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SUMMARY 

 

Deafferented cortical visual areas exhibit topographical plasticity such that their 

constituent neural populations adapt to the loss of sensory input through the expansion 

and eventual remapping of receptive fields to new regions of space.   Such 

representational plasticity is most compelling in the long-term (months or years) but 

begins within seconds of retinal deafferentation (short-term plasticity).  The neural 

mechanism proposed to underlie topographical plasticity is one of disinhibition whereby 

long-range horizontal inputs are “unmasked” by a reduction in local inhibitory drive.  In 

this dissertation, four experiments investigated the neural mechanisms of short-term 

visual plasticity and disinhibition in humans using a combination of psychophysics and 

event-related potentials (ERPs).  Short-term visual plasticity was induced using a 

stimulus-induced analog of retinal deafferentation known as an artifical scotoma.  

Artificial scotomas provide a useful paradigm for the study of short-term plasticity as 

they induce disinhibition but are temporary and reversible.  Experiment 1 measured 

contrast response functions from within the boundaries of an artificial scotoma and 

evaluated them relative to a sham control condition.  Changes in the contrast response 

function suggest that disinhibition can be conceived of in terms of two dependent but 

separable processes: receptive field expansion and unrestricted neural gain. A two-

process model of disinhibition is proposed.  A complementary ERP study (Experiment 2) 

recorded visual evoked potentials elicited by probes appearing within the boundaries of 

an artificial scotoma.  Results revealed a neural correlate of disinhibition consistent with 

origins in striate and extrastriate visual areas. Experiment 3 and 4 were exploratory 



 ix

examinations of the representation of space surrounding an artificial scotoma and 

revealed a neural correlate of invading activity from normal cortex.  Together, the results 

of these four studies strengthen the understanding of the neural mechanisms that underlie 

short-term plasticity and provide a conceptual framework for their evaluation.  

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 Primary sensory areas in mammalian cortex are organized topographically 

(Felleman, Wall, Cusick, & Kaas, 1983; Real & Imig, 1980; Tootell, Switkes, Silverman, 

& Hamilton, 1988; Tusa, Palmer, & Rosenquist, 1978).  It was long held that the 

topography of sensory areas was modifiable only during critical periods of development 

and could be considered ‘hard-wired’ thereafter (Hubel & Wiesel, 1970).  Research 

conducted over the past two decades has shown that, in fact, sensory cortices exhibit a 

remarkable degree of plasticity and are capable of topographic reorganization even in 

adulthood.   

The first compelling evidence of cortical topographic plasticity came from studies 

of somatosensory cortex.  Following digit amputation, the topographical organization of 

primary somatosensory cortex underwent a dramatic alteration such that the region of 

cortex that had previously represented the amputated digit became responsive to the 

stimulation of adjacent digits (Merzenich, 1983a, 1983b, 1984; Rasmusson, 1982).  

Further investigation revealed that not only did somatosensory cortex reorganize after 

several months but the beginning of such reorganization was measurable within minutes 

of digit amputation (Calford & Tweedale, 1988, 1991a, 1991b).  These studies prompted 

investigations of plasticity in other sensory modalities and it was soon apparent that 

topographical reorganization was not restricted to somatosensory cortex but also occurred 

in auditory (Rajan, Irvine, Wise, & Heil, 1993; Robertson & Irvine, 1989), motor (Sanes, 

Suner, & Donoghue, 1988), and visual (Kaas et al., 1990) cortices.  The primary concern 



 2 

of this dissertation is plasticity within the visual system and discussion will focus on this 

modality (see Calford, 2002 for review of reorganization in other modalities). 

As with somatosensory cortex, large-scale topographic reorganization occurs 

within primary visual cortex following deafferentation.  Using lasers to induce small 

retinal lesions a number of single-cell studies have found extensive reorganization within 

V1 (Gilbert & Wiesel, 1992; Heinen & Skavenski, 1991; Kaas, Krubitzer, Chino, 

Langston, Polley, & Blair, 1990).  In general these studies have found that after several 

months of recovery deafferented regions of cortex became reactive and remapped their 

classical receptive fields to new regions of space.  Changes in receptive fields (RFs) also 

occur within minutes of lesioning.  However, such short-term plasticity results in RF 

expansions rather than absolute remapping of visual space (Calford, Schmid, & Rosa, 

1999; Calford, Wang, Taglianetti, Waleszcyk, Burke, & Dreher, 2000; Gilbert & Wiesel, 

1992). 

Very little research has examined adult topographical plasticity within human 

visual cortices.  Long-term visual plasticity has been examined using functional imaging 

in patients with abnormal visual input (Baker, Peli, Knouf, & Kanwisher, 2005; Dilks, 

Serences, Rosenau, Yantis, & McCloskey, 2007).  These studies are consistent with the 

occurrence of large-scale visual reorganization reported in single-cell unit studies 

conducted in animals.  However, short-term visual plasticity in humans remains 

unexplored.  In this dissertation, I examine neural correlates of short-term visual 

plasticity in humans using psychophysical measures and event-related potentials (ERPs).   

Lesioning methods are impractical for the empirical investigation of short-term 

plasticity and cannot be used in human subjects.  However, a temporary and reversible 
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stimulus-induced analog of retinal deafferentation known as an artificial scotoma 

(Ramachandran & Gregory, 1991) can be used to investigate short-term visual plasticity 

in humans.   Artificial scotomas provide an effective method of assessing short-term 

visual plasticity since induce the same change in receptive field properties as a true lesion 

(De Weerd & Pessoa, 2003; De Weerd, Gattass, Desimone, & Ungerleider, 1995; Pettet 

& Gilbert, 1992) but can be used routinely without harm to the subject.   

Four experiments investigated disinhibition and short-term plasticity in the human 

visual system using an artificial scotoma paradigm.  Experiments 1 and 2 examined 

plasticity induced within the region of cortex temporarily deafferented by an artificial 

scotoma (i.e., within the boundaries of the artificial scotoma).  Experiment 1 was 

concerned with evaluating changes in receptive field dynamics within deafferented visual 

cortex using psychophysical measurement of contrast response functions.  Specifically, 

three models of receptive field dynamics were contrasted.  Experiment 2 employed event-

related potentials (ERPs) to identify neural correlates of short-term plasticity and to 

determine the earliest level within the human visual hierarchy at which these short-term 

plastic changes can be found.    

Experiments 3 and 4 were exploratory examinations that investigated plasticity-

induced perceptual and electrophysiological changes in the region of space surrounding 

the artificial scotoma.  Plasticity within deafferented cortex is partly the result of 

horizontal inputs originating from surrounding cortex.  As such, an increase in the neural 

representation of extra-scotoma space may be expected due to this invading activity and 

may alter cortical visual processing within surrounding cortex.  Experiment 3 
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investigated the perceptual consequences of invading activity whereas Experiment 4 

sought a neural correlate of the process using ERP.  

 

 

Plasticity: Definition & Related Terms 

 The word plasticity is a rather overused term in the neuroscience vernacular.  In 

general, plasticity refers to some neural change that accompanies learning, experience, 

sensory deafferentation, or brain damage.  However, such a definition is exceedingly 

broad and it is necessary to clarify the meaning of the term as it will be used in this 

document.  From hereon, the term plasticity will refer to representational (topographical) 

plasticity, meaning that there has been a change in some aspect of cortical topography. 

Before specifying further what is meant by representational plasticity several other terms 

must first be introduced.  The term classical receptive field refers to the region of space 

to which the cell is responsive under conditions of normal visual input and when mapped 

with stimuli presented on a uniform background.  When used in the context of receptive 

fields, the qualifiers remapped or shifted refer to a region of space other than the classical 

RF to which a cell has become responsive.  These two terms will imply that, relative to 

the classical receptive field, RF size remains approximately unchanged.  The term ectopic 

is used to generally describe a receptive field that has been spatially altered in some way 

from the classical receptive field.  This could imply that the RF has shifted or remapped, 

or could mean that the RF has increased in area or shape. The terms expanded RF and RF 

expansion are used to specifically describe RFs that are of considerably greater area than 

the classical RF.  The term deafferented zone (DZ) will refer to a region of cortex 
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deprived of visual sensory input (deafferented).  DZ will describe a permanent 

deafferentation of sensory cortex due to retinal lesion.  A complementary term, 

temporary deafferented zone (TDZ), will refer to a region of cortex temporarily deprived 

of patterned visual input by means of a stimulus-induced artificial scotoma.  Invading 

zone (IZ), refers to the cortical area surrounding a DZ or TDZ that provides long-range 

horizontal inputs to that area.  DZ, TDZ, and IZ will be used generally to refer to those 

cortical visual areas that experience a loss of sensory input from visual space.  When 

necessary to describe specific cortical areas, the terms will qualified with the appropriate 

label.  For example, V1-DZ refers to the deafferented region of primary visual cortex.  

With the aforementioned terms defined, a more precise definition of plasticity can be 

given.  Representational plasticity, topographical plasticity, and plasticity will refer 

simply to the systematic occurrence of ectopic RFs within a DZ or TDZ.  This means that 

RFs have remapped, changed in size, or changed in shape.  With respect to the time 

course of plasticity the terms reorganization and long-term plasticity will refer to 

representation plasticity over a course of days, months, or years.  Short-term plasticity 

will refer to the occurrence of representational plasticity over seconds, minutes, or hours.   

 

Long-Term Visual Plasticity and Reorganization 

 It has long been known that the visual cortices are capable of representational 

plasticity during development but it was thought that this plasticity was restricted to early 

periods in development and that the response properties of visual cortical neurons were 

“hard-wired” in adulthood (Hubel & Wiesel, 1970).  However, this view has changed a 
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great deal and it is now widely accepted that even adult visual cortex is capable of 

considerable reorganization (for reviews see Calford, 2002; Gilbert, 1998).   

The first foray into visual topographic plasticity was undertaken in the primary 

visual cortex (area V1) of adult cats.  Following extensive mapping of receptive fields in 

V1, Kaas and colleagues (1990) used a laser to induce 5-10° monocular lesions in the 

peripheral retinal of cats.  The nonlesioned eye was then enucleated to remove visual 

input from the partner eye.  Two to six months later recordings were again made in V1.  

Outside the DZ, neurons had receptive fields of both normal size and normal location.  

However, receptive fields within the DZ were ectopic and represented regions beyond the 

lesioned retinal area.  Thus, the topographical representation of the DZ had reorganized 

such that classical receptive fields had remapped to new locations.  

The general findings of long-term reorganization of V1 have been replicated by a 

number of single-cell studies in several species (Calford et al., 1999; Gilbert & Wiesel, 

1992; Heinen & Skavenski, 1991).  However, a recent study has raised some controversy 

regarding the occurrence and extent of reorganization within primary visual cortex 

(Smirnakis et al., 2005).  Smirnakis and colleagues induced matched binocular lesions in 

macaque retina and used fMRI to track visual reorganization over a period of seven 

months.  Contrary to previous findings, their results indicated that the DZ within V1 

remained silenced months after deafferentation.  This result suggested that no 

reorganization had occurred in V1.  The reason for this incongruence with two decades of 

previous findings is unknown but may be related to differences in measurements of 

reorganization.  Calford and colleagues (2005) suggest that the apparent lack of 

reorganization described by Smirnakis is merely a reflection of fMRI’s (i.e., BOLD) 
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insensitivity to spiking activity.  They argue that spiking activity is the critical dependent 

measure and the BOLD response is insensitive to changes in spiking activity.  It is also 

unclear how extended periods of deafferentation affect neurovascular coupling.  

Furthermore, the BOLD response reflects both inhibitory and excitatory neural activity.  

Deafferentation has been shown to decrease inhibitory GABAergic activity within the DZ 

(Jones, 1990; Rosier et al., 1995).  Thus, it is possible that the lack of BOLD response 

found within the DZ (i.e., Smirnakis et al., 2005) may be due to the reduction in 

inhibitory activity even though excitatory activity may actually be increased.  Further 

investigation of these issues is required.   

 Despite some recent controversy, long-term visual reorganization has been 

repeatedly demonstrated in cats and monkeys.  Evidence of visual plasticity in humans, 

however, is quite limited.  Studies of clinical patients with retinal abnormalities suggest 

that the human visual cortex may also be capable of reorganization in adulthood.  Some 

of this evidence comes simply from patient self-report.  Retinal lesions do not present as 

“black holes” in visual space, but are ‘filled-in’ by the space that surrounds them 

(Morgan & Shatz, 1985; Smith, Lea, & Galloway, 1990; Zur & Ullman, 2003).  

Peripheral retinal lesions often go unnoticed by patients until explicitly tested (Dreher, 

Burke, & Calford, 2001).  Even patients with central retinal lesions do not perceive a 

blind spot but rather report that objects and space appear distorted around the lesioned 

retinal area – a condition known as metamorphopsia (Morgan & Shatz, 1985; Smith et 

al., 1990).  Such perceptual filling-in of visual space is not, in itself, direct evidence of 

cortical reorganization but is likely to be a perceptual consequence of the process.   
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 More concrete evidence for visual reorganization in humans has come from 

functional imaging studies of patients with chronic retinal abnormalities such as macular 

degeneration (MD).  Patients with MD have severe degeneration of macular tissue which 

results in a loss of central vision.  MD patients typically compensate for their visual 

impairment by fixating objects with a new peripheral portion of the retina known as the 

preferred retinal location (PRL; Timberlake, Mainster, Peli, Augliere, Essock, & Arend, 

1986).  Baker and colleagues (2005) used fMRI to investigate how normal human 

retinotopy was altered by the loss of central vision and increased reliance upon a PRL.  

