
FIXED GRID MESHING IMPLEMENTATION FOR INTERACTIVE
ANALYSIS

Juan Fernando Duque Lombana

EAFIT UNIVERSITY
Engineering School

Mechanical Engineering Department
MEDELLIN

2012

FIXED GRID MESHING IMPLEMENTATION FOR INTERACTIVE
ANALYSIS

Graduation project for the degree of Magister in Science of Engineering

Advisor
Prof. Manuel Julio Garcia

EAFIT UNIVERSITY
Engineering School

Mechanical Engineering Department
MEDELLIN

2012

ii

Contents

1 Introduction 3
1.1 Fixed Grid preprocessor . 3
1.2 Fixed Grid and CFD . 3
1.3 Computational Steering of CFD Simulations 4

1.3.1 Wind tunnels . 4
1.3.2 Computational Approach 4

2 Paravoxel: domain decomposition based Fixed Grid preproces-
sor 7
2.1 Summary . 7
2.2 Introduction . 7
2.3 3D Domain-meshing algorithm - ParaVoxel 8

2.3.1 Basic Fixed Grid Meshing Algorithm 8
2.3.2 ParaVoxel Fixed Grid Meshing Algorithm 8
2.3.3 Boundary data acquisition 8
2.3.4 Ray Classification based on facet intersections 9
2.3.5 Ray-Facet intersection computation/Domain decomposition 11
2.3.6 Node and Element Classification 11

2.4 Meshing adaption approaches . 15
2.4.1 Mesh Smoothing, Vertex-Surface adaption 15
2.4.2 Polymesh generation using Convex Hull NIO Elements

approach . 17
2.5 ParaVoxel Parallel approach . 18
2.6 Meshing test cases . 19
2.7 Domain and Boundary conditions integration 21

2.7.1 Fixed Grid based solution (Structural problems) 21
2.7.2 OpenFOAM based solution (Fluid flow problems) 21

2.8 Discussion . 23

3 Computational Steering of CFD Simulations inside Grid Com-
puting Environments 25
3.1 Summary . 25
3.2 Introduction . 26
3.3 Interactive CFD needs and requirements 26
3.4 CFD and Collaborative Workspaces 30
3.5 Simulation Steering Architecture 30

3.5.1 Computational steering scheme 30

iv CONTENTS

3.5.2 Setting up of a new scenario (Virtual Wind Tunnel exam-
ple) . 32

3.5.3 Preprocessing . 34
3.5.4 Solving . 35
3.5.5 Postprocessing . 35

3.6 Test Case . 36
3.6.1 Development Requirements for the Server 36
3.6.2 Development Requirements for the Client 36
3.6.3 Using an already existent Scenario 37
3.6.4 VWT Execution . 38
3.6.5 User Feedback . 38

4 Conclusions 41

List of Tables

2.1 Paravoxel Kraft test results . 21

3.1 Variations on the CFD Scenario and their respective effects . . . 27

vi LIST OF TABLES

List of Figures

2.1 A facet fi defined by the points {p0, p1, p2} 9
2.2 A ray ri normal to plane Π0 . 10
2.3 A ray ri intersecting a facet fi 10
2.4 Closest point lies inside the facet 15
2.5 Closest point lies over the boundary of the facet 15
2.6 NIO element calculated via Convex Hull 18
2.7 Paravoxel Message Passing Map 18
2.8 ParaVoxel test case Piston Head 100x100x200 Grid 19
2.9 Performance of the FG Mesher processing the piston head model 19
2.10 ParaVoxel test case . 20
2.11 ParaVoxel test case . 20
2.12 ParaVoxel Kraft test case . 22
2.13 Boundary Conditions over the CFD Domain 23

3.1 Flow diagram of a CFD mesh Interactive method, Blue lines show
the feedback by the Control Stage 28

3.2 CFD Simulation Steering Dataflow 31
3.3 VWT Boundary . 32
3.4 VWT boundary + Body . 33
3.5 VWT Scenario with 2 Bodies . 34
3.6 Interactive Post processing test 38
3.7 Original scenario example . 39
3.8 Modified Scenario Solution example 40

viii LIST OF FIGURES

Acknowledgments

”A wizard is never late, Frodo Baggins. Nor is he early. He arrives precisely
when he means to.”

-Lord of the Rings: The Fellowship of the Ring (Movie) by Peter Jackson,
Fran Walsh, Philippa Boyens

Once again to my parents, Luis and Silvia, for all their invaluable love and
support, this is for you and because of you.

There were many people involved on the development of this project and
I would like to thank them: my advisor, Prof. Manuel J. Garcia, for all his
support, uninterested help and understanding; This work is also his vision.
Eng. Miguel Henao, for his solid work and appreciations that served as basis
for this study. Eng. Santiago Giraldo, Msc. Santiago Orrego and Eng. Jorge
Mario Mazo, colleagues and true wingmen, working by your side was always a
pleasure.

Special thanks to COLCIENCIAS and EAFIT University, sponsors and be-
lievers of the the idea that knowledge generates wealth al welfare.

x LIST OF FIGURES

Summary

This graduation project presents a state of the art Fixed Grid Meshing algo-
rithm and implementation suited for structural and fluid flow problems, where
fast meshing calculation rates is required for large domains with high element
density. Once the geometrical and computational problem is addressed, the
architecture for an interactive CFD system suited for Grid Computing is pre-
sented to the reader. In both scenarios the state of the art of this kind of
implementations is reviewed, followed by the introduction to the newly devel-
oped approaches for both problems and finally discussing the advantages and
difficulties presented in the respective algorithms/methodologies and computa-
tional implementations.

The developments described within this work are all framed by a larger
project called The Virtual Wind Tunnel sponsored by EAFIT University, Los
Andes University, University of Alberta and COLCIENCIAS during 2008 and
2009; The results in this graduation work were developed entirely at the EAFIT
University’s Applied Mechanics Laboratory in Medellin and are part of a col-
laboration effort in companionship with the University of Alberta in Canada
and Los Andes University in Bogota, Colombia.

2 LIST OF FIGURES

Chapter 1

Introduction

The developments described within this work are all framed by a larger project
called The Virtual Wind Tunnel sponsored by EAFIT University and COL-
CIENCIAS during 2008 and 2009; The present work is the compendium of two
papers which portray some of the most relevant features and functionalities
developed with the author’s leading role during this project.

1.1 Fixed Grid preprocessor

This work presents an overview of the current state of Paravoxel, a parallel-
Cartesian Fixed Grid Mesh and Preprocessor developed in the Applied Me-
chanics research group which is suitable for structural and fluid dynamics com-
putational applications. The application contains an embedded fixed grid pre-
processor and a third party surface-meshing algorithm adapted for geometry
acquisition.

The basics of the Fixed Grid Meshing algorithm will be discussed within
section , followed by some domain decomposition modifications that make this
preprocessors approach different from others. The possibility to decompose the
domain - and the data structures required for that operation - allow the algo-
rithm to be parallelizable. This fact leads to a discussion about the advantages
and difficulties of the current implementation. The reader is presented with a set
of examples and a brief discussion on the possibility of applying this algorithm
together with other meshing approaches.

1.2 Fixed Grid and CFD

Computer Aided Engineering (CAE) has gained great relevance over the past
few decades given the advantages it has in terms of ease of using for expert users,
low costs and where long experimentations times become the bottleneck for
situations where complex multi-physics problems are approached. The present
work intends to present new approaches which lower the required times for user
interaction with the analysis system and the computational times, elevating
other indicators such as the time an user can spend studying the physics behind
the results presented by the CAE tool.

4 Introduction

Computational Fluid Dynamics (CFD) represent growing field nowdays, and
the times spent during the preprocessing phase of a single problem analysis
largely depend on the complexity of the geometry of the body and the fluid flow
conditions.

Paravoxel as a preprocessor alone does not fulfills all the requirements for
its direct usage in Fluid Flow simulations. A proper strategy to link it with the
CFD Analysis is presented in the context of steering CFD simulations to solve
aerodynamic design problems.

1.3 Computational Steering of CFD Simulations

1.3.1 Wind tunnels

Since the building of the first wind tunnel by Francis H. Wenham in Great
Britain in 1871, the study of fluid flow problems over complex geometries has
developed aiming to characterize both transient and steady phenomenon on fluid
dynamics. A wind tunnel consist of carefully designed ducts through which a
stream of air is driven at controlled velocities and uniform conditions [4]. Wind
tunnels are used by engineers and scientists to simulate air-flow conditions in
the laboratory. Analyzing scale models is cheaper, take less time to build, and
generally allows more extensive instrumentation than full-scale testing which
sometimes is even impossible. [4].

To guarantee that the results of scale tests are directly proportional to full-
scale models, dynamic similarity must be preserved: Mach and Reynolds num-
bers are to be the same as those present in full scale conditions. Mach number
is the ratio of the air velocity to the velocity of sound [23] and the Reynolds
number reflects the ratio of linear momentum to viscous forces [23] allowing a
proper prediction of the present drag forces. In some cases guaranteeing the
dynamic similarity conditions becomes a monetary-expensive task due to the
need of highly accurate and reliable sources to guarantee the conditions of the
fluid flow.

