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SUMMARY 

 The delivery of growth factors has been attempted for a number of different 

therapies.  The approach of delivering therapeutic growth factors in a safe and efficient 

manner is difficult and certain criteria should be met.  These criteria include: bind the 

appropriate growth factors, maintain their bioactivity, and deliver these proteins with 

controllable release rates for an extended period of time.  These criteria encompass a set 

of guidelines that hope to mimic the in vivo biological events (example: 

neovascularization).  The central goal of this thesis is to meet these criteria by 

introducing a novel delivery strategy for growth factors using a biocompatible polycation 

and heparin complex.  

At the onset, it was concluded that heparin should be used to bind and stabilize 

growth factors.  Heparin was chosen because it allows the binding of numerous growth 

factors, will maintain the bioactivity of these growth factors for an extended period of 

time, and in some situations will provide a more bioactive response than the growth 

factor alone.  Heparin accomplishes this because it has a native affinity for growth 

factors.  In order to localize growth factor delivery, native heparin has to be precipitated 

out of solution. A synthetic polycation was chosen to complex heparin to form a water-

insoluble matrix.    

It was decided that this polycation had to be biocompatible for this delivery 

strategy to be successful.  A delivery strategy needs to be biocompatible for use in in vivo 

applications.  Heparin has already been used extensively for clinical applications, but the 

same cannot be said about synthetic polycations.  To date, there has not been a reported 

synthetic polycation that is biocompatible enough to be used in this type of application.  
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To address this problem we set out to develop a synthesis strategy that mimicked the 

essential elements that make cationic peptides biocompatible.  This resulted in a synthetic 

polycation that exhibited unprecedented biocompatibility in vitro and in vivo. 

It was hypothesized that a polycation could interact with heparin to form a 

complex with the potential to deliver bioactive growth factors with a controllable release.  

I set out to test this hypothesis by examining the release kinetics of FGF-2 from the 

complex and investigating whether the released FGF-2 maintained its bioactivity.  The 

[polycation:heparin:FGF-2] complex was formed by mixing the components in PBS, 

which resulted in a precipitate.  This precipitate delivered FGF-2 with controllable 

release kinetics and the bioactivity of the released FGF-2 was comparable with bolus 

FGF-2 and heparin stabilized FGF-2.  The system is expected to bind and deliver 

numerous heparin-binding growth factors. 

In conclusion, the growth factor delivery system developed in this research 

provides a novel mechanism for controlled release of growth factors.  This delivery 

strategy has met the criteria listed earlier and this research has laid the foundation for a 

successful delivery vehicle.  Further, I designed a biocompatible polycation, a critical 

component of the delivery system.  This polycation exhibited in vitro and in vivo 

biocompatibility that was order of magnitude higher than existing polycations and would 

likely be very useful for a variety of biomedical applications.  This design principle is 

also expected to serve as a springboard to more biocompatible polycations.  

 



 

1 

CHAPTER 1 

SPECIFIC AIMS 

  

Introduction 

 Ischemic heart disease is the leading cause of mortality in the Western world and 

afflicts more than 10 million patients in the United States and hundreds of millions 

globally.  The primary cause of ischemic heart disease is the accumulation atherosclerotic 

plaques within the coronary arteries.  This can eventually lead to myocardial infarction 

which will result in damaged myocardial tissue.    Since the mammalian heart has little or 

no capacity to regenerate, there is a great need for a cardiac regeneration therapy (1, 2).  

Current therapies are aimed at reducing the extent of damage to cardiac tissue.  

Alternatively, it has been proposed cardiomyocyte repopulation and revascularization 

may lead to a restoration of cardiac function and represent an advancement over present 

therapies (3).  Cell-based strategies have generated great enthusiasm but still face the 

challenge of poor host-tissue incorporation (4).  Another approach to cardiac regeneration 

is the delivery of therapeutic proteins to stimulate neovascularization.  These therapeutic 

factors have to be delivered in a local and controlled manner to be safe and efficient.  One 

approach to achieve this type of delivery is an affinity-based delivery.  This type of 

system uses non-covalent interactions between the therapeutic factor and delivery vehicle 

to regulate the rate of release.  One of the best characterized examples of an affinity-

based system is the heparin-binding delivery system.    