Specifically, they investigated whether cortex that had once received normal foveal input 

would reorganize to represent the PRL.  Normally, the cortical representation of fovea is 

located in the most posterior portion of occipital cortex near the occipital pole (the foveal 

confluence; Dougherty, Koch, Brewer, Fischer, Modersitzki, & Wandell, 2003).  Baker 

and colleagues compared activation of the foveal confluence in normal subjects to that of 

two patients with MD.  Foveal stimulation showed no activation of the foveal confluence 

in MD patients (due to retinal degeneration). However, photic stimulation of the PRL did 

activate the foveal confluence.  These findings suggest that the central visual deprivation 

of MD patients had resulted in a large-scale reorganization of visual topography such that 

foveal representations within the visual cortices had remapped to represent peripheral 

locations.   

Several recent imaging studies of MD patients have replicated the findings of 

cortical reorganization of the foveal confluence (Baker, Dilks, Peli, & Kanwisher, 2009; 

Schumacher et al., 2008).  Further investigations have suggested that cortical 

reorganization in these patients is not specific to the PRL, a result which implies that the 
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reorganization is not necessarily due to a use-dependent mechanisms (Dilks, Baker, Peli, 

& Kanwisher, 2009; however, see Masuda, Dumoulin, Nakadomari, & Wandell, 2008).  

Another study of visual reorganization in an MD patient failed to show any 

evidence of cortical reorganization (Sunness, Liu, & Yantis, 2004).  Sunness and 

colleagues performed retinotopic mapping in a single patient with macular degeneration.  

Cortical areas were properly delineated but revealed a consistently silenced region of 

cortex that corresponded to the patient’s scotoma.  This finding suggested a lack of 

reorganization.  The reason for the discrepant findings of Sunness and colleagues is 

unclear.  However, one possible explanation is that the MD patient they examined had a 

spared region of fovea that may act to maintain the spatial representation of central vision 

to be maintained within the foveal confluence. 

 Dilks and colleagues (2007) have provided further indication of cortical 

reorganization in humans.  Their evidence comes from a case study of a stroke patient, 

B.L., whose stroke resulted in selective damage of the inferior portion of the optic 

radiations in the right hemisphere.  The damage suffered by B.L. rendered him blind in a 

single visual quadrant – the upper left visual field.   Dilks and colleagues examined 

whether deafferentation resulted in cortical reorganization of V1.  One indication of 

reorganization was the fact that B.L. exhibited significant distortions of visual space for 

stimuli presented in the lower left visual field.  Stimuli here appeared elongated, as if 

extending toward the upper visual field.  Such a perceptual distortion may reflect visual 

reorganization.  Further evidence of reorganization came from retinotopic mapping with 

fMRI.  Stimulation of the lower left visual field revealed activations in regions of right 

V1 that normally represent upper left visual field.  That is, photic stimulation of intact 
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retina induced BOLD activation in deafferented cortex.  No such changes were found in 

B.L.’s left hemisphere which still received input from the entire right side of space.  

These results are consistent with the occurrence of large-scale visual reorganization. 

 

Short-Term Visual Plasticity 

 The studies reviewed above were concerned with reorganization weeks, months, 

or years after sensory deafferentation.  However, these studies do not address questions 

regarding the time course of reorganization.  Delineating the time course of 

representational plasticity is a critical step in understanding the neural mechanisms that 

underlie representational plasticity in adult sensory cortex.  Single-cell studies of sensory 

cortices indicate that extensive receptive field changes occur in considerably less time 

than weeks or months but can begin within minutes of deafferentation.   

Gilbert and Wiesel (1992) induced matched binocular lesions in cats and 

macaques and mapped changes in RFs immediately following the lesion and up to three 

months thereafter.  Directly following lesioning, RFs within the center of the DZ were 

silenced.  However, RFs closer to the boundaries of the scotoma expanded up to 10-fold 

their normal size and were responsive to regions of space beyond their classical RFs.  

Three months after the lesion, RFs had remapped over even greater distances and 

constricted to dimensions similar to their classical sizes.  Similar findings of short-term 

receptive field expansions in the DZ have been reported by a number of other studies 

using matched binocular lesions (Heinen & Skavenski, 1991; Darian-Smith & Gilbert, 

1995).   
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Another strategy for studying short-term visual plasticity has been to induce a 

single monocular lesion while leaving the partner eye intact to serve as a control 

(Calford, Schmid, & Rosa, 1999; Chino, Kaas, & Smith, 1992; Schmid, Rosa, & Calford, 

1995). Schmid, Rosa, and Calford (1995) used a low-power argon laser to carefully 

detach a small portion of retina from a single eye in cats.  Recordings made within the 

DZ one to two hours later revealed that RFs expanded and were responsive to regions of 

the intact portion of retina.  However, when stimulated through the intact eye these same 

neurons revealed receptive fields of normal shape and size.  A related study was 

undertaken by Calford, Schmid, and Rosa (1999).  They induced monocular retinal 

lesions in cat with an argon laser and tracked RF changes up to 11 hours after the lesion.  

Throughout the course of mapping RFs within the DZ were of normal size and position 

when stimulated through the intact eye.  However, DZ receptive fields were responsive to 

intact retinal areas when stimulated through the lesioned eye.  These changes began 

within an hour of lesioning and 11 hours later 56% of recorded cells exhibited such 

ectopic RFs (see also Chino et al., 1992).  

 

Neural Substrates of Visual Reorganization 

 The studies reviewed above demonstrate that extensive reorganization occurs 

within primary visual cortex following a retinal lesion and such plasticity begins within 

seconds to minutes of deafferentation.  However, the occurrence of representational 

plasticity within V1 does not necessarily imply that reorganization begins there.  The 

visual system is organized in a hierarchical fashion and it is possible that reorganization 

begins at a level even lower than V1.   
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 The earliest possible source of reorganization within the visual system is at the 

retinal level.  Several groups have suggested that lateral interactions mediated by retinal 

amacrine cells may be able to account for the ectopic RFs measured in primary visual 

cortex (for review see Dreher et al., 2001).   Many laser lesioning procedures destroy the 

photoreceptor layer of the retina but leave retinal ganglion cells intact. This leaves the 

possibility that these unharmed ganglion cells receive lateral activation from beyond the 

lesioned area and continue to provide input into the V1-DZ.  However, a retinal level 

explanation of reorganization is unlikely.  First, the RFs of ganglion cells remain 

unchanged even after V1 reorganization has occurred (Gilbert & Wiesel, 1992).  Second, 

a portion of retina that has been detached from the optic nerve fails to induce any activity 

in the V1-DZ even though lateral connections continue to function (Schmid et al., 1995).  

Further evidence against retinal-level reorganization is the lack of reorganization seen in 

the major target of retinal afferents – the lateral geniculate nucleus (LGN). 

 Anatomically, the LGN is unlikely to be the source of reorganization since the 

lateral spread of thalamic afferents is insufficient to account for the extent of 

reorganization seen in V1.  Thalamic afferents from the LGN spread laterally 1.5 – 2.0 

mm in layer IV of primary visual cortex (Blasdel & Lund, 1983) but reorganization in V1 

typically spans over areas of 6 mm and greater (Darian-Smith & Gilbert, 1995).  The 

growth of new thalamocortical projections is also unable to account for reorganization 

since V1 plasticity occurs within time periods too short to be attributable to axonal 

growth and even months after retinal lesioning retrograde neural tracing from V1 reveals 

no change in the lateral spread of geniculocortical afferents (Darian-Smith & Gilbert, 

1995).   
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The anatomical limitations of geniculocortical input suggest that the LGN is 

unlikely to account for V1 reorganization.  However, if reorganization occurred within 

the LGN itself these changes could be reflected in V1 as well.  Limited LGN 

reorganization may occur over extended periods of time (Eysel, 1989) but is insufficient 

to account for the extent of reorganization found within V1.  A major source of evidence 

against LGN-level plasticity is the fact that retinotopically-matched portions of the LGN 

remain silent even after reorganization has occurred within V1 (Darian-Smith & Gilbert, 

1995; Gilbert & Wiesel, 1992).  Studies of stimulus-induced artificial scotomas have 

provided further evidence that V1 plasticity is cortically mediated.   

 Neither changes within the retina nor the LGN can account for cortical-level 

reorganization.  Thus, the primary visual cortex is the earliest locus to exhibit substantial 

visual plasticity.  Representational plasticity within V1 is thought to be mediated by long-

range horizontal projects (Gilbert et al., 1996).  Horizontal connections are local 

pyramidal projections that connect cells with non-overlapping receptive fields over 

distances of 6-8 mm (Gilbert et al., 1996; Hubel & Wiesel, 1974) making them excellent 

candidates for mediating cortical reorganization.  Furthermore, the lateral spread of 

horizontal connections approximates the extent over which cortical reorganization is 

typically reported (Gilbert et al., 1996).   

 Calford, Wright, Metha, and Taglianetti (2003) confirmed that topographic 

reorganization within V1 is subserved by long-range horizontal connections using a 

locally injected neurotoxin.  Monocular lesions were placed in the retina of adult cats and 

considerable V1 reorganization was found several weeks later.  Following this period, 

stimulation via the lesioned eye revealed that RFs within the DZ had remapped.  The 
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contribution of long-range horizontal connections in the formation of these ectopic RFs 

was examined by injecting kainic acid (an excitatory neurotoxin) into an adjacent area of 

cortex outside of the DZ (i.e., normal cortex).  If V1 reorganization were mediated 

through long-range horizontal connections then regions of cortex adjacent to the DZ (the 

IZ) should provide the input necessary for RF remapping to develop.  Chemical 

inactivation of the IZ should then abolish horizontal input and extinguish ectopic RFs.   

Indeed, when surrounding normal cortex was deactivated with kainic acid, neurons 

within the DZ were unresponsive to the presentation of photic stimuli in their remapped 

RF.  That is, DZ neurons were silenced by a loss of corticocortical input, a result 

consistent with the idea that horizontal projections subserve reorganization.     

 Under normal circumstances horizontal projections provide only subthreshold 

input to pyramidal cells (Das & Gilbert, 1995a).  However, deafferentation is thought to 

induce changes in the efficiency of horizontal connections – transforming subthreshold 

input into suprathreshold activity.  Das and Gilbert (1995a) used a cortical point-spread 

(PS) paradigm to delineate the extent over which horizontal activity propagated in normal 

and reorganized V1 of adult cats.  In a point-spread paradigm, the lateral spread of V1 

activity is measured by flashing a small photic stimulus (a point) at a desired retinotopic 

position.  Single-cell recordings were used in conjunction with voltage-sensitive optical 

imaging to determine how subthreshold and suprathreshold activity changed following 

V1 reorganization.  Single-cell recordings (spiking PS) are sensitive to suprathreshold 

spiking activity whereas optical imaging (optical PS) measures to both subthreshold and 

suprathreshold activity.  The combination of these two methods allowed changes in 

horizontal synaptic efficiency to be examined.  In normal adult cats, optical imaging 
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revealed subthreshold activity over a cortical area of 4 mm whereas suprathreshold 

spiking activity was confined to the central 5% of this region (~750 µm).  Reorganized 

V1 revealed quite a different point-spread pattern.  After several months of V1 

reorganization, a shift in activity was seen in the DZ such that spiking PS extended over 

an area of 4 mm.  Note that this suprathreshold area in the DZ was equivalent to the 

subthreshold optical PS in normal adult cats.  Thus, previously subthreshold horizontal 

inputs became suprathreshold following cortical reorganization.   

Long-range horizontal connections provide an anatomical basis for cortical 

reorganization but their existence does not completely describe the neural mechanism 

through which such plasticity occurs.  It is thought that representational plasticity is the 

result of an unmasking of subthreshold horizontal inputs due to decreased inhibitory 

activity – a process termed disinhibition.  Classical receptive fields are formed from a 

balance of excitatory and inhibitory input and RF structure can be modeled to a 

reasonable extent as an excitatory center region with an inhibitory surround (Sceniak, 

Ringach, Hawken, & Shapely, 1999).  The major excitatory input of an RF comes mainly 

from thalamocortical afferents whereas inhibition is a result of input from local 

GABAergic interneurons (Tremere et al., 2005).  Inhibitory GABAergic interneurons are 

a critical determinant of receptive field size and stimulus selectivity (e.g., directional 

preference).  The blockade of inhibitory GABAergic activity has been shown to 

dramatically alter the properties of classical RFs.  Ionotophoretic infusion of bicuculline 

methiodide (BMI), a competitive GABA antagonist, results in RF expansion and a loss of 

orientation and directional selectivity (Sillito, 1975; Wolf, Hicks, & Albus, 1983).  That 
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is, without inhibitory input from interneurons, RFs enlarge and respond nonselectively to 

stimuli within the enlarged RF.  

Long-range horizontal connections in V1 provide subthreshold excitatory inputs 

to other pyramidal cells yet stimulation of RF surrounds typically has inhibitory effects 

on RF centers.  This seemingly paradoxical finding is attributable to that fact that 

horizontal connections do not provide input solely to pyramidal cells but also provide 

excitatory input to GABAergic interneurons (McGuire, Gilbert, Rivlin, & Wiesel, 1991).  

Thus, horizontal activity will excite both pyramidal cells and inhibitory GABAergic 

interneurons resulting in a net effect of inhibition in the RF surround.   

