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Abstract

This project deals about the solution of the Navier Stokes Equations by the Method of

Characteristics. This method is used to eliminate the convective part of equations of

the convection-diffusion type, conducting the material derivative in a Lagrangian manner

along the characteristic curves of each node in a fixed grid. Following this approach, the

method is able to solve the incompressible Navier Stokes Equations with the advantage

of using large timesteps. In the present case, the solution of the well known Lid Driven

Cavity Flow problem is obtained for several Reynolds numbers, showing good agreement

when compared to solutions obtained by other methods.

Keywords: Characteristic curves, Finite Element Method, Lagrange-Galerkin Method,

Backward Euler, Lid Driven Cavity Flow
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Introduction

The description of fluid flow behavior is governed by the Navier Stokes Equation. Al-

though there is not yet an analytical solution for this equation, several numerical tech-

niques have been developed, achieving approximate solutions that have contributed to the

solution of problems in different fields of Engineering. Methods such as Finite Differences

and Finite Volumes were developed decades ago and have been the inspiration for new

methods. The Finite Element Method was intended for structural analysis but it has

become popular in fluid dynamics because of its ability to treat boundary conditions and

its well defined mathematical basis.

The traditional way to solve the Navier Stokes system in FEM is by using the Galerkin

method. The lack of upwinding techniques (adaptative methods according to the direc-

tion of propagation of the transported field) evidenced the popularity of Finite Difference

and Finite Volume methods. Further research in FEM helped the method to gain popu-

larity due to upwinding techniques, like the Streamline Upwind Petrov Galerkin (SUPG),

becoming the most suitable method to deal with instabilities and to improve the finite

element solution. Segal (2011)

Other methods to solve the transient incompressible Navier Stokes system are the

pressure correction methods, optimization strategies (Uzawa algorithm)Temam (1977),

projection schemes, Fractional Step Methods and recently, a group of meshless methods

which are becoming popular because complex geometries as well as large deformations,

nonlinearities, crack simulations can be treated with ease. The problem with some of

these methods is the definition of boundary conditions. These kinds of methods include,

the Element-Free Galerkin Method (EFG) Belytschko et al. (1994), Isoparametric Finite

Point Method Wang and Takao (2004), Meshless local Petrov-Galerkin (MLPG) Atluri

and Zhu (1998), Smooth Particle Hydrodynamics (SPH)Gingold and Monaghan (1977),

Moving Particle Semi-Implicit Method (MPS)Koshizuka et al. (1998), among others.
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2 CONTENTS

The characteristic based method is followed according to the work done by Zienkiewicz

et al. (2005), Zienkiewicz et al. (1999) and contributions of (Nithiarasu (2003), Nithiarasu

(2002)). This method is based on a splitting technique proposed by Chorin (1968), re-

lated to Fractional Step Methods in which velocity and pressure operators are decoupled.

The use of an artificial compressibility method is convenient to overcome computational

difficulties when treating the conservation equation Nithiarasu (2003).

The formulation of a Lagrange-Galerkin Method, first introduced by Benque et al.

(1980) involving Characteristic curves is covered in the second part of this work. This

method is proved to be efficient for convection dominated problems as illustrated by

Boukir et al. (1997), Achdou and Guermond (2000), Pironneau (1982) and is stated

as a mixture of a traditional Galerkin Method for spatial variables with a Lagrangian

formulation for time. This method is set as a mixed formulation in which, a penalty

method to solve the system of equations introduces a small perturbation coefficient in the

conservation equation, in order to be able to solve the matricial system, achieved after

proposing a variational formulation for the problem.

This work provides another approach to the solution of Navier Stokes Equations,

presenting the equations in discrete form in a simple manner, treating the temporal term

of the equation with a finite different scheme and in contrast to the unstructured triangular

grid formulations found in the literature, the use of a structured grid of square elements.

This document is organized as follows. In chapter 1 generalities of the Navier-Stokes

Equation (section 1.1) and the concept of characteristic curves (section 1.2) are explained.

In chapter 2 some features of the Characteristic Based Method (CBS) are reviewed. The

Lagrange-Galerkin or characteristic curve method is introduced in chapter 3, and finally

an example of the lid driven cavity flow is solved by the Lagrange-Galerkin procedure and

discussed on sections 3.2 and 3.3 respectively.



Chapter 1

Preliminary Concepts

1.1 Navier Stokes Equation

The Navier Stokes equations describe the behavior of viscous fluids and are derived from

the conservation laws, namely, the Newton’s law of motion, the continuity equation and

the energy equation. These coupled set of equations are Hyperbolic Partial Differential

Equations of first or second order that describe time-dependent convection dominated

problems. The law of momentum conservation states that the rate of change of momentum

of a particle equals the sum of external forces applied to it, therefore it is important to

mention that the deduction of the Navier Stokes equation is based on this law. The

left hand side of equation 1.1 shows the rate of change of momentum , while the right

hand side shows the sum of body forces, acting throughout the volume of a body (i.e

gravitational forces), and contact forces, interacting with the fluid element throughout its

surface (i.e viscous forces).

ρ

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸
Change in momentum

= div(σ)︸ ︷︷ ︸
Surface force

+ ρb︸︷︷︸
Body force

. (1.1)

In order to achieve the Navier Stokes set of equations, a constitutive relation for

the stress (σ) must be defined and incorporated; for a Newtonian incompressible fluid

(div(u) = 0) we have,

σ = 2µD − pI.
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4 Preliminary Concepts

where σσσ is the stress, µµµ is the dynamic viscosity, D = 1
2

(
∇u +∇uT

)
is the strain rate

or deformation tensor, p is the pressure and I is the identity matrix.

The set of equations is now complete:

ρ

(
∂u

∂t
+ u · ∇u

)
= µ∇2u+ (µ+ λ)∇ (div(u))−∇p+ ρb

∇ · u = 0. (1.2)

For the case of incompressible fluids, density (ρ) is constant and the second term of

1.2 vanishes.

ρ

 ∂u

∂t︸︷︷︸
Local accel.

+ u · ∇u︸ ︷︷ ︸
Convective accel.


︸ ︷︷ ︸

Material derivative

= µ∇2u︸ ︷︷ ︸
V iscous term

− ∇p︸︷︷︸
Pressure term

+ ρb︸︷︷︸
Body force term

∇ · u = 0. (1.3)

In order to complete the Navier Stokes problem, the set of equations must be subjected

to initial and boundary conditions. Initial conditions refer to the definition of initial

values for the velocity and pressure fields, while boundary conditions are imposed on the

boundary ΓΓΓ = Γ1 ∪ Γ2 ∪ Γ3 of an open fluid domain denoted by ΩΩΩ.

Figure 1.1: Open fluid domain Ω with its boundary Γ = Γ1 ∪ Γ2 ∪ Γ3

Boundary conditions are of three types as follows,

Dirichlet u = g on Γ1

Neumann h = [σ]n on Γ2

Robin [σ]n = α(u− uref ) on Γ3 (1.4)
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where g is a defined function or constant, h is the traction or surface force,α is a

constant and uref is a reference velocity.

1.2 The Concept of Characteristic Curve

The scheme of a partial differential equation like the convective transport equation is:

∂φ

∂t
+ a(x, t)

∂φ

∂x
= Q(x, t) (1.5)

where φ is the scalar quantity to be transported, a is the change of position in time

and Q is the source term. The goal is to find a family of curves in the (x, t) plane in which

the problem reduces to an ordinary differential equation. The information in the scalar

quantity φ can propagate in time by means of the speed of propagation a in function of

a point in time and space a(x, t). The direction given by a = dx
dt

is the characteristic

direction of propagation. If the PDE is linear, this speed of propagation is constant and

the characteristic curves are fixed in the space-time plane (x, t). Furthermore, if the linear

PDE has constant coefficients, the characteristic curves will be straight lines in plane (x, t)

Donea and Huerta (2003).

One can observe that, after transforming the PDE to an homogeneous form, and

assuming that the speed of propagation is constant, the equation can be expressed as:

∂φ

∂t
+ a

∂φ

∂x
= 0. (1.6)

In this way we can express the equation 1.6 as ∂φ
∂t

= 0 along curves given by ∂x
∂t

= a.

The solution to ∂x
∂t

= a is x = at + x′ with x′ being a constant of integration. The

solution is a straight line that provides transport in time of the spatial profile given by

φ through the characteristic curves. In a graphical way, the concept of transport by

characteristics can be seen on Figure 1.2.
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x

t

0

Figure 1.2: Transport of a quantity φ through characteristics.

φ is constant for the curve so along the characteristic curve x − at = x′,when intro-

ducing the initial condition φ(x, 0) = f(x), the solution φ(x, t) in any instant of time t

and any position x is

φ(x, t) = f(x′) = f(x− at) (1.7)

The characteristic based method turns the convection-diffusion problem into a pure

diffusion problem so that a spatial discretization procedure by standard Galerkin can be

applied to the equation.



Chapter 2

Characteristic-based Split Method

(CBS)

The characteristic based method is used to find a solution of fluid dynamics equations for

any condition of the flow (compressible or incompressible) by means of a standard Galerkin

procedure on characteristic curves. The method called CBS by Zienkiewicz et al. (2005)

is able to eliminate the convective part of the equation of momentum conservation after

setting it out in a Lagrangian fashion. Further discretization of the convection-diffusion

equation will provide ideas for the treatment of Navier Stokes Equations.

