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φ  Shear angle 
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model 
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pε , pε�  Plastic strain and strain rate, respectively 
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( )ˆ ˆty z  Piecewise continuous function representing the boundary of the 
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an equivalent representation, [ ]∗⋅ , in the straight edge cutting domain  

  

0η  The chip flow direction measured relative to a normal vector to the 
straight side cutting edge 

  

0η ′  The projection of 0η  on the tool rake face 
  

cη
∗  The chip flow direction 

  
w∗ , ut ∗  The effective width and undeformed chip thickness, respectively 
  

CV
∗  Effective total cutting velocity 

  

RF  The force perpendicular to CF  and TF , 
  

YF , ZF  The forces due to chip formation  in the Y  and Z  directions, 
respectively 

  

XYZ  
Reference frame that is a distance of ( )y t−  in the Y direction from 
the XYZ  reference frame 

  

θ  Angular coordinate in both the XYZ  and XYZ  reference frames 
  

Wθ  Angle of intersection between the unmachined workpiece surface and 
the tool nose radius at ( )y t W τ−  

  

,M Nθ  Angle of  intersection between the tool nose radii at ( )y t Mτ−  and 
( )y t Nτ−  

  
( ), ,u At Wθ , ( ),u Bt θ  Undeformed chip thickness in a type A or B region, respectively 

  

( ), ,,i M N i M Nx y− −  coordinates of intersection between the thM  and thN  previous tool 
noses 

  

Ang  A ( ) ( )1 1D D+ × +  real symmetric matrix that stores all angles of 
intersection 

  

Ind  
A 2 Q×  matrix that references angles in Ang  that are relevant to the 
description of the undeformed chip area 

  

Q  The number of angles in Ang  that are relevant to the deception of 
the undeformed chip area 

  
j  1−  
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Vδ  The angle of the net relative velocity between the workpiece and the 
cutting tool 

  

CF ′ , TF ′  The cutting and thrust forces in the ′ ′C -T  reference frame 
  

′ ′C -T  
A reference frame which is rotated by an angle of  Vδ  from the C -T  
reference frame to reflect dynamic effects 

  

nα
∗∗  Velocity modified version of nα

∗  
  

TV
∗  Effective velocity in the thrust direction 

  
ϕ  Tool nose radius scaling factor  
  

Vφ  
The dynamic shear angle, denoted as the acute angle between the 
shear plane and the direction of net relative velocity with respect to 
the cutting tool 

  

sδ , sδ
∗  The actual and effective surface slope of the free workpiece surface 

  

0φ  The quasi-static shear angle, measure from the static C  axis 
  

,Cf θ , ,Tf θ , ,Rf θ  
Differential orthogonal cutting forces due to chip formation at a 
differential width of cut nr dθ  with dependence on θ , similar to their 
counterparts without a subscript θ  ( CF , TF , and RF ) 

  

,c θη∗ , 0,θη ′ , ,SC θ
∗ , ,n θα∗ , iθ∗ , ,c θη∗  

Angles associated with an equivalent straight cutting edge tool 
geometry with a dependence on θ , similar to their counterparts 
without a subscript θ  

  

,Cp θ , ,Tp θ  Differential interference forces with a dependence on θ  
  

tθ′ , ,v θδ  Similar to t ′  and vδ , respectively, except evaluated at a particular 
value of θ  along the cutting zone 

  

( ), ,s comp Wδ θ , ( ),s comp Wδ ′  Intermediate angles used in the derivation of ( ),s Wδ θ  
  

( ),s Wδ θ  Similar to sδ  except now a function of θ  and a past relative tool 
position at time t Wτ−  

  

,n θα∗∗ , ,CV θ
∗ , 0,θφ , ,V θφ  Similar to nα

∗∗ , CV
∗ , 0φ , and Vφ except now a function of θ  

  

,Cf θ′ , ,Tf θ′  Differential cutting and thrust forces in the ′ ′C -T  reference frame 
  

( ),pit aθ  The planar interference between the cutting tool and the workpiece 
  

,ŝur staticy  The equation describing the undeformed workpiece surface in ˆˆyz  
coordinates with zero relative tool-workpiece vibration 

  
0,dyna  Component of 0a  due to dynamic effects 

  

( ),ˆ ˆ,sur exacty zθ  Mathematically exact representation of the undeformed workpiece 
surface in the refined cutting force model 
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( )ˆ ˆ,sury zθ  A polynomial in ẑ  which is an approximation to the undeformed 
workpiece surface in the refined cutting force model 

  

0,a θ , 1,a θ , 2,a θ  Coefficients in ( )ˆ ˆ,sury zθ , similar to 0a , 1a , and 2a  except with 
dependence on θ  

  
( )e tβ , ( )e tβ∗  Time varying angle of material separation in the refined and simplified 

dynamic cutting force models, respectively 
  

,Cp θ′ , ,Tp θ′  Similar to Cp ′  and Tp ′  except with dependence on θ  
  

θγ
∗  Similar to γ∗  except with dependence on θ  

  
( ),i tet θ β− , ( ),i cft zθ− �  Similar to ( )i tet β− , ( )i cft z− �  except with dependence on θ  

  

1,ẑ θ , 2,ẑ θ , 2,z θ�  Similar to 1̂z , 2̂z , and 2z� , except with dependence on θ  
  

1,θβ , 2,θβ  Similar to 1β , 2β , except with dependence on θ  
  

,iA θ  Similar to iA  except with dependence on θ  
  

( )1,ˆ ˆ, ,i te te cfA z zθ θ− −  Similar to ( )1,ˆ ˆ,i te te cfA z zθ− −  except with dependence on θ  
  

( )2,ˆ ,i cfA z θ θ−  Similar to ( )2,ˆi cfA z θ−  except with dependence on θ  
  

pw , px  Weights and node points for Gaussian Quadrature on the interval  
[-1,1] 

  

pw ′ , px ′  
Weights and node points for Gaussian Quadrature on an arbitrary 
interval [a,b] 

  

1τ , 2τ  Delays corresponding to states used to curve fit the undeformed 
workpiece surface  

  

ˆsury , ˆsurz  Vectors containing points that define the undeformed workpiece 
surface in the ŷ  and ẑ  directions, respectively 

  
( )ty  Vector of states related to the vibration of the workpiece 

  
t∆  Step size used in the numerical integration of the DDEs of motion 

  
ny  The vector of states at the current time step 

  
n+1y  The vector of states at the next time step 

  

1k , 2k , 3k , 4k  Vectors used in the Runge-Kutta integration of DDEs of motion 
  
FRF Frequency Response Function 
  

,maxcd  Maximum depth of cut that the proposed approach can model 
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SUMMARY 
 

Turning is one of the most widely used processes in machining and is characterized by a 

cutting tool moving along the axis of a rotating workpiece as it removes material.  A detrimental 

phenomenon to productivity in turning operations is unstable cutting or chatter.  This can reduce the 

life of tooling, dimensional accuracy, and the quality of a part’s surface finish because of severe levels 

of vibration.  Ideally, cutting conditions are chosen such that material removal is performed in a 

stable manner.  However, it is sometimes unavoidable because of the geometry of the cutting tool or 

workpiece.  This work seeks to develop a dynamic cutting force model that can be used to predict 

both the point of chatter instability as well as its amplitude growth over time.  Previous chatter 

models fail to capture the physics of the process from a first-principles point of view because they 

are oversimplified and rely on various “cutting force coefficients” that must be tuned in order to get 

a desired correlation with experimental results.  The proposed approach models the process in a 

geometrically rigorous fashion, also giving treatment to the strain, strain rate, and temperature effects 

encountered in machining.  It derives the forces encountered during a turning operation from two 

sources: forces due to chip formation and forces due to plowing and flank interference.  

This study consists of a detailed derivation of two new cutting force models.  One relies on 

careful approximations in order to obtain a closed-form solution; the other is more explicit and 

obtains a solution through numerical methods.  The models are validated experimentally by 

comparing their prediction of the point of instability, the magnitude of vibration in the time and 

frequency domains, as well as the machined surface topography during chatter. 

 



 

1 

CHAPTER 1: INTRODUCTION 
 
 

“Research is what I'm doing when I don't know what I'm doing.” 
–Wernher Von Braun 

 
 

1.1 Overview and Motivation 
 

Turning is one of the most common processes in machining and is characterized by a cutting 

tool moving parallel to the axis of a rotating workpiece as it removes material.  This is known as the 

“feed” direction and as the cutting tool is fed it traces out a helix on the machined surface of the 

workpiece.  One of the most detrimental phenomena to productivity in metal turning operations is 

unstable cutting or chatter.  Characterized by large relative displacements between the cutting tool 

and workpiece, chatter can greatly reduce the life of tooling, dimensional accuracy, and the quality of 

a part’s surface finish.  Ideally, cutting conditions are chosen such that material removal is performed 

in a stable manner.  However, chatter is sometimes unavoidable because of the inherent flexibility of 

the cutting tool or workpiece.  An exaggerated version of chatter during a turning operation is shown 

in Figure 1-1 with the arrows indicating the motions of the cutting tool and workpiece that are not 

associated with chatter. 

  

Figure 1-1: A workpiece and cutting tool with an exaggerated machined surface topography.  (A), A stable 
cutting configuration characterized by relatively low levels of vibration; (B), a chattering cutting configuration 

characterized by relatively high levels of vibration. 
 

A B
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Figure 1-1A depicts a case of stable cutting, characterized by minimal relative tool-workpiece 

vibration (typically assumed to be zero for modeling purposes). In Figure 1-1B large amounts of 

vibration are present, which would occur during chatter.  Stable cutting is a dynamic problem that 

can be analyzed quasi-statically since the forces are theoretically in steady state with no time varying 

parameters.  In contrast, chatter is an instance of dynamic cutting–a case where the cutting 

conditions are changing over time as the tool vibrates relative to the workpiece.  Hence for the 

remainder of this dissertation the term “quasi-static cutting” will refer to cutting force modeling that 

assumes zero vibration, and “dynamic cutting” will denote modeling that accounts for vibration. 

 

1.2 Research Goals and Objectives 
 

This thesis concerns the development of a dynamic cutting force model for turning.  It will 

incorporate the effects of vibration, tool geometry, and many other process parameters in order to 

accurately forecast both the occurrence and evolution of chatter though time.  Other approaches to 

chatter prediction have previously been developed, but they are predicated on oversimplifications of 

the machining process and, often times, include coefficients that are based on curve fitting of 

experimental data.  Some are able to make good predictions on the point of chatter instability during 

a turning machining operation; however, it is at the expense of a lack of physical understanding of 

the process.  In short, the goal of the current approach is to predict the occurrence of chatter with a 

model derived from first-principles in order to understand rather than just simply predict.  The model 

will be validated by many experimental cutting conditions as well as comparisons to experimental 

observations made previously in the literature.   

 

1.3 Research Plan 
 

This research aims develop a dynamic cutting force model that can be used to predict chatter 

instability in turning.  The cutting process will be modeled in a geometrically rigorous fashion and 

will account for all the true process parameters that characterize a turning operation.  For this study, 



 

3 

a chattering workpiece will be investigated.  The chatter simulation developed as a part of this 

dissertation consists of two components: a dynamic cutting force model, and a dynamic model of the 

workpiece.  During a turning simulation, the dynamic cutting force model produces forces that excite 

the workpiece, which in turn vibrates and changes the local machining conditions at the cutting zone.  

This change in state at the cutting zone affects the forces predicted by the dynamic cutting force 

model, and the process then repeats. 

Figure 1-2 shows an overview of a chatter simulation and how the dynamic cutting force 

model is incorporated.  True process conditions serve as the input to the analytical model; these 

include the cutting conditions, material properties, and the state of vibration of the workpiece.  The 

next two elements that branch from the first block are both components of the dynamic cutting 

force model that predict forces in the machining process from two different sources.  The first 

mechanism that creates forces during the cutting process is chip formation.  This creates the forces 

that typically come to mind in a machining operation–the forces required to generate a level of stress 

in the material that causes it to flow up the rake face of the cutting tool to become a chip.  The 

second contribution of forces is due to plowing and flank interference.  Plowing forces arise because 

the workpiece material is forced to flow around the radius of the tool edge, and flank interference 

forces are caused when there is relative tool-workpiece vibration and the clearance face of the cutting 

tool collides with the machined surface. 

Finally, a mathematical description of the workpiece (derived from experimental modal 

analysis in the current approach) is excited by the forces due to plowing and flank interference as well 

as chip formation.  This formulation yields a set of ordinary differential equations that are solved 

numerically to find the states of the workpiece (position and velocity) at each time step.  These states 

then are fed back to the first block in the flowchart (via the dotted line), the simulation moves 

forward in time, and the entire process repeats. 
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Figure 1-2: A flowchart showing how a dynamic turning process is simulated. 

 

1.4 Overview of Thesis 
 

This dissertation presents a method of predicting chatter in a turning operation from true 

process parameters.  The techniques employed are extensions of work performed in quasi-static 

  

Chip Formation Forces 
 

 Material properties 
 Strain, strain rate, and temperature 
 Regenerative effect 
 Effective cutting parameters  

            based on vibration 

  

Dynamic Model of Workpiece 
 

 Apply force to ODE model of 
workpiece 
 Numerically solve for workpiece 
states (position, velocity) 

 Total Machining Force 
on Workpiece 

  

Forces Due to Plowing and Flank 
Interference 
 

 Material properties 
 Machined workpiece surface behind 
cutting tool 
 Regenerative effect 
 Effective cutting parameters based on 
vibration 

 Process Conditions 
 

 Workpiece material and dynamic properties 
 State of workpiece vibration  

   (position, velocity) 
 Cutting velocity, feed, depth of cut 
 Cutting tool geometry 
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cutting force modeling as well as dynamic cutting force modeling.  Two models will be derived: a 

simplified model to describe dynamic cutting forces in turning in a closed-form manner, and a 

refined cutting force model, which utilizes a more rigorous formulation to describe dynamic cutting 

forces in a non-closed form fashion.   

In Chapter 2 a background of chatter modeling work that has been performed for turning is 

given, and the departure and improvement that this work imposes upon these methodologies is 

presented. 

In Chapter 3, two orthogonal cutting force models will be introduced.  These will serve as 

the foundation upon which both the simplified and refined dynamic cutting force models are built.  

First, the Oxley orthogonal cutting force model will be introduced in order to describe the forces due 

to chip formation.  This model captures the effect of strain, strain rate, and temperature on the chip 

formation forces.  Additionally, the effects of a nonzero workpiece surface slope are incorporated 

such that these effects can be used in a cutting process with vibration.  Next, forces due to plowing 

and flank interference are modeled in the orthogonal cutting domain.  By tracking the vibration 

history of the workpiece, the amount of material displaced by the cutting tool’s edge and clearance 

face can be determined.  Through various geometric relations and assumptions made about the stress 

field around the tool edge, forces can be calculated based on the amount of displaced material.   

Chapter 4 deals with capturing the influence that the tool geometry commonly used in 

practice and tool-workpiece vibration have on the machining forces.  Effects such the oblique cutting 

geometry and the tool nose radius are incorporated into the model.  The simplified cutting force 

model will be fully developed in this chapter by deriving a single equivalent orthogonal cutting 

representation for the forces due to chip formation and another orthogonal representation for the 

interference forces. 

 Comparisons between the current orthogonal cutting force modeling approach and previous 

experimental work in dynamic cutting analysis will be conducted in Chapter 5.  The behavior of the 
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interference forces, forces due to chip formation, and the shear angle are explored as a function of 

the oscillation frequency of both the cutting tool and the unmachined workpiece surface.  

 In Chapter 6, the refined cutting force model is presented by deriving the geometry of the 

cutting process in a more rigorous fashion.  Improvements will be made over the simplified cutting 

force model in the way that forces due to chip formation as well as plowing and flank interference 

are calculated by integrating an infinite number of cutting scenarios along the entire cutting zone. 

 Actual numerical implementation of both of the proposed dynamic cutting force models is 

presented in Chapter 7.  The equations of motion will be developed and a Runge-Kutta integration 

solution procedure is presented.  Additionally, methods for numerically evaluating integrals in the 

refined cutting force model will be given. 

 Finally in Chapter 8, both the simplified and refined dynamic cutting force models will be 

experimentally validated.  Both will be used to predict the point of chatter instability along the 

workpiece and comparisons will be drawn over a wide range of cutting conditions.  In addition, the 

refined cutting force model will be compared with experimental measurements of the workpiece 

vibration in the frequency and time domains.  The experimentally machined surface topography of 

the workpiece will also be compared with that predicted by the numerical simulation of the refined 

cutting force model.  A sensitivity study will be conducted whereby general trends in the refined 

cutting force model’s output are explained and correlated with real-world machining observations 

and prior work in the literature.   
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CHAPTER 2: LITERATURE REVIEW 
 
 

 “If I have seen farther than others, it is because I was 
standing on the shoulders of giants.” 

 –Isaac Newton  
 
 

2.1 Early Chatter Modeling 
 

A large body of work has been published in chatter modeling over the last fifty years.  The 

vast majority of these investigations employ a single degree of freedom (SDOF), representing the 

lumped mass behavior of the cutting tool at the cutting zone, given as 

 ( ) ( ) ( ) ( )22 n ny t y t y t F tζω ω ψ+ + =�� �  (2.1) 

where y  is the displacement, ( )F t  is a time varying dynamic force due to the cutting process, ζ  is 

the damping ratio, nω  is the natural frequency,  and ψ  is a constant affected by the stiffness of the 

cutting tool.  Typically, the workpiece is assumed to be rigid and the cutting tool to vibrate.  

However, it is mathematically unimportant which body undergoes motion; rather, the significance is 

the relative displacement between them.  Equation (2.1) could describe the motion during cutting for 

a SDOF workpiece and a rigid cutting tool, or a SDOF cutting tool and a rigid workpiece (with 

appropriate values for ζ , nω , and ψ  in each case).  In this work ( )y t  will denote the relative tool-

workpiece displacement (RTWD) in the radial cutting direction, given as  

 ( ) ( ) ( )t wy t y t y t= −  (2.2) 

where ( )ty t  is the absolute displacement of the cutting tool, ( )wy t  is the absolute displacement of 

the workpiece, and the value of ( )y t−  is the change in the depth that the tool is cutting in the 

workpiece.  The radial cutting direction is perpendicular to the axis of the workpiece and is directed 

radially outwards towards the cutting tool.  Motion in the radial cutting direction is the most 

intuitively obvious cause of chatter since it influences the amount that the cutting tool is engaged in 

the workpiece, and in turn the undeformed chip thickness.  However, it will be shown later that 
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another degree of freedom (DOF) in the tangential cutting direction, ( )z t , is necessary as well; this 

additional DOF is given as 

 ( ) ( ) ( )t wz t z t z t= −  (2.3) 

where the parameters follow the same pattern as they did for Equation (2.2).  As the name suggests, 

the tangential cutting direction is tangent to the workpiece’s surface at the tool-workpiece interface.  

The physical orientations of the radial and tangential cutting directions will be made apparent in 

Chapter 4.  Equations (2.2) and (2.3) can be differentiated to give expressions for the relative 

velocities between the workpiece and the cutting tool, ( )y t�  and ( )z t� , given as 

 ( ) ( ) ( )t wy t y t y t= −� � �  (2.4) 

 ( ) ( ) ( )t wz t z t z t= −� � �  (2.5) 

The difficulty in describing the chattering phenomenon is in the choice of the dynamic 

cutting force model ( )F t  in Equation (2.1).  The first milestone in solving this problem was the 

realization that in the case of turning, chatter onset is due to the so called “regenerative effect” [1]-

[4].  Under this effect, the dynamics at the current time, t , are influenced by both the current 

displacement, ( )y t , and the previous displacement, ( )y t τ− , where τ  is the period of one 

workpiece revolution.  This conceptually makes sense because if the tool “jumps” away from the 

workpiece at time t τ− , there will be more material to cut and consequently a greater force 

developed at time t . 

Early in chatter research, two common cutting scenarios were used to study the regenerative 

effect.  One is similar to a parting operation, and is shown in Figure 2-1.  The other one is referred to 

as a “tube cutting” operation, whereby a cutting tool is fed axially along a rotating tube, cutting its 

entire wall thickness.  Both were used extensively with orthogonal cutting tools in order to accurately 

control the width of cut, w .  With respect to the scenario in Figure 2-1, the tool is fed a nominal 

distance in the radial cutting direction each revolution of the workpiece.  The workpiece revolution 

period is adjusted such that the cutting velocity at the nominal machined diameter, md , is constant. 
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Figure 2-1: A schematic of an experimental configuration used to study regenerative chatter. 

 
Based on the realization of the regenerative effect, some chatter models, such as in [5] and 

[6], employ a dynamic cutting force in Equation (2.1) having the form 

 ( ) e uF t K wt=  (2.6) 

where w  is width of cut, eK  is a application-specific cutting force coefficient with units of 

force/area and ut  is the undeformed chip thickness, given as 

 ( ) ( )u ct d y t y tτ= + − −  (2.7) 

The quantity, ( ) ( )( )e cK d y t y tτ+ − −  or just simply ( ) ( )( )eK y t y tτ− −  is commonly referred to as 

the “regenerative cutting force.” 

It should be noted that the RTWD ( )y t τ−  influences the undeformed chip thickness to 

the same extent that ( )y t  does since there is compete overlap in the tool passes from one revolution 

to another.  For typical turning operations this is generally not the case because the tool is fed a 

relatively small distance along the axis of the workpiece each revolution.  Therefore, this only results 

in partial overlap between the RTWDs at times t  and t τ− .  In an effort to extend some of the 

models to more common machining scenarios such as turning and milling, where the overlap from 

one tool pass to another is partial, a parameter called an overlap factor was employed [7]-[10].  This 

results in the undeformed chip thickness in Equation (2.7) becoming 

Y
w

ut

k

c

Commanded 
cutting depth 

1
τmd
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 ( ) ( ) ( )( )e c oF t K d y t y tµ τ= + − −  (2.8) 

where oµ  is referred to as the overlap factor and is generally is in the range [0,1].  0 1µ =  would be 

for a threading operation and 0 0µ =  would reflect the complete overlap of successive tool passes, as 

is the case in the machining operation depicted in Figure 2-1.  oµ  can be determined through 

geometric approximations, however its applicability over a wide range of input process parameters is 

relatively limited, as discussed in [10]. 

The most traditional way to validate dynamic cutting force models that are being used to 

predict chatter is to generate a “stability chart” or “stability lobe diagram” (owing to the many lobes 

that demark stable and unstable territory) [7],[11],[12].  The classic linear formulation for predicting 

the occurrence of chatter in turning is constructed by substituting the dynamic cutting force model in 

Equation (2.6) into Equation (2.1), which results in 

 ( ) ( ) ( )22 n n e uy t y t y t K wtζω ω ψ+ + =�� �  (2.9) 

and describes the system in Figure 2-1.  The tool is considered to be rigid, and the workpiece has an 

effective mass for the single mode of vibration being modeled, m , damping coefficient, c , and a 

stiffness, k , that are related to the natural frequency, nω , damping ratio, ζ , and the factor, ψ , by 

 n

k
m

ω =  (2.10) 

 
2

c

km
ζ =  (2.11) 

 1
m

ψ=  (2.12) 

It should be noted that a system having a rigid workpiece and a compliant cutting tool can also be 

modeled in the same fashion.  The workpiece revolution period, τ , is related to the machined 

workpiece diameter, md , and the commanded cutting velocity, CV , by  

 m

C

d
V
π

τ =  (2.13) 

The ODE in Equation (2.9) can be transformed into the Laplace domain and is 



 

11 

 ( ) ( ) ( ) ( ) ( )( )2 22 s 1 ss
n n e cs s Y K w D s e Yτζω ω ψ −+ + = + −  (2.14) 

with the assumption of zero initial conditions.  After some rearranging the transfer function relating 

the relative tool workpiece displacement to the instantaneous depth of cut is obtained as 

 
( )

( ) ( )( )2 2

s

2 1
e

s
c n n e

K wY
D s s s K w e τ

ψ
ζω ω ψ −

=
+ + + −

 (2.15) 

where the characteristic equation of this transfer function is given by 

 ( )2 22 1 0s
n n es s K w e τζω ω ψ −+ + + − =  (2.16) 

This equation is transcendental and hence has an infinite number of roots.  However, the stability 

boundary for each root can be found by examining where the imaginary portion vanishes.  Letting 

s jω=  and finding where the roots are purely imaginary and enforcing real-valued width of cut, the 

following expressions for the critical width of cut, critw , and critical workpiece revolution period, 

critτ , are obtained [12]: 

 
( ) ( )

( )

2 22 2

2 2

2
,   

2
n n

crit n
e n

w
K

ω ω ζω ω
ω ω

ψ ω ω

− +
= >

−
 (2.17) 

 ( ) 1
2 2

,

21
2 1 tan ,    0,1,2,

2
n

crit
n e c crit

n n
K w

ζω ω
τ π

ω ω ω ψ
−

⎛ ⎞⎡ ⎤⎟⎜ ⎢ ⎥⎟⎜= + + =⎟⎜ ⎢ ⎥⎟⎜ − − ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
…  (2.18) 

These two values are parameterized in ω , and by letting 0,1,2,n = … each branch of the stability 

lobe diagram can be generated.  Using nω = 4000 rad/s, ζ = 0.01, ψ = 1 kg-1, and eK = 8 × 105 

N/mm2, the stability lobe diagram in Figure 2-2 is obtained.  
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Figure 2-2: Classical stability lobe diagram resulting from the formulation in Equation (2.9). 
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It should be noted that the stability lobes in Figure 2-2 were plotted against the cutting 

velocity, CV , instead of the critical workpiece revolution period, critτ .  To do this, a workpiece with a 

37.31 mm diameter was assumed and CV  was found using Equation (2.13) by letting critτ τ= .  This 

linear formulation of chatter in Equation (2.9) predicts unbounded vibration for combinations of 

cutting velocity and width of cut above the stability lobes.  It can be shown that the minima of all the 

lobes occur at the same width of cut, absw .  This is referred to as the absolute stable width of cut 

since any width of cut less than this value is stable regardless of the cutting velocity.  It is given as 

 ( )22 1n
abs

e

w
K

ω ζ ζ
ψ=

+  (2.19) 

which, for the parameters used in this example, gives ,c absw = 0.404 mm. 

Investigation into the dynamics resulting from the forcing function in Equation (2.6) used in 

Equation (2.1) reveals a significant shortcoming in that it predicts unbounded exponential growth in 

the RTWD, ( )y t , when chatter occurs.  Analyses of simple non-linear models of the cutting process 

have suggested that the onset of chatter represents a sub-critical Hopf bifurcation from a stable fixed 

point to an unstable fixed point and a stable limit cycle [13]-[15].  This notion has also been upheld 

through qualitative experimental observations [16]. 

In an effort to address the limitations of a linear description, investigators such as Hanna 

and Tobias [17] developed a highly-cited model which has the general form of 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2 32
1 2

2 3
3 4 5

2 n ny t y t y t k y t k y t

k y t y t k y t y t k y t y t

ζω ω

τ τ τ

+ + + + =

− − + − − + − −

�� �
 (2.20) 

where 1k , 2k , 3k , 4k , and 5k  are application-specific constants.  This model includes a cubic 

nonlinear structural stiffness as well as a cubic nonlinear regenerative cutting force.  However in 

practice a chattering tool holder or workpiece is well-described by a linear structural stiffness, since 

the displacements during chatter are typically relatively small in comparison with the length scales 

associated with the workpiece [18].  The important contribution of this model is that it could finally 

reproduce the bounded nature of vibration during chatter.   
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For the common case of turning with significant overlap between successive tool passes, 

relatively large amounts of vibration can cause influence from many previous RTWDs at integer 

multiples of the workpiece revolution period before the current time, t , at the cutting zone.  

Collectively, these times will be referred to as the “regenerative delay space,” and are given as 

( )1 1[ ] Dt t t Dτ τ × +− −"  

where 1D ≥  and D ∈] , where ]  is the set of natural numbers.  Similarly the “regenerative position 

space” is comprised of all the RTWDs at times in the regenerative delay space, given as 

( ) ( ) ( ) ( )1 1[ ] Dy t y t y t Dτ τ × +− −"  

The precise value of D  that is needed will depend on the depth of cut, feed rate, tool nose radius, 

and expected relative tool-workpiece vibration amplitude  (e.g., a small feed rate and large amounts 

of vibration would necessitate a larger value of D ).  Efforts to capture this “multiple regenerative 

effect,” that is dependence of the undeformed chip area on more than just the RTWDs ( )y t  and 

( )y t τ− , have been described by the investigators in [19].  However, they only considered 2D =  

and the possibility of only one previous RTWD influence.  It will be shown in later chapters that 

there can be multiple previous RTWDs that can influence the state of cutting at a given time, t .  In 

[20] multiple previous delays were assumed ( 2D = ) and in this case the dynamic cutting force, ( )F t , 

would have the general form 

 ( ) ( ) ( )( ) ( ) ( )( )6 7 2F t k y t y t k y t y tτ τ= − − + − −  (2.21) 

where 6k  and 7k  are application-specific constants.  The problem with such a description is that it 

suggests that the two previous regenerative terms, ( ) ( )y t y t τ− −  and ( ) ( )2y t y t τ− − , exist for all 

time.  In fact, it will be shown that the regenerative terms’ influence is intermittent in time and hence 

cannot be represented by a simple polynomial.  It is even possible that influence from the 

regenerative term ( ) ( )y t y t τ− −  can vanish. 

The general structure of all these relatively simple formulations for chatter are attractive for 

analysis using bifurcation theory or perturbation techniques.  Hence, they have been the source of 
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many papers in the last thirty to forty years, especially from applied mathematician (e.g. in ref. [20]-

[23]).  However they are all reverse-engineered (i.e. adding a cubic nonlinearity to get a bounded 

response during chatter) and overly simplistic, offering little physical insight into the underlying 

physics of machining.  Surprisingly, there have been fewer attempts to apply the knowledge gained 

from metal cutting theory to the physics of regenerative chatter.  And even those fall short of a 

complete description of chatter as it is encountered in a real-world turning operation.  In the words 

of Moon and Kalmar-Nagy [18], “Fascination with time-delay differential equations has often 

overshadowed the physics of material processing.”  The complex mechanics of cutting and many 

process parameters are often reduced to a constant, such as eK  in Equation (2.6), and consequently 

the models associated with such an approach must certainly only be valid in a small subset of 

machining conditions. 

 
2.2 Modeling of Low-Speed Chatter Stability  

 
One true test of a chatter model’s accuracy lies in its ability to predict increased stability at 

low cutting velocities, since this has been observed experimentally in many reports [24], [25].  Despite 

this, many chatter models continue to be developed that generate stability lobe diagrams where each 

lobe touches an asymptote at a constant value, as suggested by Equation (2.19) and shown in Figure 

2-2.  This added stability is due to process damping from interference between the cutting tool and 

the machined workpiece surface [26],[27].  For a given oscillation frequency and amplitude of the 

RTWD, the effect of cutting velocity on the amount of interference between the workpiece and the 

cutting tool is qualitatively depicted in Figure 2-3.  It should be noted that the radius of the cutting 

edge, er , has been increased dramatically for clarity.  In each case a volume of workpiece material, 

IV , a so-called “interference volume,” is displaced because it has to flow around the cutting tool’s 

edge and clearance face.  The size and orientation of this interference volume changes based upon 

the recent relative vibration history; this in turn affects the forces imparted on the workpiece and the 

cutting tool.  In both Figure 2-3A and B, the instantaneous velocity of the cutting tool relative to the 
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workpiece in the thrust direction, TV , (the direction into the workpiece) is the same.  However, since 

the magnitude of the slope of the machined workpiece surface is generally larger for the low-velocity 

cutting case, larger interference volumes can be developed, shown in Figure 2-3B.  This adds 

increased damping and in turn more stabilization at low cutting velocities.  This will be explained in 

more detail in Chapter 5. 

 
Figure 2-3: The effect of cutting velocity on the interference volume between the workpiece and an oscillating 

cutting tool.  (A) High cutting velocity; (B) low cutting velocity. 
 

In an effort to obtain a chatter model that can accurately describe stability at low cutting 

velocities an interesting turning experiment was conducted by Altintas et al. in [24].  They identified 

dynamic cutting force coefficients, 1C  and 2C , that are proportional to the velocity and acceleration 

of the cutting tool, respectively,  by measuring cutting forces while using a fast tool servo oscillating 

at known frequencies and magnitudes.  In this way they were able to construct a model of the form  

 ( ) ( ) ( ) ( ) ( )( )
( ) ( )2 1 2

2
2 n n e c

C C

C y t C y t
y t y t y t K d y t y t

V V
ζω ω ψ τ+ + = + − − − −
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and reproduce the increased stability encountered at low cutting velocities.  This represents an 

important step forward in chatter modeling, but it is at the cost of a lack of physical insight into the 

effect of true process parameters such as the cutting tool geometry and material properties.  The 

results of their chatter stability prediction are graphically re-presented in Figure 2-4.  There are three 

traces shown on the figure.  One uses both the velocity and acceleration terms ( 1C  and 2C ), one uses 

only the velocity term, 1C , and the remaining one represents the classical solution, i.e. Equation 

(2.16).   

 
Figure 2-4: A re-presentation of the results in [24] showing the low-speed chatter stability predicted by 

Equation (2.22).  ×, cutting condition producing chatter; ○, stable cutting condition. 
 

Chiou and Liang derived an orthogonal model with a relatively coarse approximation of the 

interference volume when the tool has wear along its flank [26].  They assumed that the clearance 

face of the tool never makes contact with the machined workpiece surface during vibration–only the 

worn portion on the flank does. Consequently the model predicted no increase in stability at low 

cutting velocities for a perfectly sharp tool, despite their experimental data showing otherwise.  This 

is because with no flank wear their predictions were essentially reduced to the classical solution in 

Equation (2.16).  However, when interference between the workpiece and the cutting tool as a result 

of flank wear was simulated in their model and compared with machining tests using worn tools, an 

accurate prediction of the increase in stability at low cutting velocities was obtained.  This represents 
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an important contribution to dynamic cutting force modeling, since low-speed chatter stability was 

predicted by a physics-based model. 

 

2.3 Chatter Models That Incorporate True Process Parameters 
 

Two efforts stand out from other previous works in dynamic cutting force modeling by 

attempting to include the cutting geometry that is typically used in practice.  Rao and Shin [29] 

incorporated the effect of a nonzero tool inclination angle (termed oblique machining) and a tool 

nose radius into a 3D dynamic cutting force model used to predict chatter in turning.  However, they 

failed to model any plowing forces or process damping between the cutting tool and the workpiece.  

Later, Clancy and Shin [30] appear to have revised the same model and applied it to a facing 

operation.  They added process damping due to the interference between the clearance face of the 

cutting tool and the workpiece in the manner that was developed by Chiou and Liang [26].  However, 

the stability lobe diagrams they generated appear qualitatively very similar to those resulting from the 

linear formulation in Equation (2.9) in that there is no increase in stability at low cutting velocities.  

Also, in both [29] and [30], the only cutting parameter that changed with time was the undeformed 

chip area.  As will be shown later on, the effective cutting parameters (rake angle, cutting velocity) 

change over time when there is relative tool-workpiece vibration.   

Ozlu and Budak [31]-[33] have presented a 2D model that incorporates tool nose radius and 

regenerative effects; however it is still a linear model and reduces to an eigenvalue value problem in 

order to find regions of stable and unstable machining.  They make the claim that the tangential 

cutting force “does not contribute to the regeneration mechanism [33]”.  They are correct in that it 

does not contribute directly to the undeformed chip thickness, and in turn the regenerative effect.  

However, as demonstrated by Cardi et al. [34] and Marui et al. [27], the majority of the vibration 

energy is typically in the tangential cutting direction since the cutting force is largest along that axis.  

It will be shown later that this vibration is coupled to the vibration in the radial cutting direction and 

in turn influences the occurrence of chatter.  Therefore, forces in the tangential direction can not be 
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neglected.  Finally, this model failed to address the interference between the cutting tool and the 

workpiece, which has been shown to influence process damping, and in turn stability–especially at 

lower cutting velocities [24]. 