Excitatory horizontal input to pyramidal cells is normally kept in check by local 

GABAergic inhibition.  However, the removal of inhibitory GABAergic activity allows 

previously subthreshold excitatory horizontal connections to exert greater influence over 

pyramidal cells.  Reconsider the results from BMI ionotophoresis in this framework of 

disinhibition.  Local infusion of BMI around a pyramidal cell removes inhibitory 

influences on the cell.  This disinhibition increases the weighting of inputs from 

excitatory long-range horizontal connections.  With local inhibition removed, non-

overlapping spatial information from neurons up to 8 mm away is now capable of 

influencing the neuron’s activity.  This expansive input increases the representation of 

space from which a cell receives information. 

In the case of BMI infusion, disinhibition is induced artificially.  However, 

disinhibition in primary visual cortex also occurs under natural conditions as well.  

Following long-term retinal deafferentation GABAergic activity and receptor synthesis 

within the DZ are significantly down-regulated (Benson, Huntsman, & Jones, 1994; 
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Jones, 1990; Rosier et al., 1995).  Disinhibition is also found following short-term 

deafferentation (Das & Gilbert, 1995; De Weerd, Gattass, Desimone, & Ungerleider, 

1995; Pettet & Gilbert, 1992; Tremere et al., 2003, 2005).  In this case, disinhibition 

results from activity-dependent reductions in inhibitory drive within the DZ (Tremere et 

al., 2003, 2005).  

Disinhibition is widely held as the mechanism of long-term reorganization and 

short-term plasticity.  However, it should be noted that feedback connections from 

higher-order visual areas may also play a role.  Later visual areas are well known to have 

larger RFs and feedback from these later visual areas could influence representational 

plasticity, particularly over the short-term.  This possibility has not yet been 

systematically investigated but some evidence suggests that local horizontal projections, 

rather than feedback connections, are the primary source of plasticity (Gilbert, 1998).   

 

Short-Term Visual Plasticity: Artificial Scotomas 

It is clear from animal studies that visual reorganization begins within minutes of 

deafferentation (e.g., Gilbert & Wiesel, 1992).  The study of plasticity over short time 

scales is theoretically important as short-term changes are likely to provide insight into 

the neural mechanisms underlying plasticity.  The study of long-term cortical 

reorganization has prompted many further questions regarding the mechanism and time 

course of plasticity.  How do RF properties change directly following deafferentation? 

What happens to receptive field structures within seconds of a lesion?  Do receptive 

fields begin to expand and remap immediately, or does the process take time?  These 

questions are not easily answered using lesioning techniques. Technical limitations and 
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side effects of the lesioning procedure preclude the use of this methodology to examine 

short-term visual plasticity (Dreher et al., 2001).    

Evidence of short-term visual plasticity following a retinal lesion is nonexistent in 

humans.  Studies of visual plasticity in humans have relied upon functional imaging of 

small patient populations whom already exhibit long-term reorganization.  The study of 

these patients is conducive only to the study of long-term plasticity and new methods 

must be employed to properly study short-term plasticity in humans.    

 
 

Figure 1.  A single frame from a typical artificial scotoma 
paradigm.  The red dot is the fixation point.  The white bars 
form the dynamic background and randomly shift position 
many times per second.  The gray box represents the scotoma 
area that appears to become filled-in by the dynamic 
background.  The perceptual filling-in of an artificial scotoma 
can, in fact, occur in the absence of motion.  If fixation is 
steadily maintained on the red dot above, the gray box will 
eventually fade from view.  Filling-in of the illusion is 
expedited by the introduction of motion to the background 
stimulus. 
 

 

One such method of examining the short-term effects of plasticity is that of an 

artificial scotoma.  An artificial scotoma is a stimulus-induced method of mimicking 

sensory deafferentation by restricting patterned visual input from a small region of space.  

In an artificial scotoma paradigm an observer maintains fixation in the presence of a 
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dynamically fluctuating background superimposed upon which is a static and uniform 

area (Figure 1). When exposed to such a display for several seconds the box appears to 

fade from perception and becomes filled-in by the dynamic texture that surrounds it (De 

Weerd, Desimone, & Ungerleider, 1998; De Weerd, Smith, & Greenburg, 2006; 

Ramachandran & Gregory, 1991).  With accurate fixation an artificial scotoma restricts 

visual input from a region of space and temporarily deafferents the retinotopically-

matched region of visual cortex, thus resulting in a TDZ. 

Several single-cell studies have demonstrated that, like a true retinal lesion, an 

artificial scotoma, induces short-term plasticity within the TDZ (Gilbert & Weisel, 1992; 

Pettet & Gilbert, 1992).  However, unlike a true retinal lesion, the short-term plasticity of 

an artificial scotoma can be reversed through simple visual stimulation (Gilbert & 

Weisel, 1992).  The neural mechanisms underlying the short-term plasticity of an 

artificial scotoma appear to be identical to those following a true retinal lesion (i.e., 

disinhibition; De Weerd & Pessoa, 2003).  The artificial scotoma paradigm provides a 

practical model for the study of short-term plasticity as it induces the same short-term 

changes in receptive field dynamics and allows for repeated testing and measurement 

from a TDZ. 

The generally accepted neural mechanism of short-term visual plasticity is that of 

disinhibition.  However, results from single-cell studies have suggested several different 

proposals regarding the functional consequences of disinhibition on receptive field 

dynamics.  One proposal has been that disinhibition induces receptive field expansions 

(RF expansion; Das & Gilbert, 1995b; Pettet & Gilbert, 1992; Volchan & Gilbert, 1995).  

Pettet and Gilbert (1992) examined short-term plastic changes accompanying an artificial 
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scotoma in V1 of anesthetized adult cats.  Artificial scotomas were conditioned for 

approximately ten minutes and receptive field size was quantified for neurons within the 

TDZ.  They reported an average five-fold expansion relative to a cell’s classical receptive 

field.   Das and Gilbert (1995) used a cross-correlation technique to investigate RF 

expansions in anesthetized adult cats.  The spiking activity between pairs of neurons 

separated by up to 5 mm was cross correlated when these RFs fell within an artificial 

scotoma.  Cross-correlation between neuron pairs increased significantly when RFs fell 

within the boundaries of an artificial scotoma, indicative of RF expansion.  A 

psychophysical study in humans also supports the proposal of receptive field expansion.  

Kapadia, Gilbert, and Westheimer (1994) demonstrated perceptual spatial distortions 

following the conditioning of an artificial scotoma.  Within the boundaries of the scotoma 

psychophysical acuity thresholds demonstrated that the perception of space was 

“compressed” toward the scotoma’s center, a result is consistent with RF expansions.   

A second account regarding the effects of disinhibition due to an artificial 

scotoma suggests that receptive field size remains unaltered but it is the cell’s neural 

response gain that changes, increasing in firing rate (RF gain).  DeAngelis and colleagues 

(1995) conducted a study similar to that of Pettet and Gilbert (1992) but found no 

evidence of receptive field expansions.  Instead, their results suggested that TDZ neurons 

exhibited a multiplicative increase in response to stimuli within their RF but had no 

change in the size or shape of RFs.  Their data suggested that increased gain had occurred 

without affecting the response selectivity of cells.  Though the effect of gain was clearly 

demonstrated, inferences regarding the selectivity of neural response were drawn from 
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one-dimensional receptive field profiles which render it difficult to interpret how 

selectivity (e.g., orientation-tuning) was affected. 

A different account of short-term plasticity was offered by De Weerd and 

colleagues (1995).  Using single-cell recordings in awake monkeys they described plastic 

changes resulting from conditioning with an artificial scotoma that they termed ‘climbing 

activity.’  Recordings were made from cells that had RFs within the boundaries of an 

artificial scotoma.  Initial recordings revealed little change in spiking activity relative to 

baseline.  However, over several seconds of conditioning with an artificial scotoma 

spiking activity gradually ramped-up to a level that matched neural responses to the 

dynamic texture alone.  No evidence of RF expansion was found before, during, or after 

scotoma conditioning and results were interpreted as a correlate of perceptual filling-in 

rather than RF expansion.  This climbing activity is consistent with both receptive field 

expansion and neural response gain.  The effect of climbing activity was a linear increase 

in response gain (firing rate) as a function of time.  However, climbing activity could also 

be interpreted to reflect RF expansion.  That is, it could be the case that the cell’s RF 

gradually expanded over several seconds and became more and more responsive to 

regions of space beyond the classical receptive field (outside scotoma boundaries).   

Photic stimulation within an expanded RF causes a rapid collapse back to the CRF (Pettet 

& Gilbert, 1992) and it is possible that the RF mapping procedures employed by De 

Weerd and colleagues resulted in RF contraction before expanded RF borders could be 

precisely delineated.  Thus, climbing activity may be interpreted as either RF expansion 

or RF gain. 
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Discrepancies over whether disinhibition induces RF expansion or RF gain may 

be due, in part, to how the boundaries of a receptive field are defined (Chapman & Stone, 

1996; DeAngelis et al., 1995; Fitzpatrick, 2000).  However, there is evidence in favor of 

both proposals even when such methodological issues are accounted for (Chapman & 

Stone, 1996).   

 

Dissertation Rationale:  Neural Mechanisms of Short-Term Visual Plasticity in 

Humans 

 The neural mechanisms of short-term visual plasticity were investigated in human 

subjects using an artificial scotoma paradigm.  The study of short-term plasticity in 

humans presents a considerable obstacle – receptive fields cannot be directly measured.  

However, it is possible to use changes in perceptual performance and non-invasive 

measures of cortical activity to assess the neural mechanisms associated with short-term 

visual plasticity.   

In four experiments, psychophysical and electrophysiological measures were used 

to draw inferences regarding the neural mechanisms underlying short-term plasticity.  

The specific aim of these examinations was to provide evidence of disinhibition as the 

neural mechanism of short-term plasticity in humans and to delineate the functional 

consequences of disinhibition.  The following sections describe the logic of using 

psychophysical and non-invasive neural measures in the investigation of plasticity in 

humans.   

 

Experiment 1: Short-Term Plasticity & Disinhibition within the TDZ 
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Experiment 1 examined psychophysical contrast response functions obtained from 

within the boundaries of an artificial scotoma with the specific goal of determining how 

receptive field properties within the TDZ changed with the induction of short-term visual 

plasticity.  The process of disinhibition makes specific predictions regarding perceptual-

level changes in psychometric contrast response function as do other models of short-

term plasticity.  Changes in contrast response functions were interpreted with respect to 

the predictions of disinhibition and competing models of plasticity. 

There have been two major proposals regarding the changes in RF properties 

associated with an artificial scotoma.  One proposal suggests that short-term plasticity 

induces receptive field expansions within the TDZ (RF expansion; Das & Gilbert, 1995; 

Kapadia et al., 1994; Pettet & Gilbert, 1992).  The second (RF gain) suggests that TDZ 

neurons exhibit response gain and become increasingly sensitive to stimuli within their 

RF but show no significant change in RF size, shape, or selectivity (DeAngelis et al., 

1995).   

It is my contention that the consequences of disinhibition within a deafferented 

TDZ are best described in terms of two separable but dependent processes: one of 

receptive field expansion and one of neural response gain.  As TDZ cells are released 

from inhibition (i.e., disinhibition through an artificial scotoma), long-range horizontal 

projections are unmasked.  Horizontal connections provide inputs from up to 8 mm away 

(Gilbert et al., 1996) and their unmasking increases the responsiveness of TDZ neurons to 

larger regions of visual space.  This aspect of disinhibition does not differ from the 

proposal of RF expansion.  In addition to becoming more responsive to distant regions of 

space, the occurrence of disinhibition also implies that TDZ neurons will exhibit a 
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general increase in responsiveness.  The removal of local inhibition within TDZ not only 

unmasks existing horizontal inputs but also results a reduction in neural response 

selectivity.   The selectivity of neural response is a function of local inhibition (e.g., 

Sillito, 1975).  Thus, a reduction in local inhibitory drive would, in turn, induce a 

reduction in stimulus selectivity.  However, though selectivity is lost, neural gain will 

increase because the cell will respond to a broader range of stimuli.  This form of neural 

gain differs from that put forth by the aforementioned RF gain account in that it is a 

nonselective increase in gain.  The distinction between these two forms of gain is 

discussed below.  From hereon, the proposal that disinhibition results in receptive field 

expansions and changes in neural response gain will be referred to as the disinhibition 

model or two-process disinhibition model.   

The putative proposals of RF expansion, RF gain, and disinhibition models each 

carry a set of implicit assumptions. A strict account of RF expansion operates on the 

assumption that, although the size of TDZ receptive fields increases, their internal 

structure remains intact.  That is, only the size of the receptive field has been altered.  The 

cell maintains its response selectivity.  For example, if a neuron selective for 45° 

orientation experienced RF expansion, it would continue to respond to 45° stimuli but 

would do so over a greater region of space.  A strict RF gain model operates on the 

assumption that there is a multiplicative increase in neural response gain but that there are 

no changes to the size, shape, or response properties (DeAngelis et al., 1995).  Again the 

cell is assumed to maintain its response selectivity. In this case, if a neuron selective for a 

45° orientation were to experience RF gain, it would respond selectively to 45° stimuli 

within its classic receptive field but would do so more vigorously.  This form of neural 
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response gain will be termed selective gain or selective response gain.  Selective gain has 

a multiplicative effect on the amplification of the signal to noise ratio of a coded stimulus 

and is analogous to the form of response gain used to describe the neural mechanisms of 

selective attention (see Treue, 2001). 

There is a distinction between the selective gain implied by the RF gain model 

and that implied by the disinhibition model.  Unlike selective gain, the type of gain 

predicted by disinhibition is nonspecific.  Rather than a response increase to a specific 

stimulus there is an increase in responding to any stimulus.  That is, the neuron loses its 

selective response characteristics and becomes more responsive to stimuli in general.  