2.1 Galerkin Based Characteristic Method

2.1.1 Convection-diffusion equation

After laying out the concept of characteristic curves, the solution of mass and momentum

equations (Navier-Stokes Equations) for velocity and pressure variables (u and p) is con-

sidered. The main idea is to achieve the solution of these equations following a Galerkin

procedure based on characteristics.

In this method, the convection-diffusion equation can be split in two parts, a convective

term and a diffusive term that are discretized in a separate style. We have then the

7



8 Characteristic-based Split Method (CBS)

convection-diffusion equation:

∂φ

∂t︸︷︷︸
T ime term

+
∂

∂xj
(ujφ)︸ ︷︷ ︸

Convective term

− ∂

∂xi

(
k
∂φ

∂xi

)
︸ ︷︷ ︸
Diffusive term

+ Q︸︷︷︸
Source term

= 0. (2.1)

The split is done according to (2.2) as

φ = φ∗ + φ∗∗ (2.2)

∂φ∗

∂t
+ U

∂φ

∂x
= 0

∂φ∗∗

∂t
− ∂

∂x

(
k
∂φ

∂x

)
+Q = 0. (2.3)

This split will be explained subsequently while discretizing the Navier Stokes Equa-

tions.

The idea of the characteristic based Galerkin method is to perform a time discretiza-

tion for the convection-diffusion equation in moving coordinates (characteristics). This

operation is done having in mind the elimination of the convective term and the use of a

standard Galerkin procedure for the spatial discretization of remaining terms.

Taking the convection-diffusion equation on moving coordinates x′:

∂φ(x′)

∂t︸ ︷︷ ︸
T ime term

− ∂

∂x′i

(
k
∂φ

∂x′i

)
︸ ︷︷ ︸
Diffusive term

+ Q(x′)︸ ︷︷ ︸
Source term

= 0. (2.4)

Discretization of the time term is performed by setting out an approximation of the

scalar quantity φ in two different states of time: present time (t = tn), and a later time

(t = tn+1). The approximation uses an operator L acting on the scalar quantity to be

transported on both time moments

∂φ

∂t
= L(φ) (2.5)

∂φ

∂t
≈
φn+1 − φn

∆t
= L(φ)

L(φn+1) Unknown (Implicit)

L(φn) Known (Explicit)
(2.6)

The approximation of the spatial, diffusive and source terms can be done following

an implicit, semi-implicit or explicit scheme according to a parameter θ. The most used
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scheme is the semi-implicit
(
θ = 1

2

)
, often called Crank-Nicolson.

∂φ

∂t
≈
φn+1 − φn

∆t
= θL(φn+1) + (1− θ)L(φn)


θ = 1 Implicit

θ = 1
2

Semi− implicit

θ = 0 Explicit

(2.7)

After the discretization process, an expression for the explicit convection-diffusion

equation is achieved,

φn+1 − φn = −∆t

[
∂(Ujφ)

∂xj
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q

]
t=n

+

∆t2

2
Uk

∂

∂xk

[(
∂(Ujφ)

∂xj

)
− ∂

∂xi

(
k
∂φ

∂xi

)
+Q

]
t=n

.

(2.8)

The advantage of using this equation is that it is written in conservative form, and is

explicit because it is evaluated at present time t = n.

2.1.2 Navier Stokes equation

In a similar fashion we can discretize the Navier–Stokes equations in time:

In the Navier Stokes Equations the quantity to be transported is the velocity φ =

ρui = Ui. The convective term becomes the convective acceleration and the diffusive

term is the divergence of the strain forces, which are in fact given by the gradient of the

velocity. Finally, the pressure term is treated as a source term as well as the body forces.

Hence, the Navier–Stokes equations represent the convection-diffusion of momentum per

unit mass

∂Ui
∂t

+
∂

∂xj
(ujUi)−

∂τij
∂xj

+
∂p

∂xi
− ρgi︸ ︷︷ ︸

Source term

= 0. (2.9)

The scalar quantity is given by Ui = ρui.

After discretization of the Navier–Stokes Equations followed by a Crank Nicholson
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scheme with θ = 1
2
, we can obtain an explicit equation for a time instant t = n

∆Ui =−∆t

[
∂

∂xj
(ujUi)−

∂τij
∂xi

+
∂p

∂xi
− ρgi

]n
+

∆t2

2
uk

∂

∂xk

[
∂

∂xj
(ujUi)−

∂τij
∂xi

+
∂p

∂xi
− ρgi

]n
.

(2.10)

The following step is to split the equation isolating the pressure terms and expressing the

change of velocity ∆Ui as the sum of two auxiliary variables ∆U∗i and ∆U∗∗i , according

to (2.11):

∆Ui = ∆t

[
− ∂

∂xj
(ujUi) +

∂τij
∂xi

+ ρgi

]n
−∆t

∂pn+θ2

∂xi

+
∆t2

2
uk

∂

∂xk

[
∂

∂xj
(ujUi)−

∂τij
∂xi
− ρgi

]n
︸ ︷︷ ︸

∆U∗
i

+
∆t2

2
uk

∂

∂xk

(
∂pn+θ2

∂xi

)
︸ ︷︷ ︸

∆U∗∗
i

(2.11)

∆Ui = ∆U∗i + ∆U∗∗i . (2.12)

The pressure terms that were separated are stored in the auxiliary variable ∆U∗∗i ,

whereas remaining terms are stored in ∆U∗i . Higher order terms in the stress tensor are

neglected

∆U∗i = ∆t

[
−∂(ujUi)

∂xj
+
∂τij
∂xj

+ ρgi +
∆t

2
uk

∂

∂xk

(
∂(ujUi)

∂xj
− ρgi

)]n
. (2.13)

∆U∗∗i = −∆t
∂pn+θ2

∂xi
+

∆t2

2
uk

∂2pn

∂xk∂xi
(2.14)

As there is an additional unknown in the system (the pressure) we need an additional

equation to find it. Regarding the mass conservation equation, it is necessary to take

it to an alternate form in order to discretize and solve it. Depending on the problem

conditions, i.e. a compressible problem, density can be interpolated. Let us use the speed

of sound denoted by c
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∂ρ

∂t
+ div(ρu) = 0 (2.15)

and also
1

c2

∂p

∂t
= − div(ρu).

Therefore,
∂ρ

∂t
=

1

c2

∂p

∂t
= − div(ρu) = −∂Ui

∂xi

Using a θ time approximation for the conservation equation

∆ρ

∆t
=

(
1

c2

)n
∆p

∆t
= −∂U

n+θ1
i

∂xi
, (2.16)

which can be expanded as(
1

c2

)n
∆p

∆t
= −∂U

n+θ1
i

∂xi
= −

[
∂Un

i

∂xi
+ θ1

∂∆Ui
∂xi

]
,

and splitting the velocity(
1

c2

)n
∆p

∆t
= −

[
∂Un

i

∂xi
+ θ1

∂

∂xi
(∆U∗i + ∆U∗∗i )

]
.

Using the equation for ∆U∗∗ (2.14)(
1

c2

)n
∆p

∆t
= −

[
∂Un

i

∂xi
+ θ1

∂

∂xi

(
∆U∗i +−∆t

∂pn+θ2

∂xi
+

∆t2

2
uk

∂2pn

∂xk∂xi

)]
.

Since the last term is of superior order, and expanding pn+θ2 = pn + θ2∆p,(
1

c2

)n
∆p

∆t
= −

[
∂Un

i

∂xi
+ θ1

∂∆U∗i
∂xi

+−∆tθ1
∂

∂xi

(
∂pn

∂xi
+ θ2

∂∆p

∂xi

)]
. (2.17)

The method finishes with the solution of the equations after a Galerkin procedure in

the following order:

1. Solve (2.13) to obtain ∆U∗i .

2. Solve (2.17) to obtain ∆p o ∆ρ.
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3. Solve (2.14) to establish values for velocity and pressure in tn+1.

If a compressible problem is treated, it becomes necessary to get the energy equation

solved.

2.2 Spatial discretization

2.2.1 Step 1

The time discretization process through the characteristic based Galerkin method provides

a solution procedure for which it is necessary to follow a spatial discretization of equations

using the standard Galerkin method in order to achieve a matricial system of equations.

The process starts with the variational treatment of equation 2.13 to be taken to its weak

form

∆U∗i = ∆t

[
−∂(ujUi)

∂xj
+
∂τij
∂xj

+ ρgi +
∆t

2
uk

∂

∂xk

(
∂(ujUi)

∂xj
− ρgi

)]n
.

The equation can be expressed in vector notation as follows:

∆U ∗ = ∆t

[
− div(u⊗U) + div(τ ) + b+

∆t

2
[∇(div (u⊗U)− b)]u

]n
(2.18)

Both sides of the equation are multiplied by an arbitrary function v, with the same

features and from the same space of u, and integrated over the whole domain of analysis

Ω. ∫
Ω

∆U ∗ · v︸ ︷︷ ︸
1

=

∫
Ω

∆t

[
− div(u⊗U)︸ ︷︷ ︸

2

+ div(τ )︸ ︷︷ ︸
3

+ b︸︷︷︸
4

+
∆t

2

∇(div(u⊗U)− b)u︸ ︷︷ ︸
5

n · v. (2.19)

The suitable form of discretizing the equation is taking each one of the terms separately

to the matricial form. Before starting the discretization of each term, it is necessary to

define the way the functions U and v are approximated. Functions are approximated

multiplying the base functions of the element with the variables at each node . The initial

velocity vector u will be interpolated in the same manner as the unknown velocity vector
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U

Ui(x) =
∑
b

Ũ b
iN

b(x) vi(x) =
∑
a

ṽaiN
a(x) (2.20)

with a, b: node number and i: dimension index. u can be expressed in vector notation as

u =
∑
i b

ũbiN
b(x)êi (2.21)

which we will call index approximation of the vector field. And the compact notation

which requires to be written as

N = [N1, N2, . . . , Nn], ũi =


u1
i
...

uni

 ,
where n is the number of nodes. Then

ui = Nũi and u = Nũ

where ũ is the matrix, form by the nodal values in the 1, 2 and 3 directions

ũ = N [ũ1ũ2ũ3] = N


u1

1 u1
2 u1

3
...