 

2.4 Identification of a Research Direction Based on Prior Work 
 

This literature review shows that a cutting force model has yet to be developed to predict 

chatter in turning that simultaneously and accurately captures the two most important mechanisms 

during dynamic cutting: the regenerative effect and the interference between the cutting tool and the 

workpiece.  This work seeks to develop a fully comprehensive dynamic cutting force model for 

turning by using physical insight and extending orthogonal models used in quasi-static cutting force 

modeling to the current application of predicting chatter.  The model will also consider material 

property effects such as the strain, strain rate and temperature dependence on the flow stress of the 

workpiece material during machining.   

This work is written from an engineer’s perspective, not an applied mathematician’s.  

Consequently, there is no treatment of topics such as chaos, bifurcations, or perturbation solution 

techniques.  These types of investigations are still important, since regenerative chatter is a good real-

world example of a system with pure delays that exhibits chaos.  However, the field has seen an 

explosion of these papers in recent years and needs to become more rigorous from a first-principles 

point of view.  This is what will ultimately help the machining community to better understand why 

chatter occurs and to advance process monitoring and control.   

Because of the geometric complexity of the current approach, a decision was made to only 

consider machining conditions where the nose of the cutting tool is engaged in the workpiece.  In 

other words, the model cannot immediately deal with larger depths of cut that have both the tool 

nose and the side cutting edge in contact with the workpiece.  It is not to say that this effect cannot 

be incorporated, but since it introduces a cutting edge that cannot be described by a smooth function 

with a finite number of terms, the equations needed would become considerably more complicated 
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and greater in number.  The author feels that this increase in complexity to an already geometrically 

rigorous methodology would preclude the contribution of the present approach without contributing 

any new fundamental understanding.  In addition the commanded feed rate, f , nominal cutting 

velocity, CV , and commanded depth of cut, cd , are all assumed to be held constant.  Once again, the 

model could be modified to deal with these parameters if they were time varying; however it would 

just add complexity to the proposed approach and is not necessary in determining its validity.  

Finally, owing to the nature of the dynamic properties inherent to the workpiece used in the 

experimental validation portion of this work in Chapter 8, vibration along the axis of the workpiece 

is neglected.   

Two dynamic cutting force models will be presented in this dissertation.  One termed the 

“simplified cutting force model”, resolves the cutting condition at every time step of a dynamic 

simulation into a single equivalent orthogonal cutting scenario and solves for the forces in closed-

form.  The other approach derives the cutting forces in a more precise manner by using a 

geometrically rigorous representation with some elements that cannot be evaluated in closed-form 

and is termed the “refined cutting force model.”   

It should be noted that there is nothing inherently “chatter specific” about the following 

approach.  The subject of chatter is just an obvious context to demonstrate the validity of the 

proposed modeling methods.  The experimental system under study is a compliant workpiece 

machined by a relatively rigid cutting tool (assumed rigid for modeling purposes).  Therefore in 

Equation (2.2) ( )ty t  will always be zero in this analysis.   However, all subsequent equations are 

developed around the use of RTWDs, which would facilitate modeling a vibrating cutting tool as 

well.   

It is the author’s opinion that in order to make a truly accurate dynamic cutting force model 

that is used to predict chatter the following components must be incorporated: 

 
• Forces due to chip formation along the undeformed chip area, taking into account influence of 

relative tool workpiece vibration at the current time, and at previous times, t τ− , 2t τ− ,… 
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• Plowing forces 
 

• Forces caused by interference between the machined workpiece surface and the clearance face 
of the cutting tool 

 

• For a chattering workpiece in a turning operation, a model with at least two degrees of 
freedom is required (recommended for a chattering tool holder as well) 

 
 
The necessity of the aforementioned components will be substantiated in later chapters.  With a truly 

accurate model for chatter, the following four items should be able to be predicted: 

 
• Frequency content of chatter vibration 

 

• Stability lobe diagrams with increased stability at lower cutting velocities 
 

• Chatter amplitude vibration growth over time 
 

• Machined surface topography (chatter marks) 
 
 

These four aspects are arranged in increasing level of difficultly since each successive one 

requires a more accurate model.  To the author’s knowledge the last two items, chatter amplitude 

growth and machined surface topography, have never been compared with experimental 

measurements in turning.  The most rigorous method of comparison would be a combination of the 

third and fourth objectives, since if they are predicted adequately the model is able to reproduce both 

the amplitude and the nature of the growth of vibrations during chatter.  It is the goal of this thesis 

to accurately predict all four of these aspects from a physics-based dynamic cutting force model that 

excites a model of the workpiece.   
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CHAPTER 3: ORTHOGONAL CUTTING FORCE MODELING 
 
 

“The usual approach of science of constructing a mathematical model cannot answer 
the questions of why there should be a universe for the model to describe. Why does the 
universe go to all the bother of existing?” 

                                            -Stephen Hawking 
 
 

3.1 Forces Due to Chip Formation 
 

As identified in the literature review there are two sources of forces in machining: those due 

to chip formation and those due to plowing and flank interference.  In this section, the forces due to 

chip formation will be modeled in the orthogonal cutting domain with the Oxley cutting force model 

[35].  It is a slip-line cutting force model derived from experimental observations in metal cutting.  

One of the assumptions is the existence of steady-state, plane-strain conditions; another is a perfectly 

sharp tool.  Clearly this is at odds with its present application in predicting forces during chatter in 

turning–a scenario where the depth of cut is changing over time as the workpiece vibrates relative to 

the cutting the tool.  Despite this it has been shown for a milling operation, where the effective depth 

of cut at each flute is changing over time, that the Oxley cutting force model can be applied 

instantaneously at points in time, as in the investigations in [36] and [37].  In these cases, 40 Hz was 

the dominant frequency that the undeformed chip thickness was changing.  This is far below the 600 

Hz chatter frequencies encountered in this work. 

In [38] a shear plane model was used to predict forces during chatter in turning, which just 

like Oxley’s theory is meant for steady-state, plane-strain conditions.   In this case the chatter 

frequency is much higher at 1200 Hz, and although the force predictions have a higher average value 

than the measurements, the force variation is similar.  In analytical chatter modeling, if the workpiece 

is assumed to respond linearly, it is not the mean level of force that is of interest but rather the 

variation of the force.  One factor contributing to the error could be that the dynamometer used to 

measure the forces had internal dynamics.  There was no make or model number specified, but 

dynamometers are typically large, relatively massive devices.   They can contribute significant phase 

lag and attenuation or amplification in measurements at frequencies as low as about 1 kHz, 
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depending on how they are mounted.  There was no mention in the paper of any attempt to 

compensate for this.  If a piezoelectric dynamometer is to be used for dynamic cutting force 

measurement, it is necessary to compensate for its internal dynamics by deriving a transfer function 

matrix for the dynamometer and using the inverse of that matrix as a prefilter on the output of the 

dynamometer [39].   

Typically, models developed for quasi-static cutting with constant cutting conditions are 

used to describe a dynamic cutting process with time-varying cutting conditions.  Often times, the 

assumption that this aforementioned approach is valid is never directly stated or justified.  One work 

that explicitly states this assumption is in [40] where tool vibration frequencies of 100 Hz are 

considered.  What is really being assumed when applying quasi-static cutting force models to dynamic 

scenarios is that the mechanics of the cutting process are not dependant on past inputs or outputs.  

In signal processing it is said that such a system is memoryless.  With this assumption the system will 

exhibit zero transient response, and the Oxley model can be applied at instants in time during a 

dynamic simulation.  This work makes no attempt to prove the validity of this assumption. 

A brief overview of the constitutive equations and method for implementing a modified 

version of Oxley’s cutting force model will now be given.  The theory analyzes the stresses developed 

along AB  and the tool-chip interface, as shown in Figure 3-1.   

 
Figure 3-1: An orthogonal cutting configuration with consideration of nonzero workpiece slope, sδ . 
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The directions typically referred to as “cutting” and “thrust” are denoted by the C  and T   

axes, respectively.  The cutting direction is parallel to the machined workpiece surface and the thrust 

direction is perpendicular to it.  These are terms used in many other reports concerning orthogonal 

cutting models and are presented here for consistency.  In this work, the orientation of the C  and T  

axes is the important feature, not the position of their origin in space. 

All annotations in Figure 3-1 are in the plane of the page except for w .  The given 

parameters are the undeformed chip thickness, ut , the width of cut, w , the normal rake angle, nα , 

and CV
G

, the relative velocity between the cutting tool and workpiece.  It is important to note that CV
G

 

is a vector in order to reflect that its orientation and magnitude can change during vibration.  In a 

turning operation the commanded cutting velocity is usually a constant and will be denoted by CV .  

In general, CV
G

 will only equal CV  when there is zero relative tool-workpiece vibration, as will be 

shown in Chapter 4.  The clearance angle, γ , although not a part of Oxley’s cutting force model, is a 

given parameter as well and will be used in subsequent force modeling from mechanisms not due to 

chip formation.  The clearance angle has been shown not to significantly influence forces due to chip 

formation [41] and hence can be neglected.  In this investigation, the effect of the workpiece surface 

slope, sδ , will be incorporated as well.  For stable cutting force modeling, the surface slope is 

typically considered to be zero.  However, it will be shown in Chapter 4 that a nonzero workpiece 

surface slope is needed when there is significant relative tool-workpiece vibration. 

Measured clockwise from the direction of the negative C  axis, one of the outputs of the 

Oxley cutting force model is the shear angle, φ .  It defines the orientation of the shear plane, AB , 

which is the region where workpiece material abruptly changes direction by a shearing force and 

flows up the rake face of the tool to become a chip.  In Figure 3-1, this plane would be defined by 

line segment AB  and the width of cut, w .  In reality, steel is a rigid-plastic hardening material and 

hence can not change direction instantaneously.  Owing to this, parallel sided shear zone theory is 

employed which considers a shear zone inclined at an angle, φ , and not a shear plane.  
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It should be noted that in Figure 3-1 there are two undeformed chip thicknesses, ut  and t ′ .  

Typically, orthogonal cutting models have zero workpiece slope; therefore the undeformed chip 

thickness can be uniquely defined by ut –the distance between a line coincident with the machined 

workpiece surface and a line parallel to the unmachined workpiece surface.  This description is valid 

because ut  is invariant under the shear angle, φ .  However, for a given nonzero workpiece slope ut  

will change with varying shear angle.  To address this, the undeformed chip thickness is uniquely 

defined by two quantities: t ′  and sδ .  As shown in Figure 3-1, t ′  is measured perpendicularly from a 

line coincident with the machined workpiece surface at the tip of the cutting tool to a line extended 

along the unmachined workpiece surface.  In terms of t ′  and sδ  the length of the shear plane, AB , 

is given as 

 [ ]
[ ]
cos

sin
s

s

t
AB

δ
φ δ

′
=

+
 (3.1) 

and the undeformed chip thickness is given by 
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u
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δ φ
φ

φ δ

′
= =

+
 (3.2) 

It should be noted that for 0sδ = , ut t ′=  for all [ ]0, /2φ π∈  in Equation (3.2) and is 

thereby consistent with the previous claim that ut  is invariant under shear angle for workpiece 

surface slope of zero.   With this modification to the length of the shear plane and the undeformed 

chip thickness in Equations (3.1) and (3.2), respectively, the rest of the equations presented in [35] 

can be used to describe the forces due to chip formation. 

The shear angle, φ , is selected such that the resultant forces transmitted along the shear 

plane are in equilibrium.  It is formed by the line segment, AB , and the cutting width, w .  It should 

be noted that the cutting width does not affect the predicted shear angle since this a planar analysis.   

Once φ  is determined, the deformed chip thickness, dt , and all forces in Figure 3-1 are 

simply 
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dt  is the deformed chip thickness, CF  and TF  are the forces due to chip formation parallel and 

normal to the cutting direction, respectively, F  and N  are the frictional and normal forces at the 

cutting tool, respectively, λ  is the friction angle, ABk  is the flow stress along the shear plane, R  is 

the resultant force acting on the cutting tool, SF  is the shear force, and κ  is the angle of the resultant 

force.  To facilitate future developments where the chip formation forces per unit width of cut are 

required, Cf  and Tf  are defined as  
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The velocities of the chip perpendicular and parallel to AB , V  and SV , respectively, are defined in 

Equations (3.10) and (3.11) as 
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where CV
G

 denotes the magnitude of CV
G

.  One of the earliest analyses of cutting forces was 

performed by Merchant [42], who assumed that the shear angle, φ , adjusts itself to minimize the CF  

and TF .  The outcome of this assumption results in the following formulation for the shear angle  

 
4 2 2

nαπ λ
φ= + −  (3.12) 

which has been used by many investigators due to its simplicity.  The problem with Equation (3.12) 

is that it tends to overestimate the shear angle because it fails to capture many effects in the 

machining process: the high strains, strain rates, and temperatures developed in the cutting zone.  To 

reflect this, a Johnson-Cook model is adopted to describe the flow stress as function of strain, strain 

rate, and temperature [43].  The general form of the equation describing this relationship is given as 
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where σ  is the flow stress,  pε   is the effective plastic strain, pε�   is the effective plastic strain rate, T  

is the temperature of the material, mT  is the melting point of the material, 0T  is the reference 

temperature, and A , B , C , m , n , 0ε� , are material-specific constants. 

 The Oxley cutting force model will be used in this study to predict forces due to chip 

formation with relative tool-workpiece vibration.  To do this the model needs to be applied over a 

wide range of cutting parameters.  In the experimental validation portion of this dissertation, given in 

Chapter 8, AISI 1018 steel is used during all machining tests.  Johnson-Cook parameters for AISI 

1018 were not able to be found in any published data, so coefficients for another material had to be 

used to approximate the behavior of AISI 1018 steel.  When trying many other sets of Johnson-Cook 

parameters, it was found that the Oxley cutting force model was not able to converge to a solution 

for many of the cutting conditions used in this study.  It was later discovered that when using the 

Johnson-Cook coefficients for AISI 4340 steel in [43] the Oxley model performed very well over a 

wide range of cutting conditions.  AISI 4340 is an alloy steel with a higher yield strength than AISI 

1018, a low carbon steel.  However in dynamic cutting force modeling, it is the changes in the force 
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that matter, not the mean value.  Consequently, if the strain, strain rate, and temperature sensitivity of 

AISI 4340 are assumed to be similar to those of AISI 1018, then the Johnson Cook coefficients for 

AISI 4340 can be used.  The coefficients for AISI 4340 are given in Appendix A. 

It is noteworthy that some approaches to modeling cutting forces abuse Equation (3.13).  All 

of the aforementioned coefficients should be determined directly from a test that isolates the strain, 

strain rate, and temperature effects such as a Hopkinson bar test [43].  Some researchers choose to 

develop a cutting force model that is oversimplified, and they incorporate the Johnson-Cook flow 

stress equation.  Then with experimental data they perform a regression analysis to solve for all the 

Johnson-Cook coefficients in Equation (3.13).   The problem with this method is that in the 

machining tests there are so many complicated mechanisms interacting that it is difficult to isolate 

them, as opposed to a Hopkinson bar test which does a better job of isolating the parameters that it 

models.  In other words they overcome the oversimplifications in their cutting force model by using 

Equation (3.13) to curve-fit experimental data.  By doing this they open up a philosophical debate 

about whether the true physics of the process are being captured or whether the model is essentially 

being used as a curve-fitting device.  This issue was presented in order to underscore the precise goal 

of this work; that is, to be as geometrically rigorous as possible and only resort to experimentally 

derived coefficients when absolutely necessary.  It should be noted that the Johnson-Cook 

coefficients used in this investigation were derived from Hopkinson bar testing. 

The key parameter in the Oxley cutting force model is the shear angle, φ , which must be 

found iteratively.  First, the temperature rise in the shear plane along AB , ABT , is computed in order 

to predict the flow stress, ABk , the details of which can be found in [35].  The strain along AB  is 
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The flow stress along AB  is 
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⎛ ⎞⎛ ⎞⎡ ⎤ ⎛ ⎞− ⎟⎟⎜⎜ ⎟⎜ ⎟⎢ ⎥⎟ ⎟⎜⎜= + + −⎜ ⎟⎟ ⎟⎜⎜ ⎜⎢ ⎥ ⎟⎟ ⎟⎜⎟⎜ ⎟⎜ −⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

�
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 (3.16) 

With the flow stress determined, all the forces given in Equations (3.4)-(3.7) can now be found.  The 

friction angle, λ , is given by 

 nλ κ α φ= + −  (3.17) 

where the inclination angle of the resultant force is described by 

 1tan 1 2
4

Cn
π

κ φ− ⎡ ⎤⎛ ⎞⎟⎜= + − −⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 (3.18) 

In Equation (3.18), the n  term is a strain-hardening coefficient used in [44] that allows the Johnson-

Cook flow stress model to be incorporated into the cutting force model.  It is given as 

 
n
AB

Oxley n
AB

B
Cn C n

A B
ε
ε

=
+

 (3.19) 

With the angles determined, the tool-chip contact length is computed by 

 [ ]
[ ] [ ] [ ]

sin
1

cos sin 3 tan
ut Cn

h
θ

λ φ κ
⎛ ⎞⎟⎜= + ⎟⎜ ⎟⎜⎝ ⎠

 (3.20) 

Assuming the stress distribution along the tool chip contact length is constant, the shear stress along 

the tool-chip interface is 

 int

F
hw

τ =  (3.21) 

The temperature rise in the chip is then computed using a method detailed by Oxley in [35].  The 

resulting expression for the average flow stress in the chip is given as  
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0 0

1
1 ln 1
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n int int
chip int
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T T
k A B C

T T
ε

ε
ε

⎛ ⎞⎛ ⎞⎡ ⎤ ⎛ ⎞− ⎟⎟⎜⎜ ⎟⎜ ⎟⎢ ⎥⎟ ⎟⎜⎜= + + −⎜ ⎟⎟ ⎟⎜⎜ ⎜⎢ ⎥ ⎟⎟ ⎟⎜⎟⎜ ⎟⎜ −⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦
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 (3.22) 

where the average value of the strain and strain rate is given in Equations (3.23) and (3.24), 

respectively  

 2
3int AB

d

h
t

ε ε
δ

= +  (3.23) 



 

29 

 
3

C

int
r d

V

t t
ε =

G

�  (3.24) 

and rt  is the ratio of the thickness of the plastic zone at the tool-chip interface to the deformed chip 

thickness, dt . 

To solve for φ , all of the previous computations are made to determine intτ  and chipk  over a 

range of possible shear angles, typically evenly distributed between 5° and 45°.  In keeping with the 

principle of minimum work, the largest shear angle value where int chipkτ =  is taken as the actual shear 

angle.  Since a discrete number of shear angles is evaluated, linear interpolation of this intersection is 

used to increase accuracy.  Herein lies the power of using the Oxley cutting force model–the fact that 

no knowledge of the deformed chip thickness, dt , is required (the shear angle can easily be 

determined with knowledge of ut  and dt  via Equation (3.3)).  It is a simple task to determine dt  

experimentally for a small number of orthogonal cutting conditions; however, the present 

investigation searches a parameter space too large to make this practical. 

For the remainder of this investigation, when using the Oxley cutting force model a 

regression surface for each one of its outputs, Cf , Tf , and Vφ , will be used instead.  Vφ  is the shear 

angle chosen by the Oxley model out of all potential shear angles, φ .  Regression surfaces are used 

because the algorithm is computationally inefficient in finding the shear angle due to its iterative 

nature.  The regression surfaces are a function of four independent parameters, and are given as 

 ( ), , ,
Cf n C s CS t V fα δ′ ≈

G
 (3.25) 

 ( ), , ,
Tf n C s TS t V fα δ′ ≈

G
 (3.26) 

 ( ), , ,
V n C s VS t Vφ α δ φ′ ≈

G
 (3.27) 

where the relations are given as approximate since there will inevitably be some error between the 

exact outputs from the Oxley cutting force model, Cf , Tf , and Vφ , and the outputs from the 
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regression surfaces, 
Cf
S , 

Tf
S , and 

V
Sφ .  The exact details of the computation of these regression 

surfaces will be given in Chapter 7. 

 
 

3.2 Plowing and Flank Interference Forces 
 

In addition to the contribution from the forces due to chip formation, there are forces due 

to the fact that the tool edge is not perfectly sharp (the cutting edge would be located at point B  in 

Figure 3-1, extending into the page).  These forces are termed plowing forces because some material 

is “plowed” into the workpiece due to the nonzero radius on the edge of the cutting tool.  The need 

to address these forces has been considered by many other researchers [45],[46].  In addition, there 

are forces due to contact between the machined workpiece surface and clearance face of the cutting 

tool when there is relative vibration between them.  The clearance face can also be referred to as the 

flank and would be located on the underside of the cutting tool above the machined workpiece 

surface, as indicated in Figure 3-2B. 

An interesting set of experiments performed by Marui et al. shows that forces due to 

plowing and flank interference are intimately linked with chatter stability in turning processes [27].  In 

this work they turned a square-threaded workpiece with a straight edge cutting tool.  The feed rate 

per revolution was equal to the thread pitch, and in this way the regenerative effect was completely 

eliminated.  Despite this, chatter was still produced with much larger vibration in the tangential 

cutting direction than in the radial direction.  Efforts in explaining the effect of flank wear on the 

stability of the turning process have also been conducted in [26].  It was shown that increasing flank 

wear stabilized the cutting process, especially at low cutting velocities.  In other reports, by 

investigating the surface profile after a turning operation where chatter was present, it was clear that 

the flank of the cutting tool was impacting the workpiece surface as it advanced [27].  Clearly there is 

interaction between the clearance face of the cutting tool and the machined workpiece surface; 

therefore any chatter model for turning that is meant to explain the process from a first-principles 

point of view must include forces due to plowing and flank interference. 
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Figure 3-2A is an orthogonal cutting scenario with zero relative tool-workpiece vibration and 

a constant commanded cutting velocity, CV  .  As the material approaches the tool edge, it either 

moves upwards to become a chip, or is plowed as it flows around the tool’s edge of radius, er .  As a 

simplification, the material is considered to be elastic in that it makes a full recovery to its machined 

height after it passes beneath the cutting tool.  Therefore an “undeformed workpiece surface,” as 

indicated in the figure, represents the machined surface of the workpiece that would exist if 

somehow machining could progress without interference from the edge or clearance face of the 

cutting tool.  In reality plowing is characterized by plastic deformation of the workpiece material, 

which would result in an inelastic and therefore incomplete recovery.   

A technique was developed by Wu in [47] where the forces due to plowing and contact along 

the clearance face can be resolved simultaneously.  The amount of force developed by such a process 

is proportional to the amount of workpiece material that is displaced by the cutting tool, a so-called 

“interference volume.”  In an orthogonal cutting scenario the interference volume is the product of 

the interference area, iA , and the width of cut, w .  The interference area is the region defined by the 

boundary of the cutting tool and the undeformed workpiece surface, as shown in Figure 3-2.   

 
Figure 3-2: Two orthogonal cutting scenarios with different relative vibration and interference areas.  (A) 

Cutting with zero relative tool-workpiece vibration; (B), cutting with nonzero relative tool-workpiece vibration. 
 

In Figure 3-2B a different case arises when there is relative vibration between the cutting 

tool and the workpiece.  In this case there could be an instantaneous velocity in the cutting direction, 

CV , and an instantaneous velocity in the thrust direction, TV , of the workpiece material.  In the 

er  

CV  
A 

Separation 
point 

t̂e cfz −  

B

eβ

Interference  
area, iA   

T

C  

γ

t̂e cfz −  

CV
G TV
CVSeparation 

point 

Clearance face

T  

C

Undeformed 
workpiece surface 

Interference  
area, iA   

e eβ β=

ŷ
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specific case pictured, there is only contact between the machined workpiece surface and edge radius 

portion of the cutting tool.  For the case where there is vibration during cutting, the interference 

area, and in turn the interference volume can be larger or smaller and have a different orientation 

than in the case of zero vibration cutting.   

A critical parameter in this model is the material separation point, or the cutting edge contact 

point.  It can be defined as the point of intersection between a ray at an angle of eβ  measured 

clockwise from the negative thrust direction and the cutting edge.  In [48] eβ  was determined 

empirically; however in this case it is taken to be 30°, a value determined by the experimental results 

in [49].  The angle of material separation, eβ ,  is valid for all time in the case of stable cutting, but in 

dynamic cutting it is assumed to change based on the components of the velocity in the thrust and 

cutting directions, as given by 

 1tan T
e e

C

V

V
β β −

⎡ ⎤
⎢ ⎥= − ⎢ ⎥⎣ ⎦

 (3.28) 

In Figure 3-2B eβ  is larger than it is in Figure 3-2A as a result of a negative velocity of the cutting 

tool relative to the workpiece in the thrust direction, TV . 

With all of these assumptions the problem of finding the plowing and flank interference 

forces has essentially been reduced to an exercise in geometry.  This was also adopted in [47] and 

[48], however the approach in [48] was far more rigorous and will serve as the foundation for later 

developments.  For conciseness, the forces due to plowing and flank interference will now be termed 

“interference forces.” 

As in [47], the interference forces will have a component in the thrust direction, TP , and in 

the cutting direction, CP , and are proportional to the interference volume, iV , as given by 

 C cf iP K Vµ=  (3.29) 

 T cf iP K V=  (3.30) 
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where µ  is the coefficient of friction and cfK , the force-interference volume constant, derived in 

[50] to be 

 
( )
0.775
1 2cf

E
K

ρ ν
=

−
 (3.31) 

where E  is Young’s modulus, ν  is Poisson’s ratio, and ρ  is the extent of the elastoplastic 

deformation zone beneath the cutting tool.   

A relatively coarse approximation for the interference area, iA , was developed in [47].  It 

relied on the assumption of a sinusoidal signal-frequency, constant-amplitude relative velocity 

between the workpiece and the cutting tool in the thrust direction in addition to a constant velocity 

in the cutting direction.  A more accurate model for describing the interference area, iA , and 

resulting forces was developed by Endres in [48], with a more detailed account given in his thesis 

[51].  It operates from the assumption that discrete data points describing the position of the 

workpiece relative to the cutting tool are the output of a numerical simulation.  Based on linear 

interpolation between the data points at times, k , 1k − ,…, the interference area is given in the way 

depicted in Figure 3-3A. 

 
Figure 3-3: Two scenarios where data points from a numerical simulation are used to find the interference area, 

iA .  (A), Many data points spaced closely together with linear interpolation of the undeformed workpiece 
surface; (B), data points spaced far apart with polynomial interpolation of the undeformed workpiece surface. 

 
To get a sense of scale in Figure 3-3 the edge radius, er , is typically around 30 µm.  

Considering the common frequency range that chatter typically occurs (≤  1500 Hz) and the cutting 

velocities used in practice, a chatter simulation would not typically need to output points with the 

fine spatial resolution shown in Figure 3-3A.  To force the simulation to take time steps that small 

would increase the computational time drastically while obtaining a solution that is much more 
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accurate than necessary.  In reality, the time steps needed for an accurate simulation are much more 

coarsely spaced, as depicted qualitatively in Figure 3-3B.  Since the data points are now much further 

apart it would be desirable to interpolate with a higher order polynomial to capture the curvature of 

the workpiece surface that is generated during dynamic cutting.  In addition, it is desirable to have a 

single polynomial represent the undeformed workpiece surface, as opposed the piecewise linear 

formulation in Figure 3-3A, because it will facilitate the evaluation of various integrals to find the 

interference volume in a more concise manner.  The following approach for describing the 

interference area is inspired by the work of Endres in [48], however most of the equations are 

different since a polynomial representation of the undeformed workpiece surface is used instead of a 

piecewise linear one. 

An approach for finding the volume of interference in an orthogonal cutting configuration 

will now be presented.  A local ˆ ˆy - z  reference frame with an angular coordinate, β , measured CCW 

from the positive ẑ  axis is used in the following derivation, as depicted in Figure 3-4.  It should be 

noted that quantities denoted in red will be used in the simplified cutting force model, quantities in 

blue are modified versions that will be used in later developments of the refined cutting force model, 

and quantities in black are not specific to either approach. 

 
Figure 3-4: The reference frames and quantities used to find the interference area and effective clearance angle. 

Quantities in red are used for the simplified dynamic cutting model, quantities blue are used for the refined 
dynamic cutting model, and quantities in black are shared by both models.   
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The undeformed workpiece surface, ( )ˆ ˆsury z , as shown in Figure 3-4, can be represented in 

the ˆ ˆy - z  reference frame by the following second order polynomial: 

 ( ) 2
0 1 2ˆ ˆ ˆ ˆsury z a a z a z= + +  (3.32) 

where the coefficients, 0a , 1a , and 2a  are determined via least squares based on the relative vibration 

history between the cutting tool and the workpiece during the chatter simulation.  In the following 

analysis there will be numerous instances where equations are presented for both the case where 

2 0a =  and 2 0a ≠ .  In reality, since the proposed method will be numerically simulated,  2 0a =  

really means 2 0a ≈ .  If 2 0a ≈ , then some equations will be modified to reflect solutions assuming 

that Equation (3.32) does not posses the 2a  term.  The boundary of the cutting tool can be 

represented by the piecewise continuous function, ( )ˆ ˆty z , as 

 ( )
2 2ˆ ˆ ˆ0

ˆ ˆ
ˆ otherwise

e te cf

t

t t

r z z z
y z

m z b

−
⎧⎪− − ≤ <⎪⎪=⎨⎪ +⎪⎪⎩

 (3.33) 

where tm  is the slope of the line representing the cutting tool clearance face, and is given as 

 [ ]tantm γ=  (3.34) 

and tb  is its ŷ  intercept, expressed as 

 
[ ]cos
e

t

r
b

γ
−

=  (3.35) 

and t̂e cfz −  is the point of transition from the curved tool edge to the straight clearance face, given as 

 [ ]ˆ sinte cf ez r γ− =  (3.36) 

The interference area, iA , is simply the area bounded by the undeformed workpiece surface and the 

boundary of the cutting tool, given by 

 
( )

( )2

1

ˆ ˆˆ

ˆ ˆ ˆ

ˆ ˆ
sur

t

y zz

i

z y z

A dydz= ∫ ∫  (3.37) 

where 1̂z  and 2̂z  are the limits on the integration defined by the intersection of the undeformed 

workpiece surface and the boundary of the cutting tool. 
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There are two possibilities for intersections between the undeformed workpiece and the 

cutting tool.  Either both intersections can occur along the tool edge, as in Figure 3-2B, or one 

intersection can occur along the tool edge and the other along the clearance face, as in Figure 3-2A.  

In order to determine which case is present, all intersections between the undeformed workpiece 

surface and the constituent functions repressing the boundary of the cutting tool ( ( ) 2 2ˆ ˆ ˆt ey z r z=− −  

and ( )ˆ ˆ ˆt t ty z m z b= + ) must be determined.  A total of three or four unique intersections will be 

calculated (depending on whether 2 0a =  or 2 0a ≠ ), but only two of them will be relevant to the 

bounds of the interference area in the ẑ  direction.  The intersections are compared to the transition 

point between the tool edge and the clearance face, t̂e cfz − , in order to determine which ones are 

relevant. 

The two ẑ  coordinates of intersection between undeformed workpiece surface and the 

portion of the cutting tool boundary representing the tool edge, ( ) 2 2ˆ ˆ ˆt ey z r z=− − , is given as 

 ( )
1, 2

2 2 2
1 0 1 1 0

2
1

ˆ 0

ˆ 1
otherwise

1

quart

te e

z a

z a a r a a

a

−

⎧ ≠⎪⎪⎪⎪⎪=⎨− − + −⎪⎪⎪ +⎪⎪⎩

 (3.38) 
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z a

z a a r a a

a

−

⎧ ≠⎪⎪⎪⎪⎪=⎨− + + −⎪⎪⎪ +⎪⎪⎩

 (3.39) 

where 1,ˆ quartz  and 2,ˆ quartz  are the roots of a quartic equation and 1 2ˆ ˆte tez z− −≤ .  A closed-form solution 

exists, but is quite lengthy and given in Appendix A.  The intersections between the undeformed 

workpiece surface and the clearance face of the cutting tool, defined by ( )ˆ ˆ ˆt t ty z m z b= + , are given as 

 
( ) ( )( )2

1 1 2 0 2
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1
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1
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a m
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 (3.40) 
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 (3.41) 

Finally, the relevant ẑ  coordinates of intersection between the undeformed workpiece surface and 

the boundary of the cutting tool are described by 

 1 1ˆ ˆ tez z −=  (3.42) 

 
2 2
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 (3.43) 

In the case of interference only along the tool edge, the interference area becomes ( )ˆ ˆ,i te L UA z z−  and 

is given by 
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∫ ∫ (3.44) 

where L̂z  and Ûz  are the appropriate lower and upper limits of integration, respectively.  The second 

possibility is the one depicted in Figure 3-4, a case where one intersection occurs along the tool edge 

and the other along the clearance face.  In this case there will be a contribution to the interference 

area along the tool clearance face, ( )ˆi cf UA z− , given as 

 ( )
( )

( )

( )( )
ˆ ˆ  ˆ ˆ

0 1 2
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ˆ
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y zz z

i cf U t t
zz y z

z
A z dydz a b z a m a z
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− = = − + − +∫ ∫  (3.45) 

It should be noted that there is only one limit of integration that needs to be specified in this case 

since the integration always begins at the transition point between the tool edge and the clearance 

face, t̂e cfz − .  Equation (3.37) can be expressed as a piecewise continuous function, described by 
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1 2 2

1 2
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ˆ ˆ ˆ, otherwise
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A z z z z
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A z z A z

− −

− − −

⎧⎪ ≤⎪⎪=⎨⎪ +⎪⎪⎩
 (3.46) 

Now that the interference area, iA , has been described the concept of an effective clearance 

angle, γ∗ , will be introduced.  It is defined as the effective orientation angle of the cutting tool 
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surface in contact with the machined workpiece surface.  This angle accounts for the cutting edge 

radius, the slope of the clearance face and the shape of the undeformed workpiece surface.   This 

idea is once again extended from the work of Endres in [51] to a scenario where there is a simple 

polynomial representation of the undeformed workpiece surface.   

The pressure distribution at a given point along the boundary of the cutting tool is assumed 

to be proportional to the local interference thickness, ( )
it s , where s  is the position along a path 

defined by the boundary of the cutting tool.   This is depicted in Figure 3-5A for a case where the 

undeformed chip thickness is decreasing and in Figure 3-5B for a case where it is increasing. 

 
Figure 3-5: Qualitative pressure distributions along the boundary of the cutting tool for various undeformed 

workpiece surfaces.  Quantities in red are used for the simplified dynamic cutting force model, quantities blue 
are used for the refined dynamic cutting force model, and quantities in black are shared by both models.  (A), 

Decreasing chip thickness; (B), increasing chip thickness. 
 
In a manner similar to that described in [51], the effective clearance angle is given as 
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 (3.47) 

where ( )P s  and ( )sγ  are the pressure and clearance angle as a function of the path variable s , and 

the limit te cf+  means “the path defined by the tool edge and the clearance face of the cutting tool”.  

As an approximation, the pressure at a point along the portion of the cutting tool in contact with the 

workpiece is assumed to be the product of some pressure constant, pK , and the local interference 

thickness, ( )
it s .  In this way Equation (3.47) now becomes 
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( ) ( )
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=
∫

∫
 (3.48) 

Clearly with the aforementioned assumption, the pressure constant, pK , will conveniently cancel out 

in the calculation of γ∗  in Equation (3.48).  In order to facilitate the description of the clearance 

angle as a function of position along the tool boundary a change of variables is used. Along the tool 

edge, ds  becomes er dβ , and along the clearance face ds  becomes z� , where the y - z� �  reference 

frame is inclined at an angle of γ  from the ˆ ˆy - z  reference frame, as shown in Figure 3-5B.  With 

this change of variables, the effective clearance angle becomes 
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and depends on whether 2̂ t̂e cfz z −< .  If this is true then the integration is only performed along the 

tool’s cutting edge and gives rise to a single integral in the numerator and denominator.  Now ( )sγ  

along the cutting edge becomes 3
2
πβ− , and ( )

it s  becomes ( )i tet β− , which is given by 
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 (3.50) 

where 1β  and 2β  are the limits on the integration and are related to the points of intersection 

between the undeformed workpiece surface and the boundary of the cutting tool, 1̂z  and 2̂z , by 

 ( )1 1 1̂c zβ =  (3.51) 
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 ( )2 1 2̂c zβ =  (3.52) 

where ( )1 ˆc z  is essentially a quadrant-conscious tan-1 function, defined as 
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2 2
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If interference occurs along both sections of the cutting tool, i.e. 2̂ t̂e cfz z −≥ , then it is 

necessary to evaluate the integrals separately for each region.  As previously mentioned, a y - z� �  

reference frame is employed in order to facilitate the integration along the clearance face.  Because it 

is inclined at the same angle as the clearance angle, the integration is from 0 to 2z� , where 2z�  is related 

to 2̂z  by 

 [ ] ( ) [ ]2 2 2ˆ ˆcos sint tz z m z bγ γ= + +�  (3.53) 

In order to operate in the y - z� �  reference frame, the polynomial representing the workpiece surface 

in Equation (3.32), ( )ˆ ˆsury z , must undergo a rotation transformation to become ( )sury z� �  in the y - z� �  

reference frame, the results of which are expressed by 
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+ + −

� � �

�
 (3.54) 

and is valid for any value of 2a . 