This form of neural gain will be termed unrestricted gain (also unrestricted response 

gain or unrestricted RF gain).  In the case of unrestricted gain, if a neuron selective for a 

45° orientation would increase its response to 45° stimuli but would also increase 

response to stimuli of other orientations.  Note that although unrestricted gain increases 

absolute neural response rate it would have a detrimental effect in terms of stimulus 

representation.  As neural response selectivity decreases so does the signal-to-noise ratio 

of a coded stimulus.  Thus, computationally speaking, the effect of unrestricted gain is 

opposite that of selective gain.  The results of DeAngelis and colleagues (1995) were 

such that gain increased in a multiplicative manner.  It was assumed that this gain 

reflected that of selective gain but the data are rather ambiguous regarding neural 

response selectivity.  Thus, the form of gain described in this study may have, in fact, 

been that of unrestricted gain.  If so, then it can be assumed that unrestricted gain has a 

multiplicative effect on neural response.   
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The assumptions of RF expansion, RF gain, and disinhibition are described above 

in terms of single-cell response characteristics.  However, each mechanism can be 

considered in terms of how the population of TDZ neurons exhibiting plasticity would be 

affected.  Predicted changes in the TDZ population response can, in turn, be used to 

predict the impact of each hypothesis (RF expansion, RF gain, and two-process 

disinhibition) on perceptual performance (in this case the contrast response function).  At 

the population level, RF expansion predicts that a greater proportion of TDZ neurons will 

represent a given region of space within the scotoma.  Thus, in terms of psychophysical 

contrast response functions, RF expansion predicts improved perceptual thresholds 

(leftward shift) within an artificial scotoma due to the increased representation within the 

TDZ (Figure 2A).  According to RF gain, an artificial scotoma should have a 

multiplicative effect on the TDZ population’s selective response gain, thus increasing the 

signal-to-noise ratio of the coded stimulus.  Thus, RF gain implies a multiplicative 

enhancement in perceptual performance within an artificial scotoma which would be 

reflected in the contrast response function as an increase in asymptotic performance 

(Figure 2B; Carrasco, 2006; Ling & Carrasco, 2006).  Two-process disinhibition 

proposes receptive field expansions accompanied by unrestricted gain.   A greater 

population within TDZ would represent a given region of space within the artificial 

scotoma (due to receptive field expansion) and though this population would exhibit an 

overall amplification of response rate there will be a reduction in signal-to-noise ratio due 

to unrestricted gain.   Thus, the TDZ population code is a balance of receptive field 

expansion and unrestricted gain.  In terms of psychophysical performance, the two-

process disinhibition model predicts a mixture of performance enhancement and 
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degradation depending on the level of contrast.   As discussed previously, RF expansion 

predicts a reduction in contrast threshold.  However, the effects of unrestricted gain are 

opposite that of selective gain (i.e., RF gain model) and a reduction in asymptotic 

performance would be expected.  Thus, the effects on the contrast response function 

should reflect a balance of RF expansion and unrestricted gain.  Because unrestricted gain 

is multiplicative, its effects are minimal at lower contrasts.  Thus, the effects of RF 

expansion will dominate the psychometric function and perceptual performance will be 

enhanced at low contrasts.   However, at high contrasts, unrestricted gain is amplified.  In 

this case, the effects of unrestricted gain would dominate the contrast response function 

and performance should decrease at high levels of contrast.  Thus, two-process 

disinhibition predicts the overall form of the contrast response function to be that of 

improved contrast thresholds (leftward shift) along with a reduction in asymptotic 

performance (Figure 2C).     
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Figure 2.  Psychophysical predictions in the contrast response function for (A) RF expansion, (B) RF 

gain, and (C) disinhibition.   The dotted line indicates the contrast response function obtained from 

within the boundaries of an artificial scotoma relative to some control condition ( solid black line). 
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Experiment 2:  Neural Correlates of Short-Term Plasticity within the TDZ 

In Experiment 2, cortical responses from within TDZ were measured using event-

related potentials.  A high contrast visual probe was used to elicit a response from TDZ 

following a period of conditioning with an artificial scotoma.  The resultant visual evoked 

potential (VEP) was assessed for effects of short-term plasticity.  

The goals of Experiment 2 were twofold.  One goal was simply to provide a 

neural correlate of disinhibition within the human visual system.  Disinhibition predicts 

an increase in the neural population representing a region of space as well as an increase 

in the unrestricted gain of this population.  Thus, the mechanism of disinhibition predicts 

an increase in activity evoked from the TDZ (i.e., amplified visual components).  A 

second goal of Experiment 2 was to provide some indication of where plasticity begins 

within the human visual system.  Some single-cell studies have reported RF expansions 

in V1 almost immediately after retinal lesions as well as during conditioning with an 

artificial scotoma (e.g., Gilbert & Wiesel, 1992; Pettet & Gilbert, 1992).  However, others 

have failed to find change in V1 and report changes only in higher visual areas such as 

V2 and V3 (De Weerd et al., 1995).   

In Experiment 2, several sensory components of the visual evoked potential were 

assessed for plasticity-related changes.  Effects within these components were used to 

provide a crude measure of the earliest level exhibiting plasticity within the human visual 

hierarchy.  Scalp-recorded potentials have poor spatial resolution and their ability to 

localize activity to specific cortical areas is quite limited.  However, an early sensory 

component of the VEP, the C1, has been repeatedly localized to primary visual cortex 

(Clark, Fan, & Hillyard, 1995; Di Russo et al., 2001; Jeffreys & Axford, 1972a,b; 



 29 

Martinez et al., 1999; Martinez, DiRusso, Anllo-Vento, & Hillyard, 2001a; Martinez, 

DiRusso, Anllo-Vento, Sereno, & Hillyard, 2001b).  Human V1 lies within the folds of 

the calcarine sulcus such that the upper visual field is represented within the lower bank 

of the sulcus and the lower visual field is represented in the upper bank.  The geometric 

configuration of V1 within the calcarine sulcus imparts a characteristic signature onto the 

C1 component – it reverses polarity between the upper and lower visual fields (Jeffreys & 

Axford, 1972a,b; Martinez et al., 1999; Martinez et al., 2001a,b).  The C1 can be readily 

identified by its polarity reversal and can, in turn, be used as an index of plasticity at the 

level of V1. That is, amplitude amplification of the C1 component that is induced by an 

artificial scotoma can be assumed to reflect short-term plasticity and disinhibition within 

a V1-DZ.  Later components of the VEP (P1 and N1) arise from extrastriate visual areas.  

The P1 component arises from activity in extrastriate activity 100 to 150 ms post-

stimulus (Di Russo et al., 2001; Martinez et al., 2001a,b).  The N1 (150-220 ms) begins 

directly after P1 and reflects continued extrastriate visual processing (Di Russo et al., 

2001).  Modulation of P1 and N1 amplitude due to an artificial scotoma can be 

considered to reflect plasticity in higher-level extrastriate areas.   

 

Experiment 3: Effects of Short-Term Plasticity and Disinhibition within the IZ 

Plasticity within TDZ reflects the unmasking of horizontal inputs, a major source 

of which comes from the region of normal cortex that surrounds the TDZ, the IZ.  

Because the IZ still receives normal visual input, its activity can be considered to 

“invade” the TDZ. Experiment 3 was concerned with evaluating how disinhibition within 

the TDZ affects neural response properties within this surrounding IZ.  To investigate this 
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issue, psychometric contrast response functions were measured from the region of space 

surrounding an artificial scotoma (i.e., the region of space represented by the IZ).  The 

predictions of disinhibition are less clear for the IZ than the TDZ, as IZ continues to 

receive normal visual inputs.  However, invading activity into the TDZ may be expected 

to have some measurable perceptual effect on the contrast response function.  Like 

Experiment 1, contrast response functions from Experiment 3 were also evaluated for 

changes consistent with the predictions of RF expansion, RF gain, and disinhibition.    

 

Experiment 4: Neural Correlates of Invading Activity 

Experiment 4 sought a neural correlate of invading activity into TDZ.  Following 

conditioning with an artificial scotoma, VEPs were elicited by stimulating the region of 

space that surrounded the scotoma (extra-scotoma space).  C1, P1, and N1 components 

were analyzed for effects consistent with invading activity.   
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CHAPTER 2 

EXPERIMENT 1 

 

 Experiment 1 used psychophysical measurement to examine the effects of short-

term plasticity on receptive field characteristics within the TDZ.  Contrast response 

functions obtained from within the boundaries of an artificial scotoma were used to 

evaluate three proposals regarding the effects of disinhibition on TDZ receptive field 

dynamics.  Specifically, models of receptive field expansion, neural response gain, and 

two-process disinhibition were evaluated.   

 

Method 

Subjects 

 Four naïve psychophysical observers (two females) were recruited from the 

Georgia Institute of Technology undergraduate and graduate population.  Subject ages 

ranged from 19 to 25 (M=21.0, SD=2.7).   Each subject’s vision was assessed using the 

automated Freiburg visual acuity test (Bach, 1996).  All subjects had normal or corrected 

to normal vision.  Experimentation was conducted under the approval of the Institutional 

Review Board and with the informed consent of the participant.  Subjects were paid 

$10/hour for their participation.  One subject (S04) was excluded from analysis due to 

excessive ocular activity. 
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Stimuli and Procedure 

Experimentation was conducted in a sound-attenuating chamber under low levels 

of ambient illumination.  Stimuli were presented on a 21-inch CRT monitor using the 

Presentation stimulus package (Neurobehavioral Systems, Albany, CA).  Monitor refresh 

rate and resolution were 60 Hz and 1024 × 768, respectively.  Monitor gamma was 

corrected in software to a value of 1.0 (linear).  Gamma correction was verified through 

physical measurement of luminance with a photometer.  An approximate viewing 

distance of 57 cm was maintained using a chin rest, so that 1 cm on the screen subtended 

approximately 1° of visual angle. 

Experimental trials consisted of a 6.0 second exposure to a dynamic background 

stimulus (conditioning phase) followed by the presentation of a visual probe that varied 

in contrast. During the conditioning phase two uniform mid-gray discs (scotoma discs) 

were superimposed upon the dynamic background stimulus, one in the left visual field 

and one in the right.  The introduction and duration of scotoma discs varied with 

experimental condition.  500 ms prior to the end of the conditioning period a warning 

stimulus appeared.  The warning stimulus consisted of a brief (50 ms) color and 

luminance change in the fixation dot (from red to white).  The conditioning phase 

terminated with the removal of the dynamic background, leaving only the scotoma discs 

and a fixation point.  This display persisted for a random interval between 300 and 700 

ms after which time the visual probe was flashed for 50 ms within the boundaries of one 

of the two scotoma discs.  The visual probe was an intra-scotoma Gabor annulus 

(described below) that had a slight leftward or rightward tilt.  Following another random 

interval of 300 to 700 ms a question mark (‘?’) in white text prompted observers for a 
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response.  Subjects were tasked with making a two alternative forced-choice (2 AFC) 

discrimination regarding the tilt of the Gabor annulus.   

Dynamic background stimuli consisted of 1200 small (0.1° × 1.0°), high 

luminance (137.0 cd/m2), vertically-oriented bars.  These bars were present in random 

positions on a dark background (33.6 cd/m2) with a red fixation dot (0.2° × 0.2°) in the 

center of the display.   Each vertical bar was randomly repositioned within a 36° x 26° 

area every 50 ms (20 Hz) with the restriction that a bar could not be positioned such that 

it overlapped in space with the fixation dot.   Artificial scotoma stimuli were uniform 

gray discs (75.1 cd/m2; 2.0° diameter) superimposed upon the dynamic background.  

Scotoma discs were centered 5.0° from fixation and always occurred in pairs such that a 

single disc was present in both the left and right visual field.  During experimentation the 

position of scotoma discs alternated between the upper and lower halves of the visual 

field.  Scotoma discs always maintained an eccentricity of 5.0° but were positioned with 

a polar angle of 25° relative to the horizontal meridian when presented in the upper visual 

field and at an angle of 45° when presented in the lower visual field.  Visual probes were 

Gabor annuli that consisted of a 5 cpd sinusoidal annulus centered with a Gaussian 

envelope.  For Experiment 1, Gabor annuli were intra-scotoma in that they appeared 

within the inner boundaries of the scotoma discs (Figure 3).  An annulus was chosen as a 

probe stimulus because the short-term plastic effects of an artificial scotoma are found 

closest to the borders of the scotoma stimulus (DeWeerd et al., 1995).  The sinusoidal 

phase of Gabor annuli varied randomly between 0º, 30º, 60º, 90º, 120º, and 150º on a 

trial-by-trial basis to thwart the use of phase information as a cue for discrimination.  

Gabor annuli had a leftward or rightward tilt between 2 and 4 degrees.  Tilt was 
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determined individually for each subject in a pre-screening session.  Intra-scotoma Gabor 

annuli varied in contrast from 0.09 to 0.64 at 14 logarithmic increments (0.093, 0.098, 

0.104, 0.112, 0.122, 0.136, 0.155, 0.180, 0.213, 0.257, 0.316, 0.395, 0.500, and 0.640).  

Trials contained an equal weighting of each of the 14 contrast levels.    

 
 

Figure 3.  Example intra-scotoma Gabor 
annulus.  In this case the stimulus is high 
contrast and has a tilt of 45 degrees.  In 
Experiment 1, contrast level was varied and 
stimulus tilt was set at a value between 2 and 4 
degrees from the vertical. 
 