During the past century, the development of numerical methods and com-
puters have opened the doors for Physicists, mathematicians and consequently
to engineers to approximately solve physical problems once thought impossible
without the proper experimentation and mathematical tools, being the wind
tunnel a problem as such.

1.3.2 Computational Approach

Within the following chapters of this work an overview of the architecture used
for the implementation of an Interactive Computational Fluid Dynamics (CFD)
environment, intended for studies mainly related with shape optimization of the
airflow around virtual prototypes. The idea behind this type of implementation
is to constrain faster the design domain that a group of designers has to face
when facing a task such as this. The aim of this work is to present the abstraction
of the requirements for the architecture of a grid computing system intended for
CFD simulations and a some of the milestones faced for such implementation.

The structure of an automated server responsible for managing the CFD
module and updating the new simulation conditions for the next timestep is

1.3 Computational Steering of CFD Simulations 5

the core of the project and will be a matter of discussion.The used scheme for
distributing data and information as soon as they are available for both solver
machine (located on the same computer or on a High Performance Computing,
HPC, facility) and clients from the server, will be discussed as well.

The presented architecture supports a CFD interactive solver (GNU/GPL
CFD library) for incompressible laminar Navier-Stokes equations using the PISO
algorithm. The application makes use of an embedded Fixed Grid Preprocessor
(Paraview) described on Chapter 2 . The current implementation is inherently
interactive allowing easy changes to the virtual prototype geometry and to the
boundary conditions of a CFD simulation.

6 Introduction

Chapter 2

ParaVoxel: a domain
decomposition based Fixed
Grid preprocessor

2.1 Summary

This paper is an overview of the current state of a parallel-Cartesian Fixed
Grid Mesh and Preprocessor, which is suitable for structural and fluid dynamics
computational applications. The application contains an embedded fixed grid
preprocessor and a third party surface-meshing algorithm adapted for geometry
acquisition. The first section of this paper is a presentation of the basics of
the Fixed Grid Meshing algorithm, followed by some domain decomposition
modifications that make this preprocessor’s approach different from others. The
possibility to decompose the domain - and the data structures required for that
operation - allow the algorithm to be parallelizable. This fact leads us to a
discussion about the bottlenecks of the current implementation. Finally, the
reader is presented with a set of examples and a brief discussion on the possibility
of applying this algorithm together with other approaches.

2.2 Introduction

Mesh generation is a process of spatial subdivision of a generally complex con-
tinuous domain into simple-shaped sub-volumes of pre-defined topology [8] .
These sub-volumes are usually referred to as mesh elements or cells. Elements
in a mesh are connected to each other, without intersecting, and they cover the
entire domain, thus representing a discrete form of continuous domain.

Fixed grid implementations on most applications rely on cartesian meshing
applications to generate meshes suited to assemble and solve the finite element
problem. This process is based on topological data in order to achieve faster per-
formance than other approaches, such as constrained Delaunay tetrahedrizations
([20]), or Structured Meshing. Fixed Grid (FG) meshing, Quadtree decompo-
sitions and Cartesian Grid Meshing algorithms are broadly used (Dunning et
Al. [7],Wang [24] and Aftosmis [1] just to name a few), as an efficient link be-

8 Paravoxel: domain decomposition based Fixed Grid preprocessor

tween CAD systems and Finite Element/Finite Volume solvers given their low
computational cost. [11]

The following sections introduce the reader to the developments on Par-
avoxel, an MPI based parallel Fixed Grid Preprocessor, suited for structural
and fluid dynamics problem solvers.

2.3 3D Domain-meshing algorithm - ParaVoxel

2.3.1 Basic Fixed Grid Meshing Algorithm

A basic FG meshing algorithm starts with the immersion of a body (Ω) inside
confines domain (called Fixed Grid Domain ΩFG) which will subsequently be
subdivided into discrete elements (ei, defined by its vertex xi).These elements
are topologically and geometrically conformed in an abstract manner before the
immersion of Ω inside ΩFG. After such immersion, each node belonging to ΩFG
ni will be classified as IN if ni ∈ Ω, OUT if ni /∈ Ω or BDRY if ni ∈ ∂Ω.
After the node classification, an element classification process starts (having
calculated the number of IN and OUT nodes belonging to ei). During this
process every ei is classified as: IN if every node ni belonging to it qualifies
as IN , OUT if every node belonging to it qualifies as OUT and NIO if ei
contains a mixture of IN , OUT and BDRY nodes.

2.3.2 ParaVoxel Fixed Grid Meshing Algorithm

In order to implement ParaVoxel, the two-dimensional fixed grid meshing al-
gorithm presented by Garcia [11] was extended to three dimensions, and the
number of operations to be computed was minimized. Algorithm 1 shows the
implementation of Paravoxel prior to the application of any mesh adaption tech-
niques.

Algorithm 1 ParaVoxel FG Meshing Outline
GIVEN: a Triangularly faceted Solid BREP of a Solid Model ∂Ω =
{f0, f1, f2, f3...fn}
GIVEN: a fixed grid Domain ΩFG = {e0, e1, e2, e3...en}
GOAL: Fixed grid representation of body Ω
1.) SolidModelLoad {Routine to load the Solid Model BREP ∂Ω}
2.) FacetPerRayCompute {Routine to Calculate which facets fi are hit by a
ray belonging to ∂Ω}
3.) NodesPerRayClassify {Routine to calculate and classify the nodes ni
belonging to ∂Ω, given their Node state}
4.) ElementsClassify {Routine to classify the elements belonging ∂Ω, given
the states of their nodes}
5.) NioGeomCompute {Routine to compute the NIO elements geometry}

2.3.3 Boundary data acquisition

Different representations from computational geometry can be used to represent
the geometry of the body Ω; for example: Parameterized Primitive Instancing,

2.3 3D Domain-meshing algorithm - ParaVoxel 9

Figure 2.1: A facet fi defined by the points {p0, p1, p2}

x

y

z

n̂

p0

p1

p2

fi

Constructive Solid Geometry (CSG), Cell Decomposition, Implicit Representa-
tions. For this implementation, we chose a representation scheme called Bound-
ary Representation (BREP). It uses a simple representation of solid bodies by
representing their boundary with a set of piecewise triangular faces (facets, fi)
defined by three points {p0, p1, p2}, oriented in such way that right hand con-
vention is preserved.

The process of acquiring the object boundary representation is performed
via VRML 2 Files. VVRML is an international standard used for representing
3-dimensional objects using interactive vector graphics. The information con-
tained in the VRML file is written as a Piecewise Linear mesh, composed of
triangular entities (facets, fi), representing the boundary of the 3D object in
question.

Paravoxel is capable of handling the acquisition of parametric geometries via
the Netgen library. Netgen is a third party software, programmed by Joachim
Schberl [19], which allows the acquisition of geometry from any CAD system
via a neutral file (IGES, STEP) or STL models. The main motivation for
choosing this software as the data acquisition engine is its ability to perform
quality triangular-based surface meshing in reasonable times. The boundary
representation acquired via Netgen is meshed, generating a suitable ∂Ω and
handed over to ParaVoxel to generate a discrete 3D domain.

The initial transition from parametric to discrete geometry meshing was
partially responsible for some defeaturing, however this will not be discussed
here due to space limitations. This it is one of the sources of defeaturing the
geometry will suffer during the generation of the volume discretization.

2.3.4 Ray Classification based on facet intersections

On Algorithm 1, during step number 2, an instance of a procedure called
FacetPerRayCompute is invoked. This instance is an optimization of the FG
algorithm presented by Garcia [11]], using the previous calculations to define
what facets fi ∈ ∂Ω are touched by the ray ri (See Figure 2.2 in order to reduce
the number of future computations of the Fixed Grid meshing algorithm. ri
(See Figure 2.2)can be defined as an infinite straight line normal to a plane Π0

which contains a set of collinear nodes belonging to ΩFG [10] . A structured set
of rays normal to a plane Π0 contains all the nodes belonging to ΩFG.

The algorithm proposed by Henao and Garcia in the present work to decom-
pose the domain (Algorithm 2) consists of projecting all the facets that belong

10 Paravoxel: domain decomposition based Fixed Grid preprocessor

Figure 2.2: A ray ri normal to plane Π0

ri

Π0

x

y

z

Figure 2.3: A ray ri intersecting a facet fi

fi

Π0

x

y

z

ri

to ∂Ω over a plane Π0 (Where the rays ri are originated in the fixed grid) and
storing the index of the faces of interest per ray.

Given the nature of the domain decomposition operation a valid approxi-
mation for this operation is to calculate if the ray ri pierces the bounding box
of the projection of fi over the plane Π0. The algorithm, as implemented in
ParaVoxel, is displayed in 2. In the first place, to calculate the intervals of the
bounding box belonging to the fm projection, a min-max calculation is used
on the convex polygon or line resulting from the projection. In second place as
fm will always be normal to the plane Π0, a check is performed to determine
if the coordinates of the seed point of each ray are inside the intervals of the
bounding box belonging to the projection. This can be ascertained by checking
2 coordinates inside the triad, without having to perform any transformation
if Π0 is normal to any of the of the unit vectors defining the world coordinate
system (WCS).

