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SUMMARY 

Thermoacoustic instabilities in propulsion systems have been studied for more 

than sixty years, but their understanding and control still represent challenging problems. 

One of the outstanding issues regarding thermoacoustic instabilities is the estimation of 

the operational stability margin of a combustor; that is, its susceptibility to instability. 

More specifically, when a laboratory scale combustor or a full scale combustor is 

operating stably, the operators generally do not know where the stability boundary is. 

Therefore, there is a need for a methodology which would be able to estimate the 

operational stability margin in those cases. This research developed a new approach for 

the determination of combustor’s stability margin, which is based on three steps.  

The first step consists of a gray-box modeling in which a thermoacoustical model 

for the combustor is derived from first principles. The dynamical system behavior 

depends on the values of the model parameters. The second step consists in applying 

modern System Identification techniques to experimental data in order to validate the 

model and estimate its parameters. The application of these techniques to experimental 

data under different operating conditions allowed us to determine the functional 

dependence of the model parameters upon changes in a control parameter.  

Finally, the third step consists in using that functional dependence to predict the 

response of the system at different operating conditions and, ultimately, estimate its 

stability margin. The methodology was applied to determine the stability margin of a 

laboratory scale combustor. The results indicated that a low-order stochastic non-linear 

model including two excited modes has been identified and the combustor operational 

stability margin could be estimated by applying a continuation method. 



 

1 

CHAPTER 1 

INTRODUCTION 

 Detrimental combustion instabilities have been excited in many types of 

propulsion and power generation systems for a long time and considerable research has 

been performed in order to understand and develop solutions to the problem. While 

significant progress has been made in this field, the current understanding of the 

fundamental processes that control the performance and stability of such systems remains 

limited. The reason for that is the complexity of the several simultaneous and interacting 

physicochemical processes which control these instabilities; e.g., injection, atomization, 

vaporization, mixing, chemical reactions, expansion, and acoustics.  

 In general, combustion instability assumes the form of pressure oscillations whose 

amplitudes have a tendency to grow and settle down to a certain limit value (i.e., limit 

cycle amplitude) due to the feedback coupling between two dominant processes: 

acoustics and oscillatory combustion process heat release. That explains the term 

thermoacoustic instability. Depending on how those processes interact with each other, 

the limit cycle amplitude can vary from small to very large values. Since small amplitude 

pressure oscillations are always present and usually do not represent a problem to the 

combustor, one assumes that a combustor is unstable when the pressure oscillations 

amplitude exceeds a certain threshold value. This value is somewhat arbitrary and varies 

from one combustor to another. Above the threshold limit performance degradation or 

even catastrophic system failure can occur. Figure 1.1 shows examples of measured 

pressure oscillations for stable and unstable operations. The black line indicates the 
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threshold limit, which in this case was set at 0 2.p′= psi (RMS) and the green and red lines 

indicate the measured RMS pressure.  

 

 

 

a) stable operation: measured amplitude (RMS) below the threshold limit. 

 
 

 

 

b) unstable operation: measured amplitude (RMS) above the threshold limit. 

 

Figure 1.1: Examples of pressure oscillation time-history. 

----  Measured amplitude (RMS) 

----  Threshold Limit 

----  Measured amplitude (RMS) 

----  Threshold Limit 
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  Changes in instability behavior are typically attributed to combustor 

modifications or changes in operating conditions. For a particular combustor one wants to 

know which operating conditions lead to unstable behavior; i.e., under which operating 

conditions the amplitudes of the oscillations exceed the specified threshold limit. In this 

sense, we are dealing with operational stability in this thesis and it is usual to determine 

the stability characteristics of the combustor from experiments. In these experiments the 

pressure oscillations amplitude are measured as a function of changes in a pair of control 

parameters in operating conditions (e.g., equivalence ratio, fuel/oxidizer temperature, 

etc.). The results are used to build operational stability maps that indicate for which pairs 

of control parameters the combustor is stable, unstable or marginally stable (in the case of 

occurrence of hysteresis). 

 Figure 1.2 shows an example of a operational stability map. In order to plot it, one 

starts by measuring the pressure oscillations amplitude for a situation in which the control 

parameter 2Π  is varied from I,2Π  to V,2Π  while the control parameter 1Π  remains 

constant (see the blue line in Figure 1.2). Figure 1.3 shows typical observed changes in 

the pressure oscillations amplitude (root mean squared) as we move along the blue line.  

 Since the threshold for the operational stability ( SLP′ ) has been set, the value of the 

changing control parameter at the stability limit can be estimated ( SL,2Π ). Repeating this 

procedure for different values of 1Π , the stability map can be determined. For example, 

in Figure 1.2, the gray region represents the range of operating conditions for which the 

combustor is unstable. The dashed red line represents the operational stability boundary.   

Since the operational stability map has been plotted, one can estimate the 

operational stability margin (SM) of the combustor at a given operational condition. The 
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Figure 1.2: An example of a stability map. 
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Figure 1.3: Dependence of the pressure oscillations amplitude upon changes in 

control parameter 2Π . 

operational stability margin of the combustor is defined herein as its “distance” from the 

operational stability boundary (SB) or its susceptibility to instability. Therefore, looking 

at Figure 1.3, one can say the operational stability margin of the combustor decreases 

when moving from point I to point II ( |||| ,,,, IISLISL 2222 Π−Π>Π−Π ). Since the operational 

stability limit was known in this example, the determination of the operational stability 

margin was simple.  
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 This research addresses a usual situation in which we do not know where the 

operational stability limit is. That is the case when we just started performing tests to 

determine the stability map. We start at point I in Figure 1.2 and move along the blue line 

towards point III. Even though a slight increase in the pressure oscillations amplitude can 

sometimes be noticed as we move from point I to III, it does not provide any information 

about the location of the stability limit. A further increase in the parameter from III,2Π  to 

IV,2Π  was accompanied by a large “jump” in the amplitude of the oscillations, as shown 

in Figure 1.3. As a consequence the threshold limit ( SLp′ ) was exceeded characterizing 

the onset of the combustion instability.  

As mentioned before, since combustion instabilities often excite pressure 

oscillations that damage the combustor, unstable operation must be prevented; that is, 

operation must be restricted to the left side of the operational stability boundary in Figure 

1.2. Therefore, it is necessary to develop a methodology for determining the operational 

stability boundary of a combustor under different operating conditions without getting 

into the combustion instability zone. Due to the behavior shown in Figure 1.3, it is clear 

that the simple extrapolation of the data points I, II and III, will not provide a good 

estimate for the stability limit ( SL,,2Π ). That is, the amplitude of the pressure oscillations 

is not a simple function of the control parameter 2Π .  

In fact, the measured pressure oscillations represent the response of a dynamical 

system (the combustor in this case). We anticipate that the system response it is not only 

a simple function of the control parameter 2Π . It is determined by a more complex 

expression, usually in the form of differential equations; that is 

                                                 2( , , , ( ))p f p p p′ ′ ′ ′= = Πθ θɺɺ ɺ                                    (1.1) 
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where the right-hand-side of Equation (1.1) represents the dynamical model of the system 

and )( 2Πθ  is the vector of model parameters which are functions of 2Π . 

1.1 Motivation 

The motivation for this work is the problem of estimating the operational stability 

margin of a combustor from experimental data before the onset of the instability. 

Therefore, the main goal of this research is to develop a methodology that would enable 

one to achieve this goal. We should keep in mind that a combustor is a dynamical system 

and, as such, can be represented by a mathematical model, as shown in Equation (1.1). In 

general, this mathematical model has parameters, )( 2Πθ , whose values determine the 

overall dynamical behavior of the system.  

For example, consider the dynamical system represented in polar form by the 

following system of differential equations (mathematical model)
[1]
 

                                              
6 4 20 2 1 05 1 3( . . . )r r r r rµ

θ ω

= − + −

=

ɺ

ɺ
        (1.2) 

where r  is the amplitude of the system response, ω  is the angular frequency of the 

oscillatory response, and µ  is the only varying model parameter. The qualitative 

behavior of this system is described in Figure 1.4, which shows the dependence of the 

amplitude of the system response, r , upon µ  as it increases from -0.6 to 1.2.  

Figure 1.4 shows that for negative values of µ , the origin ( 0r = ) is a stable focus 

and the only steady-state solution. As µ  passes from negative to positive values, the 

origin loses stability and a stable limit cycle appears. The amplitude of the limit cycle 

oscillations increases as µ  increases. When µ  reaches a value of 0.48 there is a sudden 

jump to a larger-amplitude limit cycle. Increasing the value of µ  from 0.48 to 1.2 causes 
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a slight increase in the amplitude of the limit cycle. At 0=µ  we say the system has 

undergone a supercritical Hopf bifurcation and at 480.=µ  it has undergone a saddle-

node bifurcation
[1]
.  

 

 

 

Figure 1.4: Bifurcation diagram depicting behavior for the system in Equation (1.2). 

 

 

 

Now, comparing Figures 1.3 and 1.4 we can see the remarkable similarity 

between the typical behavior of a combustor system and the behavior of the system 

defined by Equation (1.2). Therefore, one can conclude that the behavior of the 

combustor system (and ultimately its stability boundary) could be predicted via 

bifurcation diagram (or even numerical simulations), if a proper mathematical model for 

the system and the dependence of the model parameters upon changes in operating 

conditions are provided. The mathematical model must be validated and its parameters 
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obtained from the available experimental data. The more effective way to achieve this is 

by a combination of analytical, numerical and experimental tools.   

Therefore, this research introduces a new approach for assessing the operational 

stability margin of a combustor which depends on three basic steps. The first step in the 

developed approach is the derivation of a mathematical model which describes the 

combustion system dynamics. In general, the model has parameters which vary as we 

change the operational conditions. The second step in the approach is to extract the 

maximum amount of information from a set of experimental data, in order to 

validate/invalidate the assumed model and estimate its parameters. This process is called 

System Identification (SID). Since the model and the dependence of the model parameters 

upon changes in operating conditions have been determined applying modern SID 

techniques, the third (and last) step consists of estimating the operational stability 

boundary (or stability margin) by using bifurcation diagrams and/or numerical 

simulations. The approach is described schematically in Figure 1.5 and it will be further 

detailed in the following chapters.  
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Figure 1.5: Schematic of the developed approach. 
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The main motivation for using system identification techniques in this study is the 

significant progress in the field during the past decade, mainly propelled by 

improvements in computational resources. The currently available SID techniques can 

handle a variety of dynamical system models from deterministic linear systems to 

stochastic nonlinear systems. That allows a much more realistic representation of the 

combustion system dynamics as will be shown later. 

1.2 Outline 

The outline of this thesis is as follow. An introduction to thermoacoustic 

instabilities with basic concepts and literature review, some background on SID 

techniques, and a literature review on parameters estimation in combustion systems are 

presented in Chapter 2. In Chapter 3 we present the experimental setup, the collected 

data, and a preliminary analysis of the stability characteristics of the combustor to which 

the SID techniques will be applied. In Chapter 4 we present the derivation of a 

thermoacoustic model for the combustor along with the theory about stochastic 

differential equations behind the numerical algorithm used to simulate the behavior of the 

thermoacoustic model. In Chapter 5, we assume that under stable operation the 

combustor behaves as a linear stochastic system. Then an appropriate SID technique is 

implemented, its accuracy is verified, and experimental results are shown. The more 

complex and realistic non-linear stochastic system is approached in Chapter 6 in which a 

SID technique is implemented, its accuracy and issues involving initial values of the non-

linear model parameters are investigated, and experimental results are presented. Finally, 

the conclusions and recommendations for future works are described in Chapter 7. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

The objective of this chapter is to provide the reader with some background in the 

combustion instabilities and dynamical system identification matters. Besides a literature 

review, the fundamental concepts of these subjects are covered. Thus, the information 

presented in this chapter provides an introduction to the subjects to be covered in 

Chapters 4, 5, and 6. In particular, Section 2.4 presents a review of some pioneering 

works in the field of dynamical system identification related to combustion systems and 

their main results are analyzed.  

2.1 Thermoacoustic Instabilities 

The chronology of combustion instabilities in propulsion systems indicates that 

this problem has been studied for more than sixty years since such instabilities were first 

observed in liquid and solid propellant in the late 1930 and earlier 1940
[2]
. Therefore, a 

comprehensive review of the literature on this subject will be not presented here. 

Nevertheless, to provide some necessary background information, important pioneering 

works in the field of combustion instabilities are cited, in particular those related to 

combustion instabilities in liquid rocket engines (LRE), as well as a brief review of the 

fundamental concepts of thermoacoustic instabilities.  

Under unstable operation, a combustor can experience intense vibrations which 

can damage primary structures and sensitive electronic components such as the guidance 

system. Other detrimental effects such as unexpected forces and torques, system 

performance degradation, and increased heat transfer which can be sufficient to destroy 
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portions of a combustion system can also occur. Therefore, there exist urgent needs for 

investigations that can elucidate the mechanisms that lead to such detrimental oscillations 

and find means to prevent them. 

The literature shows that combustion-driven acoustic oscillations were recognized 

by Higgins
[3]
 in 1802. It was observed that sound could be produced while setting a flame 

inside an open-ended or closed-ended tube. The phenomenon was called the “singing 

flame”. Years later, Rijke
[4]
, a professor of physics at the University of Leyden in the 

Netherlands, invented the Rijke tube by placing a hot gauze in the lower half of open-

ended vertical tube. It was observed that the sound coming out of the tube was more or 

less intense depending on the placement of the heat-source at different locations. Even 

though there was no flame in his experiment, a heat source was determinant in producing 

the sound. 

The physical explanation of how the sound was stimulated was only presented in 

the book of Lord Rayleigh
[5]
 published in 1878. According to Rayleigh’s observations 

when flames are confined in a combustion chamber, combustion instability may be 

driven by a positive feedback between acoustics and heat release oscillations, which is 

typically referred to as a thermoacoustic loop. That was the basis for the formulation of 

the principle that came to be known as Rayleigh's criterion. An updated review of several 

investigations about Rijke tube up to 1993 was presented by Raun et al.
[6]
, which contains 

a good number of references, useful comments on the observed physical behavior, and 

experimental confirmation of Rayleigh's Criterion.  

The thermoacoustic loop is described in Figure 2.1. It shows the feedback 

mechanism which is a necessary condition for combustion instabilities to occur in any 
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combustor. An oscillation in a given flow or thermodynamic variable drives oscillations 

in heat release. Due to the flame dynamics, there exists a coupling between the unsteady 

heat release and acoustic pressure oscillations which propagate away from the 

combustion region exciting the flow variable and completing the positive feedback loop.  

The underlying flame-acoustics interaction, responsible for the coupling between 

the unsteady heat release and acoustic pressure oscillations, is complex and can be 

regarded as an energy transfer problem
[7]
. In this sense, there exist processes responsible 

for adding oscillatory energy to the system and other responsible for the dissipation of 

such energy. The amplitude of the oscillations will grow or decay depending on the 

balance between those addition/removal processes.  

 

 
 

Figure 2.1: Schematic of the feedback mechanism driving combustion instabilities. 

 

 

 

Once a thermoacoustic loop has been initiated, energy is added to the initial 

disturbance at each cycle and its amplitude would grow indefinitely. However, in real 

combustion systems this unbound growth is never observed. The reason for this is the 
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fact that combustion chambers are nonlinear dynamical systems in which the 

nonlinearities appear in the dependence of the oscillatory energy added to the system, 

)(AEadd , and the energy dissipated by the system, )(AEdis , upon the amplitude of the 

oscillations. 

Figure 2.2 shows examples of curves representing the dependence of the added 

and dissipated energy upon changes in the amplitude of the oscillations. It shows that 

when the amplitude of the oscillations in the system is larger than a certain threshold 

value, crA , the system starts operating in positive feedback loop; i.e., the energy added to 

the system is larger than the energy dissipated by it. The amplitude increases until it 

reaches a certain amplitude value, LCA , where the system’s energy losses equal its energy 

gains and the instability amplitude saturates at the system’s limit cycle oscillations. 

 

 
 

Figure 2.2: Dependence of oscillatory energy flux upon pressure oscillations amplitude. 
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Clearly, the processes responsible for initiating and saturating the instability are 

important in determining the overall behavior of an unstable combustion system. This is 

true for every type of combustion system; however, to better understand and develop 

methods to control and/or prevent combustion instabilities in a specific combustor 

system, we need to considerably increase the level of driving feedback loop shown in 

Figure 2.1. Following the definitions by Williams
[8]
 we can classify combustion 

instabilities as system instabilities, which means a system-sensitive phenomenon. They 

are not determined by the characteristics of only one component of the combustor system, 

but by the complex interactions of all relevant components of the system. Although the 

source of acoustic oscillations is the heat release from combustion, the properties of these 

oscillations are determined by the design and dimensions of the combustion system, 

reactants properties, operating pressure, etc. Consequently, the causes of instability and 

its consequences vary from one system to another. 

2.1.1 Combustion Instabilities in Liquid Rocket Engines 

Since in the rest of this work we will be dealing with combustion instabilities in a 

liquid rocket engine combustor simulator (LRECS), the main aspects of this problem 

need to be discussed. The first theoretical and experimental approach to the problem was 

presented by Crocco
[9],[10]

 who suggested that a time-dependent sensitive time-lag could 

be incorporated into the driving mechanism of the oscillations. Some years later, Crocco 

and Cheng
[11]

 presented a comprehensive monograph whose discussions regarding the 

subject were, however, limited to small amplitude oscillations; that is, linear behavior.  

During the course of the above discussed investigations it was very common to 

experience phenomena which could not be explained by means of the proposed linear 
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theories. As a matter of fact, as already mentioned, the phenomenon of combustion 

instabilities must involve nonlinearities. As mentioned by Culick
[12]

, sources of 

nonlinearities can be attributed to processes such as gasdynamics and combustion. This 

indicates that the conclusions and predictions obtained by applying linear approaches 

should be used carefully. There is clearly a need for a theory that can handle the 

nonlinear regime (finite oscillations). 

To address the nonlinear regime, the work at NASA Research Center
[13] 

presented 

a completely new approach in which the nonlinear equations describing the unsteady 

flow in a chamber were numerically integrated in time, and an arbitrary disturbance was 

provided as the initial conditions. If the disturbance increased with time the system was 

unstable and vice-versa. In this sense, the result depended on the particular disturbance 

used, so that it was not a general approach.  

Searching for such general approach, a series of investigations performed at 

Princeton proposed to apply the time-lag concept to the non-linear problem. Experimental 

results with gas-fueled rockets had shown the presence of discrete sharp-fronted waves, 

suggesting a model that could be analyzed using the method of characteristics. The 

investigations by Sirignano
[14]

 and Sirignano and Crocco
[15]

 dealt with the motion of a 

shock wave in a rocket chamber having planar combustion concentrated at the head end 

and terminating in a choked nozzle. While still analyzing the same problem but, 

importantly, without a shock wave Zinn
[16]

 applied a Galerkin method to calculate the 

results for a class of three-dimensional unsteady motions with the flow taken to be 

irrotational. As for most of the Princeton analyses of combustion instabilities, the time-

lag model was assumed for the unsteady combustion response. All of those works 
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introduced tools and methodologies which have since been commonly applied to address 

the problem of nonlinear instabilities.  

All the references cited so far form the background of thermoacoustic instabilities 

in a liquid rocket engine (LRE). We should also mention that a more comprehensive 

review of combustion instabilities in LREs can be found in the compilation by Harrje and 

Reardon
[17]

 and more recently in Culick and Yang
[2]
. In fact, it is expected that all the 

information gathered throughout reading the cited literature should be useful in 

formulating/proposing a mathematical model which captures the physical behavior of the 

combustor of a LRE. This will be accomplished later in this thesis in more details.  

The validity of the proposed mathematical model will be verified applying 

dynamical system identification techniques, which relate the mathematical model to the 

available experimental data as shown in Figure 1.5.   

2.2 Dynamical System Identification 

2.2.1 Dynamical Model 

The first and perhaps the most important step in dynamical system identification 

(SID) problems is the definition of a dynamical model for the system, sometimes referred 

to as model structure. The behavior of the system depends on the values of the dynamical 

model parameters. When applying SID techniques, we are ultimately interested in 

estimating the model parameters from the measured experimental data.  

Figure 2.3 shows a schematic of a simple dynamical system. The spring-mass-

damper represent the dynamical system that is excited by the arbitrary force, )(tu , which 

is called the input to the system. Assume that the spring is linear with spring constant k  
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and the damper is represented by a linear viscous dashpot model with coefficient of 

viscous damping c. The response of the system is given by the displacement, )(ty , which 

is called the output of the system. The question now is how the input and the output data 

are related and how one can express this relationship. 

 

 

m 
c 

k 
u(t)

y(t) 

DYNAMICAL SYSTEM 

 
Figure 2.3: Schematic of a spring-mass-damper system. 

 

 

 

Dynamical models describe the relationship between one or more measured input 

signals, u(t), and one or more measured output signals, y(t). The data can be measured in 

the time-domain or frequency-domain and have single or multiple inputs and outputs. In 

real systems, there may be additional inputs that you cannot measure or control, which 

affect the system’s output. Such unmeasured inputs are called disturbances or noise. In a 

broad sense, a dynamical model is a “box” containing the mathematical laws that link the 

inputs to the outputs.  

For the system shown in Figure 2.3, applying the Newton’s Second Law we can 

derive the following equation 

                                                   )()()()( tutkytyctym =++ ɺɺɺ                      (2.1)  

Equation (2.1) represents the dynamical model of the forced spring-mass-damper system. 

This type of model is called a “white-box” model since it was derived directly from first 
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principles. In general, white-box models are typically described by ordinary differential 

or difference equations and the model parameters have a physical meaning. As mentioned 

before, the physical behavior of the system is controlled by the values of the model 

parameters m, c, and k.  

In the given example, the dynamical model could be easily obtained from 

Newton’s Second Law. However, in many problems the physical modeling is a complex 

procedure, or even there are no first principles available to derive a model. For these 

cases, the alternative is to use the so called “black-box” models (a common situation in 

economics and physiology).  

As an example, consider the case where we want to build a model of how the 

voltage applied to an electric heater affects the temperature in a room. The voltage is the 

input, )(tu , and the temperature is the output, )(ty . A white-box modeling would require 

writing down all equations relating to the power of the heater, heat transfer, heat 

convection, unknown heat transfer coefficients, etc. Instead, the following black-box 

model (in general a difference equation) provides good results
[18]

 

                               )()()()()( 2121 2

4

2

321 −+−+−+−= tututytyty θθθθ                    (2.2)  

where 1θ , 2θ , 3θ , and 4θ  are the model parameters. In contrast with the previous case, 

parameters of black-box models have no physical meaning. The model represented by 

Equation (2.2) indicates the temperature at a discrete-time instant “t” depends on the 

temperature at the previous discrete-time instants “ 1t− ” and “ 2t− ” as well as the square 

of the voltage at those same instants. 