There were two manipulations of theoretical interest.  In one condition (the 

Scotoma condition) an artificial scotoma was induced by superimposing the scotoma 

discs on the dynamic background for the duration of the conditioning phase (i.e., 6.0 

seconds).  In a second condition (the Sham condition) the scotoma discs were only 

introduced for the last 1.0 second of the conditioning phase.  That is, the dynamic 

background stimuli modulated for a period of 5.0 seconds after which time the scotoma 

discs were superimposed upon the dynamic background for the remaining 1.0 second of 

the conditioning phase.  The perceptual filling-in of an artificial scotoma requires a 

period of several seconds to occur as do the observed receptive field changes that 

accompany the illusion (DeWeerd et al., 1998, 2000).  Thus, neurophysiological 

consequences of an artificial scotoma should be largest and most pronounced in the 

Scotoma condition where the scotoma is conditioned for an extensive period of time.  

The Sham condition serves as a tightly matched control since the stimulus parameters are 
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nearly identical with the exception of the duration of scotoma conditioning.   The typical 

sequence of events for Scotoma and Sham trials is depicted graphically in Figure 4.   

 

Figure 4.  Schematic depiction of the sequence of events for Scotoma and Sham conditions of Experiment 
1.  In the Scotoma condition, perceptual filling-in of artificial scotomas is induced through a six second 
conditioning period.  The Sham condition served as a control and introduced scotoma discs only in the final 
one second of the conditioning period.  

 

A third manipulation (Baseline condition) was also included in the experimental 

design.  The baseline measure served simply to obtain a baseline contrast response 

function used to ensure that sigmoidal and monotonic contrast response functions could 

be obtained from the Gabor annuli stimuli.  The baseline measure consisted of a brief 

exposure to the dynamic background stimuli (1000 ms) followed by a 500 ms period of a 

display consisting of the fixation and scotoma discs on the uniform background.  The 
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warning stimulus was then presented for 50 ms and a random period between 800 and 

1200 ms passed.  A Gabor annulus was then flashed for 50 ms.  An additional random 

period of 300 to 700 ms then transpired after which a question mark prompted the subject 

for a response.  The subjects’ task was identical to that of the Scotoma and Sham 

conditions.   

Prior to experimental testing each observer completed a pre-screening session.  

During this session a brief vision test was administered and a 45-minute test was run to 

set the tilt of Gabor annuli for each participant such that asymptotic performance was 

approximately 90% correct.  This session also served as an extensive practice to 

familiarize participants with stimuli and task.  The pre-screening test presented 512 trials 

of the Baseline condition trial type.   In this test, Gabor contrast was maintained at the 

highest experimental level (0.64) whereas annulus tilt was manipulated between 2°, 3°, 

4°, or 5°.  Average performance for each tilt was calculated and a performance level of 

90% was estimated through linear interpolation.  The minimum and maximum tilt 

allowed was 2° and 4°, respectively.  

Each observer participated in twelve independent sessions completed on separate 

days.  Each session was approximately two hours in duration.  Within a session, trials 

were blocked by condition (Scotoma, Sham, or Baseline) and further sub-blocked by the 

position of scotoma discs (upper vs. lower visual field).  Before a block was initiated, a 1-

minute preconditioning period was given.  In the Scotoma condition, this period consisted 

of the fixation point and scotoma discs presented against the dynamic texture 

background.  The pre-conditioning period for Scotoma and Baseline blocks consisted of 

only the dynamic texture background.    The order of condition blocks was 
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counterbalanced between sessions according to a Latin square.  The order of scotoma disc 

position (upper vs. lower visual field) was counterbalanced by alternating order between 

sessions.  A total of 8,064 trials were completed in the twelve experimental sessions, 

yielding 192 trials for each contrast level of the psychometric function.    

Upon completion of the sixth session, an approximate evaluation of asymptotic 

performance was evaluated to ensure that accuracy had not reached ceiling.  Accuracy 

data for the highest level of contrast (0.64) was collapsed across Scotoma, Sham, and 

Baseline conditions.  Subjects whose performance exceeded 95% were rerun in the 

prescreening session to reset the Gabor tilt to a level of 90%.   

 

Electrooculography 

Electrooculogram (EOG) was recorded during each of the experimental 

psychophysical sessions.  The induction of an artificial scotoma necessitates steady 

fixation and infrequent blinking.  Thus, EOG was used to monitor eye movements and 

blinks during experimentation.   

EOG was recorded with a Neuroscan NuAmps amplifier (El Paso, TX).  

Electrodes were positioned above (X3) and below (X4) the left eye and on the left and 

right canthus of each eye (X1 and X2, respectively).  These four leads were recorded in 

reference to an electrode placed over the right mastoid process.  An electrode positioned 

in the center of the forehead served as ground.  Recordings were digitized at a rate of 500 

Hz and low-pass filtered during acquisition at X Hz.  Offline, bipolar EOG channels were 

formed by subtracting X4 from X3 (vertical EOG; VEOG) and X2 from X1 (horizontal 

EOG; HEOG).  VEOG and HEOG were digitally band-pass filtered (0.5 – 50 Hz; 12 
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dB/oct).  Root mean square (RMS) activity was computed over the conditioning phase for 

both Scotoma and Sham conditions and served as indices of eye movements and blinks 

for each of the twelve sessions.   Specifically, RMS of HEOG was used to assess the 

degree of eye movement whereas VEOG was used to assess blinks.  Additionally, an 

automated algorithm in the Brain Vision Analyzer EEG analysis software (Brain 

Products GmbH, Munich, Germany) was used to count the number of blinks during the 

conditioning phase of each condition.  EOG data from one session (#12) of one 

participant (S02) was corrupt and could not be included in analysis.   

Based on RMS and blink counts psychophysical data from one subject (S04) were 

excluded from analysis.  Relative to the other three observers, S04 had excessive VEOG 

activity, the likely source of which was a high rate of blinking. Blinks and eye 

movements can impede the perceptual and neurophysiological changes that accompany 

an artificial scotoma so S04 was dropped from analysis.   

 

Psychophysical Data Analysis 

Contrast response functions were analyzed independently for each psychophysical 

observer.  All psychophysical analyses were conducted using custom software written in 

Matlab (Mathworks, Natick, Massachusetts).  Accuracy data were pooled across the 

twelve experimental sessions for each of the fourteen levels of contrast.  Psychometric 

contrast response functions were obtained for each participant by fitting the Naka-

Rushton function to the data (Albrecht & Hamilton, 1982; DeAngelis, Ohzawa, & 

Freeman, 1993; Ling & Carrasco, 2006; Sclar, Maunsell, & Lennie, 1990).    
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(1) 

 The Naka-Rushton equation is a quantitative model that captures the neural 

response rate of neurons within striate cortex to contrast and has been widely used to 

model psychophysical contrast response functions in humans (e.g., Ling & Carrasco, 

2006).   In the equation, R is performance, Rmax is the contrast level at which the response 

saturates (i.e., the asymptote), C is the contrast level, M is the response at the lowest level 

of contrast, C50 is the contrast at the half-saturation point (i.e., the threshold), and n is the 

exponent that determines the slope of the response function.   

 The Naka-Rushton model was fit to accuracy data via maximum likelihood 

estimation.  Threshold (C50), asymptote (Rmax), and slope (n) parameters were allowed to 

vary freely in these fits.   The minimum response parameter (M) was fixed at 0.5 (the 

chance level of performance in a 2 AFC design).  For each observer and condition, 

threshold, asymptote, and slope parameters were estimated by performing fits to accuracy 

data averaged over the twelve experimental sessions.   Error around each parameter was 

estimated using a bootstrap method (Efron & Tibshirani, 1993; Wichman & Hill, 

2001a,b). Bootstrapping was performed by regenerating many “synthetic” 

psychophysical data sets through resampling (with replacement) each point of the 

psychometric function and then fitting each synthetic data set with the Naka-Rushton 

Equation by maximum likelihood estimation.  Such parameter estimates were calculated 

for 10,000 of such bootstrapped data sets.  Bootstrapped parameter estimates were then 

used to calculate 95% confidence intervals for each parameter of interest.  Confidence 

interval estimation was bias corrected and accelerated (BCa correction) according to the 

R = 
Rmax • C

n  

C
n + C50

n 
+ M 
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procedure described in Efron & Tibsheirani (1993).  Statistical inferences regarding 

parameter differences between Sham and Scotoma conditions were drawn by examining 

confidence intervals for overlap with mean parameter estimates.   

 A further analysis of interest compared psychophysical models of RF gain, RF 

expansion, and disinhibition.  Comparison of these three models was accomplished by the 

incorporation of two additional parameters (rfe and rfg) into the Naka-Rushton equation.  

RF expansion was modeled with equation (2). 

 

       

 

(2) 

With the exception of rfe, all parameters are identical to the original Naka-

Rushton equation (Equation 1).  The parameter rfe represents receptive field expansion 

and affects the horizontal position constrast response function.  The expansion of 

receptive fields within TDZ results in a larger proportion of neurons that respond to a 

particular region of space and a reduction in contrast threshold would be expected. 

 Changes in response gain were expressed as the equation: 

 

      . 

 

(3) 

Here, the rfg parameter represents a multiplicative gain effect.  The major effect of a 

multiplicative change in gain is a shift in asymptote of the contrast response function.  A 

value of rfg greater than one (asymptote increase) is indicative of selective response gain 

where cells exhibit increases in gain but maintain their response selectivity.  That is, there 

is an improvement in perceptual performance at higher contrast levels.  A value of rfg less 

R =  rfg • 
Rmax • C

n  

C
n + C50

n 
+ M 

R = 
Rmax • (rfe • C

n) 

(rfe • C
n) + C50

n 
+ M 
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than one (asymptote decrease) is indicative of unrestricted response gain where cells 

exhibit nonspecific increases in gain.   

 Lastly, Equation 4 is a hybrid model of receptive field expansions and changes in 

response gain.  This equation contains both rfe and rfg parameters.  Such a model can 

capture the combined effects of receptive field expansion and response gain.   

 

       

 

(4) 

Quantitative models were fit to each observer’s data by maximum likelihood 

estimation.  Initial parameter estimates obtained from the fit to the Sham condition were 

used to set Rmax, C50, and n.  M was fixed at 0.5.  Fits of the two-parameter rfe/rfg model 

were evaluated against the reduced one-parameter rfe and rfg models using a nested 

hypothesis F-test (Equation 5; Lu & Dosher, 1998).   

       

 

(5) 

Here, df1 is the number of free parameters in the full model less the number of 

parameters in the reduced model and df2 is the number of data points fit by each model 

minus the number of free parameters in the full model less one.  Thus, for fits conducted 

in Experiment 1, df1 = 1 and df2 = 11.  The test described by equation 5 was performed 

once to evaluate the fit of the two-parameter rfe/rfg model against the rfe model and again 

to evaluate the fit of the two-parameter rfe/rfg model against the rfg model.  The rfe/rfg 

model was considered to be superior if both F-tests revealed it to be statistically superior 

to the one-parameter models. 

F(df1, df2) = 
(R2

full – R2
reduced) / df1

  

(1 – R2
full) / df2

  

R =  rfg • 
Rmax • (rfe • C

n) 

(rfe • C
n) + C50

n 
+ M 
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Results 

Bootstrap Parameter Estimates 

Bootstrapping results were consistent with the previously described predictions of 

disinhibition as two out of three observers exhibited significant threshold and slope 

reductions.  Fits of the Naka-Rushton equation to experimental data are shown in Figure 

5A for each of the three observers (S01, S02, and S03).  Parameter estimation and 95% 

confidence intervals for C50 (threshold), Rmax (asymptote), and n (slope) are depicted 

graphically in Figure 5B.  All comparisons evaluated changes in Scotoma parameters 

relative to Sham.  Evaluation of bootstrapped confidence intervals revealed significant 

differences in threshold, asymptote, and slope in a subset of observers (Figure 5B).  S01 

had a significant reduction in asymptote in the Scotoma condition.  S02 displayed a 

significant reduction in both threshold and asymptote but had no measurable change in 

slope.  S03 exhibited significant reductions in threshold and slope in the Scotoma 

condition but had no statistically significant difference in asymptotic performance. 

 

Quantitative Model Evaluation 

An additional analysis of interest was the evaluation of three quantitative models 

to determine which proposal of short-term plasticity best accounted for psychophysical 

data.  Fits of each quantitative model for each observer are shown in Figure 6.  The 

general pattern of results suggests that changes in the Scotoma contrast response function 

were consistent with the two-process disinhibition model.  For two of the three 

psychophysical observers (S02 and S03), the disinhibition model yielded superior fits to 

the data.  Nested hypothesis tests revealed significantly better fits for the two-parameter  
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Figure 5.  Contrast response functions and parameter bootstrapping from Experiment 1.  (A) shows fits to the Naka-
Rushton equation for each of the three psychophysical observers. R2 values are given for fits to the two conditions 
(Scotoma and Sham).  Error bars denote ±1 SD of the 10,000 bootstrap datasets.  Contrast level is plotted on a 
logarithmic scale.  (B) plots the estimation and bootstrap estimation of 95% confidence intervals for parameters of 
interest C50 (threshold)), Rmax (asymptote), and n (slope).  Asterisks denote statistically significant differences 
between Scotoma and Sham conditions for a given parameter. 
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Figure 6.  Fits of the three quantitative models to observers in Experiment 1.  Contrast level is plotted on a 
logarithmic scale.  R2 values for the fit of each model are given within their respective panels.  The superior 
model for each observer is indicated by an asterisk (as determined by nested-hypothesis test).  Two out of 
the three observers were best accounted for by the hybrid rfe/rfg model.       
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rfe/rfg model over the rfe model, S02: F(1,11) = 7.05, p<.05, S03: F(1,11)=8.75, p<.05, 

and the rfg model, S02: F(1,11)=24.16, p<.0005, S03: F(1,11)=26.36, p<.0005.  For 

observer S01, the disinhibition model showed an advantage over the rfe model, 

F(1,11)=13.45, p<.005, but did not differ from the rfg model, F(1,11)=1.01, p>.30. 
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Figure 7.  Contrast response function (A) and quantitative model fits (B) for the data averaged across the 
three observers from Experiment 1. Data were best accounted for by the hybrid rfe/rfg model as indicated by 
asterisk.   
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S01’s data was best described by the model with fewer parameters (i.e., the rfg 

model).  However, note that the data (and model fit) are indicative of unrestricted gain 

rather than selective gain.  If the artificial scotoma were to induce the selective gain 

predicted by a strict RF gain model then asymptotic performance should be increased for 

the Scotoma condition relative to Sham.  However, S01 displayed the opposite effect, 

having a reduced asymptote for Scotoma relative to Sham. 