After performing the classification of Facets per ray, the number of opera-
tions in future stages of the algorithm is greatly diminished, because of the fact
that the Ray-Facet intersection operations are not performed on every fi for
each ri. An advantage of this implementation is that being the operations of
facet ray intersection domain independent, parallelization is a natural approach
to follow in the implementation development and improvement stages; another
substantial improvement over the conventional Fixed Grid approach is that for
any ray that does not hit any particular facet, all the nodes belonging to that
ray are classified as OUT directly.

2.3 3D Domain-meshing algorithm - ParaVoxel 11

Algorithm 2 FacetPerRayCompute
GIVEN: Given a Triangularly faceted Solid BREP ∂Ω = {f0, f1, f2, f3...fn}
GIVEN: Given a set of rays ri
GIVEN: Given a plane Π0 orthogonal to ri
GOAL: An approximated classification of facets fj per ray ri inside vector
FacetsPerRay
N = size(∂Ω)
j = 0
while j < N do
fm = Projection(fj ,Π0)
[Ix, Iy] = BoundingBox(fm)
for ALL ri ∈ [Ix, Iy] do

Store j in FacetsPerRay[i]
end for

end while

2.3.5 Ray-Facet intersection computation/Domain decom-
position

To calculate the Ray-Facet intersection computation, a variant of the Möller and
Trumbore algorithm [16] is implemented, in which the plane defined by the fm
contains ri. The purpose of the modified algorithm is to calculate the segment
defined between two points representing the intersection between fi and ri. If
fi is pierced by ri on a single point, both points defining the segment will be
the same. Algorithm 3 outlines the implementation inside ParaVoxel.

The advantage of this vector operations-based routine is that it does not
require any pre-computed plane equations for the facets. Given the relative
simplicity of the operations presented by the algorithm, expressions can be pre-
sented in terms of the original vertex of the triangular facet, the pivot point
of the ray, and its direction. This operation can be performed using any sym-
bolic algebra math package, and need not take up a lot of memory during its
execution.

It is important for the reader to notice that the result of Algorithm 3 is
always a pair of two geometrical points, no matter if they are the same. The
previous condition should be verified in future stages of the FG algorithm to
check if the intersection between the facet and the ray is a straight segment or
a single location in space.

2.3.6 Node and Element Classification

NodesPerRayClassify procedure is required in Algorithm 1, step number 3. This
step is aimed to classify every ni node belonging to ΩFG correctly. Basically,
every time a ray hits the ∂Ω closed 2-manifold (in zones other than surface
peaks or aligned surfaces containing the ray) the state of the nodes over that
point of the boundary changes from IN to OUT and vice versa. Algorithm 4
outlines the node classification process as implemented in ParaVoxel.

It is important to highlight that a section of Algorithm 4verifies if the posi-
tion of every node ni is contained within the interval defined by two intersection
points. If the intersection points define a line completely belonging to any facet

12 Paravoxel: domain decomposition based Fixed Grid preprocessor

Algorithm 3 RayTriIntersection
GIVEN: a triangular facet defined as fi = {p0, p1, p2}
GIVEN: a ray ri defined by its direction r̂i and pivot point ri0
GOAL: to determine the intersection segment bounded by p∩0 and p∩1

e1 = −−→p0p1

e2 = −−→p2p1

pv = r̂i × e2
λ = 〈e1, pv〉
if λ ∈ [−ε, ε] then

if ri lies on fm then
[p∩0, p∩1] = ComputeSegment()

else
There is no intersection

end if
end if
tv = −−−→ri0p0

β = 〈tv, pv〉(1
λ)

if β ∈ (−ε, 1 + ε) then
There is no intersection

end if
qv = tv × e1
γ = 〈ri, qv〉(1

λ)
if (γ < −ε) ∪ (β + γ > 1 + ε) then

There is no intersection
end if
p∩0 = ri0 + 〈e2, qv〉(1

λ)
p∩1 = p∩0

2.3 3D Domain-meshing algorithm - ParaVoxel 13

of ∂Ω, the state of the nodes is classified as Boundary, since for some Fixed
Grid approximations the physical meaning of having a boundary node might
prove critical while correctly classifying the state of the elements.

Algorithm 4 NodesPerRayClassify
GIVEN: an array of facet sets related to each ray, FacetsPerRay
GIVEN: a set of rays, r
GIVEN: a set of facets, f
GIVEN: a set of nodes, n
GOAL: an array of state flags of ni respect to Ω, NodeState
for All rays ri do

for All facet fm inside FacetsPerRay[i] do
Pri

= RayTriIntersection(ri, fm)
end for

end for
if size(Pri

) 6= 0 then
FilterPeakPoints()
WhereAmI = Outside
for All intersection points pk in Pri

do
for All nodes ni inside [pk, pk+1] do

if [pk, pk+1] is not an intersection segment contained by a facet then
NodeState[ni] = WhereAmI
WhereAmI = Not(WhereAmI)

end if
end for

end for
for All nodes ni inside intersection segments [pk, pk+1] do
NodeState[ni] = Boundary

end for
end if

After node classification process, the next step (Algorithm1, step number 4)
is to perform element classification. The set of rules to determine if an element
is either IN ,OUT or NIO is based on the number of IN(Icont), OUT (Ocont)
and Boundary nodes (Bcont) belonging to an element. Algorithm 5 contains
the set of rules implemented in ParaVoxel. The set of rules defined here is
an arbitrary convention derived from the study of the possible combinations
of the state of the nodes belonging to an element. The basic idea behind the
aforementioned conventions is to keep the geometry of the meshed body as close
as possible to the one initially immersed in the Fixed Grid.

Only the state of the element is required to reconstruct the geometry of the
IN elements, elements, because a pre-computed solution is set for it (hexahe-
drons in this case). NIO elements represent a completely different scenario,
given that countless geometries with different topologies may appear in a single
fixed-grid calculation.

14 Paravoxel: domain decomposition based Fixed Grid preprocessor

Algorithm 5 ElementsClassify
GIVEN: an array of node connectivities per element, e
GIVEN: an array of state flags of ni respect to Ω, NodeState
GOAL: an array of state flags of ei respect to Ω, ElementState
for All element ei|ei ∈ ΩFG do

[Icount] = evaluateINCount(ei, NodeState)
[Ocount] = evaluateOUTCount(ei, NodeState)
[Bcount] = evaluateBDRY Count(ei, NodeState)
if Icount > 0 ∩Ocount > 0 ∩Bcount > 0 then
ElementState[ei] = NIO

end if
if Icount > 0 ∩Ocount > 0 ∩Bcount = 0 then
ElementState[ei] = NIO

end if
if Icount = 0 ∩Ocount > 0 ∩Bcount > 0 then
ElementState[ei] = OUT

end if
if Icount = 0 ∩Ocount > 0 ∩Bcount = 0 then
ElementState[ei] = OUT

end if
if Icount = 0 ∩Ocount = 0 ∩Bcount > 0 then
ElementState[ei] = IN

end if
if Icount > 0 ∩Ocount = 0 ∩Bcount = 0 then
ElementState[ei] = IN

end if
if Icount > 0 ∩Ocount = 0 ∩Bcount > 0 then
ElementState[ei] = IN

end if
end for

2.4 Meshing adaption approaches 15

Figure 2.4: Closest point lies inside the facet

Figure 2.5: Closest point lies over the boundary of the facet

2.4 Meshing adaption approaches

Since ParaVoxel an hexahedral predominant fixed grid mesher, the geometry of
the IN and OUT elements is fast and easily obtained and manipulable, however
the NIO elements are still subject of debate; Given the fact that speed is the
main goal for this preprocessor while maintaining stability, two approaches are
used in the preprocessor to achieve meshes that closely resemble the original
geometry immersed inside the Fixed Grid.

2.4.1 Mesh Smoothing, Vertex-Surface adaption

A completely hexahedral mesh is conformed with an IN , OUT and NIO ele-
ment sorting scheme (using only the previously calculated IN elements). The
resulting mesh represents an skewed version of the object the designer wishes
to analyze.

The IN vertex belonging to both the IN and NIO elements of the Fixed
Grid are moved from their original location P to a new position P ′ so that
min(P − P ′) is achieved, being P ′ is located over the boundary of Ω.

The algorithm finds the closest point on each facet Fi to the point P . After-
wards, it compares which one is the closest point across the whole domain. To
correctly locate the min(P −P ′) ffor a single facet, two general cases are solved:
when normal projection P lies inside the facet (hence the projection of P is the
closest distance, Figure 2.4) and when the normal projection of P lies outside
the facet (thus the closest point to P is the closest point in the Fi boundary,
Figure 2.5).The algorithm is presented in Algorithm 6.

Algorithm 6 combined with the fixed grid scheme present in ParaVoxel,

16 Paravoxel: domain decomposition based Fixed Grid preprocessor

Algorithm 6 Vertex-Surface adaptation algorithm
Given: Point P in space
Given: Triangularly faceted surface ∂Ω = {f0, f1, f2, f3...fn}
Goal: The closest point to P oversurface ∂Ω, P ′

Calculate normal n0 for facet f0
Calculate Pp such that Pp is the orthogonal projection of P into the plane
defined by n0

if Pp lies inside f0 then
P ′ = Pp

else
Calculate Ppp such that Ppp is the projection of Pp into the boundary of f0
P ′ = Ppp

end if
for all Fi different from fo do

Calculate normal ni for facet fi
Calculate Pp such that Pp is the projection of P into the plane defined by
ni
if Pp lies inside fi then
PT = Pp

else
Calculate Ppp such that Ppp is the closest point to Pp into the boundary
of fi
PT = Ppp

end if
if norm(P − PT) < norm(P − P ′) then
P ′ = PT

end if
end for

2.4 Meshing adaption approaches 17

provides all the necessary conditions for easy parallelization via domain decom-
position. The algorithm speed-up is determined by the Fixed Grid mesh, the
solid bodys dimension, the number of processors, and the domain decomposi-
tion technique used (the algorithm is sped up since the number of operations
is constant per facet projection). Domain decomposition via geometric subdivi-
sion is an attractive approach, using radial based functions to select the facets
rooted on the original point location P tto select the facets that should be used
to calculate the required P ′.

