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CHAPTER I

INTRODUCTION

Diffusion-Tensor Magnetic Resonance Imaging (DTI) reveals the orientation of white

matter fiber tracts in vivo and yields an index of brain white matter micro structural

integrity through quantification of the directionality of water diffusion. Fractional

Anisotropy (FA), a measure derived from the diffusion tensor data, is sensitive to

developmental and pathological changes in axonal density, myelination, size and co-

herence of organization of fibers within a voxel. (Basser et al 1995; Pierpaoli C et

al 1996; Beaulieu et al .2002) It therefore reflects the structural integrity of white

matter. There is substantial evidence that brain white matter structural integrity de-

creases with age in humans .Several DTI studies reported the decline in white matter

structural integrity in humans during normal aging (Pfefferbaum and Sullivan,2003;

Pfefferbaum et al., 2000a; O’Sullivan et al., 2001; Chun et al., 2000; Nusbaum et al.,

2001; Stebbins et al.,2001; Madden et al., 2004.). This decline is observed in both

men and women, and is linear from about age 20 years onwards. There is less evi-

dence about the pattern of normal aging in chimpanzees, our closest living primate

relative. Very few studies have compared brain aging in humans and chimpanzees.

Comparing age-related brain structure changes in humans and chimpanzees would

define a human-specific pattern of normal aging and would be a proper background

for interpreting observed changes in the neurodegenerative diseases of the elderly

beyond those of normal aging. A number of methods have been proposed to de-

scribe age-related changes in white matter structural integrity using DTI metrics. In

this project, Regions of Interest (ROI) analysis and Tract Based Spatial Statistics

(TBSS) are used to describe the age-related changes in chimpanzees. Strengths and
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limitations of these methods are discussed.

1.1 Background

1.1.1 Diffusion Tensor Imaging (DTI)

Diffusion is a physical process that involves the translational movement of molecules

via thermally driven random motions, called Brownian motion. When there are no

hindrances to diffusion, the amount of diffusion is same in all the directions and is

termed as isotropic diffusion. However, if there are barriers to diffusion, such as white

matter axons, and diffusion is preferred in some directions over others; it is termed

as anisotropic diffusion. The mobility of all the water molecules can be characterized

by a diffusion coefficient.

Figure 1: Figure showing the molecular displacements in isotropic and anisotropic
media. Displacements are similar in all directions for isotropic sample and oriented
more along the axis in an anisotropic sample.

Magnetic resonance measurements of diffusion are sensitive to the displacement

of the molecules along the axis of the diffusion-sensitizing gradients that are applied.

Therefore, diffusion along different directions can be readily measured by changing

the direction of the diffusion sensitizing gradients. The effect of diffusion on MRI

signal is attenuation(s). This attenuation depends upon the diffusion coefficient, D

2



and on the b, which characterizes the strength and duration of diffusion-sensitizing

gradients applied. This relationship is given by,

Signal(S) = exp(−bD) (1)

The contrast in diffusion-weighted images is dependent on the diffusive mobility

of the tissue under study. For the same degree of diffusion weighting, the signal from

free water or cerebrospinal fluid (CSF) will be highly attenuated compared to the

signal from the restricted water in the tissue compartments.

In the presence of anisotropy, diffusion can no longer be characterized by a single

scalar coefficient but requires a tensor, D, which fully describes molecular mobility

along each direction and correlation between these directions. The diffusion tensor D

is symmetric and is given by,

Figure 2: Symmetric Diffusion Tensor

Signal attenuation not only depends on the diffusion effects measured along one

direction of the diffusion sensitizing gradient pulse but may also include the con-

tributions from the other directions. So in order to determine the diffusion tensor

accurately, diffusion-weighted images have to be collected along several gradient di-

rections. As the diffusion tensor is symmetric, measurements along at least six di-

rections are necessary. In any anisotropic media, the diffusion tensor, its constituent

principal diffusion directions, and principal diffusivities are estimated at each voxel.

The former are mutually perpendicular, preferred directions along which molecular

displacements of the molecules are uncorrelated, while the later are the diffusivities

along these directions. These measures are also called Eigen values (principal dif-

fusivities) and Eigen vectors (principal directions). The largest Eigen vector of the
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tensor corresponds to the principal diffusion direction within a voxel.

Once the diffusion tensor and constituents are estimated, the amount of restric-

tion to diffusion in an anisotropic media can be typically expressed as Fractional

Anisotropy (FA) (Pierpaoli and Basser (1996)). FA is a measure of orientation co-

herence and is given by:

Figure 3: Fractional Anisotropy

The values of FA range from 0 to 1. In white matter the FA values are closer to

1 since the water diffusion is restricted by its fiber constituents, which are arranged

in parallel. On the other hand, FA is near 0 in ventricular cerebrospinal fluid, where

diffusion is isotropic. The average value of diffusion at a voxel is expressed as the

Apparent Diffusion Coefficient (ADC), bulk Mean Diffusivity (MD), or trace of a

tensor matrix. ADC is a quantitative metric of water motility (independent of the

orientation) in a voxel and is commonly but not necessarily negatively correlated with

FA.

1.1.2 DTI and Brain White Matter in Normal Adult Aging

Diffusion in brain white matter is present in two principal compartments: the extracel-

lular space and intracellular space. Water diffusion is anisotropic in the extracellular

space due to ordered arrangement of the myelinated fibers. Interstitial fluid in spaces

between the fibers provides the avenue for diffusion. Myelin, the axonal membrane,

microtubules and neurofilaments are all longitudinally oriented structures (Figure4)

that could hinder the water diffusion perpendicular to the length of the axon and

result in orientational diffusion (basis for anisotropy). The amount of myelination,
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the length and the numbers of fibers determine the degree of anisotropy in the extra-

cellular space. These physical characteristics of white matter fibers change by region.