Regardless of the nature of the interference area, there will always be an integration 

performed along the tool edge in both the numerator and denominator of Equation (3.49).  The 

limits on these integrals are from 1β  to 3
2
π γ+ , where 1β  was given in Equation (3.51).  These 

integrals have no closed-form solution for 2 0a ≠ , and for 2 0a =  only the integral in the 

denominator has a closed from solution.  In all cases for 2a , it is in fact computationally more 

efficient to numerically evaluate each integral in the numerator and denominator simultaneously in a 
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vectorized fashion since they have the same limits.  In contrast, the integration performed along the 

clearance face has a closed-form solution and is given as 
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for 2 0a ≠ , and for 2 0a =  it is 
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where the lower limit in Equation (3.56) always gives a value of zero so therefore only 2z�  appears 

above. 

Equation (3.55) is the antiderivative of the integral in the denominator of Equation (3.49) 

along the clearance face.  For the integral along the clearance face in the numerator, the result is the 

same as in Equation (3.55) except that it is multiplied by the clearance angle, γ , since the inclination 

of the interference thickness is constant in this region. 

With the description of the interference area and the effective clearance angle complete, the 

equations for the forces per unit width of cut due to the interference between the cutting tool and 

the workpiece can be evaluated.  As in Figure 3-4, the interference forces on the cutting tool, Cp ′  and 

Tp ′  are orthogonal and inclined at an angle of γ∗  from the ˆ ˆy - z  and −T C  axes, and are given as 

 C cf ip K Aµ′ =  (3.57) 

 T cf ip K A′ =  (3.58) 

Applying a rotation transformation, the interference forces in the thrust and cutting directions per 

unit width of cut are simply 

 [ ] [ ] [ ] [ ]( )sin cos cos sinC T C cf ip p p K Aγ γ µ γ γ∗ ∗ ∗ ∗′ ′=− + = −  (3.59) 
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 [ ] [ ] [ ] [ ]( )cos sin cos sinT T C cf ip p p K Aγ γ γ µ γ∗ ∗ ∗ ∗′ ′= + = +  (3.60) 

The final step in describing these forces is the recognition that for an orthogonal cutting scenario the 

width of cut is simply w .  Therefore the forces due to plowing and flank interference between the 

cutting tool and the workpiece are the product of Equations (3.59) and (3.60) with w , and are given 

as 

 T TP wp=  (3.61) 

 C CP wp=  (3.62) 

In order to keep the solution in the simplified cutting force model in closed-form, γ∗  is 

taken to be 0D  since for stable cutting with γ  usually having a value of about 10D , it is a good 

approximation for the very low levels of vibration present before chatter materializes.  Therefore, it 

shouldn’t significantly limit this approach’s ability to predict the onset of chatter, which is the most 

important output of a chatter simulation.  Later in the development of the refined cutting force 

model in Chapter 6, γ∗  is found numerically and thereby permitted to vary with time during a 

simulation.   

 To illustrate the effect of tool vibration on the interference area, consider Figure 3-6.  In 

Figure 3-6A, a sinusoidal displacement applied to the cutting tool in the thrust direction is shown 

with interference areas at certain points in time given in Figure 3-6B-I.  As one would intuitively 

expect, when the relative motion of the tool is towards the workpiece, e.g. points C, D, and E in 

Figure 3-6A, the interference area is the largest and γ∗  is positive.  Conversely, when the tool is 

moving away relative to the workpiece, e.g. points F, G, and H in Figure 3-6A, the interference area 

becomes smaller and γ∗  is negative.  At points B and I, the rate of change of the RTWD is 

approximately zero.  This causes the interference area to be similar to that during zero vibration 

cutting and γ∗  to be close to zero. 
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Figure 3-6: The change in the interference area when the tool is vibrating in the thrust direction (positive 
displacement is oriented away from the workpiece).  The cutting tool is shaded in blue and the undeformed 
machined workpiece surface is shaded in red. (A), A sinusoidal RTWD in the thrust direction; (B)-(I), the 
interference area at points in time denoted in (A), e.g. the interference area in (E) occurs at the time where 

point E is located in (A). 
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CHAPTER 4:  THE SIMPLIFIED DYNAMIC CUTTING FORCE MODEL 
 
 

“The important thing in science is not so much to obtain new facts as to 
discover new ways of thinking about them.” 

 –William Lawrence Bragg 
 
 

4.1 Modified Tool Angles and the Development of an Equivalent Straight Edge 
Cutting Tool 

 
In the previous chapter, models in the orthogonal cutting domain were presented that can 

describe forces due to chip formation as well as plowing and interference between the machined 

workpiece surface and the cutting tool.  Both are two-dimensional models and therefore are not 

immediately applicable to the three-dimensional turning scenarios normally encountered in practice.  

This chapter will introduce the “simplified dynamic cutting force model,” which makes careful 

approximations to the three-dimensional nature of the cutting zone in order to generate equivalent 

cutting scenarios that can be modeled by the orthogonal models developed in Chapter 3.  For fast 

computational time, care is taken to develop a formulation for the dynamic cutting forces in the 

simplified cutting force model that can be solved in closed-form.  Later in Chapter 6, a “refined 

cutting force model” is developed that is more computationally intensive and describes the cutting 

process in a more geometrically rigorous manner.  

As previously mentioned, metal cutting scenarios used in practice typically rely on a tool 

whose cutting edge is curved and in a plane that is not coincident with the axis of the workpiece, like 

that pictured in Figure 1-1.  Collectively these two properties are known as oblique nose radius 

machining.  Oblique machining with a nose radius is a three-dimensional process.  Plastic flow 

problems of this dimension are extremely complicated and generally lack closed-form solutions.  

Typically to solve problems of such a scale FEA techniques are employed.  However, the large 

computation time associated with this approach disqualifies it as an option because millions of 

cutting conditions need to be evaluated over the course of a single turning simulation.  Fortunately 

there are methods that predict forces by using a transformation to obtain an equivalent oblique 

straight cutting edge process, invoking some assumptions to make the process orthogonal, predicting 
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forces in the orthogonal cutting domain, and then transforming those forces back into the oblique 

cutting domain [52].  The cutting tool geometry shown in Figure 4-1 will be used to illustrate this 

procedure. 

 
Figure 4-1: An oblique nose radius cutting tool with input tool geometry shown in black, equivalent tool 

geometry for the simplified cutting force model shown in red, and equivalent tool geometry for the refined 
cutting force model shown in blue.  Solid (—) and dash-dotted lines (– ▪  –) lie in theX - Y  plane; dashed lines 

(– – –) lie in a plane defined by the tool rake face; dotted lines (▪ ▪ ▪) lie in a plane parallel to the Z  axis.  (A) 
Isometric view; (B) planar view showing the location where the clearance angle is measured. 

 
The given values of the tool geometry in Figure 4-1 are the inclination angle, i , rake angle, 

nα , clearance angle, γ , side cutting edge angle, SC , end cutting edge angle, EC , and the tool nose 

radius, nr .  There are two types of geometric factors that affect the transformation into a roughly 

equivalent orthogonal cutting representation: the angles associated with the tool orientation and a 

single angle associated with the size and orientation of the undeformed chip area.  The latter of the 

two is termed the angle of the chip flow direction, Ω .  This angle is measured from the Y  axis in the 

counter-clockwise direction about the Z  axis and locates the direction that the chip exits the cutting 

zone.  Ω  is influenced by the tool nose radius, feed, depth of cut, and RTWDs in the regenerative 

position space.  The method for finding Ω  will be introduced in the next section and is required to 
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determine the rest of the angles in Figure 4-1.  Much of the following analysis involves deriving an 

effective quantity in the straight cutting edge domain, g∗ , based on an original quantity in the tool 

nose radius cutting domain, g .  As for the diagrams associated with the interference force model in 

the previous section, in Figure 4-1 input tool geometry has been color coded in black, equivalent tool 

geometry for the simplified dynamic cutting force model in red, and equivalent tool geometry for the 

yet-to-be introduced refined cutting force model in blue.   

The angle of the chip flow direction can also be measured relative to a normal vector to the 

straight side cutting edge, and is given as 

 0 2 SC
π

η = − −Ω  (4.1) 

The projection of 0η  on the tool rake face, 0η ′ , is given as 

 [ ] [ ] [ ]

[ ] [ ] [ ]( ) [ ] [ ]( )
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 (4.2) 

and the remaining effective straight cutting edge geometry can be shown to be 

 0S SC C η∗ = +  (4.3) 

 [ ] [ ] [ ]1
0 0sin cos sin sin sin cosni i iη η α∗ − ⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′= −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  (4.4) 
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η
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η
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 (4.5) 

The chip flow angle, cη
∗ , is given as 

 c iη∗ ∗=  (4.6) 

Equation (4.6) is known as Stabler’s flow rule and is derived from the experimental 

observation that the chip flow angle, cη
∗ , which is measured from a normal vector to the equivalent 

cutting edge in the rake face plane is approximately equal to the effective inclination angle, i∗  [53].  

Equations (4.1)-(4.6) are a well-accepted approach in the machining research community to describe 

machining with a tool nose radius by deriving equivalent parameters [52].    
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With these angular transformations, the oblique nose radius cutting configuration in Figure 

4-1 has been transformed to the equivalent oblique straight cutting edge configuration in Figure 4-2.  

It should be noted that the same convention for line styles in Figure 4-2 is used as in Figure 4-1.  In 

Figure 4-2A and B, the translucent tool is the relative position of the cutting tool one workpiece 

revolution period back in time, and the opaque tool is its current position.  Additionally the effective 

width of cut, w∗ , and effective undeformed chip thickness, ut
∗ , are shown and will be derived in a 

later section. 

 
Figure 4-2: An equivalent straight cutting edge representation annotated with relevant forces and angles. (A), 

An oblique straight cutting edge process; (B), a close-up view of the undeformed chip area. 
 

In the case of static cutting, the forces due to chip formation,  CF  and TF  in Figure 4-2, can 

be determined directly from the aforementioned Oxley orthogonal cutting force model using the 

parameters nα
∗  for nα , ut

∗  for ut , and w∗  for w .  It has been shown that these forces are nearly 

independent of i∗  [54].  In the case of dynamic cutting, where there can be relative tool velocity in 

the radial (Y ) or tangential (Z ) cutting directions, another transformation is needed in order to find 

CF  and TF , as will be outlined in the next section.  Also needed in the case of dynamic cutting is the 

effective cutting velocity, CV
∗  , which will be used in place of CV

G
 in previous developments.  ut ∗ , w∗ , 

and CV
∗  will all be derived in the next section, along with the angle of the chip flow direction, Ω , for 

the general case where there is relative tool-workpiece vibration. 
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The force perpendicular to CF  and TF , RF , which results from a nonzero inclination angle 

is found using the following equation regardless of whether there is relative tool vibration or not: 

 
[ ] [ ] [ ] [ ]( ) [ ] [ ]

[ ] [ ] [ ] [ ]
sin cos sin tan cos tan

sin sin tan cos
C n c T n c

R
n c

F i i F
F

i i

α η α η

α η

∗ ∗ ∗ ∗ ∗ ∗
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− −
=

+
 (4.7) 

Once CF , TF , and RF  are determined, the forces due to chip formation on the cutting tool in the Y  

and Z  directions, YF  and ZF , respectively, for the simplified cutting force model are given as 

 [ ] [ ]sin cosY T S R SF F C F C∗ ∗= −  (4.8) 

 Z CF F=  (4.9) 

 
4.2 Consideration of Tool Nose Radius and Vibration Effects 

 
4.2.1 Influence of the relative tool-workpiece displacement and tool nose radius on the chip flow direction 

It is a well-known fact that the tool nose radius plays an important role in chatter stability 

[55].  Therefore, any physics-based chatter model must capture this effect.  In Figure 4-3 is a model 

that will be used to derive the angle of the chip flow direction, Ω , which will follow a similar 

philosophy as the commonly accepted method in [35] for zero vibration cutting force modeling.  The 

effective width of cut and undeformed chip thickness, w∗  and ut ∗ , respectively, will also be derived. 

Figure 4-3 depicts the RTWD of the nose of the cutting tool relative to the workpiece, y , at 

four times in the regenerative delay space: t , t τ− , 2t τ− , and 3t τ− .  However, the generic 

paradigm in which this approach is formulated allows for an arbitrary number of relative tool-

workpiece positions to be considered in the regenerative position space.  In Figure 4-3, a XYZ  

reference frame is used, which differs from the XYZ  reference frame introduced earlier in Figure 

4-1.  The XYZ  reference frame moves with the cutting tool, always having its origin located at the 

center of curvature of the tool nose radius.  On the other hand, the XYZ  reference frame only 

tracks the tool in the feed (X ) direction.  If there is any relative vibration present, such as in Figure 

4-3, the origin of  XYZ  will not generally coincide with that of XYZ .  However, based on the fact 

that the XYZ  and XYZ  reference frames are parallel to one another, and the fact that relative 
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displacements between the cutting tool are used, ( )y t  and ( )z t  can be used in either reference frame 

interchangeably.  The current and previous RTWDs in the regenerative position space are 

represented by small shaded circles, each coinciding with the center of curvature of a tool nose radius 

at a time in the regenerative delay space.  Due to the constant feed per revolution of the workpiece, 

f , assumed throughout this investigation each tool position is spaced by a distance of f  in the X  

direction.  For future developments, let the free boundary of the undeformed chip area be given as 

the portion that is not defined by the position of the tool nose radius at the current time, ( )y t . 

 
Figure 4-3: A schematic showing the relationship between all the angles of intersection between tool nose radii 
in the regenerative position space, the angle of the chip flow direction, Ω , the effective width of cut, w∗ , and 
the equivalent undeformed chip thickness, ut

∗ .  The angles of intersection irrelevant to the description of the 
undeformed chip area are shown in grey and all relevant angles are shown in black. 

 
Before presenting the constitutive equations needed to find the angle of the chip flow 

direction, a 3D visualization is presented in Figure 4-4 that shows how the regenerative position 

space can influence the undeformed chip area over time.  This was generated in CAD software and 

not dictated by an actual computer simulation of chatter.  The cutting tool is not pictured in order 

for the undeformed chip area (shaded in dark red) and the machined surface topography to be seen 
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more clearly.  Figure 4-4A-F are ordered in time as machining progresses with Figure 4-4A occurring 

at the earliest time.   It can be seen that the influence from a given tool position in the regenerative 

position space is intermittent as cutting progresses, which is contrary to approaches that consider 

influence from a RTWD in the regenerative position space to be persistent in time, e.g. in Equation 

(2.21). 

 

  
  

  
  

  
 

Figure 4-4: A demonstration showing how RTWDs in the regenerative position space can influence the 
undeformed chip area in an intermittent fashion as cutting progresses in time.  (A) Influence from the RTWD 

( )2y t τ− ; (B) Influence from the RTWDs ( )y t τ−  and ( )2y t τ− ; (C) Influence from the RTWDs 
( )y t τ−  and ( )2y t τ− ; (D) Influence from the RTWDs ( )y t τ−  and ( )2y t τ− ; (E) Influence from the 

RTWD ( )y t τ− ; (F) Influence from the RTWD ( )y t τ− . 
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The boundary of the undeformed chip area defined by the current and previous tool 

positions in the regenerative position space is denoted by solid white lines.  The blue lines indicate 

portions of previous tool positions in the regenerative position space that do not influence the free 

boundary of the undeformed chip area.  All of these lines exist in the same plane, and would be 

present in a 2D view like that pictured in Figure 4-3.  Just as in Figure 4-3, a tool nose radius at a 

relative tool position in the regenerative position space can have a portion of it that influences the 

current undeformed chip area and part of it that does not, e.g. ( )2y t τ−  in Figure 4-4A.  As long as 

cutting is taking place, there is always influence from ( )y t .  Additionally, as time progresses there can 

be intermittent influence from a RTWD in the regenerative position space.  For instance, the RTWD 

( )2y t τ−  defines a free boundary of the undeformed chip area in Figure 4-4A-D but not in Figure 

4-4E and F. 

Returning now to Figure 4-3, it should be noted that there are more angles shown than are 

needed to find Ω  because of the possibility that the undeformed chip area could be influenced by 

multiple previous RTWDs in the regenerative position space in an intermittent fashion as cutting 

progresses in time (this was just made evident in Figure 4-4).  This differs from the case of quasi-

static cutting force modeling with assumed zero vibration where the cutting region is only influenced 

by tool positions at t  and t τ−  in a consistent way for all time.  For this analysis, all angles are 

depicted in their positive senses, measured counterclockwise from the positive X  axis.  The 

convention used in this investigation is that Wθ  is the angle of intersection between a line coincident 

with the undeformed workpiece surface in the XY  plane and the tool position at ( )y t W τ−  where  

 0 ,  WW D≤ ≤ ∈]  (4.10) 

and  ,M Nθ  is the intersection between tool nose radii at positions ( )y t Mτ−  and ( )y t Nτ− , where 

 0 ,  M D M≤ ≤ ∈]  (4.11) 

 0 ,  N D N≤ ≤ ∈]  (4.12) 

and as previously mentioned, D  is the number of delays to consider in the regenerative delay space.   
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Referring to Figure 4-3, assuming that the friction force on the undeformed chip area varies 

linearly with the local undeformed chip thickness [56], and temporarily assuming nα and i  to be zero 

[35], the friction force per unit of elemental undeformed chip area is a constant, u .  The magnitude 

of that friction force acting over an area, dA , is given as 

 ( )
udF udA ut s ds= =

G
 (4.13) 

where ds  is the differential chip width, and ( )
ut s  is the local undeformed chip thickness.  The net 

force on the entire undeformed chip area in Cartesian coordinates is therefore 

 [ ]( ) [ ]( )sin cosF u dA u dA= Ω + Ω∫ ∫i j
K K K

 (4.14) 

where the angle that dF
G

 makes with the positive Y  axis, Ω  , is described by 

 ( ) ( )
2

s s
π

θΩ = −  (4.15) 

The velocity with which the chip exits the cutting zone is assumed to be coincident with the net force 

exerted upon it, which is located in the XY  plane at an angle of Ω  from the positive Y  axis 

(keeping with convention in the literature), and is given by 
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∫
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j

K K
K K  (4.16) 

It should be noted that the friction force per unit of elemental chip area, u , has conveniently 

cancelled in Equation (4.16).   

There are two types of cutting areas whose contributions need to be addressed by different 

formulae: those that have free boundary defined by the unmachined workpiece surface (type B 

regions) and those that do not (type A regions).  Each region is defined by a portion of the 

undeformed chip area that has a smooth free boundary.  For example, as annotated in Figure 4-3, the 

undeformed chip area is comprised of three type A regions and one type B region.  Substituting 

( )rt dθ θ  for dA , Equation (4.16) may be expressed as contributions from potentially multiple type A 

regions and a single type B region, given as 
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 (4.17) 

where ( ),u At θ  and ( ),u Bt θ  denote the undeformed chip thickness in a type A or B region, 

respectively, and 
A
Σ  means to sum over the number of type A regions, and 

B
∫  means to integrate 

over the range of angles in a type B region.  In order to perform the integrations in Equation (4.17) 

two types of information must be determined: the undeformed chip thickness variation, ( ),u At θ  and 

( ),u Bt θ , and the angles of intersection between all the current and previous tool nose radii in the 

regenerative position space (although not all of the angles of intersection will be pertinent).   

Consider the intersection of a line and three circular arcs, which represent the unmachined 

workpiece surface, the position of the center of curvature of the tool nose at its current position in 

time, ( )( )0,y t , one previous one located at ( )1 1,x y  = ( )( ), t MMf y τ− ,  and another previous one 

located at ( )2 2,x y  = ( )( ), t NNf y τ− , as shown in Figure 4-5.  The same XYZ  reference frame in 

Figure 4-3 is used in Figure 4-5, thereby making its origin a distance of ( )y t−  in the Y  direction 

from the current tool position, ( )( )0,y t . 

 
Figure 4-5: The geometry used to find all the angles of intersection and the undeformed chip thickness 

variation, ( ), ,u At Wθ  and ( ),u Bt θ . 
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The undeformed chip thickness in a type A region, ( ),u At θ , depends not only on θ , but also 

on which RTWD in the regenerative position space is defining the free boundary of the undeformed 

chip area at that particular value of θ .  Owing to this, ( ),u At θ  becomes ( ), ,u At Wθ  to reflect 

dependence on the thW  previous relative tool position in the regenerative position space, and can be 

expressed as 

 ( ) [ ] [ ]2 2
, , cos sinu A n W W n W Wt W r L r Lθ θ χ θ χ= − − − − −  (4.18) 

where 

 ( ) ( )1tanW

y t y t W

Wf

τ
χ −

⎡ ⎤− −⎢ ⎥= ⎢ ⎥⎣ ⎦
  (4.19) 

 ( ) ( ) ( )[ ]22
WL Wf y t y t W τ= + − −  (4.20) 

The subscript W  is used for conciseness and denotes a dependence on W , where W  

corresponds to the thW  previous tool nose position in the regenerative position space that defines 

the free boundary of a type A region (e.g. ( ), ,2u At θ , 2L  and 2χ  are associated with the tool position 

at time, 2t τ− , in a type A region).  It should be noted that the evaluation of ( ), ,u At Wθ  will be 

inaccurate if W  corresponds to a RTWD that does not define the undeformed chip area or the value 

of θ  is incorrect for the particular value of W .  It could even potentially take on negative or 

imaginary values, which clearly is nonsensical.  For example in Figure 4-3, in the range 2,3 1,2θ θ θ< < ,  

it would be incorrect to use ( ), ,1u At θ  or ( ), , 3u At θ  since in that angular range the boundary of the 

undeformed chip area is defined by the tool position at time 2t τ−  and hence ( ), ,2u At θ  is to be used 

in this range of angles.  The undeformed chip thickness in a type B region can be shown to be 

 ( )
( )

[ ]sin
n c

B n

r y t d
t rθ

θ
+ −

= −  (4.21) 

where cd  is the nominal depth of cut.  Just like ( ), ,u At Wθ ,  ( ),u Bt θ  must be defined over a valid 

range of angles in order to make physical sense.  However unlike ( ), ,u At Wθ , it only depends on θ  

since its free boundary is always the unmachined workpiece surface.  As an aside, this work has been 
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careful in distinguishing the nominal depth of cut from the undeformed chip thickness since in nose 

radius machining they are two different quantities.  This is true even when there is no relative tool-

workpiece vibration, as suggested by Equation (4.21). 

In order to find all the angles of intersection between the tool nose radii with centers of 

curvature at positions in the regenerative position space, ,M Nθ , the Cartesian coordinates of 

intersection between them, ( ), ,,i M N i M Nx y− − , must be found first.  The unknown coordinate of 

intersection, ,i M Nx − , between the thM  and thN  previous tool nose positions is 

 

( )

( )

2

, ,2 2
, ,

,
2

, 2 2
, ,

41
1 0

2

41
1 otherwise

2

n
y M N y M N

x M N y M N

i M N

n
y M N

x M N y M N

r
f M N

x
r

f M N

− −
− −

−

−
− −

⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ ⎟⎪ ⎜ + −∆ − ∆ >⎟⎜⎪ ⎟⎜⎪ ∆ +∆ ⎟⎜⎝ ⎠⎪⎪=⎨⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜ + +∆ − ⎟⎪ ⎜ ⎟⎪ ⎜ ∆ +∆ ⎟⎜⎪ ⎝ ⎠⎪⎩

 (4.22) 

where   

,x M N Mf Nf−∆ −�  
 

( ) ( ),y M N y t M y t Nτ τ−∆ − − −�  
 
Once ,i M Nx −  is found, ,i M Ny −  is simply 

 ( ) ( )
22

, ,i M N n i M Ny r x Mf y t Mτ− −=− − − + −  (4.23) 

Finally, the angle of the intersection between the thM  and thN  previous tool nose radii is found to 

be: 

 

( )

( )

,1
,

,

,1
,

,

,

tan 0 :

tan 0 :

i M N
i M N

i M N

i M N
i M N

i M N

M N

y t y
x M N

x

y t y
x M N

x
π

θ

−−
−

−

−−
−

−

⎧ ⎡ ⎤⎪ −⎪ ⎢ ⎥⎪ ≥ ≠⎪ ⎢ ⎥⎪ ⎢ ⎥⎪ ⎣ ⎦⎪= ⎨⎪ ⎡ ⎤−⎪ ⎢ ⎥⎪ + < ≠⎪ ⎢ ⎥⎪⎪ ⎢ ⎥⎣ ⎦⎪⎩

 (4.24) 

Equation (4.24) is solved for all previously discussed combinations of M  and N , where M N≠ , 

and by the symmetry of the problem , ,M N N Mθ θ= .  Next, the intersection between the thW  previous 
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tool nose radius and a line coincident with the unmachined workpiece surface in the XY  plane, Wθ , 

is located at an angle of 

 

( )

( )

1
2,

2,

1
2,

2,

tan 0

tan 0

n c
W

W

W

n c
W

W

r y t d
c

c

r y t d
c

c

π

θ

−

−

⎧ ⎡ ⎤⎪ + −⎪ ⎢ ⎥⎪ − ≥⎪ ⎢ ⎥⎪ ⎢ ⎥⎪ ⎣ ⎦⎪=⎨⎪ ⎡ ⎤+ −⎪ ⎢ ⎥⎪ − <⎪ ⎢ ⎥⎪⎪ ⎢ ⎥⎣ ⎦⎪⎩

 (4.25) 

where 

( )( ) ( )( )2, 2W c n cc d y t W r y t W d Wfτ τ− − + − − −�  
 

If any values of Wθ  are imaginary it means that the cutting tool has moved so far relative to 

the workpiece in the Y  direction that the tip did not cross the level of the unmachined workpiece 

surface at time t W τ− .  For future developments, these imaginary angles should be set equal to zero 

in computer code implementation for the purpose of using an algorithm that will determine the 

angles of intersection relevant to the undeformed chip area.  If there are large amounts of vibration 

during the simulation the tool can momentarily lose contact with the workpiece, and the cutting 

forces will go to zero.  To check if cutting is taking place, the following inequality is evaluated  

 0 ,    and 1T T T Dθ θ> ∀ ∈ ≤ ≤]  (4.26) 

If the inequality if true for all values of T  then cutting is taking place.  The inequality is checking 

whether any of the angular intersections between tool nose positions at times in the regenerative 

delay space and the level of the unmachined workpiece surface are greater than the one at the current 

time, 0θ .  If this is true, then cutting is not taking place. 

 
4.2.2 An algorithm to determine the relevant angles of intersection pertaining to the undeformed chip area 

As previously mentioned, there are many more angles of intersection calculated by 

Equations (4.24) and (4.25) than are needed to define the undeformed chip area.  Owing to this, an 

algorithm will now be presented which will find which of these angles are relevant.  First a 

( ) ( )1 1D D+ × +  real symmetric matrix, Ang , that stores all angles of intersection is constructed as  
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( ) ( )

0 1,0 ,0

0,1 ,1

0, 1,
1 1

D

D

D D D
D D
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θ θ θ

θ θ

θ θ θ
+ × +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"

%

# % #

"

 (4.27) 

where the diagonal terms come from Equation (4.25) by considering all values of W  defined in 

Equation (4.10) and the off-diagonal terms are symmetric and come from Equation (4.24) by 

considering all combinations of M  and N , defined in Equations (4.11) and (4.12).  Not counting the 

entries along the diagonal, the ( )th1S +  row of Ang  corresponds to the angles of intersection 

between the tool position at time t Sτ−  and all other tool positions (and likewise for the ( )th1S +  

column due to the fact that Ang  is symmetric).  A term along the diagonal, located at either the 

( )th1S +  row or column, is the intersection between a line coincident with the unmachined 

workpiece surface in the XY  plane and the tool position at time t Sτ− . 

With the matrix Ang  constructed, the algorithm shown in Figure 4-6 can be implemented in 

order to find the angles of intersection relevant to the undeformed chip area.  This approach is valid 

when the inequality in Equation (4.26) is satisfied.  First a positive integer, L , is chosen in the range 

( )2 1L D≤ ≤ +  such that ( ),Ang L L  is as large as possible.  This integer corresponds to the previous 

tool position whose intersection with the free workpiece surface is relevant to the description of the 

undeformed chip area (e.g. in Figure 4-3 L  would equal 2).  Next a ( )2 1D× +  matrix, Ind , is 

created in order to store matrix indices corresponding to angles in Ang  that are relevant to the 

undeformed chip area.  The indices are arranged such that their corresponding angles are in order, 

with the index of the largest angle stored in the first column, and that corresponding to the smallest 

angle stored in the last column.  At most there can be 1D +  relevant angles of intersection for the 

undeformed chip area, and at the least there will be two (e.g. in quasi-static cutting force modeling, 

where the relevant angles are always 1θ  and 1,0θ ).  The first column is assigned the value of [ ]  TL L  

indicating that ( ),Ang L L  is the first and largest angle relevant to the undeformed chip area, where 
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[ ]T⋅ denotes the transpose of a matrix.  The convention of storing indices in Ind  is best explained by 

the following example: 

1 1,2 2,3 3,0
1

2 2 3 4

2 3 4 1 Q
Ind θ θ θ θ

×

⎡ ⎤
⎡ ⎤⎢ ⎥= → ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 

where the “→ ” means that the indices in the first matrix imply the angles listed in the second. 

In this example, the values in Ind  correspond to the vibration history depicted in Figure 

4-3.  The largest relevant angle to the undeformed chip area is 1θ  (besides 0θ , which is always relevant 

as long as there is cutting), and hence the first column is [ ]2  2 T .  The chip area is then defined by the 

tool position at t τ−  until it intersects the previous tool boundary at time 2t τ− ; hence the next 

column entry in Ind  is [ ]2  3 T .  Next, the chip area is defined by the tool boundary at time 2t τ−  

until it intersects the previous tool boundary at time 3t τ− , reflected by the column entry of [ ]3  4 T  

in Ind .  Finally, the chip area is defined by the tool position at time 3t τ−  until it intersects the tool 

position at the current time, t , which explains the final entry of [ ]4  1 T  in Ind .   

A pattern now emerges, as indicated by each identical pair of numbers enclosed in dotted 

lines.  The indices for the second column have to correspond to an angle of intersection that lies 

along the tool boundary at time t τ− , since the indices in the first column correspond to an 

intersection between the free workpiece surface and the tool position time t τ− .  Therefore, a search 

is conducted along the 2nd row of Ang  for the next relevant angle, and this explains why the “2” is 

carried from entry ( )2,1  to entry ( )1,2  in Ind  (indicated by the arrow).  Likewise when the indices in 

the third column are being found, they must correspond to an angle in Ang  that lies along the tool 

boundary at time 2t τ− since the last relevant angle of intersection was between a tool position at 

time t τ−  and time 2t τ− .  This explains why the “3” is carried from entry ( )2,2  to entry ( )1, 3  in 

Ind .  A similar argument holds for the “4” being carried from entry ( )2, 3  to entry ( )1,4  as well. 

Returning to the flowchart in Figure 4-6, the final step of the initialization process, shown in 

the first block, consists of assigning a counter variable, p , with the value of 2.  p  corresponds to the 
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column number of Ind  for which index values are currently being solved.  Since the first column 

was already assigned values of [   ]TL L , it starts by referencing the second column of Ind .  Next, the 

algorithm enters the outer loop by first guessing the thp column of Ind  and assigning it the value of 

( )[ ]2, 1   1
T

Ind p− .  The first entry in this column, ( )2, 1Ind p− , is due to the observation in the 

previous example that the number in the first row of every pair of indices in all columns > 2 of Ind  

corresponds to the number in the second row of the previous column.  However, the value of 1 for 

the second entry is only an initial guess and could possibly be overwritten.  Another variable, q , will 

reference the thq  entry of the ( )th1,Ind p  row of Ang .  It starts at the value of ( )2, 1 1Ind p− +  and 

tests the two statements in the decision block for each entry.  Collectively the two statements check 

to see if the current angle being evaluated, ( )( )1, ,Ang Ind p q , is smaller than the angle in Ang  

corresponding to the last relevant indices that were found, ( ) ( )( )1, 1 , 2, 1Ang Ind p Ind p− − , and 

larger than the current guess, ( ) ( )( )1, , 2,Ang Ind p Ind p .  If this is true then the current value of q  is 

assigned to ( )2,Ind p  and the iteration along the ( )th1,Ind p  row of Ang  continues. 

Eventually q  will reach the ( )th1D + entry in the ( )th1,Ind p  row of Ang  and the algorithm 

will check to see if ( )2,Ind p  is still equal to 1, as this was the initial guess when iteration began in the 

inner loop.  If this true then the last relevant angle in the chip area has been found and the algorithm 

terminates, since the last intersection must be between the RTWD at the current time and a previous 

one.  Just like in the previous example, the second row of the last column of a completed matrix, 

Ind , will always be equal to one.  If ( )2,Ind p  is not equal to 1 than p  is incremented and another 

relevant intersection angle in the chip area will be found the next iteration.  It is possible that the 

algorithm will terminate and less than 1D +  angles of intersection describing the chip area will have 

been found, thereby resulting in some columns of Ind  containing zeros.  In this event, Ind  should 

be truncated to only have columns with nonzero values.  Finally, a the current value of q  is stored in 
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the variable Q , which represents the number of columns in Ind , or more specifically the number of 

angle intersections  found to be relevant to the free boundary of the undeformed chip area. 

 
Figure 4-6: An algorithm for determining the angles of intersection relevant to the undeformed chip area. 

 
 
4.2.3 Exact formulation of the angle of the chip flow direction 

With the matrix, Ind , referencing the angles of  intersection in the matrix, Ang , that are 

relevant to the undeformed chip area, Equation (4.17) can now be evaluated using these angles as the 
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integration limits in conjunction with the previously derived expressions for ( ), ,u At Wθ  and ( ),u Bt θ .  