During our testing, the algorithm behaves well if the element dimensions
are small (with a ratio higher than 1/10 , approximately) in comparison to the
object features; topology is easily respected due to the small displacements.
However, for large displacements (especially over elements with large aspect
ratios between their dimensions), ill-defined elements (self-intersecting, large
non-orthogonalities, etc...) tend to appear easily, and untangling methods are
required to be able to produce a valid mesh.

2.4.2 Polymesh generation using Convex Hull NIO Ele-
ments approach

Another geometry-fitting mesh generated via Fixed Grid can be calculated using
polyhedral discrete elements. By means of the IN , OUT and NIO NIO element
sorting process described previously, all IN and NIO elements are added to
the polymesh, generating a non-conformal, all-convex, polyhedral mesh without
hanging nodes. The advantages of this approach are that the geometry fits
closely the original body, and the shape of the hexahedral elements is regular
across most of the domain.

A simple Convex Hull approach was used to compute the NIO elements, in
order to approximate their geometry [12]. A Convex Hull can be seen as the
boundary of the minimal convex set that contains a finite set of points (Figure
2.6),); thus, if a NIO element is small enough so that no large curvature
changes appear throughout the surface of any of its faces, the convex hull of the
set of points composed by the IN and Boundary vertexes belonging to it should
present a decent approximation to its original geometry for meshing purposes.
The qhull library (Developed by Barber et al. [2]) is used in ParaVoxel.

It is important to notice that using a Convex Hull approach to approximate
the NIO elements geometry leads to some defeaturing of the model, which is a
problem when really exact calculations are required. However, for early design
stages where fast-interactive testing is performed to shorten the design domain,
this type of Fixed Grid approximation is suitable and desirable.

The balance between the size of the Fixed Grid and the smallest feature of
the solid body will be the decisive factor to guarantee a proper representation of
the boundary with the convex-hull NIO elements. An analogy to the Nyquist-
Shannon Theorem [21] [22] for analog signal sampling is evident during this
process: to achieve a close approximation via convex-hull NIO elemented fixed
grid, the largest size of an element in the grid must be at least half the size of
the smallest feature of the solid body.

18 Paravoxel: domain decomposition based Fixed Grid preprocessor

Figure 2.6: NIO element calculated via Convex Hull

Figure 2.7: Paravoxel Message Passing Map

2.5 ParaVoxel Parallel approach

For the implementation of ParaVoxel, a distributed memory scheme via MPI
(Message passing interface) using a Server-Client approach was selected. The
Server will be the process in charge of sharing/sending/receiving the data needed
for computations performed by each Client. The solid model geometry is loaded
on Client and Server side, tasks and operations are divided via domain decom-
position, based on the rays and bands of elements assigned to each client.

For this kind of computation, one of the bottlenecks is clearly the time
it takes to pass messages [12]. Thus, communication requests are minimized,
leading to a scheme where every process makes the same amount of operations
independently; thus maximizing the quality of information sent per package
becomes the problem of interest. Figure 2.7 shows the sequence for the main
meshing algorithm running in the server and the client machines, and how the
communication process takes place among them.

After all the steps in the main algorithm are completed, the information is
sent back and organized in the Server. Due to the fact that the resulting mesh
is structured, only the state of the elements has to be known in order to recover

2.6 Meshing test cases 19

(a) Piston Head B-Rep (b) Resulting IN ele-
ments

(c) Resulting NIO ele-
ments

Figure 2.8: ParaVoxel test case Piston Head 100x100x200 Grid

Figure 2.9: Performance of the FG Mesher processing the piston head model

the I elements. For the NIO elements, the information about the intersection
points has to be shared among all the processes. Thus, the fewer NIO elements
in the model, the less data there is that has to be shared between the server
and the clients. The next section of this paper shows the results obtained in a
test that was performed with the meshing application.

2.6 Meshing test cases

Figure 2.8 shows the complete Paravoxel meshing results, in which given a
valid geometry (B-Rep of a piston head), a mesh composed by the IN and
NIO elements is calculated. Figure 2.9 presents the scalability of the algorithm
running on an eight-CPU cluster (running on a Linux distribution) allocated to
mesh the piston head geometry.

Figure 2.10 and 2.11 show the results of meshing a complex model of a
Venus statuette using a 66X230x66 element grid. The original BREP model
was obtained from the INRIA 3D meshes research database, and it is owned
by Artist 3D(www.artist-3d.com). The model was used for academic research
purposes only.

20 Paravoxel: domain decomposition based Fixed Grid preprocessor

(a) Venus B-Rep (b) Resulting IN elements (c) Resulting NIO elements

Figure 2.10: ParaVoxel test case

(a) Venus Head B-Rep (b) Resulting IN elements (c) Resulting NIO elements

Figure 2.11: ParaVoxel test case

2.7 Domain and Boundary conditions integration 21

Test Case Grid Grid Facet-Ray Node Element NIO
dimensions elements clasification (s) clasification (s) clasification (s) elements

Mesh 0 {31x20x46} 22320 3.1739 1.1538 0.0055 5890
Mesh 1 {62x41x71} 180482 3.8692 1.4828 0.0367 24469
Mesh 2 {123x83x142} 1449678 4.6319 1.8153 0.149 62759
Mesh 3 {246x166x284} 11597424 6.5821 3.8537 1.2076 253484
Mesh 4 {482x324x568} 88703424 10.433 13.091 8.8917 988525

Table 2.1: Paravoxel Kraft test results

Another complex model was selected to perform tests related to the scal-
ability of the single core meshing algorithm and its computation times(Figure
2.12). The model was meshed at a starting coarse resolution (28520 elements,
Mesh 0) and the resolution was subsequently divided by half in all directions
(escalating the computations in a O(2n) order) until a 88’703.424-element grid
was achieved (Mesh 4). In order to test the portability of the software, the
computer used for such tests was a MacBook Pro -running on Snow Leopard
OSX- with an Intel Core 2 Duo 2.8 GHz processor, and 4GB of RAM. The
original BREP model was obtained from the INRIA 3D model library, and it
is owned by Polygon Technology GmbH (www.polygon-technology.com. The
model was used for academic research/ purposes only.

Figure 2.12 presents the original BREP model and the resulting meshes from
ParaVoxel. Table 2.1 shows relevant data related to the results of each meshing
scenario.

The results for both performance and quality of the mesh suit the needs of
the Fixed Grid implementations, including the ability to return geometrical and
topological information of the elements at all times.

2.7 Domain and Boundary conditions integra-
tion

2.7.1 Fixed Grid based solution (Structural problems)

A strategy in which the boundary conditions set over the original BREP are
transferred to the nearest nodes of the fixed grid was developed, given that the
calculated Fixed Grid Mesh does not completely fits the original BREP and that
the entities (geometrical and topological) which compose the new representation
are different than the ones on the original BREP. The algorithm follows an
approach similar to the one described in previous sections to classify the nodes
that are related to a specific facet (Algorithm 7)and then to a given boundary
condition.

The previously stated algorithm is an approach suited for a particular im-
plementation of a Fixed Grid FEA solver for the linear elastic problem.

2.7.2 OpenFOAM based solution (Fluid flow problems)

The ParaVoxel library allows the computation of volumetric meshes via FG
algorithms. These meshes are generic and they have not been written in any
valid format for a CFD solver yet.

22 Paravoxel: domain decomposition based Fixed Grid preprocessor

(a) Kraft Original Model (b) Resulting Kraft NIO
elements 31x20x46 Grid
(Mesh 0)

(c) Resulting Kraft NIO
elements 62X41x71 Grid
(Mesh 1)

(d) Resulting Kraft NIO
elements 123x83x142 Grid
(Mesh 2)

(e) Resulting Kraft NIO el-
ements 246x166x284 Grid
(Mesh 3)

(f) Resulting Kraft NIO el-
ements 482x324x568 Grid
(Mesh 4)

Figure 2.12: ParaVoxel Kraft test case

Algorithm 7 FacetNodeRelation
for All rays ri do

for All facet fm inside FacetsPerRay[i] do
Pri

= RayTriIntersection(ri, fm)
end for

end for
if size(Pri

) 6= 0 then
for All points pk in Pri

do
for All nodes ni inside [pk, pk+1] do

if [pk, pk+1] is not an intersection segment then
FacetNodeRelation[ni] = fm

end if
end for

end for
for All nodes ni inside intersection segments [pk, pk+1] do
FacetNodeRelation[ni] = fm

end for
end if

2.8 Discussion 23

Figure 2.13: Boundary Conditions over the CFD Domain

OpenFOAM is an open-source toolbox with a large user database, and it is
used to perform simulations from complex fluid situations to electromagnetics
(involving heat transfer models, turbulence and chemical reactions). The library
core is written in C++ modules adaptable to create custom solvers and pre-
processing tools. As the internal structure of OpenFOAM is based on finite
volume numerics, mesh structure is basic to perform calculations. The convexity
of the cells should be respected during the complete process.