In intracellular space, cytoplasm provides another medium for diffusion crowded with

cytoskeletal constituents. In normal aging, disruption in the white matter microstruc-

ture can reflect the breakdown of myelin, constituents of cytoskeleton, axon density

(Basser et al., 1995), length and number of myelinated fibers ( Marner et al. 2003).

Figure 4: Figure explains the structural organization of a neuron forming the basis
for anisotropic diffusion. The myelin, axonal membrane, microtubules, neurofilaments
that constitute a neuron form a barrier for diffusion perpendicular to the length of
the axon resulting in anisotropic diffusion.

Several structural neuroimaging studies have looked at changes in the brain volume

with age. There is a consistent increase in the CSF-filled spaces that occur primarily

at the expense of cortical gray matter during normal aging (Blatter et al. 1995).

Macro structural, age-related volume reduction in brain white matter is small in the

normal population (Sullivan et al. 2004). A few studies, however, report a greater

white matter volume decline than gray matter (Guttmann et al. 1998), but such

loss is typically small, around 2 percent per year, and accelerates in old age. Several

studies reported that men have greater overall brain volume and a greater ratio of

white matter to overall brain volume, compared with women (Sullivan et al 2004).

The slope of change in white matter/gray matter volume is smaller for women than

men. A cross-sectional study on a group of healthy adults (95 men and 48 women)
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revealed an age-related decline in gray matter volume but not in white matter volume

(Sullivan et al. 2004) (Figure5).

Figure 5: A cross-sectional study showing age-related decline in cortical gray but
not white matter volumes in healthy adults (95 men and 48 women) (Sullivan et al.
2004)

White matter Fractional Anisotropy (FA), a measure derived from the DTI data

is sensitive to developmental and pathological changes in the micro structural char-

acteristics of the myelinated axons. Many studies often use the FA as an index of

decreasing white matter health. Decline in FA offers insight into the degenerative

changes in the micro-structural integrity of white matter tracts. Various degenera-

tive disorders, such as multiple sclerosis, and various dementias show decline in the

white matter FA (Horsfeild and Jones; 2002). Several DTI studies also reveal age-

related declines in white matter FA in normal healthy adults (Pfferbaum and Sullivan

2003 Pfefferbaum et al., 2000a; O’Sullivan et al., 2001; Chun et al., 2000; Nusbaum

et al., 2001; Stebbins et al.,2001; Madden et al., 2004;Salat et al., 2004; Head et al.).

The FA decline with age was shown to be due to an increase in water diffusion in the

direction perpendicular to the direction of the white matter fibers. This is caused by

disruption of axonal myelin sheath (demyelination) and/or replacement of the axonal

fibers with other cells (gliosis) (Maziootta et al, 1995). Disruption/damage to the

cells is assumed to be mainly caused by certain highly reactive free radicals called

as Reactive Oxygen Species (ROS), which are produced as byproducts of oxidative

6



metabolism. This process is also well known as oxidative stress (Beal et al. 1995).

Increased interstitial fluid within the white matter (e.g., leukoaraiosis) (Helenius

et al., 2002)and partial volume effects resulting from inclusion of gray matter and/or

CSF in the white matter sample influence the decline of anisotropy with age. Pf-

efferbaum et al. (2003) performed morphological erosion of white matter regions of

interest to remove the inclusion of non-white matter pixels in the FA calculations.

Reducing the size of the white matter samples attenuated but did not negate the ef-

fects. This indicates that the observed decrease in white matter FA with age reflects

true micro-structural alterations, rather than sampling artifact. Another complicat-

ing factor is that intravoxel fiber incoherence (such as fiber crossing) decreases the

FA measured at a particular voxel. Optimal choice of multiple gradient direction

schemes are usually used to eliminate any intravoxel coherence effects. Deep white

matter hyperintensities seen on t2-weighted images are likely to cause a significant

decrease in the white matter FA. These hyperintensities are due to lesions within the

white matter (leukoaraiosis) and influence the decline of anisotropy with aging as

mentioned above.

White matter regions have different degrees of anisotropy, dependant on the ho-

mogeneity of the fiber structures. Thus, the corpus callosum should have a high FA

because of the density of fibers oriented in a medio-lateral direction. On the other

hand, the white matter tracts leading to the frontal lobes and pericallosal regions have

low FA due to the crossing of the white matter tracts. Aging affects different white

matter systems differently. It has been hypothesized that later-maturing structures

are more vulnerable to the effects of aging compared to the early maturing structures

(Raz et al.1993). Also, the amount of myelination and the diameter of the fibers in-

crease the vulnerability to the effects of aging. In corpus callosum (CC), the decline

in FA for the genu (anterior region of CC) is high compared to splenium (Posterior re-

gion of CC). Myelination of splenium precedes that of the genu (Rakic P et al. 1968),
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possibly causing the later maturing anterior regions to show higher or earlier age-

related declines than posterior regions. Also, genu is composed of a relatively large

proportion of small diameter, lightly myelinated fibers. The structures showing the

greatest FA declines over the age range of 23-76 years were in the genu of the corpus

callosum and the centrum semiovale (Pfefferbaum et al. (2003)). Centrum semiovale

is the region where many important tracts intermix, including the inter-hemispheric

callosal projections, the superior longitudinal fasciculus, and the cortico-spinal tract.

The Figure6 below shows the age-related changes in FA across the seven regions for

31 subjects (Pfefferbaum et al., 2003).

Figure 6: Healthy men and women showed equivalent and significant decreases in
FA with advancing age, which was greater in the genu than the splenium and greatest
in the centrum semiovale. Pfefferbaum et al. (2003).