...
...

un1 un2 un3


As said before, we must start the process with the first term.

1.
∫

Ω
∆U∗i · vi ∫

Ω

∆U∗i · vi ≈
∫

Ω

N b∆Ũ b∗
i N

aṽi
a = ṽai ∆Ũ

b∗
i

∫
Ω

NaN b

The product of both basis function vectors gives the mass matrix of the equation,

Mab

ṽai M
ab∆Ũ b∗

i =
〈
ṽi , M∆Ũ

∗
i

〉
.
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2.
∫

Ω
div(u⊗U) · v

Let us continue with the discretization of the second term denoted by 2 in (2.19):∫
Ω

div(u⊗U) · v.

∫
Ω

∂

∂xj
(ujUi)vi ≈

∫
Ω

∂

∂xj
(ujŨ

b
iN

b)ṽaiN
a

= ṽai Ũ
b
i

∫
Ω

∇(uN b)Na︸ ︷︷ ︸
Cab

= ṽai C
abŨ b

i

=
〈
ṽi , CŨ i

〉
.

3.
∫

Ω
div(τ ) · v

The third term is the divergence of the deviatoric stress tensor τ . We must begin

integrating by parts the inner product of the divergence tensor with the arbitrary

function v

∫
Ω

∂τij
∂xj

vi =

∫
Ω

div(τ ) · v =

∫
Ω

div(τ i)vi

where τ i = [τi1, τi2, τi3], is the ith row of the stress tensor. Using the divergence

theorem 1 ∫
Ω

div(τ i)vi = −
∫

Ω

〈τ i,∇vi〉+

∫
Γ

〈τ ivi,n〉 .

1 Given F a vector function and g a scalar function, the divergence theorem stands∫
Ω

div (F g) =

∫
Ω

(
div (F ) g + 〈F ,∇g〉

)
=

∫
Γ

〈F g, n〉 .
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The same result can be obtained using index notation and integration by parts∫
Ω

∂τij
∂xj

vi = −
∫

Ω

τij
∂vi
∂xj

+

∫
Γ

τijvinj

= −
∫

Ω

∇v : τ︸ ︷︷ ︸
a

+

∫
Γ

〈t,v〉︸ ︷︷ ︸
b

where ti = τijnj is the traction on the surface

After integration we get two terms, the first one (a) is integrated over the domain

and contains a Frobenius inner product of matrices often called double dot product,

whereas the other (b) is simply evaluated at the boundary and contains the traction

or product between the stress tensor and a normal vector on the surface.

A : B =
∑
ij

AijBij

a. First, the term integrated over the domain is discretized:

For a Newtonian fluid the following relationship is true,

τ = 2µ

(
ε− 1

3
div(ε)I

)
with ε =

1

2
(∇u+∇uT ),

where µ is the dynamic viscosity, ε = ε(u) is the strain rate and I is the identity

matrix. It should be noted that ε and τ are linear functionals. That is, given

u and v in V a vector space of admissible velocities, and given α ∈ R, then

(i) ε(u+ v) = ε(u) + ε(v)

(ii) ε(αv) = αε(u).

The same holds for the divergence and grad operators

div(αu+ βv) = α div(u) + β div(v)

∇(αu+ βv) = α∇(u) + β∇(v).

Using the linearity of these operators we can rewrite the strain rate, the diver-

gence and the the stress in terms of the base, (2.21). For the strain rate we
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have

ε(u) = ε(ubiNbei) = ubiε(Nbei).

By definition,

ε(u)rs =
1

2
(ur,s + ur,s) ,

so in the same manner

ε(Nbei)rs =
1

2
((Nbei)r,s + (Nbei)r,s)

=
1

2
(Nb,sδir +Nb,rδis) .

Therefore,

ε(u)rs = ubiε(Nbei)rs =
ubi
2

(Nb,sδir +Nb,rδis) . (2.22)

In the divergence case

div(u) = u,kk,

therefore

div(ubiNbei) = ubi(Nbei),kk = ubiNb,kδik, (2.23)

and in the gradient case

∇(v) = vr,s,

therefore

∇(vajNaej) = (vajNaej)r,s = vajNa,sδjr. (2.24)

Merging (2.22), (2.23) (2.24), and using index notation

σ : ∇v = 2µ

(
ε(u)− 1

3
div(ε)I

)
: ∇v

= 2µ

(
ε(u)rs −

1

3
ukkδrs

)
vr,s

= µubi

(
(Nb,sδir +Nb,rδis)−

2

3
Nb,kδikδrs

)
vaiNa,sδjr.

Now, this expresion must be integrated over the domain, so it can be expressed
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in a compact form as ∫
Ω

σ : ∇v = ubiv
a
iK

ab
ji , (2.25)

with

Kab
ij =

∫
Ω

(
(Nb,sδir +Nb,rδis)−

2

3
Nb,kδikδrs

)
Na,sδjr. (2.26)

Combining two indexes in one yields

α = 2(a− 1) + j

β = 2(b− 1 + i).

We can rewrite the expression above in simple matrix notation as

〈v,Ku〉 .

b. The term integrated over the boundary Γ contains the traction and is dis-

cretized as follows:

∫
Γ

t · v ≈
∫

Γ

tiN
aṽai

= ṽai

∫
Γ

tiN
a

= ṽai
2

fai

where ∫
Γ

tiN
a =

2

fai (2.27)

in compact form, and combining subindices the last product can be interpreted

as a dot product. The final discrete expression for the term is∫
Ω

div(τ ) · v → 〈v,Ku〉+

〈
v,

2

f

〉
(2.28)

4.
∫

Ω
b · v

The fourth term related to body forces, is discretized assuming constant density for
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the element

∫
Ω

b · v ≈
∫

Ω

ρgiN
avai

= vai

∫
Ω

ρgiN
a

= ṽai
1

fai

=

〈
v,

1

f

〉
where ∫

Ω

ρgiN
a =

1

fai . (2.29)

5.
∫

Ω
∇(div(u⊗U)− b)u · v

The next term to discretize is the stabilizing term denoted by number 5. It should

be mentioned that this term has two components: a matrix and a vector. To ease

the process, we may take advantage of alternative ways to face up the reduction of

this term by using the Frobenius inner product of matrices and integration by parts

(First Green identity).

This term can now be discretized following this procedure:

∫
Ω

[∇ (div (u⊗U)− b)︸ ︷︷ ︸
αij

u] · v (2.30)

∫
Ω

[∇α]ijujvi ≡
∫

Ω

[∇α] : (v ⊗ u) ≡
∫

Ω

(
∂αi
∂xj

)
viuj.

This term must be integrated by parts:

∫
Ω

(
∂αi
∂xj

)
viuj = −

∫
Ω

αi

(
∂viuj
∂xj

)
+

∫
Γ

αi(viuj)nj

= −
∫

Ω

〈α, div(v ⊗ u)〉.
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Now, we can replace α for its original expression from (2.30). Operating the inner

product, the idea is to discretize resulting terms separately:

∫
Ω

〈div (u⊗U)− b, div(v ⊗ u)〉

∫
Ω

〈div (u⊗U), div(v ⊗ u)︸ ︷︷ ︸
5.1

〉 −
∫

Ω

〈b, div(v ⊗ u)︸ ︷︷ ︸
5.2

〉.

Let us start with the first integral:

5.1 ∫
Ω

〈div (u⊗U), div(v ⊗ u)〉 =

∫
Ω

∂ujUi
∂xj

∂viuk
∂xk

≈
∫

Ω

∂(ujN
bŨ b

i )

∂xj

∂(Naṽai uk)

∂xk

≈ ṽai Ũ
b
i

∫
Ω

∂(ujN
b)

∂xj

∂(ukN
a)

∂xk

≈ ṽai Ũ
b
i

∫
Ω

∇(uN b)∇(uNa)︸ ︷︷ ︸
Kab

s

≈
〈
ṽai , K

ab
s Ũ

b
i

〉
.

The second integral results in a vector:
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5.2 ∫
Ω

〈b, div(v ⊗ u)〉 =

∫
Ω

ρgi
∂(viuk)

∂xk

≈
∫

Ω

ρgi
∂(Naṽai uk)

∂xk

≈ ṽai

∫
Ω

ρgi
∂(Nauk)

∂xk

≈ ṽai

∫
Ω

ρgi∇(uNa)︸ ︷︷ ︸
fas

≈ 〈ṽai , fas 〉 .

At this point, each of the terms of (2.19) is discretized so we can replace the compact

form into the equation: 〈
ṽa , Mab∆Ũ b∗

i

〉
=

∆t
[
−
〈
ṽai , C

abŨ b
i

〉
−
〈
ṽai , K

ab
τ ũ

b
i

〉
+ 〈ṽai , f〉+ ∆t

2

〈
ṽai , K

ab
s Ũ

b
i

〉
− 〈ṽai , fas 〉

]
.