When the system can be assumed linear, the task of finding a black-box model is 

not difficult. However, when the system is non-linear, we usually need some sort of 
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physical insight into the system to find a good black-box model. In the previous example, 

one knows that it is the heater power rather than the voltage that causes the temperature 

to change. That is why the input is squared in the model. When this happens we have a 

“gray-box” model (neither completely black nor white) that is obtained from a semi-

physical modeling approach. We also consider gray-box when the structure of the model 

is built on physical grounds but has a certain number of parameters to be estimated from 

measured data.  

Deriving a model for the system may be hard. However, some things should be 

considered to make the task easier. First, we must analyze the available data since non-

linear effects can often be detected immediately. Second, when working with black-box 

models, a good engineering principle is to try simple things first; i.e., one should try 

linear models or models with small number of parameters. Then transition from simpler 

to more complex models until a valid one is found. Finally, we should always look into 

the physics of the problem and try some gray-box model. In this thesis, we had the 

opportunity to apply all of those principles.   

2.2.2 System Identification Techniques 

Since the data were collected and a dynamical model was proposed, the next step 

is the implementation of a system identification technique which provides a means of 

estimating unknown parameters in the dynamic model equations, as a product of the 

process of minimizing the difference between measured and predicted responses. When 

the experimental data are used in the time or covariance domain, the identification 

methods are usually based upon least squares, maximum likelihood and related 

techniques. When the data are used in the frequency domain, one is usually concerned 
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with spectral estimates and fitting models to the estimated frequency response 

characteristics.  

In general, these techniques consist on numerical algorithms with a particular set 

of functions which are called according to the task to be performed in the identification 

procedure. However, the availability, complexity and accuracy of the techniques to be 

implemented depend upon such issues as the presence of non-linearities in the dynamical 

model and the availability of the input data, that is, whether the excitation force is 

measured or not. 

When both input and output signals are measured, the system is called 

deterministic. For deterministic systems, several SID techniques are available to estimate 

the parameters of both linear and non-linear models. The results for linear models are 

much more accurate and the frequency domain techniques are more easily implemented. 

When dealing with non-linear models the computational time to estimate the parameters 

is larger and the accuracy decreases. A good review and comparison of the many 

different techniques can be found in the books of Bendat
[19]

 (frequency domain data) and 

Ljung
[20]

.  

When the input signal is not measured, SID techniques are available only if the 

input can be assumed to be a stochastic process; i.e., the system is stochastically excited. 

Additionally, if the dynamical model is linear the procedure of system identification is 

known as Operational Modal Analysis (OMA) in Civil Engineering and Experimental 

Modal Analysis (EMA) in Mechanical Engineering. The identified model is in this case a 

modal model consisting of eigenfrequencies, damping ratios, and mode shapes.  
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The first SID methods applied to OMA were based on the frequency domain data. 

According to the chronological application we had the Peak Picking
[21]

 (PP) and the 

Complex Mode Indication Function
[22]

 (CMIF) spectrum-driven methods. Then, 

covariance-driven methods such as the Random Decrement
[23]

 (RD) and the Instrument 

Variable
[20]

 (IV) were developed. More recently, the Stochastic Subspace Identification 

(SSI) methods both covariance-driven
[24]

 and data-driven
[24]

 were developed. The data-

driven SSI will be discussed in details later in this thesis. Comprehensive reviews about 

system identification applied to stochastically excited linear systems can be found in the 

book of  Ljung
[20]

 and the thesis of Peeters
[25]

.  

System identification of stochastically excited non-linear systems is a much 

harder problem. The application of spectral methods to stochastic linear models is already 

a non-linear optimization problem. Therefore, their use for stochastic non-linear models 

is not advised. There are a number of suitable time domain methods available in the 

literature for solving such non-linear problems
[20]

. The general approach in those time 

domain methods applies the Predictor Error Method (PEM) along with the Extended 

Kalman Filter (EKF) to estimate the model parameters.  

Recently, energy-based identification techniques have been proposed by Roberts 

and Vasta
[26],[27]

 and  Rudinger and Krenk
[28]

 to estimate parameters of stochastically 

excited non-linear dynamical systems. The methods rely on the fact that for lightly 

damped systems the energy envelope of the system response is approximately a one-

dimensional Markov process. Then, expressions relating the model parameters and 

properties of the energy envelope of the system response can be obtained analytically. 
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Finally, analyzing the energy envelope provided by the experimental data and fitting it to 

the analytical expressions allows the estimation of the model parameters. 

2.3 System Identification Applied to Combustors 

In this section, we present some previous works in which combustors were 

considered dynamical systems represented mathematically by a thermoacoustical model 

and analyzed by system identification techniques to validate the model and estimate its 

parameters. These studies are presented here in increasing order of model complexity; 

that is, from linear to non-linear models.  

Use of system identification in the field of combustor dynamics seems to have 

been developed first by Russian groups as part of their development of liquid rocket 

engines, beginning perhaps as early as the 1950s but certainly in the 1960s
[29]

. Thus, we 

begin this review with the investigation performed by Karmalita and Furletov
[30]

. Based 

on a mathematical model derived from first principles, they assumed that, under stable 

operation, the combustor chamber behaves as a stochastically excited linear dynamical 

system, represented by a system of uncoupled second order stochastic differential 

equation. The dynamics of each mode of the pressure oscillations is described by 

                                                )(~~~ tFXXX =++ 22 ωωξ ɺɺɺ   (2.3) 

where ξ~ is an effective modal damping ratio, ω~  is an effective modal angular frequency 

and )(tF  is the stochastic forcing assumed a white noise. A formal derivation of Eq. 

(2.3) will be presented later in this thesis.  

The idea was to estimate the model parameters (i.e., effective modal frequencies 

and damping ratios) from the measured dynamic pressure data and to use the estimated 
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modal damping ratios (or decrement) as a measure of the stability margin. However, the 

methodology implemented by them did not estimate the parameters of the gray-box 

model directly. Using results from time-series analysis
[31]

, a second order system 

formulated in continuous time may be represented in the discrete time by a second order 

Autoregressive model - AR(2) - given by  

                                           )()()()( ttXatXatX ε+−+−= 21 21   (2.4) 

where ( )X t  represents the system response at the discrete time “t”, 1( )X t− and 2( )X t−  

the response at discrete-times “ t t−∆ ” and “ 2t t− ∆ ”, respectively, t∆  equal to the 

sampling time, a1 and a2 are the autoregressive parameters and )(tε  is a time series of 

independent Gaussian distributed noise with zero mean and variance 2

εσ .   

Equation (2.4) is a black-box model so that one needs to find, if any, a 

relationship between the AR model parameters, a1 and a2, and the modal parameters of 

interest ξ~  and ω~ . In order to establish this relationship Karmalita and Furletov
[30] 

proposed the following approach. Multiply Equation (2.4) by ( )X t t−Γ∆  and take the 

expected value of the resultant expression in both sides of equation. In the left-hand-side 

we have the definition of the autocorrelation function ( ) [ ( ) ( )]XXR E X t X t tΓ = −Γ∆ . 

Similarly, in the right-hand-side one obtains terms involving autocorrelation functions as 

shown below 
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Since the value of )(tε  is independent of ( )X t t−Γ∆ , the last term in the right-

hand-side vanishes and we end up with 

                                          1 21 2( ) ( ) ( )XX XX XXR a R a RΓ = Γ− + Γ−  (2.6) 

Equation (2.6) is known as Yule-Walker equation and the AR parameters are 

estimated by implementing an algorithm based on least squares minimization to fit the 

autocorrelation function of the experimental data to the AR model. Box and Jenkins
[32]
 

have shown that the following expression can be used to estimate the autocorrelation 

function in Equation (2.6) 
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In the other hand, taking the Fourier transform of Equation (2.3) and applying the 

Wiener-Khinchin relations, one can derive the following expression for the 

autocorrelation function of ( )X t
[21]
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Thus, comparing Equations (2.7) and (2.8) and assuming that the value of the 

damping is small (i.e., 12 <<ξ~ ), the following expressions were derived 
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A similar approach was presented by Lieuwen
[33]

. The combustor was also 

assumed to behave as a stochastically excited linear system in which the dynamics of the 

excited modes of oscillation were given by Equation (2.3), so that the autocorrelation 

function can be calculated from Equation (2.8). Therefore, for a lightly damped mode, the 

autocorrelation oscillates at a frequency very close to ω~  and its envelope decays as 

exp( )ξω− Γɶ ɶ . The envelope of the oscillatory autocorrelation was calculated via its Hilbert 

transformation. After the envelope of the oscillatory signal has been determined, the 

effective modal damping ratio can be estimated from the best fit of the equation 

exp( )ξω− Γɶ ɶ  by implementing a least squares minimization procedure.  

The main problem with all methods based on the autocorrelation function of the 

output data is the presence of significant noise in the signal. Even if we use a bandpass 

filter to filter the data around a center frequency, the filtered data will still contain noise 

(band limited white noise theoretically). Bendat and Piersol
[21]

 have shown that a 

correction term needs to be added to the expression of the autocorrelation function in 

Equation (2.8) to address this noise issue. Then the corrected expression is given by 

2exp( )sin[( 1 ) )] sin
( ) cos( )

sin
XX

B
R GB

B

ξω ω ζ φ π
ω

φ π
− Γ − Γ + Γ Γ = + Γ Γ 

ɶ ɶɶ ɶ
ɶ  (2.11) 

where G is the power of the band limited white noise (assumed constant) and B is the 

filter bandwidth.  

Equation (2.11) shows that while the frequency of the oscillations of the 

autocorrelation function does not change, its decay will change depending on the values 

of G and B. The results also showed that the accuracy of both presented methods became 

problematic as the combustor was becoming unstable. Additionally, these techniques 
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required that one excited mode in the output signal be analyzed at a time; i.e., the output 

signal had to be filtered and the characteristics of the filter can affect the accuracy of the 

estimates.  

The linear system assumption was also adopted in the work of Murugappan et 

al
[34]

. They considered that in a neighborhood of the limit-cycle oscillations, a linear 

model combining the acoustics, heat release, fuel injector and solid state relay into a 

lumped transfer function, could accurately predict the combustor response and therefore 

could be used to design a controller that reduces the amplitude of these oscillations.  

Due to the need for fast and accurate model estimations, the following black-box 

deterministic model was proposed  
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where )(tu is input to the system given by the voltage to the fuel injector, )(ty  is the 

output given by the dynamic pressure oscillations, )(tε  is a white noise, t∆  is the 

sampling time, an , bn , cn , and kn  represent the number of poles, zeros, order of noise 

and delay in the combustor, respectively, and ia , ib , and ic are the model parameters.  

The model parameters estimation was performed by implementing a two-level 

iteration scheme. The first level of iteration is in the parameter space, defined as                                               

],,,,,,,,[
cba nnn acbbaa ……… 111=θ  for a given dimension space defined by                                                           

[ , , , ]a b c kD n n n n= , whereas the second level of iteration is in the dimension space. The 

results confirmed that a deterministic linear black-box model can be used when active 

control is to be performed. 

Another approach developed for application in active control was proposed by 
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Cammarata et al
[35]

, with a non-linear black-box as the dynamical model. They assumed 

that the combustor’s dynamics behavior could be captured by three different and 

interrelated NARX models (non-linear autoregressive with exogenous input) for the three 

different outputs of the combustion system: the emission of CH radicals and the internal 

and external pressure oscillations. Each NARX model was defined by 

                                )](,),(),(,),([)( tntuttutntyttyFty uy ∆−∆−∆−∆−= ……                 (2.13) 

where F is a non-linear function and yn  and un  are the dimension space parameters to be 

estimated.  

The identification of the system was implemented using a neural network and the 

results showed that the models were able to give satisfactory descriptions of the 

experimental data. The predictive capability of the models was limited to a few steps 

ahead and varied with the variable considered. However, they have shown that the time 

period for which satisfactory predictions were achieved was sufficient for the 

implementation of the neural models in their control scheme. 

A limited number of studies have approached combustion instability problems 

using stochastic non-linear system models. Using a gray-box modeling Dunstan
[36]

 and 

Savaresi
[37] 

derived the following set of equations for the dynamics of each acoustic mode  
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where iξ , iω , and iN  are the damping ratio, angular frequency and scaling factor of the 

second-order oscillator representing the acoustic mode amplitude ( iη ) in the combustor, 

tq  is the heat release rate measured by an optical sensor, [.]Φ  is an input-output static 

non-linear mapping, tp  is the measured dynamic pressure, and τ  is a convective time 

delay. 

Notably, there is no stochastic excitation in the model. They used a common 

approach in which the dynamical model is represented by a self-excited system in closed 

loop and split the structure in two blocks. The block with the forward loop contains the 

linear acoustics, and the block with the feedback loop includes the convective time delay 

and the nonlinear heat release model. A linear system identification technique was 

applied to identify the model parameters in the forward loop and tools of non-linear 

analysis were used to fit a continuously differentiable function representing the non-

linear mapping to sets of input-output data. Results showed that the simulated pressure 

oscillations using the estimated model parameters and non-linear mapping was in good 

agreement with their experimental data. 

This research follows some of the ideas presented in the studies aforementioned, 

mainly in the non-linear system identification approach. However, we make use of the 

recent advances in the field of SID which allowed the implementation of more robust and 

accurate SID techniques as well as the identification of more complex systems. In this 

sense, using a stepwise approach this research includes some features in the combustor’s 

dynamical model which were not treated in the previous studies. In particular, the 

following issues are taken into account: 1) the influence of the stochastic excitation; 2) 
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the presence of coupling between excited modes in the dynamic model; and 3) the need 

for a dynamic model to express the non-linearities due to unsteady heat release.  
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CHAPTER 3 

EXPERIMENTAL DATA 

The experimental data used in this work were collected in a parallel and related 

study at Georgia Tech in which the stability characteristics of a liquid rocket engine 

combustor simulator (LRECS) was investigated. In the next sections the experimental 

setup, the tests procedures are described. A preliminary analysis of the collected data and 

some comments about the overall behavior of the system are also presented.  

3.1 The Liquid Rocket Engine Combustor Simulator 

Figure 3.1 presents a schematic of the LRECS used in this study. The combustor 

includes a circular injector plate on which seven “smart” injectors are symmetrically 

distributed, as shown in the detail (top view A) in Figure 3.1. The combustor chamber is 

a quartz tube having internal diameter of 104mm and length of 325mm. Jet-A was used 

as the liquid fuel and injected into a swirled preheated ( CT o200= ) air stream, which 

served as the oxidizer.  

The concept and development of the “smart” injectors arouse from the idea of a 

“slow" active control approach for preventing the onset of detrimental combustion 

instabilities in LREs. In this sense, the idea is to "actively" damp the instability by 

modifying the properties of the combustion process. This approach was motivated by the 

knowledge that one of the conditions for the occurrence of combustion instabilities is that 

the characteristic combustion time (e.g., time required to evaporate and burn a typical 

droplet) approximately equal the characteristic acoustic time (i.e., period of the unstable 

mode). Consequently, if one could change the characteristic combustion time in an 
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engine, the instability would be damped because the combustion time would no longer 

equal the acoustic time.  

 

 

Figure 3.1: Schematic of the liquid rocket engine combustor simulator. 

 

 

 

The "smart" injectors have capabilities for changing the characteristics of their 

spray and, thus, the combustion time. They are double-staged, air-assisted injectors, as 

shown in Figure 3.2. Swirl was imparted to both inner and outer air streams in opposite 

directions through separate sets of tangentially oriented orifices. These swirlers shared 

common manifolds, allowing a diverter valve to simultaneously adjust the mass flow rate 

of air between the inner and outer swirling air streams for all injectors. To atomize the 

fuel, the primary air flow was injected with swirl into the fuel stream near the exit of the 
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fuel nozzle. The secondary air flow was injected with a counter swirl into an annular 

space downstream of the primary stream injection location, further atomizing the fuel at 

the primary injector’s exit plane.  

 

 

Figure 3.2: Details of the “smart” fuel injectors. 

 

 

 

Because the orifices in each swirler in each injector had equal cross sectional area 

and the air flow through these orifices was choked at most of operating conditions, the 

ratio of the pressures measured in he inner and outer swirlers was assumed to be the same 

as the mass flow rate ratio between the entire set of inner and outer swirlers. The control 

parameter, K, called swirl flow ratio was defined as 
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The reactants spray pattern could be controlled by changing the swirl flow ratio as 

shown in Figure 3.3. Visualization of the spray was achieved with a vertical laser sheet 

positioned at the centerline of the spray; therefore, these images depict a thin center slice 
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of the spray. When the air flow mostly through the outer swirler (e.g., 7525 /=K ) the 

spray exits the injector orifice nearly radially as shown if Figure 3.3a. As the inner air 

flow is increased, the spray pattern transitions sharply into a hollow cone which becomes 

narrower as the inner air flow is further increased, as shown in Figures 3.3b and 3.3c. 

Subsequent increases in the inner air flow rate causes a solid cone spray be formed, as 

shown in Figure 3.3d for 2575 /=K .  

 

 

                                           a)              b)                c)               d) 
 

Figure 3.3: Dependence of the spray pattern upon changes in the control parameter K. 

 

 

 

Pressure oscillations in the combustor were measured using two air-cooled 

piezoelectric pressure transducers (Kistler-211B5) through the pressure ports positioned 

on the opposite sides of the diameter of the injector plate, at 8 mm from the wall of the 

quartz tube as shown in Figure 3.1 (top view A). The transducers were installed on “semi-

infinite tubes” at a distance of 270 mm from the injector face to provide a flat frequency 

response and protect them from overheating. Measured dynamic pressures were recorded 

with high resolution at sampling frequency 48 KHz using Sony SIR-1000i data recorder 

simultaneously with the signals of photo-multipliers (PMT) collecting 

chemiluminescence of the flame. 
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The time and spatial dependence of the flame chemiluminescence was primarily 

measured to determine the reaction zone behavior. More specifically, these data were 

used to observe spinning tangential instability in the combustor. For this purpose three 

fiber optic probes ( 3,2,1PFO ′ ) were strategically located around quartz combustor wall 

covering 3 x 120° segments of the reaction zone as shown in the Figure 3.1 (top view A). 

They were placed in the plane 15mm downstream the injector face to characterize 

fluctuations of flame radiation near the maximum of the reaction rate in case of tangential 

instability. Probes were connected to photomultipliers through identical bandpass filters 

(CWL=430nm, FWHM=10nm) collecting CH
*
 chemiluminescence from the flame. The 

intensity of the collected CH* chemiluminescence has been widely used for measuring 

both local and overall rates of heat release
[38]

. In this research it was used as a measure of 

the rate of the unsteady heat release, Q′ɺ . 

3.2 Test Procedure and Preliminary Analysis 

It had been demonstrated that by changing K and, thus, the spray properties, the 

“smart” injector was able to control the amplitude of combustion instabilities by varying 

the characteristics of the combustion process in a single-injector combustor
[39]

. Then a 

series of tests were performed to assess the stability characteristics of the multi-injector 

LRECS using the apparatus described in the previous section.  

The first set of experiments was designed to provide the data that would 

determine the stability maps. The control parameters chosen as coordinates were the 

equivalence ratio, φ , and the swirl flow ratio, K . During each run in the test, the 

equivalence ratio was set up in the control panel and held constant. This was done by 

fixing the fuel and the air flow rates.  
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The fuel flow rate was controlled by a precision metering valve driven by a DC 

motor. Air supply pressure was set at 276psi and its temperature was ~200
0
C. Air supply 

pressure and temperature was controlled using laboratory control units. While the total air 

flow rate was set by a measuring orifice. Once the equivalence ratio was set, the swirl 

flow ratio was varied by acting on the diverter valve driven by a DC motor. At each run, 

the swirl flow ratio was swept; i.e., it started at 60/40, decreased to 12/88, and finally 

brought back to 60/40, thus the cycle.  

The signals from the pressure transducers inside the combustor were collected at 

each cycle for several different equivalence ratios, and after processing those data 

stability maps could be plotted. Usually, we split the data into increasing and decreasing 

part of the swirl flow ratio cycle to search for differences in the system behavior. Figure 

12 shows the stability map of the LRECS considering only the increasing part of the swirl 

flow ratio cycle; i.e., from 12/88 to 60/40.  

The measured data was divided into three classes of stability. Stable combustion 

operation was defined as operating conditions where the peak-to-peak pressure amplitude 

in the atmospheric combustor does not exceed 2% of the static pressure in the combustor. 

That is equivalent to the requirement that the amplitude level would not exceed 0.1 psi 

(RMS). Above this threshold, the combustor was considered unstable. The unstable 

combustor would experience moderate instabilities when the amplitude level was larger 

than 0.15 psi (RMS) and smaller than 0.4 psi (RMS), and severe instabilities when the 

amplitude level exceeded 0.4 psi (RMS).  
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Figure 3.4: Stability map for the LRE combustor simulator for increasing values of the 

control parameter K. 

 

 

 

In order to investigate the onset and decay of the combustion instability in the 

LRECS, let us consider a specific set of the experimental data which reveals interesting 

characteristics. This set corresponds to the run in which the equivalence ratio was held 

constant and equal to unity (i.e., 1=φ ), while the swirl flow ratio was decreased from 

40/60 to 12/88 (going from point A to B in the Figure 3.4) and then increased from 12/88 

to 52/48 (going from point B to C in the Figure 3.4). The variation in the swirl flow ratio 

was performed in a stepwise manner, to provide short time interval (about 1.5 seconds) 

when the combustor operation did not change. 

Figure 3.5a, 3.5b and 3.5c show the time history of the swirl flow ratio, dynamic 

pressure oscillations (sensor 1P′ ), and heat release rate oscillations (sensor 1PFO ′ ) 

respectively, during the above test run. As one can notice, as we increased the air flow 
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through the outer swirler (decreasing K ) excitation of instability and significant growth 

of the amplitude of the pressure and heat release rate oscillations were observed. On the 

other hand, increasing the air flow through the inner swirler usually had a stabilizing 

effect. 

 

Figure 3.5: Time history of: a) control parameter K ; b) dynamic pressure; and c) heat 

release rate oscillations. 
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Working with the dynamic pressure oscillations and swirl flow ratio data shown 

in the Figure 3.5, we can eliminate the time dependence and provide the plot in Figure 

3.6. It shows the dependence of the pressure oscillations amplitude (RMS) upon the swirl 

flow ratio. A very important observation made from this plot is that the value of K  at 

which the onset and decay of the instability occurred depends on if K  was increasing or 

decreasing. That produces a “loop” in the plot that is also known as bistable region, 

bistability or hysteresis. To create hysteresis there must be some history in the dynamical 

system; i.e., the response of the system to changes in a given parameter is history-

dependent. The presence of hysteresis indicates two important ingredients in the system: 

nonlinearity and feedback. 