Studies pertaining to age-related differences between men and women showed the

same pattern of decline in white matter structural integrity (Sullivan et al. (2000)),

involving greater age-dependant deterioration in frontal regions than in parietal re-

gions. Kochunov et al. (2007) studied the relationship between FA and other indices

of cerebral health like gray matter thickness, sulcal width and white matter hyper-

intense volumes. Results showed a significant correlation between FA of the genu

and gray matter thickness independent of the cortical area, while the FA of the other

regions did not have any relationship with the gray matter thickness. Decreases in

FA of the genu are strongly correlated with the sulcal span and the hyper-intensity
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of white matter volume. This might suggest that changes in myelin levels in the

thinly myelinated associative tracts of genu could be an indicator of overall decline

in other indices of cerebral health. The corpus callosum (CC) displays heterotopic

antero-posterior cortical connectivity. Furthermore, specific regions of the CC com-

prise fibers connecting hetero and unimodally associated cortical regions [Huang et

al.2005; Witelson 1989]. The genu, rostral body, anterior midbody, posterior mid-

body, isthmus and splenium comprise fibers connecting caudal/orbital prefrontal ar-

eas and inferior premotor area, prefrontal area, frontal area and motor system, frontal

area and motor system, parietal area, temporal and occipital areas, respectively, and

the FA and MD values of CC sub regions are linked to the associated regions [Hasan

et al. 2005; Ota et al.2006]. Evaluation of normal-appearing white matter of the CC

sub regions could be used as a marker of the projection area, where ROIs are difficult

to place.

1.1.3 Functional Correlates

DTI measures of white matter microstructure explain the brain structure-function

relationships during normal aging, which have been difficult to establish using vol-

umetric measures. A number of studies have examined the decline in white matter

FA and its relationship with tests of cognitive and motor functions including working

memory, attention shifting and other executive functions. For example, Sullivan et al.

(2006) used an alternated finger tapping task as a measure of interhemispheric transfer

and processing speed and correlated the output with the corpus callosum FA. Results

showed that splenium FA and parietal pericallosal FA correlated significantly with the

alternating task indicating that decline in corpus callosum micro-structural integrity

influences efficiency in interhemispheric processing. Charlton et al. (2006) correlated

the white matter FA and ADC values with results from the cognitive tests of execu-

tive function, working memory, and information-processing speed. After controlling
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for age, DTI parameters correlated with results from the cognitive tests indicating

age-related cognitive decline.

1.1.4 Brain Aging in Non-Human Primates

There is no substantial evidence explaining structural changes in the brain due to

physiological aging in non-human primates. However, there are few studies that

explain the brain size and volumetric changes in non-human primates. Postmortem

analysis of brain weight in macaques, unlike humans, reveals no decline with from

young to old adulthood (Herndon et al. 1998a). In addition to brain weight, there is

at present no clear evidence from histological studies of major gray matter or white

matter volume reductions with aging in nonhuman primates. Histological studies

described the ballooning and splitting of myelin sheaths at the ultra structural level

in aged macaques, and similar degenerative changes appear to occur in humans as

well (Feldman and Peters, 1998; Peters et al., 2000; Peters and Sethares, 2002).

Herndon et al. 1999 calculated brain weights from 76 chimpanzees ranging in

age from birth to 59.4 years of age. These results suggest that brain weight declines

moderately (but not statistically significant) with age in the chimpanzee as it does

in humans. Andersen et al. (1999), in cross-sectional studies of female macaque

monkeys, reported there is significantly less gray matter volume (more than 10 percent

less) in old monkeys (21-27 yrs) compared to young monkeys, but more ventricular

and white matter volume. Lyons et al. (2004) also reported increased white matter

in old versus young female squirrel monkeys, as well as a small, but nonsignificant,

decline in gray matter. Macro structural volumetric studies conducted on rhesus

macaques by Lacreuse et al., 2005 also suggests reductions in the volume of gray

matter regions like caudate and putamen with age. Pierre et al. (2008) looked at

age-related differences in gray and white matter ratio, total brain volume, and corpus

callosum morphology in bonnet macaques ranging in from juvenile to adult. The
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finding of higher gray and white matter in juvenile as compared to adolescent and

adult monkeys parallels similar decreases in gray matter volumes in humans.

There are no published DTI studies that describe the age-related changes in white

matter microstructure in the non-human primates, especially chimpanzees. The cur-

rent evidence for chimpanzees, suggests no age-related loss of white matter volume,

and possibly even an increase, contrary to the very clear evidence for age-related

white matter volume reduction in humans (Sullivan et al. 2004). Comparing the

age-related changes in the white matter integrity both micro structurally and macro

structurally of humans with chimpanzees would define a human-specific pattern of

normal aging and would be a proper background for interpreting observed changes in

the neurodegenerative diseases of the elderly beyond those of normal aging.
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CHAPTER II

IMAGE ACQUISITION AND PRE-PROCESSING

2.1 Echo Planar Imaging

Echo Planar Imaging (EPI) is one of the most commonly used magnetic resonance

imaging sequences for acquiring diffusion weighted images. Diffusion is the random

thermal motion of molecules through a tissue compartment. The signal intensity

of Magnetic Resonance Imaging is dependent on water motion among other factors,

which intrinsically produces contrast. In diffusion-weighted echo-planar imaging, im-

age acquisition is sensitized to the diffusion of water molecules by inserting very strong

motion-sensitizing gradient pulses into the echo-planar imaging pulse sequence.

2.1.1 Principle

In Echo Planar Imaging (EPI), all the k-space lines are acquired within a single

repetition (i.e. the complete image is acquired from one single free induction decay

signal around 40 to 100 ms in duration of a gradient echo or spin echo sequence).

Similar to a conventional Spin Echo sequence, a Spin Echo based echo planar imaging

sequence begins with 90 and 180 RF pulses. However, after the 180 RF pulse, the

frequency-encoding gradient oscillates rapidly from a positive to negative amplitude,

forming a train of echoes . Since the complete image is acquired within a single

repetition it is called as a single-shot sequence. On the other hand, if all the data

points required to make-up an image are acquired in several free induction decays, it

is called a multi-shot EPI or interleaved EPI. This technique is sometimes referred

to as segmented EPI, since the data points are acquired by dividing the k-space into

two or more segments.