Since v is an arbitrary function, we can express the system of equations for ∆Ũ∗i as:

Mab∆Ũ b∗
i = ∆t

[
− CabŨ b

i − Kab
τ ũ

b
i + f +

∆t

2
Kab
s Ũ

b
i −

∆t

2
fas

]

∆Ũ b∗
i = − 1

Mab
∆t

[
CabŨ b

i + Kab
τ ũ

b
i − f −

∆t

2

(
Kab
s Ũ

b
i + fas

)]
.

2.2.2 Step 2

Discretization of step 2 is done in a similar way as Step 1. Let us recall the pressure

equation

∆ρ =

(
1

c2

)
t=n

∆p = −∆t

[
∂Ui
∂xi

+ θ1
∂∆U∗i
∂xi

−∆tθ1

(
∂2pn

∂xi∂xi
+ θ2

∂2∆p

∂xi∂xi

)]
.

The goal of step 2 is to find the value of ∆p after approximating velocity and pressure

as shown in (2.20):
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∆ρ =

(
1

c2

)
t=n

∆p = −∆t

[
∂Un

i

∂xi
+ θ1

∂∆U∗i
∂xi

−∆tθ1
∂

∂xi

(
∂pn+θ2

∂xi

)]
.

Multiplying this equation by an arbitrary function v, and integrating over the domain

Ω (
1

c2

)
t=n

∆p · v = −∆t

[
∂Ui
∂xi

+ θ1
∂∆U∗i
∂xi

−∆tθ1
∂

∂xi

(
∂pn+θ2

∂xi

)]
· v

(
1

c2

)
t=n

∆p ·Navai = −∆t

∫
Ω

∂

∂xi

[
Ui + θ1∆U∗i −∆tθ1

(
∂pn+θ2

∂xi

)]
·Na

p v
a
i

(
1

c2

)
t=n

∆p ·Na
p v

a
i = −∆t

∫
Ω

Na
p

∂

∂xi

[
Ui + θ1∆U∗i −∆tθ1

(
∂pn+θ2

∂xi

)]
· vai

(
1

c2

)
t=n

∆p ·Na
p v

a
i = −vai ∆t

∫
Ω

Na
p︸︷︷︸
F

∂

∂xi

[
Ui + θ1∆U∗i −∆tθ1

(
∂pn+θ2

∂xi

)]
︸ ︷︷ ︸

G

.

The integration by parts process recalls the equation:∫
Ω

(
∂F

∂xi
G + F

∂G

∂xi

)
dΩ =

∫
Γ

FGnidΓ

Then, integrating by parts the right side of (2.2.2), we obtain two terms, one over the

domain and other over the surface:

(
1

c2

)
t=n

∆p ·Na
p v

a
i =

vai

{
∆t

∫
Ω

∂Na
p

∂xi

[
Ui + θ1∆U∗i −∆tθ1

(
∂pn+θ2

∂xi

)
−
∫

Γ

Na
p

(
Ui + θ1∆U∗i −∆tθ1

(
∂pn+θ2

∂xi

)
ni

)]}
To simplify the treatment of terms over the domain, let us multiply each term in

brackets and rewrite the boundary term as fp:
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(
1

c2

)
t=n

∆p ·Na
p v

a
i =

vai

[
∆t

∫
Ω

∂Na
p

∂xi
Ui + θ1∆t

∫
Ω

∂Na
p

∂xi
∆U∗i −∆t2θ1

∫
Ω

∂Na
p

∂xi

(
∂pn+θ2

∂xi

)

−∆t

∫
Γ

Na
p

(
Ui + θ1∆U∗i −∆tθ1

(
∂pn+θ2

∂xi

)
ni

)
︸ ︷︷ ︸

fp



Interpolation of velocity U gives:

(
1

c2

)
t=n

∆p ·Na
p v

a
i =

vai

[
∆t

∫
Ω

∂Na
p

∂xi
N bŨ b

i + θ1∆t

∫
Ω

∂Na
p

∂xi
N b∆Ũ b∗

i −∆t2θ1

∫
Ω

∂Na
p

∂xi

(
∂pn

∂xi
+ θ2

∂∆p

∂xi

)
− fp

]
.

Interpolation of pressure p gives:

(
1

c2

)
t=n

N b
p∆̃p ·Na

p v
a
i =

vai

[
∆t
∫

Ω

∂Na
p

∂xi
N bŨ b

i + θ1∆t
∫

Ω

∂Na
p

∂xi
N b∆Ũ b∗

i −∆t2θ1

∫
Ω

∂Na
p

∂xi

(
∂(Nb

p p̃
n)

∂xi

)
−∆t2θ1θ2

∫
Ω

∂Na
p

∂xi

(
∂(Nb

p∆̃p)

∂xi

)
− fp

]
.

Now, it is necessary to arrange together the terms for ∆̃p and p̃:
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
(

1

c2

)
t=n

N b
pN

a
p︸ ︷︷ ︸

Mab

+∆t2θ1θ2

∫
Ω

∂Na
p

∂xi

(
∂N b

p

∂xi

)
︸ ︷︷ ︸

Hab

 ∆̃pvai =

vai ∆t


∫

Ω

∂Na
p

∂xi
N b︸ ︷︷ ︸

Gab

Ũ b
i + θ1

∫
Ω

∂Na
p

∂xi
N b︸ ︷︷ ︸

Gab

∆Ũ b∗
i −∆tθ1

∫
Ω

∂Na
p

∂xi

(
∂N b

p

∂xi

)
︸ ︷︷ ︸

Hab

p̃n − fp

 .

Due to the features of the arbitrary function v, we can remove it from the equation,

obtaining a system of equations for ∆̃p

[
Mab + ∆t2θ1θ2H

ab
]

∆̃p = ∆t
[
GabŨ b

i + θ1G
ab∆Ũ b∗

i −∆tθ1H
abp̃n − fp

]
.

2.2.3 Step 3

After calculating ∆U∗i and ∆p, it is time to calculate the correction of velocity given in

(2.14):

∆U∗∗i = −∆t
∂pn+θ2

∂xi
+

∆t2

2
uk

∂2pn

∂xk∂xi
.

Let us remember the split proposed at the beginning of the section:

∆Ui = ∆U∗i + ∆U∗∗i .

Then, we must accomplish a new discretization process to obtain values for ∆Ui.

Multiplying the equation by an arbitrary function v following Galerkin’s procedure,

∆Ui · v = ∆U∗i · v + ∆U∗∗i · v

∆Ui · v = ∆U∗i · v +

(
−∆t

∂pn+θ2

∂xi
+

∆t2

2
uk

∂2pn

∂xk∂xi

)
· v.

Approximating v results in
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∫
Ω

∆Ui ·Naṽai =

∫
Ω

∆U∗i ·Naṽai +

∫
Ω

(
−∆t

∂pn+θ2

∂xi
+

∆t2

2
uk

∂2pn

∂xk∂xi

)
·Naṽai .

Now, interpolation of ∆Ui and ∆U∗i yields:

∫
Ω

N b∆Ũ b
i ·Naṽai =

∫
Ω

N b∆Ũ b∗
i ·Naṽai −

∫
Ω

∆t
∂pn+θ2

∂xi
Naṽai +

∫
Ω

∆t2

2
uk

∂2pn

∂xk∂xi
Naṽai

We can relate both terms for velocity, the auxiliary term ∆U∗, and the change of

velocity ∆U , and then take out nodal expressions from the integrals:

∫
Ω

N b∆Ũ b
i ·Naṽai −N b∆Ũ b∗

i ·Naṽai = −
∫

Ω

∆t
∂pn+θ2

∂xi
Naṽai +

∫
Ω

∆t2

2
uk

∂2pn

∂xk∂xi
Naṽai

∫
Ω

(
∆Ũ b

i −∆Ũ b∗
i

)
NaN bṽai = −

∫
Ω

∆t
∂pn+θ2

∂xi
Naṽai +

∫
Ω

∆t2

2
uk

∂2pn

∂xk∂xi
Naṽai

(
∆Ũ b

i −∆Ũ b∗
i

)
ṽai

∫
Ω

NaN b = −∆t

∫
Ω

∂pn+θ2

∂xi
Naṽai +

∆t2

2

∫
Ω

uk
∂2pn

∂xk∂xi
Naṽai .

It is time to interpolate the pressure terms and operate them in order to obtain a

matricial form:(
∆Ũ b

i −∆Ũ b∗
i

)
ṽai

∫
Ω

NaN b =−∆t

∫
Ω

(
∂pn

∂xi
+ θ2

∂∆p

∂xi

)
Naṽai

+
∆t2

2

∫
Ω

uk
∂

∂xk

(
∂pn

∂xi

)
Naṽai .

Interpolating pressure terms
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(
∆Ũ b

i −∆Ũ b∗
i

)
ṽai

∫
Ω

NaN b =−∆t

∫
Ω

(
∂(N b

p p̃
n)

∂xi
+ θ2

∂(N b
p∆̃p)

∂xi

)
Naṽai

+
∆t2

2

∫
Ω

uk
∂Na

∂xk

(
∂(N b

p p̃
n)

∂xi

)
ṽai

and expanding

(
∆Ũ b

i −∆Ũ b∗
i

)
ṽai

∫
Ω

NaN b = −∆tṽai p̃
n

∫
Ω

Na
∂N b

p

∂xi
−∆tṽai θ2∆̃p

∫
Ω

Na
∂N b

p

∂xi

+
∆t2

2
ṽai p̃

n

∫
Ω

uk
∂Na

∂xk

(
∂N b

p

∂xi

)
.

