl 5.3±0.3 0.25±0.01 0.997 

DC8-10DMA-Cl 7.5±1.4 0.37±0.06 0.974 

 

ith those of Cowan and White (1958) who assessed the adsorption of alkyl 

ammonium compounds with different alkyl chain length on the clay mineral 

montmorillonite (Cowan and White, 1958). 

The adsorption capacity increased noticeably at total initial QAC concentrations

above 50 mg/L in cultures amended with CnBDMA-Cl and DC10DMA-Cl (Figure 6.6). 

On the other hand, such an increase in adsorption capacity was not observed for the VQ, 

dioctyl and octyl decyl. Arrigler et al. (2005) reported that cetylpyridinium chloride  
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Figure 6.6. Freundlich adsorption isotherms for Vigilquat®, CnBDMA-Cl, DC10DMA-Cl, 
DC8DMA-Cl, and DC8-10DMA-Cl at equilibrium (Error bars represents one standard 
deviation of the means; solid lines are model predictions) 
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(CPC), a C16 QAC, caused disintegration of the lipid bi-layer after adsorption on the 

vesicle surface and formed lipid/CPC mixed micelles resulting in a sharp increase in 

adsorption capacity after solubilization of the membrane. In CnBDMA-Cl and 

DC10DMA-Cl amended cultures, cell lysis followed by the mixed micelle formation may 

have caused an increase in the adsorption capacity at 50 mg QAC/L and above. 

6.3.3.  Effect of QACs on Mixed Methanogenic Culture – Fed-Batch Reactor Assay  

The effect of VQ on the mixed methanogenic culture was also investigated in a 

fed-batch reactor for an overall incubation period of 185 days. The pH of the culture 

.2 during the incubation period. The gas production as well as 

e production and consumption of VFAs throughout the entire incubation period are 

hown in Figure 6.7. 

cycle 

ted to 30 mg/L and the reactor was fed with 

the sam

 

at  

varied between 6.9 and 7

th

s

Cycle 1 served as a reference cycle and the reactor was fed only with a D/P 

solution which resulted in a COD concentration of 1200 mg/L. During cycle 2, where the 

reactor was amended with both D/P (1200 mg COD/L) and VQ (15 mg/L total 

concentration), the methane and net CO2 production was not affected and the trend was 

identical to the cycle 1 (Figure 6.7A). Thus, VQ at 15 mg/L total concentration was not 

inhibitory and the trend of methane production was similar to that observed in both 

1, as well as in the batch inhibition assay (Figure 6.2A). 

The total VQ concentration was eleva

e D/P solution in the third cycle. This VQ concentration was expected to be 

inhibitory to methanogenesis based on the results obtained from the batch inhibition 

assay (see Section 6.3.1 above). Significant inhibition of methanogenesis was observed in

the fed-batch reactor at 30 mg VQ/L (total VQ concentration). About 50% of COD th
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was ultimately converted to methane was processed in 1 day of incubation and metha

production almost totally leveled off in subsequent days, indicating that the inhibitory

effect of QACs on methanogenesis was time dependent. In other words, QACs 

some time to reach their target sites of action and cause inhibition. VFAs, mainly acetate 

and propionate, accumulated and reached up to 854 mg COD/L, indicating that 

ne 

 

require 

acidogenesis was still active at this total VQ concentration. 

During the fourth feeding cycle, the total VQ concentration was maintained at 30 

mg/L and the reactor fed with the D/P solution (1200 mg COD/L). The added COD was 

rapidly processed to VFAs which accumulated and reached about 2000 mg COD/L at day 

51, while very low methane production was observed during this time. The VFAs were 

gradually depleted and converted to methane starting at 71 days of incubation, which 

corresponds to a significant increase in the methane production (Fig. 6.7). A similar 

pattern of methane production was observed during the batch inhibition assay in the 

culture series amended with VQ at 25 and 37.5 mg/L (see Section 6.3.1 above). Other 

studies which evaluated the inhibitory effect of QACs on the metabolic activity of either 

aerobic or anaerobic cultures at 10 to 60 mg/L QAC concentration, also observed 

transient inhibition and gradual recovery (Battersby and Wilson, 1989; Garcia et al., 

1999; Garcia et al., 2000). At the end of the fourth cycle, 94% of the total COD was 

processed as methane and the methane and carbon dioxide content of the produced gas 

reached 67 and 35%, respectively. In order to achieve complete utilization of VFAs, the 

incubation period for cycle 4 was prolonged to 100 days.      

For the remaining three cycles, the reactor was fed only with the D/P solution and 

the total VQ concentration remained stable at about 30 mg/L. All COD added to the 
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reactor in these three cycles was almost totally converted to methane and VFA 

accumulation was not observed at the end of these cycles. The recovery of 

methanogenesis in the latter four feeding cycles is attributed to the very low liquid-phase 

VQ concentration (< 3 mg/L), in spite of the fact that the total VQ concentration was 

maintained at 30 mg/L. As a result of the high VQ adsorption affinity for the biosolids, 

uninhibited methanogens were able to grow in the latter four feeding cycles, thus 

restoring methanogenesis in the reactor to pre-inhibition levels as recorded in cycle 1. 

6.3.4.  QAC Phase Distribution, Inhibition and Recalcitrance 

The results of the present study show that QACs have high affinity to adsorb on 

the biosolids. DC8DMA-Cl has the lowest affinity among all QACs tested and this 

affinity increases with increasing alkyl chain length. Relative to inhibition, it should be 

noted that DC8DMA-Cl was the most inhibitory among all QACs tested and the extent of 

inhibition decreased as the alkyl chain length increased. Thus, the inhibitory effect of 

QACs was found to be inversely proportional to their adsorption affinity on the biomass 

or their hydrophobicity. However, methanogenesis recovered in less than 60 days in all 

culture series and fed-batch reactor amended with QACs less than 50 mg/L. The recovery 

of methanogenesis after a certain period of incubation may be the result of the high 

adsorption affinity of QACs for the biosolids, which in turn results in low liquid phase 

QAC concentration coupled with microbial growth and acclimation. 

As mentioned above, QACs were more toxic to methanogens as compared to the 

Methanogens (Archaea) are structurally different than the acidogens (Bacteria). 

Methanogens have no outer membrane and their cell wall consists of a paracrystalline 

acidogens in the mixed culture used in this study. The reasons may include: (i) 
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surface layer (S-layer) composed of protein or glycoprotein (Madigan and Martinko, 

2006). For this reason, QACs reach the cytoplasmic membrane of methanogens easily, 

and cause inhibition. (ii) The structure of the cytoplasmic membrane of methanogens is 

unique and contains either diether or tetraether lipids rather than ester lipids. Thus, the 

membrane of methanogens is more hydrophobic than that of bacteria, which makes 

methanogens more vulnerable to QACs. It has been reported that QAC-resistant 

microo

 

 the 

6.4. Summary 

The inhibitory effect and biotransformation potential of four QACs and VQ, a 

commercial sanitizer which is a mixture of the four QACs, was investigated at 

concentrations up to 100 mg/L using a mixed mesophilic methanogenic culture. Dextrin 

and peptone were used as the carbon and energy sources. A batch assay conducted at a 

range of QAC concentrations showed that all QACs tested in this study had short- or 

rganisms have a higher content of hydroxylated fatty acids in their membrane, 

which confers resistance by making their membrane less hydrophobic (Guerin-Mechin et

al., 1999; Chapman, 2003). (iii) Energy generation by fermenters is largely based on 

substrate level phosphorylation, whereas methanogens generate ATP by using proton 

motive force (PMF). Thus, because QACs affect the PMF, they are more inhibitory to 

methanogens than to acidogens. 

None of the QACs tested in this study was biodegraded. The recalcitrance of 

QACs (dimethyl QACs, R2Me2N+) observed in the present study under methanogenic 

conditions may be related to the presence of the highly saturated and reduced form of the 

alkyl functional groups attached to the positively charged nitrogen atom as well as

low bioavailability and high toxicity of QACs. 
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long-term inhibitory effects on the mixed methanogenic culture at 25 mg/L and 

Methanogenesis was more sensitive to QAC inhibition than acidogenesis. T

impact of the individual QACs on the methanogenic activity decreased according to the 

following series: DC

above. 

he inhibitory 

us, 

n 

sis of 

resulted in the following series of decreased affinity of QACs for the biomass solids: 

DC10DMA-Cl > C BDMA-Cl > DC DMA-Cl > DC DMA-Cl. Thus, the inhibitory 

effect of QACs is inversely proportional to their adsorption affinity on the biomass or 

their hydrophobicity. The inhibitory effect of Vigilquat® on the mixed methanogenic 

culture was also investigated in a fed-batch reactor fed with dextrin and peptone. 

Methanogens were inhibited when the total QAC concentration reached 30 mg/L and 

volatile fatty acids (VFAs) accumulated. However, methane production recovered in 57 

days of incubation, and all VFAs were consumed, suggesting that a prolonged incubation 

period is necessary for the methanogens to overcome the transient inhibition at a 

relatively low QAC concentration. None of the QACs tested in this study was 

biodegraded under methanogenic conditions.  

8DMA-Cl > DC8-10DMA-Cl > CnBDMA-Cl > DC10DMA-Cl. Th

QACs with the shorter alkyl chain length are the most inhibitory. Adsorption of QACs o

biomass was successfully simulated with the Freundlich isotherm equation. Analy

the phase distribution of QACs between the liquid phase and the solid (biomass) phase 

n 8-10 8
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CHAPTER 7 

BIOTRANSFORMATION POTENTIAL OF DIDECYL DIMETHYL 

AMMONIUM CHLORIDE AND BENZALKONIUM CHLORIDE IN 

A MIXED METHANOGENIC CULTURE UNDER NITRATE 

REDUCING CONDITIONS 

 

7.1. Introduction 

The biotransformation potential along with the inhibitory effect of QACs in a 

mixed methanogenic culture have been described in Chapter 6. None of the QACs tested 

was degraded and all of them were inhibitory, especially to methanogenesis, at and above 

50 mg/L. As it was also discussed in the previous chapter, biodegradation of QACs is 

energetically less feasible under methanogenic conditions than under aerobic and nitrate 

reducing conditions. This energetics barrier coupled with the low bioavailability and high 

toxicity of QACs may explain the recalcitrance of QACs under methanogenic conditions. 

The mixed methanogenic culture used in this study is metabolically versatile. It 

mediates several other terminal electron accepting processes, such as denitrification, 

dissimilatory nitrate reduction to ammonia (DNRA) (Tugtas and Pavlostathis, 2007), and 

iron reduction. In view of the fact that several electron acceptors are always present in 

engineered and natural systems where the QACs are present, such as anoxic/anaerobic 

bioreactor of a wastewater treatment plant employing biological nutrient removal or an 

oil-field, respectively, the biotransformation potential of QACs under different electron 

accepting conditions should be taken into account. One such condition is nitrate 
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reduction. QAC degradation is energetically more favorable under nitrate reducing 

conditions than under methanogenic conditions yielding a standard reaction free energy 

equal to –101.1 ± 0.3 kJ/eeq (Figure 7.1). Based on this fact, we explored the fate and 

effect of two QACs, i.e. didecyl dimethyl ammonium chloride (DC10DMA-Cl) and 

benzalkonium chloride (CnBDMA-Cl), in the mixed methanogenic culture under nitrate 

reducing conditions. 