Evaluation of the three quantitative models was also performed on the average 

data of the three psychophysical observers (Figure 7).  Nested hypothesis tests revealed 

the hybrid rfe/rfg model to be superior to one-paramter rfe and rfg models, F(1,11)=17.75, 

p<.005 and F(1,11)=29.91, p<.0005, respectively.   

Effects of practice over the twelve sessions were assessed for each 

psychophysical observer in Experiment 1.  There were no significant or systematic 

differences between Scotoma and Sham conditions (Appendix A). 

 

Discussion 

 The short-term plasticity accompanying an artificial scotoma has been proposed 

to occur as either a result of receptive field expansions (Das & Gilbert, 1995b; Pettet & 

Gilbert, 1992) or selective neural response gain (DeAngelis et al., 1995).  These 

proposals both attribute change in receptive field dynamics to the unmasking of long-

range horizontal connections but do not fully consider the impact of disinhibition on 

receptive field structure and neural response properties.   

Disinhibition predicts that cells within the TDZ will exhibit modulations of both 

receptive field size and neural response gain.  The proposed two-process model of 
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disinhibition suggests an expansion in RF size due to an increase in the efficacy of long-

range horizontal inputs from cortical regions with non-overlapping receptive fields as 

well as a nonspecific increase in neural response gain (unrestricted gain) due to an 

activity-dependent reduction in local inhibitory drive (Tremere et al., 2003, 2005).   

 Experiment 1 assessed the predictions of disinhibition on psychophysical 

performance.  Contrast response functions were measured within the boundaries of an 

artificial scotoma (Scotoma condition) and were compared to those of a control condition 

(Sham).  As discussed previously, disinhibition predicts a leftward shift in the contrast 

response function (a reduction in threshold) due to the expansion of receptive fields.  This 

threshold reduction would be coupled with a reduction in asymptotic performance due to 

an increase in unrestricted gain.   

Results of Experiment 1 were highly consistent with a disinhibition model of 

short-term plasticity within the TDZ.  Bootstrap estimation of psychometric parameter 

error showed that two out of three observers (S02 and S03) exhibited a significant 

reduction in contrast threshold.  Two out of three observers (S01 and S02) also exhibited 

a significant reduction in asymptote.   

Quantitative modeling revealed that the disinhibition model best accounted for 

every observer’s data.  The two-parameter rfe/rfg model provided a superior fit to the 

average data of the three observers, consistent with two-process disinhibition.  Individual 

subject fits revealed the two-parameter rfe/rfg model to provide a superior fit in two 

observers (S02 and S03).  In one observer (S01), the one-parameter rfg model provided 

the best fit.  However, this fit was such that asymptote was reduced rather than amplified, 
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consistent with the occurrence of unrestricted gain rather than selective gain.  Thus, the 

data of S01 are best explained by two-process disinhibition rather than RF gain.   

The lack of threshold change in S01, and superior fit of a one-parameter RF gain 

model, may be partly attributable to the range of contrasts tested.  S01’s performance at 

the lowest contrasts was considerably better than that of S02 and S03.  Because of this 

increased perceptual sensitivity, the range of contrasts tested may have not have been 

ideal to detect leftward shifts in threshold as these would be driven mainly by increased 

perceptual performance at lower contrasts.  Similarly, the range of contrasts tested may 

have been partially responsible for S03’s lack of difference in asymptotic performance 

found by bootstrap estimation.  S03’s performance at lower contrasts remained above 

chance in the Scotoma condition and was likely the cause of the decreased slope estimate 

for the Scotoma condition.  This decreased slope, in turn, affects the estimate of 

asymptote and this may account for the lack of statistical difference in Rmax for S03.   

The results presented here are consistent with the predictions of the two-process 

disinhibition model and suggest that that both receptive field expansion and unrestricted 

gain are induced in the TDZ through disinhibition.  Such a two-process disinhibition 

model provides a resolution to the debate of RF expansion versus RF gain as it can 

account for the single-cell results reported by studies in support of either proposal (e.g., 

DeAngelis et al., 1995; Pettet & Gilbert).  The two-process disinhibition model also 

accounts for two important findings in the psychophysical examination of artificial 

scotomas in humans.  One psychophysical investigation reported a perceptual correlate of 

receptive field expansions following an artificial scotoma by demonstrating a perceptual 

compression of space within the boundaries of an artificial scotoma (Kapadia et al., 
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1994).  As the two-process model too proposes the occurrence of RF expansions, it would 

also predict such a result.  A more recent psychophysical examination has reported a 

quite different interpretation of the effects of an artificial scotoma on visual perception.  

Mihaylov, Manahilov, Simpson, and Strang (2007) used a perceptual template model to 

explain visual aftereffects that accompany an artificial scotoma conditioned at the fovea.  

Their results suggested that the effect of an artificial scotoma was such that it increased 

internal noise within the perceptual system (see Dosher & Lu, 1999).  Though receptive 

field expansions cannot account for such a result, this increased “internal noise” is highly 

consistent with the process of unrestricted gain proposed by the two-process disinhibition 

model.  That is, unrestricted gain has an effect of reducing the signal-to-noise ratio of a 

coded stimulus due to a loss of neural response selectivity.   
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CHAPTER 3 

EXPERIMENT 2 

 

Experiment 2 investigated the neural correlates of short-term plasticity and 

disinhibition.  Event-related potentials were elicited from within the boundaries of a 

conditioned artificial scotoma using a high-contrast visual probe.  VEPs obtained from 

within an artificial scotoma were examined relative to a control condition for amplitude 

fluctuations consistent with disinhibition.  The C1, P1, and N1 components were 

examined.    

 

Method 

Subjects 

 Eighteen naïve subjects (10 females) ranging in age from 18 to 22 (M=19.5, 

SD=1.0) were recruited from the Georgia Institute of Technology undergraduate 

population.  All subjects reported normal or corrected to normal vision and gave 

informed consent prior to participation.  Each subject participated in two independent 

sessions conducted on separate days.  Three of the eighteen subjects were subsequently 

dropped due to poor signal-to-noise ratio of ERPs.   

 

Stimuli and Procedure 

Stimuli were identical to that of Experiment 1 with the exception that the contrast 

level of Gabor annuli were maintained at a constant contrast of 0.8 to improve the quality 

of ERP recordings.  A total of 1,344 trials were collected across the two experiment 
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sessions.  Trials were blocked by condition (Scotoma, Sham, or Baseline) and further 

sub-blocked by the visual field of scotoma conditioning (upper vs. lower).  The order of 

condition blocks remained the same between the two sessions but the order of visual field 

presentation was reversed between the first and second sessions.  A Latin square design 

was used to counterbalance the order of condition blocks between subjects.  A one-

minute conditioning period (as described in Experiment 1) preceded the first block of 

each condition and was repeated after the third block of each condition. 

 

Electroencephalography 

Scalp-recorded EEG will be sampled at 1024 Hz from 34 Ag-AgCl electrodes 

using the ActiveTwo amplifier system (BioSemi, Amsterdam, Netherlands).  Electrodes 

were placed in the following positions according to a modified 10-20 system.  Standard 

10-20 positions were: FP1, FP2, F7, F8, F3, F4, Fz,, C3, C4, Cz, P7, P8, P3, P4, Pz, T7, 

T8, O1, Oz, O2, M1, and M2.  Additional 10-10 positions were:   AF3, AF4, FC1, FC2, 

FC5, FC6, CP1, CP2, CP5, CP6, PO3, and PO4.  Four additional electrodes were placed 

above and below the left eye and on the outer canthi of the left and right eyes.  These 

leads were used to form bipolar channels for vertical electrooculogram (VEOG) and 

horizontal electrooculogram (HEOG), respectively.  

The ActiveTwo system replaces traditional reference and ground electrodes with 

common mode sense (CMS) and driven right leg (DRL) electrodes.  Because of this 

arrangement, electrophysiological signals are always acquired in reference to the CMS 

electrode and all referencing is done offline.  The ActiveTwo performs no analog filtering 
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during data acquisition.  The bandwidth of the acquired data has only an upper limit 

determined by the sampling frequency (268 Hz at a sampling rate of 1024 Hz).   

Offline, data were re-referenced to the average of the two mastoid channels (M1 

and M2) and digitally band-pass filtered from 1.0 to 40 Hz (12 dB/oct).  Stimulus onsets 

were corrected for timing due to the delay of monitor raster scan.  EEG data were 

epoched into segments of 800 ms, beginning 200 ms before stimulus onset and persisting 

for 600 ms thereafter.  Individual segments were baseline corrected by setting the average 

of the 200 ms prestimulus interval to zero.  Segments were considered artifacts and 

rejected from analysis if activity in any scalp or EOG channel exceeded ±100 µV.  

Segmented data were averaged by quadrant of stimulus presentation and condition 

(Sham, Scotoma, and Baseline).  Separate averages were formed for the two sessions.  

Averages from the two sessions were then averaged together.  Average waveforms across 

the two sessions were low-pass filtered at 40 Hz (24 dB/oct) and baseline corrected by 

setting the average voltage of the prestimulus interval to zero. 

 

Data Analysis 

Three components of the VEP were analyzed for changes in amplitude: C1, P1, 

and N1.  For analysis of each component, data were collapsed across the four quadrants 

of stimulus presentation.  Each component of interest was quantified as the average 

amplitude within a particular time window.  Time windows were determined by 

inspection of grand average waveforms and topographic scalp maps collapsed across the 

two experimental conditions (Scotoma and Sham).   
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The C1 component peaked between 105 and 140 ms.  This time window was 

determined initially by inspection of grand average waveforms for the characteristic 

polarity reversal between upper and lower visual fields (negative-going for upper visual 

field and positive-going for lower visual field; Jeffreys & Axford, 1972a; Di Russo et al., 

2001).  The 105 – 140 ms time window was confirmed through assessment of scalp 

topographies.  The C1 component was clearly present, exhibiting a reversal in voltage 

between upper and lower visual fields.  However, a persisting negativity was apparent 

within the C1 time window rendering the absolute values the component negative despite 

the fact that their relative difference was that of a polarity reversal.  The cause of this 

early negativity is unclear but it had no bearing on measurement and quantification of the 

C1.  However, because absolute values of upper and lower C1 were negative, proper 

visualization of C1 voltage topographies was impossible given the data in its raw form.  

A simple baseline correction was performed on the averaged data to allow assessment of 

scalp topographies and verification of the C1 time window, setting a 20 ms interval (65 – 

85 ms) preceding the C1 to an average of zero.  This had the effect of re-centering the 

zero-point of the waveform, shifting the entire waveform in the positive direction thus 

allowing C1 scalp topographies to be visualized and verified.  Note that this simple 

correction to the data was only performed to visualize C1 topographies.  All C1 

quantification and analysis was performed on the raw waveforms.    

Prior to analysis, C1 data were collapsed across left and right visual fields. This 

was accomplished by re-labeling electrodes according to their contralateral or ipsilateral 

position relative to the visual stimulus and then averaging these re-labeled electrodes 
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across left and right visual fields.  Due to variations in polarity and scalp topography, 

data were collapsed separately for upper and lower visual field stimuli.   

Analysis of C1 data consisted of an average double subtraction score of Sham and 

Scotoma conditions tested against zero.  Because C1 polarity is inverted between upper 

and lower visual fields changes in amplitude would be expected to occur in opposite 

directions.  That is, if C1 amplitude were to increase amplitude would become more 

negative for upper field stimuli and more positive for lower field stimuli.  Thus, there 

would be a net effect of zero between upper and lower visual fields.  In order to preserve 

the relative change in C1 data were aggregated between upper and lower fields by taking 

the average of a double subtraction.  Condition difference scores were calculated 

separately for upper and lower visual fields by subtracting Sham amplitude from Scotoma 

amplitude.  A second subtraction was then performed between lower and upper visual 

fields (lower – upper).  Because scalp topography shifts between upper and lower field 

stimuli this subtraction was performed on contralateral electrodes for lower field stimuli 

and on ipsilateral electrodes for upper field stimuli.  The result of the second subtraction 

was then divided by two to obtain the average condition difference of lower and upper 

fields.  Equation 6 summarizes the procedure for collapsing C1 data across upper and 

lower visual fields. 

 

       

 

(6) 

The value of C1diff summarizes the net effect of C1 amplitude amplification 

between upper and lower visual fields.  A positive value of C1diff indicates C1 

amplification in the Scotoma condition whereas a negative value indicates C1 

C1diff      = 
(C1scotoma – C1sham)lower – (C1scotoma – C1sham)upper

  

2  
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attenuation.  A zero value indicates no difference between the two conditions.    