It is rewritten in a new form in order to facilitate implementation in computer code, given as 

 
( ) ( )( )
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 (4.28) 

The form of Equation (4.28) is the same as Equation (4.17) in that there are contributions 

from type A and B regions in both the numerator and denominator of the fraction inside the 1tan−  

function.  The contribution from type A regions involves a summation of various integrals, each one 

being evaluated over θ  in the range ( ) ( )( ) ( ) ( )( )1, 1 , 2, 1 ,  1, , 2,Ang Ind q Ind q Ang Ind q Ind q⎡ ⎤+ +⎣ ⎦  as q  

varies from 1 to 1Q− , where Q  is the number of angular intersections associated with the 

description of the undeformed chip area.  In each integration, ( ),At Wθ  is also passed the value of 

( )1, 1Ind q −  for W , since ( )( )( )1, 1y t Ind q τ− −  corresponds to the previous tool position that is 

defining the free boundary of the undeformed chip area in the current range of θ .   For conciseness, 

only the results of a single integration over a type A region are presented for the numerator and 

denominator of Equation (4.28) (i.e. the summation has been dropped) in order to show the form of 

the result, and the generic ( ),At Wθ  has been used in place of ( )( ), 1, 1At Ind qθ − .  The integral along 

a type A region in the numerator is given by 

  

( ) ( ) [ ] ( ) [ ]

[ ]
[ ]

( )

( )

2 , 3,

2 1

3,

2

1
sin , sin 2 2 4 sin
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                                    2 cos tan

                                  2 ln 2

u A W W W W n
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W W
W n W W

W

n W

t W d L L c r
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c
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π θ θ θ θ χ θ
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⎛⎜⎡ ⎤− = − + − +⎜⎣ ⎦ ⎜⎜⎝

⎛ ⎞⎡ ⎤− ⎟⎜ ⎢ ⎥ ⎟⎜ + − +⎟⎜ ⎢ ⎥ ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

−

∫

[ ]( ) [ ]3,cos sinW W W Wcθ χ χ
⎞⎟⎟− + ⎟⎟⎠

  (4.29) 

when neglecting the constant of integration (it would cancel when the above result is evaluated over 

the appropriate integration limits).  The integral along a type A region in the denominator is given by 
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 (4.30) 

where  

( )( )2
3, 2 cos 2 1W n W Wc r L θ χ⎡ ⎤+ − −⎣ ⎦�  

 
In Type B regions the integrals are each only evaluated once with the upper limit always 

being 0θ .  This is because if cutting is taking place, 0θ  must be the largest angle associated with the 

undeformed chip area.  The results of these integrations in the numerator and denominator of 

Equation (4.28) are 

 ( ) ( )
( ) ( )( )

( )( ) [ ][ ] [ ]
( ) ( )( )

00                                            

2 ,

1,1 , 2,11,1 , 2,1                        

sin ln sin sinu B n c n

Ang Ind IndAng Ind Ind

t d r d y t r
θθ

π θ θ θ θ θ⎡ ⎤− = − + −⎣ ⎦∫  (4.31) 
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4.2.4 Development of the effective width of cut and effective undeformed chip thickness 

Another important quantity in Figure 4-3 is the effective width of cut, w∗  and effective  

undeformed chip thickness, ut
∗ .  Referring to the Oxley cutting force model in Chapter 3 used to 

describe the forces due to chip formation, w  becomes w∗  and ut  becomes ut ∗ , thereby expressing an 

irregularly-shaped chip area as a simple equivalent rectangular area, as shown in Figure 4-3. w∗  is 

chosen to be the length of the portion of the tool nose engaged in the workpiece, given by 

 ( )( )0 (1, , (2, )nw r Ang Ind Q Ind Qθ∗ = −  (4.33) 

The product of w∗  and ut
∗  will be such that it is the same as the sum of the areas from all 

potentially multiple type A regions and a single and type B regions (the total undeformed chip area).  

Therefore ut ∗  can be thought of as the total undeformed total chip area divided by w∗ , expressed as 
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where the integral associated with undeformed chip area contributions from type A regions is 

(neglecting the summation for conciseness purposes) 
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and the undeformed chip area contribution from a type B region is 
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where j  is 1− .   

It should be noted that in the present application when Equation (4.35) is evaluated, the 

imaginary portion should cancel to give a real-valued area.  However in numerical computer 

evaluation there will be a relatively small imaginary part due to round-off error, so it is necessary to 

take the real part of this area. 

In Figure 4-7 are nine successive undeformed chip areas during a chatter simulation using 

the yet-to-be fully presented simplified dynamic cutting force model in this dissertation, with 3D = .  

Figure 4-7A-I corresponds to one sinusoidal period of vibration of the workpiece relative to the 

cutting tool, with Figure 4-7A occurring the earliest in time and Figure 4-7I occurring the latest in 

time.  The shaded red region represents the undeformed chip area and the blue rectangle with sides 

that are dashed lines represents the effective undeformed rectangular chip area with dimensions w∗  

by ut ∗ .  Just as in Figure 4-3, the equivalent rectangular undeformed chip area is inclined at an angle 

of Ω  from the Y  axis.  The effective undeformed chip area changes its size and orientation as the 

actual undeformed chip area changes.  It is interesting to note that during chatter the regenerative 
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position space is such that when the current RTWD is most engaged in the workpiece the relative 

tool position earliest in the delay space, ( )3y t τ− , is almost maximally engaged as well so it can exert 

influence on the undeformed chip area (e.g. Figure 4-7B and C).  

 
Figure 4-7: Nine progressive points in time taken from a chatter simulation using the simplified dynamic force 

model showing how the undeformed chip area, regenerative position space, w∗ , and ut
∗  change with time 

when there is relative tool-workpiece vibration.  (A) Earliest in time; (I) latest in time. 
 
 
4.2.5 Description of the forces due to chip formation in the simplified dynamic cutting force model  

The final influence that the tool nose radius and vibration have on the equivalent orthogonal 

cutting process is the effective cutting velocity and rake angle.  This idea is extended from [57], where 
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D E F
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a single degree of freedom orthogonal model was used, and from [19] where a two degree of 

freedom orthogonal model was used, to the present case of oblique turning with a tool nose radius.  

Consider the following orthogonal machining operation depicted in Figure 4-8A, already transformed 

from the oblique nose radius cutting domain.  As in the plowing and flank interference model, there 

is a relative velocity component in the cutting direction, CV , and some instantaneous relative velocity 

in the thrust direction, TV .   

Previously described in Chapter 3, the Oxley orthogonal cutting force model only considers 

the component of the relative velocity parallel to the C  axis in Figure 4-8A.  However, this can be 

extended to the present scenario where the net relative velocity between the workpiece and the 

cutting tool is located at an acute angle of Vδ , as shown in Figure 4-8A.  To do this, the entire system 

can be rotated clockwise by Vδ  to yield the configuration depicted in Figure 4-8B. This is a standard 

configuration that can be input into the Oxley cutting force model since the net relative velocity, CV
G

, 

is directed horizontally.  Once the forces have been computed, an inverse rotation transformation 

can be applied.  The forces per unit width of cut predicted by the Oxley cutting force model in the 

rotated ′ ′C -T reference frame are Cf ′  and Tf ′ , and they are related to the total force  in the C -T  

reference frame by a simple rotation transformation and multiplication by w∗ , given by 

 [ ] [ ]cos sinC C v T vF w f w fδ δ∗ ∗′ ′= −  (4.37) 

 [ ] [ ]sin cosT C v T vF w f w fδ δ∗ ∗′ ′= −  (4.38) 

Based on the implementation of this rotation transformation, the C -T  reference frame in Figure 3-1 

that was used in the derivation of Oxley’s cutting force model should technically be labeled as the 

′ ′C -T reference frame.  This is because the Oxley model is applied instantaneously at points in time 

in the ′ ′C -T reference frame such that the net relative velocity between the workpiece and the 

cutting tool is directed horizontally.  Therefore, the ′ ′C -T reference frame exists at various angles of 

orientation, Vδ , from the C -T  reference frame, and is used to obtain a quasi-static prediction of the 

forces due to chip formation.   
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It should be noted that the force component perpendicular to CF  and TF , RF , is also 

perpendicular to Cf ′  and Tf ′  since the rotation transformation given in Equations (4.37) and (4.38) is 

about an axis coinciding with RF .  Therefore RF  in Equation (4.7) can be found from CF  and TF  

given in Equations (4.37) and (4.38), respectively. 

 
Figure 4-8: The influence of relative vibration on the effective cutting conditions.  (A), An orthogonal cutting 

scenario with dynamic elements; (B), an equivalent quasi-static representation suitable for use in Oxley’s cutting 
force model. 

 
In finding Cf ′  and Tf ′  in the ′ ′C -T reference frame, the effective cutting velocity, CV

∗ , has become 

 ( )22
C C C TV V V V∗ ∗= = +

K
 (4.39) 

and the rake angle, nα
∗ , has become nα

∗∗ , as given by 

 n n Vδα α∗∗ ∗= +  (4.40) 

where nα
∗∗  is a further modified version of nα

∗  due to dynamic effects and Vδ  is given as 

 1tan T
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δ
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−
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

 (4.41) 

where 

 ( )C CV V z t= − �  (4.42) 

The effective relative velocity in the thrust direction, TV , will always be less than the relative 

velocity in the radial cutting direction, ( )y t� , due to the tool nose radius effect.  Referring to Figure 

4-3, picture an infinite number of orthogonal cutting scenarios occurring all along the edge of the 
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tool nose, each with undeformed chip thickness, ( )ut θ , and differential width of cut, nr dθ .  At each 

angular position, θ , TV  is 

 [ ] ( )sinTV y tθ=− �  (4.43) 

The effective velocity in the thrust direction, TV
∗ , over the entire cutting region is therefore 

 ( )TV y tϕ∗ =− �  (4.44) 

where ϕ  is the tool nose radius scaling factor.  ϕ  captures the effective rate that the cutting tool is 

moving into the workpiece normal to the surface along the portion of the curved nose of the cutting 

tool that is engaged in the workpiece, and given as 

 [ ]
( )

0                     

(1, , (1, )

sin   
Ang Ind Q Ind Q

d
θ

ϕ θ θ= ∫  (4.45) 

It should be noted that in Equation (3.28), TV
∗  is used in place of TV  and the definition of CV  in 

Equation (4.42) is used to give a new formulation for the effective angle of material separation, 

( )e tβ∗  

 ( )
( )

( )
1tane e

C

y t
t

V z t
ϕ

β β∗ −
⎡ ⎤
⎢ ⎥= + ⎢ ⎥−⎣ ⎦

�
�

 (4.46) 

It should be noted that a dependence on time has been indicated explicitly for ( )e tβ∗  in order to 

facilitate later developments. 

Because vibration is present, the definition of the shear angle needs to be expanded.  Initially 

when the Oxley cutting force model was presented there was a single shear angle, Vφ , upon which 

the algorithm converged.  Now that there is relative vibration between the cutting tool and 

workpiece, the shear angle will need to be addressed differently.  As shown in Figure 4-8A, 0φ  will 

now be defined as the acute angle between the shear plane and the negative C  axis and will be 

referred to as the “quasi-static shear angle” since it is a notion from quasi-static cutting force 

modeling.  Vφ  will be defined as the acute angle between the shear plane and the direction of net 

relative velocity with respect to the cutting tool and will be referred to as the “dynamic shear angle”, 
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as shown in Figure 4-8B.  In this way, Vφ  will only equal 0φ  for 0Vδ = .  This new nomenclature will 

be used throughout the remainder of this dissertation. 

Additionally the effective undeformed chip thickness, ut
∗ , is now a function of the shear 

angle due to the nonzero effective workpiece surface slope, sδ
∗ , in Figure 4-8B.  As discussed 

previously, the undeformed chip thickness needs to be referenced from the tip of the cutting tool as 

the quantity t ∗′ .  In the simplified cutting force model, it is assumed that the initial workpiece slope, 

sδ , in Figure 4-8A is 0.  The workpiece slope in the rotated reference frame is therefore 

 s Vδ δ∗ =−  (4.47) 

regardless of the quasi-static shear angle, 0φ .  In a later section it will be shown that for a nonzero sδ ,  

the choice of 0φ  will affect t ∗′ , and hence an iterative procedure is used to determine 0φ .  The uncut 

chip thickness referenced from the tool tip, t ∗′ , as a function of the angle of net relative velocity is 

described by 

 
[ ]cos
u

V

t
t

δ

∗
∗′ =  (4.48) 

where ut ∗  was given in Equation (4.34).  It should be noted that in the computation of Cf ′  and Tf ′ , the 

regression surface fits for the Oxley model are employed, given by 

 ( ), , ,
CC F n C sf S t Vα δ∗ ∗∗ ∗ ∗′ ′=  (4.49) 

 ( ), , ,
TT F n C sf S t Vα δ∗ ∗∗ ∗ ∗′ ′=  (4.50) 

In Equations (4.49) and (4.50), referring to the development of Oxley’s cutting force model in 

Chapter 3, t ∗′ , nα
∗∗ , CV

∗ , and sδ
∗  are used in place of t ′ , nα , CV

G
, and sδ , respectively, to describe an 

oblique nose radius cutting scenario with vibration equivalently in the orthogonal cutting domain. 

 
 

4.3 Influence on plowing and flank interference forces 
 

Previously, forces due to plowing and flank interference were developed for an orthogonal 

straight edge cutting condition and given in Equations (3.61) and (3.62).  However, since turning 
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generally involves a cutting edge that has a radius, the equations need to be modified slightly.  The 

thrust force per unit width of cut, as given in Equation (3.59), acts normal to the tool nose in the 

XY  plane and therefore has components along the X and Y  axes.  The forces along the X  axis are 

not being considered due the workpiece’s large structural rigidity in that direction (this will be 

justified later by examining the stiffness in various directions of the actual workpiece used for 

experimental validation).  The forces directed along the radial cutting direction (Y  axis) are 

proportional to [ ]sin θ  and can be resolved by integrating along the tool nose over the angles that 

define the region of contact between the cutting tool’s edge and the workpiece as given by 

 [ ]
( )

[ ]
( )

[ ] [ ]( )
0 0                                                 

(1, , (2, ))       (1, , (2, ))

sin  sin cos sinY T n T n cf i

Ang Ind Q Ind Q Ang Ind Q Ind Q

P p r d p r d K Aw
θ θ

θ θ θ θ ϕ γ µ γ∗ ∗ ∗= = = +∫ ∫  (4.51) 

As defined in Equation (3.59), Tp  is the force in the thrust direction per unit width of cut, making 

YP  have units of force.  The differential width of cut is taken to be nr dθ , and it is assumed that the 

following relation holds, since it simplifies the analysis greatly: 

 
( )

0                     

(1, , (2, ))

       i i n

Ang Ind Q Ind Q

V A r d
θ

θ≅ ∫  (4.52) 

From Pappus’s centroid theorem [58], the volume of a solid of revolution is the product of 

the area of its generating surface and the distance that its geometric centroid travels.  Since the 

geometric centroid must lie somewhere in the region defined by the interference area, iA , and based 

on the length scales shown in Figure 3-3A, it can be concluded that the geometric centroid has a 

normal distance to the origin of the global XYZ  reference frame of approximately nr  regardless of 

the size and orientation of an interference area that would be encountered in a realistic machining 

simulation.  Therefore we can assume that the distance to the geometric centroid of iA  is a constant, 

nr .  In a similar manner, the forces in the tangential cutting direction (Z  axis) are  

 
( ) ( )

[ ] [ ]( )
0 0                                          

(1, , (2, )) (1, , (2, ))

           cos sinZ C n C n cf i

Ang Ind Q Ind Q Ang Ind Q Ind Q

P p r d p r d K Aw
θ θ

θ θ µ γ γ∗ ∗ ∗= = = −∫ ∫  (4.53) 
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It is important to note that the differential force, Cp , does not vary along the path of integration 

since it is always in the Z  direction.  γ∗  is taken to be 0D as was done previously when interference 

forces were derived in orthogonal cutting in order to keep the solution for the dynamic cutting force 

in closed-form.  In later developments, the refined dynamic cutting force model will be presented 

and will have many elements that can not be evaluated in closed-form.  It will employ an exact 

calculation for γ∗  in hopes of obtaining an improved model of chatter. 

 Finally as an aside, it is generally thought that the “regenerative effect” only applies to the 

undeformed chip area and hence only affects the forces due to chip formation.  From this model’s 

formulation (as well as the refined cutting force model that will be introduced in a later chapter) it is 

clear that the regenerative effect influences the interference forces as well.  This is evident by the 

integration limits in Equations (4.51) and (4.53) for the interference forces in the Y  and Z  

directions, respectively.  The limits in each case are the angles associates with the portion of the tool 

nose that is engaged in the workpiece.  One limit is 0θ , which is clearly only associated with the 

RTWD at the current time.  However one of them is ( )(1, , (2, ))Ang Ind Q Ind Q , which is always 

determined by a RTWD in the regenerative position space.  For a graphical representation consider 

Figure 4-3, a case where the integration limits in Equations (4.51) and (4.53) would be from 0,3θ  to 

0θ .  If the RTWD at time 2t τ−  was larger in the −Y  direction, the integration limits would instead 

be from 0,2θ  to 0θ , and hence the manifestation of the regenerative effect in the interference forces–

that is, the influence of previous RTWDs on the current state of cutting. 
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CHAPTER 5: COMPARISON WITH PREVIOUS WORK 
 
 

"Science is facts; just as houses are made of stones, so is science made of facts; but 
a pile of stones is not a house and a collection of facts is not necessarily science."  

–Henri Poincare 
 
 

5.1 The Various Orthogonal Cutting Configurations 
 

The analysis thus far for the simplified cutting force model has been built upon describing  

an equivalent representation of forces due to chip formation and interference in the plane, a so-called 

“orthogonal cutting force model.”  In the next chapter the refined cutting force model will be 

introduced and will still employ the orthogonal cutting force model paradigm.  Therefore, for both 

the simplified and dynamic cutting force models, it is imperative that the behavior of the orthogonal 

models correlate well with previously published experimental work in the literature. 

In the case of machining with vibration, there are two common scenarios that have been 

studied: wave generation [60]-[62], and wave removal [63]-[67].  In the case of wave generation, 

Figure 5-1A, the cutting tool has some relative sinusoidal vibration with respect to the workpiece in 

the thrust direction with amplitude, 0A , and a frequency, ω , in addition to the cutting velocity, CV .  

In the case of wave removal, Figure 5-1B, the cutting tool only has a velocity component in the 

cutting direction; however, the unmachined workpiece surface is sinusoidal with an amplitude 0A .  In 

this way, for either wave generation or wave removal, the undeformed chip thickness, ut , sinusoidally 

varies about some nominal depth of cut, cd , at an amplitude, 0A .  In short, for the case of wave 

generation the following equations hold: 

 [ ]0 sin 2u ct d A tπω= +  (5.1) 

 [ ]02 cos 2TV A tπω πω=  (5.2) 

where ω  is in Hz.  For the case of wave removal ut  is given in Equation (5.1) and 0TV = . 
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Figure 5-1: Examples of wave generation and wave removal in an orthogonal cutting scenario.  (A) Wave 

generation; (B) wave removal. 
 
 

5.2 Orthogonal Cutting Force Modeling of Wave Cutting 
 

Consider first the case of wave generation, with a depth of cut cd = 0.15 mm, cutting speed 

CV =3.0 m/s, rake angle nα = 7 deg, AISI 1018 steel workpiece material, vibration amplitude, 0A = 

0.05 mm, width of cut, w  = 1 mm, and a RTWD oscillation frequency, ω , of 600 Hz.  The forces 

due to chip formation are given in Figure 5-2, the shear angles in Figure 5-3, and the interference 

forces in Figure 5-4.  It should be noted that all components except for the undeformed chip 

thickness have had their nominal values subtracted, i.e. the value when 0ω = .   

The forces due to chip formation in Figure 5-2 are nearly in phase with the waveform of the 

undeformed chip thickness, sinusoidal in nature, and exhibit approximately symmetric behavior 

about 0 N.  For the case of the shear angles in Figure 5-3, the dynamic shear angle, vφ , leads in phase 

by about 65°, whereas the quasi-static shear angle, 0φ , lags in phase by about 65°.  Both waveforms 

are nearly sinusoidal in nature.  Finally the interference forces are shown in Figure 5-4 and for each 

component they have about a 90° phase lead relative to the undeformed chip thickness.  These 
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forces are highly asymmetric about 0 N and are less sinusoidal in nature than the waveforms for the 

shear angle and forces due to chip formation.  As one would intuitively expect, they reach maximum 

values when the tool is traveling into the workpiece (i.e. undeformed chip thickness has a positive 

time rate of change).  This was also demonstrated graphically in Figure 3-6. 
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Figure 5-2: The dynamic forces due to chip formation during wave generation.  ••••, Undeformed chip thickness, 

ut ;  ──, force in the cutting direction, CF ; ---, force in the thrust direction, TF .  
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Figure 5-3: The shear angle during wave generation.  ••••, Undeformed chip thickness, ut ; ──, dynamic shear 

angle, vφ ; ---, quasi-static shear angle, 0φ . 
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Figure 5-4: The dynamic interference forces during wave generation. ••••, Undeformed chip thickness, ut ; ──, 

force in the cutting direction, CP ; ---, force in the thrust direction, TP .  
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Finally, it is instructive to examine the total cutting force in the phase plane, shown in Figure 

5-5, still using the same parameters.  The total force in the thrust direction, T TF P+ , does not exhibit 

odd symmetry about the mean operating point of (0.15 mm, 0 N).  However, the total force in the 

cutting direction is more close to being odd-symmetric.  This lack of symmetry in the thrust direction 

is caused by the large asymmetric waveform about 0 N for the interference force in the thrust 

direction in Figure 5-4.  Since the asymmetric interference force in the cutting direction is much 

smaller, the total force in the cutting direction in Figure 5-5 is still close to being odd-symmetric.  

Both sets of forces exhibit hysteresis, as evident by the fact that the path of increasing chip thickness 

does not lie exactly on top of the path of decreasing chip thickness.  However the force in the thrust 

direction exhibits much greater hysteresis, as evident by the larger deviation between paths of 

increasing and decreasing undeformed chip thickness.  This same type of hysteresis for the forces in 

the thrust and cutting directions was also observed experimentally in [27].  
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Figure 5-5: A phase portrait of the total dynamic force and undeformed chip thickness during wave generation.  

─, Total force in the cutting direction, C CF P+ ; ---, total force in the thrust direction, T TF P+ . 
 

The 600 Hz RTWD oscillation frequency was chosen for the previous example since it is the 

approximate chatter frequency of the workpiece used to experimentally validate the two dynamic 

cutting force models presented in this thesis.  The phase difference between the undeformed chip 
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thickness and the forces and shear angles over a wider range of RTWD oscillation frequencies will 

now be explored.   

In order to find the phase difference between two signals, the individual phase of each one 

over time must be found first.  A so-called “analytic” signal, ( )Aq t , is constructed from the original 

signal, ( )q t , as 

 ( ) ( ) ( )A Hq t q t jq t= +  (5.3) 

Where ( )Hq t  is the Hilbert Transform, given as 

 ( )
( )H

q tPV
q t d

t
τ

π τ

∞

−∞

=
−∫  (5.4) 

and PV  is the Cauchy principle value.  In the case of data in the discrete domain, a Discrete Hilbert 

transform is employed [68].  The envelope of the signal, ( )A t , which is useful for estimating the 

signal oscillation amplitude comes directly from the analytic signal and is given as 

 ( ) ( ) ( )2 2
HA t q t q t= +  (5.5) 

 The instantaneous phase of the signal, ( )tθ , is now given as  

 ( )
( )

( )
1tan Hq t

t
q t

θ −
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

 (5.6) 

which for a physically meaningful instantaneous phase assumes that ( )q t  is a zero mean signal with 

both narrow band and slowly changing frequency content.  For a more rigorous definition of 

“physically meaningful”, reference [69] can be consulted.  In this way, the phase difference between 

two signals can be found by first finding their phases via Equation (5.6) and then taking the 

difference. 

Consider Figure 5-6, which uses the same conditions as in the last example except that the 

undeformed chip thickness only oscillates at an amplitude of 0.025 mm instead of 0.05 mm.  

Frequencies in the range of 200-1800 Hz are considered for the RTWD oscillation frequency; a 

common range for chatter to materialize in practice.  The phase difference relative to ut  for the 

forces due to chip formation, shear angle, interference forces, and the total cutting force are 
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presented in Figure 5-6A-D, respectively.  The phase difference is calculated such that if it is positive 

for a certain quantity then it leads the undeformed chip thickness in phase and therefore occurs 

earlier in time.  It should be noted that these plots contain two horizontal axes, one for the frequency 

of the RTWD, and the other for the wavelength of the machined workpiece surface, wλ .  This 

wavelength is given as 

 2
w CV

π
λ

ω
=  (5.7) 

where ω  is the oscillation frequency of the cutting tool relative to the workpiece in rad/s.  As 

suggested by Equation (5.7), wλ  is inversely proportional to 2 CVπ  times the RTWD oscillation 

frequency.  Due to this inverse relationship to frequency, the values for wλ  are non-uniformly spaced 

in  Figure 5-6. 
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Figure 5-6: The shear angle and cutting forces as a function of the sinusoidal RTWD vibration frequency for 

wave generation.  (A) Forces due to chip formation; (B) dynamic and quasi-static shear angles; (C) interference 
forces; (D) total force in the thrust and cutting directions. 
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Just as for the 600 Hz RTWD oscillation frequency in Figure 5-2, the forces due to chip 

formation in Figure 5-6A are nearly in phase with the undeformed chip thickness–only increasing 

slightly in phase with increases in the frequency of the RTWD.  In Figure 5-6B, the quasi-static and 

dynamic shear angles are given.  Just as in the specific case of the shear angle oscillation in Figure 

5-3, the quasi-static shear angle, 0φ , generally tends to lag the undeformed chip thickness and 

approaches -90° from above as the RTWD oscillation frequency increases.  This same type of phase 

lag behavior was also experimentally observed in [61] and [67] with hot finished mild steel (0.25% C) 

where it increased with increasing RTWD oscillation frequency.  In Figure 5-6C, the interference 

forces are given.  It should be noted that some of the “blips” in this plot are a consequence of the 

original signal violating some of the assumptions needed for a physically meaningful instantaneous 

phase.  Specifically, the assumption of a narrow-band signal was violated since it is not dominated by 

a single sinusoid, as evident by 600 Hz waveform in Figure 5-4.    Since the interference forces 

generally have between 45° and 90° of phase lead, they would tend to have more of a damping effect 

than a stiffening one.  It is now clear why it has been reported that interference forces add process 

damping to the machining process [28]. 

It is normally difficult to isolate interference forces from those due to chip formation since 

the RTWD results in undeformed chip thickness variation and in turn changes in the chip formation 

forces.  In [62] some “wave on wave” machining tests were conducted on with an aluminum alloy 

(HE-10-WP) workpiece material.  This configuration would result if the two machining 

configurations shown in Figure 5-1 were combined such that there was both a sinusoidal RTWD as 

well as a sinusoidal unmachined workpiece surface.  The phasing between the waves on the 

unmachined surface and those generated by the cutting tool on the machined surface was such that 

the undeformed chip thickness was held constant and forces due to chip formation were drastically 

reduced (there would still be some small force variation in the chip formation forces since the length 

of the shear plane would change).  In this way, the interference forces were essentially isolated and in 

the thrust direction it was shown to have 70°-100° of phase lead, thus contributing to process 
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damping and agreeing with the model’s results in Figure 5-6C.  They also noted that there was a 

reduction in phase lead with increasing wavelength, wλ  (or decreasing RTWD oscillation frequency), 

which is again consistent with Figure 5-6C. 

Finally, in Figure 5-6D, the phase difference between the total cutting force and the 

undeformed chip thickness is given.  It should be noted that at higher frequencies the total thrust 

force, T TF P+ , moves towards 90°, reaching a maximum value of about 80° at 1800 Hz. The total 

force in the cutting direction, C CF P+ , increases in phase as well but stays much closer to 0°, only 

reaching a maximum value of 16° at 1800 Hz.  This agrees with reports in [62] that showed for 

cutting speeds in the range of 0.25-6.10 m/s and RTWD oscillation frequencies in the range of 0-400 

Hz in the machining of mild steel, the total machining force in the thrust direction led the 

undeformed chip thickness in phase.  Specifically, with increasing frequency, increasing phase lead 

was observed.  It was also shown that the total force in the cutting direction had a slight phase lead 

(less than ±2 deg).  Although this does not entirely agree with the results in Figure 5-6D, the phase 

lead from 200-400 Hz is around 5-10 deg, which is not far from ±2 deg when considering the 

context of the current analysis. 

At first glance it is not immediately apparent why there is an increase in phase lead of the 

total cutting force at higher RTWD oscillation frequencies, especially in the thrust direction.  

However, when the amplitudes of each force component as a function of frequency are examined in 

Figure 5-7 the reason becomes evident.  In Figure 5-7A the amplitudes of the forces due to chip 

formation are plotted as a function of frequency and both components remain relatively constant.  

However, the interference forces in Figure 5-7B increase in amplitude dramatically with increases in 

frequency, especially in the thrust direction.  This accounts for the increases in amplitude of the total 

cutting forces in Figure 5-7C, and phase shift of the total thrust force towards 90° in Figure 5-6D as 

the RTWD oscillation frequency increases.   
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Figure 5-7: The amplitude of the forces as a function of the RTWD sinusoidal vibration frequency for wave 

generation.  (A) Forces due to chip formation; (B) interference forces; (C) total cutting forces. 
 
 

5.3 Orthogonal Cutting Force Modeling of Wave Removal 
 

For the case of wave removing, the dynamic forces due to chip formation are given in Figure 

5-8, and the shear angle in Figure 5-9.  The same cutting conditions are used as in the example shown 

in Figures 5-2 to 5-4 except that now the unmachined workpiece surface is modulated at an 

amplitude of 0.05 mm about a nominal depth of cut of 0.15 mm, with 0TV = .  The interference 

forces are not shown, since they remain constant during wave removal because there is no relative 

motion in the thrust direction between the workpiece and the cutting tool.  In the simulation, both 

the shear angle and the cutting force are in phase with the undeformed chip thickness at 600 Hz.  

This was also true when the frequency modulation of the unmachined workpiece surface was varied 

from 200-1800 Hz, and hence these results are not displayed. 
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Figure 5-8: Dynamic force due to chip formation during wave removal.  ••••, Undeformed chip thickness, ut ;  

──, force in the cutting direction, CF ; ---, force in the thrust direction, TF .  
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Figure 5-9: Shear angle during wave removal.  ••••, Undeformed chip thickness, ut ; ──, dynamic and quasi-

static shear angles, vφ  and 0φ , respectively. 
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CHAPTER 6: THE REFINED DYNAMIC CUTTING FORCE MODEL 
 
 

“The hypotheses we accept ought to explain phenomena which we have observed. 
But they ought to do more than this: our hypotheses ought to foretell phenomena 
which have not yet been observed.” 

–William Whewell 
 
 
6.1 The General Formulation of the Forces Due to Chip Formation and Interference 

 
Thus far, forces due to chip formation and interference between the tool and workpiece 

have been captured by a single “equivalent orthogonal cutting scenario.”  Historically this has been 

the approach in both quasi-static and dynamic cutting force modeling.  This approach takes a 

relatively complicated cutting configuration and resolves it into a single simple oblique straight edge 

representation.  This approach can be successful, especially if various “cutting force coefficients” are 

used to account for shortfalls in the geometric and material property modeling of the machining 

process.  However, this type of approach will surely lead to a cutting force model that is application-

specific because the cutting force coefficients are tuned to experimental data. 

In this chapter a “refined cutting force model” will be introduced; this model employs a 

more rigorous description of dynamic cutting forces than was used in the simplified cutting force 

model.  In general, this model relies upon integrating an “infinite” number of orthogonal cutting 

scenarios along the portion of tool nose that is engaged in the workpiece (e.g. the range 0,3 0θ θ θ≤ ≤  

in Figure 4-3), rather than attempting to resolve them into a single case.  As a result, many 

parameters in the refined cutting force model have dependence on θ , where θ  was defined along 

the region of the undeformed chip thickness (as was shown in Figure 4-3).  These parameters have 

counterparts in the simplified cutting force model that have no dependence on θ  since they were 

derived to describe the behavior of the entire cutting process with a single value. 

As was discussed in the development of the previously presented simplified cutting force 

model, only forces along the Y  and Z  axes will be considered.  These forces will be used in a 

dynamic simulation of a turning operation to excite a vibrating workpiece in order to study the 
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occurrence of chatter.  This will be a separate effort from the dynamic cutting simulations using the 

forces generated by the simplified cutting force model introduced in Chapter 4, and comparisons 

between the two will be drawn in Chapter 8. 

In the case of the refined dynamic cutting force model, the forces exerted upon the cutting 

tool due to chip formation along the Y  and Z  axes, refined versions of those in Equations (4.8) and 

(4.9), are given by 

 ( )
( )

0                                                                      

, , , ,

(1, , (2, )                                              

sin cosY T S R S n

Ang Ind Q Ind Q

F f C f C r d
θ

θ θ θ θ θ∗ ∗⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∫  (6.1) 

 
( )

0                       

,

(1, , (2, )

    Z C n

Ang Ind Q Ind Q

F f r d
θ

θ θ= ∫  (6.2) 

where for conciseness purposes, quantities with the subscript θ  denote a dependence on θ  and  
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 (6.3) 

,Cf θ  and ,Tf θ  have units of force/length and are the cutting and thrust forces per unit width of cut 

(similar to /CF w  and /TF w  where CF  was given in Equation (4.37) and TF  in Equation (4.38))  

and will be developed in the next section.    

Now, the previously developed straight edge tool geometry given in Equations (4.1)-(4.6) for 

the simplified model (shown in red in Figure 4-1 and developed in [52]) is a function of θ  given in 

Equations (6.4)-(6.9) (shown in blue in Figure 4-1).  The direction of net force on a chip of 

differential width at an angle θ  is measured relative to the side cutting edge and is given as  

 0, SCθη π θ= − −  (6.4) 

The projection of 0,θη  on the tool rake face is  

 
[ ] [ ]

[ ] [ ]( ) [ ]( )
0,1

0, 2 2

0, 0,

cot tan sin
cos

cot sin tan csc cos

n

n

i

i i

θ
θ

θ θ

η α
η

η α η

−

⎡ ⎤
⎡ ⎤⎢ ⎥−⎣ ⎦⎢ ⎥′ = ⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥− +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (6.5) 

and the effective side cutting edge at an angle, θ , is given as 
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 , 0,S SC Cθ θη∗ = +  (6.6) 

The inclination angle is now 

 [ ] [ ] [ ]1
0, 0,sin cos sin sin sin cosni i iθ θ θη η α∗ − ⎡ ⎤⎡ ⎤ ⎡ ⎤′ ′= −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  (6.7) 

with the rake angle being defined as 
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and the chip flow angle is given as 

 ,c iθ θη∗ ∗=  (6.9) 

In Figure 6-1 the equivalent tool geometry parameters, iθ∗  and ,n θα∗ , are plotted as functions 

of θ  on the interval [ ]0 ,180  for the given tool geometry parameters: 5nα = , 10i = , and 

5SC = .  The parameters were selected in order to describe how the equivalent tool geometry varies 

locally along the cutting tool.  It should be noted that there is a discontinuity in both the inclination 

and rake angles at 175 , or more generally 180 SC− .  This is not a problem, however, since at this 

same angle, θ , there is a transition from the curved tool nose radius to the side cutting edge; hence 

the proposed approach is not valid anyway for the reasons discussed in Chapter 2.  As stated in the 

assumptions in Chapter 2, the analysis in this dissertation is only being performed in machining 

operations along the tool nose; thus, this discontinuity will never be encountered.  As a point of 

reference, the shaded red area in Figure 6-1 is a typical range of angles over which the nose of the 

cutting tool is engaged in the workpiece.  

In a similar philosophy to the refinement of the forces due to chip formation, a more exact 

representation of the interference forces can be obtained by integrating along the portion of the tool 

edge engaged in the workpiece, given by  
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θ θ= ∫  (6.11) 

where the differential interference forces, ,Cp θ  and ,Cp θ  have units of force/length and will 

be described in a later section (similar to /CP w  and /TP w  with CP  and TP  given in Equation 

(3.61) and (3.62), respectively).  It should be noted that all of the aforementioned quantities that have 

been denoted as having dependence on θ  depend on many other parameters as well.  However, for a 

given time step in a chatter simulation, all other quantities can be temporarily viewed as constant; 

hence there is sole dependence on θ  when evaluating the dynamic cutting forces. 

 
Figure 6-1: The equivalent tool geometry (not including SC

∗ ) as a function of the angle θ  for 5nα = , 
10i = , and 5SC = . —, iθ

∗ ; —, ,n θα∗ . 
 

6.2 Development of the Refined Approach to Describing Chip Formation Forces 
 

Now the evaluation of the differential forces due to chip formation, ,Cf θ   and ,Tf θ , in 

Equations (6.1) and (6.2) will be presented in detail.  This approach is slightly more involved than 

finding the forces due to chip formation in the simplified cutting force model because of the effect 

of a nonzero initial workpiece surface slope, sδ .  This is not to be confused with sδ
∗ , which is the 

effective workpiece surface slope when relative vibration is present (resulting from the rotation 

transformation shown in Figure 4-8). 

θ [deg]
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To motivate the need for an initial workpiece surface slope, first consider the diagram in 

Figure 4-3.  Along the free surface of the chip, the majority of this boundary is prescribed by the 

previous three RTWDs of the tool: ( )y t τ− , ( )2y t τ− , and ( )3y t τ− .  Only a small portion 

bounded by the angles 0θ  and 1θ  has a boundary that is defined by the unmachined surface of the 

workpiece.  In the case of dynamic cutting with vibration, most of the machined surface will not have 

a slope of zero since when it was created the cutting tool likely had a nonzero vibration component 

in the radial (Y ) cutting direction.  Based on this assertion, only the portion of the chip between 0θ  

and 1θ  will have a zero initial workpiece slope.  