Notice that some terms are equal to those achieved in Step 2

(
∆Ũ b

i −∆Ũ b∗
i

)
ṽai

∫
Ω

NaN b︸ ︷︷ ︸
Mab

= −∆tṽai p̃
n

∫
Ω

Na
∂N b

p

∂xi︸ ︷︷ ︸
Gab

−∆tṽai θ2∆̃p

∫
Ω

Na
∂N b

p

∂xi︸ ︷︷ ︸
Gab

+
∆t2

2
ṽai p̃

n

∫
Ω

∂(ukN
a)

∂xk

(
∂N b

p

∂xi

)
︸ ︷︷ ︸

Pab

.

Rewriting by using the matrices in curl brackets, and factoring:

(
∆Ũ b

i −∆Ũ b∗
i

)
ṽaiM

ab = −∆tṽai

[
Gab

(
p̃n + θ2∆̃p

)
+

∆t

2
P abp̃n

]
.

As in the other steps, the arbitrary function v can be removed:

(
∆Ũ b

i −∆Ũ b∗
i

)
Mab = −∆t

[
Gab

(
p̃n + θ2∆̃p

)
+

∆t

2
P abp̃n

]

∆Ũ b
i = ∆Ũ b∗

i −
1

Mab
∆t

[
Gab

(
p̃n + θ2∆̃p

)
+

∆t

2
P abp̃n

]
.

In summary, the three matricial equations to solve are:
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1. Find ∆U∗i

∆Ũ b∗
i = − 1

Mab
∆t

[
CabŨ b

i + Kab
τ ũ

b
i − f −

∆t

2

(
Kab
s Ũ

b
i + fas

)]
.

2. Find ∆p

[
Mab + ∆t2θ1θ2H

ab
]

∆̃p = ∆t
[
GabŨ b

i + θ1G
ab∆Ũ b∗

i −∆tθ1H
abp̃n − fp

]
.

3. Find ∆Ui for time tn+1

∆Ũ b
i = ∆Ũ b∗

i −
1

Mab
∆t

[
Gab

(
p̃n + θ2∆̃p

)
+

∆t

2
P abp̃n

]
.

2.3 Fixed Grid implementation

Regarding the discretization process, it is necessary to describe the way the main vari-

ables in the analysis, specifically those who appear after proposing the weak formulation,

are interpolated. The analysis is based on four-node, squared elements proposed in the

physical coordinate space, this means that it is not required for the element to be trans-

formed into other coordinate system. Because of the features of the proposed method,

the mesh is fixed and the integration can be done analytically over one element. The in-

terpolation functions that are used here belong to the family of Lagrange elements based

on n-th order Lagrange polynomials. For the case of study the mesh will remain fixed in

time, interpolation functions are given by Reddy (2006). The interpolation functions are

described based on Figure 2.1, this configuration makes possible the use of rectangular or

square elements.
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1 2

34

x

y

a

b

Figure 2.1: Node numbers and connectivity order for a square element in a cartesian grid

The functions are

N1 =
(

1− x

a

)(
1− y

b

)
N2 =

x

a

(
1− y

b

)
(2.31)

N3 =
xy

ab

N4 =
(

1− x

a

) y
b
,

where a and b are the dimensions of the element in x and y directions, respectively.

As the changes in density are negligible when treating incompressible flow regimes, the

time term of conservation equation can be dismissed. When using explicit time stepping

schemes, the transient density term can be changed by an equivalent pressure term, both

terms are linked by a compressibility parameter, the speed of sound c. When the speed of

sound is very high (approaches infinity) a stern limitation of the time step appears affecting

the explicit feature of the solution. Because of this consideration, the use of an artificial

compressibility parameter β instead of the speed of sound, eliminates the restriction of

the time step at the second step of the split. The selection of the artificial compressibility

parameter is based on the convective and diffusive velocities of the problem, and calculated

locally. In the present work, as the mesh is fixed, this parameter is calculated once. β

is taken as the maximum value between both convective and diffusive velocities, and a

constant parameter ε.
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uconv =
√
uiui (2.32)

udiff =
2

hRe
(2.33)

In these equations, h is the local element size, unique for this work, and Re is the Reynolds

number. Now, after calculating both velocities, the timestep is obtained from choosing

the minimum value of the following relation:

4t = min(4tconv,4tdiff ) (2.34)

where:

4tconv =
h

uconv + β
; 4tdiff =

h2Re

2
(2.35)

In order to accelerate convergence of the method, Nithiarasu (2003) proposes the use

of a safety factor varying from 0.5 to 2.0 depending on the problem. This factor can be

seen multiplying the calculated 4t in the work of de Carvalho et al. (2009).

As reported in Nithiarasu (2003) and Manzari (1999), the results of the lid driven

cavity problem (see section 3.2) for low Reynolds numbers present some difficulties when

using several artificial compressibility schemes. The results reported by Nithiarasu (2003)

evindenced good behavior at low Reynolds numbers for coarse structured and unstruc-

tured meshes, but showed that for high Reynolds numbers the mesh must be refined near

the boundaries of the cavity in order to capture vortices and to achieve convergence of

the method. The work from Zienkiewicz et al. (1999) showed an excellent behavior for

the lid driven problem as well as other benchmarks. Nevertheless, for Reynolds numbers

of 5000 and above the mesh is needed to be adapted in order to capture vorticity effects

and stable solutions. Other results reported by Wang et al. (2011) showed that results are

improved when the timestep value is decreased and it is also accurate and stable for small

mesh density (30x30) The Characteristic Based Split method is adequate for simulating

any condition of Newtonian flows but it has some trouble with the imposition of boundary

conditions, and the setup of Artificial Compressibility parameters.
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2.4 Discussion

The method was implemented using a fully explicit scheme as proposed by Zienkiewicz

et al. (2005) but presented some difficulties when choosing the timestep and the selec-

tion of the parameters. Explicit methods are conditioned by the selection of appropriate

timesteps, therefore it may be necessary to choose small timesteps in order to capture the

behavior of convection. Despite of using a Crank Nicolson scheme for the time discretiza-

tion, the resulting matricial system was sparse and the solution became expensive for the

aim of the project. Furthermore, when using the Artificial Compressibility Method, it was

tough to find decent values for the timestep, so a freely chosen timestep of 1e−6 was used,

which reduced even more the efficiency of calculations. The discretization process of the

CBS scheme is not very clear and despite the advantages for the treatment of convection,

the method itself presented some parameters for which the setup was somehow tricky.

Because of these issues, the solution of the Navier Stokes Equation under a Lagrange-

Galerkin Method is presented in chapter 3. The Fixed Grid approach is considered for

the new proposal of solution, but for this case, an additional node is placed at the center

of the element. The advantage of using this type of element is that it is still linear and

satsfies the LBB condition. The results of using this type of element are similar to the

obtained with quadratic elements with the asset of using fewer degrees of freedom (DOF).

Further description of the element is presented in chapter 3, section 3.2.



Chapter 3

Solution of the NS Equation using

the Lagrange-Galerkin method

3.1 Lagrange Galerkin Method

The Lagrange-Galerkin method is used to find the solution to a problem involving con-

vection. The method is suitable to find the solution to any hyperbolic equation like the

Navier Stokes set. The solution of the convective part is done in a lagrangian fashion,

following the trajectory of each material point in the domain, which is fixed in space.

The advantage of performing such solution is to get rid of remeshing thus avoiding for

example the formulation of ALE methods. The use of large timesteps makes this method

more efficient than Eulerian schemes Giraldo (1998), Ferretti (2013). The procedure is

intended to solve the equations for incompressible flow only. Let’s recall the Navier-Stokes

Equations,

ρ

(
∂u

∂t
+ (u · ∇)u

)
− µ4u+∇p = ρf

div (u) = 0 (3.1)

Where u is the velocity field, p is the pressure, µ is the dynamic viscosity and ρ is the

density. The convective acceleration can be ignored if the fluid velocity is low compared

to viscous forces (Stokes flow) but in case of high speed flows this is the dominant term

of the equation. Dividing both sides of the equation to the density, constant for the case

30
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of incompressible flow, an alternate formulation of the problem can be achieved.(
∂u

∂t
+ (u · ∇)u

)
− ν4u+

1

ρ
∇p = f

div (u) = 0 (3.2)

To complete the set of equations, boundary and initial conditions are needed. Ini-

tial condition u (x, t = 0) = u0 (x) must be divergence-free. Boundary conditions are of

Dirichlet and Neumann type. In general, the Dirichlet boundary condition is defined as

a function g (x, t = t) at the boundary ∂Ω,whereas the homogeneous Dirichlet condition

used to define the No slip condition is set as u (x, t = t) = g (x, t = t) in∂Ω, (uΓ = 0) The

mixed condition, derived from the variational formulation is defined as µ∂u
∂n
−pn = g in ΓN .

3.1.1 Variational formulation and spatial discretization

The equation is transformed from its strong form to a discrete system of matricial equa-

tions. The process starts with the multiplication of each term of the equation with a

test function defined over an adequate vector space, and integration using Green’s for-

mula. Functional spaces are defined as V = H1
0 (Ω) for the velocity and Q = L2

0 (Ω) ={
q ∈ L2 (Ω) ;

∫
Ω
q dx = 0

}
for the pressure.