For example, in a two shot EPI, the first interleave covers the whole of k-space
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Figure 7: Pulse sequence diagram and k-space traversal of a single shot EPI sequence

in alternate lines, and then the second pass fills in the lines between (Figure8). The

same principle is extended to any number of interleaves.

Figure 8: K-space traversal in a two-shot Echo planar Imaging. The first interleave
covers the whole of k-space in alternate lines, and then the second pass fills in the
lines between.

2.2 Echo Planar Diffusion Weighted Imaging in Chimpanzees

In Single Shot EPI only one excitation is necessary to acquire an image and hence, the

DWI images become less sensitive to subject motion, but extremely sensitive to small

deviations in the magnetic field. One of the most serious problems of EPI is caused
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by field inhomogeneity. Field inhomogenities can be caused by imperfections within

the magnet, eddy-current induced local gradients, and magnetic susceptibility effects

caused by the sample, especially near the air-tissue interfaces. The variations in the

field cause the signals to resonate at different frequencies. The effects are less severe

along the readout direction in EPI due to the usage of large gradients. However,

along the phase encode direction, the off-resonance effects are more severe resulting

in a considerable shift in pixel position. This in turn causes spatial distortion of the

images. These effects are exaggerated at higher field strengths. In chimpanzees, due

to complicated sinus anatomy and large air-tissue interfaces the spatial distortion

caused by magnetic susceptibilities is severe (Figure9).

Figure 9: Large Geometric distortions caused by the magnetic susceptibility artifact
at the air-tissue interfaces using single-shot EPI sequence in chimpanzees. Figure
shown is a b0( no diffusion weighting) image.

Moving from single shot imaging to multi-shot EPI imaging reduces the extent

of spatial distortion due to increases in the number of excitations needed to acquire

the information from one slice. Therefore, the off- resonance errors, resulting from

field inhomogeneity and susceptibility, which evolve constantly with time are signifi-

cantly reduced. The type of sequence and the method used for correcting the spatial

distortion in segmented EPI is discussed in the Image Acquisition section. However,

a potential drawback of multi-shot EPI is that it increases the scan time by n fold,
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where n is the number of shots or segments used in the sequence. However, while

segmented EPI is often used to reduce the spatial distortions (figure 4) and increase

the spatial resolution, it also increases the susceptibility to brain motion.

Figure 10: Significantly reduced geometric distortions using segmented EPI se-
quence (4 segments) compared to single shot EPI in chimpanzees. One of the diffusion
weighted volumes is shown in the figure.

Subject motion in segmented EPI causes small incoherent phase changes between

the segments, leading to severe image artifacts. These artifacts are often referred to

as ghosts in an image. The main source of this type of ghosting is cardiac pulsation

with occasional involuntary movement of the subject. This is one of the potential

problems of segmented EPI acquisition. Even the use of cardiac gating to synchronize

the data acquisitions in combination with simple readout navigator echo approach

cannot suppress all motion related phase errors. As a result residual artifacts are

often found in the corrected images. There will be loss of signal within the brain

due to ghosting, which results in poor SNR and inaccurate estimation of the diffusion

metrics like Fractional Anisotropy (FA) from the diffusion weighted images. Figure11

illustrates the ghosting artifact in chimpanzee DTI data acquired using segmented

EPI sequence.
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Figure 11: Figure shows increased motion artifact in chimpanzees using segmented
EPI. Ghosts appear in the image as streak of lines covering a range of slices. Ghosting
in one of the diffusion weighted volumes is shown in the figure.

2.3 Image Acquisition

Three groups of healthy, female chimpanzees were studied: 9 Younger (Mean=14.1,

SD= 2.1), 7 old (Mean=35.8, SD=3.02) and 5 very old (Mean=50.4, SD=2.5). A

four shot echo-planar double spin echo, T2-weighted sequence was used to acquire

diffusion-weighted data with a spatial resolution of 1.8mm isotropic (FOV 230mm,

matrix 128x128). The sequence parameters were TE/TR/Slices= 91ms/5740ms/41,

with 60 diffusion-weighted directions and two diffusion weighting b values of 0 and

1000. Two averages, one with bottom-up and one with top-down (Bowtell et al (1994))

traversal of k-space in the phase-encode direction, were acquired. The method for

distortion correction due to magnetic susceptibilities in segmented DTI acquisitions

proposed by Andersson et al. (2003) can be used on the images acquired using a

phase up and phase down approach. Diffusion contrast increases with increase in the

gradient strength and number of diffusion gradient directions, so acquiring DWI im-

ages along 60 directions with a b value of 1000 would increase the contrast compared

to fewer directions and a low b value and will result in better quantification of diffu-

sion metrics. The number of measurements of Signal from the b0 and the diffusion

weighted images affect the calculation of the diffusion tensor and the measured DTI
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metrics. According to D.K. Jones et al (1999) optimal ratio between numbers of mea-

surements without diffusion weighting to the measurements with diffusion weighting

to yield a less variant and precise diffusion tensor matrix is 8.3:1. Based on that

assumption, five b0‘s were acquired for each average of the diffusion weighted images.

Total scan time per acquisition was around 24 minutes.

2.4 Image Pre-processing

2.4.1 Motion Correction

Segmented EPI increases the susceptibility to motion compared to single shot EPI.

Simple head motion was corrected by registering all the 60 diffusion weighted vol-

umes to the b0 image (Reference image). Rigid body registration with six degrees of

freedom was used for the registration.