 The specific objectives of the research reported in this chapter were to assess: (a) 

the potential inhibitory effect of DC10DMA-Cl and CnBDMA-Cl on nitrate reduction and 

the combined nitrate reduction and carbon utilization; and (b) the biotransformation 

potential of the selected QACs in a mixed, mesophilic methanogenic culture. 

7.2. Materials and Methods 

7.2.1.  Target Compounds 

Didecyl dimethyl ammonium chloride (DC10DMA-Cl) and benzalkonium 

chloride (CnBDMA-Cl), defined in Chapter 3, were used as the target QACs. 

7.2.2.  Mixed Methanogenic Culture 

The mixed, methanogenic culture used in the experiments was previously described in 

Chapter 6. The TS and VS concentration of the culture at the time of this study was 

6.9±0.1 and 2.7±0.1 g/L, respectively. 

7.2.3.  Batch Inhibition Assay 

A batch assay was performed to investigate the effect of DC10DMA-Cl and 

CnBDMA-Cl on nitrate reduction in the mixed methanogenic culture. The assay was 

conducted in 160-mL serum bottles (100 ml liquid volume) sealed with rubber stoppers  
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Figure 7.1. Schematic showing the positions of CO2/QAC and NO3
-/N2 redox couples on 

the electron tower and the standard free energy upon complete oxidation of QACs to CO2 
under nitrate reducing conditions (QACs represent monoalkonium, dialkonium and 
benzalkonium chlorides which have average half-reaction free energy equal to 28.9 ± 3.5 
kJ/eeq) 
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and aluminum crimps and flushed with helium gas for 15 min before any liquid addition. 

A sample of 80 mL of the mixed methanogenic culture taken at the end of a 7-day 

feeding cycle was anaerobically transferred to each serum bottle along with 10 mL of 

culture media. Glucose, sodium nitrate and yeast extract solutions, and QAC at desired 

concentrations were added and the total liquid volume was adjusted to 100 mL with 

deionized (DI) water. The initial biomass, glucose, nitrate and yeast extract 

concentrations were 2.0±0.1 g VSS/L, 750 mg/L (800 mg COD/L), 70 mg N/L and 20 

mg/L, respectively. The assay included five culture series amended with QAC resulting 

in initial QAC concentrations of 10, 25, 50, 75 and 100 mg/L, and one culture was 

prepared without QAC (nitrate reference). Two additional culture series were prepared: 

seed blank and glucose reference, which consisted of only seed, culture media and DI 

water, and seed, culture media, DI water, glucose (750 mg/L) and yeast extract (20 

mg/L), respectively. All culture series were prepared in triplicate. The initial pH in all 

cultures was 7.1±0.1. The cultures were incubated in the dark at 35°C and agitated daily 

by hand. Throughout the incubation period the total gas volume produced and its 

composition (i.e., methane, carbon dioxide, nitric oxide, nitrous oxide and dinitrogen), as 

well as nitrate, nitrite and VFAs were measured. At the end of the incubation period, the 

pH, VFAs, ammonia, soluble COD (sCOD), VSS, and the total and liquid phase QAC 

concentrations were measured. 

7.2.4.  Batch BAC Transformation Assays 

Following the observation of a significant decrease of the CnBDMA-Cl 

concentration in a mixed methanogenic culture under nitrate reducing conditions at an 

initial CnBDMA-Cl concentration of 100 mg/L, three follow-up assays were set up in 
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160-mL serum bottles (100 mL liquid volume). The first assay was conducted in order to 

reproduce the CnBDMA-Cl transformation achieved in the previous assay and to 

elucidate the transformation pathway under the same conditions described above. This 

assay included six replicate cultures amended with 5 mM NO3
-, 750 mg/L glucose, 20 

mg/L yeast extract and 100 mg/L CnBDMA-Cl.  The second and third assays were 

performed to investigate the role of nitrate (NO3
-), nitrite (NO2

-) and nitric oxide (NO) on 

CnBDMA-Cl transformation and to delineate whether the transformation was abiotic, 

biotic or biologically mediated. The second assay included four bottles, which were set 

up in helium flushed 160-mL serum bottles with autoclaved culture media, amended with 

100 mg/L of BAC and 5 mM (in the liquid phase) of either NO3
-, NO2

- or NO, 

respectively. The third assay was performed similarly to the second one but the mixed 

methanogenic culture was used as the seed without glucose and yeast extract amendment. 

All bottles were incubated in the dark at 35°C and were agitated daily by hand. 

Throughout the incubation period, the total gas volume produced and its methane, carbon 

dioxide, nitric oxide, nitrous oxide and dinitrogen content, as well as nitrate, nitrite, total 

BAC, its homologues and transformation products were measured. 

7.2.5.  Electron Equivalents Calculations 

Electron equivalence calculations were performed at the end of the incubation 

period based on the electron donor electron equivalents (eeq) added and by accounting 

for each process, as follows: 4, 5, and 8 eeq/mol of nitrate reduced to nitrous oxide, 

dinitrogen, and ammonium, respectively; 8 eeq/mol methane produced; 0.125 eeq/g 

sCOD; and 0.177 eeq/g VSS (using C5H7O2N as the empirical formula for VSS). The 

COD of liquid phase QAC (2.89 g COD/g CnBDMA-Cl, and 2.92 g COD/ g DC10DMA-

 174



Cl) was subtracted from the sCOD values and the adsorbed QAC on biomass was 

subtracted from the measured VSS concentrations of each QAC-amended culture in order 

to estimate the QAC-free sCOD and VSS concentrations. The biomass-adsorbed BAC 

was calculated assuming that all BAC homologues have approximately the same sorption 

affinity for biomass and the weighted average molecular weight of the BAC mixture is 

359.6 g/mole. 

7.3. Results and Discussion 

7.3.1.  Didecyl Dimethyl Ammonium Chloride (DC10DMA-Cl) 

7.3.1.1.Effect of DC10DMA-Cl on Nitrate Reduction 

The assay testing the effect of DC10DMA-Cl on nitrate reduction lasted 100 days. The 

final pH in all culture series amended with DC10DMA-Cl was between 7.0 and 7.3, which 

was close to the final pH value of 7.0 and 7.2 in the glucose reference and seed blank 

cultures. Nitrate was rapidly converted to N2 in the DC10DMA-Cl-free, nitrate-reference 

culture (Figure 7.2A). Transient accumulation of N2O was observed in the 10 and 25 

mg/L DC10DMA-Cl amended cultures, and was completely converted to N2 in 50 and 90 

days in these cultures, respectively (Figure 7.2B and 7.2C). Nitrogen balance calculations 

were based on initial and final nitrogen species taking into account the control (i.e., 

nitrate-free) culture series. As a result, about 32.1±1.9, 23.1±0.0 and 24.4±1.9% of the 

initially added NO3
--N was converted to ammonia in the nitrate-reference, and the 10 and 

25 mg DC10DMA-Cl/L amended cultures, respectively (Figure 7.3). These data are 

consistent with previously reported results by Tugtas and Pavlostathis (2007) for the 

same methanogenic culture at a COD/N ratio of 11. 
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Figure 7.2. Production and consumption profiles of N oxides and N2 in mixed 
methanogenic culture series amended with 750 mg/L glucose and 70 mg nitrate-N/L (5 
mmol N/L) at (A) 0 (nitrate reference), (B) 10, (C) 25, (D) 50, (E) 75, and (F) 100 mg/L 
DC10DMA-Cl during 100 days of incubation (Error bars represent one standard deviation 
of the means; n = 3) 
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Figure 7.3. Distribution of nitrogen species at the end of the incubation period in mixed 
methanogenic culture series amended with 750 mg/L glucose, 70 mg nitrate-N/L (5 mmol 
N/L) and different DC10DMA-Cl concentrations (0-100 mg/L) (Error bars represent one 
standard deviation of the means; n = 3) 
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The rate and pathway of nitrate reduction in the mixed methanogenic culture were 

affected at high DC10DMA-Cl concentrations. Nitrate conversion to nitrite was inhibited 

resulting in a transient slow reduction rate and accumulation of nitrite in the 50, 75 and 

100 mg DDAC/L amended cultures (Figure 7.2D, 7.2E, and 7.2F). Inhibition of nitrate 

reduction to nitrite by DC10DMA-Cl was previously reported for a pure culture of 

Bacillus licheniformis (Seifert and Domka, 2005). All nitrate was utilized through the 

denitrification pathway since net ammonia production was not detected in these cultures 

at the end of the incubation. However, N2O was the final product of nitrate reduction, 

which indicates that the final step of denitrification was noticeably inhibited at and above 

50 mg/L DC10DMA-Cl. 

7.3.1.2.Effect of DC10DMA-Cl on Electron Flow 

The inhibitory effect of DC10DMA-Cl on the same mixed, methanogenic culture 

and at a biomass concentration of 1.8±0.1 g VS/L, was previously described in Chapter 6. 

DC10DMA-Cl had no long-term inhibitory effect on methanogenesis at 10 and 25 mg/L, 

but methanogenesis was inhibited at 50, 75 and 100 mg DC10DMA-Cl /L. However, 

methane production recovered between 80 and 100 days of incubation in the 50 mg 

DC10DMA-Cl/L series. In contrast, recovery of methane production was not observed at 

75 and 100 mg DC10DMA-Cl/L. In addition, the net CO2 production decreased at and 

above 75 mg/L DC10DMA-Cl, which was taken as an indication that fermentation was 

also inhibited at and above this DC10DMA-Cl concentration. About 95, 5 and 10% of the 

total COD was processed as methane and 9, 74 and 29% was processed and accumulated 

as VFAs at 50, 75 and 100 mg DC10DMA-Cl/L, respectively. 
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In the present study, among the nitrate amended cultures, methane formation was 

observed only in the DC10DMA-Cl-free and the 10 mg DC10DMA-Cl/L amended 

cultures. A transient slow methane production was followed by a faster rate and total 

methane reached the expected level in the DC10DMA-Cl-free, nitrate-reference culture. 

However, methane formation was suppressed until N2O was totally converted to N2 in the 

culture amended with 10 mg DC10DMA-Cl/L (Figures 7.2B and 4A). Thus, taking into 

account the results of our previous study (see Chapter 6) as summarized above, inhibition 

of methanogenesis at 25 and 50 mg DC10DMA-Cl/L was due to N2O accumulation. 