In this way we get,∫
Ω

∂u

∂t
· v dx+

∫
Ω

[(u · ∇)u] · v dx−
∫

Ω

ν4u · v dx+
1

ρ

∫
Ω

∇p · v dx =

∫
Ω

f · v dx∫
Ω

div (u) · q dx = 0 (3.3)

After multiplying the test function, the diffusive and pressure terms are integrated by

parts and expanded.∫
Ω

∂u

∂t
· v dx+

∫
Ω

[(u · ∇)u] · v dx︸ ︷︷ ︸
Total accel.

+ ν

∫
Ω

∇u : ∇v dx︸ ︷︷ ︸
A

−
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p · div(v) dx︸ ︷︷ ︸

BT

− ν
∫
∂Ω

∂u

∂n
v ds+

∫
∂Ω

pv · n ds =

∫
Ω

f · v dx

∫
Ω

div (u) · q dx︸ ︷︷ ︸
B

= 0 (3.4)

It can be observed that after rearranging terms, the discrete formulation can be lead

into a matricial system involving a matrix A for the laplacian operator, a matrix B involv-

ing the pressure gradient as well as its transpose which has into account the divergence

of the velocity field in the mass conservation equation. According to Elman et al. (2006),

the matricial system is  A 0 BT
x

0 A BT
y

Bx By 0




ux

uy

p

 =


Fx

Fy

0

 (3.5)

where,

A = BT
x

∫
Ω

∇u : ∇v; BT
x = −

∫
Ω

p · div(vx); BT
y = −

∫
Ω

p · div(vy)

Bx = −
∫

Ω

q · div(ux); By = −
∫

Ω

q · div(uy) (3.6)

The mixed formulation of the matricial system suggests that the discrete spaces to

approximate velocity and pressure fields, must be compatible, accomplishing the inf-sup

condition. Matrix A is positive definite, implying that exists a unique solution regarding

velocity, nevertheless, it may exist more than one solution for the pressure, generating the

spurious pressure modes Elman et al. (2006). Although simple approximations for the

mixed formulation exist, they may be unstable and, in some cases, they can be conditioned

to mesh size. One way to avoid the indetermination of the pressure solution is to define

the pressure in one point of the domain or to define an average of zero pressure over the

domain. One procedure to remove the spurious pressure modes and be able to achieve

a unique solution is by using stabilization techniques that modify the incompressibility

condition (Quarteroni and Valli (2008), Gunzburger (1989)). In this case, a penalization

method, in which a perturbation coefficient ε > 0 is introduced in the mass conservation
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equation.∫
Ω

∂u

∂t
· v dx+

∫
Ω

[(u · ∇)u] · v dx−
∫

Ω

ν4u · v dx+
1

ρ

∫
Ω

∇p · v dx =

∫
Ω

f · v dx∫
Ω

div (u) · q dx− ε
∫

Ω

p · qdx = 0 (3.7)

After the approximation it is possible to introduce a mass matrix that multiplies the

perturbation coefficient. This matrix must be inverted and may become inefficient when

using small values of ε because the resulting system may be ill conditioned and present

trouble when solving via iterative methods Segal (2011). In this case a value of ε = 1e−4

is used. A way to penalize the mixed system and eliminate the pressure term is by lumping

of the mass matrix and its multiplication with the perturbation coefficient. However, the

solution is equivalent to replace the mass matrix for the identity matrix so additional

computation is avoided Gunzburger (1989)

The system to solve now becomes, A 0 BT
x

0 A BT
y

Bx By −εI




ux

uy

p

 =


Fx

Fy

0

 (3.8)

3.1.2 Temporal discretization

The set of local and convective acceleration define the concept of total acceleration or

material derivative in the Navier Stokes equation. The material derivative is the starting

point to perform the temporal discretization process in characteristic curves. According to

Pironneau (1982) and Donea and Huerta (2003) , with reference to a Lagrangian point of

view, along the characteristic curve, the material derivative is reduced to a time derivative

which can be discretized by an implicit method in a finite difference method scheme.

Du

Dt
=

(
∂u

∂t
+ (u · ∇)u

)
=
un+1 − un∗

dt
(3.9)
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In this way the Navier Stokes Equation becomes,

un+1 − un∗
dt

− ν4un+1 +
1

ρ
∇pn+1 = fn+1

div
(
un+1

)
= 0 (3.10)

The un∗ term is obtained after solving the characteristic curve equation for a material

point of the mesh. According to Pironneau (1982) and Bermudez et al. (2006), for a given

point (x, y) ∈ Ω , the characteristic curve that passes through that point is the function

X(x, t) that solves the Initial Value Problem,

∂X

∂τ
= u (X, τ)

X (t) = x (3.11)

The idea of the method is to follow the trajectory of a material point in the domain

through its characteristic curve, finding the position where the point was an instant of

time before, performing there the calculation of the scalar quantity being transported.

For the case of the Navier Stokes equation, the transported variable is the velocity un∗ .

After solving this velocity variable, it is replaced on equation 3.10 and the system is solved

for time tn+1. This procedure is done iteratively until the convergence of the method is

reached (1e− 5 for velocity and pressure residuals)

Figure 3.1: Trajectory of a material point through its characteristic curve

Figure 3.1 shows the trajectory of a material point of the domain, travelling from

a position labeled (tn+1) to the position where it was before at time tn. Gray squares

in the figure represent the divisions of the characteristic curve for the time integration
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process,done by using a Backward Euler scheme (see equation 3.12)

x∗ = x− u(x)dt (3.12)

where x∗ is the position where the particle was an instant before, x is the position on

the grid, and u(x) the value of the velocity evaluated on the grid.

The general algorithm for the Navier Stokes solver is presented in 1. The basic features

of a CFD simulation are defined on this algorithm.

Algorithm 1 General algorithm for the Navier Stokes solver
Preprocessing
Define physical properties
Detect boundaries in the domain
Assign boundary and initial conditions
Create local matrices
Processing
Assembly global matrices
Solve the transient term (Characteristics)
Solve the Stokes system
Post processing
Plot results

Regarding the temporal part of the equation, the detailed algorithm for the treatment

of the characteristics is:
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Algorithm 2 Computation of the characteristics
Preprocessing

for t = 0 to t = tfinal with increments dt do

Create internal node array

for Each internal node do

Find position (xn+1, yn+1)

Find velocity at (xn+1, yn+1)

for τ = 0 to dt do

Call Backward Euler function

Find element number

Find connectivity

Find node coordinates

Call the interpolation function to obtain un∗

Update velocity Update position

end for

Solve the Stokes system

Store results

end for

Update variables

end for

Plot results

The inner cycle is used to calculate the position where the material point was at time

tn. It is important to mention that the inner cycle uses an internal timestep value denoted

by τ

The implementation was done in C++ using SuiteSparse, a suite of sparse matrix

packages, for the solution of the matricial system.

3.2 Case study: Lid Driven Cavity Flow

The problem of the lid driven cavity flow is widely known for being a benchmark to

validate new numerical methods in fluid mechanics. The case is a square cavity with a no

slip velocity condition (u = 0, v = 0) in all the walls excepting the top one, in which water

is flowing with a dimensionless velocity of u = 1, v = 0 , see figure 3.2. The behavior of

the fluid is different depending which Reynolds number is used.
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Figure 3.2: Lid driven cavity flow

The domain is discretized with a structured fixed grid, with square Q1b/Q1 elements,

which is the smallest subspace that guarantees stability as it satisfies the LBB condition

Fourestey and Moubachir (2002). This configuration presents a square element with

velocity degrees of freedom in each corner and center nodes, and pressure degrees of

freedom only at the corners of the element. In contrast to the work reviewed in the

literature, the development of the method of characteristics is done using a structured

square mesh, providing another perspective of the solution. The use of a structured grid

for this type of problems has not been seen in the literature yet. This type of element is

closely related to the P1b/P1 triangular element which is a simplification of the widely

known Hood-Taylor element. The element used in the implementation can be seen in

figure 3.3.

Figure 3.3: Q1b/Q1 element

The integration is done analytically over one element with origin at the lower left

corner node. The process of integration and resulting matrices are defined on appendix

A. The fixed grid concept belongs to the field of meshless methods, being used for the
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treatment of problems in which the geometry of the domain changes in time. The method

has been used for phase change problems, elasticity problems, and it might be suitable for

problems involving fluid structure interaction. The advantage of using this approach is

because there is no need for remeshing, ideal for the characteristic curve implementation.

Regarding to the implementation, the points of the mesh are not stored but calulated

according the maximum dimensions of the domain. In this way, the mesh data (points

and connectivity) is only needed for post processing the results. In figure 3.4 a fixed mesh

of 32 x 32 elements can be seen. Observe that the node at the center of each element is

not plotted.