2.4.2 Eddy Current Correction

Rapidly switched gradients induce eddy currents in conductive materials resulting

in a residual eddy current field (ECF). These residual eddy currents cause image

shearing, scaling and bulk shifting in the diffusion weighted images The problem

of residual ECF‘s is even more complicated in EPI experiments involving multiple

gradient pulses. The magnitude of the eddy current field depends on the direction

and strength of the applied diffusion sensitizing field gradients. The values of these

applied diffusion gradients differ for different diffusion weighted directions. These

distortions were corrected, using affine registration with six degrees of freedom to a

reference volume, in this case a b0 image

2.4.3 Distortion Correction

Geometric distortion due to magnetic susceptibilities is severe in chimpanzees due

to complicated sinus anatomy and large air-tissue interfaces. Magnetic susceptibility

distortion correction was performed using the method proposed by Andersson et al.
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(2003). Using the two diffusion weighted averages, one with bottom-up and the other

with top-down Bowtell et. al (1994) traversal of k-space in the phase-encode direction.

This results in two images with identical magnitude distortions in opposing directions.

A displacement field was estimated from the two distorted images. The displacement

field contains information about the signal which differs in the two acquisitions only

with respect to the effects of susceptibility of the induced field inhomogenities. This

displacement field was applied for each diffusion direction to restore the images to

its undistorted state using least squares approach. These can be combined for each

acquisition and the two acquisitions are averaged to yield an undistorted, averaged

diffusion weighted image. Averaging improves the signal-to-noise ratio of the diffusion

weighted volumes. This correction is very important for the estimation of a distortion-

free diffusion tensor map.

2.5 Diffusion Tensor Estimation

This step involves the fitting of a local model of diffusion to the diffusion weighted

data obtained after eddy current and susceptibility induced distortion correction at

each voxel. Dtifit, a part of FDT (FMRIB’s Diffusion Toolbox) was used for fitting

the diffusion tensor model at each voxel. Dtifit uses the brain extracted mask of the

b0 image, gradient vectors and gradient strength values for all the diffusion weighted

directions to estimate the diffusion tensor. The gradient directions are rotated rel-

ative to the subject’s position in the scanner before running dtifit. The output of

the dtifit include the Eigen value maps, which give the amount of diffusion in the

three orthogonal directions at each voxel, the Eigen vector maps, which describe the

direction of diffusion corresponding to each eigen value, a Fractional Anisotropy map

which is a measure of directionality of diffusion, a Apparent Diffusion Coefficient

map, which gives the average value of diffusion at each voxel, and a raw T2 signal

map without diffusion weighting.
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2.6 Region Of Interest(ROI) analysis

One of the measures most commonly derived from diffusion data is fractional anisotropy

(FA), which quantifies the strength of the directionality of the local tract structure.

The FA values from the regions of interest (ROI) defined within the white matter

provide information about white matter structural integrity during development and

disease. In humans, white matter FA values decrease with age. To observe the trend

of change in white matter structural integrity with age, regions of interest were defined

within the white matter, more specifically the corpus callosum which is the largest

white matter fiber bundle in the brain. The corpus callosum is divided into seven

different segments based on Witelson‘s procedure (Witelson et al. 1989 Figure12).

The seven different segments are (from anterior to posterior) rostrum, genu, rostral

body, anterior mid body, posterior mid body, isthmus and splenium. According to

Witelson‘s procedure, the seven different segments were defined along the horizontal

line joining the farthest ends of corpus callosum. For example, the splenium is defined

as one-fifth of the total distance along the horizontal line from the posterior end of

the corpus callosum

ROIs based on the Witelson procedure were defined on mid sagittal slices of the

T1-weighted images (Figure13 and Figure14). T1-weighted images provide good con-

trast between the white matter and gray matter within the brain and are very useful

in defining the anatomical regions of interest. In most of the cases, the longest line

joining both the ends of corpus callosum is not horizontal in the mid-sagittal plane

due to inaccuracy in aligning the slices parallel to the corpus callosum during acquisi-

tion. Hence, we need to rotate the mid-sagittal images so that Witelson‘s convention

of drawing the ROIs can be used. The structural images are rotated using NUDGE

(FMRIB‘S rotation tool). The rotation and translation parameters provided to the

Nudge are based on different trials and visual inspection of the alignment.

In the next step, the partial volume maps of white matter, gray matter and CSF
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Figure 12: Witelson‘s convention of drawing the ROIs in the corpus callosum. ROIs
of seven different regions of corpus callosum overlayed on it are also shown.

Figure 13: Rotated structural image using NUDGE (FMRIB‘S rotation tool)
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Figure 14: Corpus callosum ROIs overlayed on the structural image following the
witelson convention

are obtained from the structural images. These maps are obtained using FAST (FM-

RIB‘S automated segmentation tool; http://www.fmrib.ox.ac.uk/fsl/fast4/index.html)

(Zhang et al. 2001). The partial volume maps are calculated based on the percentage

of the tissue within each voxel. The seven different segments of the corpus callosum are

manually defined on the structural images following the Witelson convention. Once

the partial volume maps are obtained, the white matter map is transformed into the

DTI space (using FA map as the reference image) using FLIRT (FMRIB‘S automated

registration tool; http://www.fmrib.ox.ac.uk/analysis/research/flirt/) (Jenkinson et

al. 2001). Rigid body registration with six degrees of freedom is used. A sinc interpo-

lation with a hanning window with a width of seven voxels is used for interpolation.

This white matter map is thresholded using a white matter percentage of 50

percent in the diffusion space to avoid further partial voluming . The ROIs defined on

the structural images are now transformed into the DTI space and thresholded based

on the thresholded white matter partial volume map in the diffusion space. This would

ensure that the ROIs are located within the white matter of the diffusion anisotropy

image and would prevent any erroneous calculations. The ROIs are visually inspected

to ensure that the ROIs are within the white matter of the FA image (Figure16 and
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Figure17). The mean FA is calculated from the seven different segments of the corpus

callosum. Similarly the mean DTI metrics like mean diffusivity (MD is calculated by

overlaying the ROIs on the respective images). Measurements pertaining to diffusivity

provide information about the amount of diffusion at a particular voxel in the image.