 

 

Figure 3.6: Dependence of the RMS pressure oscillations upon changes in the control 

parameter K  
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As will be shown later in this thesis, we can represent the combustor dynamics by 

the following equation 

                                                          ( , )p F p K′ ′=ɺ  (3.2) 

where the behavior of the system, given by the amplitude of the pressure oscillations 

(RMS) is described by the function F, which combines nonlinearities and feedback, and 

depends upon the control parameter, K. The jumps in the Figure 3.5, characterizing the 

changes in stability of the system, are called bifurcations and the values of the control 

parameter at which the system stability changes corresponds to the so-called bifurcation 

points. In this sense, Figure 3.6 can be considered a bifurcation diagram which shows 

how the system dynamics are affected by the value of the control parameter. 

3.2.1 Natural modes in the combustor 

The results of the preliminary analysis presented so far have provided important 

information which can be used later in the derivation of the dynamical model. For this 

purpose, the identification of the excited modes in the combustor can also be useful. The 

natural frequencies of the longitudinal, transverse and mixed longitudinal-transverse 

oscillations in the LRECS can be estimated by correlating them with classical acoustic 

mode oscillations in a cylindrical pipe of diameter D and length L that is closed at the 

injectors plate and open at the combustor exit. The reasoning for this approximation will 

be discussed in the next chapter. The modal frequencies depend on the geometrical 

dimensions of the combustor, boundary conditions on the walls, and the speed of sound 

(a ) inside the combustor which is given by  

                                             adRTa γ=  (3.3) 
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where γ  is the ratio of the specific heats of the products of combustion (also known as 

isentropic exponent), R  is the gas constant, and adT  is the adiabatic temperature of the 

products of Jet-A and air reaction.  

For purely longitudinal modes, we have 

                                                       
L

ap
f p

4

12 )( −
=  (3.4) 

Indicating that the longitudinal modes have only odd harmonics with the fundamental 

being the quarter wave mode, the first harmonic the three quarters wave mode and so on. 

Equation (3.4) is only an approximation, mainly because the behavior of the waves 

at the ends of a tube (especially at an open end as the LRECS) depends on factors such as 

the diameter of the tube and the frequency of the waves, and the ends of the tubes are not 

exactly nodes and antinodes. In other words, the exact point at which a sound wave is 

reflecting at an open end is not perfectly at the end section of the tube, but a small 

distance outside the tube. To account for this fact, L  was replaced by DL 4.0+  in the 

frequency equation to obtain a more accurate description of the resonant frequencies of 

the standing waves in a tube. Using this correction, Equation (3.4) becomes  
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12
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For transverse modes (tangential, radial and combined tangential-radial), we 

have
[37]

 

                                                        
D

a
f mn
mn π

ν
=  (3.6) 

where mnν  is the wave number for transverse modes of oscillation in a cylindrical pipe 

with unity radius, and a  is the speed of sound. The subscript m  denotes tangential 
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modes whereas n  refers to radial modes. The wave numbers for purely transverse modes 

of oscillations are calculated from the boundary conditions on the walls in terms of the 

wall impedance. The values of the wave numbers for some of these modes are given in 

Table 3.1. 

 

Table 3.1: Wave numbers for transverse modes of oscillations in cylindrical pipes 

                with rigid walls. 

 

n  

0 1 2 3 

0 0.000 3.832 7.016 10.172 

1 1.841 5.331 8.537 11.705 

2 3.054 6.707 9.068 13.169 

 

 

m 

3 4.200 8.014 11.344 14.743 

 

 

Finally, for mixed longitudinal-transverse modes we have 
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Next, we will analyze the set of experimental data obtained in the run in which the 

equivalence ratio at 1=φ  while the swirl flow ratio was decreased from 40/60 to 12/88. 

Using Equations (3.1-3.6) and the thermodynamic data related to the combustion of the 

mixture Jet-A/Air at that equivalence ratio, we can estimate some the natural frequencies 

inside the combustor. The results are shown in the Table 3.2. These values are important 

since they can be used as initial guesses in system identification algorithms which require 

such data as inputs. 

As one can realize the number of acoustic modes which can be present inside the 

combustor is theoretically infinite. However, just a few of those modes are usually 
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excited. Consequently, we are interested in determining which modes are excited in the 

system and their natural frequencies. In order to determine which modes are excited, the 

chemiluminescence data was processed along with the dynamic pressure data and several 

estimates of the cross amplitude spectral density (CASD) of these discrete-time signals 

were performed using the Welch's averaged
[31]

, modified periodogram method of spectral 

estimation. The cross amplitude spectral density is the distribution of the square root of 

power per unit frequency. The signals were filtered so that components at frequencies 

below 200 Hz and above 15 KHz were eliminated. 

 

Table 3.2: Theoretically estimated natural frequencies in the LRECS. 

 

Combustor Geometry (no nozzle) 

mmL 325=  mmD 104=  

Thermodynamic Data: Jet-A/Air (@ p = 1atm, 1=φ  , KT airin 473, = )
[40]

 

smaKgKJRKTad /./.;.;. 2893822901680172348 =⇒=== γ  

Acoustic Mode of Oscillation p  m  n  Equation Natural 

Frequency (Hz) 

1
st
 Longitudinal mode 1 - - 19 609.11 

2
nd
 Longitudinal mode 2 - - 19 1827.33 

3
rd
 Longitudinal mode 3 - - 19 3045.55 

1
st
 Tangential mode - 1 0 20 5032.92 

2
nd
 Tangential mode - 2 0 20 8349.01 

1
st
 Radial mode - 0 1 20 10475.90 

1
st
 Longitudinal – 1

st
 Tangential mode 1 1 0 21 16425.51 

2
nd
 Radial mode - 0 2 20 19180.30 

  

 

 

From analysis of the data, five regimes of combustor dynamics were identified in 

the tests whose time history was presented in Figure 3.5. The first regime corresponds to 

the stable operation at the beginning of the test where K  is decreasing. Figure 3.7 shows 

the CASD of the data when the LRECS operated under this regime. In spite of the low 
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level of oscillations amplitude in the combustor, the spectrum reveals distinctive peaks at 

the frequencies around Hzf 600= , Hzf 1800= , Hzf 2800= , Hzf 4800= , 

Hzf 7800=  and Hzf 9600= , which likely correspond to the six first natural 

frequencies estimated in Table 3.2. It should be noted, however, that these peaks in the 

spectrum are “visible” due to the scale applied to the amplitude axis. The spectrum also 

reveals a certain level of background noise at all frequencies. 

 

 

Figure 3.7: Cross amplitude spectral density from sensors 1PFO ′  and 1P′  during stable 
operation of the combustor ( )60/40;1 == Kφ . 

 

 

The second regime corresponds to the transition from stable to unstable 

combustion. Figure 3.8 shows the CASD describing the second regime. The spectrum 

shows an increase in the amplitude of the Hzf 600≈  mode, which can be identified as 

the quarter wave longitudinal mode (¼L). The excitation of the longitudinal mode during 
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transition from stable to unstable operation is accompanied by the appearance of a 

significant peak at Hzf 5000≈ , which closely matches the frequency of the first 

tangential mode (1T). The amplitude of this peak is approximately 50% of the 

dominating quarter wave longitudinal peak. A certain increase in spectrum amplitude is 

also observed at Hzf 7800≈ , which closely corresponds to second tangential mode 

(2T).  

 

 

Figure 3.8: Cross amplitude spectral density from sensors 1PFO ′  and 1P′  during the 
transition regime in the combustor ( )75/25;1 == Kφ . 

 

 

The third regime corresponds to the severely unstable operation after the 

transition regime. The cross amplitude spectrum density presented in Figure 3.9 indicates 

that the instability was dominated by the oscillations of the first tangential mode at 

frequency around Hzf 5000=  and its first harmonic. A very small peak corresponding 
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to the ¼ L mode is also present. In addition to the agreement between the measured 

frequency and the estimated value in Table 3.2, the excitation of the first tangential mode 

oscillations was supported by the phase in the cross spectrum calculated at this frequency 

from the signals of the two dynamic pressure sensors. The cross spectrum indicated anti-

phase (out-phase) signals at that frequency, which was expected for the first tangential 

mode since the sensors were located at diametrically opposite positions.   

 

 

 
 

Figure 3.9: Cross amplitude spectral density from sensors 1PFO ′  and 1P′  during unstable 
operation of the combustor ( )84/16;1 == Kφ . 

 

 

 

The forth and fifth regimes describe the unstable operation just before the decay 

of the tangential mode instability and stable operation just after the decay of the 

instability, respectively. The spectra of these regimes are very similar to those presented 

in Figures 3.8 and 3.9. An important observation is the presence of the same modes, in all 
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of these regimes; i.e., the peaks occurred at approximately the same frequencies in the 

spectrum which characterize stable operation of the combustor just before and 

immediately after instability decayed. However, the amplitudes of those modes varied. 

That will be used later as a guide to model possible coupling and triggering between 

modes when deriving the dynamical model.  

Figure 3.10 shows the cross power spectrogram of the chemiluminescence and 

dynamic pressure data shown in Figure 3.5. One can see the sudden changes in frequency 

content as the combustor goes from stable to unstable and vice-versa. 

 

 

Figure 3.10: Cross amplitude spectrogram sensors 1PFO ′  and 1P′  during the whole period 
of test. 
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Since the developed approach in this research is based on gray-box modeling, the 

following findings collected by the preliminary analysis of the experimental data will 

play a role in the development of the dynamical model for the system: 

1) The excited modes are very well approximated by the natural acoustic modes 

of an open-closed end tube whose frequencies and mode shapes can be 

estimated from solutions of the linear wave equation. 

2) Even at stable operation, peaks in the spectrum corresponding to acoustics 

modes are present with amplitudes much larger than the amplitude level of the 

background noise, implying a high value of signal-to noise ratio (SNR) in the 

collected signals. 

3) The number of excited modes whose power in the spectral analysis accounts 

for more than 95% of the total power in the collected signals is not larger than 

eight, indicating that only a few well defined modes are responsible for most 

of the acoustic energy content in the signals. 

4) The presence of hysteresis implies the presence of nonlinearities and feedback 

in the system. This indicates that the dynamical model should take into 

account that the response of the system to changes in a given parameter is 

history-dependent to allow the presence of bi-stability.  
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CHAPTER 4 

THERMOACOUSTIC MODEL 

The representation of a dynamical system by a mathematical model is one of the 

most important aspects in dynamical system identification. In this work, we are interested 

in deriving a model that captures the behavior of the LRECS, to allow assessment of its 

stability margin. In particular, we seek to develop a gray-box model, i.e., its derivation is 

based on the physics of the problem. 

The analytical framework followed here is based upon more than fifty years of 

research in the field of combustion instabilities. This formalism has led to the most 

widely used methods for analyzing and interpreting combustor dynamics. The basic idea 

is to represent unsteady motions inside a combustor in terms of the acoustic modes of the 

chamber, so that the unsteady field can be expressed as a synthesis of classical acoustic 

modes with time-varying amplitudes. Then, we search for an approach for calculating the 

changes of these amplitudes due to changes in operating conditions. The approach is 

quite general and can be applied to most of combustor chambers (LREs, gas turbines, 

etc.).  

Due to the intricate physical and chemical processes taking place inside the 

combustor, the classical acoustic representation is an approximation. However, one can 

show those processes have small effects, producing small departures from the classical 

acoustic frequencies and, more significantly, small fractional changes of the modal 

amplitudes during a period of oscillation
[2]
. Therefore, combustion instabilities can be 

seen as perturbations of classical acoustics and the gray-box modeling must include the 
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derivation of some kind of wave equation. This will be carried out in the next two 

sections. 

4.1 Nonlinear Wave Equation 

All gray-box models are based upon the physics of the system. The best way to 

start this kind of modeling is writing the conservation equations for the problem. Since 

the system contains condensed phase (i.e., liquid fuel) the equations of motion must be 

written for the two phases (the gas and a condensed phase comprising the liquid 

droplets). The properties of each phase are represented as mass averages of the properties 

of all member species. Consequently, the gases are treated as one gas and the condensed 

species as a liquid. 

Following the work of Culick
[12]

, we can combine the equations for two-phase 

flow and construct a system of equations representing a single fluid. The procedure is 

described in Appendix A. As a result, we can treat combustor dynamics under broad 

conditions as unsteady motions of a fluid having the mass-averaged properties of the 

actual medium. The governing equations are: 

- Conservation of Mass:            
D

Dt

ρ
ρ= − ∇ +u. W  (4.1) 

- Conservation of Momentum:  
D

p
Dt

ρ = −∇ +
u

F  (4.2) 

- Conservation of Energy:          
DT

C p
Dt

υρ = − ∇ +u. Q   (4.3) 

- Equation of State:                     p RTρ=  (4.4) 

where the substantial derivative is defined in terms of the gas velocity, 



 50 

                                              
D

Dt t

∂
= + ∇

∂
u.  (4.5) 

and the definitions of the variables and the source functions W , F , and  Q are also given 

in Appendix A. The source functions account for all relevant physical processes in the 

system to be analyzed. 

Now, multiplying Equation (4.1) by RT , Equation (4.3) by /R Cυ  and summing 

the resulting expressions one obtains 
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Taking the substantial derivative of Equation (4.4) we have 

        
ln( )D RDp DT D DR DT D

R RT T R RT p
Dt Dt Dt Dt Dt Dt Dt

ρ ρ
ρ ρ ρ= + + = + +  (4.7) 

Substituting Equation (4.6) into (4.7), one obtains the equation for the pressure  

                                               
Dp

p
Dt

γ= − ∇ +u. P  (4.8) 

where 
R D R

RT p
C dtυ

= + +
Q ln( )

P W .  

These governing equations can be used to derive the nonlinear wave equation for 

the combustor pressure. The derivation starts by writing all dependent variables as the 

sum of a mean (or averaged value) and a small-amplitude fluctuating (or perturbation) 

parts. So we get, 

                                           ( , ) ( ) ( )p t p p t′= +r r  (4.9) 
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                                   ( , ) ( ) ( , )t tρ ρ ρ′= +r r r  (4.10) 

                                   ),()(),( tt rururu ′+=  (4.11) 

                                  F( , ) F( ) F ( , )t t′= +r r r  (4.12) 

                                 P( , ) P( ) P ( , )t t′= +r r r  (4.13) 

Next, we assume the mean pressure is uniform inside the chamber, which implies 

the average Mach number of the mean flow is small, and that the average density is also 

uniform. All mean terms are independent of time and assumed to satisfy their 

corresponding mean equations. Thus, the mean parts of Equations (4.2) and (4.8) are 

                                         
D

p
Dt

ρ = −∇ +
u

F  (4.14) 

                                         
Dp

p
Dt

γ= − ∇ +u. P  (4.15) 

Substituting Equations (4.10) to (4.13) into (4.2) and (4.8) yields equations that 

contain many terms with higher orders in the fluctuating variables. However, since 

previous studies
[41]

 have shown that adequate description of the system can be obtained if 

only terms up to second order in fluctuations are retained, the following equations are 

obtained:  

             ( ) . ( )( . . ) . Fp
t

ρ ρ ρ ρ ρ ρ
′∂′ ′ ′ ′ ′ ′ ′ ′ ′+ = −∇ − ∇ − + + ∇ + ∇ − ∇ +

∂
u

u u u u u u u u  (4.16) 

                             . . . . . P
p

p p p p p
t

γ γ γ
′∂ ′ ′ ′ ′ ′ ′ ′ ′+ ∇ + ∇ + ∇ = − ∇ − ∇ +

∂
u u u u u  (4.17) 

Differentiating Equation (4.17) with respect to time gives 
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Assuming that the isentropic relation can be used 

                                                               
2a

p′
≈′ρ  (4.19) 

Substituting for 
t∂

′∂u
 from Equation (4.16) into Equation (4.18) and applying (4.19) we 

obtain the following nonlinear wave equation for pressure oscillations 
[42],[43]

 

                                                        
2
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′∂′∇ − =
∂

  (4.20) 

which must satisfy the following boundary condition 

                                                                 . Bp′∇ = −n   (4.21) 

The boundary condition for the pressure field is found by taking the scalar 

product of the outward normal vector, n , at the chamber boundary, with the momentum 

equation. In these equations, H  and B  are, in general, nonlinear functions given by 
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t a t
ρ ρ

′ ′ ′∂ ∂′ ′ ′ ′ ′= + ∇ + ∇ + ∇ + −
∂ ∂
u u

n u u u u u u n n n  (4.23) 

4.2 Modal Expansion 

The nonlinear wave equation just derived is a partial differential equation (PDE). 

Since the dynamical system identification techniques in this work will deal with time-

series of experimental data, the developed dynamical models should be represented in 

terms of ordinary differential equations (ODEs) or algebraic difference equations. The 

transformation of the PDE into a set of equivalent ODEs can be accomplished by 
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applying a spatial averaging technique based on a modified Galerkin's method proposed 

by Powell and Zinn
[44]

.  

The Galerkin method is a special case of the Method of Weighted Residuals 

(MWR). We start by writing the wave equation and its boundary condition in the form of 

residuals as 
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  (4.24) 

where 
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  (4.25) 

Now, we approximate the dependent variable, p′ , as an expansion in a set of 

basis functions nϕ . In this sense, we consider p ′~  as an approximation of the actual 

pressure perturbation, p′ , and express it as an expansion modal expansion truncated to 

N terms. Thus, we can write 

                                      
1 1

lim lim
N N

m m m m
N N

m m

p a p p aφ φ
→∞ →∞

= =

′ ′ ′= ⇒ = =∑ ∑ɶ ɶ   (4.26) 

The MWR consists of spatial averaging, with a weighting function mΘ , of 

Equation (4.25), that employs the approximation for p ′~  and requiring that the result be 

zero; i.e., 

                                                           0=Θ′∫∫∫
V

mdVpE )~(   (4.27) 

Next, the unknown coefficients ma  in Equation (4.26) are determined in a way 

that minimizes the residual in some sense. If the boundary conditions are simple (i.e., 
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homogeneuous), it is often possible to find an approximate solution p ′~  that satisfies the 

boundary conditions. In this case the averaging process applied to the boundary condition 

is already identically zero. That is not the case in combustion instabilities problems where 

the boundary conditions are complex.   

The Galerkin method is a special case of the MWR since the weighting functions 

are the same as the basis functions used in the modal expansion; i.e., mm ϕ=Θ . A 

modified Galerkin method was proposed
[44]

 to account for the averaging process applied 

to boundary conditions as well. The coefficients ma  are determined by solving the 

following equation 
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p dV p dS

a t
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ɶ

ɶ ɶ�   (4.28) 

If we apply Green’s theorem to the first term on the left-hand side, we obtain 

                           2 2

m m m m

V S V

p dV p p dS p dVφ φ φ φ′ ′ ′ ′∇ = ∇ + ∇ − ∇∫∫∫ ∫∫ ∫∫∫nɶ ɶ ɶ ɶ�( ).   (4.29) 

and substituting the result into Equation (4.28) we have 
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  (4.30) 

The next step is to choose the mode shape Nψ as the weighting function. The 

equations which define the mode shapes can be obtained from classical acoustics by 

setting 0H B= =  in the wave equation and its boundary condition. 

                                                        022 =+∇ NNN k ψψ   (4.31) 
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                                                              0=∇ Nψ.n   (4.32) 

where Nk  is the wave number for the N
th
 mode.  

Now substituting m Nφ ψ=  into Equation (4.30) and using the Equations (4.31) and 

(4.32) one can write 
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H BN N N N N

V V V S
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∫∫∫ ∫∫∫ ∫∫∫ ∫∫
ɶ

ɶ �   (4.33) 

To proceed with the solution of Equation (4.33) the modal expansion p ′~  must be 

specified. Assuming that the solution of Equations (4.20) and (4.21) do not significantly 

differ from the corresponding classical acoustic solutions (i.e., the classical normal mode 

solutions for which 0H B= = ) or a combination of them, we express p ′~  as a finite sum 

of acoustic modes; i.e.,   
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==′
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)()(),(~ rr ψηϕ        (4.34) 

which in the limit when ∞→M  becomes 

                                                   ∑
∞

=

=′
1m

mm tptp )()(),( rr ψη        (4.35) 

It is further assumed that the normal modes in Equation (4.35) are orthogonal, so that the 

following relationship holds  

                                  2 2( ) ( ) ( )m n mn n n mn

V V

dV Eψ ψ δ ψ δ= =∫∫∫ ∫∫∫r r r    (4.36) 

The corresponding modal expansion for the acoustic velocity fluctuation can be 

obtained from the classical acoustics, so that term by term the chosen expansion for p′  

and ′u satisfies the classical acoustic momentum equation given by 
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If we assume that the acoustic velocity is approximated by 
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and substituting Equations (4.38) and (4.36) into (4.37) we obtain 
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which is always satisfied according to Equation (4.31), thus indicating that the assumed 

expression for the acoustic velocity is correct. 

Substituting the expression for the pressure, Equation (4.35), into Equation (4.33) 

and applying the orthogonality property, Equation (4.36), Culick
[43]

 obtained the 

following equation for the N
th
 mode 

                                                            NNN
N F

dt

d
=+ ηω

η 2
2

   (4.40) 

where NN ka=ω  is the natural angular frequency of the N
th
 mode, and 

                                             
2

2
{ H B }N N N

N V

a
F dV dS

pE
ψ ψ= − +∫∫∫ ∫∫�    (4.41) 

is the forcing function, which represents the deviation from unperturbed acoustic modes 

and provides the mechanisms which allows for initiated oscillations to grow or decay. 

The forcing function is, in general, a nonlinear function that may depend on other modes 

(not only the N
th
 mode), thus generating coupling between modes, as will be 

demonstrated later. 

In principle, an infinite number of modes may be excited in the combustor. 

Therefore, the dynamical model for a general unsteady motion in a combustor can be 
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represented by the time-evolution of a system of an infinite coupled nonlinear oscillators. 

The left-hand side of Equation (4.40) describes the motion of an undamped linear 

oscillator, whereas the forcing function on its right-hand-side will, in general, contain 

terms representing linear and nonlinear damping, springiness and inertia.  

Thus, it is important to understand the connections between parameters that 

describe the oscillators, the characteristics of the modes, and the definitions provided in 

the process of spatial averaging. Different problems are distinguished mainly in two 

respects: geometry of the combustor; and the form of the forcing function. The geometry 

and the boundary conditions determine the modal expansion functions, or mode shapes 

( )mψ r , and the natural frequencies, Nω . On the other hand, the forcing function 

explicitly accounts for the influence of gasdynamical effects and includes other processes 

that need to be described by models, either derived form theory (physically based) or 

based on experimental results (system identification based). The next section describes 

the gray-box modeling of the forcing functions in order to write them in a more useful 

form for system identification purposes.  

4.3 The Forcing Functions 

4.3.1 Explicit Terms 

Substituting Equations (4.22) and (4.23) into (4.41) we obtain the following 

expression for the forcing function
[41]

: 
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where 
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Following the approach of Chu and Kovasznay
[45]

, we can represent a disturbance 

in a compressible flowing medium as a combination of three modes of propagation; i.e.,  

acoustic, vorticity, and entropy waves. Thus, we can write 

                                                  sa pppp ′+′+′=′ Ω    (4.44a) 

                                                    sa ssss ′+′+′=′ Ω    (4.44b) 

                                                  sa Ω′+Ω′+Ω′=Ω′ Ω    (4.44c) 

                                                   sa uuuu ′+′+′=′ Ω    (4.44d) 

where the subscripts a , Ω , and s  represent the acoustic, vorticity and entropy modes. 