Inhibition of methanogenesis at 75 and 100 mg DC10DMA-Cl/L was probably the result 

of the combined effect of DC10DMA-Cl direct inhibition and that of N2O. Fermentation 

was affected only at 75 and 100 mg DC10DMA-Cl/L and resulted in a lower rate of VFAs 

production in these cultures (Figure 7.4B).   

The net soluble COD concentration at the end of the incubation as compared to 

the glucose-reference culture was zero in the nitrate-reference and the 10 mg/L 

DC10DMA-Cl amended cultures, whereas it was 550±83, 1469±65, 1499±37 and 

1521±58 mg/L in the 25, 50, 75 and 100 mg/L DC10DMA-Cl amended cultures, 

respectively. The soluble COD concentration in the 25 mg DC10DMA-Cl/L cultures 

corresponded to the VFAs-COD. However, the soluble COD concentration was higher 

than the VFAs-COD in all cultures amended with DC10DMA-Cl higher than 25 mg/L. At 

the end of the incubation period, glucose was not detected in these cultures. The VS 

concentration in the 50, 75 and 100 mg/L DC10DMA-Cl amended cultures (1.24±0.04, 

1.17±0.02 and 1.27±0.02 g VS/L, respectively) was significantly lower than that of the 

DC10DMA-Cl -free, nitrate-reference (1.53±0.08 g VS/L) and was comparable with that  
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Figure 7.4. Profiles of (A) methane production in glucose and nitrate reference cultures 
and 10 mg DC10DMA-Cl amended culture and (B) VFAs production and consumption in 
the mixed methanogenic cultures amended with 750 mg/L glucose and 70 mg nitrate-N/L 
at different DC10DMA-Cl concentrations (0-100 mg/L) (Error bars represent one standard 
deviation of the means, n = 3) 
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of seed blank (1.28±0.06 g VS/L). These results indicate that DC10DMA-Cl suppressed 

microbial growth and caused cell lysis at and above 50 mg/L, which may be related to the 

high adsorption affinity of DC10DMA-Cl for the biosolids, as mentioned below. 

7.3.1.3.Phase Distribution of DC10DMA-Cl 

The total and aqueous phase DC10DMA-Cl concentrations in all DC10DMA-Cl -

amended cultures were measured at the end of the incubation period. According to these 

results, DC10DMA-Cl was recovered by 96.2±5.5% (mean ± standard deviation, n = 15). 

Thus, DC10DMA-Cl was resistant to biodegradation in the mixed methanogenic culture 

under the conditions applied in the present study. The solid phase DC10DMA-Cl fraction 

was 99.2 and 54.7% at a total DC10DMA-Cl concentration of 10 and 100 mg/L, 

respectively (Figure 7.5). These data agree with values reported in Chapter 6 relative to 

the phase distribution of DC10DMA-Cl in the same methanogenic culture and 

demonstrate the high adsorption affinity of DC10DMA-Cl for biosolids. 

7.3.2.  Benzalkonium Chloride (CnBDMA-Cl) 

7.3.2.1.Effect of CnBDMA-Cl on Nitrate Reduction 

The assay testing the effect of CnBDMA-Cl on nitrate reduction lasted 100 days. The 

final pH in all culture series amended with CnBDMA-Cl was between 7.0 and 7.3, which 

was close to the final pH value of 7.0 and 7.2 in the glucose reference and seed blank 

cultures. Nitrate was rapidly converted to N2 in the CnBDMA-Cl -free, nitrate reference 

culture (Figure 7.6A). Transient accumulation of N2O was observed in the 10 and 25 

mg/L CnBDMA-Cl amended cultures, and was completely converted to N2 in 10 and 20 

days in these cultures, respectively (Figure 7.6B and 7.6C). Nitrogen balance calculations  
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Figure 7.5. Phase distribution of DC10DMA-Cl in mixed methanogenic culture series 
amended with DC10DMA-Cl at different concentrations (0-100 mg/L) at the end of the 
incubation (Error bars represent one standard deviation of the means; n = 3) 
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Figure 7.6. Production and consumption profiles of N oxides and N2 in mixed 
methanogenic culture series amended with 750 mg/L glucose and 70 mg nitrate-N/L (5 
mmol N/L) at (A) 0 (nitrate reference), (B) 10, (C) 25, (D) 50, (E) 75, and (F) 100 mg/L 
CnBDMA-Cl during 100 days of incubation (Error bars represent one standard deviation 
of the means; n = 3) 
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performed by taking into account the control (i.e., nitrate-free) culture series showed that 

38.7±4.5, 20.6±7.7 and 18.1±4.5% of the initially added NO3
--N was converted to 

ammonia in the nitrate reference, and the 10 and 25 mg CnBDMA-Cl/L amended 

cultures, respectively (Figure 7.7). DNRA and denitrification occurred simultaneously in 

the mixed methanogenic culture and the extent of nitrate proportionation between these 

two nitrate reduction pathways in the absence of CnBDMA-Cl using glucose as the 

carbon and energy source was consistent with results reported above for the same 

methanogenic culture. However, the fraction of nitrate reduced via DNRA decreased with 

increasing CnBDMA-Cl concentration. A similar effect was described for DC10DMA-Cl 

in the previous section.  

The extent and pathway of nitrate reduction in the mixed methanogenic culture 

were affected by CnBDMA-Cl. As the CnBDMA-Cl concentration increased from 10 to 

50 mg/L, nitrite conversion to NO and N2O was inhibited resulting in a lower nitrite 

reduction rate and a transient accumulation of nitrite (Figure 7.6B, 7.6C and 7.6D). On 

the other hand, nitrate reduction to nitrite was inhibited resulting in a slow nitrate 

reduction rate and almost undetectable intermediate nitrite in the 75 and 100 mg 

CnBDMA-Cl/L amended cultures (Figure 7.6E and 7.6F). However, all N oxides were 

rapidly converted to N2O in less than 5 days in these cultures. All nitrate was utilized 

through the denitrification pathway since net ammonia production was not detected in 

these cultures at the end of the incubation (Figure 7.7). However, N2O was the final 

product of nitrate reduction, which indicates that the final step of denitrification was 

completely inhibited at and above 75 mg/L CnBDMA-Cl (Figure 7.6E and 7.6F) as 

described for DC10DMA-Cl in the previous section. 
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Figure 7.7. Distribution of nitrogen species at the end of the incubation period in mixed 
methanogenic culture series amended with 750 mg/L glucose, 70 mg nitrate-N/L (5 mmol 
N/L) and different CnBDMA-Cl concentrations (0-100 mg/L) (Error bars represent one 
standard deviation of the means; n = 3) 
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The experiments conducted with DC10DMA-Cl and CnBDMA-Cl showed a similar 

inhibitory effect on nitrate reduction, that is DNRA was inhibited and denitrification was 

incomplete resulting in accumulation of nitrous oxide at and above 50 mg QAC/L. The 

major mode of action of QACs involves adsorption onto the cell surface and penetration 

into the cell through the periplasm and the cytoplasmic membrane. The nitrate and nitric 

oxide reductases, which convert NO3
- to NO2

- and NO to N2O, respectively, are located 

in the cytoplasmic membrane, whereas the nitrite and nitrous oxide reductases, which 

reduce NO2
- to NO and N2O to N2, respectively, are located in the periplasm (Zumft, 

1997). Therefore, the latter two enzymes may be exposed to higher QAC concentrations 

than the ones located in the cytoplasmic membrane, which may explain why inhibition of 

these enzymes was more pronounced at high QAC concentrations in this study. Inhibition 

of nitrous oxide reductase by the QACs, which results in the accumulation of N2O, is of 

particular concern since production of N2O is undesirable because of its green house 

effect and its impact on global warming.  

7.3.2.2.Effect of CnBDMA-Cl on Electron Flow 

Nitrate reduction, fermentation and methanogenesis are important terminal electron 

accepting microbial processes in natural systems such as aquatic sediments and are 

employed for the combined treatment of carbon- and nitrogen-bearing wastes in 

industrial wastewater treatment systems. As a result, in addition to the effect of 

CnBDMA-Cl on nitrate reduction, we evaluated its effect on the overall electron flow in a 

mixed methanogenic culture. All cultures, except the seed blank, were amended with 100 

meeq/L glucose. The seed used in each culture had unaccounted for biodegradable 

organics that yielded 49.9±2.1 meeq/L of methane. Electron equivalents consumed in 
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each process and residual sCOD and VSS in the various culture series are shown in Table 

7.1.  

 

Table 7.1. Electron equivalents balance in CnBDMA-Cl -free and CnBDMA-Cl -amended 
mixed methanogenic culture seriesa

 

ended with 100 meeq/L 

 

All biodegradable organics (150.9±0.3 meeq/L) were converted to methane in the 

glucose reference culture. The electron equivalents for nitrate reduction were 39.1±2.5, 

25.6±4.1 and 24.9±4.5 meeq/L in the 0, 10 and 25 mg CnBDMA-Cl/L amended cultures, 

respectively. The nitrate reference culture used more electron equivalents for nitrate 

reduction than the latter two cultures because the fraction of nitrate that was utilized 

through DNRA was higher than the fraction utilized by the cultures amended with 10 and 

25 mg CnBDMA-Cl /L, and the electron requirement for complete DNRA (8 eeq per 

mole NO3 ) is higher than that for complete denitrification (5 eeq per mole NO3 ). As 

soon as all the N oxides were utilized, the remaining electron equivalents were processed 

Culture Series Denitrification DNRA Methanogenesis sCOD VSS Total

Glucose Reference NAb NA 150.9±0.3 73.1±9.5 315.1±10.3 539.0±20.1

Nitrate Reference 13.1±0.6c 16.0±1.9 142.2±7.4 74.0±11.5 310.7±15.2 555.9±36.6

10 mg BAC/L 17.1±0.9 8.5±3.2 133.5±6.1 66.5±5.6 305.9±12.6 531.6±28.4

25 mg BAC/L 17.4±2.6 7.5±1.9 82.4±19.1 99.2±10.1 300.8±15.4 507.3±49.0

50 mg BAC/L 22.0±0.9 0.0±0.0 3.7±0.3 234.2±30.1 211.7±5.4 471.6±36.9

75 mg BAC/L 20.9±0.8 0.0±0.0 3.6±0.2 260.0±43.2 192.7±22.2 477.2±66.3

100 mg BAC/L 21.0±0.3 0.0±0.0 4.4±0.6 300.2±1.1 216.9±11.6 542.4±13.6

Process and Culture Component (meeq/L)

 
a At the end of the incubation period; all cultures were am
glucose. b NA, not applicable. c Mean ± standard deviation (n = 3) 
 

- -
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to methane in these cultures (Figure 7.8A).  The inhibitory effect of CnBDMA-Cl on the 

same mixed, methanogenic culture at a biomass concentration of 1.8±0.1 g VS/L, was 

previously presented in Chapter 6. CnBDMA-Cl did not inhibit the methanogenesis at 10 

and 25 mg CnBDMA-Cl/L, and the delay of methane formation was attributed to the 

transient formation of N oxides in these cultures. The biomass concentration in both 

reference cultures and the cultures amended with 10 and 25 mg CnBDMA-Cl/L was 

almost the same. 