OpenFOAM allows the transcription of volumetric meshes into OpenFOAMs
own fvMesh format via its cellshapes toolkit. Using the other tools in the patch-
detection toolkits (e.g. angle / curvature changes), boundary conditions setting
becomes possible when required.

Figure shows the mesh of a toy car inside a boxed domain with inlet and
outlet conditions mapped on opposed faces after performing the import of the
mesh into OpenFOAM for solving.

2.8 Discussion

The power of this approach compared with the traditional Fixed Grid Meshing
lies in the ability to decompose the domain in order to minimize the number
of intersections between the solid body and the rays that actually hit it. This
process allows load ballancing on processors according to the number of times
each ray (belonging to the set) hits the solid body (thus lowering the number
of triangle/ray intersections to be calculated globally). The ability to decom-
pose the domain makes this algorithm parallelizable (which has proven efficient
enough to run on several CPU’s). The data structures used to program this
implementation, seem able to fit different architectures such as GPU implemen-
tations.

The dimensions of the perpendicular edges of the elements belonging to the

24 Paravoxel: domain decomposition based Fixed Grid preprocessor

fixed grid is a parameter of the algorithm, hence the applicability of the domain
decomposition approach used in this algorithm can provide a useful approach
if nested inside others, such as Building Cubes Method (For fluid simulations,
See Komatsu et Al. [9]), to generate the basic hexahedral meshes on the initial
stages and the refined volumes during the later stages.

The generality of this preprocessor and the built-in API used to calculate the
volume and other properties of the NIO and IN elements suits the requirements
of many academic research projects, such as the one proposed by Kim [14]
and Garcia and Steven [13]] with their algorithms based on Genetic/ISO-ESO,
where Cartesian grids with quad/hexa elements are required, and the calculation
of the properties of the NIO elements is one of the inputs to penalize the local
stiffness matrix of those elements regarding the ones classified as IN.

Chapter 3

Computational Steering of
CFD Simulations inside
Grid Computing
Environments

3.1 Summary

This paper presents an overview of the architecture used for the implementation
of an Interactive Computational Fluid Dynamics (CFD) environment, intended
for studies mainly related with shape optimization of the airflow around virtual
prototypes; The idea behind this type of implementation is to constrain faster
the design domain that a group of designers has to face when facing a task
such as this during the early stages of the development, where highly accurate
results are not required. The aim of this paper is to present the abstraction of
the requirements for the architecture of a grid computing system intended for
CFD simulations and a some of the milestones faced for such implementation.

The structure of an automated server responsible for managing the CFD
module and updating the new simulation conditions for the next timestep is
the core of the project and will be a matter of discussion.The used scheme for
distributing data and information as soon as they are available for both solver
machine (located on the same computer or on a High Performance Computing
HPC facility) and clients from the server, will be discussed as well.

The present architecture supports a CFD interactive solver (GNU/GPL
CFD library) for incompressible laminar Navier-Stokes equations using the PISO
algorithm. The application contains an embedded fixed grid preprocessor. The
current implementation is inherently interactive allowing easy changes to the
virtual prototype geometry and to the boundary conditions of a CFD simula-
tion.

Finally, this paper presents the reader some results obtained for simple test-
cases and a discussion about solution stability, accuracy and how useful this
interactive CFD tool is for early mechanical design stages where highly accurate
solutions are not yet necessary, and reducing the size of a broad design domain

26
Computational Steering of CFD Simulations inside Grid Computing

Environments

is required.

3.2 Introduction

The need to be able to study interactively fluid flows around virtual prototypes is
not new. Many interactive CFD systems have been developed in the past years
such as: CHAM (Concentration, Heat and Momentum) Limited with their vir-
tual wind tunnel system [6] , MIT’s David OH with his Java virtual wind tunnel
[17], the NASA Virtual Wind tunnel at AMES Research Center [5] and more
recently Rank and Wenisch et al. with their high performance computing im-
plementation [18] [25]. A wide range of applications beggining from the obvious
hydrodynamic and aerodynamic analysis to testing the implications of testing
different configurations of air conditioning systems in surgery and HPC centers
require versatile, fast and reliable simulation systems.

One of the current limitations of many interactive CFD projects, is that most
of them use pre-computed solutions not allowing for on-the-fly changes to the
geometry and the boundary conditions, other however allow fast preprocessing
and scenario setup, but their solutions are not accurate enough for commercial
application .

The ability to change geometry and boundary conditions at each time steps
is to our viewpoint critical in the design process as it creates a true sense of
insights on how small variations of the design parameters/constrains affect the
fluid flow around the virtual prototype. In section 3.3, we will describe the
requirements for an interactive CFD simulations system. In Section 3.5, we will
describe the basic architecture for a basic software implementation. In Section
3.6, we will present some recent results and analyze them from a precision and
stability viewpoints. The paper end with the conclusions and the description of
future development plans, which from the architectural point of view will allow
to perform both stable, accurate and fast interactive simulations.

3.3 Interactive CFD needs and requirements

The main idea behind most of the CFD simulations is to obtain a global and
accurate picture of the behavior of the fluid flow in contact with other fluids or
solids. This kind of simulations try to reproduce physical phenomena present
on the fluid flow and its implications, being this phenomena from non-steady
natures in most of cases. Non-steady simulations represent a mathematical and
computational challenge not to be taken lightly and are one of the best ways
to obtain the idea of the behavior of an specific design under load conditions
before its construction.

Interactive scenarios are useful for understanding the physics of the systems
and how it responds to variations of the design variables, to optimize the design
in terms of Energy efficiency or to improve the aerodynamic performance. For
CFD, this variations might be classified into different classes due to the difference
between their natures:

1. Geometrical: This variations are related to modifications of the geomet-
rical aspects of the bodies that interact inside the simulation. The possi-
bilities are:

3.3 Interactive CFD needs and requirements 27

Table 3.1: Variations on the CFD Scenario and their respective effects

Type Change Direct Effects Possible Induced Changes
Geometric Positioning Mesh-Recalculation Boundary Conditions

Timestep
Orientation Mesh-Recalculation Boundary Conditions

Timestep
Size Mesh-Recalculation Boundary Conditions

Timestep
Shape Modifications Mesh-Recalculation Boundary Conditions

Timestep
Addition-Subtraction Mesh-Recalculation Timestep

Boundary Conditions
Physical Fluid Properties Timestep

Mesh-Recalculation
Fluid flow Regime Change

Boundary Conditions Timestep
Fluid flow Regime Change

Mesh-Recalculation
Timestep Mesh-Recalculation

State of the Simulation Continue the simulation? Start-Stop

(a) Relative positioning of a body.

(b) Relative Orientation.

(c) Size (Scaling).

(d) Shape modification of the elements.

(e) Addition-Substraction of bodies.

2. Physical: The nature of this variations is related to the modifications on
the physical parameters/phenomenon. The possibilities are:

(a) Fluid properties.

(b) Boundary conditions.

(c) Timestep of the simulation.

3. State of the Simulation: Setting Start-Stop flags is necessary to control
the continuity of the process.

All the variations listed above are modifications of the scenario the user is
interacting with, not over the application that is being used to solve the sce-
nario. Most of the Geometrical changes force the recalculation of the mesh used
for the computations and may as well induce other variations on the scenario,
like changing the boundary conditions of the domain. The possible effects of
performing a change over the CFD scenario are portrayed on Table 3.1, as well
as the possible chain of events that one change might cause.

A single variation may induce a chain reaction that might produce a signifi-
cantly greater computational cost than expected, e.g. If a body is added to the
scenario, the whole mesh is to be recalculated, new boundary conditions are to
be set over the body (no-slip wall conditions for example), and possible changes
on the flow regime might be induced etc...

28
Computational Steering of CFD Simulations inside Grid Computing

Environments

The main requirements that an interactive CFD methodology has are the
same of a non-interactive methodology plus the ability to control the variations
of the scenario listed in Table 3.1. The level of immersivity the user might
desire will only generate new needs and wishes mainly related to the sensorial
aspects of the interaction in the post-processing stage, but not with the basic
information of the CFD scenario. As the post-processing stage of the simulation
is interactive, a new ”Control” instance must be included to guarantee the
stability and interaction with the simulation. The Workflow diagram for an
interactive CFD simulation-methodology is shown on Figure 3.1. It consists of
four stages: Pre-processing, Solving, Post-Processing and Control.

Figure 3.1: Flow diagram of a CFD mesh Interactive method, Blue lines show
the feedback by the Control Stage

1. Pre-processing stage: Geometry discretization, physical model definition
and boundary conditions definition.

2. Solution stage: Given a physical model and a suitable CFD discrete sce-
nario, a particular solver is selected and invoked for data processing.

3. Post-processing stage: As the solver starts producing all the results ex-
pected from the solution stage, all data is interpreted and displayed to the
user using a graphical environment where he can interact with it.