Assuming small amplitude motions, we can use a zero-order approximation for the flow 

variables as follow: 
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The density fluctuation contains a contribution from the entropy fluctuation 

(related to the temperature). From the formula for the entropy of a perfect gas, we have 
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p p
s s c

γ

ρ ρ
− =    (4.46) 

Thus, expanding Equation (4.46) and assuming a first order approximation in the 

pressure fluctuations, the following expression can be derived for the density fluctuations  
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which leads to the following equations 
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Next, substituting Equations (4.45a-d) into (4.43a-d), one obtains the following 

results
[41]

: 

                                                           sa IIII 1111 ++= Ω    (4.49a) 

                                                                  aII 22 =    (4.49b) 

                              ssssasaasaaa IIIIIIIIII 3333333333 ++++++++= ΩΩΩΩΩΩ    (4.49c) 

                               ssssasaasaaa IIIIIIIIII 4444444444 ++++++++= ΩΩΩΩΩΩ    (4.49d) 

where the definitions of each one of integrals are given in reference
[41]

. 

The contributions of all linear processes in the forcing function are included in 

terms involving first order fluctuations in the acoustic components. Thus, they are 

combined in the integrals aI1  and 
aI2 . Therefore, we can write 
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where the coefficients NiD  and NiE  representing all linear processes in H and B  are 

given by
[46]
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∫∫∫ u u u u    (4.51) 

                                                              Ni EE L=    (4.52) 

where the coefficients DL  and EL  denote the net contribution of terms which are linear in 

ηɺ  and η , respectively, arising from all sources in the system. In particular, one can show 

that NNNND ωξ2=  and NNNNE ωθ2= , where Nξ  is the modal damping ratio, Nω  is the 

modal angular frequency and Nθ  is the modal frequency shift.  

Burnley
[41]

 showed that the effects of linear coupling ( N i≠ ) described by 

Equation (4.50) are of higher order and could be neglected. Thus, in this approach linear 

coupling will be neglected so that only NNNND ωξ2=  and NNNNE ωθ2=  will be included 

in the model.  

Similarly, the contributions of the nonlinear gasdynamics to second-order involve 

terms with second order in acoustic fluctuations. Thus, they are combined in the integrals 

aaI3  and aaI4  so that 
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where the coefficients NijA  and NijB  describe gasdynamical nonlinearities and are given 

by
[46]
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where Nij N i j

V

I dVψ ψ ψ= ∫∫∫ . 

The remaining integrals that are not included in Equations (4.50) and (4.53) have 

terms involving Ω′u  and su′ . Since, the sources of noise in the combustor can be 

associated with the presence of vorticity and entropy fluctuations, the terms involving 

these integrals will act as source terms for the noisy part of the acoustic field. Then, the 

integrals Ω
1I  and sI1  which contain only first-order terms in non-acoustic fluctuations can 

be combined into a noise source term as 
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Similarly, we combine integrals which contain only second-order terms in non-

acoustic fluctuations yielding 
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Finally, we combine integrals which contain terms with non-acoustic fluctuations 

multiplied by acoustic fluctuations and derive the multiplicative noise terms as  
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Applying the simplification adopted by Burnley
[41]

, we neglect cross-coupling 

terms in multiplicative noise (i.e., N i≠ ) in Equation (4.58). Then, we have  
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Next, we combine the additive noises and the multiplicative noises by defining 

                                                        0 1 2( ) ( )

N N NΞ = Ξ +Ξ    (4.60a) 

                                                             1 3( )

N NΞ =Ξ    (4.60b) 

                                                        2 4 5( ) ( )

N N NΞ = Ξ +Ξ    (4.60c) 

The expressions derived so far for the terms of the forcing function, allow us to 

write the nonlinear wave equation as 

  2 1 2 3 NL     1 2L NL GD noise noise noise

N N N N N N N N N mF F F F F F N Nη ω η −+ = + + + + + =ɺɺ , , , ( ) , ,...,   (4.61) 

 where NL)( NF  accounts for all other nonlinear terms which could not be modeled 

explicitly (including combustion), and mN  is the total number of excited modes in the 

combustor.  

Substituing Equations (4.50), (4.53), (4.56), (4.57) and (4.59) into Equation 

(4.61), one obtains the following set of equations where the linear coupling from 

gasdynamics has been neglected for reasons stated before 

 

  

2 NL

1 1

2 1 0

2 2

           1 2

m mN N

N N N N N N N N Nij i j Nij i j N

i j

N N N N N m

A B F

N N

η ξ ω η ω θ ω η ηη ηη

η η
= =

+ + + + + − =

= Ξ + Ξ + Ξ =

∑∑ɺɺ ɺ ɺ ɺ

ɺ

( ) ( ) ( )

, ,...,

   (4.62) 

 

At this point, one can note that the system of equations representing the dynamics of the 

modes have several terms with different contributions from gasdynamics (linear 

1 2 
3 

4 5 6 
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represented by terms 1 and 2; nonlinear represented by term 3) and combustor 

background noise (terms 4, 5, and 6). All of these terms were taken into account 

explicitly.  

4.3.1.1 Stochastic Excitation 

Examination of the right hand side of Equation (4.62) shows the presence of two 

multiplicative noise terms, 1

NΞ  and 2

NΞ , also known as parametric excitation, and one 

additive noise term, 0

NΞ , also known as external excitation. They represent stochastic 

processes which are responsible for the background noise found in the power spectra 

shown in the last chapter. In this thesis, all stochastic processes were modeled as 

mutually independent zero mean white noise (ZMWN) processes.  

As the experimental data is discrete, we consider each stochastic excitation term 

as a sequence of independent random numbers, iW , with Gaussian distribution and 

variance 2

Wσ . The continuous time stochastic process, ( )W t , is obtained via a zero-

order-hold in which we consider  

                                               ( ) iW t W=  for  1i it t t +≤ ≤    (4.63) 

where the sampling time is defined by 1i it t t+∆ = − . In this sense, the noise terms are 

represented by 

                          0( ) ( )N t W tΞ = ; 1

1( ) ( )N t W tΞ = ; and 2

2( ) ( )N t W tΞ =    (4.64) 

with corresponding intensities calculated as 
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Using these relationships, we can rewrite Equation (4.62) for the N-th mode in the 

following form 

                             (t)           0 1 2N N N j N N jf b W jη η η η η+ = =ɺɺ ɺ ɺ( , ) ( , ) , ,   (4.66) 

where the repeated index “j” implies summation and assuming that the nonlinear terms in 

NL

NF  are also functions of 
Nη  and/or 

Nηɺ . In general, the damping and stiffness of the 

system are included in the internal force function 
N Nf η ηɺ( , ) . The right hand side of 

Equation (4.66) also includes excitation 
jW t( )  due to white noise processes that is 

multiplied by the excitation coefficient functions, 
j N Nb η ηɺ( , ) . When we measure the 

system response and estimate the system parameters via SID techniques, the estimated 

parameters are called apparent values. Since parametric excitation is assumed to have 

influence upon the apparent damping and/or stiffness, an effective value for these 

parameters needs to be estimated. 

To determine these effects, we follow the work of Zhu and Lin
[47]

. First, we recall 

the definition of the covariance function of white noise processes given by 

                                                (t+ )]=2 Si j ijE W t W τ π δ τ[ ( ) ( )   (4.67) 

where [.]E  is the mean (or expected) value operator, Sij
 is the correlation between the 

noise processes and S Sii i=  is the intensity of the noise. Using the above definition, we 

can replace Equation (4.66) by 

                                         (t)N N N N Nf Wη η η σ η η+ =ɺɺ ɺ ɺ( , ) ( , )   (4.68) 

where (t)W  is a unit white noise (zero mean and unit variance) and 
N Nσ η ηɺ( , )  is called 

the excitation amplitude function defined as
[48]

 

                                       2 2N N ij i N N j N NS b bσ η η π η η η η=ɺ ɺ ɺ( , ) ( , ) ( , )   (4.69) 
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Next, multiplying Equation (4.68) by 
Nηɺ  we obtain 
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where 
Ng η( )  is the stiffness function, so that 

0

( ) ( )
N

NG g x dx

η

η = ∫  defines the potential 

energy in the system. Equation (4.70) can be rewritten in the form of an energy balance 

equation 

                             (t)N N N N N N N

d
W f g

dt
σ η η η η η η η

Λ
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where Λ  is the mechanical energy of the system.  

Taking the expected value of Equation (4.71) conditional to a certain 

displacement level, and applying results from the associated non-homogeneous Fokker-

Planck equation, Zhu and Lin
[47]

 derived the following expression for the effective 

stiffness function of the system 
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 where 
N N

pη ηɺ |  is the marginal probability density of 
Nηɺ  for a given value of 

Nη . The 

second term inside the integral is the well known Wong-Zakai
[48]

 correction of the 

internal force function and it accounts for the presence of parametric noise in the system. 

Similarly, taking the expected value of Equation (4.71) conditional to a certain 

mechanical energy level, Zhu and Lin
[47]

 derived the following expression for the 

effective damping ratio of the system 
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where 
N

pη Λɺ |  is the marginal probability density of 
Nηɺ  for a given energy level, Λ . Again, 

the second term inside the integral is the Wong-Zakai
[48]

 correction of the internal force 

function and which accounts for the presence of parametric noise in the system. 

A practical application of these equations was performed by Rudinger and 

Krenk
[49]

 who have estimated the effective stiffness and damping of a linear 

stochastically excited system with additive and parametric noises represented by 

                                 2

0 2 0 1 02X W t X W t X W tξω ω+ − + − =ɺɺ ɺ[ ( )] [ ( )] ( )   (4.74) 

In this case, the excitation amplitude function is given by
[49]

 

                       2 2 2

00 11 12 222 2X X S X S XXS X Sσ π= + + +ɺ ɺ ɺ( , ) ( )   (4.75) 

Applying Equations (4.72) and (4.73) they derived the following expressions for 

the effective stiffness and damping of the system represented by Equation (4.74) 

                                              212
02
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1
S

g X Xπ ω
ω

= −( ) ( )   (4.76) 

                                                     22

3

0

1

2
eff

S
ξ ξ π

ω
= −  (4.77) 

Equation (4.76) shows that the correction in the stiffness due to parametric noise 

depends on the correlation of the two parametric noise processes (i.e., 1( )W t  and 2( )W t ) . 

This result has also been reported for more complex system involving nonlinearities
[28]

. 

Since we assumed that the noise sources are mutually independent (i.e., 12 0S = ) their 

influence upon the effective natural angular frequency of the system vanishes according 

to the Equation (4.76).  

Equation (4.77) indicates that the effective damping depends on the spectral 

intensity of the parametric noise 2( )W t . For sufficiently large values of the spectral 
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intensity of the parametric noise, the effective damping is smaller than the actual 

damping of the system. This is also known as noise-induced drift. There is also the 

possibility of destabilization of a stable system ( 0ξ > ) by parametric excitations, since 

the effective damping can be negative. So, the parametric excitation, 2( )W t , would have 

impact upon the dynamical behavior of the system. 

However, for usual values of noise spectral intensity, the correction presented in 

Equation (4.77) is very small. In Chapter 5 we will present some results which confirm 

this small effect. Therefore, we moved the parametric excitation from the right hand side 

of our model equation and lumped its effect on an effective damping ratio. The stiffness 

is also represented by an effective stiffness which accounts for the frequency shift. With 

the simplifications and notations presented above, Equation (4.62) reduces to  

2 NL

0

1 1

2    1 2
m mN N

N N N N N N Nij i j Nij i j N N m

i j

A B F W N Nη ξ ω η ω η ηη ηη σ
= =

+ + + + = + =∑∑ɶɺɺ ɶ ɺ ɶ ɺ ɺ
,( ) ( ) , ,...,  (4.78) 

where ( )ɶ  represents effective values. 

4.3.2 Flame Dynamics 

As mentioned before, NL)( NF  contains processes that need to be modeled. In this 

research we focused on presenting a model only for the most important process, which 

accounts for the influence of the unsteady heat release associated with the chemical 

reactivity of the flow. The temporal rate of change of the heat release, also referred as 

flame dynamics, is the most complex part of the modeling process due to the complexity 

of chemical kinetics and physical transport processes. Experiments have shown that 

acoustic modes are excited with harmonics and sub-harmonics due to nonlinear flame 
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effects. Some other frequency peaks and modulations can also be introduced by flame 

dynamics. 

Fluctuations in the rate of heat release appears in NL)( NF  as the following energy 

addition term
[11]

 

                                               
2

1
( )NL Q

N N

N V

Q
F F dV

pE t

γ
ψ

′− ∂
≅ =

∂∫∫∫
ɺ

  (4.79) 

where the rate of heat release, Qɺ ′ , depends on local fluctuations of the flow variables. 

Therefore, it cannot be determined just from elementary considerations of chemical 

kinetics.  

The first model describing the coupling between heat release and flow-field 

perturbations in liquid-fueled systems was proposed by Crocco
[11]

 and it is referred to as 

the time-lag or τ−n  model. The model assumes that at time t the pressure in the 

combustor chamber suddenly decreases, causing an increase in fuel flow through the 

injectors. The increased mass burns at some later time ( t τ+ ), where τ  is the time lag.  

The presence of the time delay transforms the dynamical system equations into a 

set of stochastic differential delay equations (SDDEs). Systems with delays, commonly 

called infinite-dimension systems, impose some restrictions upon the application of SID 

techniques. In general, only input-output identification can be applied in this case. As in 

this work we are primarily interested in performing stochastic system identification, a 

finite-dimension model needs to be presented.  

More details about the flame dynamics model used in this research will be 

presented in Chapter 6. Here, we just assume that the heat release is uniformly distributed 

in a small region close to the injector plate. The dimensions of this region depend on the 
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type of excited mode. For example, if a longitudinal is excited we can assume that the 

heat release is uniformly distributed in a thin sheet located at fx  downstream the injector 

plate. So, for a longitudinal mode Equation (4.79) can be rewritten as 

            
2 2

1 1 ( ) ( )f f fQ

N N N N

N NV V

Q t x x QQ
F dV dV a

pE t pE t t

δγ γ
ψ ψ

′ ′∂ − ∂′− ∂ −
= = =

∂ ∂ ∂∫∫∫ ∫∫∫
ɺ ɺɺ

  (4.80) 

 where 

f

f

x x

Q Q

t t
=

′∂ ′∂
=

∂ ∂

ɺ ɺ
, 

2

1
( )N ch N f

N

a A x
pE

γ
ψ

−
= , and chA  is the transversal area of the 

chamber. 

We also anticipate that the dynamics of the heat release oscillations will be 

represented by a nonlinear dependence upon the acoustic velocity given by the following 

expression 

                                                  1( , , , )
m

f

f N

dQ
g Q

dt
η η

′
′=

ɺ
ɺ ɺ ɺ…   (4.81) 

4.4 The Finite-dimensional Model 

The amplitude of the dynamic pressure oscillations measured by the pressure 

transducers is the synthesis of all the excited modes. To account for the presence of 

measurement noise, the measured dynamic pressure oscillations are expressed by  

                                             
1

( , ) ( ) ( ) ( )
mN

j j i i j j

i

p t p t e tη ψ
=

′ = +∑r r        (4.82) 

where jp′  represents the pressure measured by the j-th sensor, )(te j  is the corresponding 

noise from measurements which is also assumed ZMWN, and ( )i jψ r  is the mode shape 

of he mode calculated at the j-th sensor location. The mode shapes are given by 

                                  ( ) ( , , ) cos( )cos( ) ( )i pmn p m mnx r k x m J rψ ψ θ θ κ= =r        (4.83) 
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The subscripts p, m, n correspond to the longitudinal, tangential and radial modes 

respectively and mJ is the Bessel function of first kind and order m. The values of 

transverse wave numbers, mnκ , are calculated by solving the boundary condition which 

ensures that the radial velocity vanishes at the wall 

                                                          0
( )m mn

r R

dJ r

dr

κ

=

=        (4.84) 

Therefore, substituting Equation (4.80) into (4.78), the complete finite-

dimensional gray-box model for the LRECS with mN  excited modes is described by the 

following set of equations: 

2

0

1 1

2    1 2,( ) , ,...,
m mN N

f

N N N N N N Nij i j Nij i j N N m

i j

dQ
A B a W N N

dt
η ξ ω η ω η ηη ηη σ

= =

′
+ + + + = + =∑∑

ɺ
ɶɺɺ ɶ ɺ ɶ ɺ ɺ  (4.85a) 

                                                 1( , , , )
m

f

f N

dQ
g Q

dt
η η

′
′=

ɺ
ɺ ɺ ɺ…   (4.85b) 

                                          
1

( , ) ( ) ( ) ( )
mN

j j i i j j

i

p t p t e tη ψ
=

′ = +∑r r        (4.85c) 

The model just presented has some of the main features of a thermoacoustic 

instability problem. The combustor acoustic modes are excited by the inherent 

combustion noise and by the unsteady heat release, as shown in Equation (4.85a). 

Additionally, the unsteady heat release is coupled with the combustor acoustics by the 

acoustic velocity fluctuations as given by the Equation (4.85b). Thus, there is feedback 

between the unsteady heat release and the acoustics. Clearly, the number of parameters 

that need to be estimated in this model is very large. Depending on the flame dynamics 

model, the number of parameters to be estimated can be even larger, even if only a few 

excited modes are considered.  
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4.5 Numerical Simulations 

The gray-box dynamical model for the LRECS is represented by Equations 

(4.85a-c). The next step in this research is the implementation of appropriate system 

identification (SID) technique, which would fit the experimental data to the dynamical 

model providing estimates of the models parameters. Using such approach it is necessary 

to determine the accuracy of those parameters estimates. Therefore, before applying any 

SID technique to the experimental data, the accuracy of the estimated parameters should 

be evaluated. A reasonable way for performing such an evaluation is to apply the 

developed SID technique to a numerically simulated response of the system. 

The main aspect to be taken into account when performing numerical simulations 

of this system is the presence of the stochastic differential equations. SDEs appear in 

various disciplines in sciences and engineering and usually have two additive terms. The 

first, the so-called drift term, describes a deterministic function of the state variables and 

model parameters. The second term, the so called noise term or in a slightly narrower 

sense the diffusion term, describes a stochastic function. A clearer distinction between 

these two terms will be given next when representing the system in matrix form.  

The main issue about solving SDEs numerically is the fact that the rules of 

deterministic calculus do not apply to stochastic calculus. Consequently, the use of 

conventional ODEs solvers is not recommended. In order to solve numerically the system 

of SDEs, we need to use the proper mathematical tools.  

Firstly, we define the following vector of state variables 

              1
1( ) [ ]m

m

N T

N

dd
Q

dt dt

ηη
η η ′= =tx x t ɺ… …  (4.86) 
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Then we represent the system of Equations (4.85a-c) in the following generic 

matrix form  

             d dt dt= + ⇒ = +t t t t t t t tx f(x ,θ) g(x ,θ)W x f(x ,θ) g(x ,θ)Wɺ  (4.87) 

where ∈θ p is the vector of model parameters, 2 1mN +∈tf(x ,θ) ℝ is the vector of drift 

functions given by 

         
1 1[ ( , ) ( , ) ( , )]

m m

T

N N Q
f f fη η ′=t t t tf(x ,θ) x θ x θ x θɺɺ ɺ… … …  (4.88) 

2 1 2 1m mN N+ × +∈tg(x ,θ) ℝ  is the diagonal matrix of diffusion or noise functions defined as 

             

1

0 0 0 0 0 0

0 0

0 0 0

0

0 0

0 0

0 0 0 0 0 0

( , )

( , )
mN

g

g

 
 
 
 
 
 =
 
 
 
 
 
  

t

t

t

g(x ,θ)
x θ

x θ

⋯ ⋯

⋱

⋮ ⋮

⋮ ⋮

⋱

⋯ ⋯

 (4.89) 

and  2 1mN +∈tW ℝ  is a vector of standard Wiener process (unit ZMWN).  

                          
10 0 0 0[ ( ) ( ) ]

m

T

NW t W t=tW ⋯ ⋯  (4.90) 

The definition of a standard Wiener process (also called Brownian motion), 

tWtW =)(  on ],[ T0 , requires that 00 0 ==WW )(  and for any Tts ≤<≤0 , the increment 

st WW −  is a Gaussian random variable with zero mean and variance equal to t-s. For 

numerical purposes we discretized the Wiener process in a time step dt  such that 

                                                       01( , )tdW dtN=  (4.91) 

where ),( 10N  is the standard normal Gaussian distribution.  

Since ( )nW t  were assumed to be ZMWN with variances 2

nWσ , we can write 
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                                     01( , )
n nn W W t n tW dt N dt dtdW dWσ σ σ= = =  (4.92) 

Substituting Equation (4.92) into (4.87) provides the system in Ito formulation
[50]

  

                                   d dt= +t t t tx f(x ,θ) σg(x ,θ)dW  (4.93) 

where 2 1mN +∈tdW ℝ  is a standard Wiener increment vector and 2 1 2 1m mN N+ × +∈σ ℝ  is a 

diagonal matrix of noise intensities. However, the solution of the system in Ito 

formulation is accurate when there is no parametric noise; i.e., when =g g(θ) . This is the 

case in our developed model. When parametric noise is taken into account, there will be a 

correlation between the noise and the system response, and the Stratonovich
[50]

 

formulation should be used. The system in the Ito formulation given by Equation (4.93) 

can be converted to the Stratonovich formulation as 

                                   d dt= +t t t tx f(x ,θ) σg(x ,θ) dW
  (4.94) 

where 

2 2 2 2

1 1

1
       1 2

2
, , ,

m mN N
jk

i i jk m

j k j

g
f f g i N

x

+ +

= =

∂
= − =

∂∑ ∑t t t t(x ,θ) (x ,θ) (x ,θ) (x ,θ) …  (4.95) 

A MATLAB® code was developed to solve the system of SDEs in both Ito and 

Stratonovich formulations. We need to provide the following inputs: the number of 

excited modes; drift and diffusion functions (and corresponding parameters); intensity of 

the noise excitations; initial state variables vector; initial and final times; sampling time; 

and number of outputs with corresponding intensities of the measurement noises. The 

program provides state variable vectors as solutions according to the number of simulated 

outputs. The simulated response at each output of the system is obtained by summing the 

solutions for all mode amplitudes ( 1, , mNη η… ) multiplied by the corresponding mode 

shapes and adding a ZMWN.  
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CHAPTER 5 

LINEAR SYSTEM APPROXIMATION 

Initially, to study the validity of the developed approach, this study investigated 

the “linear version” of the developed model. Specifically, we simplified the developed 

model as much as possible, while still accounting for critical physical processes 

describing the system. This initial study is discussed in this chapter.  