In living tissue, a multitude of growth factors bind heparin in the extracellular 

matrix (ECM).  Heparin serves as a storage for growth factors, allowing them to diffuse 
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out in a sustained manner while maintaining their bioactivity (5).  There have been many 

growth factor delivery systems that have taken advantage of these attributes by 

incorporating heparin or heparin moieties (6, 7).  However, most of these delivery 

systems do not use heparin in its native state and thus are not completely biomimetic.  

Also, the majority of these systems are made from components that do not allow a 

controllable release rate.  This indicates a need for a growth factor delivery system that 

utilizes native heparin and allows for controllable release kinetics. 

   Our long-term goal is to establish a minimally invasive, controlled delivery 

system that will exploit heparin’s ability to bind angiogenic growth factors.  The 

objective of this application is to deliver FGF-2 in a local, controlled manner to promote 

the proliferation of endothelial cells.  The central hypothesis is that an appropriately 

designed polycation will interact with heparin to form a network that will sustain a 

delivery of bioactive FGF-2 over an extended period of time.  We also postulate that this 

resultant complex can be administered minimally invasively by injection.   We have 

developed this hypothesis based on strong preliminary data indicating the arginine-based 

polymer interacts electrostatically with heparin to form non-covalent complexes.  Also, 

these networks will use heparin’s capacity to bind FGF-2 and serve as a growth factor 

reservoir.  The rationale for this work is to develop a biocompatible delivery system that 

can deliver therapeutic growth factor over a specified period of time (days, weeks, etc.) 

while being minimally invasive.  The overall objective will be accomplished by 

evaluating our central hypothesis in the following specific aims: 
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Specific Aim I 

Synthesize and characterize a biodegradable, arginine-based polycation. 

   

 The working hypothesis is that a polycation that is both biodegradable and based 

on arginine will be biocompatible.  The polycation will be synthesized by incorporating 

arginine into the polymer backbone via the synthetic linker’s polycondensation reaction 

with the biomolecule.  The polycation will be characterized by NMR and FTIR 

spectroscopy, gel permeation chromatography, and differential scanning calorimetry.  

Also, the polycation’s biocompatibility will be investigated in vitro and in vivo. 

 

Specific Aim II 

Examine the potential of the polycation to complex heparin and deliver heparin-

binding growth factors. 

  

 The working hypothesis is that the [polycation:heparin] complex will bind FGF-2, 

preserve its bioactivity, and release it in its active form in a controlled manner.  We 

further hypothesized that the release of growth factor can be thermodynamically 

controlled through altering the composition of the network.  The polycation’s potential to 

form non-covalent networks with heparin will be analyzed via scanning electron 

microscopy and dynamic light scattering experiments.  To investigate the network’s 

ability to release growth factor, radio-labeled FGF-2 will be incorporated into the 

[polycation:heparin] complex and its release kinetics will be monitored.  The 

[polycation:heparin] network’s potential to maintain the bioactivity of the growth factors 

will be investigated through potency and functional assays using endothelial cells.  FGF-

2 release profiles will be used to examine changes in release rates by adjusting the 

components of the complex. 
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Innovation and Significance 

 This proposed research is innovative because it is the first time that a 

biocompatible polycation has been used for the controlled delivery of growth factors.  

This delivery vehicle has the advantages of being highly biocompatible and minimally 

invasive.  This system also has an adjustable cation composition that allows for an 

adaptable release of growth factor.  This work is expected to yield the following 

outcomes:  First, we will synthesize and characterize the arginine-based polycation and 

establish its biocompatibility.  We will optimize the polycation by modifying the 

synthetic linker and molecular weight to enhance complex formation.  Second, we will 

examine the ability of this polycation to form electrostatic networks with heparin and 

release bioactive FGF-2 in a controlled manner.  We will also evaluate how modifying 

the composition of the matrix will result in different release kinetics, creating a tunable 

delivery vehicle.  Taken together, these outcomes will shed light on the potential of using 

this strategy to control the release of growth factors to treat a variety of human diseases 

including ischemic heart disease. 