For example, mean diffusivity is a measure of the average value of diffusion at a

particular voxel. FA and ADC are inversely related; FA decreases when the value

of diffusion at a particular voxel increases. ROIs which were initially drawn on a

voxel thick sagittal slice are extended one voxel to the left and one voxel to the right

making the ROI three voxels thick. Mean DTI metrics were calculated from these

ROIs. Results of ROI analysis are summarized in detail in the results section.

Figure 15: Flow shart describing the steps employed for the ROI analysis

2.7 Tract Based Spatial Statistics Analysis

Tract-based spatial statistics (TBSS) (Smith et al., 2006) is a method distributed

under the FSL package for multi-subject analysis of diffusion anisotropy. Fractional

anisotropy (FA), a quantitative measure of diffusion anisotropy is a straightforward

measure for comparisons across subjects. It can be used across subjects since it is a

scalar value measured at each voxel and is independent of the fiber orientation. The
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Figure 16: Fractional Anisotropy image

Figure 17: Corpus callosum ROIs overlayed on the FA image
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efficacy of the multi-subject analysis is compromised by the use of standard regis-

tration algorithms. Also, the extent to which spatial smoothing is used, which leads

to partial voluming, is one of the main concerns. Most of the VBM [Ashburner and

Friston, 2000, Good et al., 2001] style FA analysis aligns each subjects FA images to

a template. Then the voxel-wise statistics are carried out to find areas which corre-

late with the covariate of interest. As mentioned above, the main concern would be

effective registration (how well a voxel in the standard space is registered to the corre-

sponding voxel in the subject’s FA image) and the extent to which spatial smoothing

is used. These issues are addressed in this method by projecting individual subjects’

FA data into a common space such that they are not dependent on perfect nonlinear

registration. This is achieved through the use of an initial approximate nonlinear

registration, followed by projection onto an alignment-invariant tract representation

(the ”mean FA skeleton”). No spatial smoothing is necessary in the image processing.

The method consists of five major steps:

2.7.1 Preparing the FA images

Fractional anisotropy (FA) images were created by fitting the diffusion tensor to the

raw diffusion data. The raw diffusion data were corrected for subject movement,

eddy currents, and distortion due to susceptibility artifact during the pre-processing

step. A brain mask is created from one of the images without diffusion weighting

(B=0) and the diffusion tensor model is fit to the raw diffusion data. Each subject’s

FA image is copied into a TBSS working directory, giving each subject’s FA image

a different name. This is the directory where the subsequent TBSS analysis is run.

In the first step, the FA images are eroded and the end slices are removed to correct

for any outliers that arose during diffusion tensor fitting. This step creates a new

directory called FAi where all the registration steps take place and a directory for

storing the original images.
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2.7.2 Registration step

During the next step, all FA images are nonlinearly aligned to a standard space

image or any other target image. The target image can be a pre-defined target or

a group-wise, minimal- deformation target (MDT) brain. The option with a group-

wise, MDT brain is recommended if interested in generating a study specific template

and registering to an adult human derived FA target template is not a appropriate

option. The group’s MDT brain is identified by warping all individual brain images

in the group to each other . FMRIB‘s non-linear registration tool called FNIRT is

used for non-linear warping.

2.7.3 Post Registration step

In the third step, the non-linear transforms formed in the previous stage are used to

move all the subjects’ images to a standard space. MDT is selected as an image that

minimizes the amount of required deformation from other images in the group. Once

the MDT brain is selected, all images in the group are normalized using this brain as a

target. Then, the target image is affine registered to a standard space template (chimp

template (Figure 19). A cohort-specific template was derived using the subjects

FA images. First, a template FA image is chosen from the group whose gravity

center is properly centered at the junction of fornix and the corpus callosum. Then

each subject‘s FA image is registered to this template using rigid body registration

and averaged. This step creates a rigid body registration template for the group

of subjects. In the next step, each subject‘s FA image is registered to the rigid

body template using affine registration and averaged. This step creates an affine

registration template. In the last step, each subject‘s FA image is registered to

the affine registration template using non-linear registration and averaged creating

a template which is symmetric and more reliable. Later, all the other subjects are

moved to standard space by combining the non-linear transform to the target and
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the affine transformation from target to standard space. The standard space has a

higher resolution than the diffusion anisotropy images. This difference in resolution

helps to avoid significant interpolation blurring (i.e., increase in partial voluming)

when the nonlinear warp plus standard-space affine transformation is applied to each

individual subject’s data.

Figure 18: Flow chart describing the steps followed for moving all the FA images
into standard space. Steps employed for generating a standard space chimpanzee
template is also shown.

Figure 19: Cohort-specfic FA template derived from a group of 21 female chim-
panzees.
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2.7.4 Pre-statistics step

In this step, individual FA images are averaged to produce a mean anisotropy image

(Figure 21) for the group. The mean FA image is relatively smooth (Figure20) due

to effective averaging of the FA images and also due to resolution up sampling. This

image is used to create a group-wise skeleton (Figure21) of white matter tracts. The

skeletonization procedure is a morphological operation, which extracts the medial

axis of an object. This procedure is used to encode the medial trajectory of the white

matter fiber tracts with one-voxel thin sheaths. The mean FA skeleton is thresholded

at 0.2 to remove cross-subject variability and to compensate for instances in which

the nonlinear registration has not been able to attain good alignments.

Finally, FA images are projected onto the group-wise skeleton of white matter.