In the cultures amended with 50, 75 and 100 mg CnBDMA-Cl/L, nitrate was 

processed through partial denitrification to N2O. Thus, the electron equivalents used for 

nitrate reduction in these cultures were less than in the nitrate reference culture and the 

cultures with low CnBDMA-Cl concentrations. Methanogenesis was inhibited at these 

CnBDMA-Cl concentrations and did not recover during the incubation period. The 

inhibitory effect of CnBDMA-Cl on the same mixed methanogenic culture was 

previously described in Chapter 6. Thus, the inhibition of methanogenesis in these 

cultures was attributed to the combined effect of BAC and N oxides. Inhibition of 

methanogenesis resulted in a high concentration of sCOD in these cultures (Table 7.1). 

However, the concentration of sCOD at the end of the incubation was higher than at the 

beginning of the assay (glucose + unaccounted organics = ca. 150 meeq/L). The biomass 

concentration in these cultures was lower than in the references and the seed blank. 

Cationic surfactants like CnBDMA-Cl are known to cause cell lysis at high 

concentrations by attacking the cell phospholipid bilayer, resulting in the release of 

intracellular material. Thus, growth inhibition and extensive cell lysis at high BAC 

concentrations resulted in low biomass and high sCOD concentrations in these cultures.  
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Figure 7.8. Profiles of (A) methane production in glucose and nitrate reference cultures 
and the cultures amended with 10 and 25 mg CnBDMA-Cl, and (B) VFAs production and 
consumption in the mixed methanogenic cultures amended with 750 mg/L glucose and 70 
mg nitrate-N/L at different CnBDMA-Cl concentrations (0-100 mg/L) (Error bars 
represent one standard deviation of the means) 
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The major fraction of sCOD was VFAs, mainly acetate and propionate, in the 

culture with 50 mg CnBDMA-Cl/L (Figure 7.8B). Glucose was not detected in this 

culture, which indicates that its fermentation was not inhibited at this CnBDMA-Cl 

concentration (see Chapter 6). In the 75 mg CnBDMA-Cl/L amended culture, a small 

portion of its sCOD was VFAs (21.3±0.9 meeq/L) and 43.0±4.3 meeq/L of glucose was 

not processed through acidogenic fermentation. Although CnBDMA-Cl did not inhibit 

fermentation at this concentration as demonstrated in Chapter 6, the inhibition of 

fermentation reported in this study may be attributed to the combined effect of CnBDMA-

Cl and accumulation of N2O in this culture. On the contrary, glucose was totally 

processed and converted to VFAs and unaccounted for alcohols and organic acids 

(observed in HPLC chromatograms) in the 100 mg CnBDMA-Cl /L amended culture by 

the end of the incubation period (Figure 7.8B) in spite of the fact that CnBDMA-Cl was 

expected to be inhibitory to fermentation at this concentration. The lack of glucose 

fermentation inhibition at 100 mg CnBDMA-Cl/L, although it was inhibited at 75 mg 

CnBDMA-Cl/L, is attributed to the transformation of CnBDMA-Cl, which decreased the 

CnBDMA-Cl concentration below its inhibitory concentration resulting in the recovery of 

fermentation, as discussed below. 

7.3.2.3.Phase Distribution of CnBDMA-Cl 

The total and aqueous phase CnBDMA-Cl concentrations in all CnBDMA-Cl-

amended cultures were measured at the end of the incubation period. CnBDMA-Cl was 

recovered by 99.0±3.2% (mean ± standard deviation; n = 12) in all cultures except in the 

one amended with 100 mg CnBDMA-Cl/L in which about 37% of CnBDMA-Cl added 

was removed (Figure 7.9). This result also explains why glucose fermentation was not  
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Figure 7.9. Phase distribution of CnBDMA-Cl in mixed methanogenic culture series 
amended with CnBDMA-Cl at different concentrations (0-100 mg/L) at the end of the 
incubation (Error bars represent one standard deviation of the means; n = 3) 
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inhibited at 100 mg CnBDMA-Cl/L but was inhibited at 75 mg CnBDMA-Cl/L. The solid 

phase CnBDMA-Cl fraction was 98.0 and 67.0% at a total CnBDMA-Cl concentration of 

10 and 75 mg/L, respectively (Figure 7.9), which agrees with previously reported values 

relative to the phase distribution of CnBDMA-Cl in the same methanogenic culture 

(Chapter 6), and demonstrates the high adsorption affinity of CnBDMA-Cl for biosolids. 

7.3.2.4.CnBDMA-Cl Transformation 

Upon the partial disappearance of CnBDMA-Cl in the 100 mg CnBDMA-Cl/L 

amended cultures, two assays were performed in order to replicate the CnBDMA-Cl 

transformation under the same conditions and to identify potential products. In the first 

assay, the cultures in which partial CnBDMA-Cl removal was reported were 

supplemented with 5 mM NO3
-, 750 mg/L glucose and 20 mg/L yeast extract in two 

consecutive cycles without CnBDMA-Cl addition. In the first cycle, the CnBDMA-Cl 

concentration decreased from 63.1±8.2 to 36.4±2.1 mg/L and all NO3
- was converted to 

N2O (5.0±0.1 mM N2O-N expressed as liquid concentration) (Figure 7.10). In the second 

cycle, a statistically insignificant (p = 0.54) decrease in CnBDMA-Cl concentration 

(33.9±2.0 mg/L at the end of the second cycle) was found and all NO3
- was converted 

rapidly to N2 (4.4±0.5 mM N2-N expressed as liquid concentration) (Figure 7.10). These 

results suggest that the denitrification inhibition by CnBDMA-Cl diminished as the 

CnBDMA-Cl concentration decreased and/or was overcome by acclimation/adaptation of 

the culture to CnBDMA-Cl during the prolonged incubation period, as discussed in 

Chapter 6. Moreover, the inhibition of denitrification may favor the transformation of 

CnBDMA-Cl under the conditions applied in the present study, as discussed below. 
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Figure 7.10. Concentrations of (A) C BDMA-Cl and (B) nitrogen species at the end of 
100 days incubation, cycle 1 and cycle 2 (See text; Error bars represent one standard 
deviation of the means; n = 3) 
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In the second assay, lasting 63 days, six replicate cultures were prepared at 100 mg 

nBDMA-Cl/L as described above. The CnBDMA-Cl concentration and headspace gas 

composition were followed during the course of the assay (Figure 7.11A). The CnBDMA-

Cl concentration decreased from 289.6±7.6 µM (104.1±2.7 mg/L) to 131.1±15.3 µM 

(47.2±5.5 mg/L) in less than 40 days, while almost all NO3
- was converted to N2O. When 

the nitrate reduction stopped, the CnBDMA-Cl concentration leveled off at 110.3±16.9 

µM (39.7±6.1 mg/L), which is consistent with the results of the previous two assays in 

the present study, suggesting that CnBDMA-Cl was transformed during the denitrification 

process under the conditions applied in this assay.  

At the end of the incubation period, samples taken from each culture were solvent 

extracted and analyzed for CnBDMA-Cl and alkyl dimethyl amines by HPLC and LC-

MS, respectively. Each CnBDMA-Cl homologue (C12BDMA-Cl, C14BDMA-Cl and 

C16BDMA-Cl) was transformed into its corresponding alkyl dimethyl amine (C12DMA, 

C14DMA and C16DMA) at an equamolar concentration (Figure 7.11B). Degradation of 

the alkyl dimethyl amines was not observed, which may be attributed to their 

hydrophobicity resulting in limited bioavailablity, toxicity or lack of appropriate 

microbial consortia. At the end of these assays, several questions were raised: (1) “Is 

nBDMA-Cl transformation a biotic or an abiotic reaction?”; (2) “What triggers the 

In order to answer these questions, two additional assays were performed, lasting 87 

days each. It the first assay, three culture series (all in triplicate) were set up at ca. 100 

mg CnBDMA-Cl/L and amended with 5 mM of either NO3
-, NO2

- or NO, without any  

C

C

observed CnBDMA-Cl transformation?”; and (3) “ What is the CnBDMA-Cl 

ransformation mechanism?”. t
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Figure 7.11. (A) Profiles of CnBDMA-Cl consumption and N2O formation du
incubation period and (B) distribution of CnBDMA-Cl homologues and alkyl 
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carbon and energy source. Control cultures without any N oxide or CnBDMA-Cl were 

also prepared. The CnBDMA-Cl concentration decreased from 356.9±3.8 µM (128.2±1.4 

mg/L) to 153.1±3.6 µM (54.8±1.3 mg/L) (Figure 7.12A) during the incubation period and 

NO3
- was totally converted to N2O after a 10-day delay in the cultures amended with 5 

mM NO3
- (Figure 7.12B). NO2

- was detected at a very low concentration during the 

incubation period. Similarly, the CnBDMA-Cl concentration decreased from 358.8±5.7 

µM (128.9±2.0 mg/L) to 110.4±3.3 µM (39.6±1.2 mg/L) (Figure 7.12A) and NO2
- was 

totally converted to N2O after a 10-day delay in the cultures amended with 5 mM NO2
- 

(Figure 7.12C). The extent of CnBDMA-Cl transformation in NO2
- amended cultures was 

higher than in the NO3
- amended cultures. The CnBDMA-Cl concentration did not change 

in the N oxides free cultures (Figure 7.12A). N oxides were converted to N2 in all 

cultures amended with 5 mM O2
- or NO but not with CnBDMA-Cl, which 

shows that these cultures used residual organics and/or sulfide during the denitrification 

process. This assay did not provide any evidence of whether the observed CnBDMA-Cl 

transformation is biotic, but did show that CnBDMA-Cl is transformed during NO2
- 

reduction. Nitrate reduction to N2O also supports CnBDMA-Cl transformation since NO2
- 

is an intermediate.  

In the second assay, three triplicate abiotic reactors were set up at ca. 100 mg 

. 