 Experimental results have shown that under stable operating conditions the 

amplitudes of the oscillations are small. Combustion chambers are nonlinear dynamical 

systems in which the nonlinear processes determine the dependence of the balance 

between energy added to and dissipated by the system upon the amplitude of the 

oscillations. For small values of the amplitude the curves representing addition and 

dissipation of energy can be approximated by straight lines and nonlinear effects can be 

neglected, implying that terms involving coupling between modes can be neglected. 

Similar approach was used in the works of Karmalita and Furletov
[30]

 and Lieuwen
[33]

.  

Consequently, under stable conditions the LRECS would be a stochastically 

excited linear system, which is described by the following dynamical model based on 

Equations (4.85a-c) 

                                   2

02    1 2, , ,...,N N N N N N N mW N Nη ξ ω η ω η σ+ + = =ɶɺɺ ɶ ɺ ɶ   (5.1) 

                                           
1

( , ) ( ) ( ) ( )
mN

j j i i j j

i

p t p t e tη ψ
=

′ = +∑r r        (5.2) 
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5.1 State-Space Representation 

The behavior of such a dynamical system is primarily determined by the modal 

effective damping ratios and angular frequencies. In this study, a different representation 

of the model will be carried out so that a specific SID technique can be implemented to 

estimate the modal parameters.  

Following the approach for the derivation of Equation (4.87), we rewrite Equation 

(5.1) as  

                        
 

= + = + ⇒ = + − − 
t t t t t t c t t

O I
x f(x ,θ) W x W x A x W

K C
ɺ ɺ             (5.3) 

where the state variable vector, 2 mN∈tx ℝ , is  

                     1
1[ ]m

m

N T

N

dd

dt dt

ηη
η η=tx … …  (5.4) 

m mN N×∈K ℝ is the mass-normalized stiffness matrix  
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m mN N×∈C ℝ  is the mass-normalized damping matrix  
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C    (5.6) 

2 mN∈tW ℝ  is a vector of standard Wiener process (unit ZMWN)  

                          
10 0[ ( ) ( )]

m

T

NW t W t=tW ⋯ ⋯  (5.7) 
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 m mN N×∈O ℝ  is a matrix of zeros, m mN N×∈I ℝ  is the identity matrix, and 2 2m mN N×∈cA ℝ  is the 

continuous-time state space matrix.  

Assuming the system’s response is simultaneously measured by “L” sensors 

placed at different positions in the combustor, we can rewrite Equation (4.82) as follows 

            1 1[ ( ) ( )] [ ( ) ( )]T T

L Lp t p t e t e t= + ⇒   tO x… ∐ … = +t c t ty C x e  (5.8) 

where mL N×∈∐ ℝ  is a matrix whose rows are formed by the row vector  

1[ ( ) ( )]
mNp pψ ψj jr r⋯ , mL N×∈O ℝ  is a matrix of zeros, L∈ty ℝ  is the continuous time 

output vector, 2 mL N×∈cC ℝ  is the observation matrix, and L∈te ℝ  is the vector of 

continuous time measurement noises.  

Equations (5.3) and (5.8) form the continuous-time stochastic state space model 

of the system, which are repeated below for convenience 

                                                          
= +

= +
t c t t

t c t t

x A x W

y C x e

ɺ
            (5.9) 

Consider now the eigenvalue decomposition of the state space matrix cA  

resulting from the standard eigenvalue problem 

                                    −= ⇒ = 1

c c c cA ψ ψΛ A ψΛ ψ  (5.10) 

where 2 2m mN N×∈cΛ ℂ  is a diagonal matrix of complex continuous-time eigenvalues, 

 ( 1 2, , )j mj Nλ ∈ =ℂ … , and 2 2m mN N×∈Ψ ℂ  is a modal matrix containing the corresponding 

eigenvectors of cA . Andersen
[51]

 presented a good derivation showing that the effective 

angular frequencies and damping ratios of the N-th underdamped mode are related to 

these complex eigenvalues by the relationships 
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1
m
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i

i

λ ξ ω ω ξ

λ ξ ω ω ξ+

=− + −

=− − −

ɶ ɶɶ ɶ

ɶ ɶɶ ɶ
     for     12, ,..., .mN N=                     (5.11) 

and the mode shapes, 2 mL N×∈V ℂ  , can be calculated by 

                                                = cV C ψ  (5.12) 

While the above derived equations are expressed in continuous time, measured 

data are taken at discrete time instants. In order to fit models to measurements by 

applying SID techniques, these models need to be also expressed in discrete time. 

Discrete models are also needed for performing numerical simulations. If it would be 

possible to find an analytical solution for the response of a structure to a given input, this 

analytical expression could be evaluated at any time instant t, without the need to convert 

the model to discrete time. However, in most cases there is no analytical solution and one 

has to rely upon a numerical solution method to simulate the response of a dynamical 

system.  

We define a fixed sampling period, t∆ , so that the continuous equations are 

discretized and solved at all discrete time instants k, where  ,t k t k= ∆ ∈ℕ . Typical for the 

sampling of a continuous time equation is that a certain behavior of the time-dependent 

variables between two samples has to be assumed. If a zero-order hold (ZOH) assumption 

is applied, the input is piecewise constant over the sampling period. Under this 

assumption, the continuous-time state-space model in Equation (5.9) is converted to the 

discrete-time state-space model
[51]

 

                                               
1k k k

k k k

+ = +

= +
d

d

x A x W

y C x e
                                                  (5.13) 
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where the subscript k indicates sampled or discrete-time vectors. Based upon the 

assumptions for the continuous time model, the noise vectors are both immeasurable 

vector signals assumed to be ZMWN so that  

                ( )p T T

q q pq

p

E δ
    

=    
   

T

W Q S
W e

e S R
                                  (5.14) 

where 
2 2m mN N×∈Q ℝ ,  2 mN L×∈S ℝ , and L L×∈R ℝ  are covariance matrices, pqδ  is the 

Kronecker delta and p  and q  are two arbitrary time instants. 

Therefore, the SID technique will estimate the discrete-time matrices dA  and dC . 

They are related to their continuous time counterparts by
[25]

 

                                                               te ∆= cA

dA    (5.15) 

                                                               =d cC C    (5.16) 

 Consequently, the eigenvalue decomposition of the discrete state matrix dA  can be 

found by inserting the eigenvalue decomposition of the continuous state matrix cA  into 

Equation (5.15) and applying the series expansion of the exponential function as 

                                        c ct te e∆ ∆= =Ψ Ψ =Ψ Ψ
-1ΨΛ Ψ Λ -1 -1

d dA Λ    (5.17) 

One may note that the discrete eigenvectors are equal to the continuous ones. 

Consequently, the observed mode shapes are the same in discrete as in continuous time 

and estimated by 

                                                   = dV C ψ  (5.18) 

Equation (5.17) implies that the discrete eigenvalues, which we denote as jµ , are 

related to the continuous eigenvalues by the following relationship: 
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   (5.19) 

From Equations (5.11) and (5.19) one can realize that the model parameters can 

also be recovered from the eigendecomposition of the discrete-time matrix dA , using the 

following expressions 

                                                               N Nω λ=ɶ    (5.20) 

                                                           
Re( )

| |

N
N

N

λ
ξ

λ
= −ɶ    (5.21) 

5.2 Stochastic Subspace Identification - SSI 

The stochastic identification problem is now defined. For a given set of 

measurements of the output generated by the unknown stochastic system of order mN  

(number of excited modes) represented by Equation (5.13) with kW  and ke  assumed 

ZMWN sequences with covariance matrix given by Equation (5.14), we need to 

determine: the order of the unknown system; that is, the number of excited modes ( mN ) 

and the system matrices 2 2m mN N×∈dA ℝ , 2 mL N×∈dC ℝ , 
2 2m mN N×∈Q ℝ ,  2 mN L×∈S ℝ , and 

L L×∈R ℝ . This is exactly what Stochastic Subspace Identification (SSI) algorithms were 

developed for; that is, they determine state space models from given output-only data. 

The SSI technique implemented in this work is a time domain method also called 

SSI-DATA. It works directly with time-series of experimental data, without the need to 

convert them to correlations, covariances or spectra. In general, subspace identification 

methods involve geometric operations on subspaces spanned by the column or row 

vectors of certain block Hankel matrices formed by the input and/or output data. The 
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main theorem of the subspace theory shows how the Kalman filter states can be obtained 

from input and/or output data using tools from linear algebra. The operations are 

performed numerically in a reliable way based on robust numerical techniques such as 

singular value decomposition (SVD) and QR factorization
[20]

. Once these states are 

known, the identification problem becomes a linear least-squares problem that calculates 

the system matrices.  

The SSI-DATA is considered to be the most powerful class of known 

identification techniques for modal analysis in the time domain. However, as 

aforementioned, its mathematical framework presented in the book of Van Overschee and 

De Moor
[24]

 can be difficult to understand for people with a classical background in 

structural dynamics. In the following, the SSI-DATA technique will be presented from a 

stochastic point of view. Specifically, its fundamental steps are presented based on the 

use of stochastic theory for Gaussian distributed stochastic processes, where everything is 

completely described by correlation functions in time domain.  

Considering the continuous-time stochastic state space model of the system given 

by Equation (5.9, whose solution can be calculated as 

                                     0

0

exp( ) exp[ ( )] ( )

t

t t dτ τ τ= + −∫t c cx A x A W             (5.22) 

where the first term is the solution to the homogenous equation and the last term is the 

particular solution. To take this solution to discrete-time, we sampled all variables like 

( )k k t= ∆y y  so that the solution to the homogenous equation becomes 

                                                      0exp( )k k t= ∆
c

x A x             (5.23) 

Thus, from Equations (5.13), (5.15) and (5.16) we can write 
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            (5.24) 

5.2.1 The Block Hankel Matrix 

In discrete time, the system response is normally represented by the data matrix  

                                            [=
1 2 N

Y y y … y ]    (5.25) 

where L N×∈Y ℝ , L is the number of output sensors, and N is the number of data points. 

To understand the meaning of the Block Hankel matrix, it is useful to consider a more 

simple case where we perform the product between two matrices that are modifications 

of the N data matrix given by Equation (5.25). Let (1: )N k−Y  be the data matrix where we 

have removed the last k data points, and similarly, let |k NY be the data matrix where we 

have removed the first k data points, then  

                                               (1: ) ( : )

1ˆ
k N k k N

n k
−=

−
T

R Y Y    (5.26) 

is an unbiased estimate of the correlation matrix at time lag k. This follows directly from 

the definition of the correlation estimate given by Bendat and Piersol
[21, 52]

. The Block 

Hankel matrix defined in SSI-DATA is simply a gathering of a family of matrices that 

are created by shifting the data matrix  

                                               

(1: 2 )
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N s

N s Hp

H

Hf

s N

−

− +

 
    = =       
  

Y

Y Y
Y

Y

Y

⋮
   (5.27) 

The upper half part of this matrix, HpY , is called “past” and the lower half part, 

HfY , is called “future”. The total data shift is 2s  and is denoted “the number of block 
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rows” (of the upper or lower part of the Block Hankel matrix). The number of rows in the 

Block Hankel matrix is 2sL , the number of columns is 2N s− . 

5.2.2 The Projections 

Overschee and De Moor
[24]

 have introduced the projection as a geometrical tool 

and explained it in this context. However, one can consider such projection as a 

conditional mean. Specifically, in SSI-DATA the projection of the future into the past 

defines the matrix  

                                                       [ | ]Hf HpE=Ο Y Y    (5.28) 

The matrix O is sL sL× . Since we have Gaussian process, Melsa and Sage
[53]

 

have shown that this conditional mean can be described by 

                                          1[ ]T T

Hf Hp Hp Hp Hp

−=Ο Y Y Y Y Y    (5.29) 

The last matrix in this product defines the condition and the first four matrices in 

the product introduce the covariances between responses at different time lags. Applying 

Equation (5.24) one can show that any column can be expressed in the following form 

                                               2

1

col

s−

 
 
 
 = =
 
 
  

d

d d

d d 0 s 0

d d

C

C A

o C A x Γ x

C A

⋮

   (5.30) 

where sΓ  is called the observability matrix.  

5.2.3 The Kalman States 

Since the Kalman states are simply the initial conditions for all the columns in the 

matrix O, it follows that  
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                                                          = s 0O Γ X    (5.31) 

where the matrix 0X  contains the so defined Kalman states at time lag zero. If we know 

the matrix sΓ , then we can simply find all the Kalman states directly from Equation 

(5.31). However, since we do not know this matrix, we have to estimate the states using a 

different strategy. The trick is to use the singular value decomposition (SVD) of the 

matrix O 

                                            1/2 1/2= =T T
O USV US S V    (5.32) 

Now, comparing Equations (5.32) and (5.31), the estimate of the observability matrix and 

Kalman states at lag zero are given by  

                                                         

1/2

1/2

ˆ

ˆ

=

= T

0

Γ US

X S V
   (5.33) 

The procedure for estimating the matrices Γ̂  and ˆ 0X  in Equation (5.33) is not 

unique. A certain arbitrary similarity transformation can be shown to influence the 

individual matrices, but can also be shown not to influence the estimation of the system 

matrices. The Kalman state matrix just estimated is the Kalman state matrix for time lag 

zero. After some manipulations, one can show that removing one block row of O from 

the top, and then one block row of sΓ  from the bottom, we can estimate the Kalman state 

matrix at time lag one; that is, 1X̂ . Therefore, by subsequent removal of block rows from 

O all the Kalman states can be defined.  

5.2.4 Estimation of the System Matrices 

The system matrix dA  can be found from the matrix Γ̂  by removing one block 

from the top and one block from the bottom which yields 
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                                                       (2: ) (1: 1)
ˆˆ ˆ

s s−=dΓ A Γ    (5.34) 

Finally, the estimated system matrix, ˆ dA , can be found by regression or least-squares. 

The estimated observation matrix, ˆ dC , can be found simply by taking the first block of 

the observability matrix as indicated by Equation (5.30), so  

                                                           (1:1)
ˆ ˆ=dC Γ    (5.35) 

5.2.5 The Model Order 

As we have seen earlier, since the number s defines the size of the Block Hankel 

matrix, it also defines the size of the projection matrix O. However, this number 

represents the number of eigenvalues in our model, which defines the model order. The 

model order letting it equal twice the number of excited modes in the system. If one had 

performed a preliminary analysis of the measured data, it would be possible to have a 

priori idea about the model order by counting twice the number of peaks in the spectral 

analysis. However, in principle, the number of excited modes is unknown. For the SSI-

DATA, a typical problem of estimating a parametric model from data is the 

determination of the dimensions of the state-space or model order. 

In order to obtain a reasonable estimate of the model order for a set of measured 

data, a number of techniques have been developed as guides or aids to SID techniques. 

Most of these tools require some kind of user interaction, so that the user establishes a 

maximum model order to be evaluated. Then, data are acquired based upon an 

assumption that the model order is equal to this maximum and the data is then 

sequentially evaluated to determine if models order smaller than the maximum 

adequately describe the data. This is the point at which the user needs to use one (or 
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some) of the various evaluation aids available to make a decision. If a model with order 

lower than the actual one is estimated, some of the modes will be missing in the 

identified system. On the other hand, a higher order model will present some spurious (or 

noise) modes along with the actual (or structural) modes.    

Some of the commonly used techniques are the stability diagram and the mode 

indication functions. In this thesis we applied a more recent model order evaluation 

technique involving the estimate of the rank of the matrix of measured data. An estimate 

of the rank of the matrix of measured data gives a good estimate of the model order of the 

system. While the rank cannot be calculated in an absolute sense, it can be estimated 

from the logarithm of the singular value decomposition of the matrix of covariances. For 

each mode of the system, one singular value should be found by the SVD procedure. The 

SVD procedure finds the largest singular value first and then successively finds the next 

largest singular value and so on.  

The basic concept is that the singular values should go to zero when the rank of 

the matrix is exceeded; that is, when no more structural modes are present. However, due 

to random errors and small inconsistencies in the measured data, the singular values will 

not become zero but will be very small. Therefore, the rate of change of the singular 

values is used as an indicator rather than the absolute values. In this sense, each singular 

value is divided by the previous singular value forming a normalized ratio that will be 

approximately equal to one if the successive singular values are not changing magnitude. 

When a rapid decrease in the magnitude of the singular value occurs, the ratio of 

successive singular values drops as an indicator of rank or model order of the system.  
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5.2.6 Implementation 

The SSI-DATA was implemented in a MATLAB® code. The identification 

process is started by using the subspace method called N4SID
[23]

 in the System 

Identification Toolbox of MATLAB®
[56]

.  

A common feature when estimating models using N4SID is the model order 

selection plot which opens just after the estimation process has started. As mentioned 

before, the model order is estimated based on rank estimation. It displays the relative 

measure of how much each mode (it is related to the model order) contributes to the 

behavior of the model calculated through the log of the singular values of the matrix of 

measured data. In general, we look for a gap or sudden drop in the plot, which indicates 

that higher model orders have little influence upon the system behavior. Figure 19 shows 

an example in which the range of model orders was defined to be from 1 to 20. Then, the 

selection plot indicates that model order of two is sufficient to represent the system, 

indicating that just one excited mode dominates in the system response. As implemented 

in this thesis, the user need to select the order only once for each set of data describing a 

different operating conditions, which in our case correspond to a different value of the 

swirl flow ratio. 

The measured dynamic pressure were preprocessed to eliminate linear trends and 

set their mean value to zero using the detrend function in MATLAB®. The data were 

bandpass filtered around all the frequencies of the theoretical acoustic modes in the 

LRECS (see Table 3.2). Then, for each one of the filtered modes the peak was 

determined and the mode was filtered again with a narrower band. The final signal 

analyzed by SSI-DATA is the summation of all filtered modes.  
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Figure 5.1: Example of the model order selection plot in MATLAB®. 

 

 

When a subset of data corresponding to a new swirl flow ratio is loaded, the time 

history and amplitude spectrum are presented on the screen. The code identifies the new 

control parameter so that sets the range of the model order to 2 to 16 which means that 

the system could have from 1 to 8 excited modes. That range was chosen taking into 

account the preliminary information about the system behavior discussed in Chapter 3, 

which indicates that the largest number of excited modes occurs when the system is 

stable and eight peaks are present in the spectral analysis.  

Several factors such as the signal-to-noise ratio (SNR) in the measured response, 

and the presence of modes with close frequencies can make the order selection difficult. 

Consequently, the singular value criteria will select a higher order model and some 

spurious modes can be estimated. Therefore, to increase the chances that spurious modes 

are neglected in the parameter estimation, the following additional criteria were 

implemented as suggested by Asmussen
[54]

: 
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1) The eigenvalue of the mode should have a complex conjugate. Structural 

modes are usually underdamped, so they appear as complex conjugate pairs; and 

2) The damping ratio should be below 10%.  

5.3 SSI-DATA Accuracy 

The accuracy of the SSI-DATA technique has been already reported in the 

literature
[25]

. However, even though the dynamical model was the same in the cited 

references as in this linear approximation, the range of frequencies, number of data points 

and sampling frequency were very different. Consequently, we decided to investigate the 

accuracy of the estimates using signals with characteristics similar to the ones found in 

the experimental data from the LRECS. 

To investigate the accuracy of the SID technique, several sets of “experimental” 

data were generated by numerical simulations of the dynamical system using the scheme 

mentioned in Chapter 4. To limit the number of plots in this work, the analysis was 

focused on the modes which could be excited in the LRECS. Since the model presents no 

coupling, we performed simulations of the system response at a fixed frequency and 

varied the damping ratio, number of data points, and signal-to-noise ratio (SNR) in the 

response. It should be emphasized that the SNR expresses the ratio between the variance 

of the signal response ( 2σ
ky ) and the variance of the measurement noise ( 2σ

ke ).  

The following seven frequencies were chosen based on the preliminary analysis in 

Chapter 3: 600, 1800, 3000, 5000, 8000, and 10000 Hz. The intensity of the additive 

noise exciting the system was adjusted so that the amplitude of the simulated responses 

was of the same order of magnitude as the actual ones. This was evaluated via FFT 

amplitude spectra obtained from pressure sensors for stable operation. 
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Simulations were performed at fixed sampling frequency ( Sf ) of 48 KHz to 

match the actual experimental data, and different values of signal-to-noise ratio (SNR). 

The simulated data corresponding to the given set of values nξ~ , nf
~
,and SNR was divided 

into 20 subsets with N data points each. The following values of N were tested: 1200; 

2400; 3600; 4800; and 6000 data points. The SSI-DATA technique was applied to each 

subset and averaged values were calculated for the model parameters.  

Figure 5.2 shows the results for the estimated damping ratios for a frequency of 

8000Hz, when the number of data points in each subset increased from 1200 to 2400. An 

improvement in the accuracy can be noticed as we compare the results to the straight 

black line representing the ideal case where simulated and estimated damping ratios have 

a perfect match. Further increase in the number of data points provided a little 

improvement in accuracy (less than 5%) which are not plotted to avoid cluttering. 

However, this small improvement comes at the expense of a much longer computational 

time. A similar behavior was observed at all other frequencies. Therefore, subsets of 2400 

points were chosen to represent a fair trade off between accuracy and computational time.  

Figure 5.3 the effect of the SNR upon the accuracy of the estimated. As expected, 

as the SNR increased the accuracy also increases. For SNR above 100, differences in 

accuracy at different SNR levels are negligible. At this point we should mention that even 

though very low values of SNR ratio can present problems when applying any SID 

technique, preliminary analysis of the experimental data in Chapter 3 showed that at all 

frequencies of interest the power spectra have clear peaks, indicating that the SNR is 

larger than 100 (comparing the power or amplitude level of the excited modes to the level 
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of he background noise in the spectral analysis). Consequently, the SNR was not 

considered to be a problem for the investigated application of the SID technique. 

 

 
 

Figure 5.2: Effect of the number of data points in damping estimation for simulated 

frequency of 8000Hz and SNR = 100. 

 

 

 

Figure 5.4 shows the dependence of the estimated frequencies upon changes in 

simulated damping ratios when the numerical simulations were performed with 

100SNR=  and the estimations were based on subsets of 2400N =  data points. The blue 

lines represent the simulated frequency (actual values), whereas the green lines represent 

the estimated values. It shows that for all simulated frequencies and damping ratios the 

estimated frequencies were overestimated. The maximum error occurred for higher 

values of damping ratios (close to 0.09) and as the damping decreased the estimated 

frequencies asymptotically approached a limit value. Notably, the error in the frequency 

estimation was never above 5%.   
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Figure 5.3: Effect of the SNR in damping estimation for simulated frequency of 8000Hz 

and N = 2400. 

 

 

 

Figure 5.5 shows the dependence of the estimated damping ratios upon changes in 

simulated damping ratios (actual values). As a general trend, as the system approaches 

the stability boundary, the estimates of the damping ratios are less accurate resulting large 

overestimation of the damping ratios. As we decrease the simulated value of the damping 

ratio, the estimated damping also decreases but they tend to a certain lower limit whose 

value is a function of the frequency. The larger the frequency the lower is that limit value. 