This step compensates for the residual misalignment among individual white matter

tracts. For individual images, FA values are analyzed along the normal projection for

each point of the skeleton image and a peak value is assigned to the skeleton. The

FA values vary rapidly perpendicular to the tract direction, but vary slowly along the

tract direction. By assigning the peak value to the skeleton, this procedure effectively

lines up the center of individual white matter tracts. This step effectively corrects for

misalignment of individual fiber tracts. The projection operation is performed under

two conditions: A distance map is created from the skeleton mask to establish search

borders for individual tracts. The borders are created by equally dividing the distance

between two nearby tracts. Secondly, a multiplicative 20-mm full width at half-max

Gaussian weighting is applied during the search to limit the maximum projection

distance from the skeleton. For each subject, filled the skeleton with FA values from

the centers of the nearest relevant tracts. The skeletonized FA (4D) image is shown

in the figure (fig5) below. Therefore for each subject the skeleton is filled with FA

values from the centers of the nearest relevant tracts.
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Figure 20: Mean FA image

Figure 21: Skeltonized (4D) file showing the tracts on the mean FA image
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2.7.5 Voxel wise statistics on the Skeletonized FA data

Voxel wise statistics aiming at any group differences or correlation of FA skeleton

voxels with a covariate (example, age) are carried out on the skeletonized FA image.

Statistics in TBSS are performed using the ”Randomise” tool. Randomise uses a

general linear model and contrasts to test effects of interest with different statistical

measures. Before running Randomise a design matrix and a design contrast file using

the Glm (Figure22) tool has to be created. Since the variation of FA with age, the

covariate would be age. We need to demean (remove the mean) both the data and the

covariate before running the Randomise. Assuming that the vector y is the covariate,

calculating y -mean(y), gives the demeaned covariate.

Figure 22: Figure shows the design matrix file setup using the demeaned covariate
(i.e. age)

The demeaned covariate was provided as the design matrix file and then a default

value of 5000 generic permutations were performed on this matrix. The order of

entry of rows in the design matrix file should match with the alphabetical order of

the original FA images, as that determines the order of the aligned FA images in the

final 4D skeletonized FA file. The output of Randomise would be a t-statistic image

and a p-value image corresponding to the t-statistic (Figure23). Thresholding at a

p value of 0.05 would give significant clusters corresponding to the highly correlated

voxels in the skeleton. For convenience 1-p is actually displayed, so thresholding at
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.95 gives significant clusters (Figure24).

Figure 23: shows the voxel-wise t-statistic map highlighting the clusters with sig-
nificant correlations between the data and the covariate. Significant clusters are
highlighted in red-yellow.
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Figure 24: Figure shows the p-value map corresponding to the t-statistic map.
Significant clusters thresholded at 0.95(1-p) are shown in blue-lightblue.
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CHAPTER III

RESULTS

3.1 Region of Interest Analysis

Mean Fractional Anisotropy (FA) was calculated from the regions of interest defined

in the corpus callosum (CC) using the methods mentioned in the analysis section.

FA values varied considerably across the corpus callosum for all 21 subjects (Fig-

ure25), ranging from .53 in posterior midbody to .65 in splenium. The FA values

from the rostrum were very low compared to the other regions due to partial vo-

luming. The values of FA across the corpus callosum seem to high compared with

humans(Figure25). The trend of change is almost similar ignoring the values from

rostrum(due to partial voluming).

Figure 25: Variation of FA values across corpus callosum for the group of 21 chim-
panzees

3.2 Correlations of FA with age

Across all 21 subjects, FA from all the regions of corpus callosum positively correlated

with age (Figure26). Correlations were almost significant for posterior mid-body (

r =.386, p=.072) and isthmus (r =.426, p=.054). The results indicate an increase
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in white matter structural integrity with age in chimpanzees, contrary to what is

observed in humans.

Figure 26: Correlation of FA with age in the genu. A positive correlation(not
significant)is observed.

In addition, regional ADC significantly decreased with age in the genu ( r = -.535,

p= .013), rostral body (r= -.510, p=.018), posterior mid- body (r=.559 , p=.008),

isthmus ( r= -.588, p=.005) , splenium (r=.619 , p=.003) (Figure27). Across all the

subjects, ADC and FA were highly, inversely correlated(r=-.633,p=.0037).

Figure 27: Correlation of ADC with age in the splenium. A negative correla-
tion(significant)is observed.
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3.2.1 Mean FA across the Age-Groups

Figure28 below shows the differences in the values of Mean FA across the corpus

callosum for different age-groups. The age groups were young (10-20 years), old (30-

40 years) and very old (40 and older). The figure indicates that the mean FA across

corpus callosum increases from the young age group to the very old age group. The

trend of change in the mean FA values across the corpus callosum is similar for all

the age-groups.

Figure 28: Trend of change in mean FA across the age-groups(Young,old,very old

3.2.2 TBSS Analysis

Voxel wise correlations between CC FA values and age were carried out on the group

of 21 chimpanzees using Tract Based Spatial Statistics (TBSS). Voxel wise statis-

tics were calculated using a randomise tool that performed a generic permuation test

with 500 permuations. Output included the t-statistic map and a p-value map high-

lighting the clusters with significant correlations between the CC FA values and the

covariate used ( age). Results showed significant correlations between the CC FA

values and age throughout the corpus callosum when a postive contrast was used, i.e.
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positive correlation between FA and age. Tract based ROI analysis was performed

on the white matter tracts with in the corpus callosum following the witelson con-

vention. Results show a positive correlation between the FA values and age across

the corpus callosum for all the 21 subjects,except for rostral body(r=-.074,p=.751).

Correlations were significant for isthmus ( r= .649,p=.001)and posterior midbody

(r=.526,p=0.014). TBSS results are also in accordance with the ROI analysis results

indicating an increase in the white matter structural integrity with age across the

group of 21 chimpanzees. (Figure29) below compares the mean FA obtained using

the ROI analysis and TBSS tracts based ROI analysis across the corpus callosum.

Mean FA values are high using TBSS analysis since they are calculated along the

center of the tracts within the regions of interest.