Now consider the diagram in Figure 4-8A.  If sδ  is nonzero then the quasi-static shear angle, 

0φ , affects the undeformed chip thickness referenced from the tool tip, t ′ , in the rotated quasi-static 

cutting representation in Figure 4-8B based on the following equation: 
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′ =  (6.12) 

where sδ
∗  in this case is no longer as it was presented in Equation (4.47) due to the nonzero initial 

workpiece surface slope, sδ , and is given by 

 s s Vδ δ δ∗ = −  (6.13) 

As discussed in the previous section, the refined approach integrates along the cutting zone 

to describe forces in a more precise manner, and hence t ∗′ , sδ
∗ , sδ , and 0φ  must now have 

dependence on θ .  In addition, sδ  will be shown to have dependence on W  as well, since it is 

defined by the relative velocity between the workpiece and the cutting tool at time, t W τ− .  

Equations (6.12) and (6.13) now become 
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where sδ
∗  has become a function of W  as well, and is given by 

 ( ) ( ) ,, ,s s VW W θδ θ δ θ δ∗ = −  (6.15) 
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where ( ),ut Wθ  is either ( ), ,u At Wθ  or ( ),u Bt θ , depending on whether θ  is in a type A or type B 

region, and ,V θδ  is  

 ( ) [ ]
( )

1
,

sin
tanV

C

y t

V z tθ

θ
δ −

⎡ ⎤
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 (6.16) 

It should be noted that ( ),ut Wθ  and tθ′  are not called  ( ),ut Wθ∗  and tθ ∗′  (akin to ut ∗  and t ∗′  in Figure 

4-8) since they are an exact representation of the undeformed chip thickness at an angle along the 

cutting zone, θ .  They are not approximations based on trying to resolve the entire undeformed chip 

area into a single undeformed chip thickness, as was done for the simplified cutting force model. 

The final element needed is the workpiece surface slope as a function of θ  and W , 

( ),s Wδ θ .  To derive this relationship, the exhibit shown in Figure 6-2 is used.  Each picture depicts 

the same cutting scenario from a different viewing angle.   At each time t W τ−  ( 0 W D≤ ≤  and 

D ∈ ), based on the amount of relative tool-workpiece velocity in the Y  direction, the entire 

surface generated by the curved tool edge will have the same radial complimentary workpiece surface 

slope, ( ),s comp Wδ ′ .  It is taken to be the angle between a line tangent to the machined surface and the 

negative radial cutting direction (directed into the workpiece), as shown in detail for the tool position 

at ( )1t W τ− +  in Figure 6-2B. The subscript “comp ” is used to denote a complimentary angle 

measurement.  

In Figure 6-2B, a portion of a machined workpiece surface is shown over three revolutions.  

When the machined surface was generated at time ( )1t W τ− + , there was zero relative velocity in 

the Y  direction between the cutting tool and the workpiece; hence, the complementary surface slope 

at all points along the machined surface at this time is 90°.  However, when the cutting tool 

generated the machined surface at time t W τ− , it had a velocity component in the −Y  direction 

and created a sloped surface, with ( ), 0s comp Wδ ′ ≠ .  It should be noted that ( ),s comp Wδ ′  is purely a 

function of W  since all points on the free boundary of the undeformed chip area defined by a 

previous relative tool-workpiece velocity at a time in the regenerative delay space have the same slope 
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within the YZ  plane.  In fact, ( ),s comp Wδ ′  is function of time as well, but as previously mentioned 

since so many parameters in the cutting model depend on time, it is not stated explicitly for 

conciseness. 

Figure 6-2: A schematic demonstrating the influence of vibration at times in the regenerative delay space on the 
workpiece surface slope, ,s θδ .  (A) A view from the bottom showing the chip area currently being removed in 

dark red; (B) a top view showing the geometry needed to find the complimentary radial workpiece surface 
slope, ( ),s comp Wδ ′ . 

 
The complementary workpiece surface slope, ( ),s comp Wδ ′ , is purely a function of the tool 

behavior at the time that the surface was generated and is given as 
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 (6.17) 

In Figure 6-2B the cylindrical coordinates, r , θ , and Z  correspond to a particular point along the 

undeformed chip area with free boundary defined by the thW  previous RTWD at time t W τ− .  At 

this point, a right triangular prism having an angular elevation of ( ),s comp Wδ ′  is tangent to the 

workpiece surface, as shown in the figure.  The complementary polar workpiece surface slope, 

( ), ,s comp Wδ θ , is the elevation of a cross section of the right triangular prism projected onto the r −Z  

plane at the polar coordinate θ  and is given as 
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 (6.18) 

By definition, ( ),s comp Wδ ′  is /2π  radians along the region of the undeformed chip area defined by the 

unmachined workpiece surface.  Finally, it should be realized that the parameter that was originally 

needed before this analysis began, ( ),s Wδ θ , is simply the complement of ( ), ,s comp Wδ θ , which is 

described by 

 ( ) ( ),, ,
2s s compW W
π

δ θ δ θ= −  (6.19) 

It should be noted that ( ),s Wδ θ  could have been derived more directly by not finding 

complimentary angles, but it was easier to present the derivation graphically in this manner. 

In order to compute Equation (6.14), the quasi-static shear angle at a given angular position, 

0,θφ , must be known.  However it cannot be found until the system is rotated (e.g. Figure 4-8B) and 

the dynamic shear angle, ,V θφ , is found by evaluating 
V
Sφ .  In the development of the Oxley cutting 

force model in Chapter 3, 
V
Sφ  was a function of t ′ , nα , CV , and sδ .  Now tθ′ , ,n θα∗∗ , ,CV θ

∗ , and 

( ),s Wδ θ∗  are used in place of t ′ , nα , CV , and sδ , respectively, to describe an oblique nose radius 

cutting scenario with vibration by using the quasi-static Oxley orthogonal cutting force model located 

at an angle along the undeformed chip area, θ .   The effective cutting speed, ,CV θ
∗  is given as 

 ( )( ) ( ) [ ]( )
2 2

, sinC CV V z t y tθ θ∗ = − +  (6.20) 

and the effective rake angle modified by dynamic effects, ,n θα∗∗ , is given as  

 , , ,n n Vθ θ θα α δ∗∗ ∗= +  (6.21) 

Hence, an iterative procedure is used to find 0,θφ  and is depicted as a flowchart in Figure 6-3. 
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Figure 6-3: Flowchart for determining tθ′  with a initial workpiece surface slope. 

 
The iteration begins by initializing a value of  0.4 radians for 0,θφ  and using it to compute tθ′ , 

which is then used as an input to the regression surface 
V
Sφ  (the other input parameters, ,n θα∗∗ , ,CV θ

∗ , 

and ( ),s Wδ θ∗  are known at this point).  The output of 
V
Sφ  is ,V θφ , the shear angle measured from the 

direction of net relative velocity between the workpiece and the cutting tool.  Now with initial 

guesses for 0,θφ  and ,V θφ , the iteration begins.   

The decision box in the flow chart calculates the absolute error between the right and left 

hand sides of the following equation 

 , 0, ,V Vθ θ θφ φ δ= +  (6.22) 

which is how these angles were defined originally in Figure 4-8.  If Equation (6.22) is satisfied within 

a specified tolerance, ε , then 0,θφ  is sufficiently accurate and the iteration terminates, using the 

current value of tθ′  for future calculations.  It should be noted that for a zero initial workpiece 

surface slope, 0sδ = , the algorithm converges in a single iteration.  This explains why in the 
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simplified cutting force model that assumed sδ  to be zero, it was not necessary to iterate when 

determining 0φ . 

With the value of tθ′  determined, the differential thrust and cutting forces per unit width of 

cut at an angle, θ , can be found, which are given as 

 , , , , ,cos sinC C v T vf f fθ θ θ θ θδ δ⎡ ⎤ ⎡ ⎤′ ′= −⎣ ⎦ ⎣ ⎦  (6.23) 

 , , , , ,sin cosT C v T vf f fθ θ θ θ θδ δ⎡ ⎤ ⎡ ⎤′ ′= +⎣ ⎦ ⎣ ⎦  (6.24) 

where ,Cf θ′  and ,Tf θ′  are differential cutting and thrust forces per unit width of cut along the ′ ′C -T  

axes in a rotated, quasi-static orthogonal modeling configuration, described by 

 ( )( ), , ,, , , ,
CC f n C sf S t V Wθ θ θ θα δ θ∗∗ ∗ ∗′ ′=  (6.25) 

 ( )( ), , ,, , , ,
TT f n C sf S t V Wθ θ θ θα δ θ∗∗ ∗ ∗′ ′=  (6.26) 

To understand how the force exerted upon the cutting tool varies with θ  along the cutting 

zone, three cutting scenarios with different regenerative position spaces are presented in Figure 6-4.  

These three configurations all occurred at a point in time during a chatter simulation using the 

refined dynamic cutting force model.  The corresponding differential forces due to chip formation as 

well as the dynamic shear angle are plotted as a function of θ  in Figure 6-4A,C, and E, with the 

undeformed chip area showing influence from various RTWDs in the regenerative position space as 

depicted in Figure 6-4B,D, and F.  The differential forces in the Y  and Z  directions, /YF θ∂ ∂  and 

/ZF θ∂ ∂ , would be found by taking the partial derivative with respect to θ  of Equations (6.1) and 

(6.2), respectively.  For the differential force exerted in each direction as well as the dynamic shear 

angle, there are three traces; each one is for a different relative velocity in the Y  direction at the 

current time, t , all with ( ) 0z t = : ( ) [ ]0.3 /y t m s=− , ( ) [ ]0 /y t m s= , and ( ) [ ]0.3 /y t m s= .  

From the definition of ( )y t  (and in turn ( )y t  through differentiation) a positive value indicates that 

the cutting tool is moving away relative to the workpiece.  As one would intuitively expect, for the 
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three different cutting conditions shown in Figure 6-4A,C, and E, when the tool is moving away the 

differential forces are smaller, and vice versa. 

Figure 6-4A and B illustrate the case that would exist for zero vibration cutting.  Figure 6-4C 

and D depicts a case where there has been nonzero relative vibration in the regenerative position 

space, and the differential forces due to chip formation are much higher than in the case of Figure 

6-4A due to the larger undeformed chip area.  Figure 6-4E and F shows another case of nonzero 

relative vibration in the regenerative position space; this time it has a much smaller undeformed chip 

area and corresponding differential forces. 

It is important to note that the derivatives of /YF θ∂ ∂  and /ZF θ∂ ∂  are only sectionally 

smooth.  This will be important in future developments when numerical integration of Equations 

(6.1) and (6.2) is discussed in Chapter 7.  The number of discontinuities is equal to one less than the 

total number of angular intersections between tool nose positions in the regenerative delay space that 

are relevant to the description of the undeformed chip area, or the quantity Q , which was developed 

previously in the algorithm shown in Figure 4-6. 
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Figure 6-4: ZF θ∂ ∂ , YF θ∂ ∂ , and Vφ  as a result of various conditions on the relative radial velocity, ( )y t .  
Cutting conditions used:  [ ]3.30 /CV m s= , [ ]0.0762 f mm= , [ ]0.191 cd mm= , [ ]1.19 nr mm= , 

3nα =− , 10i = , and 5sC = . The forces are shown in blue and the dynamic shear angle in red; ---, 
( ) [ ]0.3 /y t m s=− ; —, ( ) [ ]0 /y t m s= ; — — —, ( ) [ ]0.3 /y t m s= .  (A),(B), The differential forces 

due to chip formation and the dynamic shear angle for zero relative vibration history;  (C),(D) the differential 
forces due to chip formation and the dynamic shear angle for a nonzero regenerative position space.  (E),(F) 
the differential forces due to chip formation and the dynamic shear angle for a nonzero regenerative position 

space.  
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6.3 Development of the Refined Approach to Describing Interference Forces 
 

Similar in philosophy to what was done for the forces due to chip formation, a higher fidelity 

model for describing the interference forces by integrating along the chip formation zone will now be 

presented.  This is in contrast to the simplified approach that resolved the cutting scenario into a 

single equivalent orthogonal cutting process that was used to derive interference forces.  Figure 6-5B 

shows a diagram of the turning process along with a magnification of the portion along the cutting 

tool where plowing and flank interference occur.   

 
Figure 6-5: A schematic showing the region where plowing and flank interference occur along the tool edge.  

(A), A wide-field view of a partially machined workpiece; (B), a close-up view of the cutting zone. 
 

Previously, a 2nd order polynomial was generated based on the relative vibration history used 

to describe the undeformed workpiece surface in ˆ ˆy z−  coordinates; this was given in Equation 

(3.32).  However, there is one fundamental error with this approach.  The lack of dependence on θ , 

suggests that the cross section of the interference volume, i.e. the interference area, between the 

cutting tool and the workpiece is constant along the entire portion cutting zone.  In Figure 6-5B, the 

cutting zone is defined from 0,Nθ  to 0θ , where the range for N  was given in Equation (4.12) with the 

particular value of N  depending on the nature of the regenerative position space.  In the straight 

edge orthogonal cutting scenario depicted in Figure 3-2, the assumption of a constant interference 

area was valid since there is a one to one correspondence between the RTWDs, ( )y t  and ( )z t , and 
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the undeformed workpiece surface, ( )̂sury z , along the entire length of the entire tool edge.  In the 

case of machining with a tool nose radius this is no longer true, as will be shown by using the exhibit 

in Figure 6-6.   

A cutting edge having a tool nose radius of nr , shown as a solid line, is engaged in the 

workpiece and removes a semicircular slot as it travels in the Z  direction.  For the sake of keeping 

this a planar analysis, assume that the cutting tool instantaneously jumps a distance of a−  into the 

workpiece to assume the position denoted by the dashed line (a  has a negative value in this 

example).   

 
Figure 6-6: A diagram showing how penetration varies with the angle along the cutting edge, θ . 

 
The planar interference, ( ),pit aθ , as denoted in Figure 6-6, between the cutting tool and the 

workpiece is given by 

 ( ) [ ]( ) [ ] ( )
2

2 ˆ, cos 2 1 sin ,
2pi n n pi

a
t a r a r y aθ θ θ θ= − + − − =  (6.27) 

which can be interpreted as the equation for the solid semicircle subtracted from the equation for the 

dashed semicircle.  The ˆˆˆxyz  reference frame is oriented at an angle, θ , and a distance, nr , from the 

XYZ  reference frame.  Therefore Equation (6.27) is equivalent to the planar interference between 

the two semicircles along the ŷ  axis, ( )ˆ ,piy aθ .  In this way, a relationship is established between the 

RTWD in the radial direction, a , and the interference in ŷ  coordinates as a function of θ .  

However, this equation requires modification because for positive values of a , ( ),pit aθ  can become 

negative and it is not physically valid for the cutting tool to have negative interference with the 

a
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X
Y
Z
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x̂ŷ
 

ẑ
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workpiece.  In addition, when applied to the interference between the cutting tool and the 

undeformed workpiece surface, Equation (6.27) needs to be reformulated to reflect displacements in 

the tangential cutting direction, Z  (or ẑ  direction in Figure 3-5 or Figure 6-5). 

If there is no relative vibration between the workpiece and the cutting tool, then the same 

interference area exists along the entire portion of the tool nose that is engaged in the workpiece.  

Therefore the equation describing the undeformed workpiece surface in ˆ ˆy z−  coordinates has no 

dependence on θ  or ẑ , and is given by 

 ,ˆ cossur static e ey r β⎡ ⎤=− ⎢ ⎥⎣ ⎦  (6.28) 

and would correspond to the undeformed workpiece surface pictured in Figure 3-2A at all angles, θ .  

The subscript “static ” denotes the workpiece interference that exists during quasi-static, zero 

relative vibration cutting. 

What needs to be captured by an equation having the general form of Equation (6.27) is the 

deviation from the undeformed workpiece surface in zero vibration cutting (given in Equation (6.28)) 

from /2θ π=  as a function of θ .  To accomplish this, the coefficient, 0a , in Equation (3.32) can be 

separated into two components 

 0 0, ,

zero vibrationdeviation from
zero vibration

ˆdyn sur statica a y= +  (6.29) 

where 0,dyna  represents the portion that is a deviation from ,ŝur staticy  when there is relative tool-

workpiece vibration.  It should be noted that 0,dyna  as well as the other previously developed 

coefficients, 1a  and 2a , take on nonzero values only when there is relative tool workpiece vibration.  

Therefore, the polynomial representing the component of the undeformed workpiece surface that is 

a deviation from zero vibration cutting, ( ),ˆ ˆsur dyny z ,  can be input into Equation (6.27) in place of a  

to yield 

 
( ) ( )( )

( )
[ ]( ) ( ) [ ]

, , ,

2
,2

, ,

ˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ
ˆ ˆ ˆ               cos 2 1 sin

2

sur exact pi sur dyn sur static

sur dyn
n sur dyn n sur static

y z y y z y

y z
r y z r y

θ θ

θ θ

= + =

− + + − +
 (6.30) 
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where the subscript “dyn ” in ( ),ˆ ˆsur dyny z  denotes dynamic cutting with relative tool workpiece 

vibration and is defined as 

 ( ) 2
, 0 , 1 2ˆ ˆ ˆ ˆ ˆsur dyn sur staticy z a y a z a z= − + +  (6.31) 

This new expression for the undeformed workpiece surface is called “ ( ),ˆ ˆ,sur exacty zθ ” because it is an 

exact geometric representation of the undeformed workpiece surface along the cutting zone, 

assuming that the undeformed workpiece surface at /2θ π=  can be represented by a second order 

polynomial.  The problem with this description is that it is no longer a polynomial in ẑ  like in 

Equation (3.32), so previously derived equations will become drastically more complicated and more 

elements will have to be numerically evaluated.  Fortunately, a relatively good approximation can be 

made to obtain a polynomial approximation of Equation (6.30) because of practical constraints on its 

constitutive parameters.   

Typically ( ),ˆ ˆn sur dynr y z  over the range of value in the ẑ  direction where it is defined, 

which means that ( ),ˆ ˆ,sur exacty zθ  can be approximated as ( )ˆ ˆ,sury zθ , given as 

 ( ) ( ) ( ) [ ], , ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , sinsur exact sur sur dyn sur staticy z y z y z yθ θ θ≈ = +  (6.32) 

which can be expanded to be rewritten as a polynomial in ẑ  as 

 ( ) ( ) [ ]2 2
0 , 1 2 , 0, 1, 2,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, sinsur sur static sur staticy z a y a z a z y a a z a zθ θ θθ θ= − + + + = + +  (6.33) 

where 

( ) [ ]0, 0 cos sin cose e e ea a r rθ β θ β⎡ ⎤ ⎡ ⎤+ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  
 

[ ]1, 1 sina aθ θ  
 

[ ]2, 2 sina aθ θ  
 

To determine the accuracy of this approximation, it is compared to the exact formulation in 

Equation (6.30) for a given undeformed workpiece surface.  The relative percent error between them 

is given by 
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( ) ( )
( )

,

,

ˆ ˆ ˆ ˆ, ,
100

ˆ ˆ,
sur exact sur

sur exact

y z y z

y z

θ θ

θ

−
 

and is plotted as a function of θ  and ẑ  in Figure 6-7. 

 
Figure 6-7: The relative percent error by using Equation (6.33) to approximate Equation (6.30) with an inset 

showing the undeformed workpiece surface at 90θ = . 
 

The undeformed workpiece surface used is shown as an inset in Figure 6-7, and nr  was 

taken to be 0.79 mm, a nominal value for typical turning applications.  It should be noted that the 

error is the lowest for values of θ  near 90  because both equations reduce to Equation (3.32) at this 

angle.  This is the angle along the tool nose where the undeformed workpiece surface coefficients, 

0a , 1a , and 2a , were defined originally.  For a larger tool nose radius (1.19 mm) the entire plot would 

look similar except that the errors improve and would be scaled such that the largest error is around 

0.03%.  A smaller tool nose radius of 0.40 mm would scale the entire plot such that the largest error 

is around 0.1%.  It should be noted that the type of undeformed workpiece surface shown in the 

inset is a relatively large departure from ,ŝur staticy  and represents an extreme case.  In order to obtain 

an undeformed workpiece surface like this in a simulation, an extremely low cutting speed and large 

displacements in the radial cutting direction would have to occur. Consequently this plot represents 

an upper bound on the type of error to expect from this approximation when used to simulate 

practical machining scenarios. 
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Based on the confirmed validity of the approximation, Equation (6.33) is now used for the 

description of the undeformed workpiece surface in the refined approach to the description of the 

interference forces.  If there is any relative tool-workpiece vibration present, there will be a departure 

from describing the undeformed workpiece surface with Equation (6.28) and the interference volume 

will be comprised of variable interference area cross sections.  To better understand how the cross 

section of the interference volume changes with varying angle, θ , consider  Figure 6-8.  The scaling 

of the tool edge radius relative to the tool nose radius has been increased dramatically for illustration 

purposes.  Typically the ratio /n er r  is on the order of 20-40:1 or higher, and in Figure 6-8 it is 8:5.  

Additionally, the interference volume has been plotted over the range 0 θ π< < , which typically is 

larger than would be encountered in a practical machining scenario. 

Figure 6-8: An example of an interference volume, iV , along the cutting edge with an exaggerated tool edge 
radius.  (A) Isometric view; (B) top view. 

 
Figure 6-8A is an isometric view of an interference volume, iV .  The interference cross 

section of the interference volume at 0,θ π=  is the same as the one that exists in an orthogonal 

cutting scenario with zero vibration, e.g. Figure 3-2A.  This conceptually makes sense because 

regardless of how much the tool vibrates, there is no component of that velocity traveling in the 

workpiece at 0,θ π= .  In this example, at /2θ π=  the interference area, ,iA θ , is maximum based on 

the vibration history.   
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In Figure 6-9 are cross sections of the interference volume in Figure 6-8 superimposed on 

one another.  Each cross section is defined in the ˆ ˆy z−  plane as the area between the undeformed 

workpiece surface and the boundary of the cutting tool at a particular angle, θ .  The darkest lines 

represent the undeformed workpiece surface close to 0 ,  180θ =  and the lightest ones are for 

90θ = .  The direction and relative magnitude of the net differential interference force (force per 

unit width of cut, i.e. Equations (3.59) and (3.60)) for each interference volume cross section are 

shown as well, with the color matching that of its respective cross sectional interference area.  The 

lengths of the vectors are all scaled relative to one another.  It should be noted that because vibration 

along the axis of the workpiece has been neglected, there is symmetry in the differential forces 

developed along the interference volume.  In this case, the amount of penetration into the region of 

the cutting tool by the undeformed workpiece surface is much larger than would be encountered in 

practice. 

 
Figure 6-9: Cross-sections of the interference volume in Figure 6-8 superimposed on one another as well as the 

net interference force vectors shown as arrows. 
 

Another interference volume is shown in Figure 6-10 along with its corresponding cross-

sections in Figure 6-11 based on a different undeformed workpiece surface.  However, the amount 

of interference between the undeformed workpiece surface and the cutting tool in Figure 6-11 is far 

more realistic than that in Figure 6-9. 
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Figure 6-10: Another example of an interference volume, iV , along the cutting edge with an exaggerated scaling 

of the tool edge radius.  (A) Isometric view; (B) top view. 
  

 
Figure 6-11: Cross-sections of the interference volume in Figure 6-10 superimposed on one another as well as 

the net interference force vectors shown as arrows. 
 

Another parameter that needs to be modified in this analysis is the angle of material 

separation, eβ .  Previously when presenting results in the simplified dynamic cutting force model, eβ  

was derived through the process of trying to obtain a single approximation to the interference 

occurring along the entire tool edge (Equation (4.46)).  For the refined cutting force model, it is 

desirable to fit a second order polynomial to the undeformed workpiece surface at /2θ π= , the 

point along the cutting edge where there is a one to one correspondence between relative tool 

motion and interference with the workpiece.  In this case, the angle of material separation is given as 
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 ( )
( )

( )
1tane e

C

y t
t

V z t
β β −

⎡ ⎤
⎢ ⎥= + ⎢ ⎥−⎣ ⎦

 (6.34) 

Previously Equations (3.29) and (3.30) were developed to describe the interference forces by 

resolving the cutting process into a single orthogonal cutting scenario in Equations (4.51) and (4.53).  

In the more refined approach, differential interference forces will be resolved at an infinite number 

of angular coordinates, θ , around the cutting zone, and the net interference force will be computed 

via integration.  In this way, differential interference forces, ,Cp θ′  and ,Tp θ′  in a reference frame 

rotated by θγ
∗  with units of force/length are 

 , ,C cf ip K Aθ θµ′ =  (6.35) 

 , ,T cf ip K Aθ θ′ =  (6.36) 

By employing a rotation transformation similar to that used to generate Equations (3.59) and (3.60) 

in the simplified cutting force model, the differential forces in the thrust and cutting directions are 

given as 

 [ ] [ ]( ), , cos sinT cf ip K Aθ θ θ θγ µ γ∗ ∗= +  (6.37) 

 [ ] [ ]( ), , cos sinC cf ip K Aθ θ θ θµ γ γ∗ ∗= −  (6.38) 

where the effective clearance angle, θγ
∗ , is now a function of θ  and is 
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which is similar to the formulation in Equation (3.49) except that many parameters are now functions 

of θ .  ( ),i tet θ β− , ( ),i cft zθ− , 1,ẑ θ , 2,ẑ θ , 1,θβ , 2,θβ , and 2,z θ  are the same as  ( )i tet β− , ( )i cft z− , 1̂z , 2̂z , 

1β , 2β , and 2z , given in Equations (3.50), (3.55) or (3.56), (3.42), (3.43), (3.51), (3.52), and (3.53), 

respectively, with all instances of 0a , 1a , and 2a  set equal to 0,a θ , 1,a θ ,  and 2,a θ , respectively.  

Additionally, in the case of 2,z θ ,  2̂z  becomes 2,ẑ θ  as well.  Just as in Equation (3.49), the integrations 

performed along the tool edge in the numerator and denominator in Equation (6.39) are evaluated 

numerically in a vectorized fashion.  The results of the integration along the clearance face are similar 

to that given in Equation (3.50) with all aforementioned constituent parameters now functions of θ . 

The interference area, previously iA  in Equation (3.46), is now a function of θ  and denoted 

as ,iA θ , described by 

 
( )

( ) ( )
1, 2, 2,
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A z z z z
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θ
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θ

θ θ

− −

− − −

⎧⎪ ≤⎪⎪=⎨⎪ +⎪⎪⎩

 (6.40) 

where ( )1,ˆ ˆ, ,i te te cfA z zθ θ− −  and ( )2,ˆ ,i cfA z θ θ−  are similar to ( )1,ˆ ˆ,i te te cfA z zθ− −  and ( )2,ˆi cfA z θ− , given in 

Equations (3.44) and (3.45), with all instances of 0a , 1a , and 2a  set equal to 0,a θ , 1,a θ ,  and 2,a θ , 

respectively. 
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CHAPTER 7: NUMERICAL IMPLEMENTATION 
 
 

“A man's accomplishments in life are the cumulative effect of his attention to detail.” 
– John Foster Dulles

 
 
7.1 Equations of Motion for Machining a Compliant Workpiece with a Rigid Cutting 

Tool 
 

As previously discussed, it was deemed necessary to model the chattering process in two 

dimensions–the directions commonly referred to the “tangential” and “radial” cutting directions (the 

Y  and Z  directions shown in Figure 6-5B).  Although some investigators have modeled chatter in 

three dimensions [30], it makes little sense in the current application to model the third spatial 

dimension, the “axial” cutting direction, since it is directed along the axis of the workpiece.  The 

workpiece is extremely rigid along its axis compared to its other two directions and consequently any 

axial vibrations are negligible (this will be demonstrated in a later section).  More commonly, chatter 

problems are formulated with one degree of freedom, only considering motion in the radial cutting 

direction, since it directly influences the undeformed chip thickness.  However, the inclusion of a 

degree of freedom in the tangential direction is usually critical for accurate predictions.  The bulk of 

the motion during either stable or unstable cutting is generally in the tangential cutting direction, 

since it has greatest amount of cutting force [27],[34].  Motion in this direction is also impeded less 

by interaction between the cutting tool and the workpiece.  Since there is coupling between the 

motions in the radial and tangential cutting directions (e.g. Equations (4.39), (4.40), (4.46), and many 

others), they both must be modeled and the minimum number of degrees of freedom for an accurate 

dynamic cutting force model is two.  The only place where this assertion could be false is in a 

laboratory condition where a chattering toolholder is intentionally designed to only vibrate 

appreciably in one direction [57]. 

In Figure 7-1 various quantities related to the position of the cutting tool and the geometry 

of the workpiece are shown.  The workpiece has a length, L , initial diameter, wd , and machined 

diameter, md .  A new reference frame with a single axis, the X  reference frame, is located where the 
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workpiece meets the spindle.  It is fixed in space and is used to locate the axial position of the cutting 

tool along the workpiece.  The cutting tool starts machining at some axial position, 0x , and moves 

along the workpiece as it performs a turning cut.  At any point in time, the axial position of the 

cutting tool is ( )tx t , which is given by 

  ( ) 0t

ft
x t x

τ
= +  (7.1) 

where it is assumed that the tool moves from the cantilevered end of the workpiece to the free end 

and τ  was given in Equation (2.13).  For the remainder of this work, ( )tx t  can be referred to as 

simply tx  for conciseness purposes.  During the experiments presented in Chapter 8, for most 

cutting conditions chosen there was a point along the workpiece where a transition from stable 

cutting to chatter was observed. 

 
Figure 7-1: A diagram showing various quantities related to the position of the cutting tool and the geometry of 

the workpiece. 
 

The equations of motion of the workpiece in the radial and tangential cutting directions are 

 ( ) ( ) ( ) ( )( )( )2
, ,2 ,w n w n w t c Y Y Y static Y staticy t y t y t x t d F P F Pζω ω ψ+ + =− + − −  (7.2) 

 ( ) ( ) ( ) ( )( ) ( )( )2
, ,2 , 0.05 2 1w n w n w t c Z Z Z static Z staticz t z t z t x t d F P F P uζω ω ψ+ + =− + − − + −  (7.3) 

where YF , ZF , YP , and ZP  can come from either of the aforementioned simplified or refined 

dynamic cutting force models, ,Y staticF , ,Z staticF , ,Y staticP , and ,Z staticP  are the forces in the Y  and Z  

X

0x

( )tx t

L

wd md

Tool  
Motion  

Z 
X  

Y  

Spindle 
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directions due to chip formation and interference in the when there is zero RTWD for all time, 

respectively.  ( )( ),t cx t dψ  is a coefficient that reflects the change in stiffness of the workpiece at the 

cutting zone as a function of the axial position of the cutting tool, ( )tx t , and the nominal depth of 

cut, cd .  ( )wy t  and ( )wz t , along with their time derivatives, can be obtained from Equations (2.2)-

(2.5).   

 The subtraction of the forces, ,Y staticF , ,Z staticF , ,Y staticP , and ,Z staticP , in Equations (7.2) and 

(7.3) is used in order to guarantee that the system has no transient response when the simulation 

begins.  If these were not present during the first time step in the simulation, the system would 

receive a “step” input of the magnitude of the entire cutting force when there is no vibration.  This 

would cause the system to oscillate considerably and contaminate the solution.  In essence, the 

subtraction of these forces only allows the workpiece to be excited by dynamic cutting forces.  Since 

the workpiece is modeled as a linear system, this shift in operating point should not affect its stability.   

The argument could be made that if the workpiece were compliant enough, and if the tool 

were far enough away from the cantilevered end, the mean cutting force value (the quasi-static 

component) would be important since it would cause the effective depth of cut to become larger as 

the workpiece deflected away from the tool.  This could be encountered in other scenarios, but with 

respect to the workpiece used to validate the proposed dynamic cutting force models in this 

dissertation, it is not a significant effect since the maximum deflection for the largest depth of cut 

used in this study was around 0.02 mm.  If the mean deflection of the workpiece was significant and 

could not be neglected, a way around producing a large transient response would be to initialize the 

position of the workpiece in the ŷ  and ẑ  directions to be such that it is the static amount of 

deflection when subjected to , ,Y static Y staticF P+  and , ,Z static Z staticF P+ , respectively. 

A minus sign has been placed outside the forcing terms in both Equations (7.2) and (7.3) 

because in the development of the dynamic cutting model, forces were described with respect to the 

cutting tool in order to stay with convention in the literature.  By Newton’s third law, there must be 
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equal and opposite forces exerted on the cutting tool and workpiece as long as there is contact.  If 

through excessive vibration the tool looses contact with the workpiece, both aforementioned cutting 

force models will predict zero force.  This no longer represents a pair of bodies with equal and 

opposite reactions, but 0 0− =  so Equations (7.2) and (7.3) still hold in the case of contact loss.  

There is an extra forcing term in the Equation (7.3), ( )0.05 2 1u− , this represents the stochastic 

nature of the cutting process in that small variations in force exist during either stable or unstable 

cutting.  u  is a sample from the uniform distribution, U , which is 

 ( )~ 0,1u U  (7.4) 

In this way, there will be uniformly distributed forces on the interval ( )0.05, 0.05−  Newtons.  

Since the system dynamics are changing as cutting processes (via the ( )( ),t cx t dψ  term), the system 

can transition from a stable equilibrium point to an unstable one during the simulation of a cut.  The 

random excitation ensures that the system does not “sit” on an unstable equilibrium point, which is 

something that would never happen in practice.  In reality, the random component of forces during 

machining is more similar to a Gaussian distribution [34].  The random excitation used in this case is 

for purely numerical reasons, and it requires fewer steps in computer code to produce uniformly 

distributed random numbers.  It makes no difference whether the random excitation is present in 

both Equation (7.2) and (7.3) or just one of them. 

To numerically solve the equations of motion in Equations (7.2) and (7.3), they should be 

put in state space form, which is 

 

( )

( )
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( ) ( )

2

2

1 2 3 4, ,

1 2

0 1 0 0

2 0 0
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F P
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⋅ + ⋅ − ⋅ − ⋅
−

⋅ + ⋅ ( ) ( ) ( )3 4, , 0.05 2 1Z static Z staticF P u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− ⋅ − ⋅ + −⎢ ⎥⎣ ⎦

 (7.5) 
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where 

( ) ( )1 , ,...,t t t Dτ τ⋅ − −  

( ) ( )2 1 2, ,..., , ,t t t D t tτ τ τ τ⋅ − − − −

( ) ( )3 1,t t τ⋅ −  

( ) ( )4 1 2, , ,t t t tτ τ τ⋅ − − −  

and 1τ  and 2τ  are delays associated with data points used to generate the undeformed workpiece 

surface that will be defined in a later section.  These four states are used to obtain the absolute 

velocities and positions of the workpiece in the Y  and Z  directions, as given in Equations (2.2)-

(2.5).  Although it appears from Equation (7.5) that the ( )wy t  and ( )wy t  states are decoupled from 

the ( )wz t  and ( )wz t  states because of the zero entries in the off-diagonal 2×2 block matrices in the 

square matrix, they are in fact coupled because the forcing terms, ( )1YF ⋅ , ( )1ZF ⋅ , ( )2YP ⋅ , and ( )2ZP ⋅  

(i.e. ( )1YF ⋅  and ( )1ZF ⋅  depend on ( )wy t , ( )wy t , and ( )wz t  at various times, and ( )2YP ⋅ , and ( )2ZP ⋅  

depend on all four states at various times).  The time dependence for all the terms in Equation (7.5) 

has been explicitly shown in order to facilitate developments in the numerical methods section. 