Figure 3.4: Finite Element Fixed Grid (32 x 32) elements

3.3 Results

The case study was solved using several values for the Reynolds number (Re=100,400,1000,3200)

and it is named as charNS. The results show good behavior of the flow when compared to

other experimental works done by Ghia et al. (1982) and openFOAM. The way to validate

the method is comparing the velocity profiles from a vertical and a horizontal line that

cross the geometric center of the cavity.
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(a) Horizontal line for measurement (b) Vertical line for measurement

Figure 3.5: Horizontal and Vertical lines for velocity measurement

In order to compare the velocity values, seven points were distributed on each line,

according the documentation of Ghia et al. (1982). A fixed mesh of 129 x 129 square

elements was used. In the following tables the results for several Reynolds number are

compared,

For Re = 100,

Re 100

Position ux

y Ghia et al. OpenFOAM CharNS

1.0 1.0 1.0 1.0

0.9688 0.78871 0.79176 0.7730

0.7344 0.00332 0.004072 0.00084

0.5 -0.20581 -0.2087 -0.20417

0.2813 -0.15662 -0.15746 -0.15394

0.0625 -0.04192 -0.04197 -0.04266

0.0 0.0 0.0 0.0

Table 3.1: (ux) Velocities through the vertical line of the cavity for Re = 100
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Re 100

Position uy

x Ghia et al. OpenFOAM CharNS

1.0 0.0 0.0 0.0

0.9609 -0.07391 -0.07805 -0.08019

0.8594 -0.22445 -0.23354 -0.22714

0.5 0.05454 0.05751 0.05342

0.2266 0.17507 0.17901 0.1759

0.0703 0.10091 0.10336 0.10389

0.0 0.0 0.0 0.0

Table 3.2: (uy) Velocities through the horizontal line of the cavity for Re = 100

Results for the velocity in horizontal direction (ux) through the vertical line, and the

velocity in vertical direction (uy) through the horizontal line for Re = 100 are shown in

figure 3.6
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Figure 3.6: Velocities for Re = 100

The results for Re = 400 are shown below.
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Re 400
Position uy

x Ghia et al. OpenFOAM CharNS
1.0 0.0 0.0 0.0

0.9609 -0.15663 -0.16089 -0.1504
0.8594 -0.44993 -0.45056 -0.4163

0.5 0.05186 0.05238 0.05601
0.2266 0.30203 0.30159 0.25803
0.0703 0.19713 0.19698 0.17620

0.0 0.0 0.0 0.0

Table 3.4: (uy) Velocities through the horizontal line of the cavity for Re = 400

Re 400

Position ux

y Ghia et al. OpenFOAM CharNS

1.0 1.0 1.0 1.0

0.9688 0.68439 0.6863 0.6513

0.7344 0.16256 0.16149 0.1451

0.5 -0.11477 -0.11498 -0.1213

0.2813 -0.32726 -0.32625 -0.2993

0.0625 -0.09266 -0.09216 -0.0788

0.0 0.0 0.0 0.0

Table 3.3: (ux) Velocities through the vertical line of the cavity for Re = 400

Plotting the results for Re = 400 in figure 3.7
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Figure 3.7: Velocities for Re = 400

Now,the tables with the results for a Reynolds number of 1000 are shown below. Some

values slightly differ from the references.

Re 1000

Position ux

y Ghia et al. OpenFOAM CharNS

1.0 1.0 1.0 1.0

0.9688 0.57492 0.57721 0.5315

0.7344 0.18719 0.18524 0.16848

0.5 -0.06080 -0.06126 -0.0613

0.2813 -0.27805 -0.27702 -0.26271

0.0625 -0.20196 -0.19874 -0.1711

0.0 0.0 0.0 0.0

Table 3.5: (ux) Velocities through the vertical line of the cavity for Re = 1000
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Re 1000

Position uy

x Ghia et al. OpenFOAM CharNS

1.0 0.0 0.0 0.0

0.9609 -0.27669 -0.28819 -0.2681

0.8594 -0.42665 -0.42197 -0.39546

0.5 0.02526 0.02575 0.02555

0.2266 0.33075 0.32940 0.30655

0.0703 0.29012 0.29008 0.25719

0.0 0.0 0.0 0.0

Table 3.6: (uy) Velocities through the horizontal line of the cavity for Re = 1000

Plotting the results for Re = 1000 in figure 3.8
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Figure 3.8: Velocities for Re = 1000

The last simulated case was Re = 3200, which means a flow in the transition regime,

almost turbulent. It can be seen that vortices are found without the inclusion of turbulence

models.
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Re 3200

Position ux

y Ghia et al. OpenFOAM CharNS

1.0 1.0 1.0 1.0

0.9688 0.48296 0.4640 0.35982

0.7344 0.19791 0.1919 0.17418

0.5 -0.04272 -0.03561 -0.04511

0.2813 -0.24427 -0.231938 -0.1923

0.0625 -0.35344 -0.36277 -0.2885

0.0 0.0 0.0 0.0

Table 3.7: (ux) Velocities through the vertical line of the cavity for Re = 3200

Re 3200

Position uy

x Ghia et al. OpenFOAM CharNS

1.0 0.0 0.0 0.0

0.9609 -0.47425 -0.4885 -0.42656

0.8594 -0.37401 -0.3628 -0.2737

0.5 0.00999 0.01372 0.0221

0.2266 0.29030 0.28412 0.23192

0.0703 0.40917 0.38948 0.28326

0.0 0.0 0.0 0.0

Table 3.8: (uy) Velocities through the horizontal line of the cavity for Re = 3200

Plotting the results for Re = 3200 in figure 3.9
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Figure 3.9: Velocities for Re = 3200

Comparing the results from figures(3.6, 3.7, 3.8, 3.9) it can be observed that horizontal

velocity values (ux) found with the implementation of the characteristics method are

similar to the references, in which a finite volume method was used. There is only one

of the points in which the velocity differs about 10% according to reference Ghia et al.

(1982). Analyzing the graphs for the velocity in vertical direction (uy), when the Reynolds

number is increased, velocities show little discrepancy when compared with the references.

This difference might be due to the presence of numerical diffusion, proper of a first order

upwinding method, therefore affecting the stability of the solution Fourestey and Piperno

(2004).

Nevertheless, with the mesh used, vortices can be seen at Re = 1000 and Re = 3200,

see figure 3.10. Vortex formation is generated according the behavior of the flow as stated

by Erturk et al. (2005). The main vortex can be seen, located near the center of the

cavity, while as the Reynols number is increased, other vortices appear (secondary and

tertiary vortices). The location of the primary vortex center is very close to the value

reported by Ghia et al. (1982) (see table 3.9). It can be seen in figure 3.10c

Coordinate Ghia et al. CharNS

x 0.5313 0.534884

y 0.5625 0.565891

Table 3.9: Location of the center of the primary vortex for Re = 1000
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure 3.10: Streamlines for different Reynolds numbers
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3.4 Conclusion

The development of the Lagrange-Galerkin method is able to solve the Navier Stokes

equation for incompressible flow combining advantages from the Eulerian and Lagrangian

schemes, as it can be implemented on a fixed mesh avoiding the process of remeshing.

When using this method, transient problems can be solved efficiently using large timesteps

whenever the characteristic curve is sufficiently smooth, in other words, if it can be split

in small sections. Compared to the CBS scheme, the discretization process is much clearer

as it derives from a variational formulation of the Stokes problem and the material deriva-

tive is treated as a simple time derivative which can be discretized in a finite difference

manner. Moreover, the imposition of boundary conditions is also clearer because of the

appearance of these in the variational formulation in a natural way.

Regarding to the results, despite the existence of concordance with the calculated val-

ues and those reported on the references, when the Reynolds number is increased, the

values begin to differ, being necessary the change of the characteristic curve approxima-

tion to a second order scheme in order to lessen numerical dissipation. Another way to

improve the solution is by doing a mesh refinement on zones where vortices tend to ap-

pear. The main advantages of the method are the ability to handle the convective term in

a Lagrangian fashion, the clear variational formulation and the use of large timestepping.
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|STOKES FLOW
Calculation of Matrices
Jose David Villegas 

BASE FUNCTIONS AND GRADIENT

restart:
with(LinearAlgebra):
with(CodeGeneration):

#An Introduction to the FEM 3rd Ed. J.N Reddy pag. 535
# Base Functions for a four node element with origin at lower left corner 
(1)
#           4---------3
#           |         |
#         h |    5    | 
#           |         | 
#           1---------2
#                h

N1:=-(3/2)*x/h-(3/2)*y/h+x*y/h^2+1+(1/2)*(x^2+y^2)/h^2:
N2:=(1/2)*x/h-(1/2)*y/h-x*y/h^2+(1/2)*(x^2+y^2)/h^2:
N3:=-(1/2)*x/h-(1/2)*y/h+x*y/h^2+(1/2)*(x^2+y^2)/h^2:
N4:=-(1/2)*x/h+(1/2)*y/h-x*y/h^2+(1/2)*(x^2+y^2)/h^2:
N5:=2*x/h+2*y/h-2*(x^2+y^2)/h^2:

# Base functions Vector N = Nu = Np

N := Vector([N1,N2,N3,N4,N5]):
Np:= Vector([N1,N2,N3,N4]):

# Calculation of the gradient for the functions 

dN:=Matrix(5,2):
for i from 1 to 5 do
  dN[i,1]:= simplify(diff(N[i],x));
  dN[i,2]:= simplify(diff(N[i],y));
od:
dN:

MATRICES CALCULATION

Mlocal:=Matrix(5,5):



Mlump:=Matrix(5,5):
Stab:=Matrix(4,4):
Ident:= IdentityMatrix(4):
 
for r from 1 to 5 do 
  for s from 1 to 5 do

    Mlocal[r,s] := simplify((int(int(N[r]*N[s],y=0..h),x=0..h))):
    Mlump[r,r] :=Mlump[r,r] + Mlocal[r,s]:

  od:
od:

for r from 1 to 4 do
 for s from 1 to 4 do
  Stab[r,s]:=-Ident[r,s]*epsilon:#*Mlump[r,s]:  
 od:
od:

A matrix (Equal to CBS H matrix)