Figure 29: Trend of change in mean FA across the corpus callosum using ROI
analysis and TBSS tract based ROI analysis. A similar trend of change in mean FA
is observed across the corpus callosum using both the methods.
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CHAPTER IV

DISCUSSION

The results from the ROI analysis and TBSS analysis show that the FA values across

the corpus callosum in chimpanzees increase with age, but were not highly signifi-

cant. This finding indicates an age-related increase in the white matter structural

integrity, which is contrary to the evidence of age-related decreases in whitematter

FA in humans. Based on the little evidence available about the changes in white

matter microstructure with age in chimpanzees, results from the two different anal-

yses can give rise to two possible conclusions: there is a true increase in the white

matter structural integrity with age in chimpanzees or the results are erroneous, due

to various reasons. Possible causes for erroneous results might be the influence of low

SNR due to ghosting artifacts on the calculated DTI metrics.

4.1 Influence of Ghosting on the measured FA

Ghosting caused by cardiac pulsation artifacts is observed to be a potential problem

affecting DTI calculations in chimpanzees. Ghosting caused the appearance of signal

outside the brain (a well known ghosting pattern), but also a loss of signal from

within the brain. This loss of signal leads to a poorer SNR within the brain. Poor

SNR has a significant effect on the measured DTI metrics. When the true FA is

closer to zero, (i.e. in CSF) noise will cause the FA values to deviate from zero in the

positive direction, i.e to overestimate FA. When the true FA is closer to 1, noise will

cause the values to deviate from 1 in the negative direction, i.e to underestimate FA.

Between these two extremes, there is a continuum for different values of FA. Also,

it has been observed that the effects of ghosting significantly decrease with the age

and weight of the chimpanzees. If chimpanzees follow the trend observed in humans,
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then younger chimpanzees should theoretically have higher FA in the corpus callosum

than the older ones, and FA is being extremely underestimated in our sample. This

underestimation might be an important reason for the increase in FA values with age

observed in the chimpanzees.

A measure of the ghosting signal from the DTI images was made by drawing an

ROI out side and 8mm below the gravity center of the brain (near the temporal

lobe)(Figure30), where ghosting is observed to be maximal across the group.

Figure 30: ROI drawn to measure the signal due to ghosting where it is observed
to be maximal across the group.ROI is drawn outside and 8mm below the gravity
center of the brain

The background signal has to be removed from the measured ROI signal to obtain

a pure estimate of the signal due to ghosting free from the background noise. Instead,

of directly subtracting the background signal from the Measured ROI signal, the

ghosting signal, free from noise, was estimated using the relationship:

M =
√

(A2 + σ2) (2)

(Hakon Gudbjartsson., et al., MRM, 1995, 34, 910)

Where, A is the ghosting signal free from background noise, M is the measured

signal combined with background noise and σ is the standard deviation of the original

complex image (equal to standard deviation of the Measured signal when the signal
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is dominant). σ can be estimated from the mean of the background noise based

on the relationship: mean of background noise (no signal) = 1.25 ∗ σ (Appendix B,

relationship B.21, Haacke et al.Magnetic Resonance Imaging: Physical Principles and

Sequence Design). Hence, the Ghosting signal free from noise was estimated by

A =
√

(M2 − σ2) (3)

The amount of ghosting signigicantly decreased with age(r=.8515,p=.001)(Figure31).

Correlations between the amount of ghosting signal and mean FA are negative and are

marginally siginficant across the corpus callosum (Genu(r=-.320,p=.154)(Figure32).

After controlling for ghosting, partial correlations between age and FA are still posi-

tive but not highly significant(genu(r=.187,p=.430).

Figure 31: Significant negative correlation between age and amount of ghosting
signal for all the 21 chimpanzees.
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Figure 32: Marginal negative correlation between genu mean FA and amount of
ghosting signal for all the 21 chimpanzees.
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4.2 FA Simulations considering the effects of Ghosting

Simulations of FA under the influence of the ghosting signal were performed using

the method proposed by C.G.Koay et al (2006). The ghosting signal free from noise

was measured for all 60 directions and provided input noise for the simulations. The

direction-dependent noise variance was taken into account in the diffusion tensor

estimation. The simulations of the FA values were performed considering the effects of

the ghosting signal for each diffusion weighted direction independently. The simulated

FA values for an old chimpanzee (51 years) and a young chimpanzee (17 years) were

compared in the figures (Figure33 and Figure34) below. The red line indicates the

standard FA values ranging from 0.1 to 1. The black line indicates the simulated FA

under the influence of ghosting.

Figure 33: Figure explains the variation of the simulated FA under the influence of
ghosting (black line) compared with the reference (red line) for an old chimpanzee. It
is clearly seen that the ghosting underestimates FA at larger FA values and overesti-
mates it at lower FA values. The difference is proportional to the amount of ghosting
in the subject.

It is clearly observed that the increase in the mean of the ghosting signal (17 units

for the old chimpanzee and 34 units for the younger one) increased the difference
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Figure 34: Figure explains the variation of the simulated FA under the influence of
ghosting (black line) compared with the reference (red line) for a young chimpanzee.
The difference is proportional to the amount of ghosting in the subject and is high
due to large amount of ghosting in a younger chimpanzee compared to an older one.

between standard and measured FA values. Therefore, the mean FA for younger

chimpanzees is underestimated to a larger extent compared to older chimpanzees.

This might be the potential cause for decrease in FA values for younger chimpanzees.

Our overall findings suggest that FA increases with age in chimpazees. This trend

can potentially be explained by physiological aging or the effects of ghosting on the

measured DTI metrics. The combination of findings in human literature, which sug-

gest an decrease in FA with age with the results presented in the previous sections

of this study lead ghosting to be the favored explaination for the observed trends.

However,the more effective methods for estimating the true FA need to be further

researched. Based on the results from the simulations, future work aims at developing

a method for back-projecting the FA values based on the amount of ghosting present

in the chimpanzee.
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