 

7.2 Justification for a Two Degree of Freedom Modal of the Workpiece 
 

In actuality, a point along the workpiece has 6 degrees of freedom-three for rotation and 

three for displacement.  However, due to the inherent stiffness distribution of the workpiece, certain 

motions contribute negligibly to the total amount of vibration at the cutting zone.  It is desirable to 

use the minimum number of degrees of freedom that capture the bulk of the workpiece dynamics 

since every degree of freedom adds two states to the system in Equation (7.5) and results in longer 

computational times.  Referring to Figure 7-1, consider a point along a workpiece, tx , having a 

diameter, md , of 37.87 mm, and length, L , of 170.4 mm (the length and nominal diameter for the 

workpiece used in this study).  The axial stiffness, xk , with units of force/length is given as 

 
2

4
m

x
t

d E
k

x

π
=  (7.6) 
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the torsional stiffness about the X  axis, xkθ , with units of force·length/rad is given as 

 
4

32
m

x
t

d G
k

xθ

π
=  (7.7) 

where G  is the shear modulus and the stiffness in either the Y  or Z  directions, ,y zk , with units of 

force/length is  

 
4

, 3

3

64
m

y z
t

d E
k

x

π
=  (7.8) 

For a force, AxF , applied along the axis of the workpiece, the displacement, xδ , is 

 Ax
x

x

F
k

δ =  (7.9) 

For a force applied tangentially, TanF , the magnitude of the linear deflection at the edge of the 

workpiece, ,y z xθδ − , is  

 
2

, 4
m Tan

y z x
x

d F

kθ
θ

δ − =  (7.10) 

and for a force, RadF , applied radially towards the center of the workpiece, the magnitude of the 

displacement is 

 ,
,

Rad
y z

y z

F

k
δ =  (7.11) 

To compare the effects of the stiffnesses in given in Equations (7.6)-(7.8) on the static 

displacement of the workpiece, the ratio of each displacement to each force in Equations (7.9)-(7.11), 

known as the compliance, is plotted as a function of axial position along the workpiece, tx , in Figure 

7-2.  The compliance in the Y  or Z  directions of the workpiece due to a radially applied load is 

dominant for all axial positions greater than about 60 mm.  At the end of the workpiece, an axial 

position of 170 mm, this compliance is 22 times greater than the compliance due to torsion and 107 

times greater than the workpiece’s axial compliance.   The fact that the compliance due to a radially 

applied force is dominant allows certain motions to be neglected, namely, axial vibrations of the 

workpiece and angular vibration about the its axis.  This is because in all of the cutting experiments 
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conducted in this investigation, chatter always materialized at least an axial position of around 70 

mm.  This supports the form of the model used for the workpiece in Equations (7.2) and (7.3), and 

allows for a state space formulation in Equation (7.5) with only four states. 
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Figure 7-2: Various compliances of the workpiece as a function of axial position, tx .  ••••, The compliance in 
the radial direction of the workpiece in the Y  or Z  directions; ---, the compliance of the workpiece in the 
Y  or Z  direction due to torsion from a tangentially applied load; ──, the compliance along the axis of the 

workpiece in the X  direction. 
 
 

7.3 A Computationally Efficient Implementation of Oxley’s Orthogonal Cutting 
Force Model 

 
As previously mentioned, one of the strengths of the Oxley cutting force model is that no 

knowledge of the deformed chip thickness, dt , is required to calculate the forces due to chip 

formation.  However, one drawback is that this model is relatively slow in finding the shear angle due 

to the algorithm’s iterative nature.  In most applications of the Oxley model this is not a problem 

since only one cutting condition is simulated at a time.  In the case of stable turning for a constant 

commanded depth of cut, this force value is typically valid for all time because it is assumed that 

there is minimal relative tool-workpiece vibration.  Clearly this is not the case in the present 

application where chatter is being considered and the cutting force model is evaluated at every time 

step of a dynamic cutting simulation (potentially tens of millions of times in the present application).   
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This problem is compounded because in order to get the resolution necessary the potential 

shear angles, φ , must be evaluated many more times than it would for traditional quasi-static cutting 

force prediction.  Chatter arises because of deviations from a nominal cutting force, and at its 

inception these deviations can be very small.  In order to predict small changes in cutting force, the 

shear angle resolution must be very high, since it is directly related to the forces due to chip 

formation (e.g. in Equations (3.4) and (3.5)). 

To make a dynamic simulation using the Oxley cutting force model tractable, a four 

dimensional regression surface is evaluated instead.  To perform the regression, the Oxley cutting 

force model is evaluated over the anticipated parameter space with a unity width of cut, w , in order 

to generate many data points.  The independent variables are the following aforementioned 

parameters in the orthogonal cutting domain: t ′ , the effective depth of cut referenced at the tip of 

the cutting tool, nα , the normal rake angle, CV , the magnitude of the cutting velocity, and sδ , the 

workpiece surface slope.  The outputs are the shear angle, Vφ , and the differential forces due to chip 

formation, Cf  and Tf .  As previously presented, three regression surfaces are fit to the outputs of 

Oxley’s cutting force model:, 
Cf
S , 

Tf
S , and 

V
Sφ .  The general form for each regression surface, regS , 

is 

 ( ) ( ) ( ) ( ) ( )4 4 4 4
. . .

0 0 0 s 0

4
, , ,    

0 otherwise

rp q s

p q r s n C s
reg n C s

p q r

C t V p q r s
S t V

δ
α δ

α

= = = =

⎧⎪ ′ + + + ≤⎪⎪′ = ⎨⎪⎪⎪⎩
∑∑∑∑  (7.12) 

where . . .p q r sC  is a coefficient to be determined by least squares.  The sum of the squared error, E , is 

computed by summing over DP  data points, and is given as 

 ( )2
1

DP

dp dp
dp

E O S
=

= −∑  (7.13) 

where dpO  and dpS  are outputs from the Oxley model and the regression surface at a given data 

point, dp , in the four dimensional space, ( ), , ,n C st Vα δ′ .  Now the least squares problem can be 
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formulated by taking the partial derivative with respect to the unknown coefficients and equating to 

zero as such: 

 
( )24 4 4 4

1, , ,
0 0 0 s 0

4
0

0 otherwise

DP

dp dp
dpp q r s

p q r

O S p q r s
C =

= = = =

⎧ ⎡ ⎤⎪ ∂⎪ ⎢ ⎥− + + + ≤⎪⎪ ⎢ ⎥∂= ⎨ ⎣ ⎦⎪⎪⎪⎪⎩

∑∑∑∑∑  (7.14) 

If each partially differentiated term, , , , [ ]p q r sC∂ ∂ ⋅ , in Equation (7.14) is required to be zero 

individually, then it creates a system of equations that can be solved to find the coefficients , , ,p q r sC  

 4p q r s∀ + + + ≤ .  These results are given in Appendix C. 

Some representative plots showing the fit between the regression surfaces and the outputs 

from the Oxley cutting force model will now be presented.  Each plot can be envisioned as taking a 

slice out of the four dimensional parameters space, ( ), , ,n C st Vα δ′ , while holding three parameters 

constant and varying the fourth.  In Figure 7-3A and B the effect of varying t ′  is shown, while 

holding the other independent parameters constant.  In Figure 7-3B and C the cutting velocity, CV , 

is varied with the other parameters held constant.  In Figure 7-3D and E the rake angle, nα , is varied 

as other parameters are held constant, and in Figure 7-3F and G the workpiece surface slope, sδ , is 

varied.  The range on each plot for the parameter being varied corresponds to the anticipated 

parameter space that would be encountered during a dynamic simulation using the cutting parameters 

in this study.  It should be noted that in the case of t ′ , the smallest value that was simulated in the 

Oxley cutting force model is 0.01 mm, since below this value erratic results were obtained.  Based on 

obvious intuition, artificial data points predicting forces of 0 N along all the dimensions where t ′= 0 

mm were added to the data that was used to generate 
CF
S  and 

TF
S .  For 

V
Sφ the shear angles 

predicted at t ′ = 0.01 mm were extrapolated to t ′ = 0 mm.  Due to slight errors in the regression 

surface fits, a force of 0 N was not necessarily predicted at t ′ = 0 mm, as evident in Figure 6-4A, C, 

and E where the differential interference forces do not quite go to zero at the endpoints of the 

undeformed chip area. 
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Figure 7-3: Outputs from regression surface fits to outputs of the Oxley cutting force model with one 

parameter varied and others held constant. (A), (B) CV  is varied with t ′ = 0.22 mm, nα = -6.11°, and sδ = 

8.97°; (C), (D) t ′  is varied with CV  = 3.48 m/s , nα = -6.11°, and sδ = 8.97°; (E), (F) nα  is varied with CV  

= 3.48 m/s , t ′ = 0.22 mm, and sδ = 8.97°; (G), (H) sδ  is varied with CV  = 3.48 m/s , t ′ = 0.22 mm, and 

nα = -6.11°.   ──, Differential force due to chip formation in the cutting direction, Cf ; ----, differential force 
due to chip formation in the thrust direction, Tf ; ▪ ▪ ▪ ▪, dynamic shear angle, Vφ . 
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7.4 Numerical Evaluation of the Integrals in the Refined Dynamic Cutting Force Model 
 

There have been two approaches presented to describe the cutting forces in dynamic cutting.  

In the simplified dynamic cutting force model, all of the integrals can be evaluated in closed form, so 

there are no numerical issues in this case.   However for the refined dynamic cutting force model 

there are multiple integrals that need to be evaluated numerically because this cutting force model is 

to be used during a dynamic simulation–potentially being evaluated tens of millions of times to 

simulate a turning operation.  Consequently, the computation time of the dynamic cutting force 

model must be kept to a minimum, and special care must be taken in choosing accurate and efficient 

algorithms to perform the numerical integration.  

Specifically, there are five integrals that need to be numerically evaluated in the refined 

cutting force approach.  The first two are for the cutting forces in the Y  and Z  directions, 

Equations (6.1) and (6.2), respectively.  They have similar behaviors in terms of their error dynamics 

because they are integrated over the same undeformed chip area, e.g., the shaded grey regions in 

Figure 4-3.  Along the free boundary of the undeformed chip area there exist discontinuities in the 

differential force (more specifically a cusp singularity), with the number of discontinuities depending 

on the regenerative position space.  This was graphically shown in Figure 6-4.  Based on this 

realization, it will be shown that better accuracy can be obtained by breaking up the integrals in 

Equations (6.1), (6.2) and evaluating them along each region of the chip area that has a smooth free 

boundary. 

Shown in Figure 7-4 are the errors in numerical integration using Simpson’s 1/2 rule, a 

single-application Gaussian Quadrature applied over the entire undeformed chip area, and a multiple-

application Gaussian Quadrature applied over each region of the undeformed chip with a free 

boundary that has a continuous derivative.  For the latter two cases consider Figure 4-3 in the 

following example.  If a 5 point single-application Gaussian Quadrature is used over the entire area, 

then 5 total function evaluations are needed; however, if a 5 point multiple-application Gaussian 

Quadrature is used than 20 function evaluations are needed, since there are four intervals that have a 
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continuous spatial derivative at the free boundary, namely: 0,3 2,3,θ θ⎡ ⎤
⎣ ⎦ , 2,3 1,2,θ θ⎡ ⎤

⎣ ⎦ , 1,2 1,θ θ⎡ ⎤
⎣ ⎦ , and [ ]1 0,θ θ .  

To perform all numerical calculations in this section, double precision floating point arithmetic was 

used, with all length units in millimeters and all forces expressed in Newtons. 

To find the errors associated with each approach, an average of all errors in numerically 

integrating Equations (6.1) and (6.2) was found from 10,000 random regenerative delay spaces, 

[ 3 ]t t tτ τ− − , with each term in the range of [-100, 100] mµ  using nominal values for the 

depth of cut, feed rate, and tool nose radius in this study.  Second through seventeenth order 

Gaussian Quadrature was considered, as well Simpson’s rules using 10-6000 steps.  From the results 

in Figure 7-4, it is clear that multiple-application Gaussian Quadrature outperforms the other two 

approaches in terms of the number of function evaluations needed to achieve a specified error 

tolerance.   
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Figure 7-4: The absolute error for three numerical integration strategies to evaluate the cutting forces in 

Equations (6.1) and (6.2). —, Simpson’s 1/2 rule; ---, single-application Gaussian Quadrature applied over the 
entire interval; —, multiple-application Gaussian Quadrature applied along regions with a smooth free 

boundary. 
 

Figure 7-5 shows the error in evaluating Equations (6.1) and (6.2) versus the order of the 

multiple-application Gaussian Quadrature, once again by averaging over 10,000 random sets of tool 

positions.  Based on the plot, eight point Gaussian Quadrature is used since the error approaches the 

noise floor with the smallest number of function evaluations.  
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Figure 7-5: The absolute error for various orders of multiple-application Gaussian Quadrature applied over 
regions of the undeformed chip area with a smooth free boundary in Equations (6.1) and (6.2).   —, The 

absolute error in finding YF , Equation (6.1);  - - -, the absolute error in finding ZF , Equation (6.2). 
 

Based on this realization, Equations (6.1) and (6.2) are now evaluated over regions in the 

undeformed chip area that have a sectionally smooth free boundary.  The intervals for each 

integration are the same as those used to find the angle of the chip flow direction in Equation (4.28).  

The forces due to chip formation are now given as 
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θ

θ θθ θ
−

= + +

= +∑ ∫ ∫  (7.16) 

where there are Q  intervals where Gaussian Quadrature is applied ( 1Q −  for a type a region and 1  

for a type B region).  It should be noted that Equations (7.15) and (7.16) can be solved in a 

vectorized fashion since they share the same limits of integration. 

The next integrals that need to be numerically evaluated are those associated with the 

interference forces in Equations (6.10) and (6.11).  Contained within these equations was θγ
∗ , which 

needs to be numerically evaluated as well.  Whether the interference area, ,iA θ , only exists along the 

tool edge ( 2,ˆ ĉe cfz zθ −< ) or along both the cutting edge and the clearance face ( 2,ˆ ĉe cfz zθ −≥ ), there are 

always two integrations performed along the edge of the cutting tool that have no closed-form 

solution when solving for θγ
∗ : one in the numerator and one in the denominator.  The errors for 
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various numbers of points used for Gaussian Quadrature are given in Figure 7-6.  One of the 

integrals approaches the noise floor with only five sample points and the other with nine; however a 

nine point quadrature is used for both.  This is because they have the same limits and in computer 

code implementation they are evaluated in a vectorized fashion. 
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Figure 7-6: The absolute error for various orders of Gaussian Quadrature when used to perform the 

integrations in Equation (6.39) along the tool edge.  —, The absolute error in the integral in the denominator; - 

- -, the absolute error in the integral in the numerator. 
 

The numerical error for using various numbers of points for the Gaussian Quadrature in 

evaluating the interference forces in Equations (6.10) and (6.11) is given in Figure 7-7.  In order to 

ensure that the most accurate forces are calculated 5 point Gaussian Quadrature is used.   
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Figure 7-7: The absolute error for various orders of Gaussian Quadrature when used to perform the 

integrations for the  interference forces. —, The absolute error calculating the force in the Y  direction, YP , 
Equation (6.10);  - - -, the absolute error calculating the force in the Z  direction, ZP , Equation (6.11).    
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Now the details of how to implement Gaussian Quadrature will be presented.  Recall that a P  point 

Gaussian Quadrature is a weighted sum of P  function values at specified nodes, px , within the 

domain of integration, yielding exact results when integrating polynomials of degree 2 1P − , or less.  

In other words, the integral of a function, ( )f x , can be approximated by 

 ( ) ( )
1

1
1

P

p p
p

f x dx w f x
− =

≈∑∫  (7.17) 

where the weights, pw , and sample points, px , are defined for integration over the interval [ ]1,1− .  

More generally, integrations are performed over an arbitrary interval, [ ],a b , so the Gaussian 

Quadrature in Equation (7.17) becomes   

 ( ) ( )
1

Pb

p p
a

p

f x dx w f x
=

′ ′≈∑∫  (7.18) 

where 

 
( )
2

p
p

w b a
w

−
′ =  (7.19) 

 
2 2p p

b a a b
x x

⎛ ⎞− +⎟⎜′ = +⎟⎜ ⎟⎜⎝ ⎠
 (7.20) 

In summary there are five integrals that must be evaluated and the number of Gaussian Quadrature 

sample points needed for each one is given in Table 7-1. 

Table 7-1: The number of Gaussian sample points (number of function evaluations) needed for each integral 
that needs to be numerically evaluated in the refined dynamic cutting force model. 

 

Equation Number Quantity Number of Points in 
Gaussian Quadrature, P

6.1 Cutting force, YF    8* 

6.2 Cutting force, ZF    8* 

6.38 (numerator) Effective clearance angle, γ∗ 9 

6.38 (denominator) Effective clearance angle, γ∗ 9 

6.9 Interference force, YP  5 

6.10 Interference force, ZP  5 
                                         *per region of undeformed chip area with a smooth free boundary 

 
The weights, pw , and sample points, px , are defined in Appendix C. 
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7.5 Curve Fitting of the Undeformed Workpiece Surface 
 

In the previous equations that predict the plowing and flank interference forces, both in the 

simplified and refined dynamic cutting force models, a second or first order polynomial was used to 

describe the undeformed workpiece surface.  To generate this polynomial, the recent relative 

vibration history between the cutting tool and the workpiece needs to be known.  Since a second 

order polynomial requires a minimum of three points, two previous points in addition to the one at 

the current time will be used to define the undeformed workpiece surface.  Considering the length 

scales in Figure 3-3A, it would be desirable to have the points in time spaced out in time in the way 

depicted in Figure 7-8.  As previously discussed, the point on the undeformed workpiece surface at 

the current time, t , is known as the chip separation point.  It is purely a function of the current 

velocity of the tool relative to the workpiece and the tool edge geometry, since it depends on eβ , 

which was defined in Equation (6.34). 

 
Figure 7-8: A schematic showing how the two points on the undeformed workpiece surface at times 1t τ−  

and 2t τ−  relate to the geometry of the cutting edge. 
 

The other two points located at times 1t τ−  and 2t τ−  are spaced at increments of 50 µm 

from the origin of the ˆ ˆy - z  reference frame.  The 50 µm spacing was found to work well in most 

cutting conditions (based on the 38 µm edge radius tool used in all experiments and simulations).  It 

is just large enough to capture subtle curvatures in the undeformed workpiece surface, yet not so 

small that it makes the solver take an inordinate amount of time.  In solving delay differential 

equations, the solver cannot take larger steps than the smallest delay, or else the numerical solver will 

have to extrapolate rather than interpolate the solution in order to find values for the smallest delay.   In 

er
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ŷ
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( )e tβ

( ) ( )( )1 1ˆ ˆ,sur sury t z tτ τ− −  
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( ) ( )( )ˆ ˆ,sur sury t z t  
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order to insure that the approximate spacing of the two points at times 1t τ−  and 2t τ−  is invariant 

under various cutting velocities, they must occur at the delays 

 
6

1

50 10

CV
τ

−×
=  (7.21) 

 
6

2

100 10

CV
τ

−×
=  (7.22) 

where the nominal cutting speed, CV , is in units of m/s.  The coordinates of the three points used to 

fit a polynomial to describe the undeformed workpiece surface will now be given.  The coordinates 

of the undeformed workpiece surface at the current time are 

 ( ) ( )[ ]ˆ cossur e ey t r tβ=−  (7.23) 

 ( ) ( )[ ]ˆ sinsur e ez t r tβ=−  (7.24) 

where ( )e tβ  was defined in Equation (6.34) for the refined cutting force model and in Equation 

(4.46) for the simplified cutting force model.  The coordinates for undeformed workpiece in the 

refined cutting force model at times Vt τ− , where V  can take on the value of 1 or 2, are 

 ( ) ( ) ( ) ( )ˆ cossur V e e V Vy t r t y t y tτ β τ τ⎡ ⎤− =− − − + −⎣ ⎦  (7.25) 

 ( ) ( ) ( ) ( )ˆ sinsur V e e V V C Vz t r t z t z t Vτ β τ τ τ⎡ ⎤− =− − − + − +⎣ ⎦  (7.26) 

and for the simplified cutting force model the coordinates in the ẑ  direction, ( )ŝur Vz t τ− , are the 

same while using the following coordinates in the ŷ  direction: 

 ( ) ( ) ( ) ( )ˆ cossur V e e V Vy t r t y t y tτ β τ ϕ ϕ τ⎡ ⎤− =− − − + −⎣ ⎦  (7.27) 

Once the three points on the undeformed workpiece surface at times, t , 1t τ− , 2t τ− , are 

determined, the coefficients for the polynomial representing the undeformed workpiece surface in 

Equation (3.32) be generated.  These coefficients are given as 
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 (7.28) 

where 

( ) ( ) ( )1 2ˆ ˆ ˆ ˆsur sur sury t y t y tτ τ⎡ ⎤− −⎢ ⎥⎣ ⎦sury  

( ) ( ) ( )1 2ˆ ˆ ˆ ˆsur sur surz t z t z tτ τ⎡ ⎤− −⎢ ⎥⎣ ⎦surz  

 
and ( )ˆ ksury  and ( )ˆ ksurz  refer to the thk  entry in ˆsury  and ˆsurz , respectively.  If a value of 2a  in 

Equation (7.28) smaller than 41 10−×  mm-1 is obtained, it suggests that there is a very small amount 

of curvature in the undeformed workpiece surface.  Since a value this small has a much higher 

percentage of round-off error, it can lead significant errors when computing the intersections 

between the undeformed workpiece surface and the tool edge (e.g. in Equations (3.38) and (3.39)).  

To mitigate this, a first order polynomial is used instead for small values of 2a , whose coefficients are 

given as 
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z z y z
 (7.29) 

with 2 0a = . 

 

7.6 Method of Solving the Equations of Motion 
 

As previously mentioned, the equations of motion associated with chatter are referred to as 

Delay Differential Equations (DDEs) since they involve states that are delayed version of others.  

Numerous delay differential equation solvers have been developed for equations with both constant 

and variable delays.  Initially, the delay equation solver in MATLAB, dde23 [59] was used.  This is an 
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all-purpose variable step size solver, meant to handle DDEs with fixed or variable delays, stiff or 

non-stiff behavior, and events (the vanishing of a delayed state).  In addition, it tracks discontinuities 

in the solution and incorporates these points into the solution mesh in order to improve the error.  It 

was adequate for a single cutting condition using the dynamic cutting force model, simulating 40 

seconds of cutting for a workpiece that has a natural frequency of about 600 Hz in about 9 hours on 

a 2.92 GHz PC with 2 GB of RAM.  For the purposes of this investigation, more speed was needed 

in order to generate stability lobe diagrams because they rely on thousands of simulations in order to 

sufficiently resolve the stability limits. 

At this point some physical insight into the present system being modeled is in order.  A 

workpiece during a machining process vibrates about a fixed point in space in a sinusoidal fashion, 

undergoing relatively gradual changes in amplitude (no step-like “jumps”).  Even when there is a 

transition from stable cutting to chatter, it is a smooth increase in amplitude, all the while maintaining 

sinusoidal oscillations with approximately the same period (close to the natural frequency of the 

workpiece).  This is a non-stiff system with consistent sinusoidal behavior, and thus a solver that 

exploits variable step sizes is likely wasting resources with extra function evaluations to ensure the 

error satisfies a given tolerance.  A fixed step solver with a sufficiently small time step is much more 

computationally efficient since it does not waste function evaluations checking the error.  In addition, 

it was found that it is unnecessary to track discontinuities in the solution when solving the chatter 

equations of motion, since as previously mentioned the system undergoes smooth changes in its 

states.  This agrees with intuition as well as testing against the MATLAB variable step solver, dde23.  

Based on this, a fourth order Runge-Kutta fixed step solver was written in FORTRAN 90 in order to 

solve the DDEs.  The solution proceeds in a fashion very similar to the solution of an ODE except 

that certain states are delayed versions of others.  These delayed states can simply be viewed as a 

time-dependant input to the system and are determined by piecewise cubic Hermite interpolation of 

the solution history. 

Equation (7.5) can be rewritten as 
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 ( ) ( ) ( ) ( )1 2, ,..., , ,t t x t t t D t tψ τ τ τ τ= + − − − −y Gy F  (7.30) 

where 

( ) ( ) ( ) ( ) ( )
T

w w w wt y t y t z t z t⎡ ⎤= ⎢ ⎥⎣ ⎦y  
 
and G  and F  are remaining  and 4x1 matrices in the right hand side of Equation (7.5), respectively.  

F  can contain forces from either the simplified or refined dynamic cutting force models.  The fourth 

order Runge-Kutta Method uses a fixed step size t∆  in time in order to generate the solution at the 

next time step, n+1y , from the current time step, ny , and is given as 

 ( )1
2 2

6
= + + + +n+1 n 1 2 3 4y y k k k k  (7.31) 

where 1k , 2k , 3k , and 4k  are 4x1 matrices given by 

( )( ) ( )1 2, , ,..., , ,t ct x t d t t t D t tψ τ τ τ τ⎡ ⎤=∆ + − − − −⎣ ⎦1 nk Gy F  

[ ] ( )( ) ( )1
2 2 2 2 2 1 2 2 2, , ,..., , ,t t t t t t

t ct x t d t t t D t tψ τ τ τ τ∆ ∆ ∆ ∆ ∆ ∆⎡ ⎤=∆ + + + + − + − + − + − +⎢ ⎥⎣ ⎦2 n 1k G y k F  

[ ] ( )( ) ( )1
2 2 2 2 2 1 2 2 2, , ,..., , ,t t t t t t

t ct x t d t t t D t tψ τ τ τ τ∆ ∆ ∆ ∆ ∆ ∆⎡ ⎤=∆ + + + + − + − + − + − +⎢ ⎥⎣ ⎦3 n 2k G y k F  
 

[ ] ( )( ) ( )1 2, , ,..., , ,t ct x t t d t t t t t D t t t t tψ τ τ τ τ⎡ ⎤=∆ + + +∆ +∆ − +∆ − +∆ − +∆ − +∆⎢ ⎥⎣ ⎦4 n 3k G y k F  
 
and t∆  is the step size, which should be taken to be the smallest delay in the system, 1τ , or 40 n

π
ω , 

whichever is smaller.  The latter of the two, 40 n

π
ω , guarantees that the solver generates a mesh of at 

least 80 points per sinusoidal period of oscillation (the dominant frequency of vibration during the 

cutting simulation is only slightly higher than the open loop natural frequency of the workpiece, nω ). 

 When numerically solving Equation (7.30) with the proposed Runge-Kutta algorithm on a 

single core of a 2.2 GHz computer a significant speed increase was seen in using the simplified 

cutting force model.  When coded in FORTRAN 90, it could be evaluated 140,000 times per second 

as opposed to the refined cutting force model which could only be evaluated 28,000 times per 

second.  In MATLAB, the simplified cutting force model was executed 2500 times per second and 
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the refined cutting force model was solved 500 times per second.  In both the MATLAB and 

FORTRAN 90 computing environments, the simplified cutting force model ran 5 times faster. 

 
 

7.7 Summary of the Steps Taken to Implement Both Proposed Dynamic Cutting 
Force Models 

 
Due to the relatively large number of equations associated with the both of the previously 

developed simplified and refined dynamic cutting forces models, the steps needed to implement 

them will now be outlined.  Since they share a number of steps between them, a single outline is 

presented.  The parts where they differ are denoted by the portions of the outline enclosed in 

rectangular boxes, where those shaded with a grey background represent steps specific to the 

simplified model, and those enclosed in a box with a white background are specific to the refined 

model. 

o Input the cutting conditions and material properties, i.e. depth of cut, cd , feed rate per 
revolution, f , commanded cutting speed, CV , and cutting tool geometry, tool nose 
radius, nr , normal rake angle, nα , inclination angle, i , side cutting edge angle, SC , and 
clearance angle, γ  

 

o Find all forces in the Y  and Z  directions due to chip formation and interference, 
,Y staticF , ,Z staticF , ,Y staticP , and ,Z staticP  when there is zero vibration (quasi-static cutting) 

 

o Choose appropriate initial conditions on the state vector, ( )ty , (typically 0 for all time, 
0t < ), and temporal range of the solution vector, [0, ]ft  

 

o Let t t=∆ , where t∆  is the step size of the Runge-Kutta solver 
 

o While ft t<  
 

• Find 1k , 2k , 3k , and 4k  in that order by solving for the force vector, F , at times t , 
2
tt ∆+ , 2

tt ∆+ , and t t+∆  by taking the state vector, ( )ty , to be ny , 1
2+n 1y k , 

1
2+n 2y k , +n 3y k , respectively, in Equation (7.31) 

 

• To find each force vector, F  
 

 Find all angles of intersection between the unmachined workpiece surface and tool nose 
radii in the regenerative position space, Wθ  in Equation (4.25) 

 

 Check to make sure cutting is taking place, i.e. test all inequalities in Equation (4.26) 
 

 If cutting is not taking place, let 0Y Z Y ZF F P P= = = =  
 

 If cutting is taking place: 
 

▪ Find all angles of intersection between tool nose radii in the regenerative position 
space, ,M Nθ  in Equation (4.24) 
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▪ Assemble the matrix Ang  in Equation (4.27), containing all angles ,M Nτ τθ  and Wθ  
 

▪ Find the matrix Ind  that contains indices that reference angles of intersection in 
the matrix Ang  relevant to the undeformed chip area using the flowchart in 
Figure 4-6 

 

▪ Determine values for 0a , 1a , and 2a  using either Equation (7.28) or (7.29) 
 

 
 

 
 

 
 

▪ Solve for the forces due to chip formation, YF  and ZF  in closed-form 
 

 Solve for the angle of the chip flow direction, Ω , via Equation (4.28) 
 

 Calculate the effective width of cut and undeformed chip thickness, w∗  and ut
∗ , by 

means of Equations (4.33) and (4.34), respectively 
 

 Find the effective tool geometry, SC
∗ , i∗ , nα

∗ , given in Equations (4.3)-(4.5), and cη
∗ , 

given in Equation (4.6) 
 

 Obtain the effective cutting parameters sδ
∗ , CV

∗ , nα
∗∗ , and t ′  using Equations (4.46),  

(4.39) , (4.40), and (4.47), respectively 
 

 Find Cf ′  and Tf ′  by evaluating the regression surfaces ( ), , ,
CF n C sS t V δα∗∗ ∗ ∗′  and 

( ), , ,
TF n C sS t V δα∗∗ ∗ ∗′ , multiplying each one by w∗  

 

 Solve for RF , CF , and TF  in Equations (4.7), (4.37), and (4.38), respectively 
 

 Calculate the forces YF  and ZF  via Equations (4.8) and (4.9), respectively 

▪ Numerically solve for the forces due to chip formation, YF  and ZF  in Equations 
(7.15) and (7.16) by evaluating the integrals in a vectorized fashion using the 
Gaussian Quadrature given in Equation (7.18), where Equations (7.19) and (7.20) 
transform the 8th order weights and nodes given in Appendix C to the integrals’ 
shared range if integration 

 

 In the numerical evaluation at each node, ix , which represents a particular value of θ  
the following steps must be performed: 

 

 Find tθ  using either Equation (4.18) or (4.21), depending on whether θ  is in a type 
A or B region of the undeformed chip thickness 

 

 Find the effective tool geometry, ,SC θ
∗ , iθ

∗ , ,n θα∗ , given in Equations (6.6)-(6.8)
respectively, and ,c θη∗  given in Equation (6.9) 

 

 Find the effective cutting parameters ( ),s Wδ θ∗ , ,CV θ
∗ , and ,n θα∗∗ , using Equations 

(6.15), (6.20), and (6.21) respectively 
 

 Iterate to find tθ′  using the flowchart in Figure 6-3 
 

 Find ,Rf θ , ,Cf θ  and ,Tf θ  using Equations (6.3), (6.23), and (6.24) respectively 

 Solve for the interference forces, YP  and ZP  in Equations (4.48) and (4.50) in closed-
form: 

 

 Curve fit the undeformed workpiece surface using Equation (7.28) or (7.29), with the 
points in Equations (7.26) and (7.27) using the separation angle in Equation (4.46) 

 

 Determine the interference area, iA , according to Equation (3.41) 
 

 Take γ∗  to be 0° to maintain a closed-form solution 
 

 Solve for the interference forces, YP  and ZP  in Equations (4.48) and (4.50) 
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 Combine the machining forces at the current time step in the radial cutting direction, YF  
and YP , with the forces present during zero vibration, ,Y staticF  and ,Y staticP , and the forces 
in the tangential direction, ZF  and ZP , with the forces present during zero vibration, 

,Z staticF  and ,Z staticP ,  and use them to find 1k , 2k , 3k , or 4k  in Equation (7.5) 
 

• t t t= +∆  
 

o End of simulation  

 Numerically solve for the interference forces, YP  and ZP  in Equations (6.10) and (6.11) 
by evaluating the integrals in a vectorized fashion using the Gaussian Quadrature given in 
Equation (7.18), where Equations (7.19) and (7.20) transform the 5th order weights and 
nodes given in Appendix C to the integrals’ particular range if integration 

 

 Curve fit the undeformed workpiece surface using Equation (7.28) or (7.29), with the 
points in Equations (7.25) and (7.26)  using the separation angle in Equation (6.34) 

 

 In the numerical evaluation at each node, ix , which represents a particular value of θ  
the following steps must be performed: 

 

 Solve for 0,a θ , 1,a θ ,  and 2,a θ , using Equation (6.33) 
 

 Determine the cross sectional interference area, ,iA θ , according to Equation (6.40) 
 

 Find the effective clearance angle, θγ
∗ , using Equation (6.39) 

 

 Numerically evaluate the integral in the numerator and denominator along the tool 
edge in a vectorized fashion using the Gaussian quadrature given in Equation 
(7.18), where Equations (7.19) and (7.20) transform the 9th order weights and 
nodes given in Appendix C to the integral’s shared range of integration 

 

 If the interference exists along the clearance face ( 2,ˆ t̂e cfz zθ −> ), then use the 
antiderivative given in Equation (3.50) with all instances of 0a , 1a and 2a  set 
equal to 0,a θ , 1,a θ ,  and 2,a θ , respectively 

 

 Solve for the differential interference forces, ,Cp θ  and ,Tp θ  in Equations (6.37) 
and (6.38), respectively 
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CHAPTER 8: EXPERIMENTAL VALIDATION 
 
 

“An experiment is a question which science poses to Nature, and a measurement is 
the recording of Nature's answer.” 
                                                                                        –Max Planck 

 
 

8.1 Overview of the Chapter 
 

As presented in the introduction, there are four methods by which a chatter model can be 

verified: frequency domain content, point of chatter instability, time domain chatter amplitude 

growth over time, and machined surface topography.  These four metrics comprise some sections of 

this chapter and will each be investigated separately.  To the author’s knowledge, accurate correlation 

of time domain chatter amplitude growth and machined surface topography between an analytical 

model and experimental measurements has yet to be established in turning.  However Li and Shin 

[71], did obtain satisfactory agreement for predicted machined surface topography in milling during 

chatter.  Although predicting time domain amplitude growth and surface topography during chatter 

could be viewed as academic and having little practical merit, it is nevertheless important since it 

determines whether the true physics of the process are being accurately captured. 

Comparisons between the predictions of both the simplified and refined dynamic cutting 

force models to experimental results are only made for the point of chatter instability along the 

workpiece.  For the other three comparisons to experimental data, time domain amplitude growth, 

frequency domain content, and chattered surface topography, only the refined cutting force model is 

used.  The justification for this is two-fold.  The first reason is for conciseness.  Secondly, the 

motivation for deriving the simplified cutting force model in closed-form was such that it could be 

used as a fast simulation tool for process planning (avoiding chatter).  The reasons for developing the 

refined cutting force model were less in the interest of computational speed and had more to do with 

modeling the process in a physically rigorous manner.  This is why the comparisons of time domain 

amplitude growth, frequency domain content, and chattered surface topography, which are only 
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useful for verifying if the true physics of the process is being captured, are exclusive to the refined 

cutting force model. 

 

8.2 Experimental Setup 
 

To validate both of the proposed dynamic cutting force models, cutting tests were 

performed on a cantilevered-free AISI 018 steel workpiece with Hardinge Conquest T42SP ultra-

precision CNC horizontal lathe.  Numerous depths of cut and cutting speeds were considered and 

the point along the workpiece where a transition from stable cutting to chatter was recorded 

(determined by the occurrence of chatter marks) and compared to predictions from both of the 

dynamic cutting force models.  For every cut, a fresh tool insert was used in order to eliminate the 

effects of tool wear in this study, since it has been shown to drastically influence the point of chatter 

stability [26].  For a small subset of the machining conditions, two laser displacement sensors were 

used to record the workpiece’s position such that time and frequency domain comparisons could be 

made between the predicted and actual motion of the workpiece.  In Figure 8-1 is a picture of the 

actual experimental setup and in Figure 8-2 is a schematic of the same setup annotated with 

dimensions. 