Investigating the accuracy of the SID techniques, the analysis with numerical 

simulations can be used to provide some kind of calibration charts. Accordingly, the 

results presented in Figure 5.5a suggest that an estimated damping ratio of 0.001 for a 

600 Hz mode would correspond an actual damping very close to zero (at least below 10
-

4
). The same value of estimated damping ratio for the 5000 Hz mode would correspond to 

an actual damping ratio around 46 10−× , according to Figure 5.5d.  
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a) b) 

 

 
c) d) 

 

 
                                       e)                                                                       f) 

 
 

Figure 5.4: Dependence of the estimated frequencies upon changes in simulated damping 

ratios  for 100SNR=  and N = 2400 and simulated frequencies: a) 600 Hz; b) 

1800 Hz; c) 3000 Hz; d) 5000 Hz; e) 8000 Hz; and f) 10000 Hz . 
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                                     a)                                                                      b) 

 
c) d) 

 
 

Figure 5.5: Dependence of the estimated damping ratio upon changes in simulated 

damping ratios  for 100SNR= ,  N = 2400, and simulated frequencies: a) 600 

Hz; b) 1800 Hz; c) 3000 Hz; and d) 5000 Hz. 

   

 

 

5.3.1 Parametric Noise Investigation 

To investigate the effect of parametric noise upon the damping ratio of the linear 

system, data were generated by numerical simulations of the dynamical system using the 

scheme discussed in Chapter 4. The model parameters were the same as those used in the 

investigation of the accuracy of the SSI-DATA technique. However, the system was now 

excited only by parametric noise ( N tΞ =( ) 1 0N tΞ =( )  and 2 0N tΞ ≠( ) ). Once again, the 
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intensity of the noise exciting the system was adjusted so that the amplitude of the 

simulated responses was of the same order of magnitude as the actual ones.  

After generating the data by numerical simulations and performing the 

identification via SSI-DATA to estimate the damping ratios, the intensity of the noise 

was increased to check the relationship between noise intensity and error in estimation. 

Table 5.1 shows some of the results.  

 

Table 5.1: Effect of parametric noise upon damping ratio estimates. 

Parametric Noise 

Intensity 

Modal Frequency 

(Hz) 

Simulated 

Damping Ratio 

Estimated Damping 

Ratio 

Effective Damping Ratio 

(Equation 4.77) 

10
4 

600 0.05 0.0496 0.049999707 

10
4
 1800 0.02 0.0199 0.019999989 

10
4
 5000 0.005 0.00501 0.004999999 

10
5
 600 0.05 0.0495 0.049997068 

10
5
 1800 0.02 0.0198 0.019999891 

10
5
 5000 0.005 0.00507 0.004999995 

10
6
 600 0.05 0.0496 0.049970682 

10
6
 1800 0.02 0.0196 0.019998914 

10
6
 5000 0.005 0.0051 0.004999949 

 

 

The results in Table 5.5 indicate that, in most of the cases, the difference between 

estimated, effective (see Equation 4.77), and “actual” values of the damping ratios are 

small. In general, for a given frequency, increasing the intensity of the noise decreases 

the estimated value of the damping ratio. That agrees with the behavior of the effective 

damping presented in the last column since the correction term given in Equation (4.77) 

is proportional to the noise intensity. For fixed noise intensity, as the frequency was 

increased the difference between the estimated and “actual” values decreased. Once 
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again, this agrees with the behavior of the effective damping presented in the last column 

since the correction term given in Equation (4.77) is inversely proportional to the 

frequency cubic. For high values of frequency such as 5000 Hz the correction term is so 

small, that the estimated value is actually larger than the “actual” value. Overall, the 

corrections are small within the margin of error of the estimations. Therefore, it is valid 

the idea of lumping the effect of parametric noise upon the damping ration and work with 

an effective damping. 

5.4 Experimental Results and Operational Stability Margin 

The SSI-DATA technique was applied to the experimental data discussed in 

Chapter 3. For a truly linear dynamical system, the effective damping ratio can be used as 

a operational stability margin parameter, since the system becomes unstable when the 

damping ratio becomes negative. Therefore, as discussed earlier a zero value for the 

effective damping ratio characterizes the stability boundary.  

For each of the identified modes in the system, a plot should be constructed which 

shows the dependence of the estimated damping ratios upon the swirl flow ratio 

parameter. Such plots can be then used to predict if a mode is approaching the stability 

boundary as we change the swirl flow ratio parameter and which mode tends to be 

unstable first.  

In the preliminary analysis of the experimental data in Chapter 3, it was observed 

that during stable operation the quarter wave longitudinal mode was dominant. In fact, as 

the swirl flow ratio decreased the amplitude of the peak corresponding to that mode 

increased. Other modes exhibited similar behavior, although with much smaller peak 
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amplitudes. This raises the question: why did the first tangential mode become unstable 

before the longitudinal mode? 

In our simple model, without nonlinearities or mode coupling, the behavior of 

each mode is totally defined by its damping ratio. Figures 5.6 and 5.7 show the 

dependence of the estimated effective damping ratios of the longitudinal and tangential 

modes upon the swirl flow ratio parameter. In both cases the damping decreased as the 

swirl flow ratio parameter decreased indicating that the modes were becoming unstable. 

However, as soon as the system reaches the unstable regime, the behavior of the two 

estimated effective damping ratios become distinct.  

Figure 5.6 shows that the estimated effective damping ratio of the longitudinal 

mode decreases towards a zero value as K decreases. However, as soon as the tangential 

mode became unstable its amplitude increased suddenly and its harmonics started to be 

more pronounced in the power spectra, and the longitudinal mode was no longer the 

dominant mode in the system. Consequently, the estimated damping for the longitudinal 

mode increased dramatically (to above 10%) and the SSI-DATA could not consider it in 

the calculations. Thus, we only have damping estimates for the longitudinal mode until 

the onset of the instability.  

Analysis of Figure 5.7 shows that the estimated effective damping ratio for the 

tangential mode also approaches a zero value as the mode approaches its stability 

boundary. Nonetheless, the zero value is never reached. Instead, after the onset of 

instability, the damping remains almost constant at a very small value. This was expected 

due to the deficiency of the SSI-DATA in estimating the damping ratios as the system 
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approaches the stability boundary; that is, when the damping becomes much smaller, as 

previously discussed.  

 

 
 

Figure 5.6: Dependence of the estimated damping ratio of the quarter wave longitudinal 

mode upon changes in control parameter K. 

 

 

 

In spite of its limitations, the SSI-DATA method can be still applied to estimate 

the stability margin under stable operating conditions. Considering the plots in Figures 

5.6 and 5.7, one can find a straight line )(
~

Kgn =ξ  that represents the best fit of the data. 

Then, we evaluate the value of K for which 0=)(Kg . For the longitudinal mode case in 

Figure 5.6, the result of this procedure provided an approximated value of 14 86/K = , 

represented by the gray symbol SB. For the tangential mode case in Figure 5.7, we 

obtained an approximated value of 20 80/K = . That indicates the tangential mode tends 

to become unstable before the longitudinal mode, as confirmed by the experiment. The 

stability limit predicted by the tangential mode analysis is close to the actual operational 
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stability boundary ( 22 80/≈ ) indicated by the red line in the plots and the symbol SB in 

red. This means that the assessment of the operational stability margin or stability 

boundary by applying the SSI-DATA technique to the simplified linear model is much 

more accurate than the simple extrapolation of the dynamic pressure data. 

 

 
 

Figure 5.7: Dependence of the estimated damping ratio of the first tangential mode upon 

changes in control parameter K. 

 

 

 

It seems that as the longitudinal mode was becoming more unstable (its damping 

ratio decreased), it provided more oscillatory energy to the system. At a certain operating 

condition, the system reached the critical amplitude in which the tangential mode was 

triggered. That could imply coupling between the longitudinal and tangential modes and 

will be investigated in the Chapter 6.  

Besides the lack of accuracy of the SID-DATA technique as the system 

approaches the stability boundary, there is another reason for not relying on the estimates 
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under these conditions. As the system becomes less stable, the amplitude of the 

oscillations increases and nonlinear terms (in the mathematical model) become important 

before the system reaches the stability boundary. When this happens, the application of 

the model would be no longer valid.  

Under unstable operational conditions the actual system has a negative linear 

damping ratio but nonlinearities will generate limit cycles. Linear model are not able to 

predict the amplitude of the limit cycles. Additionally, the multi-stable behavior 

presented in Figure 3.6 is evidence that the system has nonlinearities and feedback, so 

that a more accurate estimate of the operational stability margin must be based on 

nonlinear models. The results from the linear approximation (modal parameters) must be 

used as guidelines during the implementation of techniques for non-linear system 

identification.   
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CHAPTER 6 

NON-LINEAR SYSTEM IDENTIFICATION 

As discussed in Chapter 4, the main issue about non-linear behavior in 

combustion systems is related to the coupling between combustor acoustics and heat 

release dynamics. In this Chapter, an empirical nonlinear model for heat release dynamics 

will be identified from measured input-output data. Then, a system identification 

technique will be presented which can provide estimates of the parameters of the finite-

dimensional dynamical model representing the whole combustor system.  

6.1 Heat Release Dynamics Model 

Deriving a complete, global, nonlinear dynamic model of the heat-release 

dynamics corresponding to the LRECS system is probably a subject for another thesis. In 

this work, we followed a common approach to derive (or identify) models for systems 

such as the flame dynamics where first-principles models can be too complex, and the 

structure of the system is very hard to model mathematically. A black-box modeling in 

time domain will be used. It consists of dynamic modeling using input-output data that 

describes the response of the overall heat release process. 

The fundamental idea of input-output modeling is to construct a model from input 

output experimental data as shown in Figure 6.1. For the flame dynamics case, we are 

searching for a nonlinear dynamical model. In general, these models can be represented 

by nonlinear differential equations and state space realizations. For example, an n
th
 order 

non-autonomous nonlinear model for heat release dynamics can be expressed in the 

following form:  
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where p∈θ ℝ  is the vector of coefficients (parameters) for the linear and nonlinear terms 

and g  is a non-linear mapping. 

 

 

 

 

 

Figure 6.1: Input-output modeling of the heat release dynamics. 

 

 

 

It is important to choose an appropriate structure for the model before applying an 

identification procedure. Experience shows that when the basic structure of the system is 

correct, it will not take too much time to fine tune the order of the system and search for a 

best fit to the data. For nonlinear systems, as we will discuss shortly, the form of 

nonlinearity and structure of the model are remarkably significant. 

In some situations, the physics of the problem may unveil the nonlinearity of the 

system, or at least suggests the basic structure of the model. Under these circumstances, 

with known or assumed nonlinearities, parametric identification is applied to estimate all 

linear and nonlinear parameters using pseudo-linear regression, least squares, nonlinear 

instrumental variables, or prediction-error methods. That will be explained and 

implemented later in this work. 

For a system with unknown nonlinearities, which may include several complex 

partial differential equations, nonparametric identification is more useful. It uses a 

functional expansion technique to approximate the unknown nonlinearities through a 

Unsteady Heat 

 

Release Dynamics 

( )p t′  ( )Q t′ɺ  
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nonlinear mapping. It maps the nonlinearity with a set of basis functions so that the 

coefficient of each basis function is subsequently estimated to find the model that best fits 

the data.  

6.1.1 NARX modeling 

Assuming that the heat release dynamics can be represented by Equation (6.1) the 

objective of the input-output black-box modeling is to determine the order of the system, 

n , the number of basis functions (also called regressors), 1n m+ − , and mainly the non-

linear mapping, g . As the chemiluminescence and pressure data were collected as 

discrete time series, we represent the system as a Non-linear Autoregressive Model with 

Exogeneuos input (NARX) given by 

        1 2 1 1( ) ( ( ), ( ), , ( ), ( ), , ( ), )Q k g Q k Q k Q k n p k p k m′ ′ ′ ′ ′ ′= − − − − − − θɺ ɺ ɺ ɺ… …  (6.2) 

Without any a priori information about the system, the identification would be a 

very time consuming task. We would have to try several different orders and search for 

the non-linear mapping within families of functions. In this sense, the best approach is to 

perform some kind of semi-physical modeling, where some additional information about 

the system can be obtained from previously derived models. Such information can also be 

collected form preliminary analysis of the measured data, such as spectral and correlation 

analysis. Next, we present some previous analytical investigations about unsteady heat 

release dynamics which form the basis for the black-box modeling applied in this work. 

In a combustor, the heat release can be perturbed either by flame area 

fluctuations, or by fluctuations in the mixture. The former can happen when the flame 

sheet is sensitive to fluctuations in the acoustic velocity (u′ ). These will force the flame 

to periodically oscillate, varying its total surface area. As the heat release is proportional 
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to the total surface area of the flame, fluctuations in the acoustic velocity affect the 

unsteady heat release
[55]

. The latter can happen either by fluctuations in mixture density, 

which is related to the acoustic pressure fluctuations ( p′ ) or when perturbations in the 

acoustic field affect the inlet conditions of one of the reactants (fuel or air), prior to 

mixing, which causes perturbations in the equivalence ratio and consequently 

perturbations in the unsteady heat release. This case could happen if the flow of one of 

the reactants into the combustor is not choked. However, the oscillations in the 

equivalence ratio can also be related to the oscillations in the acoustic velocity
[56]

. That 

implies the regressors related to the input should be assumed 1( )p k′ −  and 2( )p k′ − , 

which, as an approximation, correspond to oscillations in acoustic pressure and velocity, 

respectively. 

The model order can also be estimated from previous analytical investigations. 

Some finite-dimension models for the flame dynamics in specific combustors have been 

proposed. Fleifil et al
[55]

 derived the equations for the unsteady heat release dynamics 

based on the kinematics of the flame and modeled the variation in the flame surface area 

due to its interaction with an oscillating flow. The flame was represented by a thin sheet 

moving with a constant burning velocity in a normal direction to its surface relative to the 

reactants flow. After some manipulations, they obtained a first-order ordinary differential 

equation relating the unsteady rate of heat release and the velocity fluctuations at the 

flame location, fu′ . A similar ODE was also derived by Dowling[57], following a different 

approach for a ducted flame stabilized at a flame holder. These models are described by 

the following ODE: 
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One can notice that in order to obtain a finite-dimensional model that does not 

include the time delay, a “new” variable, fu′ , was introduced. Following the work of 

Annaswamy et al
[58]

 we can write the following expression for the new variable  

                                                    
1

1( )
( ) ( )

mN

f i i

i

u t c t Q
p

γ
η χ

γ=

−
′ ′= +∑ ɺɺ  (6.3) 

where χ  represents the combined effects of the flow velocity fluctuations both behind 

and ahead of the flame. To make the frequency characteristics of the model compatible 

with the experimental evidence, Dowling
[57]

 suggested a modification in Equation (6.3) 

and proposed a second-order model to the flame dynamics which can be expressed as  

                                                        
2

1 2 32 f

d Q dQ
b b Q b u

dt dt

′ ′
′ ′+ + =

ɺ ɺ
ɺ   (6.4) 

These results suggest that the model order, n , should be one or at most two, that 

is, the dynamics will be represented by a first or second-order differential equation. That 

defines the order and the set of regressors of the NARX model to be investigated. The 

fact that a differential equation should represent the heat release model indicates that the 

nonlinearity is not just a static nonlinearity that only exists at the input or output. 

The last, and sometimes more complex task, is the selection of the non-linear 

mapping. Several models in literature have presented heat release models with cubic non-

linearities in the acoustic velocity
[59],[60]

. A physical explanation for incorporating such 

non-linearities in the heat release dynamics model has been given as in the work of 

Rumsey et al
[59]

. They considered a heat release model given by the inclusion of a cubic 

non-linearity as 
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and justified the inclusion by the possibility of producing the 180º phase change observed 

experimentally and the resulting limit-cycle provided by numerical simulations of the 

complete finite-dimensional combustor model. Physically, the additional term could be 

related to changes in the flame kinematics, as suggested by Fleifil et al
[60]

.  

Fannin et al
[61]

 proposed a similar model to represent the heat release dynamics; 

that is,  

                                                  2 3

1 2 3 4

dQ
bQ b b b

dt
η η η

′
′+ = + +

ɺ
ɺ ɺ ɺ ɺ   (6.6) 

In deriving this model the acoustic field was modeled as a single degree-of-freedom 

oscillator, while the heat release showed a first order relationship with acoustic velocity. 

In addition, cubic and quadratic nonlinearities have been added to the heat release 

equation to demonstrate nonlinear interactions. This selection was not based on physical 

reasoning. In fact, they used a previous result from input-output modeling of 

thermoacoustic instabilities presented by Fleifil et al
[60]

.  

Based on the information just presented, the input-output modeling performed in 

this work to identify a black-box model for the heat release dynamics in the LRECS was 

limited to the following set of regressors: 1( )Q k′ −ɺ , 2( )Q k′ −ɺ , 1( )p k′ − , 2( )p k′ − , and 

cubic non-linearities involving the regressors and their cross-terms (e.g, 22( )p k′ − , 

32( )p k′ − , 31( )Q k′ −ɺ , 22 1( ) ( )p k Q k′ ′− −ɺ , etc.).    
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6.1.2 Model Identification 

The data collected from the pressure transducers were processed to eliminate 

linear trends and set their means to zero. A bandpass filter was applied to the data from 

both pressure transducers and optical sensors to eliminate frequencies above 15 KHz and 

below 200Hz. They were divided into subsets with 2000 points so that for each value of 

the swirl flow ratio a minimum of 20 subsets could be obtained for each input (pressure) 

and output (chemiluminescence) signal. During each identification procedure, a subset of 

data from pressure and chemiluminescence was used for estimation and other subset used 

for validation purpose. 

    Since the objective was to detect the non-linearity, all the data used in this part 

of the investigation correspond to the unstable regime, where the amplitudes of the 

oscillations are large and non-linear behavior was most likely more pronounced. As an 

example, Figures 6.2a and 6.2b show the time-history of the data used as input and output 

in one of the identification runs. The different colors indicate the estimation and 

validation subsets. Figures 6.3a and 6.3b show the respective amplitude spectra.  

The model identification was performed by using the System Identification 

Toolbox of MATLAB®. Several subsets were analyzed and some of the observations are 

presented below.  

1) The data used in the identification procedure were collected in feedback loop. 

In this case, there is a tool in the non-linear system identification toolbox which can 

evaluate the presence of feedback. For all subsets, the presence of feedback was detected. 

The toolbox also has a utility which estimates the delay (as a number of samples) 

between input and output. At this point we should recall that some of the flame dynamics 
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models are based on the acoustic velocity taken at the flame location which corresponds 

to the acoustic velocity at the injectors’ plate minus a convective time delay. Applying 

the delay to the input regressors usually improved the good fit of the data.   

2) Performing system identification via Graphical User Interface of the System 

Identification toolbox in MATLAB® is much more intuitive and faster. However, the 

only response that we got on screen is the quality of the fit of the data and the estimated 

values of the coefficients of the basis functions (regressors) are not provided. These 

values give an indication of the importance of a certain regressor for the overall behavior 

of the model. In general, when we eliminated a regressor whose coefficient is negligibly 

small when compared to the others, the fit of the data decreased, whereas the 

computational time can be reduced considerably. Therefore, the identification was 

repeated with the best fit using the command line and the function “nlarx”, so that the 

estimated parameters could be stored for analysis and application later in this chapter. 

3) For most of the analysis, trying to fit directly the input and output data without 

any additional data processing led to poor results since the overall fit did not reach values 

above 46%. Nonetheless, a visible trend could be identified since the best results were 

obtained for a first order system, using 1( )Q k′ −ɺ  as the output regressor, and using, 

2( )p k′ −  and 32( )p k′ −  as the non-linear regressors.   

4) The results were much better when we performed the identification after 

filtering the signals around their modal frequencies. For example, we bandpass filtered 

the input and output data around the modal frequency corresponding to the excited first 

tangential mode (largest peak in Figures 6.3a and 6.3b). Then, we applied the SID 

technique and the results indicated that a first-order system with a cubic and quadratic 
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non-linearity always provided the best fit (now around 75%). The results indicated the 

following model as the best fit 

                                                2 3

1 2 3 4
N

N N N N

dQ
bQ b b b

dt
η η η

′
′+ = + +

ɺ
ɺ ɺ ɺ ɺ   (6.7) 

where the subscript “N” in the heat release variable indicates that the identification was 

performed for an isolated mode. 

5) The same procedure was also applied to some of the data corresponding to the 

stable regime. In this case, with smaller amplitudes of the oscillations we have assumed 

that the combustor would behave as a linear system in Chapter 5. The results of the 

identification procedure indicated that either a linear first-order model represented by 

                                                        1 2
N

N

dQ
bQ b

dt
η

′
′+ =

ɺ
ɺ ɺ   (6.8) 

or a first-order model given by Equation (6.7) provided the same level of fit for the data. 

Poor fits (around 50%) were obtained with both models. 

The results from the model identification suggested that the low-order model 

represent by Equation (6.7) can represent the heat release dynamics in the LRECS for a 

single mode. It is identical to the model presented by Fannin et al
[61]

. Figure 6.4 shows 

the good agreement between the measured output (heat release) and the predicted 

response of the model given in Equation (6.7) for the first tangential mode. Applying this 

model to all data subsets and modes in the unstable regime provided good fits that varied 

from 68% to 80%.  
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a) 

 
b) 

Figure 6.2: Time history of: a) dynamic pressure oscillations; and b) heat release rate 

oscillations. 
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a) 

 

b) 

Figure 6.3: Amplitude spectral density from sensors: a) 1P′ ; and b) 1PFO ′ , during unstable 
operation of the combustor ( )84/16;1 == Kφ  
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Figure 6.4: Comparison between the measured output and the predicted values given by 

the identified heat release model.  

 

 

 

However, this unsteady heat release dynamic model for a single mode does not 

provide coupling between modes. Besides, such a model implies a large number of 

parameters to be estimated. Based on the results collected so far and the work of Rumsey 

et al.
[59]

, we proposed the following model to describe the unsteady heat release dynamic 

in this thesis:  

                                                       3

1 2 3

f

f f f

dQ
bQ b u b u

dt

′
′+ = +

ɺ
ɺ   (6.9) 

where the subscript “f” denotes quantities evaluated at the flame location. The acoustic 

velocity at the flame location is calculated from Equation (4.38) as 

                                          
2

1

( )
( ) ( , ) ( )m

f f m f

m m

t
u t t

k

η
ψ

γ

∞

=

′= = ∇∑u r r
ɺ

 (6.10) 
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It is not expected that the model will mimic exactly the time history of the heat release 

oscillations collected by the optical sensors. So, the choice for this model was based on 

the performed input-output system identification, guided by information collected from 

previous analytical and experimental investigations.  

At this point we should emphasize that writing the heat release model in the form 

of Equations (6.9) and (6.10) was a necessary condition for applying the SID technique 

that will be presented later in this chapter. We are presenting an analytically tractable 

model for the heat release dynamics for system identification purposes. However, one 

must recognize the limitations of the model by looking at the assumptions that need to be 

made for its application. 