4. Control stage: Parallel to the Post-processing stage, the control stage is
fed from the results shown during post-processing and is the stage where
the user analyses if any change over the current CFD scenario is to be
made. If the CFD scenario changes somehow, the control structures or
the user itself must perform a feedback process to all the other stages (Pre-
process, Solution and Post-process) of the CFD simulation, providing the
necessary data to continue the simulation.

The possibility to perform any of the variations over the CFD scenario shown
in Table 3.1 suggest that the list of needs that arise from an interactive CFD
methodology might be grouped into 2 sets:

3.3 Interactive CFD needs and requirements 29

1. Non Interactive CFD needs Set. This set of needs are mainly related initial
scenario setup to be simulated.

(a) Pre-processing. Geometry definition setup, Discretization Informa-
tion, Boundary Conditions, Physical model, Numerical methods and
various solver constrains.

(b) Post-processing.

• Selected data for displaying: given the massive amount of infor-
mation the user can access after solving an scenario, choosing
which sets of data are to be and how will be analyzed is neces-
sary.

• Viewpoint and Scales.

2. Interactive CFD needs set. This set of needs arises from the condition of
being interactive during the post-processing via the control stage. This
set of needs go hand by hand with the possibilities of variations over the
CFD scenario described in Table 3.1.

(a) Geometry redefinition. This subset of needs is mainly related with
the topologycal and geometrical changes a CFD scenario might suffer
during the simulation.

i. Body Re-positioning control: To have control over the relative
position between coordinate systems attached to the bodies in-
volved during the simulation.

ii. Body Re-orientation control: To have control over the relative
orientation between coordinate systems attached to the bodies
involved during the simulation.

iii. Body Re-sizing control: To have control over the possible scala-
bility of the bodies involved during the simulation.

iv. Body addition-subtraction: To have control over the possible ad-
dition or subtraction of new/old bodies involved on future stages
of the simulation, which will be positioned, oriented and scaled
via the controls on the items (i),(ii) and (iii).

(b) Physical variables redefinition. This subset of needs is mainly related
with the changes of the physical constrains in a CFD scenario during
the simulation.

i. Fluid properties control: To have control over the physical prop-
erties that define the fluid (viscosity,specific weight and heat,
etc...).

ii. Timestep control: To have control over the timesteps used to
solve the scenario.

iii. Boundary conditions control: To have the ability to modify the
present boundary conditions.

(c) Change the current state of the simulation: To have control over the
fact of stopping or continuing the simulation process.

30
Computational Steering of CFD Simulations inside Grid Computing

Environments

3.4 CFD and Collaborative Workspaces

Collaborative workspaces are environments of virtual or real nature on which
different people work in a collaborative fashion to achieve a common goal. Com-
puter supported collaborative workspaces (CSCCW) are increasingly being used
to enhance collaboration between people located on different spots of the globe.

The use of common tools such as 3D model navigation and handling on this
environments is a natural choice and even though the integration of video com-
munication systems between clients is a possibility to achieve a more fluid and
personal interaction, the imminent appearance of gaps at conceptual expression
and transmission of the generated knowledge and ideas is still difficult to avoid

Different schemas to achieve highly efficient collaborative virtual workspaces
have been proposed by Bilinghurst and Kato [3] and others. A common denom-
inator is that the communication pace can be used as means to minimize the
impacts of changing suddenly in a short matter of time the conditions of the
workspace. During the present research, a synchronous interaction scheme will
be used as default, given the relative ease to control that the variations on the
CFD scenario are performed in a sequential order.

3.5 Simulation Steering Architecture

3.5.1 Computational steering scheme

One of the main goals for this system is to use and develop interaction tech-
niques for users located on remote spots via high speed network. Being the users
different in nature due to the specifications of their available computational re-
sources (operative system, computer capabilities, etc.) a Client/Server schema,
where only some specific data transactions and messages are allowed, becomes
the natural choice for development.

The Figure 3.2 presents the abstraction of the processes required to guaran-
tee an stable and smooth interaction between the user located at a client ma-
chine and the server (simulation/user manager) and solver applications, both
located on a remote solver machine. On the Figure 3.2 different vertical pools
are established, one for each main process involved during the CFD simulation
steering:

• Data I/O and Steering: This process is handled by the Client appli-
cation. The Client should be able to handle all the defined user data
requests and inputs, guaranteeing a fluent interaction and allowing the
user to perform the steering of the scenario he desires either defining from
scratch-new scenario or using a previously defined one.

• Data distribution and Simulation triggering: This process is han-
dled by the Server application (a simulation/user management system).
The Server should be able to handle the user requests performed from
remote locations. The Server is multi-user oriented and the interactions
presented on this diagram are only performed with a single user (analogi-
cally, the same tasks are performed for the interaction with any user).

• CFD solver: After the developments of the Solver this is has become
a straightforward process when all the data is properly defined and set.

3.5 Simulation Steering Architecture 31

The solver only requires a properly defined scenario and its main task is
to solve the PDE’s that represent the fluid flow problem.

Figure 3.2: CFD Simulation Steering Dataflow

It is important to note that one user in start a new simulation, on which
the user has to provide all the geometry files and scenario setup and later on be
interested on steering (entry point number 1, Figure 3.2). On the other hand,
another user might be interested on steer/watch the results of an already defined
simulation, being possible to understand this case as subtask of the dataflow of
the starting from scratch/steering a new simulation (as seen on Figure 3.2,
starting from the entry point number 2). Entry point number 3 refers to the
need of steering an already running simulation previously defined by another
user.

The number of Client/Server communications and its size were minimized in
order to keep network data transfer as low as possible, trying to avoid as many
latency/bandwidth related problems.

The developed architecture allows several users to steer/access the same

32
Computational Steering of CFD Simulations inside Grid Computing

Environments

datasets from their own clients, providing the basic setup for collaborative design
discussions in between the clients via communication services.

3.5.2 Setting up of a new scenario (Virtual Wind Tunnel
example)

Having an organized scheme of how the ongoing simulation data will be man-
aged, an abstraction of the minimum information required to perform the cal-
culation and analysis of a physical phenomenon of a given nature is the step to
follow.

A wind tunnel is basically a closed hall with an inlet and outlet which allow
a transversal flow of air across it. The idea behind this computational imple-
mentation is to be able to steer the flow’s inlet velocity by varying its magnitude
and set the proper conditions over the body and the tunnel’s wall which reflect
the real flow around an object inside a wind tunnel. Wind tunnels are used
in academic and industrial research to test the aerodynamic variables (Lift and
Drag coefficients, pressure and and velocity distributions over the surface and
around an object, etc...) on a particular design scenario.

A transient-state/incompressible/newtonian/laminar flow phenomenon will
be used as pilot. The aim of the following sections is to analyze the data
requirements to define a generic instance (Scenario) of a Wind Tunnel (Virtual
Wind Tunnel, VWT), estimating the nature of the messages that should be
passed from client to server and vice versa.

Tunnel Boundary

To define a new scenario on the VWT, it is necessary to establish a proper
boundary for the wind tunnel itself, the bodies whose aerodynamic features will
be tested, the wind speed at the inlet and various other information. Hexahedral
shaped wind tunnels will be valid, and their orientation should be the same of
the cartesian axis of the world coordinate systems (Figure 3.3).

Figure 3.3: VWT Boundary

3.5 Simulation Steering Architecture 33

To define an hexahedral domain, the length of the X,Y and Z dimensions
are required to define the travel length of the wind tunnel and its cross section.
Being the boundary of the tunnel a geometric representation, a geometric center
(Center) is required to set the tunnel on a exact place given the world coordinate
system center as reference.

Addition-Transformation of bodies

Once the VWT CFD domain boundaries are set, the user can start adding
Bodies to the scenario. Body refers to the boundary representation (B-REP)
of a solid body. Different approaches can be used to define a B-REP, being
piecewise planar representations the most commonly used. The location of
the geometric center or any fixed reference point in terms of a triplet of
numbers is required as well to establish a reference frame for the body position
(See Figure 3.4).

Figure 3.4: VWT boundary + Body

Once the body is located inside the boundaries of the tunnel, the a set of
geometric transformations should be applied over it to achieve a correct orienta-
tion. The selected approach is to apply a set of Translations and Rotations
of the body respect to the world coordinate system reference frame, using the
center of gravity of the body as reference point for the rotation operations.

For some cases, the study case might require to analyze the interaction
between various Bodies inside the tunnel. Following the procedure presented
beforehand, The same operations should be performed to add more Bodies to
the scenario as presented on Figure 3.5.

34
Computational Steering of CFD Simulations inside Grid Computing

Environments

Figure 3.5: VWT Scenario with 2 Bodies

The geometric information to establish a CFD scenario should be available
initially on the client side and should be transferred and stored on the server
side, for simulation, reconstruction and distributing purposes among the clients
and solver.

Initial and Boundary Conditions settings

Given that the present VWT scenario will be used as the general case, a basic
set of boundary conditions that reflect the problem conditions should be set and
parameterized.

For all the tunnel walls and all the faces belonging to the body, a No-Slip
Wall condition (zero velocity) will be set by default. A pressure outlet condition
will be used to set the reference pressure at the outlet of the system (atmospheric
pressure) and for the inlet of the wind tunnel, a velocity inlet will be used and
its magnitude is required as an input parameter, named U0.