A:=Matrix(5,5):
for i from 1 to 5 do
  for j from 1 to 5 do
   A[i,j] := simplify(kinvisc*int(int(dN[i,1]*dN[j,1]+
                                     dN[i,2]*dN[j,2],y=0.. h),x=0..h)):
  od:
od:

f1 := Vector(5):
for r from 1 to 5 do
  f1[r] := simplify(int(int(dt*(1/rho)*rho*g1*N[r],y=0..h),x=0..h)):
od:

f2 := Vector(5):
for r from 1 to 5 do
  f2[r] := simplify(int(int(dt*(1/rho)*rho*g2*N[r],y=0..h),x=0..h)):
od:

Bx:=Matrix(4,5):
By:=Matrix(4,5):
Bxt:=Matrix(5,4):



Byt:=Matrix(5,4):

for r from 1 to 4 do
 for s from 1 to 5 do
  Bx[r,s]:=simplify((-1/rho)*int(int(Np[r]*dN[s,1],x=0..h),y=0..h)):
 od:
od:

for r from 1 to 4 do
 for s from 1 to 5 do
  By[r,s]:=simplify((-1/rho)*int(int(Np[r]*dN[s,2],x=0..h),y=0..h)):
 od:
od:

Bx:
By:

Bxt:=rho*Transpose(Bx):
Byt:=rho*Transpose(By):

K matrix

K:=Matrix(14,14):

#A1

K[1,1]:=dt*A[1,1]+Mlocal[1,1]:
K[1,2]:=dt*A[1,2]+Mlocal[1,2]:
K[1,3]:=dt*A[1,3]+Mlocal[1,3]:
K[1,4]:=dt*A[1,4]+Mlocal[1,4]:
K[1,5]:=dt*A[1,5]+Mlocal[1,5]:

K[2,1]:=dt*A[2,1]+Mlocal[2,1]:
K[2,2]:=dt*A[2,2]+Mlocal[2,2]:
K[2,3]:=dt*A[2,3]+Mlocal[2,3]:
K[2,4]:=dt*A[2,4]+Mlocal[2,4]:
K[2,5]:=dt*A[2,5]+Mlocal[2,5]:

K[3,1]:=dt*A[3,1]+Mlocal[3,1]:
K[3,2]:=dt*A[3,2]+Mlocal[3,2]:
K[3,3]:=dt*A[3,3]+Mlocal[3,3]:
K[3,4]:=dt*A[3,4]+Mlocal[3,4]:
K[3,5]:=dt*A[3,5]+Mlocal[3,5]:

K[4,1]:=dt*A[4,1]+Mlocal[4,1]:
K[4,2]:=dt*A[4,2]+Mlocal[4,2]:
K[4,3]:=dt*A[4,3]+Mlocal[4,3]:
K[4,4]:=dt*A[4,4]+Mlocal[4,4]:
K[4,5]:=dt*A[4,5]+Mlocal[4,5]:

K[5,1]:=dt*A[5,1]+Mlocal[5,1]:
K[5,2]:=dt*A[5,2]+Mlocal[5,2]:
K[5,3]:=dt*A[5,3]+Mlocal[5,3]:
K[5,4]:=dt*A[5,4]+Mlocal[5,4]:
K[5,5]:=dt*A[5,5]+Mlocal[5,5]:



#A2

K[6,6]:=dt*A[1,1]+Mlocal[1,1]:
K[6,7]:=dt*A[1,2]+Mlocal[1,2]:
K[6,8]:=dt*A[1,3]+Mlocal[1,3]:
K[6,9]:=dt*A[1,4]+Mlocal[1,4]:
K[6,10]:=dt*A[1,5]+Mlocal[1,5]:

K[7,6]:=dt*A[2,1]+Mlocal[2,1]:
K[7,7]:=dt*A[2,2]+Mlocal[2,2]:
K[7,8]:=dt*A[2,3]+Mlocal[2,3]:
K[7,9]:=dt*A[2,4]+Mlocal[2,4]:
K[7,10]:=dt*A[2,5]+Mlocal[2,5]:

K[8,6]:=dt*A[3,1]+Mlocal[3,1]:
K[8,7]:=dt*A[3,2]+Mlocal[3,2]:
K[8,8]:=dt*A[3,3]+Mlocal[3,3]:
K[8,9]:=dt*A[3,4]+Mlocal[3,4]:
K[8,10]:=dt*A[3,5]+Mlocal[3,5]:

K[9,6]:=dt*A[4,1]+Mlocal[4,1]:
K[9,7]:=dt*A[4,2]+Mlocal[4,2]:
K[9,8]:=dt*A[4,3]+Mlocal[4,3]:
K[9,9]:=dt*A[4,4]+Mlocal[4,4]:
K[9,10]:=dt*A[4,5]+Mlocal[4,5]:

K[10,6]:=dt*A[5,1]+Mlocal[5,1]:
K[10,7]:=dt*A[5,2]+Mlocal[5,2]:
K[10,8]:=dt*A[5,3]+Mlocal[5,3]:
K[10,9]:=dt*A[5,4]+Mlocal[5,4]:
K[10,10]:=dt*A[5,5]+Mlocal[5,5]:

#Bxt

K[1,11]:=dt*Bxt[1,1]:
K[1,12]:=dt*Bxt[1,2]:
K[1,13]:=dt*Bxt[1,3]:
K[1,14]:=dt*Bxt[1,4]:

K[2,11]:=dt*Bxt[2,1]:
K[2,12]:=dt*Bxt[2,2]:
K[2,13]:=dt*Bxt[2,3]:
K[2,14]:=dt*Bxt[2,4]:

K[3,11]:=dt*Bxt[3,1]:
K[3,12]:=dt*Bxt[3,2]:
K[3,13]:=dt*Bxt[3,3]:
K[3,14]:=dt*Bxt[3,4]:

K[4,11]:=dt*Bxt[4,1]:
K[4,12]:=dt*Bxt[4,2]:
K[4,13]:=dt*Bxt[4,3]:
K[4,14]:=dt*Bxt[4,4]:

K[5,11]:=dt*Bxt[5,1]:
K[5,12]:=dt*Bxt[5,2]:
K[5,13]:=dt*Bxt[5,3]:
K[5,14]:=dt*Bxt[5,4]:

#Byt

K[6,11]:=dt*Byt[1,1]:



K[6,12]:=dt*Byt[1,2]:
K[6,13]:=dt*Byt[1,3]:
K[6,14]:=dt*Byt[1,4]:

K[7,11]:=dt*Byt[2,1]:
K[7,12]:=dt*Byt[2,2]:
K[7,13]:=dt*Byt[2,3]:
K[7,14]:=dt*Byt[2,4]:

K[8,11]:=dt*Byt[3,1]:
K[8,12]:=dt*Byt[3,2]:
K[8,13]:=dt*Byt[3,3]:
K[8,14]:=dt*Byt[3,4]:

K[9,11]:=dt*Byt[4,1]:
K[9,12]:=dt*Byt[4,2]:
K[9,13]:=dt*Byt[4,3]:
K[9,14]:=dt*Byt[4,4]:

K[10,11]:=dt*Byt[5,1]:
K[10,12]:=dt*Byt[5,2]:
K[10,13]:=dt*Byt[5,3]:
K[10,14]:=dt*Byt[5,4]:

#Bx
K[11,1]:=dt*Bx[1,1]:
K[11,2]:=dt*Bx[1,2]:
K[11,3]:=dt*Bx[1,3]:
K[11,4]:=dt*Bx[1,4]:
K[11,5]:=dt*Bx[1,5]:

K[12,1]:=dt*Bx[2,1]:
K[12,2]:=dt*Bx[2,2]:
K[12,3]:=dt*Bx[2,3]:
K[12,4]:=dt*Bx[2,4]:
K[12,5]:=dt*Bx[2,5]:

K[13,1]:=dt*Bx[3,1]:
K[13,2]:=dt*Bx[3,2]:
K[13,3]:=dt*Bx[3,3]:
K[13,4]:=dt*Bx[3,4]:
K[13,5]:=dt*Bx[3,5]:

K[14,1]:=dt*Bx[4,1]:
K[14,2]:=dt*Bx[4,2]:
K[14,3]:=dt*Bx[4,3]:
K[14,4]:=dt*Bx[4,4]:
K[14,5]:=dt*Bx[4,5]:

#By
K[11,6]:=dt*By[1,1]:
K[11,7]:=dt*By[1,2]:
K[11,8]:=dt*By[1,3]:
K[11,9]:=dt*By[1,4]:
K[11,10]:=dt*By[1,5]:

K[12,6]:=dt*By[2,1]:
K[12,7]:=dt*By[2,2]:
K[12,8]:=dt*By[2,3]:
K[12,9]:=dt*By[2,4]:
K[12,10]:=dt*By[2,5]:



K[13,6]:=dt*By[3,1]:
K[13,7]:=dt*By[3,2]:
K[13,8]:=dt*By[3,3]:
K[13,9]:=dt*By[3,4]:
K[13,10]:=dt*By[3,5]:

K[14,6]:=dt*By[4,1]:
K[14,7]:=dt*By[4,2]:
K[14,8]:=dt*By[4,3]:
K[14,9]:=dt*By[4,4]:
K[14,10]:=dt*By[4,5]:

#S
K[11,11]:=dt*Stab[1,1]:
K[12,12]:=dt*Stab[2,2]:
K[13,13]:=dt*Stab[3,3]:
K[14,14]:=dt*Stab[4,4]:
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