±0.0 µM (110.1±0.0 

g/L) to 30.8±3.9 µM (10.8±1.4 mg/L) in 42 days (Figure 7.13). The CnBDMA-Cl 

 of NO3
-, N

CnBDMA-Cl/L with culture media and amended with 5 mM of either NO3
-, NO2

- or NO

N oxide or CnBDMA-Cl free controls were also prepared. The CnBDMA-Cl 

concentration in the NO2
- amended reactors decreased from 308.1

m

concentration did not change for the rest of the incubation period. Moreover, a slight but  
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Figure 7.12. Profiles of (A) CnBDMA-Cl in all test culture series and N oxide
consumption and production in culture series amended with 100 mg/L C

s 
nBDMA-Cl and 

5 mmol N/L of (B) NO3
-, (C) NO2

- and (D) NO, respectively (Error bars represent one 
standard deviation of the means; n = 3) 
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Figure 7.13. Profiles of (A) CnBDMA-Cl in all abiotic controls and N oxides 
consumption and production in abiotic controls amended with 100 mg/L CnBDMA-Cl 
and 5 mmol N/L of (B) NO3

-, (C) NO2
- and (D) NO, respectively (Error bars represent 

one standard deviation of the means; n = 3) 
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statistically significant (p = 0.023) decrease in the NO2
- concentration was observed, but 

NO2
- reduction products were not detected  (Figure 7.13C). CnBDMA-Cl removal in the 

rest of the N oxide amended reactors was comparable to that of the N oxide free reactor 

and not significant. CnBDMA-Cl transformation in the NO2
- amended reactor followed 

the same pathway as in the cultures discussed above and yielded alkyl dimethyl amines 

(C12DMA, C14DMA and C16DMA) (Figure 7.14). The sum of molar concentrations of 

CnBDMA-Cl homologues remaining and alkyl dimethyl amines produced was equal to 

the CnBDMA-Cl concentration added, which indicates that the alkyl dimethyl amines 

were stoichiometrically formed as a result of CnBDMA-Cl transformation under the 

conditions of the present study and that nitrite facilitates this transformation. 

7.3.2.5.Mechanism of CnBDMA-Cl Transformation 

Based on the above discussed results (Figure 7.14), the transformation of 

CnBDMA-Cl proceeded through the cleavage of the C-N bond between the benzyl and 

alkyl dimethyl amine groups of CnBDMA-Cl, which is denoted as debenzylation 

hereafter. Three mechanisms that result in debenzylation of CnBDMA-Cl have been 

reported: pyrolysis (Criddle and Thomas, 1981; Ng et al., 1986; Haskins and Mitchell, 

1991), Emde degradation (Brasen and Hauser, 1954; Smith and March, 2007), and 

modified Hofmann degradation (Suzuki et al., 1989; Ding and Liao, 2001). 

ebenzylation of CnBDMA-Cl by pyrolysis takes place at temperatures above 200°C. A 

zylation of 

ic 

elimination reaction (E2 type) occurring at high temperatures (> 80°C), resulting in 

dealkylation of QACs rather than debenzylation, forming tertiary amines and alkenes.  

D

metallic catalyst, such as sodium amalgam (NaHg), is necessary for the deben

CnBDMA-Cl by Emde degradation. Conventional Hofmann degradation is a nucleophil
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Figure 7.14. Profiles of (A) CnBDMA-Cl homologues and formation of alkyl dimethyl 
amines and mass spectra of total ion chromatograms of samples taken from the abiotic 
control amended with 5 mmol N/L of NO2

- and 100 mg/L BAC after (B) 1 day and (C
days of incubation 
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Debenzylation of CnBDMA-Cl in the presence of a nucleophile, tert-butoxide, at low 

temperatures (between 0 and 40°C) was demonstrated. However, this reaction was more 

likely a nucleophilic substitution reaction rather than an elimination reaction, and was 

denoted as modified Hofmann degradation (Suzuki et al., 1989). It was also shown that 

predominance of elimination or substitution reactions over one another was temperature 

dependent as expected for nucleophilic reactions (Figure 7.15). CnBDMA-Cl is 

transformed into alkyl dimethyl amines through a nucleophilic substitution at low 

temperatures ranging between 0 and 40°C and converted to alkenes and benzyl dimethyl 

amines through elimination at and above 80°C. Several studies have shown that a 

nucleophilic substitution reaction involving benzyl-containing QACs is a bimolecular 

substitution reaction (SN2) and can occur in both protic and dipolar aprotic solvents with 

a broad range of nucleophiles such as tert-butoxide, thiophenoxide, thiophenol and 

thiocyanate (Ross et al., 1960; Ross et al., 1961; Kametani et al., 1969; Westaway and 

Poirier, 1975; Suzuki et al., 1989). 

Nitrite is a Lewis base and an important environmental nucleophile. It can be 

classified as a strong nucleophile when the environmentally important nucleophiles are 

ranked according to their nucleophilicities, as follows (Schwarzenbach et al., 2003): 

ClO4
-<H2O<NO3

-<F-<SO4
2-, CH3COO-<Cl-<HCO3

-, HPO3
2-<NO2

-<C6H5O-, Br-, OH-<I-, 

CN-<HS-, S2O3
-, SO3

2-. The reaction of CnBDMA-Cl and other QACs with nitrite, 

ines such as alkyl dimethyl amines was demonstrated at acidic yielding tertiary am

conditions and room temperature. These studies also demonstrated the nitrosation of the 

resulting tertiary amines to N-nitrosamines (Fiddler et al., 1972; Maduagwu, 1985). 
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Figure 7.15. Reaction scheme of nucleophilic elimination and substitution reactions 
involving CnBDMA-Cl 

 

 

Based on the above, the proposed CnBDMA-Cl transformation scheme is given in

Figure 7.16. The nucleophile nitrite

N+C CH2

 

 attacks the benzyl carbon adjacent to the quaternary 

nitrog

nd 

 

 

s 

 

 

en atom resulting in the cleavage of the C-N bond and the formation of alkyl 

dimethyl amines. Substitution of the alkyl dimethyl amine group by nitrite may yield 

benzylnitrite or nitromethyl benzene since nitrite is an ambident nucleophile (Smith a

March, 2007). GC-MS analysis of the samples in which CnBDMA-Cl was transformed 

showed the presence of benzonitrile (Figure 7.16) which indicates the formation of

nitromethyl benzene as an intermediate during the nucleophilic substitution reaction

(Figure 7.17). Benzonitrile was not detected in the other samples where CnBDMA-Cl wa

not transformed.   
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Figure 7.16. Proposed CnBDMA-Cl transformation mechanism 

 

 

 

Figure 7.17. Gas chromatogram and total mass spectrum of the compound detected in the 
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In the present study, nitrite served as the nucleophile in both abiotic and biotic 

assays and facilitated the CnBDMA-Cl transformation, which followed the same 

mechanism. Although nitrate is also a nucleophile, it did not result in the transformation 

of CnBDMA-Cl in the abiotic assays. Nitrite is a stronger nucleophile than nitrate 

(Schwarzenbach et al., 2003). Therefore, the nucleophilicity of the nucleophile is an 

important factor in the transformation of CnBDMA-Cl as expected for a bimolecular 

nucleophilic substitution reaction.  

Nitrite was produced in all cultures amended with 5 mM NO3
- and at different 

CnBDMA-Cl concentrations (10-100 mg CnBDMA-Cl/L). However, the CnBDMA-Cl 

transformation was observed only at 100 mg CnBDMA-Cl/L. CnBDMA-Cl has a high 

adsorption affinity for biosolids, resulting in almost zero aqueous CnBDMA-Cl 

concentration at very low total CnBDMA-Cl concentrations (10 and 25 mg/L) and 

denitrification proceeded without a lag in all cultures except the one at 100 mg 

CnBDMA-Cl/L. Consistent with SN2 reactions, the rate and extent of CnBDMA-Cl 

transformation were dependent on the concentration of both substrate and nucleophile 

(i.e., CnBDMA-Cl and nitrite, respectively). 

Nitrate and nitrite reduction was inhibited at 100 mg CnBDMA-Cl/L for over 5 days 

(Figure 7.6F, 7.12B and 7.12C). After all N oxides were converted to N2O and the 

aqueous CnBDMA-Cl concentration dropped to 7.8 mg/L, its transformation stopped 

(Figure 7.11A and 7.12A). The aqueous C BDMA-Cl concentration was calculated using 

laq] [VS] 

derived by using the Freundlich isotherm constants presented in Chapter 6 and using the 

VS concentration of 1.32 g/L measured in the 100 mg CnBDMA-Cl/L amended cultures 

n

the equation: [CnBDMA-ClTotal] = [CnBDMA-Claq] + 12.8 [CnBDMA-C 0.31
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at the the 

th 5 

 SN2 reaction was rate limited at and below this 

CnBD

r 

in 

tural 

ions. 

tion. 

carbon, which connects benzene ring to the 

N, el

t 

hain 

 end of the incubation period. The total amount of CnBDMA-Cl transformed in 

abiotic reactor was higher than the amount transformed in the culture amended wi

mM NO2
-, since the aqueous CnBDMA-Cl concentration was lower in the culture than in 

the abiotic reactor due to CnBDMA-Cl adsorption on the biomass. In fact, the 

transformation of CnBDMA-Cl ceased almost at the same aqueous CnBDMA-Cl 

concentration, which was 7.8 and 10.8±1.4 mg/L in the biotic and abiotic reactors, 

respectively, demonstrating that the

MA-Cl concentration range under the conditions of this study.  

In spite of the fact that, both DC10DMA-Cl and CnBDMA-Cl have shown simila

inhibitory effects on nitrate reduction and their phase distribution was almost identical 

the mixed methanogenic culture, only CnBDMA-Cl was transformed whereas 

DC10DMA-Cl was recalcitrant. This phenomenon may be explained using the struc

difference between these two molecules and the selectivity of nucleophilic react

Presence of the benzyl group in the CnBDMA-Cl facilitates the nucleophilic substitu

The electron withdrawing property of the benzene ring coupled with the high electron 

affinity of the quaternary nitrogen makes the 

ectron deficit. This electrophilic C, which has the lowest electrostatic potential 

charge among all the carbons in the CnBDMA-Cl and DC10DMA-Cl, has the highes

affinity for a nucleophilic attack (Figure 7.18). On the other hand, transformation of 

DC10DMA-Cl may be achieved at high temperatures by means of nucleophilic 

elimination of alkyl groups (Figure 7.15), in fact steric hindrance dictated by long-c

alkyl groups may affect the reaction. 
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magnitude, whereas color indicates the sign of the charges (red (+) and blue (-)) 
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Figure 7.18. Electrostatic potential charges of the atoms of C14BDMA-Cl and DC10DMA-
Cl calculated by using Austin Model 1 (AM1) method of MOPAC, a semi-empirical 

function and water was selected as the solvent. The size of the atoms represent the 
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7.4. Summary 

The effect of didecyl dimethyl ammonium chloride and benzalkonium chloride on 

itrate reduction was investigated at concentrations up to 100 mg/L in a batch assay using 

 mixed, mesophilic (35°C) methanogenic culture. Glucose was used as the carbon and 

nergy source and the initial nitrate concentration was 70 mg N/L. Dissimilatory nitrate 

reduction to ammonia (DNRA) and to dinitrogen (DNRN) were observed at QAC 

concentrations up to 25 mg/L. At and above 50 mg QAC/L, DNRA was inhibited and 

NRN was incomplete resulting in accumulation of nitrous oxide. Long-term inhibition 

ethanogenesis and accumulation of volatile fatty acids were observed at and above 

50 mg QAC/L. Over 96% of the added DC10DMA-Cl was recovered from all cultures at 

e end of the 100-days incubation period, indicating that DC10DMA-Cl did not degrade 

 the mixed methanogenic. On the other hand, over 99% of the added CnBDMA-Cl was 

recovered from all cultures except the one amended with 100 mg CnBDMA-Cl/L, in 

which 37% of the initially added CnBDMA-Cl was transformed during the 100-days 

cubation period. Follow-up abiotic and biotic assays performed with 100 mg/L of 

tion 

substitution with nitrite, which was added directly or generated biologically from nitrate 

uring denitrification. Alkyl dimethyl amines (tertiary amines) were produced at 

equamolar levels to the concentration of CnBDMA-Cl transformed, but they were not 

further degraded.  

n

a

e

D

of m

th

in

in

CnBDMA-Cl and 5 mM (in the liquid phase) of either nitrate, nitrite or nitric oxide, 

respectively, demonstrated that the CnBDMA-Cl transformation was an abiotic reac

and followed the modified Hofmann degradation, i.e., a bimolecular nucleophilic 

d
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This is the first report that demonstrates the effect of QACs on nitrate reduction 

and the transformation of a QAC, benzalkonium chloride, under nitrate reducing 

conditions. 
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CHAPTER 8 

BIOTRANSFORMATION OF BENZALKONIUM CHLORIDE 

UNDER FERMENTATIVE AND NITRATE REDUCING 

CONDITIONS 

 

8.1. Introduction 

 QACs contain saturated hydrocarbon moieties attached to a quaternary nitrogen. 