 
Figure 8-1: The experimental setup used to measure the workpiece displacement over time during turning.  (A) 

Front view; (B) side view. 
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Figure 8-2: A schematic of the experimental setup for measuring the workpiece displacement during machining 

annotated with the actual machined dimensions of the workpiece (in mm). 
 

As shown in Figure 8-1, the linear displacement of the workpiece in the radial and tangential 

cutting directions was measured using two Keyence LK-G37 laser displacement sensors with a 50 

kHz bandwidth and 10 nm resolution.  The sensors were mounted on a custom machined bracket 

that attached to the toolholder turret and positioned at 90° and 180°, 2-3 mm ahead of the cutting 

zone along the workpiece’s axis of rotation.  In this way, the absolute displacement of the workpiece 

at the cutting zone could be accurately measured throughout an entire cut without chips blocking the 

laser beam.  Because of the spot size of the beam, it had a spatial averaging effect in that it tended to 

respond to the bulk motion of the workpiece rather then any inherent variation of its surface 

topography.   

 

8.3 Description of the Open Loop Workpiece Dynamics 
 

Owing to the flowchart in Figure 1-2 showing the general way in which a dynamic turning 

process is simulated, the final element needed is a dynamic model of the workpiece.  As was 

introduced in Equations (7.2) and (7.3), the parameters that capture this are the damping ratio, ζ , 

natural frequency, nω , and a function that reflects the changing stiffness of the workpiece at the 

cutting zone, ( )( ),t cx t dψ  (although the units of ( )( ),t cx t dψ  are kg-1, it varies along the axis of the 

workpiece because the stiffness varies).  ( )( ),t cx t dψ  depends on both the axial position of the 
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cutting tool in the x  direction as well as the nominal depth of cut.  At larger depths of cut 

( )( ),t cx t dψ  is greater because the removed material causes the workpiece to be more compliant.  

Also, as the tool cuts and is fed from the cantilevered end to the free end of the workpiece the value 

of  ( )( ),t cx t dψ  gets larger as well.  This intuitively makes sense since the compliance at the tool-

workpiece interface is increasing, as suggested by Figure 7-2. 

To obtain ( )( ),t cx t dψ , a series of driving-point impact tests were performed along the 

length of the workpiece at various axial positions and at various stages of material removal.  The 

input was a modal impact hammer and the output was a uniaxial piezoelectric accelerometer.  Four 

depths of cut, 0.05, 0.32, 0.58, and 0.85 mm, at five axial positions, tx , along the workpiece, 23.09, 

68.81, 102.59, 136.63, and 170.41 mm were measured.  At each axial position, the amount of material 

that would have been removed during the cutting configuration depicted in Figure 8-2 was replicated.  

This range of axial positions and depths of cut was chosen to fully encompass all of the simulated 

and experimental cutting conditions. 

In Figure 8-3A, experimentally measured receptance Frequency Response Functions (FRFs) 

are shown for five axial positions and four depths of cut.  From these experimental FRFs, 

( )( ),t cx t dψ  was determined in a least squares fashion based on a frequency domain model: 

 ( )
( )( )

2 2

,
, ,

2
t c

t c
n n

x t d
FRF x d

j

ψ
ω

ζω ω ω ω
=

+ −
 (8.1) 

where FRF  is the frequency response function as a function of tx , cd , and frequency, ω .  The 

curve-fitted FRFs are plotted in Figure 8-3B.  The choice of the model having the form of Equation 

(8.1) was based on the fact that both the damping ratio and the natural frequency did not shift 

appreciably from one impact test to another; therefore the only varying coefficient needed was 

( )( ),t cx t dψ .  Also, before and during the occurrence of chatter the vast majority of the vibration 

energy of the workpiece is concentrated at its first natural frequency of 600 Hz.  Consequently its 

second natural frequency at around 3000 Hz was not modeled because it represents a very small 
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contribution dynamic response of the workpiece.  It should be noted that since acceleration 

measurements were used and receptance FRFs were desired, the measured FRFs in Figure 8-3A have 

been twice numerically integrated in frequency to obtain units of mm/N.   This operation resulted in 

near division by zero at low frequencies and hence the rapid increase in the FRF value near 0 Hz.  

These data points were not used in the curve fitting of the model in Equation (8.1). 

It should be noted that although the workpiece is rotating, there need be no consideration of 

gyroscopic effects since the rotational frequency is relatively low and the displacement at any point 

along the workpiece is small.  Consequently, open loop dynamic properties of the workpiece 

determined via model impact testing are assumed to apply during cutting.  This same notion was 

experimentally validated in [29].  The FRF in Equation (8.1) using the values found for ( )( ),t cx t dψ  

is plotted in Figure 8-4 as a function of ( )tx t  and cd with the exact numerical formulation for 

( )( ),t cx t dψ  given in Appendix E. 
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Figure 8-3: Frequency response functions of the workpiece at various axial positions and with varying amounts 
of material removal.  Blue traces denote tx =23.09 mm; green traces denote tx =68.81 mm; red traces denote 

tx =102.59 mm; magenta traces denote tx =136.63 mm; black traces, denote tx =170.41.  For a solid line, ––
–, cd =0.05 mm; for a dashed line, –  –  –, cd =0.32 mm; for a long and short dashed line, – - – -, cd =0.58 mm; 

for a short dashed line, - - - -, cd =0.85mm. 
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Figure 8-4: The function, ( )( ),t cx t dψ , that reflects the varying compliance of the workpiece at the cutting 
zone as a function of the axial tool position and depth of cut.  (A), A 3D surface plot; (B) a 2D projection. 

 

8.4 Machining Tests to Validate Stability Limits 
 
8.4.1 Presentation of results 

For many investigations a single stability lobe diagram like that in Figure 2-2 is first 

generated by an analytical model.  Then machining tests are conducted at a fixed cutting velocity, 

increasing the depth (or width) of cut until chatter is observed and thereby verifying the boundary of 

the stability lobe.  However, with respect to the system being simulated in Figure 7-1, there is a third 

dimension in the stability diagram that reflects the position of the cutting tool along the workpiece’s 

axis where chatter occurred.  Typically, chatter models describe a compliant cutting tool and a rigid 

workpiece, a system that has constant stiffness at the cutting zone for all time and therefore a simple 

“yes” or “no” for the occurrence of chatter would suffice.  In this dissertation, since a compliant 

cd  [mm] 
( )tx t  [mm] 

A

B 

( )tx t  [mm]
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workpiece is being simulated, the stiffness of the system at the cutting zone changes over time and 

depending on the cutting conditions chatter can materialize at various positions along the workpiece.  

This was done intentionally since it becomes a dynamically more interesting problem than in the case 

of constant system stiffness.  In the results that follow an increase in chatter stability is equivalent to 

chatter occurring later along the axis of the workpiece towards the free end. 

 For the previously mentioned reasons, the stability lobe diagrams in this work are not lines, 

but surfaces in three dimensions: depth of cut, cutting velocity, and the axial position along the 

workpiece where chatter materialized (measured from the cantilevered end of the workpiece in 

Figure 8-2).  For the simulation, a value of 3.81×105 N/mm3 was originally chosen for the force-

interference volume constant, cfK , given in Equation (3.31), as was derived in [66].  It was found 

that the rapid increase in stability observed in the experimental data was not adequately captured with 

this value of cfK .  However when the value was increased to 6.00×105 N/mm3 an adequate increase 

in predicted low speed chatter stability was observed.  The justification for this can be explained as 

follows.  cfK  is inversely proportional to the extent of plastic deformation in the workpiece caused 

by the stress field around edge of the cutting tool, ρ .  Since ρ  has been observed to vary between 

0.508 and 5.08 mm in other machining tests [70] (assuming that AISI 1018 steel has a Young’s 

Modulus of 200 GPa and a Poisson’s ratio of 0.300), by Equation (3.31) cfK  could be in the range 

7.63×104 to 7.63×105 N/mm3.  Additionally in [51], Endres presented a semi-empirical model which 

allows cfK  to vary as a free parameter as it was calibrated to predict machining forces in turning 

experiments on SAE 1112.  The range of values for cfK  that Endres found for a wide range of 

cutting conditions was about 9.2×104 to 1.1×106 N/mm3, which encompasses the value used in this 

study, 6.00×105 N/mm3.  It is interesting to note that the range of values empirically derived by 

Endres is close to that suggested by Equation (3.31) when using the aforementioned values of ρ . 

 In this investigation, two different tool nose radii, 0.79 and 1.19 mm, were used as the 

parameter space consisting of the depth of cut and cutting vacuity was explored.  The specific 
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machining and simulation parameters used are given in Table 8-1 and Table 8-2.  It should be noted 

that the range for the depth of cut is greater for the larger tool nose radius.  This is due to one of the 

simplifying assumptions made in both of the models’ development in that there is no cutting along 

the straight edge of the cutting tool.  Based on the side cutting edge angle and the nose radius of the 

cutting tool the largest depth of cut that the model is valid for, ,maxcd , is 

 [ ],max cosc n Sd r C=  (8.2) 

which for the 0.79 mm tool nose radius works out to ,maxcd = 0.608 mm and for the 1.19 mm tool 

nose radius ,maxcd = 0.912 mm.  This explains why the maximum depth of cut in the experiments for 

the 1.19 mm tool nose radius was 0.85 mm and the largest depth of cut for the 0.79 tool nose radius 

was 0.55 mm. 

 To generate the experimental data for each tool nose radius, six depths of cut were used at 

six different cutting velocities for a total of 36 unique cutting conditions.  All of these conditions are 

given in Table 8-3, and as shown there are six different depths of cut for each tool nose radius and 

six common cutting velocities.  It was identified early in the machining tests that there was a great 

deal of variability in the point of chatter along the workpiece when the same cutting test was repeated 

(sometimes as a much as 20-25 mm over a 170 mm length workpiece).  Therefore, it was necessary to 

repeat each cutting condition multiple times in order to obtain an interval of possible chatter 

locations.  Specifically, each cut was repeated three times, and in the plots that follow containing 

experimental chatter instability point measurements, three data points are given for each cutting 

condition: a maximum chatter location, a minimum chatter location, and an average chatter location.  

Because each data point was repeated 3 times, to generate 36 unique cutting conditions for each tool 

nose radius it took a total of 216 total machining tests.  For each test a new workpiece was used with 

the same initial machined dimensions since the act of removing material causes its dynamic 

properties to change. 
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Table 8-1: The cutting conditions used in the simulations and machining experiments. 
 

Cutting Parameter Value 

Depth of cut, cd  
0.01-0.6 [mm] for nr =0.79 [mm] 
0.01-0.9 [mm] for nr =1.19 [mm] 

Tool nose radius, nr  0.79 or 1.19 [mm] 

Cutting velocity, CV  1.0-5.0 [m/s] 

Feed rate, f  0.076 [mm] 
Side cutting edge angle, SC  40 [deg] 
End cutting edge angle, EC  50 [deg] 
Rake angle, nα  -6.0 [deg] 
Inclination angle, i  -10.8 [deg] 
Clearance angle, γ  7 [deg] 
Edge radius, er  0.038 [mm] 
Initial workpiece diameter, wd  37.87 [mm] 
Workpiece length, L  170.41 [mm] 
Material AISI 1018 cold rolled steel 

Cutting insert Kennametal 
CNMG432FW or CNMG433FW  

 
Table 8-2: The simulation parameters used for both cutting force models 

Simulation Parameter Value 

Separation angle, eβ  30 [deg] 
Coefficient of friction, µ  0.3 [--] 
Natural frequency, nω  577 [Hz] 
Damping ratio, ζ  0.030 [--] 
Force-interference volume 
constant, cfK  6.0×105 [N/mm3] 

 
 

Table 8-3: The cutting conditions used for experiments.   

Tool Nose Radius [mm] Depth of cut [mm] Cutting Velocities [m/s]

0.05 
0.15 
0.25 
0.35 
0.45 

0.79 

0.55 
0.05 
0.21 
0.37 
0.53 
0.69 

 
 
 

1.19 

0.85 

1.08, 1.3, 2.25, 3.08, 3.92, 4.75
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A total of four distinct sets of results will be presented in the following order: chatter 

stability prediction from the simplified cutting force model for the 0.79 mm nose radius tool, 

prediction from the simplified cutting force model for the 1.19 mm nose radius tool, prediction from 

the refined cutting force model for the 0.79 mm nose radius tool, and a prediction from the refined 

cutting force model for the 1.19 mm nose radius tool.  Each of the four predictions consist of three 

figures and two tables.  The first figure contains six graphs, each one for a constant depth of cut and 

plotting the point of chatter along the workpiece as a function of cutting velocity.  The second and 

third figures come purely from either of the theoretical models and are the three dimensional stability 

lobe surfaces discussed earlier.  In one plot the third dimension is contoured in a two dimensional 

plane and in the other plot it is shown in three dimensions.  These stability lobe surfaces were created 

by interpolating between 10,000 simulations that used various combinations of the depth of cut and 

cutting velocity.  Finally in the two tables, one gives average errors in the model’s prediction of the 

point of chatter as a function of cutting velocity and the other gives it as a function of the depth of 

cut. 

First consider the experimental results of the point of chatter instability along the workpiece 

for the 0.79 mm tool nose radius compared to the prediction from the simplified cutting force model 

in Figure 8-5.  The general trend of the model is to predict chatter to occur sooner along the 

workpiece than it was experimentally measured.  Additionally the increase in low speed stability, 

especially in the 0.25, 0.35, 0.45, and 0.55 mm depths of cut is smaller than what is suggested by the 

experimental data. In Figure 8-6 and Figure 8-7 are the stability surfaces predicted by the simplified 

cutting force model.  At very light depths of cut and at low cutting speeds the model predicts a rapid 

increase in stability.  It is clear that the simplified model has reproduced the characteristic lobes 

present in the classical stability diagram in Figure 2-2. 

In Table 8-4 and Table 8-5 is the average error and standard deviation between the 

prediction of the simplified cutting force model and the experimental measurements.  For Table 8-4 

it should be noted that there are two sets of average errors and standard deviations for the cutting 
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velocities: one for all the depths of cut, and the other for all the depths of cut except the lightest one 

at 0.05 mm.  This is because the error in the prediction for the lightest depth of cut is very large and 

felt to be outside the predictive range of the model (this will be come increasingly apparent after the 

three other sets of results for the point of chatter instability predicted along the workpiece).  The best 

predictions in each table are shown in bold and indicate that the most accurate one as a function of 

the cutting velocity occurs at of 4.75 m/s, having an average error of 18.62 mm.  If the lightest depth 

of cut is neglected than the average error for the best prediction drops to 11.00 mm at 2.25 m/s.  

The most accurate prediction as a function of the depth of cut occurs at the largest one, 0.55 mm, 

having an average error of 13.01 mm.   

Finally, in each table there is a column labeled “predictions in range.”  A prediction by the 

analytical model was determined to be “in range” of the experimental measurements if it was within 

±8.5 mm from the average experimentally measured value, or within the range of the error bars, 

whichever one was larger.  The interval ±8.5 mm was chosen since the entre range is 17 mm, which 

is roughly 10% of the workpiece’s length.  For this set of results as well as the next three, it should be 

noted that if the position of chatter is 170.41 mm, the length of the workpiece, then there was no 

chatter observed.  For this particular case of the simplified cutting force model predicting chatter for 

the 0.79 mm nose radius cutting tool, the largest number of predictions in range as a function of the 

cutting velocity was 2 out of 6 at 2.25 m/s and the largest number as a function of the depth of cut 

was 2 out of 6 at both 0.35 and 0.55 mm. 
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Figure 8-5: Simplified cutting force model predictions and experimental measurements of the position of 
chatter for a 0.79 mm nose radius cutting tool. ∆ ,∇ , and ●, the minimum, maximum, and mean position of 

chatter for a specific cutting condition, respectively; ––, model prediction. 
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Figure 8-6: Stability diagram using the simplified dynamic cutting force model for the 0.79 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (3D view).  
 

Cutting Velocity [m/s]

D
ep

th
 o

f C
ut

 [m
m

]

 

 

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Po
si

tio
n 

of
 C

ha
tte

r [
m

m
]

95

100

105

110

115

120

125

130

 
Figure 8-7: Stability diagram using the simplified dynamic cutting force model for the 0.79 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (2D view). 
 

Table 8-4: Comparison of the simplified dynamic cutting force model to experimental results when machining 
with a 0.79 mm tool nose radius (along various cutting velocities). 

All Depths of Cut Neglecting Lightest 
Depth of Cut Cutting 

Velocity 
[m/s] Average 

Error [mm] 
Standard 

Deviation [mm]
Average 

Error [mm]
Standard 

Deviation [mm] 

Predictions 
in Range 
[out of 6] 

1.08 43.39 11.98 41.90 12.76 0/6 
1.30 36.44 24.90 32.69 25.87 1/6 
2.25 19.17 21.76 11.00 9.59 2/6 
3.08 35.81 18.82 31.86 18.04 0/6 
3.92 20.29 17.65 13.93 9.26 1/6 
4.75 18.62 14.01 13.34 6.00 1/6  
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In Figure 8-8 are the experimental results for the point of chatter instability along the 

workpiece when using a 1.19 mm nose radius tool compared to the prediction from the simplified 

cutting force model.  Similar to the prediction of the 0.79 mm nose radius cutting tool, the model 

predicts a slight increase in stability at low cutting speeds.  However in this case, the degree of 

increased stabilization suggested by the experimental results appears to agree much better with the 

model.  In Figure 8-9 and Figure 8-10 are the stability surfaces predicted by the simplified cutting 

force model for the 1.19 mm tool nose radius.  

From Table 8-6 and Table 8-7, it can be seen that predictions of chatter for the 1.19 mm 

tool nose radius were slightly better than those for the 0.79 mm nose radius tool.  Once again, the 

most accurate prediction as a function of cutting velocity occur at of 4.75 m/s, having an average 

error of 17.09 mm over all the depths of cut.  When neglecting the lightest depth of cut, the best 

prediction improves has 13.39 mm of average error at a cutting velocity of 2.25 m/s.  The most 

accurate predictions as a function of cutting depth once again occurred at the largest value tested, 

0.85 mm, having an average error of 11.37 mm.  The largest number of predictions by the simplified 

model that were in range as a function of the cutting velocity was 3 out of 6 at 2.25 m/s and the 

largest number as a function of the depth of cut was 4 out of 6 at 0.85 mm. 

Table 8-5: Comparison of the simplified dynamic cutting force model to experimental results when machining 
with a 0.79 mm tool nose radius (along various depths of cut). 

Depth of 
Cut  [mm] 

Average 
Error [mm]

Standard 
Deviation [mm]

Predictions 
in Range 
[out of 6] 

0.05 53.13 5.09 0/6 
0.15 36.62 22.40 1/6 
0.25 35.17 18.53 0/6 
0.35 20.03 18.51 2/6 
0.45 15.76 4.41 0/6 
0.55 13.01 12.02 2/6  
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Figure 8-8: Simplified cutting force model predictions and experimental measurements of the position of 
chatter for a 1.19 mm nose radius cutting tool.  ∆ ,∇ , and ●, the minimum, maximum, and mean position of 

chatter for a specific cutting condition, respectively; ––, model prediction. 
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Figure 8-9: Stability diagram using the simplified dynamic cutting force model for the 1.19 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (3D view).  
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Figure 8-10: Stability diagram using the simplified dynamic cutting force model for the 1.19 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (2D view). 
 

Table 8-6: Comparison of the simplified dynamic cutting force model to experimental results when machining 
with a 1.19 mm tool nose radius (along various cutting velocities). 

All Depths of Cut Neglecting Lightest 
Depth of Cut Cutting 

Velocity 
[m/s] Average 

Error [mm] 
Standard 

Deviation [mm]
Average 

Error [mm]
Standard 

Deviation [mm] 

Predictions 
in Range 
[out of 6] 

1.08 33.69 25.99 25.51 18.51 2/6 
1.30 29.21 28.21 19.68 17.70 2/6 
2.25 24.15 27.88 13.39 10.13 3/6 
3.08 30.61 22.75 21.84 8.37 1/6 
3.92 27.13 28.25 17.78 18.46 2/6 
4.75 17.09 6.19 15.83 6.00 1/6  
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Table 8-7: Comparison of the simplified dynamic cutting force model to experimental results when machining 
with a 1.19 mm tool nose radius (along various depths of cut). 

Depth of 
Cut  [mm] 

Average 
Error [mm]

Standard 
Deviation [mm]

Predictions 
in Range 
[out of 6] 

0.05 66.87 21.35 0/6 
0.21 36.65 15.06 0/6 
0.37 20.93 9.82 1/6 
0.53 13.73 11.69 3/6 
0.69 12.34 4.94 3/6 
0.85 11.37 6.25 4/6 

 
 In Figure 8-11 are the predictions from the refined cutting force model in comparison to the 

experimental point of chatter instability along the workpiece for the 0.79 mm tool nose radius.  In 

comparison to the simplified cutting force model, the refined model appears to be capturing the 

trends of the data much better.  For depths of cut greater than 0.15 mm, the rapid increase in low 

speed chatter stability suggested by the experimental data is adequately captured.  In Figure 8-12 and 

Figure 8-13 are the stability surfaces predicted by the refined cutting force model.  The numerical 

results in Table 8-8 and Table 8-9 indicate that the errors between the refined cutting force model 

and measurements are generally quite good, especially for cutting velocities greater than 1.3 m/s and 

depths of cut larger than 0.15 mm.  Once again just as for the simplified model, there are very large 

errors at the 0.05 mm depth of cut.  The best agreement between the experimental results and the 

model’s prediction as a function of cutting velocity occurs at 4.75 m/s, having an average error of 

10.28 mm for all depths of cut and just 4.99 mm when excluding the smallest depth of cut.  9.76 mm 

was the lowest error as a function of the cutting depth, occurring at 0.45 mm.  The largest number of 

predictions by the refined cutting force model that were in range as a function of the cutting velocity 

was 5 out of 6 at 4.75 m/s and the largest number as a function of the depth of cut was 3 out of 6 at 

0.15, 0.25, 0.35, 0.45 and 0.55 mm. 
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Figure 8-11: Refined cutting force model predictions and experimental measurements of the position of chatter 
for a 0.79 mm nose radius cutting tool.  ∆ ,∇ , and ●, the minimum, maximum, and mean position of chatter 

for a specific cutting condition, respectively; ––, model prediction. 
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Figure 8-12: Stability diagram using the refined dynamic cutting force model for the 0.79 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (3D view).  
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Figure 8-13: Stability diagram using the refined dynamic cutting force model for the 0.79 mm nose radius 
cutting tool showing the distance along the workpiece where chatter began (2D view). 

 
Table 8-8: Comparison of the refined dynamic cutting force model to experimental results when machining 

with a 0.79 mm tool nose radius (along various cutting velocities). 

All Depths of Cut Neglecting Lightest 
Depth of Cut Cutting 

Velocity 
[m/s] Average 

Error [mm] 
Standard 

Deviation [mm]
Average 

Error [mm]
Standard 

Deviation [mm] 

Predictions 
in Range 
[out of 6] 

1.08 20.98 10.82 17.60 7.79 1/6 
1.30 27.88 14.98 24.95 14.70 1/6 
2.25 18.01 17.72 11.73 9.84 2/6 
3.08 22.18 18.15 17.50 15.74 2/6 
3.92 13.66 14.83 7.91 5.20 4/6 
4.75 10.28 13.19 4.99 2.73 5/6  
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Table 8-9: Comparison of the refined dynamic cutting force model to experimental results when machining 
with a 0.79 mm tool nose radius (along various depths of cut). 

Depth of 
Cut  [mm] 

Average 
Error [mm]

Standard 
Deviation [mm]

Predictions 
in Range 
[out of 6] 

0.05 42.42 4.72 0/6 
0.15 21.56 16.69 3/6 
0.25 14.37 13.60 3/6 
0.35 10.16 6.18 3/6 
0.45 9.76 7.56 3/6 
0.55 14.72 11.22 3/6 

 
Finally, in Figure 8-14 are the predictions from the refined cutting force model in 

comparison to measured points of chatter along the workpiece when using a 1.19 mm tool nose 

radius.  Just as in the case for the 0.79 mm tool nose radius, there is much better agreement with the 

experimental results then in the case of the simplified cutting force model.  In Figure 8-15 and Figure 

8-16 are the stability surfaces predicted by the refined cutting force model. They look qualitatively 

very similar to the ones for the 0.79 mm tool nose radius in Figure 8-12 and Figure 8-13. 

The numerical results in Table 8-10 and Table 8-11 indicate that the errors between the 

refined cutting force model and the experimental measurements are generally good, especially for 

cutting velocities greater than 1.3 m/s and depths of cut larger than 0.21 mm.  The best agreement in 

the model’s predictions as a function of cutting velocity occur at 4.75 m/s, having an average error of 

6.46 mm for all depths of cut and just 4.54 mm when excluding the smallest depth of cut.  

Additionally, five out of six cutting conditions are predicted in range.  The lowest error as a function 

of cutting depth occurs as 0.37 mm, having as average error of 9.57 mm with predictions for 4 out of 

the 6 cutting conditions being in range. 
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Figure 8-14: Refined cutting force model predictions and experimental measurements of the position of chatter 
for a 1.19 mm nose radius cutting tool.  ∆ ,∇ , and ●, the minimum, maximum, and mean position of chatter 

for a specific cutting condition, respectively; ––, model prediction. 
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Figure 8-15: Stability diagram using the refined dynamic cutting force model for the 1.19 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (3D view). 
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Figure 8-16: Stability diagram using the refined dynamic cutting force model for the 1.19 mm nose radius 

cutting tool showing the distance along the workpiece where chatter began (2D view). 
 

Table 8-10: Comparison of the refined dynamic cutting force model to experimental results when machining 
with a 1.19 mm tool nose radius (along various cutting velocities). 

All Depths of Cut Neglecting Lightest 
Depth of Cut Cutting 

Velocity 
[m/s] Average 

Error [mm] 
Standard 

Deviation [mm]
Average 

Error [mm]
Standard 

Deviation [mm] 

Predictions 
in Range 
[out of 6] 

1.08 27.27 23.05 19.69 15.30 2/6 
1.30 30.53 21.56 23.07 12.79 1/6 
2.25 21.10 24.37 11.29 4.48 3/6 
3.08 22.36 23.84 13.36 10.17 2/6 
3.92 24.73 24.17 16.36 14.34 3/6 
4.75 6.46 4.96 4.54 1.76 5/6  
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Table 8-11: Comparison of the refined dynamic cutting force model to experimental results when machining 
with a 1.19 mm tool nose radius (along various depths of cut). 

Depth of 
Cut  [mm] 

Average 
Error [mm]

Standard 
Deviation [mm]

Predictions 
in Range 
[out of 6] 

0.05 58.84 21.02 0/6 
0.21 22.27 13.38 2/6 
0.37 9.57 7.05 4/6 
0.53 9.70 7.26 3/6 
0.69 11.25 11.41 4/6 
0.85 20.81 14.05 3/6 

 

8.4.2 Summary of results, explanation of trends, and limitations of the current approach  

The average errors and standard deviations for each model used in conjunction with each 

tool nose radius are summarized in Table 8-12.  The refined cutting force model exhibits much lower 

errors in the prediction of the point of chatter instability along the axis of the workpiece than that of 

the simplified cutting force model.  Neglecting the lightest depth of cut, the average error for the 

refined cutting force model is 14.11 mm when using the small tool nose radius and 14.72 mm for the 

large tool nose radius.  The simplified cutting force model on the other hand has an average error of 

24.12 mm for the small tool nose radius and 19.00 mm when using the large tool nose radius.  This 

means that on average, regardless of the tool nose radius used in this study, the average error in the 

point where chatter is predicted by the refined cutting force model is 8.6% of the workpiece’s overall 

length.  For the simplified cutting force model, 11 out of 36 cutting conditions for the large tool nose 

radius tool were predicted in range and 5 out of 36 were predicted in range for the small tool nose 

radius.  However, the refined cutting force model predicted 15 out of 36 cutting conditions in range 

for the small tool nose radius and 16 out of 36 in range for the large tool nose radius. 

For both cutting force models, predictions of the point of chatter instability along the 

workpiece at very low depths of cut were universally inaccurate (chatter was predicted too soon).  It 

is felt that the main reason for this is because it is more difficult to separate the forces due to plowing 

and flank interference from those due to chip formation at these low depths of cut.  This is a 
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fundamental assumption on which this approach is built–that is using two separate analyses to 

capture both chip formation and interference forces.   

The claim that there is coupling between the plowing and chip formation mechanisms has 

been substantiated in numerous experimental studies [72].  At very low depths of cut on the order of 

the tool edge radius, the effective rake angle of the tool becomes more negative, thus causing the 

shear angle to decrease (as suggested by Figure 7-3F).  Geometrically, this will cause the shear plane 

to become longer by some percentage and since the flow stress changes by smaller percentage (in 

general), the total amount of force along the shear plane increases.  This larger amount of force along 

the shear plane will in turn cause the forces due to chip formation to increase (as suggested by Figure 

7-3E).   

Additionally at extremely low depths of cut, on the order of half of the tool edge radius, chip 

formation ceases and the machining process become purely a plowing operation.  When cutting with 

a tool nose radius, there will always be a point along the undeformed chip area where the 

undeformed chip thickness transitions to zero because of its crescent-shaped nature (e.g. in Figure 

6-4).  However, the current modeling approach assumes that chip formation is always possible, 

regardless of the size of the undeformed chip thickness. 

Finally, the nature of the plowing force can change at low depths of cut .  It was observed 

that at low depths of cut, on the order of the tool edge radius, the nominal separation angle ,Error! 

Objects cannot be created from editing field codes., decreases [72].  In the current modeling 

approach this would cause the size of the interference area to decrease and reduce the magnitude of 

the interference force (as suggested by Figure 3-4).     

Although the predictions for the simplified model are less accurate, on a positive note they 

do exhibit the classic stability lobes that have been suggested by the more simplistic, traditional 

chatter models introduced in the literature review.  One of the assumptions in the simplified cutting 

force model was that the effective clearance angle, γ∗ , remains at zero degrees for all time.  This was 

done in order to maintain a closed-form description of the interference forces.  However at low 
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cutting velocities, for a fixed RTWD oscillation frequency and amplitude, γ∗  will oscillate with a 

larger amplitude and higher frequency.  This was demonstrated graphically in Figure 2-3 and 

represented by Equation (5.7).  The fact that γ∗  remains at 0° in the simplified cutting force model is 

one reason it does not show more drastic increases in stability at low cutting velocities.   

Table 8-12: A comparison of errors between experiments and both the refined and simplified cutting force 
models.  

All Depths of Cut Neglecting Lightest 
Depth of Cut 

Model 
and Tool 

Nose 
Radius 

Average 
Error [mm] 

Standard 
Deviation [mm]

Average 
Error [mm]

Standard 
Deviation [mm] 

Predictions 
in Range 

[out of 36] 

Simplified 
0.79 mm 28.95 20.02 24.12 18.28 5/36 

Simplified 
1.19 mm 26.98 23.32 19.00 13.51 11/36 

Refined 
0.79 mm 18.83 15.20 14.11 11.70 15/36 

Refined 
1.19 mm 22.07 21.34 14.72 11.73 16/36 

 
 
 

8.5 Frequency Domain Validation 
 

With the most important attribute of a chatter model’s validation complete, attention can 

now shift to other metrics used to determine the degree to which the proposed approach captures 

the physics of the process.  From this point forward, only results from the refined cutting force 

model will be presented for conciseness and for the reasons stated in the first section of this chapter.   

As mentioned in Chapter 1, the least rigorous metric to validate a chatter model is by 

comparing its content in the frequency domain to that measured experimentally.  In Figure 8-17 are 

Discrete Fourier Transforms of a simulated and experimentally measured time series during chatter.  

The cutting conditions and simulation parameters were the same as those listed in Table 8-1 and 

Table 8-2 except that the depth of cut was 0.25 mm, the cutting velocity was 2.25 m/s, and the tool 

nose radius used was 0.79 mm.  The dominant frequency of the workpiece’s response during chatter 

was the same in the radial and tangential directions and for the simulation it was 609.9 Hz and for the 

experiment it was 608.8 Hz.  These frequencies are both above the workpiece’s open-loop natural 
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frequency, nω , of 577 Hz.  This increase in frequency is due to the fact that the cutting tool imposes 

a boundary condition on the workpiece that has a stiffening effect.  Additionally, the analytical model 

has strongly pronounced harmonics at 608.8 Hz, whereas these harmonics in the experimental data 

are only barely noticeable.  This agreement in frequency is a good sign of the refined model capturing 

the physics of chatter in turning. 
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Figure 8-17: The Discrete Fourier Transform of simulation and experimental time histories.  (A) Reponses in 

the range of 0-2000 Hz; (B) responses in the range 600-620 Hz showing the dominant frequency of the 
workpiece’s response.  ──, Measured displacement in the radial cutting direction; ──, measured displacement 

in the tangential cutting direction; ──, simulated displacement in the radial cutting direction; ──, simulated 
displacement in the tangential cutting direction. 

 
 
 

8.6 Time Domain Validation 
 
8.6.1 Comparison with Experimental Data 

With comparisons to experimental data of the point of chatter instability along the 

workpiece and the content of the vibration in the frequency domain complete, the focus now shifts 

to predicting the amplitude of the vibrations in the time domain.  If the dynamic cutting force model 

can successfully predict this, then it is likely valid over two distinct operating points.  That is, 

describing forces accurately for both the case when the vibration amplitudes are relatively low (pre-

chatter, useful for predicting stability limits) and relatively high (after the inception of chatter, useful 

for time domain amplitude growth prediction).  To the author’s knowledge, there is yet to be a model 

A B 1.1 Hz 
Experiment

Simulation

Experiment
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for turning that has shown agreement with experimental data for both the point of chatter instability 

as well as its amplitude growth over time.   

Shi and Tobias conducted an interesting experiment where a face milling cutter was fed at a 

constant rate and cutting velocity along the top of a workpiece that was inclined [73].  This provided 

for either a slowly increasing or slowly decreasing depth of cut over time.  A picture of their 

experimental setup is in Figure 8-18 and their results have been reproduced in Figure 8-19.  When 

slowly increasing the depth of cut, chatter occurs at a 4.15 mm depth of cut.  However when starting 

at a large depth of cut where chatter is already present and slowly decreasing the depth of cut, stable 

cutting does not materialize until 3.00 mm.  In both cases there is a very distinct “jump” between 

stable cutting and chatter as well as a hysteresis effect in chatter amplitude versus the depth of cut. 

 
Figure 8-18: Experimental setup used by Shi and Tobias (re-presented from [73]). 

 
Experiments and simulations were conducted in order to see if slowly varying a parameter 

that controls the onset of chatter, in this case the position of the cutting tool along the workpiece, 

would reproduce the hysteresis effect that Shi and Tobias observed in face milling.  Two cases using 

the same cutting conditions but feeding the tool in opposite directions were experimentally measured 

with the setup in Figure 8-1, using the parameters as listed in Table 8-1 and Table 8-2 except that the 

depth of cut was 0.25 mm, the cutting velocity was 2.25 m/s, and the tool nose radius was 0.79 mm.   

In Figure 8-20A is the experimentally measured workpiece displacement when the tool is fed 

from the cantilevered end to the free end of the workpiece, and Figure 8-20B is the simulated 
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version.  The experiment shows chatter occurring at around 128 mm and the simulation predicts it at 

around 120 mm with good agreement in the predicted vibration amplitude.  In Figure 8-20C is the 

experimentally measured case where the tool is being fed in the opposite direction along the 

workpiece (from the free end to the cantilevered end), and Figure 8-20D is the corresponding 

simulation.  The experiment indicates stable cutting starting at 95 mm and the simulation predicts it 

at around 111 mm.  In this case the error in the predicted vibration amplitude is larger, however a 

completely counter-intuitive effect in the experimental measurements has been captured by the 

simulation. 

 

 
Figure 8-19: Relationship between the chatter amplitude and depth of cut determined experimentally using the 
setup in Figure 8-18, re-presented from [73].  ×, increasing depth of cut; ●, decreasing depth of cut; the green 

arrows show the direction of the jump between stable cutting and chatter. 
 