Rigorously, Equation (6.10) should be written as 

                                 
2

1

( )
( ) ( , ) ( )m m

f f m f

m m

t
u t t

k

η τ
τ ψ

γ

∞

=

−
′= − = ∇∑u r r

ɺ
 (6.11) 

If we assume that the mode amplitudes are represented by  

                                                  
( ) sin( )

( ) cos( )

m m m m

m m m m m

t A t

t A t

η ω ϕ

η ω ω ϕ

= + ⇒

= +ɺ
 (6.12) 

Then,  

                                             ( ) cos( )m m m m m m m mt A tη τ ω ω ϕ ω τ− = + −ɺ  (6.13) 

Therefore, Equation (6.10) assumes that the time-delays are small. This 

assumption is not supported by the evidence which shows that a necessary condition for 

thermoacoustic instabilities is that the combustion time (including the system delays) 

approximately equals the acoustic time. In this sense, the model in Equation (6.9) is in 

fact a first order non-linear fit to a real time-delayed system.  
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6.2 Non-linear Dynamical Model 

The results discussed earlier in this thesis, indicates that the dynamics of the 

LRECS can be modeled by the following set of equations: 

2

0

1 1

2    1 2,( ) , ,...,
m mN N

f

m m m m m mij i j mij i j m N m

i j

dQ
A B a W m N

dt
η α η ω η ηη ηη σ

= =

′
+ + + + = + =∑∑

ɺ
ɺɺ ɺ ɶ ɺ ɺ   (6.14) 

                                                 3

1 2 3

f

f f f

dQ
bQ b u b u

dt

′
′+ = +

ɺ
ɺ   (6.15) 

                           
2

1 1

( )
( , ) ( ) ( )

m mN N

m

f f m f m m

m mm

t
u t c t

k

η
ψ η

γ= =

′= = ∇ =∑ ∑u r r
ɺ

ɺ  (6.16) 

                              
1 1

,( , ) ( ) ( ) ( ) ( ) ( )
m mN N

j j m m j j j m m j

m m

p t p t e t d t e tη ψ η
= =

′ = + = +∑ ∑r r        (6.17) 

This model is composed of equations describing the combustor acoustics, the heat 

release dynamics and the coupling between them. The acoustics are described by a 

stochastically excited set of differential equations (SDEs) in the amplitude of the pressure 

fluctuations ( Nη ). The heat release is a source term in the equations of acoustics and its 

dynamics is described by a first-order non-linear ordinary differential equation relating 

the unsteady rate of heat release and the acoustic velocity fluctuations at the flame. The 

acoustic velocity fluctuations are related to the first derivative of the amplitude of the 

pressure fluctuations ( Nηɺ ). This completes the feedback in the system. The model 

indicates that the rate of heat release, NQ′ɺ , is also a state variable of the combustor 

system. 

Following the approach presented in Chapter 4, one can represent the dynamical 

model of the LRECS in finite-dimension by modified versions of Equations (4.93) and 

(5.13) given by 
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                                           ttt σdWθ),f(xx += dtd  (6.18) 

                                              ( , )= +k k ky h x θ e  (6.19) 

where 2 mL N×∈h ℝ  is called the observation function matrix. The subscript “k” in Equation 

(6.19) accounts for the discrete-time characteristic of the measured data. 

6.3 System Identification Technique 

The SID technique implemented to estimate the parameters, θ , of the dynamical 

model given by Equations (6.18) and (6.19) is based on Predictor Error Method (or 

maximum likelihood estimation). It can be considered a modified version of the non-

linear gray-box model identification tool currently available in the System Identification 

Toolbox of MATLAB®
®
. The main difference is the use of an iterative extended Kalman 

filter (EKF). An overview of the method will be provided, but more details can be found 

in the book of Ljung
[20]

.  

6.3.1 Maximum Likelihood Estimation 

Given the model structure, maximum likelihood (ML) estimation of the unknown 

parameters is performed by finding the parameters that maximize the likelihood function 

of a given sequence of measurements 0 1 k Ny ,y ,…,y ,…,y . By introducing the notation: 

                                                [ ]=k k k-1 1 0Y y ,y ,…,y ,y  (6.20) 

the likelihood function is the joint probability density
[62]

: 

                      
1

( ) ( ) ( | ) ( | )
N

k

L p p p−
=

 
= = 

 
∏N N k k 1 0θ;Y Y |θ y Y ,θ y θ  (6.21) 

where the rule ( | ) ( ) / ( )p A B p A B p B= ∩  has been applied to form a product of 

conditional probability densities. In order to obtain an exact evaluation of the likelihood 
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function, the initial probability density ( | )p 0y θ  must be known and all subsequent 

conditional densities must be determined by successively solving Kolmogorov’s forward 

equation and applying Bayes’ rule
[62]

. As a matter of fact, this approach would not be 

computationally feasible in practice. However, since the diffusion terms in the above 

model structures do not depend on the state variables (no parametric noise), a simpler 

alternative can be used. Specifically, an approximate method based on Extended Kalman 

Filter (EKF) was applied.  

The latter approximation can be applied, because the stochastic differential 

equations considered are driven by Wiener processes and because increments of a Wiener 

process are Gaussian, which makes it reasonable to assume, under some regularity 

conditions, that the conditional densities can be well approximated by Gaussian densities. 

The Gaussian density is completely characterized by its mean and covariance. Thus, by 

introducing the notation: 

                                                ˆ [ | ]E −=k|k-1 k k 1y y Y ,θ  (6.22) 

                                               [ | ]V− −=k|k 1 k k 1R y Y ,θ    (6.23) 

                                                ˆ
k k k|k-1ε = y -y  (6.24) 

where  kε  is the predictor error, ˆ k|k-1y  is the estimated value in function of the previous 

state vector, and −k|k 1R  is the matrix of covariances, the likelihood function is given by 

                       
1

1
exp( )

2( ) ( | )
det( )( 2 )

N

l
k

L p
π

−
−

=
−

 − 
==  

 
 

∏
T 1

k k|k 1 k

N 0

k|k 1

ε R ε

θ;Y y θ
R

 (6.25) 

where, for given parameters and initial states, kε  and −k|k 1R  can be computed by means 

of an extended Kalman filter as shown in the next section.  
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Conditioning on 0y  and taking the negative logarithm in Eq. (6.25) provides 

  ( )
1 1

1 1
ln( ( | )) ln(det( ) ln(2 )

2 2

N N

k k

L l π−
− −

= =

 
− == + +  

 
∑ ∑T 1

N 0 k|k 1 k k|k 1 kθ;Y y R ε R ε  (6.26) 

The maximum likelihood of the parameters can now be determined by solving the 

following non-linear optimization problem 

                                     0
ˆ argmin{ ln( ( | ))}L y= − Nθ θ;Y  (6.27) 

6.3.2 Extended Kalman Filter 

The Kalman filter is a recursive predictive filter that is based on the use of state 

space techniques and recursive algorithms. It estimates the state of a dynamical system, 

based on two steps: the prediction and the correction. In the first step the state is 

predicted via the dynamic model, and corrected via the observation model in the second 

step. It is an optimal estimator since the error covariance of the estimator is minimized. It 

is also a recursive filter as the procedure is repeated for each time step using the state of 

the previous time step as an initial value.   

The basic components of the Kalman filter are the state vector, given by tx  in 

Equation (6.18), and the dynamical and observation models. The state vector was already 

defined and contains the state variables of interest. In general, these variables cannot be 

measured directly and their values are inferred from the measured ones. In applying the 

Kalman filter, we define the a priori value ( ˆ k|k-1x ) of the state vector which is the 

predicted value before the update, and the a posteriori value ( ˆ k|kx ) which is the corrected 

value after the update.  
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The dynamic model simply describes the changes of the state vector with time. It 

is usually represented by a system of differential equations in matrix form. In this work, 

the dynamic model is given by Equation (6.18). The observation model represents the 

relationship between the state and the measured data and it is given by Equation (6.19).  

When either the dynamic or the observation model is non-linear, the application 

of the standard Kalman filter is computationally very time consuming and usually leads 

to “false” minimum in the optimization procedure. One approach for resolving such non-

linear problems is to use the Extended Kalman filter (EKF).  

We assume that the initial parameters and state vector are known and the 

following steps are used to calculate kε  and −k|k 1R . First, using the initial state vector we 

evaluate the predictions equations as 

                                              |
ˆ ˆ( , )=k|k-1 k k-1
y h x θ  (6.28) 

                                             . . T=k|k-1 k|k-1R H P H  (6.29) 

where 
ˆ , ,kt t

h

= =

∂
=
∂

t k|k-1
t x x θ

H
x

is called the observation matrix and k|k-1P  is the covariance 

matrix of the state vector ˆ k|k-1x .  

Then, the prediction error is calculated by the innovation equation 

                                                ˆ
k k k|k-1ε = y -y  (6.30) 

And the Kalman gain is calculated by 

                                             1. .T −=k k|k-1 k|k-1K P H R  (6.31) 
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One can then calculate the a posteriori state vector and corresponding covariance 

matrix at time “k” as a function of the present time “k” by the following updating 

equations.  

                                       1
ˆ ˆ

−= +k|k k|k k kx x K ε  (6.32) 

                                1 .= − -1

k|k k|k- k k|k-1 kP P K R K  (6.33) 

Finally, we solve the following state predictions equations to calculate ˆ k+1|kx  and 

1+k |kP , which will be substituted into Equations (6.28) and (6.29) to repeat the procedure. 

In this way, we can estimate the prediction error and the covariance matrix at all discrete 

time instants. 

                                           
ˆ

ˆ , ,
d

t
dt

=t|k

t|k

x
f(x θ) , 1[ , )k kt t t +∈  (6.34) 

                                . . T T
d

dt
= + +t|k

t|k t|k

P
F P P F σ.σ , 1[ , )k kt t t +∈  (6.35) 

6.4 System Identification Accuracy 

Using the methodology presented in Chapter 4, we simulated the response of the 

following system of coupled Van der Pol random oscillators  
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2
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εηωη

εηωη

ɺɺ

ɺɺ

   (6.36) 

where 21 ηη ɺɺ +=Q  and 21 ηη +=P . These equations can be written in the form of 

Equations (6.18) and (6.19) by defining 

                                  1 2 3 4[ ]Tx x x x=tx  (6.37) 

where 1 1x η= , 2 2x η= , 3 1x η= ɺ , and 4 2x η= ɺ . Thus, we have 
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Ξ

Ξ

 
 
 =
 
 
 

t tσdW dW  (6.39) 

                                               1 2( , ) x x= +kh x θ  (6.40) 

and 1 2 1 2[ ]ω ω ε ε=θ ɶ ɶ . 

A similar system without stochastic excitation has been proposed by Bouziani et 

al
[63]

 as a model for combustion instabilities. The actual parameters and their estimated 

values are shown in the Table 6.1. A total of 48,000 samples were collected at sampling 

frequency of 48 KHz and divided into 10 sets of 4800 data points for estimation.  

 

 

Table 6.1: Comparison between actual and estimated values of the system parameters. 
 

System Parameter Actual Value Estimated Value Error (%) 

1f
~
 600 619.8 3.30 

2f
~
 5000 5244.5 4.89 

1ε  15 12.9 14.0 

2ε  40 45.4 13.5 
2

Ξσ  400 350.4 12.4 
2

eσ  0.005 0.0054 8.0 

 

 

 

Figure 6.5a presents an example of the simulated and estimated response (time 

history) for this system. The identified model captures very well the qualitative behavior 

of the system. Figure 6.5b shows that the amplitude spectral density is also in very good 

agreement.  
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a) 

 

b) 

Figure 6.5: System response: a) time history;  and b) amplitude spectral density. 

 



 121 

However, two important issues needed to be addressed to obtain this good 

agreement. The first one involves the number of data points used in the estimation. Since 

the experimental data was collected at sampling frequency of 48 KHz, all numerical 

simulations were performed at that rate. The results indicated that accurate estimates for 

non-linear systems can be expected for modes with frequencies up to 10 KHz using sets 

of at least 4000 data points. Compared to the SSI-DATA technique, the PEM requires 

much more samples (longer duration of experiments) for good accuracy.  

The second issue concerns the evaluation of the initial conditional probability 

density, which is necessary to start the iterative procedure. This means that it is necessary 

to provide initial values (guessed) for the model parameters as well as range of values 

over which the optimization algorithm will search for their correct values. Depending on 

these initial values and ranges, the algorithm can take a long time to find the answer. 

There is also a chance that the algorithm might find a local minimum that does not 

represent the sought solution or become unstable (convergence problems).  

6.5 Experimental Results 

The technique was applied to the experimental data discussed in Chapter 3. Only 

the dynamic pressure data was used in the identification procedure as the output, 

characterizing a stochastic identification. In order to obtain estimates as accurate as 

possible, the data corresponding to a given value of the control parameter (swirl flow 

ratio) was divided into 10 subsets with 4800 points each. This represents a total of one 

second of data at the experimental sampling rate.  
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6.5.1 Analysis of Initial Values for Parameters 

The model represented by Equations (6.11-6.14) includes a large number of 

parameters. Consequently, convergence problems in the numerical algorithm applied to 

estimate those parameters are very likely, unless very good initial values can be provided. 

To resolve such a problem, a stepwise approach was applied. In this sense, we initially 

performed the identification of the linear system as explained in Chapter 5. From the 

preliminary linear analysis the modal effective angular frequencies were found and set as 

fixed parameters in the non-linear identification. The estimated values of the modal 

effective damping ratios in the linear identification were used as initial guesses in the 

non-linear identification and their range set to the interval [-0.1,0.1]. Therefore, the 

parameters corresponding to the linear part of the model were addressed by the 

preliminary linear identification. 

Since the non-linear parameters are suppose to be responsible for the particular 

behavior of the system (bifurcation and hysteresis), the non-linear part of the model 

requires more attention. The non-linear parameters in the model were divided into 

physical and non-physical parameters. As the name indicates physical parameters are the 

result of a physically-based modeling and, in principle, they can be expressed as 

functions of the system properties. So, their initial values and range to be given as input 

to the identification algorithm can be calculated from those functions. In the other hand, 

the initial values of the non-physical parameters cannot be calculated and should be 

estimated via a preliminary black-box modeling. 

Once more we emphasize the importance of the physical parameters. During the 

identification procedure they will be estimated along with the non-physical parameters. 
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However, the possibility of having a good initial guess for their values based on the 

expressions relating them to system properties is very helpful. We start our analysis with 

Equation (6.11). The physical parameters 
mijA  and 

mijB , obtained from the non-linear 

coupling terms due to gasdynamics (up to second order) are given by   

                              2 2 4 2 2

2 2 2
4

4
[( ) ]

mij

mij i j m i j

m i j

I
A k k k k k

E k k
γ

γ
= + − −    (6.41) 
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where 
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0 0 0

L R

mij m i jI rdrd dx

π

ψ ψ ψ θ= ∫ ∫ ∫ , and 

2

2 2

0 0 0

L R

m mE rdrd dx

π

ψ θ= ∫ ∫ ∫ ,. 

Equations (6.41) and (6.42) indicate that 
mijA  and 

mijB  can be calculated based on 

the geometry of the combustor, boundary conditions of the problem, and thermodynamic 

properties of the products of combustion. The geometry and boundary conditions will 

determine the mode shapes given by  

                                      ( ) ( , , ) cos( )cos( ) ( )i pmn p m mnx r k x m J rψ ψ θ θ κ= =r        (6.43) 

while the thermodynamic data (i.e., γ  and a ) can be found in the Table 3.2. Since the 

modal frequencies were shown in Table 3.3, the wave numbers can be directly obtained 

by /i ik aω= ɶ . Therefore, if one assumes the effect of changes in swirl flow ratio upon the 

mean properties of the mixture (i.e., density, temperature, etc.) are negligible, those 

parameters will be constant. Consequently, we should expect that ( )mij mijA A K≠  and 

( )mij mijB B K≠ .  

For coupling between longitudinal modes those parameters can be calculated 

analytically. When transverse modes are taken into account the calculations should be 
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carried out numerically. These calculations involve triple integrals which can be 

simplified if one realizes that the expression for the mode shapes can be written in the 

form of separable functions as    

       ( ) ( , , ) cos( )cos( ) ( ) ( ). ( ). ( )i pmn p m mnx r k x m J r x R rψ ψ θ θ κ θ= = = Χ Θr       (6.44) 

Table 6.2 shows the values of 
mijA  and 

mijB  considering just the first longitudinal 

and first tangential modes excited. The corresponding mode shapes are  

                                     1 100( ) ( , , ) cos( )L px r k xψ ψ θ= =r       (6.45) 

                                    1 010 1 10( ) ( , , ) cos( ) ( )T x r J rψ ψ θ θ κ= =r       (6.46) 

where 1 1 /L Lk aω= , 10 1 8452. / Rκ =  and R  is the radius of the combustor. 

 

Table 6.2: Theoretical values of the parameters 
mijA  and 

mijB  for coupling between first 

longitudinal and first tangential modes ( 1 168.γ =  and 893 2. /a m s= ). 

 

i  

mijA (m=1L) 
1L 1T 

1L -1.0129 0  

j 1T 0 -0.1494 

i  

mijA (m=1T) 
1L 1T 

1L 0 -11.3278  

j 1T -11.3278 0 

i  

mijB  (m=1L) 
1L 1T 

1L 1.74E6 -1.4646  

j 1T -1.4646 2.12E7 

i  

mijB  (m=1T) 
1L 1T 

1L -0.1988 5.14E7  

j 1T 5.14E7 173.7638 
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Next, the parameter related to the source term due to unsteady heat release, ma ,  is 

analyzed. Equation (4.80) introduced the following definition  

                                           
2

1 f

m m

m V

QQ
dV a

pE t t

γ
ψ

′∂′− ∂
=

∂ ∂∫∫∫
ɺɺ

  (6.47) 

Here we need to be careful, since we have assumed that the heat release is uniformly 

distributed in a certain region of the combustor near the injector plate. Thus, we can write 

the heat release as 

                                                   ( , ) ( ) ( )f fQ t Q t δ′ ′= −r r rɺ ɺ   (6.48) 

where fr  represents the coordinates of the flame in space. Substituting Equation (6.48) 

into (6.47) one obtains 

                                                         
2

1
( )m m f

m

a
pE

γ
ψ

−
= r   (6.49) 

For the longitudinal mode the calculation is straightforward, as shown in Equation 

(4.80) and repeated below. 

                                                      1 12

1

1
cos( )L ch L f

L

a A k x
pE

γ −
=   (6.50) 

However, for a transverse mode this calculation provides no unique values, since the 

flame is spatially distributed. This means that fr  and fθ  are not defined. Since all 

parameters will be estimated the initial value of the unsteady heat release parameter for 

the first tangential mode was set equal to the longitudinal mode. Thus, substituting the 

values given in Table 6.3 into Equation (6.50) one obtains 

                                                    1 1 8 75 5.L Ta a E= = −   (6.51) 

Next, we consider Equation (6.12). The only physical parameter is 1b  which can 

be written as
[59]
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                                                            1 2 /ub S R=   (6.52) 

where uS  is the burning speed. Fleifil et al
[58]

 have proposed to write the Equation (6.12) 

as 

                                                       1 4 ( )
f

f f

dQ
bQ b f u

dt

′
′+ =

ɺ
ɺ   (6.53) 

where 3

2 3( )f f ff u b u b u= + , and the new parameter, 4b , is a physical parameter which can 

be expressed by 

                                                       4 2 /u u rb S q Rρ= ∆   (6.54) 

where uρ  is the density of the reactants and rq∆  is the heat release rate per unit mass. 

 

Table 6.3: Thermodynamical and kinematic flow properties and combustor geometry 

data. 

 

Average speed of sound a = 893.2 m/sec 

Combustor Length L = 0.325 m 

Combustor Radius R = 0.052 m 

Gama γ = 1.168  

Mean Pressure p = 10332.27 Kg/m
2
 

Axial position of the pressure sensor #1 1P
x ′= 0 m 

Radial position of the pressure sensor #1 1P
r ′ = 0.046 m 

Azimuthal position of the pressure sensor #1 1P
θ ′  = 0 rad 

Axial position of the pressure sensor #2 2P
x ′= 0 m 

Radial position of the pressure sensor #2 2P
r ′ = 0.046 m 

Azimuthal position of the pressure sensor #2 2P
θ ′  = 3.14159 rad 

Axial position of the optical sensor fx = 0.015 m 

Burning speed uS = 0.5 m/sec 

Reactants Density uρ = 0.12 kg/m
3
 

Heat release rate / unit mass mixture rq∆ = 4.30E+07 J/kg 
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Therefore, we should consider the values of 1b  and 4b  when introducing the 

parameters initial guessed values. The parameters 2b  and 3b  are non-physical and their 

initial values were set equal to unity. Besides, the investigation performed by Rumsey et 

al
[59]

 has shown that 2b  and 3b  should be small values (between 0 and 10). 

In Equation (6.13), the physical parameters are the mc ’s. Their values are 

calculated based on the flame location, so that we have the same issue as for the values of 

ma . We calculated the value of mc  for the longitudinal mode and we used that value as 

the initial guess for the value of mc  for the first tangential mode. Thus, we have 

                                                      
1

1 1

1

sin( )
0.0128

L f

T L

L

k x
c c

kγ
= = =  (6.55) 

Finally, in Equation (6.14) the physical parameters are the ,j md ’s which are fixed; 

that is, they are not estimated by the SID technique. Their values are calculated based on 

the location of the pressure transducers (i.e., , ( )j m m jd ψ= r ) whose coordinates are shown 

in Table 6.3. After substituting the values into the equation we have  
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d

d

= =

=

=−

 (6.56) 

6.5.2 Model for Identification 

Applying the “rule of thumb” in system identification (“try simple first”), we 

limited the degrees-of-freedom of the model to the first longitudinal and first tangential 

modes. The reason for that comes from the preliminary analysis of the experimental data 

which indicated that these two modes might play important roles on the onset and decay 

of instability. 
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The dynamical model with the mentioned modes can be written in the form of 

Equations (6.18) and (6.19) by defining 

                              1 2 3 4 5[ ]Tx x x x x=tx  (6.57) 

where 1 1Lx η= , 2 1Tx η= , 3 1Lx η= ɺ , 4 1Tx η= ɺ , and 5 fx Q′= ɺ . Thus, we have 
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6.5.3 Model Parameters Estimation 

The dynamical system identification was preformed using a developed 

MATLAB® code for stochastic non-linear model parameter estimation. As mentioned 

before, the number of parameters to be estimated is very large. As a consequence, every 

time we tried to estimate all physical and non-physical parameters at once based on the 

estimates from linear approximation a convergence problem occurred. To resolve this 

issue we decided that only the non-physical parameters should be estimated first, which 

sensibly decreased the number of parameters for estimation. 
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Thus, in a first run, all physical parameters were set as fixed and the non-

physical parameters were estimated along with the damping ratios and noise variances. 