Under aerobic conditions, biotransformation of QACs is initiated by an attack of the alkyl 

moieties via monooxygenase enzymes (van Ginkel et al., 1992; van Ginkel, 1996). As a 

result of monooxgenase activity, QACs get activated and then used as energy and carbon 

source by the microorganisms. Bioactivation of highly saturated molecules under reduced 

conditions is difficult. Therefore, under anaerobic conditions, there is no evidence of 

mineralization of QACs that contain alkyl or benzyl groups (Battersby and Wilson, 1989; 

Federle and Schwab, 1992; Garcia et al., 1999, 2000). However, it was recently 

discovered that both aliphatic and aromatic hydrocarbons can be degraded under 

anoxic/anaerobic conditions by fumarate addition or oxygen-independent hydroxylation 

mechanisms (Heider et al., 1998; Spormann and Widdel, 2000; Van Hamme et al., 2003; 

Suflita et al., 2004; Davidova et al., 2005; Callaghan et al., 2006; Heider, 2007; Washer 

and Edwards, 2007; Winderl et al., 2007; Callaghan et al., 2008; Grundmann et al., 2008; 

Szaleniec et al., 2008). The activation of hydrocarbons via these mechanisms involves 

abstraction of a hydrogen atom from an electron deficit carbon of a hydrocarbon 

molecule followed by the integration of fumarate or hydroxyl anion to the molecule. 

These mechanisms are similar to the nucleophilic substitution mechanism discussed in 
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Chapter 7 in terms of the use of an electron deficit atom to initiate the reaction. 

Therefore, biotransformation of QACs via the fumarate addition mechanism is promising 

under reduced conditions. Given the toxicity of QACs, the BAC enrichment culture, 

which is resistant to QACs and capable of QAC degradation under aerobic conditions, 

was used in this study to test the potential of QAC degradation under fermentative and 

nitrate reducing conditions. 

 The objective of the research reported here was to assess the biotransformation 

potential of C14BDMA-Cl and, to the degree possible, elucidate the mechanism of BAC 

biotransformation in the BAC enrichment culture under fermentative and nitrate reducing 

conditions.    

8.2. Materials and Methods 

8.2.1.  Batch C14BDMA-Cl Biotransformation Assay   

 A batch biotransformation assay was performed to assess the biotransformation 

potential of C14BDMA-Cl under fermentative and nitrate reducing conditions using the 

BAC enrichment culture described in Chapter 5. A sample of 1.5 L BAC enrichment 

culture collected at the end of the 7-day feeding cycle was centrifuged at 10,000 x g and 

the pellet was washed and resuspended in an equal volume (1.5 L) fresh autoclaved and 

deoxygenated culture media with a composition given in Chapter 3. The pH of the 

resuspended culture was adjusted to 7.0 with sodium bicarbonate. 

 The assay was conducted in 160-ml serum bottles (100 ml liquid volume) sealed 

with rubber stoppers and aluminum crimps and flushed with helium gas for 15 min before 

any liquid addition. A sample of 90 mL of the resuspended BAC enrichment culture was 

anaerobically transferred to each serum bottle. Fumarate, sodium nitrate and  C14BDMA-
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Cl solutions were added and the total liquid volume was adjusted to 100 mL with 

deionized (DI) water. The initial biomass, fumarate, nitrate and C14BDMA-Cl 

concentrations in the test culture were 80±3 mg VSS/L, 10 mM, 5 mM and 100 µM, 

respectively. The assay included four control culture series as follows: (1) fumarate-only 

culture, which contained seed and 10 mM fumarate; (2) C14BDMA-Cl control culture, 

which contained seed and 100 µM C14BDMA-Cl; (3) fumarate-control culture, which 

contained seed, 10 mM fumarate and 100 µM C14BDMA-Cl; and (4) nitrate-control, 

which contained seed, 5 mM nitrate and 100 µM C14BDMA-Cl. An autoclaved media 

control was also prepared using 90 mL autoclaved and deoxygenated culture media 

containing 10 mM fumarate, 5 mM nitrate and 100 µM C14BDMA-Cl. The details of 

experimental matrix used in this assay are given in Table 8.1. All culture series and the 

media control were prepared in triplicate. The cultures were incubated in the dark at 22°C 

and agitated daily by hand. Throughout the incubation period, the total gas volume 

produced and its composition (i.e., carbon dioxide, nitric oxide, nitrous oxide and 

dinitrogen), as well as nitrate, nitrite, organic acids and C14BDMA-Cl were measured as 

described in Chapter 3. 

8.3. Results and Discussion 

 The biotransformation experiment performed to assess the biotransformation 

potential of C14BDMA-Cl under fermentative and nitrate reducing conditions in the BAC 

enrichment culture lasted 85 days. C14BDMA-Cl was not transformed in the media-

control indicating that abiotic transformation of C14BDMA-Cl by the chemicals present 

in the media is not possible (Figure 8.1). Therefore, transformation of C14BDMA-Cl in 

the cultures, discussed below, was attributed to biological activity. 
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Table 8.1. Experimental matrix of culture series and controls used in the batch 
C14BDMA-Cl biotransformation assay 
 
 
 
Culture Series C14BDMA-Cl 

100µM 

NO3
-

5 mM 

Fumarate 

10mM 

Fumarate-only - - + 

C14BDMA-control + - - 

Fumarate-control + - + 

Nitrate-control + + - 

Test + + 

Media-control + + + 

+ 
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Figure 8.1. Profile of C14BDMA-Cl in autoclaved culture media over the incubation 
period 
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 Fumarate was disproportionated and utilized as both electron donor and acceptor 

in the fumarate-only culture. As an electron donor, fumarate was converted sequentially 

to malate, pyruvate, acetate and formate, whereas it was transformed to succinate as an 

electron acceptor (Figure 8.2A). At the end of 36 days, 10.5 mM fumarate (42 mM as 

carbon) amended to the fumarate-only culture was recovered as 0.1 mM malate (0.3 mM 

as carbon), 6.5 mM succinate (26.2 mM as carbon), 2.9 mM acetate (5.9 mM as carbon), 

7.4 mM formate (7.4 mM as carbon) and 1.1 mM propionate (3.2 mM as carbon) (Figure 

8.2B). The sequence of the metabolites in the BAC enrichment culture under 

fermentative conditions is consistent with the pathway (Figure 8.3) described previously 

by Zaunmuller et al. (2006). 

 On the other hand, fumarate was converted only to malate at equimolar levels in 

the fumarate-control culture in the presence of C14BDMA-Cl (Figure 8.4 Cycle-1). While 

fumarate was being utilized, all C14BDMA-Cl was converted to a hypothetical 

homologous compound identified during the HPLC analysis and defined as fumarate 

added C14BDMA or (2R)-2-((dimethyl(tetradecyl)ammonio) (phenyl)methyl)succinate 

(abbreviated as C14BDMA*, hereafter). The proposed reaction resulting in the 

transformation of C14BDMA to C14BDMA* is given in Figure 8.5. However, C14BDMA* 

was not utilized throughout the incubation period (Figure 8.4, Cycle-1, 50 days). 

When 5 mM nitrate was added to the fumarate-control culture, about 40% of 

C14BDMA* was utilized as nitrate was converted to dinitrogen (Figure 8.4, Cycle-2). 

Trace amounts of succinate were observed only when C14BDMA* was degraded in the 

fumarate-control culture, indicating that succinate formed was the product of C14BDMA* 

transformation rather than the result of fumarate fermentation. On the contrary,  
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Figure 8.2. (A) Time course of fumarate metabolism and (B) distribution of organic acids 
in the fumarate-only culture at the beginning and the end of the incubation period 
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Figure 8.3. Fumarate disproportination pathway described previously by Zaunmuller et 
al. (2006)  
 

 

C14BDMA was not utilized in the C14BDMA-control and nitrate-control cultures 

suggesting that C14BDMA was neither fermented nor utilized as an electron donor 

(Figure 8.6 and Figure 8.7) in the absence of fumarate. 

 All C14BDMA was converted to C14BDMA* within five days in the test culture 

containing fumarate, nitrate and C14BDMA (Figure 8.8C Cycle-1 and Figure 8.9). 

C14BDMA was converted to C14BDMA* faster in the test culture than in the fumarate-

control culture. Fumarate conversion was also faster in the test culture than in the 

fumarate-control (Figure 8.8B, Cycle-1). These results show that the C14BDMA 

transformation was coupled to fumarate metabolism. About 40% of the C14BDMA* 

formed was utilized as nitrate was converted to dinitrogen (Figure 8.8A Cycle-1). Further 

C14BDMA* transformation was achieved as the culture was amended with nitrate in two 

consecutive cycles (Figure 8.8 Cycle-2 and 3). 
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Figure 8.4. Time course of (A) nitrate reduction, (B) fumarate fermentation and (C) 
C14BDMA transformation in the fumarate-control culture before (Cycle-1) and after 
(Cycle-2) nitrate (5 mM) addition 
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Figure 8.5. Proposed mechanism of fumarate addition to C14BDMA 

 

 

 

 

Figure 8.6. Profile of C14BDMA in the C14BDMA-control culture 
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Figure 8.7. Profiles of (A) nitrate and (B) C14BDMA in the nitrate-control culture 
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Figure 8.8. Time course of (A) nitrate reduction, (B) fumarate fermentation and (C) 
C14BDMA transformation in the test culture at three nitrate amendment cycles 
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Figure 8.9. HPLC chromatograms showing the time course of C14BDMA transformation 
in the BAC enrichment culture under nitrate reducing conditions 
 

 

Given the inhibitory effect of benzalkonium chlorides on fermentation and nitrate 

reduction discussed in previous chapters at the concentrations similar to those used in the 

assays described here, the biotransformation mechanism presented above may be evolved 

to compensate for the inhibitory effect of C14BDMA on the metabolic activity in the BAC 

enrichment culture under fermentative and nitrate reducing conditions. 