Statistical inferences regarding changes in C1 were made through a one-sample t-test of 

C1diff against zero.  This comparison was made at four electrode locations: CP1/2, P3/4, 

PO3/4, and Pz.  These positions were chosen for analysis based on C1 scalp topography.   

P1 and N1 components were determined to peak with the time windows 130-165 

ms and 190- 240 ms, respectively.  These time windows were determined by inspection 

of grand average waveforms and scalp distributions collapsed across the four visual 

quadrants of stimulation.  Data were collapsed between upper and lower visual fields by 

simple averaging.   Collapsing across left and right visual fields was accomplished by 

averaging data according to the position of the electrode (contralateral or ipsilateral) 

relative to the visual field of stimulus presentation.  Paired-samples t-tests were used to 

draw statistical inferences regarding amplitude differences in the P1 and N1 components.  

T-tests compared amplitudes of Scotoma and Sham conditions at electrodes O1/2 and 

P7/8 and were conducted independently for P1 (130-165 ms) and N1 (190-240 ms).   

 

Results 

Behavioral Data 

 The behavioral task of Experiment 2 was such that subjects had to make a 

discrimination of the tilt of a high-contrast (0.80) intra-scotoma Gabor annulus.  A 

paired-samples t-test was used to compare accuracy between Scotoma and Sham 

conditions.  Mean accuracy in the Scotoma and Sham conditions was 0.905 (SD=0.056) 

and 0.925 (SD=0.059), respectively.  Though statistical significance was not achieved 
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there was a marginally significant difference between the two conditions, t(14)=-1.91, 

p<.08.   

 

C1 Component 

The C1 component exhibits a shift in scalp topography between upper and lower 

visual fields, having a negative ipsilateral distribution for upper visual field stimuli and a 

positive contralateral distribution for lower visual field stimuli (Di Russo et al., 2001).  

C1 scalp distributions clearly demonstrated such a pattern within the 105 – 140 ms range, 

confirming this time window as the C1 component (Figure 8). 

A significant positive C1diff value was present at electrode P3/4, t(14)=2.24, 

p<.05, indicating significant amplitude amplification of the C1 for the Scotoma relative to 

the Sham condition.  Marginally significant effects were also present at electrodes CP1/2, 

t(14)=2.04, p<.07, and Pz, t(14)=1.93, p<.08.  No difference was present at electrode 

PO3/4, t(14)=1.641, p>.12.  Values of C1diff are plotted in Figure 9 for each of the tested 

electrodes.   

 

P1 Component 

P1 amplitude was significantly greater in the Scotoma condition than in the Sham 

condition.  This amplitude difference was apparent at contralateral electrode O1/2, 

t(14)=2.93, p<.05.  A marginally significant difference was also present at contralateral 

P7/8, t(14)=2.09, p<.06.  Figure 10 shows P1 scalp topographies and waveforms of 

illustrating P1 differences. 
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Figure 8.  C1 component from Experiment 2.  Grand average scalp distributions of the C1 component (105 – 
140 ms) are collapsed across left and right visual fields (left panel).  Scalp distributions are arbitrarily mapped 
such that ipsilateral electrode positions are represented on the left and contralateral on the right.  Grand 
average waveforms for upper and lower fields are shown in the right panel.  Scalp distributions and 
waveforms clearly demonstrate a polarity reversal and shift in scalp distribution typical of the C1 component. 
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Figure 9.  Values of C1diff from Experiment 2.  C1diff provides a 
single measure describing changes in C1 amplitude across the 
four visual quadrants of stimulation.  Positive values of C1diff 
indicate an increase in C1 amplitude in the Scotoma condition 
relative to the Sham condition.  Negative values indicate a 
decrease and a value of zero indicates no change.  Each of the 
electrodes tested exhibits a positive C1diff value.  Statistical 
significance was only present at electrode P3/4.  Error bars 
represent 95% confidence intervals. 
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Figure 10.  P1 and N1 components from Experiment 2.  Grand average scalp topographies of the 
contralateral P1 and N1 components are shown in the top and bottom panels, respectively.  Waveforms are 
collapsed across visual quadrants (middle).  Scalp distributions are arbitrarily mapped such that ipsilateral 
electrode positions are represented on the left and contralateral on the right.  Waveform plots show a clear 
P1 amplitude enhancement in the Scotoma condition at contralateral O1/2 and an attenuation of N1 
amplitude at P7/8.   
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N1 Component 

N1 amplitude was significantly attenuated in the Scotoma condition relative to the 

Sham condition, contralateral P7/8: t(14)=2.31, p<.05.  There was no statistically 

significant at contralateral O1/2, t(14)=1.73, p>.10.  Figure 10 plots N1 scalp maps and 

amplitude differences. 

 

Discussion 

 Experiment 2 examined the neural correlates of short-term plasticity with the 

TDZ using event-related potentials.  VEPs were recorded in response to visual probes 

presented within the boundaries of an artificial scotoma (Scotoma condition) and were 

evaluated relative to a control condition (Sham condition).  The goals of Experiment 2 

were to 1) provide a neural correlate of disinhibition, and 2) determine the earliest level 

of the visual hierarchy at which such plasticity may be found.   

 C1 and P1 amplitudes were significantly amplified in the Scotoma condition.  

That is, amplitude of C1 and P1 components was increased relative to the Sham 

condition.  These results are consistent with the occurrence of disinhibition within the 

TDZ.  The enhanced amplitude of the C1 and P1 components is consistent with 

disinhibition within TDZ.   

 Conditioning of an artificial scotoma also had a significant effect on the amplitude 

of the N1 component.  However, this effect was one of amplitude attenuation rather than 

amplification.  The interpretation of such an effect in terms of disinhibition is difficult 

given the effects found in C1 and P1.  One possibility is that the reduction in N1 
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amplitude is due to a sustained positivity that overlaps with the N1 time window.  Such 

an effect could arise were disinhibition to induce sustained activity within cortical areas 

that generate the P1 component.  However, such an interpretation cannot be confirmed 

without further experimentation.  The effects of C1 and P1 amplification are the most 

appropriate indices of short-term plasticity and disinhibition given the current data set.   

 Single-cell studies of artificial scotomas have led to somewhat discrepant results 

regarding the earliest cortical visual area at which short-term plasticity may be found.  

Some studies have found evidence of short-term plasticity within V1 (Pettet & Gilbert, 

1992) whereas others have only found effects in higher-level extrastriate areas (e.g., De 

Weerd et al., 1995).  The C1 component has been repeatedly localized to V1 (see Di 

Russo et al., 2001).  Thus, the amplification of C1 suggests that short-term plasticity does 

occur at the level of primary visual cortex within the human visual system.  

Amplification of the P1 component further suggests that plasticity and disinhibition are 

apparent later in the visual hierarchy.     
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CHAPTER 4 

EXPERIMENT 3 

 

Experiment 3 was an exploratory investigation to examine the perceptual 

consequences of invading activity from invading cortical zone, IZ, into the TDZ.  

Because the TDZ receives horizontal inputs from the IZ perceptual enhancement or 

distortion may be expected as a result of this increased representation of extra-scotoma 

space.    Contrast response functions were measured from the region of space surrounding 

the scotoma (i.e., the region of space represented by the IZ) and were evaluated for 

changes in perceptual performance associated with invading activity from the IZ.   

 

Method 

Subjects    

Four naïve psychophysical observers were recruited from the Georgia Institute of 

Technology undergraduate and graduate population.  None of the observers had 

previously participated in Experiment 1.  Subject ages ranged between 19 and 38 

(M=26.8, SD=8.2).  All observers had normal or corrected to normal vision.  One subject 

(S04) was excluded from analysis due to excessive ocular activity.   

 

Stimuli and Procedure 

The stimuli and procedure of Experiment 3 were identical to that of Experiment 1 

with two exceptions.   First, Gabor annuli probes were extra-scotoma rather than intra-

scotoma (Figure 11).  That is, Gabor annuli were configured such that the scotoma disc 
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was contained within annuli’s inner radius.  Thus, the extra-scotoma Gabor annuli probed 

the region of space just outside the scotoma boundary.   A second variation between 

Experiment 1 and 3 was the use of a different contrast range to obtain the contrast 

response function.  Extensive pilot testing revealed that the 14 contrast levels used in 

Experiment 1 did not provide an acceptable range of performance for extra-scotoma 

Gabor annuli.  Specifically, piloting indicated that performance was too high at the lower 

levels of contrast such that thresholds could not be estimated appropriately.  The 

minimum contrast level was lowered to remedy this issue.  Contrast levels were set at 14 

logarithmic increments between 0.04 and 0.64 (0.043, 0.048, 0.054, 0.062, 0.073, 0.088, 

0.108, 0.135, 0.171, 0.219, 0.283, 0.370, 0.485, and 0.6400).   

 
Figure 11.  Example of an extra-
scotoma Gabor annulus.   

 

Electrooculography 

EOG recording and analysis was identical to that of Experiment 1.  EOG data 

from one session of one subject (S04) was corrupt and could not be included in analysis.  

One psychophysical observer (S04) displayed an excessive degree of activity within the 

VEOG channel.  As with Experiment 1, the source of this VEOG activity was attributable 

to an excessively high rate of blinking and S04 was excluded from psychophysical 

analysis.   
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Psychophysical Data Analysis 

Psychophysical data analysis was identical to that of Experiment 1.   

 

Results 

Bootstrap Parameter Estimates 

Fits of the Naka-Rushton equation to experimental data are shown in Figure 12A 

for the three psychophysical observers (S01, S02, and S03).  Parameter error and 

estimates are plotted in Figure 12B.  Comparison of bootstrapped confidence intervals to 

mean parameter estimates revealed that none of the observers showed differences in 

threshold, asymptote, or slope (Figure 12A).   

 

Quantitative Model Evaluation 

None of the three quantitative models (rfe, rfg, and rfe/rfg) accounted for 

differences between Scotoma and Sham conditions significantly better than the others.  A 

nested-hypothesis test revealed that the hybrid rfe/rfg model was not superior to the rfe 

model, S01: F(1,11)=0.594, p>.45, S02: F(1,11)=3.20, p>.10, S03: F(1,11)=0.512, p>.45, 

or the rfg model, S01: F(1,11)=2.31, p>.15, S02: F(1,11)=1.23, p>.29, S03: 

F(1,11)=0.512, p>.48.   No convincing differences were present between rfe and rfg 

models either.  R2 differences were less that .01 for each subject.  Model fits for each 

observer are shown in Figure 13. 
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Figure 12.  Contrast response functions and parameter bootstrapping from Experiment 3.  (A) Fits to the 
Naka-Rushton equation for each psychophysical observer. R2 values are given for fits to the two 
conditions (Scotoma and Sham).  Error bars denote ±1 SD for the 10,000 bootstrap samples.  Contrast 
level is plotted on a logarithmic scale. (B) parameter estimation and bootstrapped 95% confidence 
intervals for the three parameters of interest.  No significant parameter differences were present for any of 
the three observers. 
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Figure 13.  Fits of the three quantitative models in Experiment 3.  R2 values for the fit of each model are 
given within their respective panels.  Contrast is plotted on a logarithmic scale.  Winning models are not 
indicated as no model was clearly superior to the others.  
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Discussion 

 The IZ provides a source of input to TDZ by connecting it, via horizontal 

projections, with cortical areas that continue to receive visual input.  That is, IZ provides 

invading activity into the TDZ.  Experiment 3 examined changes in the neural 

representation of extra-scotoma space due to invading activity from IZ by measuring 

contrast response functions following a period of conditioning with an artificial scotoma.   

No perceptual differences were found between Scotoma and Sham conditions for 

any observer.  Neither bootstrapping nor quantitative model fits revealed any patterns or 

trends between Scotoma and Sham conditions.  These results suggest that invading 

activity into the TDZ had no measurable effects of perceptual enhancement or distortion 

for extra-scotoma space at least in terms of the contrast response function.  This suggests 

that activity-dependent disinhibition within the TDZ does not affect the receptive field 

dynamics of normal surrounding cortex (IZ).  It could be the case that invading activity 

has no bearing on contrast response functions but would have perceptual consequences 

measurable through different dimensions (e.g., acuity, spatial frequency, etc.).  Long-

term changes in the representation of extra-scotoma space have been demonstrated in 

patients exhibiting long-term reorganization (Dilks et al., 2007) and it may be the case 

that measurable perceptual effects from extra-scotoma space are only measurable 

following extensive periods of cortical reorganization.   

 The null effects of Experiment 3 serve a secondary purpose in that they provide 

an additional control for the findings of Experiment 1.  Experiment 1 and 3 differed only 

in the class of visual probe used and the range of contrasts tested.  All other stimulus 

parameters were identical between the two studies.  As such, the results of Experiment 1 
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are strengthened in that no argument can be made that experimental effects were due to 

some extraneous variable or idiosyncratic difference between Scotoma and Sham 

conditions.   
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CHAPTER 5 

EXPERIMENT 4 

 

Experiment 4 investigated the neural correlates of invading activity from IZ into 

TDZ using event-related potentials.  VEPs were elicited from extra-scotoma space and 

thus represented activity arising from IZ.  Early sensory components of the VEP (C1, P1, 

and N1) were assessed for amplitude modulations indicative of invading activity.   

 

Method 

Subjects   

Fifteen naïve subjects (8 females) were recruited from the Georgia Institute of 

Technology undergraduate population. Subjects ranged in age from 18 to 21 (M=19.5, 

SD=1.1).  All subjects reported normal or corrected to normal vision. 