In Figure 8-20C and D, when the tool is cutting near the free end of the workpiece, the 

system is very flexible and chatter occurs for both the experiment and the simulation.  As the tool 

moves towards the cantilevered end, the stiffness at the tool-workpiece interface increases and in 

turn causes the vibration amplitude to decrease.  However, at a certain point along the cut the 

vibrations momentarily increase and then decrease again until the system transitions to stable cutting 

with low levels of vibration.  This is contrary to what would be expected because there should be a 

consistent decreases in vibration amplitude as the stiffness of the system at the cutting zone 

                     2.2                             2.6                              3.0                             3.4                               3.8                             4.2                                4.6                             5.0     
                           Depth of Cut [mm] 

120 

100 

80 

60 

40 

20 

0 

 

A

B

C

D



154 

increases.  In general, it can be said that this system is undergoing a bifurcation–abruptly transitioning 

from one limit cycle amplitude to another.  Finally, from comparing Figure 8-20A and B to Figure 

8-20C and D, it is clear that there is a hysteresis of the vibration amplitude versus the axial position 

of the cutting tool.  This is similar to the hysteresis observed by Shi and Tobias for face milling 

introduced earlier [73]. 

To further emphasize the occurrence of the hysteresis effect, consider the chatter amplitude 

versus tool position for both the simulation and experiment in Figure 8-21.  There is a plot for 

vibration in the radial cutting direction as well as in the tangential cutting direction, with the width of 

the hysteresis annotated in each graph.  The experimental results show a larger width of the 

hysteresis (34 mm) than in the case of the simulation (17 mm).  Additionally, as shown in Figure 

8-20C and D, there is some peculiar behavior present in both the simulated and measured data when 

the tool is being fed from the free end of the workpiece to the cantilevered end.  As time progresses, 

the chatter amplitude decreases, then increases, and then decreases again towards the low levels of 

vibration present in stable cutting.  The fact that the model is reproducing this complicated 

phenomenon in the experimental data is an important step forward in chatter modeling because it 

means that the actual physics of the process are being described with a high level of accuracy.  Also 

noteworthy for the simulated data in Figure 8-21 of tool being fed from the free end to the 

cantilevered end, when the system undergoes a jump to a larger vibration amplitude, it follows the 

same trajectory that it does for the case where the tool was moving from the cantilevered end to the 

free end, except in reverse. 
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Figure 8-20: A demonstration of the hysteresis of chatter amplitude versus axial tool position.  (A) and (B), 

experiment and simulation, respectively, of a turning cut starting at the cantilevered end and moving towards 
the free end; (C) and (D) experiment and simulation, respectively, of a turning cut starting at the free end 

and moving towards the cantilevered end.  ──, displacement in the tangential cutting direction; ──, 
displacement in the radial cutting direction. 

                                                   Time [s] 
0.00                                                                                                       13.70                                                                                                 27.39                                                                                                   41.09                                                                                                     54.78 

Time [s] 
54.78                                                                                                  41.09                                                                                                 27.39                                                                                                    13.70                                                                                                       0.00 

A 

B 

C 

D 



156 

90 110 130 150 170
0

10

20

30

40

50

60

A
m

pl
itu

de
 o

f V
ib

ra
tio

n 
[ µ

m
]

 

90 110 130 150 170
0

20

40

60

80

100

Tool Position [mm]

A
m

pl
itu

de
 o

f V
ib

ra
tio

n 
[ µ

m
]

 
Figure 8-21: Graphs showing the hysteresis of the chatter vibration amplitude vs. axial position along the 

workpiece with arrowheads denoting the direction of the system’s behavior.  (A) Vibration in the radial (Y ) 
direction; (B) vibration in the tangential (Z ) direction.  Blue lines represent experimentally measured 

displacements; green lines come from simulations; solid (——) lines represent turning from the cantilevered 
end to the free end (Figure 8-20A and B); dashed (---) lines represent turning from the free end to the 

cantilevered end (Figure 8-20C and D). 
 
 
8.6.2 A note on the inclusion of plowing and flank interference forces in an analytical chatter model 

As identified in the literature review in Chapter 2, despite the overwhelming experimental 

evidence that plowing and flank interference forces are intimately linked with chatter stability, there 

are still a number of analytical modeling approaches that choose to neglect it.  In Figure 8-22, is a 

simulation for the vibration of the workpiece using the same cutting conditions as were used to 

generate the time series in Figure 8-20B.  In Figure 8-22A is a time series with a simulation only 
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considering forces due to chip formation, YF  and ZF , and Figure 8-22B is one that only has 

interference forces, YP  and ZP . 
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Figure 8-22: Time domain simulations with the refined cutting force model.  (A) Simulation with no 

interference forces; (B) simulation with no forces due to chip formation. ──, displacement in the tangential 
(Z ) cutting direction; ──, displacement in the radial (Y ) cutting direction. 

 
 
 There are a number of interesting observations that can be drawn from these results.  First, 

it is quite obvious that the point of chatter instability is very different than in the case where both 

types of forces were included in the simulation (Figure 8-20B).  For the case of no interference forces 

in Figure 8-22A, chatter never materializes along the workpiece.  The only reason that the vibration 

amplitude grows is because of the fixed level of the random excitation in conjunction with the 

increase in compliance at the cutting zone as the tool moves towards the free end of the workpiece.  

The time series in Figure 8-22B is a simulation with no forces due to chip formation, and in this case 

chatter sets in much later and at a smaller amplitude than it did in Figure 8-20A.  Also when chatter 

does occur, the vibration in the radial direction is larger than the vibration in the tangential direction, 

which is contrary to that suggested by the all time histories in Figure 8-20. 
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Based on these results it is clear that there is some interplay between the forces due to chip 

formation and interference since collectively they produce something unique from their individual 

parts.  The lack of chatter instability appearing in Figure 8-20A suggests once again that including 

plowing and flank interference forces is a requirement for a model that is trying to capture the true 

physics of the dynamic cutting process.   

 

8.7 Surface Topography Validation 
 

The final and most rigorous metric that can be used to validate a chatter model is to 

compare the actual machined surface topography to that predicted by the analytical model.  It is the 

author’s opinion that this represents the greatest challenge in chatter modeling because if this can be 

predicted then the following three elements are being captured: the point of instability, the amplitude 

of the growth, and the phasing of the terms in the regenerative delay space, 

( ) ( ) ( )[ ]y t y t y t Nτ τ− − .  The exact procedure for generating the surface topography from a 

machining simulation was developed solely by the author, but will not be presented here since it is 

just an exercise in geometry and not integral to the theme of this work. 

 Consider some simulated surface topography as well as a picture of the actual machined 

surface in Figure 8-23 using the parameters as listed in Table 8-1 and Table 8-2 except that the depth 

of cut was 0.25 mm, the cutting velocity was 2.25 m/s, and the tool nose radius was 0.79 mm.  To 

get a sense of orientation, the direction of cutting would progress along the vertical axis of each plot 

starting at 15 mm and going to 0 mm.  The interesting part of this comparison is that the simulation 

was able to reproduce the “scalloped” chatter marks observed on the actual machined workpiece 

surface.  This is also true in Figure 8-24, which used the same cutting conditions as in Figure 8-23 

except that depth of cut was 0.15 mm. 
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8.8 Sensitivity Study 
 

Whenever an analytical model is presented, it is instructive to explore its sensitivity to its 

constitutive parameters.  This is done for two reasons; first, any parameter that is overly sensitive and 

not known with a high level of confidence is problematic.  Second, the trends in the model behavior 

when varying each parameter should agree with prior work.  With respect to this study, inputs to the 

refined dynamic cutting force model were varied in order to explore their influence on the position 

along the workpiece where chatter occurred.   The nominal machining parameters are given in Table 

8-13 and are used while each parameter under study is varied. 

Table 8-13: The nominal cutting conditions used in the sensitivity study. 
 

Cutting Parameter Value 

Depth of cut, cd  0.35 [mm] 
Tool nose radius, nr  0.79 [mm] 

Cutting velocity, CV  3.0 [m/s] 

Feed rate, f  0.076 [mm] 
Side cutting edge angle, SC  0 [deg] 
End cutting edge angle, EC  0 [deg] 

Rake angle, nα  0 [deg] 
Inclination angle, i  0 [deg] 
Clearance angle, γ  10 [deg] 

Edge radius, er  0.038 [mm] 
Initial workpiece diameter, wd  37.87 [mm] 

Workpiece length, L  170.41 [mm] 

Separation angle, eβ  30.0 [deg] 
Coefficient of friction, µ  0.3 [--] 
Natural frequency, nω  577 [Hz] 

Damping ratio, ζ  0.030 [--] 
Force-interference volume 

constant of proportionality, cfK  6.0×105 [N/mm3] 

Material AISI 1018 steel  
 

In Figure 8-25 the sensitivity of 10 various parameters is plotted.  The position of chatter 

using the nominal values in Table 8-13 is 124.6 mm and has been denoted in each plot with a dashed 

red line.  Some parameters are known with a high level of certainty: the tool nose radius, nr , the feed 

rate, f , the inclination angle, i , the clearance angle, γ , the natural frequency, nω , and the damping 
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ratio, ζ .  Other parameters are not known with a high level of certainty: the edge radius, er , the 

nominal separation angle, eβ , the coefficient of friction, µ , and the force-interference volume 

constant, cfK .  Of these uncertain parameters, the model is sensitive to all of them except for the 

coefficient of friction.  The edge radius of the cutting tool is generally an uncertain parameter since 

the nature of tool wear or built up edge can give rise to a time varying “effective” tool edge radius.  

Although the nominal value of eβ  was taken from prior experimental work [49], it still is not fully 

understood and is assumed that it can vary from the value of 30° used in this study.  From the 

sensitivity plots, cfK  could be viewed as the one problematic parameter in this model in that it was 

not based rigorous physical modeling.   As previous discussed although the value used in this study, 

6.0×105 N/mm3, is within the ranges suggested by Equation (2.23) it is nevertheless a tuned 

parameter. 

As demonstrated in [33] and [55], increasing the tool nose radius will decrease stability limits 

and hence provide for the earlier materialization of chatter.  This agrees with the sensitivity plot for 

the tool nose radius in Figure 8-25A.  In [74] it was shown that in milling the stability of the process 

increased as the feed per tooth was increased.  This is analogous to the present scenario of turning 

since increasing the feed rate decreases the amount of overlap between successive tool passes, 

thereby diminishing the regenerative effect and increasing stability.  This agrees with the sensitivity 

plot for the feedrate in Figure 8-25B.  Since in the sensitivity study SC  was taken to be 0°, varying 

the inclination angle is similar to varying the rake angle in an orthogonal cutting force model.  It has 

been experimentally suggested in [25] that the rake angle has little effect on the point of chatter 

stability.  Theoretically it was suggested in [57] that increasing the rake angle can add stability to the 

process, as suggested by the refined cutting force model’s sensitivity plot in Figure 8-25C as well.  

Intuitively it seems that increasing the rake angle could stabilize the process based on the following 

logic.  At a certain point, if the rake angle of the cutting tool is positive enough the thrust force can 

actually reverse directions and pull the tool towards the workpiece.  Based on this coarse analysis this 
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would seem to have a stabilizing effect in that it would reduce the relative motion between the 

workpiece and the cutting tool; however further experiments would be needed to confirm this. 

 Next, the clearance angle in Figure 8-25D has a stabilizing effect at values less than 7°, which 

agrees with prior experimental orthogonal turning work in [25].  It was also remarked in the same 

source that it has been common in machine shops to encounter chatter when a fresh tool is used and 

for the chatter to spontaneously disappear when the tool “wears in.”  When the tool wears a 

“clearance land” is developed behind the cutting edge (also called flank wear).  This essentially 

decreases the effective clearance angle and therefore agrees with the trends of the proposed model 

and prior work.   Next the edge radius of the model was found to decrease stability at larger values.  

The author is not aware of any experimental studies on varying the edge radius in chatter, but it is a 

well-known fact that a large edge radius increases the average forces in machining [75]. 

 Finally the position of chatter was found to be quite sensitive to the damping ratio, as 

suggested in Figure 8-25I.  This intuitively makes since because damping dissipates energy and would 

therefore delay the occurrence of high energy chatter vibrations.  Additionally, this also agrees with 

the author’s experience.  It was observed that when turning large, thin-walled tubes, chatter was a 

frequent problem.  To mitigate this, machinists often tossed rags and shop towels inside the rotating 

workpiece and could then take deeper depths of cut without chattering.  In essence they were adding  

damping to the system in order to increase the stability limit. 
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Figure 8-25: Sensitivity plots for the refined dynamic cutting force model. (A) Varying nose radius; (B) varying 
feed rate; (C) varying inclination angle; (D) varying clearance angle; (E) varying edge radius; (F) varying 

separation angle; (G) varying coefficient of friction; (H) varying natural frequency; (I) varying damping ratio; (J) 
varying the force-interference volume constant.  —, Point of chatter as a function of the parameter being 

varied; – – –, point of chatter using the nominal parameters in Table 8-13. 
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK 
 
 

"Science never solves a problem without creating ten more." 
                                            –George Bernard Shaw 

 
 

9.1 Summary 
 

This dissertation presents a method of predicting chatter in a turning operation from true 

process parameters.  The modeling techniques are extensions of work performed in quasi-static 

cutting force modeling as well as dynamic cutting force modeling.  Two models were derived: a 

simplified model to describe dynamic cutting forces in a closed-form manner, and a refined cutting 

force model, which employed a more rigorous geometric formulation to describe the dynamic cutting 

forces in a non-closed form fashion.   

In Chapter 3, the Oxley orthogonal cutting force model was introduced in order to describe 

the forces due to chip formation.  The model captured the effect of strain, strain rate, and 

temperature on the chip formation forces.  Additionally, the effects of a nonzero workpiece surface 

slope were incorporated into the model such that it could be used in a dynamic cutting scenario.  

Next, forces due to plowing and flank interference were modeled in the orthogonal cutting domain.  

By tracking the vibration history of the workpiece, the amount of material displaced by the cutting 

tool’s edge and clearance face could be determined.  Through various geometric relations and 

assumptions made about the stress field around the tool edge, forces can be calculated based on the 

amount of displaced material.   

Chapter 4 dealt with capturing the effect that the tool geometry commonly used in practice 

and vibration have on the machining forces.  Effects such the oblique cutting geometry and the tool 

nose radius were incorporated into the model.  The simplified cutting force model was fully 

developed in this chapter by deriving a single equivalent orthogonal cutting representation for the 

forces due to chip formation and another orthogonal representation for the interference forces. 



166 

 Comparisons between the current orthogonal modeling approach and previous experimental 

work in dynamic cutting force analysis were conducted in Chapter 5.  The behavior of the 

interference forces, the forces due to chip formation, and the shear angle were explored as a function 

of the oscillation frequency of both the cutting tool and the unmachined workpiece surface.  

 In Chapter 6, the refined cutting force model was presented by deriving the geometry of the 

cutting process in a more rigorous fashion.  Improvements were made over the simplified cutting 

force model in the way that forces due to chip formation as well as plowing and flank interference 

were calculated by integrating infinite number of cutting scenarios along the entire cutting zone. 

 Actual numerical implementation of both of the proposed models was presented in Chapter 

7.  The equations of motion were developed and a Runge-Kutta integration solution procedure was 

presented.  Additionally, methods for numerically evaluating integrals in the refined cutting force 

model were covered. 

 Finally in Chapter 8, the simplified and refined dynamic cutting force models were 

experimentally validated.  Both were used to predict the point of chatter instability along the 

workpiece and compared with machining experiments for a wide range of cutting conditions.  In 

addition, the refined cutting force model was compared with experimental measurements in the 

frequency and time domains as well as the actual machined surface topography.  A sensitivity study 

was also conducted whereby general trends in the model’s output were explained and correlated with 

real-world machining observations and prior work in the literature. 

 

9.2 Conclusions 
 

The research in this dissertation was driven by the need for a more physics-based modeling 

approach in the description of dynamic cutting forces in turning.  Previous models were 

oversimplified or used too many parameters to curve fit experimental data.  By incorporating many 

of the true process parameters in turning and modeling forces due to plowing and flank interference 

as well as chip formation, accurate stability predictions over a wide range of machining conditions 
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were made.  Additionally, predictions of the time domain chatter amplitude growth showed good 

agreement with experimental results.  Finally, trends in the experimentally machined surface 

topography were captured by the analytical model which is proof that the physics of the process are 

being captured. 

 

9.3 Contributions 
 

The modeling approaches in this work provided improvement to the current state of the art 

in the analytical modeling of chatter in turning.  The intellectual contributions of the research 

presented are as follows: 

• Extended Oxley’s cutting force model to apply in a dynamic cutting environment by 
accounting for vibration effects 

 
• Developed a set of equations to describe the undeformed chip area during vibration with 

influence from an arbitrary number of previous relative tool-workpiece positions 
 
• Fused an oblique cutting force model with Oxley’s cutting force model and developed a simple 

way to integrate along the undeformed chip area to find forces due to chip formation 
 
• Extended an interference volume model for describing forces due to plowing and flank 

interference in the orthogonal cutting domain to the 3D cutting domain that incorporates the 
effect of the tool nose radius 

 
• Explained physically why the cutting process stabilizes at low cutting velocities 
 
• Validated the orthogonal cutting force model on which both the simplified and refined cutting 

force models were built upon by comparing it with previously published work 
 

• Validated the refined and simplified cutting force models by predicting the point of instability 
over wide range of cutting conditions 

 
• Validated the refined cutting force model against experimental results in the time and 

frequency domains as well as comparisons of the machined surface topography during chatter 
 
• Performed a sensitivity analysis of the refined cutting force model on the point of chatter 

instability along the workpiece 
 

 
9.4 Future Work 

 
The proposed approach provides a solid foundation for the prediction of chatter in turning 

based on true process parameters and rigorous modeling of physical mechanisms present in metal 
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cutting.  However, there are opportunities for improving the predictive capability further.  The 

following areas for future research will help address limitations in the current modeling approach and 

improve the state of chatter modeling. 

In the orthogonal cutting force modeling, which served as the backbone for both the 

simplified and dynamic cutting force models, steady state conditions were always assumed.  In reality, 

any material is viscoelastic to some extent and therefore can only change its state of stress in a finite 

amount of time.  As discussed earlier, the system is assumed to be memoryless and therefore can 

react immediately to any condition, i.e. it produces the steady state force for a given cutting condition 

instantaneously regardless of its history. 

In addressing the forces due to chip formation with the Oxley cutting force model, Johnson-

Cook coefficients for AISI 4340 (an alloy steel with a relatively high yield strength) were used instead 

of those that would be more similar to the AISI 1018 (a low carbon steel with a relatively low yield 

strength) used in this study.   The justification for this was that since a linear model for the workpiece 

is used, only deviations from the average force due to chip formation are of interest.  The exact effect 

of the Johnson-Cook coefficients on the proposed model’s prediction of chatter remains an open 

question. 

In the small depth of cut regime, chatter stability predictions were vastly underestimated 

(predicted chatter much earlier along the workpiece than was observed experimentally).  It is felt that 

the primary reason for this is the assumption that the mechanism producing chips and that 

producing the plowing and flank interference can be analyzed separately.  At very small depths of cut, 

the undeformed chip thickness is on the order of the edge radius, and hence it is difficult to separate 

these two types of forces.  This is an ongoing issue in machining cutting force and remains an area of 

research. 

Finally, there is the issue with how the plowing and flank interference forces were calculated.  

Pivotal in this was the force-interference volume coefficient, cfK .  The value used in this study fell 

within the range suggested in its derivation (7.63×104 to 7.63×105 N/mm3), however a more 
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rigorous formulation is needed in order to narrow this range or determine what additional parameters 

control its location within this range. 

With the aforementioned modifications to the current modeling approach, the 

methodologies presented here can progress towards becoming a more highly reliable model that is 

valid over a wider parameter space.  The results of this would be realized in a more useful tool for 

process planning and optimization of machining operations. 
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APPENDIX A:  JOHNSON-COOK COEFFCIENTS USED TO MODEL THE 
FLOW STRESS OF THE WORKPIECE 

 
As discussed in the text, Johnson-Cook coefficients for AISI 1006 steel were originally used 

to model the AISI 1018 steel of the workpiece since they are both carbon steels.  However, the lack 

of convergence of the Oxley cutting force model necessitated the use AISI 4340 coefficients instead.  

The justifications for this are given in text and the parameters for AISI 4340 steel are given below in 

Table A-1. 

 
Table A-1: The Johnson-Cook parameters for AISI 4340 steel used in the Oxley cutting force model. 

Parameter Value Units 

A  792 MPa 
B  510 MPa 
C  0.014 dimensionless 
m  1.03 dimensionless 
n  0.26 dimensionless 

0ε  1 1/s 
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APPENDIX B: A CLOSED-FORM SOLUTION TO THE INTERSECTION 
BETWEEN THE UNDEFORMED WORKPIECE SURFACE AND THE 

BOUNDARY OF THE CUTTING TOOL 
 

The equation that must be satisfied for the two intersections between the undeformed 

workpiece surface and the cutting edge is 

2 2 2
0 1 2ˆ ˆ ˆea a z a z r z+ + =− −  

which can be rewritten as the quartic equation 
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There are four solutions to this quartic equation, given as 

 

 { }1 2 3 4 1 2 1

1 2
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4 2
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z z z z W y
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where the 1±  and 2±  are evaluated separately over all possible combinations to obtain four roots, 

specifically, ++ , −− , +− , and −+ , respectively, and W , α , y , and β  are given as 
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where U  and P  are 
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where Q  and γ  are 

3 2

108 3 8
Q

α αγ β
=− + − ,   

2 43
16 256 4
BA A AC

Dγ = − − +  

 
Due to physical constraints on the parameters, there will always be two real roots of the 

quartic equation and two complex ones.  However, numerical round off errors can cause all roots to 

be complex, but there will be two of them with a much smaller imaginary part than the other two 
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(perhaps having a magnitude of  < 10-9  mm if units of mm are used for all length measures), and the 

real parts of these roots should be taken as the intersection between the undeformed workpiece 

surface and a semicircle coincident with the tool edge.  1,ˆ quartz  and 2,ˆ quartz  should be assigned the 

values of these two roots, where 1, 2,ˆ ˆquart quartz z< . 
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APPENDIX C: REGRESSION SURFACES FOR 
Cf
S , 

Tf
S , AND 

V
Sφ  

 
Three regressions surface were used to capture the output of the Oxley cutting force model: the 

force due to chip formation in the cutting direction, 
Cf
S , the force due to chip formation in the 

thrust direction, 
Tf
S , and the shear angle, 

V
Sφ .  

Cf
S  and 

Tf
S  are in units of N/mm, and 

V
Sφ  is in 

units of radians.  t ′ , nα , CV , sδ  are in units of mm, rad, m/s, and rad respectively.  It should be 

noted that tθ′ , ,n θα∗∗ , ,CV θ
∗ , and ( ),s Wδ θ∗   can be used in place of t ′ , nα , CV , and sδ , respectively, 

when calculating forces due to chip formation in refined cutting force model.  Likewise, t ′ , nα
∗∗ , CV

∗ , 

and sδ
∗   can be used in place of t ′ , nα , CV , and sδ , respectively, when calculating forces due to chip 

formation in simplified cutting force model.  Since this model is based on a regression fit it is only 

valid in the following ranges along each dimension: 

[ ]1,5CV ∈  [ ]0, 0.25t ′ ∈  [ ]0.26, 0.26nα ∈ −  [ ]0.26, 0.26sδ ∈ −  
 

Outside of this range, accurate outputs are not guaranteed.  To facilitate the copying and pasting 

of the regression surfaces the following variables have been defined as 

w CV  x t ′  y nα  z sδ  
 

CF
S =  +2.002734052962164700e+001-4.634691461952985500e+001*w*x*y^2 

-8.191754124348605600e+000*w^2*x*y-6.815047274552040300e+001*w*x^2*y 
+1.482771593180017400e+002*w*x*y-3.706684820971324300e+002*w*x*z^2 
+6.817038676778215000e+000*w^2-1.044634846593823700e+004*x^2 
-8.277096558506828600e+000*w^2*x^2+3.016482192636628300e+001*w^2*x 
+3.439388498524202800e+002*w*x^2-2.499466845722557500e+002*w*x 
+9.523569845818381900e+001*y^2+3.265034066544771500e+000*w^2*y^2 
-4.806828117829383900e+000*w^2*y-3.631182270762330000e+001*w*y^2 
+2.151006129061341500e+001*w*y-1.555187957455468400e+003*x^2*y^2 
+5.133727461075419300e+003*x^2*y+1.997987446580711100e+003*x*y^2 
-3.079044389622594700e+003*x*y+3.362625334704922000e+002*z^2 
+1.394232916067007500e+001*w^2*z^2-1.374187907146461600e+001*w^2*z 
-9.948867985650233100e+003*x^2*z^2+1.661464229877468500e+004*x^2*z 
+4.343881436620970800e+003*y^2*z^2-9.172673976180072900e+002*y^2*z 
+9.945910323496083900e+003*x*z^2+2.308582219963244600e+002*w*y*z^2 
-1.557362755205110400e+004*x*y*z^2-4.687547585652047200e+002*w*x^2*z 
+5.968979747172201100e+002*w*x*z+1.014237223486168600e+002*w*y^2*z 
-1.052290237504433400e+004*x^2*y*z+1.189619639125140000e+004*x*y*z 
-7.186542571797441300e+003*x*z-1.965017683909511600e+003*y*z^2 
+2.660768831115669300e+002*y*z-1.460439025193215100e+002*w*z^2 
+5.774667670038360300e+001*w*z-8.852815913718420400e+001*y^3 
-1.569889822222927600e+000*w^3*x-5.328088508165632200e+002*w*x^3 
+3.322222355255702900e-001*w^3*y+1.793055556025875000e+001*w*y^3 
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-8.750778398182421400e+003*x^3*y-1.221035871384173600e+003*x*y^3 
-1.069635120786441900e+000*w^3+4.275414391476970200e+004*x^3 
-1.248550194239244300e+003*z^3+1.614733935059201300e+003*y^3*z 
+1.016567289644386900e+000*w^3*z-2.750608662735272800e+004*x^3*z 
-9.257972305535417000e+003*x*z^3+5.369089288130310700e+003*y*z^3 
+1.442675656226037100e+002*w*z^3+6.057313842288512800e-002*w^4 
-6.701917593407759000e+004*x^4-1.105571347047178800e+002*y^4 
+2.619608367116076800e+003*z^4-8.630520993776275600e+003*x*y^2*z 
+3.441681610282635600e+003*x-2.991710480035526100e+001*y 
-1.175211658421256100e+002*w*y*z-3.638435028407805300e+001*w^2*x*z 
-7.798548371848366400e+001*z+1.153375405840101600e+001*w^2*y*z 
-4.470855738743954400e+002*w*x*y*z-1.855261612589438200e+001*w 

 
TF
S =  +2.862648252481102800e+001-1.196691179959435200e+002*w*x*y^2 

-2.174526148502844700e+001*w^2*x*y-2.568908691327029600e+002*w*x^2*y 
+3.608452065646085300e+002*w*x*y-1.533498081694830800e+002*w*x*z^2 
+9.624869031655043400e+000*w^2-1.340632962055034300e+004*x^2 
-1.989329296232041200e+001*w^2*x^2+4.533231832692426600e+001*w^2*x 
+5.885657908866948000e+002*w*x^2-3.705667509085134300e+002*w*x 
+1.190824107819106700e+002*y^2+4.333308947708745900e+000*w^2*y^2 
-7.704603937678856900e+000*w^2*y-4.889351856694352700e+001*w*y^2 
+3.303941849357651300e+001*w*y-3.156671145508201300e+003*x^2*y^2 
+1.024950073386705700e+004*x^2*y+3.981003046970767200e+003*x*y^2 
-4.900803965681165200e+003*x*y+2.173515003199956400e+002*z^2 
+7.870684787820945200e+000*w^2*z^2-1.096391470249827500e+001*w^2*z 
-4.718193460562900300e+003*x^2*z^2+1.168821780606573200e+004*x^2*z 
+3.037404090681246500e+003*y^2*z^2-1.062089902501370300e+003*y^2*z 
+2.970175430124544600e+003*x*z^2+1.560278880180986500e+002*w*y*z^2 
-6.957999064516137900e+003*x*y*z^2-3.823436712137782900e+002*w*x^2*z 
+4.150228570250707200e+002*w*x*z+1.194679319871972300e+002*w*y^2*z 
-9.503909435256973700e+003*x^2*y*z+8.875283076603147500e+003*x*y*z 
-3.380118723099065400e+003*x*z-1.374067497929282400e+003*y*z^2 
+3.634638692669838600e+002*y*z-8.716660181864107000e+001*w*z^2 
+4.852704822901053200e+001*w*z-3.816624231723554300e+002*y^3 
-2.325237151974345600e+000*w^3*x-8.303923437234376500e+002*w*x^3 
+5.657456651424084300e-001*w^3*y+3.030046041656583400e+001*w*y^3 
-1.698635128584182500e+004*x^3*y-2.560279947962768800e+003*x*y^3 
-1.513632922234512000e+000*w^3+5.405520426372809000e+004*x^3 
-5.526832803049534300e+002*z^3+1.779093757865704200e+003*y^3*z 
+7.761228544360595500e-001*w^3*z-1.909510222282762700e+004*x^3*z 
-1.409751142187487900e+003*x*z^3+2.333080149571726900e+003*y*z^3 
+6.318164859975553300e+001*w*z^3+8.609963462834238600e-002*w^4 
-8.385705769522380400e+004*x^4+8.496938918229751600e+002*y^4 
+6.805605660908169100e+002*z^4-7.928137688331222300e+003*x*y^2*z 
+2.532140373588086700e+003*x-4.508285566870123500e+001*y 
-1.409488784348095900e+002*w*y*z-2.407089827432878700e+001*w^2*x*z 
-6.947346224115145200e+001*z+1.325487570353130100e+001*w^2*y*z 
-3.572655420934917200e+002*w*x*y*z-2.628130505137906800e+001*w 

 
v
Sφ =  +1.504567718932745300e-001-3.441684206335461300e-001*w*x*y^2 

+3.674047336496059200e-002*w^2*x*y+1.135053677446926000e+000*w*x^2*y 
-6.160308145658717200e-001*w*x*y-4.491116464783224300e-002*w*x*z^2 
-1.993811840496868800e-002*w^2-3.551736156854453000e+001*x^2 
-5.420023964440721900e-002*w^2*x^2+3.566755273325105500e-002*w^2*x 
+1.103344555511292000e+000*w*x^2-2.813888275076258900e-001*w*x 
-4.220074767899037500e-001*y^2-7.715128046203874000e-003*w^2*y^2 
-1.670530174790635000e-002*w^2*y+1.102452102776056300e-001*w*y^2 
+1.071407443092215200e-001*w*y-7.814703616493203800e+000*x^2*y^2 
-1.866564810453276400e+001*x^2*y+3.458732084767735000e+000*x*y^2 
+3.661491275278608600e+000*x*y+1.368230981680825200e-001*z^2 
+9.889101788621496600e-004*w^2*z^2-1.368956655672926000e-002*w^2*z 
+1.308722599151748400e+000*x^2*z^2-1.620177213192137700e+001*x^2*z 
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+4.639825741864939100e-001*y^2*z^2-9.196282144876064500e-001*y^2*z 
-4.303906266087773000e-001*x*z^2+1.477967859600359100e-002*w*y*z^2 
+1.191933572340796000e+000*x*y*z^2+8.118555305617228800e-001*w*x^2*z 
-4.568751986051020100e-001*w*x*z+8.939884394046879200e-002*w*y^2*z 
-6.933465938415191800e+000*x^2*y*z+3.312955887870896000e+000*x*y*z 
+3.171777868464527000e+000*x*z-4.452643732844518400e-001*y*z^2 
-3.265755214761094600e-001*y*z-7.620982637674059500e-003*w*z^2 
+8.960697484787646900e-002*w*z-1.930411059722898500e-001*y^3 
-1.678792690811768400e-003*w^3*x-1.592468604742688600e+000*w*x^3 
+9.007701922534827300e-004*w^3*y+4.657497626416064900e-002*w*y^3 
+3.258044622318274000e+001*x^3*y+1.508983215212316600e+000*x*y^3 
+2.360186518184322900e-003*w^3+1.491539098805756400e+002*x^3 
-9.334473077715481300e-002*z^3-7.376984309577400100e-002*y^3*z 
+7.235650646884851600e-004*w^3*z+2.849735221827075500e+001*x^3*z 
+1.887480405124494500e-001*x*z^3+6.824712853713566000e-001*y*z^3 
-1.537056408258479500e-002*w*z^3-1.095639179512649400e-004*w^4 
-2.314463850751197900e+002*x^4-7.682263793128358800e-001*y^4 
-5.264374317284058200e-002*z^4+2.992662472653651500e+000*x*y^2*z 
+4.048874110496172700e+000*x+1.739726398446761700e-001*y 
+1.274055857684663100e-001*w*y*z+2.788372799178211900e-002*w^2*x*z 
-3.479668030059797100e-001*z-9.298461913056173300e-003*w^2*y*z 
-4.011522138679148900e-001*w*x*y*z+8.795687192657741800e-002*w 
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APPENDIX D: NODES AND WEIGHTS USED FOR GAUSSIAN QUADRATURE 
  

Table D-1: Nodes and weights for 5th order Gaussian Quadrature. 

Nodes, px  Weights, pw  

  0.90617984593866396   8.2444001768938353 
  0.53846931010568311  -2.9110668435605040 
  0.00000000000000000   2.2500000000000000 
 -0.53846931010568311  -2.9110668435605040 
-0.90617984593866396   8.2444001768938353 

 
 

Table D-2: Nodes and weights for 8th order Gaussian Quadrature. 

Nodes, px  Weights, pw  

 0.96028985649753629  17.922771464432078 
 0.79666647741362673  -5.5818790601306656 
 0.52553240991632899   3.3388096902387669 
 0.18343464249564981  -2.6874218067243119 
-0.18343464249564981   2.6874218067243119 
-0.52553240991632899  -3.3388096902387669 
-0.79666647741362673   5.5818790601306656 
-0.96028985649753629 -17.922771464432078 

 
 

Table D-3: Nodes and weights for 9th order Gaussian Quadrature.  

Nodes, px  Weights, pw  

  0.96816023950762609  22.018133995029626 
  0.83603110732663577  -6.7380614436617821 
  0.61337143270059047   3.8972854718701457 
  0.32425342340380892  -2.9721880659817645 
  0.00000000000000000   2.7343750000000000 
 -0.32425342340380892  -2.9721880659817645 
 -0.61337143270059047   3.8972854718701457 
 -0.83603110732663577  -6.7380614436617821 
 -0.96816023950762609  22.018133995029626 
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APPENDIX E: REGRESSION SURFACE FOR THE FUNCTION REFLECTING 
THE CHANGE IN STIFFNESS OF THE WORKPIECE AT THE CUTTING 

ZONE 
 

The function, ( )( ),t cx t dψ , depends on parameters: ( )tx t , the axial position along the 

workpiece (in mm) and the depth of cut, cd  (in mm). It is only valid over the following ranges of its 

two independent parameters since it was fit over a set of discrete data points: 

( ) [ ]40.0,170.4tx t ∈  [ ]0.0, 0.9cd ∈  
 

Outside of this range, accurate outputs are not guaranteed.  To facilitate the copying and pasting 

of the regression surface the following variables have been defined as 

x ( )tx t  d cd  
 
and it is given as 

( )( ),t cx t dψ  = +1.073880870038387800e-001-2.068378195578957600e-003*x 
+6.307684462599035400e-005*x^2+3.761432683874404200e-008*x^3 
-1.853353264837203100e-001*d+9.309374369672101000e-001*d^2 
-8.383417123232970200e-001*d^3+8.851417724089483100e-003*x*d 
-7.185986820730972000e-005*x^2*d+1.035631071513366800e-007*x^3*d 
-5.311898686029703500e-002*x*d^2+4.848824261334489000e-002*x*d^3 
+6.947420088061311000e-004*x^2*d^2-6.466732704348190200e-004*x^2*d^3 
+1.035632940477381400e-007*x^3*d-2.467776987392017000e-006*x^3*d^2 
+2.317455198198983900e-006*x^3*d^3 
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