The C14BDMA biotransformation mechanism presented here is the first ever 

report to document QAC transformation under fermentative and nitrate reducing 

conditions. However, the pathway of complete mineralization of BAC, which is initiated 

by the fumarate addition and partially described here, under fermentative and anoxic 

conditions has to be elucidated further by using advanced instrumental analysis, 

enzymatic assays, and molecular biology tools.   
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8.4. Summary 

The biotransformation of C14BDMA-Cl under fermentative and nitrate reducing 

conditions was investigated in a batch assay using an enrichment culture developed from 

a hydrocarbon contaminated sediment and subsisting on benzalkonium chlorides. The 

transformation of C14BDMA-Cl was achieved only during fumarate fermentation. In the 

presence of fumarate, C14BDMA-Cl was transformed completely to a homologous 

structure which was defined as fumarate added C14BDMA (C14BDMA*) while the 

fumarate was converted to an equimolar concentration of malate. C14BDMA* was not 

further degraded during the fumarate fermentation. The formation of C14BDMA* was 

faster when fumarate was added along with nitrate. C14BDMA* was also utilized while 

nitrate was being converted to dinitrogen. The C14BDMA transformation under nitrate 

reducing conditions was therefore proposed to be initiated with the activation of 

C14BDMA with fumarate addition resulting in the formation of C14BDMA*. The 

resulting product was utilized and may be completely mineralized via a pathway which is 

under investigation. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

 

9.1. Conclusions 

The study presented here assessed the fate and toxicity of quaternary ammonium 

compounds as well as their inhibitory effects and biotransformation potential under 

aerobic, anoxic and anaerobic conditions in biological systems.  

Nine QACs, belonging to three groups -- monoalkonium, dialkonium and 

benzalkonium chlorides -- were selected as the target QACs based on their consumption 

rate, frequency of occurrence in engineered and natural biological systems, and molecular 

structure. The critical micelle concentration, which reflects the ionic and hydrophobic 

properties of QACs, was determined for each QAC and used as a descriptor to develop 

quantitative structure-activity relationships to express their sorption affinity for biosolids 

and their Microtox® toxicity. All QACs tested had a high sorption affinity for biosolids. 

QACs with low CMCs had a higher adsorption affinity for biosolids than QACs with 

relatively high CMCs suggesting that QACs with high CMCs are more mobile than the 

ones with low CMCs. On the contrary, QACs with high CMCs were more toxic than the 

ones with lower CMCs. The acute Microtox® toxicity was as follows in descending 

order: C12TMA-Cl > DC8DMA-Cl > C14TMA-Cl > DC8-10DMA-Cl > C16TMA-Cl > 

DC10DMA-Cl > C12BDMA-Cl >C14BDMA-Cl > C16BDMA-Cl. The combination of 

these two factors, i.e., sorption and toxicity, results in a serious environmental impact 

problem, that is, QACs which are more mobile and more (bio)available are more toxic. 
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The presence of counter-ions (anions) had no significant effect on the QAC toxicity, but 

NOM decreased the QAC toxicity. 

Biotransformation of QACs is energetically feasible under aerobic conditions. 

Bioassays performed to investigate the biotransformation potential of benzalkonium 

chloride under aerobic conditions by an enrichment culture revealed that BAC 

biotransformation proceeds with sequential dealkylation and debenzylation steps 

resulting in the separation of the alkyl and benzyl groups and the formation of benzyl 

dimethyl amine, and dimethyl amine, respectively. The resulting biotransformation 

products were at least 250-fold less toxic than the BAC. Microbial community analysis of 

the mixed culture that carried out BAC degradation suggested that the main species were 

members of the genus Pseudomonas. 

Although QACs biodegradation is energetically feasible under methanogenic 

conditions, none of the QACs tested in this study was degraded under methanogenic 

conditions in long-term batch assays. QACs had short- or long-term inhibitory effects on 

a mixed methanogenic culture at 25 mg/L and above. Methanogenesis was more sensitive 

to QAC inhibition than acidogenesis. The inhibitory impact of the individual QACs on 

the methanogenic activity decreased according to the following series: DC8DMA-Cl > 

DC8-10DMA-Cl > CnBDMA-Cl > DC10DMA-Cl. Thus, QACs with the shorter alkyl chain 

length are the most inhibitory. Phase distribution analysis of QACs between the liquid 

phase and the solid (biomass) phase resulted in the following series of decreased affinity 

for the biosolids: DC10DMA-Cl > CnBDMA-Cl > DC8-10DMA-Cl > DC8DMA-Cl. Thus, 

the inhibitory effect of QACs is inversely proportional to their adsorption affinity on the 

biomass or their hydrophobicity. The highly reduced structure of QACs, combined with 
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their low bioavailability and inhibitory effects, play an important role in their 

recalcitrance in biological systems under methanogenic conditions. 

Assays performed using the same mixed methanogenic culture mentioned above 

under nitrate reducing conditions showed that QACs were inhibitory to the nitrate 

reduction processes. DNRA was inhibited and DNRN was incomplete resulting in the 

accumulation of nitrous oxide at and above 50 mg QAC/L. BAC was transformed 

abiotically to alkyl dimethyl amines via the modified Hofmann degradation, a 

bimolecular nucleophilic substitution with nitrite. 

BAC degradation was also demonstrated in bioassays performed using the mixed, 

BAC enrichment culture mentioned above under fermentative and nitrate reducing 

conditions. In the presence of fumarate, BAC was transformed completely to a 

homologue structure which, based on LC/MS analysis was presumed to be succinyl-

benzalkonium (SBA), while fumarate was converted to an equamolar malate 

concentration. SBA was not further degraded during the fumarate fermentation and in the 

absence of nitrate reduction. In contrast, SBA formation was faster when fumarate was 

supplemented along with nitrate and SBA was utilized while nitrate was converted to 

dinitrogen. The BAC transformation pathway under nitrate reducing conditions was 

therefore proposed to be initiated with the activation of BAC with fumarate addition, and 

proportionation of SBA to benzylsuccinyl-CoA which was utilized via the benzoyl-CoA 

pathway and alkyl dimethyl amine which was subjected to sequential fumarate additions 

and transformation via β-oxidation. Note that the discovery of BAC transformation by the 

above mentioned two reactions, i.e., modified Hofmann degradation and fumarate 
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addition, is the first ever report to document QAC transformation under anoxic/anaerobic 

conditions and delineate the transformation pathways, at least the initial, activation steps. 

9.2. Potential Applications of the Study Outcomes 

This research showed the potential impacts of QACs along with the physical, 

chemical and biological processes that determine the fate of QACs in engineered and 

natural biological systems. Such information may facilitate the development of strategies 

to mitigate adverse effects of QACs and to aid industry, as well as state and federal 

regulatory agencies in the development of sound policies and risk assessment strategies. 

The outcomes of this research may be used for the specific applications listed 

below: 

(1) The physical/chemical properties, such as CMC and especially Kow, of nine QACs 

representing three QAC groups determined in this study may be used in developing read-

across database for the prediction of physical/chemical properties of other QACs in the 

cationic surfactant category. The log Kow estimation method that was described in this 

study can be integrated to EPISuite or other property estimation/QSAR modeling tools as 

an alternative method to accurately estimate the partitioning coefficients. 

(2) The QSARs developed for nine QACs may be used to evaluate the fate and 

toxicity of these compounds more precisely, which then can be utilized in decision 

making on (re)registration, evaluation, authorization or restriction of QACs through 

REACH, U.S. EPA, and OECD HPV challenge programs. 

(3) Individual QACs were found to behave differently both in terms of the degree of 

partitioning on solids as well as in terms of their inhibitory effect on biological treatment 

systems. This information may be used in the selection of mixtures of individual QACs in 
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industrial applications by assessing the tradeoff between sanitation efficiency and their 

impact on the treatment of QAC-bearing wastewaters.  

(4) Bioremediation of hydrocarbon contaminated soils and sediments is problematic 

due to the low solubility and bioavailability of these contaminants. Surfactant enhanced 

remediation strategies have been developed to mitigate this problem. However, the 

toxicity of the surfactants used and their recalcitrance are major factors which restrict 

their application of such strategies. Here, we described the biodegradation of QACs, 

which are cationic surfactants, under both aerobic and anoxic/anaerobic conditions by a 

microbial population including species which are closely related to the most common 

hydrocarbon degrading species and developed from a hydrocarbon contaminated 

sediment. The biodegradability of QACs demonstrated in this study may be used as the 

acceptance criteria to verify their potential use as the surfactants of choice in the 

surfactant-enhanced remediation of hydrocarbon contaminated sites. 

(5) This research showed a strong evidence of biodegradation potential of QACs in 

biological systems under aerobic, anoxic and anaerobic conditions. It is known that 

biological treatment of QAC-bearing wastewaters is problematic. However, the 

information presented here can be used to develop alternative treatment strategies for 

QAC-bearing wastewaters. For instance, selectors which receive high concentrations of 

QACs and therefore enrich for QAC-tolerant and degrading microorganisms may be 

employed before the waste stream is introduced to sensitive biological treatment units 

(e.g., nitrification/denitrification). Attached growth (i.e., biofilm) biological treatment 

systems can also be employed in the treatment of QAC-bearing wastewaters. These 

systems contain high biomass concentrations which may reduce the inhibitory effects of 
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QACs due to their high adsorption affinity. The biofilm formation results in a layered 

microbial community development, which may protect the sensitive but metabolically 

important microorganisms from QAC inhibition, and a redox gradient (aerobic to 

anaerobic), which may facilitate the complete degradation of QACs via multiple 

transformation mechanisms described in this study under aerobic, anoxic and anaerobic 

conditions. 

9.3. Recommendations 

The QSAR approach presented in this study may be deployed to investigate the 

fate and toxicity of other QACs such as pyridinium chlorides which have promising new 

applications (e.g., ionic liquid as organic solvent replacement or phase transfer catalyst), 

which will dominate the market in the future. 

Given the antimicrobial properties of QACs, microbes that subsist on QACs have 

to also have developed resistance mechanisms. Such antimicrobial resistance mechanisms 

and their mobility need to be further investigated in the mixed, BAC enrichment culture 

using modern molecular biology/proteomics tools in order to fully understand the actual 

or potential human health risks resulting from chronic QAC pollution. 

The abiotic QAC transformation mechanism via the nucleophilic substitution 

reaction may further be investigated to identify other environmentally relevant 

nucleophiles that may play a role in QAC transformation. Moreover, the effect of 

physical and chemical factors such as pH, temperature and reduction potential on the 

abiotic QAC transformation mechanism may be explored. The anaerobic ammonium 

oxidation (ANAMMOX) process, which converts ammonium to dinitrogen utilizing 

nitrite as an electron acceptor, may be investigated as an alternative pathway of QAC 
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transformation via nucleophilic substitution. In case QAC transformation via 

ANAMMOX is achieved, the interaction and competition between the nitrite involving 

abiotic and biotic mechanisms should be investigated using stable isotope probes.    