Next, a new estimation was performed using the just estimated values of the mentioned 

parameters as their initial values and all parameters were set to be estimated by the SID 

algorithm, except for 4b  which was held fixed (in order to estimate 2b  and 3b ). 

Figures (6.6a) to (6.6l) show the dependence of the estimated values of the 

model parameters due to non-linear coupling by gasdynamics (
mijA  and 

mijB ) upon 

changes in the swirl flow ratio. In all plots the blue lines represent the initial (guessed) 

values of the parameters, and the dashed lines (black and red) represents the best fit 

(polynomial fit) of the data. The vertical lines represent the standard deviation for each 

estimated value. Due to the scattering in the estimates, there are no clear trends in the 

results of the best fit. Thus, we consider these parameters independent on K.  

Figures (6.7a) and (6.7b) show the dependence of the estimated values of the 

modal frequencies upon changes in the swirl flow ratio. The results indicate that the 

estimated values of the modal frequencies remain practically constant upon changes in 

the control parameter K. One can note a small scattering in the estimated values in the 

range of control parameter in which the mode contribution for the total signal is smaller. 

In this sense, the estimated value of the longitudinal mode frequency is scattered after the 

onset of tangential instability and vice-versa. One should remember that these estimated 

values are “effective” values of the natural frequencies which incorporate correction due 

to contributions such as parametric noise, frequency shift, etc. 
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a) 

 
b) 

Figure 6.6: Dependence of the estimated parameters from non-linear gasdynamics upon 

changes in swirl flow ratio: a) A1L1L1L; b) B1T1T1T; c) A1L1T1T; d) A1L1L1T = 

A1L1T1L; e) A1T1L1L; f) A1T1T1L = A1T1L1T; g) A1T1T1T; h) B1L1L1L; i) B1L1L1T = 

A1L1T1L; j) B1T1L1L; k) B1L1T1T; and l) B1T1T1L = B1T1L1T. 
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c) 

 
d) 

Figure 6.6: continued… 
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e) 

 
f) 

Figure 6.6: continued… 
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g) 

 

 
h) 

Figure 6.6: continued… 
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i) 

 

 
j) 

Figure 6.6: continued… 
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k) 

 
l) 

Figure 6.6: continued… 
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a) 

 
b) 

Figure 6.7: Dependence of the estimated modal frequencies upon changes in swirl flow 

ratio: a) first longitudinal mode; and b) first tangential. 
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Figures (6.8a) and (6.8b) show the dependence of the estimated values of the 

modal damping ratios upon changes in the swirl flow ratio. The first observation is that 

both modes present negative damping, even in the range of control parameter in which 

the combustor was considered stable. This implies that both modes were under small 

amplitude limit cycle operation. In general, as the value of the control parameter 

decreases the damping ratios of both modes also decrease. When the control parameter 

increases the damping ratios increase. However, in the region of unstable operation; i.e., 

for value of K smaller than 22/78 (after the onset of tangential instability) the estimated 

damping ratios are approximately constant. Similarly, in the region of stable operation; 

i.e., for values of K larger than 40/60 (very small amplitude oscillations) the damping 

ratios are almost constant. This qualitative behavior of the damping ratios is similar to the 

behavior captured by the linear system identification approach in Chapter 5. 

Figures (6.9a) and (6.9b) show the dependence of the estimated values of the 

parameters related to the source term due to the unsteady heat release, 1La  and 1Ta . One 

can note that the estimated values of both 1La  and 1Ta  show a certain tendency to 

increase as the value of the swirl flow ratio decreases and vice-versa.  

Next, the results of the estimates for 1Lc  and 1Tc  are shown in Figures (6.10a) 

and (6.10b), respectively. Figure (6.10a) indicates that 1Lc  decreases as the swirl flow 

ratio decreases and vice-versa, whereas Figure (6.10b) indicates that there is no clear 

dependence of  1Tc  upon changes in the control parameter.  
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a) 

 
b) 

Figure 6.8: Dependence of the estimated modal damping ratios upon changes in swirl 

flow ratio: a) first longitudinal mode; and b) first tangential. 
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a) 

 
b) 

Figure 6.9: Dependence of the estimated model parameters related to the source term due 

to unsteady heat release upon changes in swirl flow ratio: a) 1La ; and b) 1Ta . 
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a) 

 
b) 

Figure 6.10: Dependence of the estimated model parameters 1Lc  and 1Tc  upon changes in 

swirl flow ratio: a) 1Lc ; and b) 1Tc . 
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The last physical parameter whose estimates were analyzed is 1b . Figure (6.11) 

shows the dependence of the estimates upon changes in the swirl flow ratio. The results 

indicate that there is no clear dependence of 1b  on the control parameter, K. The analysis 

and physical interpretation for all of these results will be given in the next section. 

 

 

Figure 6.11: Dependence of the estimated model parameters 1b  upon changes in swirl 

flow ratio. 

 

 

 

Next, we present the results of the estimates of the non-physical parameters 2b  

and 3b . As mentioned before their initial values were set equal to unity and their range to 

the interval [0,10]. Figure (6.12a) shows the dependence of the estimates for the 

parameter 2b  upon changes in swirl flow ratio. The results indicate that the estimated 

value of 2b  is independent of the swirl flow ratio and oscillates around the initial value of 
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unity. Figure (6.12b) shows the dependence of the estimates for the parameter 3b  upon 

changes in swirl flow ratio. The results indicate that the estimated value of 3b  is also 

independent of the swirl flow ratio and oscillates around a mean value close to 10 (the 

upper boundary of its range).  

To make sure that the chosen range for the values of these and all other 

parameters had no influence upon their estimated values, the parameter estimation 

procedure was repeated with a wider ranges. The results were qualitatively the same; that 

is, the estimated value of 2b  oscillated around unity and the estimated value of 3b  

oscillated around a mean value near 10.  

6.5.4 Analysis of the Results 

The main advantage of a gray-box modeling is the possibility of interpreting the 

results obtained for the model parameters based on the physics of the system. Thus, the 

results presented for all the estimated physical parameters can be analyzed and one can 

verify if these results have physical explanation.  

We start the analysis with the estimated damping ratios. The first observation is 

the negative damping ratios for both modes (longitudinal and tangential). That implies 

the nonlinearities in the system are acting to saturate the amplitude of the oscillations at 

limit cycle amplitude. This type of behavior has been reported in many investigations in 

the literature
[9-14],[65]

. As the swirl flow ratio is decreased the damping ratios also 

decrease. Thus, physical processes in the system which are responsible for 

dissipating/removing energy from the unstable modes become less efficient as the swirl 

flow ratio decreases. Consequently, the limit cycle amplitude reached by each mode 

increases. 
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a) 

 
b) 

Figure 6.12: Dependence of the estimated model parameters 2b  and 3b  upon changes in 

swirl flow ratio: a) 2b ; and b) 3b . 
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The results shown in the previous section, indicated that the estimated values for 

the following parameters were approximately independent upon changes in the control 

parameter K: A1L1L1L; B1T1T1T; A1L1T1T; A1L1L1T = A1L1T1L; A1T1L1L; A1T1T1L = A1T1L1T; 

A1T1T1T; B1L1L1L; B1L1L1T = A1L1T1L; B1T1L1L; B1L1T1T; B1T1T1L = B1T1L1T; and modal natural 

frequencies ( 1Lfɶ  and 1Tfɶ ) . This result validates our modeling by which these parameters 

depend on the geometry and boundary conditions in the combustor. Similarly, the results 

for the estimated values of the model parameter 1b  also show independence upon K, in 

agreement with the expression shown in Equation (6.52). 

Next, we analyze the parameters whose values are functions of the coordinates of 

the flame or heat release location; that is, 1La , 1Ta , 1Lc , and 1Tc . As the parameters 1Ta  

and 1Tc  do not have closed form expressions for their calculations, our analysis is based 

on the results for 1La  and 1Lc . From Equations (6.50) and (6.55) we have 
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∝

∝
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Since the results indicates that 1La  increases as the swirl flow ratio decreases and the 

opposite happens with 1Lc , one can assume that the flame location (or the region of 

concentrated heat release) moves closer to the injector plate ( fx  decreases) as the swirl 

flow ratio decreases.  

The validation of this assumption is performed by comparing the results obtained 

in this research with the experimental investigation of Lubarsky and Zinn
[65]

. In their 

investigation, the stationary and oscillatory heat release distributions along the reaction 

zone of the LRECS were characterized at different regimes of combustion dynamics. For 
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this purpose the LRECS was scanned by a step movement of the optical sensor at 

different regimes of combustion dynamics.  

The influence of K variation upon the profiles of the stationary heat release at 

constant equivalence ratio is shown in the Figure 6.13. It is clearly seen that K value 

changes the profile of the flame intensity dramatically. One can note that for very low 

values of swirl flow ratio (e.g., K=16/84) the heat release concentrates in a narrow zone 

about 40mm near the injector face (at these conditions tangential instability was typically 

observed). On the contrary, at higher swirl flow ratios (e.g., K=78/22) the flame intensity 

profile is flatten and the heat release is concentrated in a wider zone (about 118mm near 

the injector plate). 
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Figure 6.13: Stationary heat release profiles at different values of swirl flow ratio 

obtained by processing the spectrometer data in the CH* band
[65]

.  

 

 

 

The distance in the horizontal axis corresponding to the peaks in the flame 

intensity profiles can be assumed a measure of the flame location as a function of the 

swirl flow ratio. In this sense, Figure 6.13 confirms the results of the estimated values of 

the model parameters 1La  and 1Lc , which indicated that the flame location moves closer 
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to the injector plate as the swirl flow ratio is decreased. However, in the investigation of 

Lubarsky and Zinn
[65] 

the location of the maximum heat release did not changes gradually 

with K rather revealed kind of step behavior, which was assumed a consequence of the 

reorganization (rebuilding) of the vortex system holding the flame in the LRECS. 

During the derivation of the finite-dimensional model in Chapter 4, we introduced 

the variable fu , the oscillating acoustic velocity at the flame location, as a way of 

replacing the time delays in the model. The relationship between the time delay and the 

coordinate fx  is straightforward. Thus, the results presented in this research confirm the 

capability of the “smart” injectors of changing the stability characteristics of the LRECS 

by changing the spray pattern and, ultimately, the combustion time in the system.  

6.5.5 Operational Stability Margin Assessment 

In Chapter 5, the linear system approximation allowed us to assess directly the 

stability margin of the LRECS by looking at the estimated modal damping ratios; that is, 

the modal damping ratios were a measure of the stability of the system. The closer the 

value of a modal damping ratio is to zero, the smaller the stability margin of the 

combustor regarding that mode. One could assume that the modal damping ratios varied 

linearly with the swirl flow ratio, so that the assessment of the stability margin as a 

function of changes in the control parameter K was performed. 

As for the mentioned linear system approach, the behavior of the combustor 

described by the non-linear dynamical model in this chapter also depends on the values of 

its parameters. However, we cannot infer the stability margin of the system by simply 

looking at the value of any parameter, because there is no indication of which value 

would correspond to the stability limit. The stability margin needs to be determined by 
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numerical simulations of the dynamical system response based on the information 

collected about the model parameters via system identification. 

Since the functional dependence of the model parameters upon the swirl flow 

ratio can be determined from the results presented in the previous section, we can write 

the dynamical model defined by Equations (6.11-13) as 

                               ( )
d

K K
dt

= + ≈t
t t t

x
f(x ,θ ) W F(x , )  (6.62) 

Using this approximated representation, the behavior of the combustor system can 

be studied by applying methods of dynamical systems theory to create bifurcations 

diagrams. In particular, the current investigation uses the packages MATCONT and 

CL_MATCONT by Govaerts et al
[66]

 to perform a local continuation of steady-states, 

periodic solutions, folds and limit cycle curves. The control parameter, K, was used as the 

continuation parameter. The mathematical description of the method as well as its 

implementation in the form of a MATLAB® toolbox can be found in reference [66].  

In writing the functions KtF(x , ) , the only model parameters presenting a linear 

dependence upon changes in K are 1Lζɶ , 1Tζɶ , 1La , and 1Lc . These functional dependences 

were determined by the best linear fit of these estimated values corresponding to the 

situation when the swirl flow ratio was decreased from 40 60/K ≃  to 22 78/K ≃  (before 

the onset of instability). The reason for that is to verify the capability of the model in 

predicting such instability when the value of the control parameter is decreased below 

22 78/K ≃ . All other parameters are constant. Figures (6.14a) and (6.14b) show the 

results of the application of the software of continuation method for this case.  
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a) 

 
b) 

Figure 6.14: Comparison between the predicted modal amplitude via continuation 

method and the actual values from experimental data: a) longitudinal mode; 

and b) tangential mode. 



 149 

The results indicate that the model could capture the qualitative behavior of both 

modes very well, including the suddenly increasing in the tangential mode amplitude and 

decreasing of the longitudinal mode amplitude. This behavior has been reported in 

literature
[63]

 and it is known as two generators with competitive quenching. The hysteretic 

behavior is also captured when the values of K are swept back and forth. The values of 

the control parameter K corresponding to the points of abrupt changes in amplitudes are 

also very well predicted. However, the model could not predict correctly the amplitudes 

of the oscillations.  

The amplitudes are overestimated in the case of the longitudinal mode and 

underestimated for the tangential mode. We suspect that neglecting the stochastic 

excitation in the application of the continuation method can have an effect upon the 

predicted values of the amplitudes of the modes. Nevertheless, the results indicate that 

the methodology developed in this research can be used to predict the unstable behavior 

of our LRECS based on the application of the SID technique to the experimental data.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

The objective of this thesis was to develop a methodology by which the 

operational stability margin of a combustor could be assessed from available 

experimental data by applying modern and robust techniques from dynamical system 

identification. In this chapter, we present some of the findings and conclusions for this 

thesis and provide recommendations for future work. 

In Chapter 4 we presented the analytical framework to derive a gray-box 

thermoacoustic model for the LRECS. The model is represented by a set of coupled 

stochastic differential equations with parametric and additive noise. Then, an analysis 

based on the method of dissipation energy balancing indicated that the parametric noise 

terms could be lumped in an effective damping ratio and effective stiffness. This 

assumption was validated by numerical simulations performed in Chapter 5. The linear 

coupling terms related to the gasdynamics were neglected. The simplified thermoacoustic 

model accounted for non-linear coupling due to gasdynamics, stochastic excitation 

(additive noise), and non-linear forcing due to the unsteady heat release. This is an 

original contribution of this research, since previous works in the field of system 

identification applied to combustion systems have not taken all of those effects into 

account in their models. 

In the first application of the developed methodology, we assumed that the 

dynamics of the LRECS could be approximated by a set of linear oscillators. Thus, in 

Chapter 5 we presented the SSI-DATA technique implemented to estimate the modal 
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parameters; that is, effective modal damping ratios and frequencies. In this case, the 

modal damping ratios is already a measure of the operational stability margin, since a 

zero value for modal damping ratio implies the modal stability boundary. The application 

of the SSI-DATA technique to the experimental data revealed that expressing the modal 

damping ratios as a linear function of the control parameter, K, provided good estimates 

of the value of swirl flow ratio at which the system becomes unstable. Furthermore, the 

results also pointed out which mode has the largest operational stability margin. 

It was shown that the SSI-DATA technique has accuracy issues as the system 

approaches its stability boundary. The technique overestimates the values of the modal 

damping ratios as they approach zero. However, there is a doubt about the validity of the 

linear approximation as the system approaches unstable regime. In fact, as the system 

approaches instability, the amplitude of the oscillations increase and non-linear effects 

become important. Thus, this approximation should be applied carefully. 

The linear approximation is not able to capture the hysteretic behavior (typically a 

nonlinearity indication). In real applications, one should avoid operating conditions in the 

region of bi-stability. Therefore, we extended our methodology to the non-linear 

stochastically excited system in order to capture the main features of the system behavior 

shown by the preliminary analysis of the experimental data. At this point, the model for 

the heat release dynamics played an important role. 

The limitation of applicability of the SID technique to finite-dimensional dynamic 

models required that the heat release model could not include time delays. The heat 

release model presented in this research was based on previous investigations and on a 

black-box modeling using the measured dynamic pressure as input and the 
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chemiluminescence data as output. It provided a finite-dimension system of stochastic 

differential equations as necessary. However, its derivation was based on the assumption 

of small time delays which cannot be supported by the necessary condition for 

combustion instabilities, acous combτ τ≈ . Therefore, the proposed model should be 

considered a first order non-linear approximation of the real time-delayed system. 

To estimate the parameters of the finite-dimension model a system identification 

technique based on the prediction error method (PEM) was implemented which has the 

extended Kalman filter (EKF) as the tool for reducing the problems with convergence in 

the numerical algorithm. The technique requires that initial values as well as range of 

values for the model parameters must be given. In this sense, the gray-box modeling 

played a fundamental role, since it provided expressions to calculated most of the 

parameters based on known characteristics of the system (geometry, boundary conditions, 

thermodynamic properties, etc.).  

It was verified that, theoretically, many of the physical parameters did not depend 

on changes in the swirl flow ratio, and, therefore, should remain constant at all values of 

K. The results of the model parameter estimation confirmed such independence. The 

results also indicated that the behavior of some of the estimated model parameters can be 

used to obtain information about the dependence of the flame location upon changes in 

the control parameter.     

The identified model and its parameters were used to predict the behavior of the 

system upon changes in the parameter K, using a continuation method. The overall 

behavior of the amplitude of the oscillations of the two modes considered in this research 

was very well captured. In particular, the results from the bifurcation diagram showed 
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regions of bi-stability similar to the experimental data. Besides, values of the control 

parameter K corresponding to the onset and decay of instability were in good agreement 

with the experimental data.  

As a conclusion, the methodology developed in this thesis can be applied to assess 

the operational stability margin of the LRECS from the experimental data collected 

before the onset of instability. If it is expected that the combustor will present hysteretic 

behavior, the linear approximation should be used to obtain initial values for the modal 

frequencies and damping ratios.  

As recommendations for future works, we can enumerate: 

1) Better model parameter estimation can be obtained if one excites externally 

the system (e.g., using a speaker) so that an input is available for the input-output 

SID technique. Besides, the computational time which is an issue for active 

control applications can also be reduced; 

2) Investigations must be performed to provide a finite-dimension model for the 

heat release dynamics in which the relationship between the model parameters 

and the time-delays can be explicitly expressed; and 

3) After the improvements mentioned above have been implemented, the 

implementation of recursive model parameter estimation would allow the 

application of the developed methodology for on-line operational stability margin 

assessment.   
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APPENDIX A 

EQUATIONS OF MOTION 

The equations for the unsteady motion in combustion chambers were derived in 

the work of Culick
[2]
. Here we just present the basic concepts applied in the derivation. If 

both fuel and oxidizer are liquid, the first idea is to lump the liquid fuel and oxidizer 

together as a single liquid phase. The multi-component gas mixture is represented as a 

single average gas. Thus, we have the following equations for this two-phase mixture: 

- Conservation of Mass: 

               0
g l

g g l l
t

ρ ρ
ρ ρ

∂ +
+∇ + =

∂
u u

( )
.( )  (A.1) 

- Conservation of Momentum:   

                  
g g l l

g g g l l l g
t

ρ ρ
ρ ρ τ

∂ +
+∇ + =∇

∂

u u
u u u u
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- Conservation of Energy:        

                 
0 0

0 0

g g l l

g g g l l l g g g

e e
e e Q

t

ρ ρ
ρ ρ τ

∂ +
+∇ + =∇ −∇ +

∂
u u u q

( )
.( ) .( . ) .  (A.3) 

where the subscripts g , l , and 0 refers to gas species, liquid phase and stagnation state, 

respectively. The internal heat flow, gq , is approximated by Fourier’s law for the gas 

phase and Q  represents heat addition in the gas phase due to combustion processes. The 

stress tensor is written as the sum of the isotropic pressure and the viscous stress tensor as 

                                                             g p υτ τ= − +I  (A.4) 

For a mixture the perfect gases with constant specific heat, the stagnation energy 

can be written as 
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                                                        2

0 2g g ge C T uυ= + /  (A.5) 

where Cυ  and gu  are mass averaged values over all gaseous species. 

If we denote by lw  the rate at which liquid phase is converted to gas we can write 

the conservation of mass of gas phase as 

                                                  
g

g g lw
t

ρ
ρ

∂
+∇ =

∂
u.( )  (A.6) 

and for the liquid phase  

                                                  l
l l lw

t

ρ
ρ

∂
+∇ = −

∂
u.( )  (A.7) 

Next, we define the slip velocity between the condensed and gas phase as 

                                                              l lδ = −u u ug  (A.8) 

Equation (A.1) can be written as  
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Substituting Equation (A.4) into Equation (A.2) and expanding the resultant 

expression we have  
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Substituting Equations (A.6) and (A.7) into Equation (A.10) one obtains 
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where l
l l l l

t
ρ

∂ = − + ∇ ∂ 

u
F u u.  is the momentum equation for the condensed phase, and 

l lwσ δ= − u  is the rate at which momentum is supplied to the newly created gas phase by 

the gases already present. 

Adding 
g

l g g
t

ρ
∂ 

+ ∇ ∂ 

u
u u.  to Equation (A.11) and rearranging the terms one 

finds 

                                     
g
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where l
l l l l l g g l

t

δ
δ ρ δ δ δ δ

∂ = − + ∇ + ∇ + ∇ ∂ 

u
F u u u u u u. . .  is the force of interaction 

between the condensed and gas phases. 

With similar manipulations, one can obtain the following energy equation for the 

temperature of the gas phase, 
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where l
l l l l

e
Q e

t
δ ρ

∂ = + ∇ ∂ 
u .  and 0 0 0l ge e eδ = − . In analogy to the force interaction 

between the two phases, we define the heat exchange between the two phases as 

                        l
l l l l l l g g l

T
Q C T T T

t

δ
δ ρ δ δ δ δ
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where l l gT T Tδ = − . The mass-averaged specific heat in Equation (A.13) is defined as  

                                      
1

1

m l
g l l

m

C C C
C C C

C

υ
υ υρ ρ

ρ
+

= + =
+

( )  (A.15) 

and /m lC ρ ρ=  is the fraction of mass in unit volume as liquid.  

If we drop the subscripts g  and the overbars for mass-averaged properties, we 

can write the conservation equations as follow 

- Conservation of Mass:            
D

Dt

ρ
ρ= − ∇ +u. W  (A.16) 

- Conservation of Momentum:  
D

p
Dt

ρ = −∇ +
u

F  (A.17) 

- Conservation of Energy:          
DT

C p
Dt

υρ = − ∇ +u. Q   (A.18) 

where 

                                                 l lρ δ= −∇ uW .( )  (A.19) 

                                                l υδ τ σ= +∇ −FF .  (A.20) 

                          0l l l lQ Q w eυδ τ σ δ δ= + ∇ + −∇ + + +u F u u qQ . . . .  (A.21) 

and the substantial derivative is defined as 
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