Zero Velocity and the same reference pressure will be used inside the whole
domain as initial conditions, implying that the results from the initial timesteps
will not reflect accurately the fluid flow, but as time develops, the solution will
be more and more accurate.

3.5.3 Preprocessing

After all the conditions and parameters that define the scenario are defined by
the user, the data should be transmitted, gathered and validated inside the so-
lution server to reconstruct the scenario and perform the required finite volume
method discretization, on which geometry, boundary conditions, initial condi-
tions and physical parameters are integrated on a structure such that the solver
is able to read all the data required by the algorithm for solution. The Finite Vol-
ume Method (FVM) relies on a mesh to represent the geometry of the scenario
to be solved and hence, a fast and reliable meshing algorithm which can feed the
solver when data is required. The boundary representation of the object that the

3.5 Simulation Steering Architecture 35

user defined is handed over a Fixed Grid (FG) volumetric mesher (called Par-
aVoxel) to discretize the 3D CFD domain. FG meshing algorithms are broadly
used as an efficient link between CAD systems and Finite Element/Finite Vol-
ume solvers given their low computational cost and versatility.[11]

It is important to notice that Paravoxel uses a Convex Hull approach to
approximate the geometry of the elements near the boundary of the object,
leading to defeaturing of the model, a problem when accurate calculations are
required. However, for early design stages where performing fast-interactive
testing to shorten the design domain, this type of Fixed Grid approximation is
not only suitable, but an advantage.

The balance between the size of the Fixed Grid and the smallest feature of
the solid body will be determinant to guarantee a proper representation of the
boundary with the convex-hull elements. An analogy to the Nyquist-Shannon
Theorem for analog signal sampling [21] [22] is evident during this process: to
achieve a close representation of the geometry by a fixed grid method, the largest
size of an element in the grid must be at least half the size of the smallest feature
of the solid body.

3.5.4 Solving

Following the preprocessing stage, the data is sent from the client to the Server
and from the Server to the Solver. All data should be coupled in terms of the
data structures the solver requires for performing the simulation. This step
should be transparent to the final user to guarantee an streamlined interactive
experience.

For the presented architecture, a FVM solver for incompressible/steady
state/newtonian flow is integrated with the preprocessor. The basic architec-
ture presented in the previous sections is method independent, hence another
solver which is suitable to solve the same physical phenomenon is adaptable, by
means of changing the data structures passed on to the solver.

3.5.5 Postprocessing

During this stage the solution data is sent to the client machines either as a com-
plete dataset or as a simplified video stream. The user must be able to control
the viewpoint, colormaps and the amount and nature of the information pro-
duced during the solution of the given scenario. On the present implementation
the following criteria were taken as reference:

• Basic Requirements: A set of basic filters such as streamlines calculation,
isosurface representation, colormaps and glyphs should be available for
the user.

• Environments: A 3D environment where the user is able to travel around
the scenario should be available for users with high end computers/large
bandwidth capabilities. Given the heterogeneous nature of the clients,
a basic video stream using precomputed scenario viewpoints should be
available for users with reduced bandwidth or computational resources.

• Tools: Interaction means such as haptic, 3D or multiple axis interaction
means should be available for the user to get the most out of the interactive

36
Computational Steering of CFD Simulations inside Grid Computing

Environments

experience.

3.6 Test Case

The present section describes an implementation of the previously presented
architecture. It starts presenting the technical requirements and issues faced
during the implementation and on the later stage, a discussion around the user
experiences while using the software.

3.6.1 Development Requirements for the Server

Following the order of ideas presented on section 3.5, the following initial list
of requirements for the Server was harvested, summarizing the perception and
ideas that will be required for this development. In front of each development
requirement, the solution proposed to suffice this need will be presented.

• Stability : an Unix based operative system was chosen to be the host of
the Server service. The stability of this monolithic-type kernels allows an
easy restart of the service if required without having a huge impact on the
other processes of the operative system.

• Be able to run as a system service: The server, programmed as a ruby
script can easily be set as a system service which can be started or stopped
at any time.

• TCP/IP communication oriented : The message passing between server/client
was programmed over an internationally known standard protocol sup-
ported by libraries on many programming languages.

• Easy modification and maintainability : Being the code written on a simple
language as ruby, the level of abstraction required to modify it is relatively
simpler than the one required if the Server was written on other languages
where complex data structures and castings are required.

• Network file transfer optimized : The third party package rsync was chosen
due to its stability and optimality for file transfer and keeping up to date
copies of a source folder over network systems.

3.6.2 Development Requirements for the Client

The following initial list of requirements for the Client was harvested, summa-
rizing the perception and ideas that will be required for this development. In
front of each development requirement, the solution proposed to suffice this need
will be presented.

• Stability : Programmed over C++ and running on an extensively tested
third party package called Paraview, the client can guarantee if properly
developed the required stability levels for this kind of applications.

• Have a powerful graphical engine for different purposes: ParaView, an
open source third party package was chosen as the graphic engine for this
client. Of relative easy modification once its structure is understood, the

3.6 Test Case 37

plugin programming option became a powerful tool for developing the
client.

• TCP/IP communication oriented.The message passing between server/client
was programmed over an internationally known standard protocol sup-
ported by libraries on many programming languages.

• Easy modification and maintainability : Paraview code is supported by a
large community which can provide insight into adding further function-
ality and supporting the code.

• Network file transfer optimized.The third party package rsync was chosen
due to its stability and optimality for file transfer and keeping up to date
copies of a source folder over network systems.

• OS portable: Paraview is developed over multiplatform packages. Running
the client on Windows, Mac or Linux based systems is not a big problem
once the compilation stage of the Paraview platform is dominated.

• Compatible with different I/O Devices: The plugin architecture supports
the usability of different I/O devices such as wii-motes, gamepads, etc...
through the implementation of different control structures using the VRPN
libray embedded on a Paraview plugin compatible with the client.

The client application should be able to perform the following operations for
the user to interact with the server:

• Connect/Disconnect: By means of this functionality,the user can start/stop
the communication with the VWT server located at the a given machine
through an established port. The user should always identify himself using
an Username.

• List Simulations: Lists the available simulations the user can start in-
teracting with.The status of each simulation(currently running/stopped)
should be available for the user to query.

• Create Simulation: This functionality allows the user to create a new
simulation on the server side.

• Get Online Users: Lists the users currently logged on the server.

• Get User Viewpoint: allows to interactively obtain the current view
point of any user logged on the VWT application for a given simulation.

3.6.3 Using an already existent Scenario

Any already existent simulation or scenario of the VWT can be loaded by the
client. To load an already existent simulation, the user must first select a valid
simulation from the Simulation list, inform the server that he will be working
on it and then start the setup/modification of a new or existent scenario.

After the simulation is modified, the client will send all the modification
requirements to the server, and it will start sending all the information required
by the user to perform the steering and postprocessing. This operation requires
an amount of time proportional to the bandwidth and the amount of data
transferred.

38
Computational Steering of CFD Simulations inside Grid Computing

Environments

3.6.4 VWT Execution

Once the scenario has been properly established, the user must confirm this
action and start the calculations. After the solution processing begins, the
Client/Server communication and interaction described on section 3.5 starts.
The user must explicitly confirm the scenario setup, ordering the server to exe-
cute the desired command. In case the user desires to perform any change on the
scenario during the solution, he is totally free to modify the scenario to his will
and to refresh the scenario inside the solver. To change the case being solved,
the user must explicitly once again tell the server that there is a modification
on the scenario.

3.6.5 User Feedback

Two tests were conducted upon the implemented VWT platform:

Large model Visualization steering

A large model of the Buoyant winds on the Aburra Valley in Colombia (2.6 mil-
lion cells approx.) was used as dataset for interactive postprocessing between
two groups of people on different locations. The first group, located at Eafit
university (Medellin, Colombia) used conventional screens and mouse as inter-
action means, while the second group, located at Los Andes university (Bogota,
Colombia) used a large format screen and remote controllers (wiimote type) as
interaction means. Both groups were connected via Access Grid [15] confer-
ence using audio and live video feeds as intercommunication. Both sites are
connected via the RENATA high speed network (30 Mbps). No simulation was
run and the platform was only tested as means to set up a remote collaborative
environment meant for discussion.

Once the VWT platform was set up on both sites and the dataset was shared,
an initial discussion topic was established and for 30 minutes an interactive chat
between both parties through the video conference and the same simulation
dataset was held. Figure 3.6 presents the setup of the interaction devices used
on both sites.

(a) EAFIT University interaction setup (b) Los Andes University interaction setup

Figure 3.6: Interactive Post processing test

As a result of the previous test, the following set of observations are in order:

• Fluent and stable communication between client and servers.

3.6 Test Case 39

(a) Initial Scenario (b) Initial Scenario Mesh (c) Initial Scenario Solution

Figure 3.7: Original scenario example

• No locking points were found during the experiments.

• User interaction via remote controls was successful, but still requires more
expertise on the user side.

• Once the dataset is located on both clients, bandwidth is not a big issue.

• Knowledge generation through discussion on different sites is highly en-
riched by the interactive experience. Communication skills are still key to
guarantee a fluid discussion.