BAC transformation via the fumarate addition mechanism was proposed in this 

study, but further, more conclusive evidence is necessary. The positive identification of 

important metabolites, such as SBA, needs to be made using advanced instrumental 

analysis. Isolation of microorganisms capable of anaerobic BAC degradation and 

performing enzymatic assays may assist in the elucidation of the pathway proposed in 

this study. Moreover, similar bioassays described in this study may be performed using 

pure cultures of known anaerobic hydrocarbon degrading microorganisms such as 

Azoarcus EbN1 and Thauera aromatica. 

Complete mineralization of QACs under aerobic conditions described in this 

study was not achieved under anoxic and anaerobic conditions. Therefore, 

biotransformation of QACs and their anoxic and anaerobic transformation products 

leading the complete mineralization of QACs should be investigated under alternating 

anoxic and aerobic conditions. 
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APPENDIX A 

CALCULATION OF LOG KOW VALUES OF QACS USING THE 

HANSCH AND LEO METHOD 

 
 

 
 

Dodecyltrimethyl ammonium chloride (C12TMA-Cl) 
 

Fragment/Bond 
Factor Contribution # of Fragments Total Contribution 

ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 4 3.56 
ƒ  CH2 0.66 11 7.26 
ƒ  C7H7 2.51 0 0.00 
Fbx+1 -0.90 4 -3.60 
Fbx+2 -0.60 1 -0.60 
Fbx+3 -0.45 1 -0.45 
Fbx+4 -0.35 1 -0.35 
Fbx+5 -0.30 1 -0.30 
Fbx+6< -0.27 7 -1.89 
    
logKow   0.24 
Exp. logKow   0.36±0.07 
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Tetradecyltrimethyl ammonium chloride (C14TMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 

N+
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CH2
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C
H2

CH3

H2
C

H3C

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 4 3.56 
ƒ  CH2 0.66 13 8.58 
ƒ  C7H7 2.51 0 0.00 
Fbx+1 -0.90 4 -3.60 
Fbx+2 -0.60 1 -0.60 
Fbx+3 -0.45 1 -0.45 
Fbx+4 -0.35 1 -0.35 
Fbx+5 -0.30 1 -0.30 
Fbx+6< -0.27 9 -2.43 
    
logKow 1.07

Kow 0.70±
  

Exp. log   0.05
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Hexadecyltrimethyl ammonium chloride (C16TMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 
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CH2
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H3C

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 4 3.56 
ƒ  CH2 0.66 15 9.90 
ƒ  C7H7 2.51 0 0.00 
Fbx+1 -0.90 4 -3.60 
Fbx+2 -0.60 1 -0.60 
Fbx+3 -0.45 1 -0.45 
Fbx+4 -0.35 1 -0.35 
Fbx+5 -0.30 1 -0.30 
Fbx+6< -0.27 11 -2.97 
    
logKow 1.85

Kow 1.50±0.06 
  

Exp. log   
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Dioctyldimethyl ammonium chloride (DC8DMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 

N+
H3C

CH3

C
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C

C
H2

H2
C

C
H2

H2
C

C
H2

CH3

CH2H2C

CH2H2C

CH2H2C

CH2H3C

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 4 3.56 
ƒ  CH2 0.66 14 9.24 
ƒ  C7H7 2.51 0 0.00 
Fbx+1 -0.90 4 -3.60 
Fbx+2 -0.60 2 -1.20 
Fbx+3 -0.45 2 -0.90 
Fbx+4 -0.35 2 -0.70 
Fbx+5 -0.30 2 -0.60 
Fbx+6< -0.27 6 -1.62 
    
logKow 0.84

Kow 0.28±
  

Exp. log   0.22
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Octyldecyldimethyl ammonium chloride (DC8-10DMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 
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C
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H2
C

C
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CH3

CH2H2C

CH2H2C

CH2H2C

CH2H3C

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 4 3.56 
ƒ  CH2 0.66 16 10.56 
ƒ  C7H7 2.51 0 0.00 
Fbx+1 -0.90 4 -3.60 
Fbx+2 -0.60 2 -1.20 
Fbx+3 -0.45 2 -0.90 
Fbx+4 -0.35 2 -0.70 
Fbx+5 -0.30 2 -0.60 
Fbx+6< -0.27 8 -2.16 
    
logKow 1.62

Kow 1.54±
  

Exp. log   0.06
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Didecyldimethyl ammonium chloride (DC10DMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 
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CH2H2C

CH2H2C

CH2H3C

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 4 3.56 
ƒ  CH2 0.66 18 11.88 
ƒ  C7H7 2.51 0 0.00 
Fbx+1 -0.90 4 -3.60 
Fbx+2 -0.60 2 -1.20 
Fbx+3 -0.45 2 -0.90 
Fbx+4 -0.35 2 -0.70 
Fbx+5 -0.30 2 -0.60 
Fbx+6< -0.27 10 -2.70 
    
logKow 2.40

Kow 2.56±
  

Exp. log   0.01
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Dodecylbenzyldimethyl ammonium chloride (C12BDMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 
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Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 3 2.67 
ƒ  CH2 0.66 11 7.26 
ƒ  C7H7 2.51 1 2.51 
Fbx+1 -0.90 3 -2.70 
Fbx+2 -0.60 1 -0.60 
Fbx+3 -0.45 1 -0.45 
Fbx+4 -0.35 1 -0.35 
Fbx+5 -0.30 1 -0.30 
Fbx+6< -0.27 14 -3.78 
    
logKow 0.92

Kow 0.59±
  

Exp. log   0.04
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Tetradecylbenzyldimethyl ammonium chloride (C14BDMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

H3C

CH2

C

HC

HC CH

CH

CH

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 3 2.67 
ƒ  CH2 0.66 13 8.58 
ƒ  C7H7 2.51 1 2.51 
Fbx+1 -0.90 3 -2.70 
Fbx+2 -0.60 1 -0.60 
Fbx+3 -0.45 1 -0.45 
Fbx+4 -0.35 1 -0.35 
Fbx+5 -0.30 1 -0.30 
Fbx+6< -0.27 16 -4.32 
    
logKow 1.70

Kow 1.67±
  

Exp. log   0.02
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Hexadecylbenzyldimethyl ammonium chloride (C16BDMA-Cl) 

Fragment/Bond 
Contribution # of Fragments Total Contribution 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

CH2

C

HC

HC CH

CH

CH

H2
C

C
H2

H2
C

H3C

 

Factor 
ƒ  N+ -3.40 1 -3.40 
ƒ  Cl- 0.06 1 0.06 
ƒ  CH3 0.89 3 2.67 
ƒ  CH2 0.66 15 9.90 
ƒ  C7H7 2.51 1 2.51 
Fbx+1 -0.90 3 -2.70 
Fbx+2 -0.60 1 -0.60 
Fbx+3 -0.45 1 -0.45 
Fbx+4 -0.35 1 -0.35 
Fbx+5 -0.30 1 -0.30 
Fbx+6< -0.27 18 -4.86 
    
logKow 2.48

Kow 2.97±
  

Exp. log   0.03
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APPENDIX B 

GIBB’S FREE FORMATION ENERGY OF QACS 

 

 

 
Benzyldodecyldimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
Aromatic ring 1 -6.0 -6.0 

-CH3 3 8.5 25.5 
-CH2- 12 1.7 20.4 
>N+< 1 8.9 8.9 

>CH- benzene 5 8.6 43.0 
>C- benzene 1 1.1 1.1 

∆Gf
0’   68.2 kcal/mol 

285.4 kJ/mol 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

H3C

CH2

C

HC

HC CH

CH

CH
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Benzyltetradecyldimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
Aromatic ring 1 -6.0 -6.0 

-CH3 3 8.5 25.5 
-CH2- 14 1.7 23.8 
>N+< 1 8.9 8.9 

>CH- benzene 5 8.6 43.0 
>C- benzene 1 1.1 1.1 

∆Gf
0’   71.6 kcal/mol 

299.6 kJ/mol 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

H3C

CH2

C

HC

HC CH

CH

CH
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Benzylhexadecyldimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
Aromatic ring 1 -6.0 -6.0 

-CH3 3 8.5 25.5 
-CH2- 16 1.7 27.2 
>N+< 1 8.9 8.9 

>CH- benzene 5 8.6 43.0 
>C- benzene 1 1.1 1.1 

∆Gf
0’   75.0 kcal/mol 

313.8 kJ/mol 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

CH2

C

HC

HC CH

CH

CH

H2
C

C
H2

H2
C

H3C
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Dodecyltrimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
-CH3 4 8.5 34.0 
-CH2- 11 1.7 18.7 
>N+< 1 8.9 8.9 

∆Gf
0’   36.9 kcal/mol 

154.4 kJ/mol 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

H3C

CH3
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Tetradecyltrimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
-CH3 4 8.5 34.0 
-CH2- 13 1.7 22.1 
>N+< 1 8.9 8.9 

∆Gf
0’   40.3 kcal/mol 

168.6 kJ/mol 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2
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C

C
H2

H2
C

C
H2

CH3

H2
C

H3C
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Hexadecyltrimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
-CH3 4 8.5 34.0 
-CH2- 15 1.7 25.5 
>N+< 1 8.9 8.9 

∆Gf
0’   43.7 kcal/mol 

182.8 kJ/mol 

N+

CH3

H3C

CH2

C
H2

H2
C

C
H2

H2
C

C
H2
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C
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C

C
H2

H2
C

H3C
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Dioctyldimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
-CH3 4 8.5 34.0 
-CH2- 14 1.7 23.8 
>N+< 1 8.9 8.9 

∆Gf
0’   42.0 kcal/mol 

175.7 kJ/mol 

N+
H3C

CH3

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

CH3

CH2H2C

CH2H2C

CH2H2C

CH2H3C
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Octyldecyl dimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
-CH3 4 8.5 34.0 
-CH2- 16 1.7 27.2 
>N+< 1 8.9 8.9 

∆Gf
0’   45.4 kcal/mol 

190.0 kJ/mol 

N+
H3C

CH3

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2

CH3

CH2H2C

CH2H2C

CH2H2C

CH2H3C
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Didecyl dimethyl ammonium 

Group/Correction # of occurrence Contribution 
(kcal/mol) 

Total contribution 
(kcal/mol) 

Origin 1 -24.7 -24.7 
-CH3 4 8.5 34.0 
-CH2- 18 1.7 30.6 
>N+< 1 8.9 8.9 

∆Gf
0’   48.8 kcal/mol 

204.2 kJ/mol 

N+
H3C

CH3

C
H2

H2
C

C
H2

H2
C

C
H2

H2
C

C
H2
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CH2H2C

CH2H3C
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