 

Stimuli and Procedure 

Stimuli and procedure were identical to that of Experiment 2 with the exception 

that the visual probes used to elicit VEPs were extra-scotoma Gabor annuli maintained at 

a contrast of 0.80.   

 

Electroencephalography 

Electrophysiological recording adhered to the procedures and analyses described 

in Experiment 2. 
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Data Analysis 

Data analysis was identical to that of Experiment 2 with the exception of the time 

windows of component analysis.  Experiment 4 time windows were 90-135 ms for C1, 

120-160 ms for P1, and 180-215 ms for N1.  These time windows were defined according 

to the same procedures described in Experiment 2. 

As in Experiment 2, an early negativity was present and overlapped with the C1 

component.  The same baseline correction procedure from Experiment 2 was used to 

visualize C1 scalp topographies.  However, a period of 60-80 ms was used to perform the 

correction in Experiment 4.   

 

Results 

Behavioral Data 

 Accuracy in the discrimination of the tilt of extra-scotoma Gabor annuli was 

compared between Scotoma and Sham conditions through a paired-samples t-test.  There 

was no significant difference in performance between Scotoma (M=0.869, SD=0.078) 

and Sham (M=0.884, SD=0.062) conditions, t(14)=-1.39, p>.18.  

 

C1 Component 

Resultant C1 scalp topographies and waveforms are displayed in Figure 14.  Scalp 

distributions and polarity reversal between upper and lower visual fields are confirmative 

of the selective time range (90-135 ms) as the C1 component. Tests of Cdiff against zero at 

electrodes CP1/2, P3/4, PO3/4, and Pz revealed no significant differences, t(14)=.017, 

p>.98, t(14)=1.04, p>.31, t(14)=1.32, p>.20, and t(14)=.814, p>.42, respectively.  These  
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Figure 14.  The C1 component from Experiment 4.  Grand average scalp distributions of the C1 
component (90 – 135 ms) are collapsed across left and right visual fields (left panel).  Scalp distributions 
are arbitrarily mapped so that ipsilateral electrode positions are represented on the left and contralateral on 
the right.  Grand average waveforms for upper and lower fields are shown in the right panel.  The upper 
versus lower field polarity reversal along with the shift in scalp distribution clearly indicate the presence 
of C1 component. 
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Figure 15.  C1diff values for the four electrodes of analysis in 
Experiment 4.  C1diff did not differ significantly from zero at any 
electrode, indicating no change in C1 between Scotoma and Sham 
conditions.   
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results indicate that there were no differences in C1 amplitude between Scotoma and 

Sham conditions.  C1diff values for each electrode tested are plotted in Figure 15. 

 

P1 Component 

No differences in P1 amplitude were present at either O1/2, t(14)=-1.50, p>.15, or 

P7/8, t(14)=-1.36, p>.19.  P1 scalp topographies and waveform plots of Scotoma and 

Sham conditions are pictured in Figure 16.   

 

N1 Component 

N1 amplitude was significantly greater in the Scotoma condition relative to the 

Sham condition at contralateral electrode O1/2, t(14)=-2.21, p<.05.  No difference was 

found at contralateral P7/8, t(14)=-1.75, p>.10.  N1 scalp maps and amplitude 

enhancement is depicted in Figure 16.   

 

Discussion 

 Experiment 4 investigated the neural correlates of invading activity from IZ into 

TDZ by measuring VEPs elicited from extra-scotoma space.  Analysis of C1, P1, and N1 

amplitudes found no differences in C1 or P1 components between Scotoma and Sham 

conditions but revealed a significant modulation of N1 amplitude in the Scotoma 

condition.  This modulation was such that the N1 elicited from extra-scotoma space was 

larger in the Scotoma than the Sham condition.  N1 amplification is consistent with a 

neural correlate of invading activity.  Invading activity from IZ into TDZ has a result of 

effectively increasing the neural representation of extra-scotoma space.   Amplitude  
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Figure 16. P1 and N1 components from Experiment 4.  Grand average scalp topographies of P1 and N1 
components are shown in the top and bottom panels, respectively.  Waveforms are collapsed across visual 
quadrants.  Scalp distributions are arbitrarily mapped such that ipsilateral electrode positions are 
represented on the left and contralateral on the right.  No significant differences were present for the 
contralateral but there was a significant amplitude amplification of the N1 at contralateral O1/2 (middle).  
This amplification was such that N1 amplitude was greater in the Scotoma condition relative to Sham.   
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amplification of N1 is consistent with an increased response within TDZ due to invading 

activity. 

Experiment 3 examined the perceptual consequences of invading activity from IZ 

but found no measurable differences between Scotoma and Sham conditions.  However, 

the complementary ERP study found clear modulation of visuocortical activity consistent 

with invading activity.   The discrepancy between the perceptual and neurophysiological 

investigation may be resolved by considering the nature of the invading zone of cortex.  

IZ continues to receive normal visual input and local inhibitory drive remains unchanged.  

In effect, activity within IZ itself should remain unaltered.  That is, IZ provides the same 

perceptual-level information regardless of how TDZ changes.  Though there is no 

alteration of visual processing within IZ, disinhibition within TDZ increases the efficacy 

of inputs from IZ into TDZ resulting in a measurable difference in neural response.  

Thus, the short-term effects of invading activity may only be measurable (perceptually) 

within the scotoma itself since IZ continues to respond normally despite the fact that a 

neural correlate of the activity can be measured from extra-scotoma space.   

 A neural correlate of invading activity was only apparent in the later N1 

component, a result which suggests that invading activity occurred at a later stage of 

extrastriate visual processing.  No evidence of invading activity was apparent at the level 

of V1 (indexed by C1) or earlier in extrastriate processing (indexed by P1).  This result 

suggests that invading activity does not occur until later in the stream of visual 

processing, beginning at a relatively high level of the visual hierarchy.   It is not entirely 

clear why invading activity was only apparent at a later in the stream of visual processing 

as one would predict that invading activity should begin at the same stage as TDZ 
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plasticity.  That is, the effects would be expected in C1 and P1 as well since such 

modulations were apparent from TDZ (Experiment 2).  It is possible that there was 

simply a failure to statistically detect such an effect or that the early effects of invading 

activity are too small to detect at the level of the scalp.  However, the findings of N1 

amplification may indicate the involvement of higher-order feedback in the induction of 

plasticity at earlier levels of the visual hierarchy.   

 The involvement of feedback projections in representational plasticity remains an 

unexplored area in the plasticity literature and it is largely assumed that plasticity within a 

DZ or TDZ is a local phenomenon mediated by horizontal projections (Gilbert, 1998; 

Calford, 2002).  However, higher-order visual areas send a mass of feedback projections 

to lower areas of the hierarchy and there is compelling evidence to suggest that receptive 

field properties can be significantly modulated by such feedback (for review see 

Angelucci & Bullier, 2003).  There is a distinct possibility that feedback projections may 

modulate, perhaps even induce, short-term plasticity within earlier cortical areas. Though 

speculative, this later N1 reflect a later, extrastriate source of invading activity.  More 

specifically, invading activity may originate from higher-order visual areas and feedback 

into earlier areas.  Such feedback could either be the direct source of invading activity or 

could modulates (gate) local invading activity within an earlier visual area.  Scalp-

recorded potentials cannot differentiate between feed-forward and feedback activity so a 

feedback interpretation is based solely on the time course of the N1 correlate of invading 

activity.  This proposal of invading activity originating within a higher-order visual area 

cannot be verified further given the current dataset.  Systematic investigation of the role 

of feedback in topographic plasticity is required.   
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CHAPTER 6 

GENERAL DISCUSSION 

 

The current investigations were concerned with establishing the neural 

mechanisms and processes that underlie short-term plasticity in the human visual system 

following temporary sensory deafferentation.  Four experiments were conducted to 

examine the changes in receptive-field dynamics that occur with the induction of short-

term plasticity by an artificial scotoma.  Experiments 1 and 2 examined the receptive 

field dynamics within deafferented cortex (TDZ) using a psychophysical technique and 

event-related potentials, respectively.  Experiments 3 and 4 were exploratory 

investigations that sought perceptual and neural correlates of invading activity from the 

cortical area surrounding TDZ – the invading zone, or IZ. 

 A neural mechanism widely held to be responsible for the effects of short-term 

plasticity is that of disinhibition wherein the TDZ is released from local GABAergic 

inhibition.   Some have argued that the result of this disinhibition is an expansion of 

receptive fields through the unmasking of long-range horizontal connections (Das & 

Gilbert, 1995b; Pettet & Gilbert, 1992).  Another proposal has suggested that the 

unmasking of these horizontal connections through disinhibition has the effect of 

increasing the neural response gain of TDZ neurons rather than expanding their receptive 

fields (DeAngelis et al., 1995).  Both proposals have empirical support but neither fully 

considers the implications of disinhibition to neural processing and representations within 

TDZ.     
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 I have proposed that the result of disinhibition on receptive field properties within 

TDZ is best described in terms of two separable but dependent processes.  One is a 

process of receptive field expansion that occurs as a result of the unmasking of long-rang 

horizontal projections.  The second process is one termed unrestricted gain where a 

reduction in inhibitory drive causes a loss of neural response selectivity.  According to 

unrestricted gain, cells within the TDZ become more responsive overall but lose the 

specificity of their response.  Unrestricted gain implies an overall increase in neural 

response but a reduction in signal-to-noise ratio due to the loss of selectivity.  

 The aforementioned processes of disinhibition were evaluated in Experiment 1 by 

measuring contrast response functions from within an artificial scotoma.  In support of 

the two-process model of disinhibition contrast response functions exhibited enhanced 

perceptual thresholds but reduced asymptotic performance.  Improved perceptual 

thresholds are predicted by the increased representation of intra-scotoma space within the 

TDZ due to receptive field expansions whereas reductions in asymptotic performance are 

predicted as a result of the multiplicative effects of unrestricted gain.   

 The two-process model of disinhibition is advantageous because it is biologically 

plausible and is able to fully describe a host of empirical results.  It accounts for the 

seemingly contradictory results of receptive field expansion and receptive field gain 

(Pettet & Gilbert, 1992; DeAngelis et al., 1995) and accounts for several discrepant 

psychophysical findings as well (Kapadia et al., 1994; Mihaylov et al., 2007). 

Experiment 2 provided a neural correlate of disinhibition within the TDZ.  Visual 

evoked potentials were elicited from within the boundaries of an artificial scotoma.  

Conditioning with an artificial scotoma induced amplifications of the C1 and P1 
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components of the visual evoked potential.  These amplitude amplifications are consistent 

with the occurrence of disinhibition within the TDZ and provide a non-invasive neural 

correlate of the process.  Results from Experiment 2 further indicate that the process of 

disinhibition occurs as early as primary visual cortex in humans (at least with an artificial 

scotoma).   

 Two exploratory investigations were concerned with how plasticity within the 

TDZ affected cortical processing in the IZ.  The induction of plasticity within the TDZ 

unmasks horizontal inputs that arise from IZ.  As such, this invading activity may be 

expected to affect the processing of information by IZ.  Experiments 3 and 4 examined 

the perceptual and neural correlates of invading activity by probing extra-scotoma space.  

No perceptual effects were apparent in contrast response functions.  However, an 

electrophysiological correlate of invading activity was apparent in the N1 component 

(180-215 ms).  N1 activity was such that its amplitude was amplified in the presence of 

an artificial scotoma, a result consistent with the increased invading activity into the 

TDZ.  The N1 component reflects visual processing within higher-level extrastriate areas 

suggesting that invading activity from the IZ into the TDZ did not occur until a relatively 

late stage of visual processing.  Though extensive investigation is necessary, this finding 

may point to the involvement of top-down feedback in short-term plasticity and 

disinhibition.  More specifically, this N1 amplification may reflect invading activity that 

originates at a later stage of visual processing and feeds back to earlier visual areas (e.g., 

V1).  Such feedback may be the source of short-term invading activity or may act to 

modulate local disinhibition and invading activity within earlier visual areas. 
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 The investigations presented here enhance the understanding of the neural 

mechanisms of short-term visual plasticity and extend findings to humans.   A conceptual 

framework of the processes of disinhibition has been provided and can be used to better 

understand and predict the effects of short-term plasticity (Experiment 1).  A neural 

correlate of short-term visual plasticity and disinhibition has also been demonstrated for 

the first time in humans (Experiment 2).  Additionally, exploratory investigations of the 

neural representations extra-scotoma space have suggested that feedback from higher-

level sensory areas may play a role in the induction or modulation of short-term plasticity 

and disinhibition (Experiment 4).  Although the investigations here concentrate on 

disinhibition in the context of sensory representational plasticity, the mechanism appears 

to be a ubiquitous component of neocortical processing.  Disinhibition has been 

implicated not only in the topographical reorganization of sensory and motor areas 

(Calford, 2002) but also in a variety of forms of learning and memory (Froemke, 

Merzenich, & Schreiner, 2007; Paulsen & Moser, 1998; Tremere et al., 2005).  In a 

broader scope, the investigations of this dissertation are informative about general 

mechanisms of cortical processing and may have implications that extend well beyond 

the domain of visual cortical processing.   
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APPENDIX A: ASSESSMENT OF PRACTICE EFFECTS IN 

EXPERIMENT 1 

 

Systematic differences practice effects between Scotoma and Sham conditions 

were assessed over the twelve experimental sessions. For each session, a difference score 

between mean accuracy in each condition was calculated (Sham accuracy – Scotoma 

accuracy) and submitted to a linear regression.  No significant trends were present 

(Figure 17). 
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Figure 17.  Differences in accuracy between Scotoma and Sham conditions as a function of 
experimental session.   
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