• The initial setup of the platform requires specialized personnel, while the
interaction and discussion has proven that familiarity with similar tools is
only a factor that ease up the initial approach to the tool. Once familiar
with the environment, the user is free to roam the environment on any
way he desires.

Simulation steering

A simplified model of a toy car, formed by 715 facets, was was used as a test
model for the VWT. The CFD domain around the body was initially subdivided
into 150000 hexahedral cells. The simulation was remotely steered by two groups
of people at different locations (EAFIT and Los Andes Universities).

Both parties, using Access Grid as video and audio conference system, joined
efforts for coordinately steer the simulation. Figure 3.7 presents the initial
state of a simulation that contains two bodies (Red and Green Cars) originally
oriented on the same direction. Inside the same figure, the initial finite volume
mesh used to solve the case can be seen and to its right, the streamlines that
represent the solution can be seen as well.

After a brief discussion, it was required to change the orientation of the Green
Car (45 degrees rotation respect to one of its principal axes). The operation
was handled by the team at EAFIT and the instructions sent to the server.
Successfully, the simulation was steered and visualized on both clients as shown
in Figure .

Further testing was performed on the same example using the EAFIT net-
work with 2, 3 and 4 clients, displaying an stable and functional behavior on all
tests.

As a result of the previous test, the following set of observations are in order:

40
Computational Steering of CFD Simulations inside Grid Computing

Environments

(a) Modified Scenario (b) Modified Scenario Mesh (c) Modified Scenario Solution

Figure 3.8: Modified Scenario Solution example

• No locking points were identified during the steering. The data exchange
worked as expected between client and server and between clients.

• The preprocessing times were fit enough to guarantee a relatively fast
simulation setup. The initial required parameters were intuitive enough
for the group of users to setup the scenario and recreate the phenomenon.

• Data exchange becomes the bottleneck of this schema due to the large
datasets being transferred to the clients. Different schemes than TCP
should be tested in order to optimize dataflow.

• The users had to be properly trained in CFD practices for properly steer-
ing the simulations; Non trained users found difficult to understand the
parameters and their physical meaning.

Chapter 4

Conclusions

The developments on Paravoxel resulted in a stable multiplatform and scalable
Fixed-Grid Pre-processor, suited for any kind of application that requires a fast,
accurate and reliable discretization of 3D domains, taking into account that the
focus on the detail of the features of the object is not the main goal.

The tool behaves in such a way that given a boundary representation of
the geometry and the dimension of the required elements, the discretization is
automatically calculated without requiring any user-based expertise or work. In
some cases, where preliminary shape design tests are needed, the defeaturing
may present an advantage for both speed and for providing hints about what
the shape might become during the CAE analysis.

Regarding the idea of collaborative workspaces for CFD simulations/training,
it represents significant opportunities to developing countries specially given the
relatively low resources that have to be spent to collaborate with experts all
across the globe. High speed networks infrastructure and connectivity repre-
sent the means for cross-collaboration all across the globe and is one of the
basic technical requirements which still can’t be avoided in order to deploy a
platform for collaborative CFD.

The first implementation of this architecture provided useful information
about the way users interact with simulation. A robust control system must be
implemented to guarantee the stability of the simulation if multiple users try to
change the simulation scenario during the same session.

Message passing time is key to guarantee stability and the depth of the
interactive experience. The disadvantage of this process becomes the available
bandwidth between Server/Client/Solver machines. It is highly recommended
to run both Server/Solver inside the same cluster or computer, to minimize the
latency times and maximize the available bandwidth.

Finite Volume Method, though stable and accurate for solving CFD phe-
nomena, have proven not to be the best choice in terms of minimizing solution
time. A solver using Lattice-Boltzmann methods for solving Navier-Stokes will
be used inside the same architecture seems like a promising next step for fur-
ther research. It is important to notice that the same basic architecture can be
extended to simulate different phenomenon such as turbulent flow or buoyancy
effects adding the respective variables and parameters of interest required for
the respective phenomenon.

The idea of streaming video previously rendered on the Server machine has

42 Conclusions

proven to be a suitable way to avoid sending large data blocks over the network.
The biggest opportunity presented by this post-processing scheme is the ability
to handle clients which posses low computational resources/low bandwidth.

Even though no locking was evidenced during the user tests, not having a
constrained GUI when the control of the steering was performed by another
user was a matter of discussion between the users. It is recommended to add
a GUI locking means while the steering is performed by a client different than
the one sitting on a given terminal. The previous conclusion was later found to
be implemented by Wood and Wright, successfully generating a feeling of safety
for the users and the stability of the simulation.

The previous work presents a set of considerations to be taken into account
for the implementation of this type of architecture, future work is encouraged
into minimizing solution and message passing times, given the fact that the
previous architecture proved stable, reliable and suited for grid networks with
its nodes at both close and long ranged locations.

Bibliography

[1] M. J. Aftosmis, M. J. Berger, and Melton J. E. Handbook of Grid Gener-
ation, chapter 22:Adaptive Cartesian Mesh Generation. CRC Press, New
York, 1999.

[2] C. Barber, D. Dobkin, and H. Huhdanpa. The quickhull algorithm for
convex hulls. ACM Trans. on Mathematical Software, 22(4):469–483, 1996.

[3] Mark Billinghurst and Hirokazu Kato. Mixed reality - merging real and
virtual worlds. In Preceedings of the First international symposium on
Mixed Reality. Springer, 1999.

[4] ENCICLOPEDIA BRITANNICA@. Wind tunnels. Web, 2006. Available
at: http://www.britannica.com/ebi/article-9277765.

[5] Steve Bryson and Creon Levit. The virtual wind tunnel. volume 4, 1992.

[6] limited CHAM@. Cham’s virtual wind tunnel. Web, 2005.
http://www.cham.co.uk/phoenicsvwt/autovwt.htm.

[7] P. Dunning, Kim A., and Mullineux G. Two-dimensional fixed grid
based finite element structural analysis. In 12th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference preceedings, Victoria, British
Columbia, Canada, September 2008. AIAA/ISSMO.

[8] Herbert Edelsbrunner. Geometry and topology for mesh generation. Mor-
gan Kaufmann Publishers, Elsevier Science, 1st edition, 2003. Chapter 2,
Triangle Meshes.

[9] Komatsu K et al. Parallel processing of the building-cube method on a gpu
platform. Computers and Fluids, 27(4):429–549, 2011.

[10] James D. Foley, Andries van Dam, Steven Feiner, and John Hughes. Com-
puter Graphics: Principles and Practice. Addison-Wesley, Reading, MA,
2. edition, 1990.

[11] Manuel Garcia. Fixed Grid Finite Element Analysis in Structural Design
and Optimisation. PhD thesis, Department of Aeronautical Engineering,
The University of Sydney, March 1999.

[12] Manuel Garcia, Mario Gomez, Miguel Henao, and Juan Duque. Techni-
cal report : Hyperelastic-plastic simulation of textiles. Technical report,
EAFIT University, 2005.

44 BIBLIOGRAPHY

[13] M.J. Garcia and G.P Steven. Fixed grid finite element analysis in structural
design and optimisatio. In 2nd Internet Conference on Approximations and
Fast Reanalysis in Engineering Optimization. AIAA/ISSMO, May 2000.

[14] H. Kim, O.M Querin, G.P. Steven, and Y.M. Xie. Improving efficiency
of evolutionary structural optimization by implementing fixed grid mesh.
Structural and Multidisciplinary Optimization, 24(6):441–448, 2003.

[15] Argonne National Laboratory. The access grid. Web, April 2012. http:
//www.accessgrid.org/.

[16] Tomas Moller and Ben Trumbore. Fast, minimum storage ray-triangle
intersection. Journal of graphics, gpu, and game tools, 2(1):21–28, 1997.

[17] David OH@. The java virtual wind tunnel -a two dimen-
sional computational fluid dynamics simulation-. Web, 2001.
http://raphael.mit.edu/Java/.

[18] Ernst. RANK, Andre. BORRMANN, Alexander. DUSTER, Christoph.
TREECK, and Petra WENISCH. Computational steering: Towards ad-
vanced interactive high performance computing in engineering sciences. In
(WCCM8) June 30, 2008 Venice, Italy, June 2008.

[19] Joachim Schberl. Netgen - automatic mesh generator. Web, August 2006.
http://www.hpfem.jku.at/netgen/.

[20] Philip J. Scnheider and David H. Eberly. Geometric tools for computer
graphics. Addison-Wesley, 2. edition, 1990.

[21] C.E. SHANNON. A mathematical theory of communication. Bell Sys.
Tech. J., 27, 1948.

[22] C.E. SHANNON. Communication in the presence of noise. Proc. IRE, 37,
1949.

[23] Victor L. STREETER. Fluid Mechanics. McGraw-Hill Book Company,
4th edition, 1966.

[24] Z. J. Wang. A quadtree-based adaptive cartesian/quad grid flow solver for
navier-stokes equations. Computers and Fluids, 27(4):429–549, 1998.

[25] Petra Wenisch, Christoph van Treeck, André Borrmann, Ernst Rank, and
Oliver Wenisch. Computational steering on distributed systems: Indoor
comfort simulations as a case study of interactive cfd on supercomputers.
Int. J. Parallel Emerg. Distrib. Syst., 22(4):275–291, January 2007.