 The thesis work detailed here entails synthesizing a biodegradable, arginine-based 

polycation.  The polycation will then be used in conjunction with heparin as a growth 

factor delivery strategy.  This [polycation:heparin] delivery strategy will have the 

potential to bind numerous growth factors and maintain their bioactivity through non-

covalent interaction with heparin.  The non-covalent interaction should also allow for 

more efficient loading and delivery of therapeutic factors.  The overall goal of this 

research will be evaluated by the polycation’s biocompatibility and the delivery vehicles 

ability to deliver bioactive FGF-2.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW  

A Biocompatible, Synthetic Polycation 

Biomaterials 

 Biomaterials have played an important role in the treatment of diseases and 

healthcare in general.  A biomaterial is a material (natural or synthetic) that comprises a 

therapeutic or diagnostic system intended to interact with biological systems.  The 

earliest biomaterials can be dated back to the use of gold in dentistry over 2000 years 

ago, and other examples include the use of wooden teeth and glass eyes (8).  Then in the 

late 1800’s, the introduction of synthetic polymers introduced a new set of tools that 

would help advance the field of biomaterials.  Example of these include: 

polymethylmethacrylate (hip replacement), polyethylene terephthalate (vascular grafts), 

and polyurethanes (artificial hearts) (9).   While these biomaterials have greatly improved 

quality of life, they were not designed for their initial biomedical applications.  This lack 

of design has resulted in complications with properties such as biocompatibility and 

responsiveness to its environment (8). 

 The challenge for a number of biomaterials is they are used to replace living 

tissue.  Living tissue has spent centuries going through evolution to bring us to our 

present biological situation, and it would be difficult for a biomaterial to mimic all 

properties of living tissue.  This problem is compounded when the material is not 

designed for its specific application.  Presently, biomaterials science has moved in the 

direction of rationally designing materials for their application (10-12).  This movement 
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has been aided with greater understanding of cellular signaling, cell interactions, and 

developmental biology (13, 14).  A specific example of using knowledge of the 

biological environment to design novel biomaterials is the introduction of cell adhesion 

motifs, enzyme degradation sites, and growth factors into biomaterials for tissue 

engineering applications (15).  With the paradigm shift in biomaterial methodologies, it is 

now possible to more efficiently direct tissue regeneration and deliver therapeutics safely 

and efficiently.  With the progressive understanding of the biological environment, 

biomaterials will continue to evolve and lead to further breakthroughs in healthcare.  

 An example of one class of biomaterials that exemplifies the need for rationally 

designed materials is polycations.  Synthetic polycations have been around for decades 

and are used in variety of different areas of biomedical engineering (16, 17).  Synthetic 

polycations are well-known for being toxic in biological environments, and great lengths 

have been taken to modify them in the hope of increased biocompatibility (18).  

Presently, there has not been reported a synthetic polycation that has exhibited 

biocompatibility in both in vitro and in vivo environments.  In order for a polycation to 

realize its full potential in therapeutic applications, it will have to encompass this type of 

biocompatibility.  As seen with other biomaterials, a rational design can lead to 

improvements that help to revolutionize the field.   

 

Synthetic Polycations in Biomedical Engineering   

The use of synthetic polycations in biomedical engineering can be dated back 

approximately 50 years ago (16, 17).  Two of the most extensively used and best 

characterized polycations in biomedical engineering are polylysine (PLL) and 
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polyethylenimine (PEI).  PLL has been used in a variety of different applications but has 

been used most extensively in gene delivery and polyelectrolyte film applications (19-

22).  PEI is widely regarded as one of the most successful non-viral gene delivery vectors 

(23).  PEI has also been used in applications including cell patterning (24), medicinal 

chemistry (25), and delivery of other biomolecules (26, 27).  Both of these synthetic 

polycations have achieved levels of success in the aforementioned applications, but they 

have also been faced with the challenge of biocompatibility (28).  It has been well 

documented that these polycations are not biocompatible because they are toxic to cells.  

This property of PLL and PEI has led to numerous other polycations being introduced 

over the years, as well as PLL and PEI derivatives. 

In order to circumvent the issue of toxicity, numerous modifications to PLL and 

PEI have been made as well as creating many novel synthetic polycations in the process.  

Simple modifications of PLL and PEI include altering the molecular weight and structure 

(linear, branched, etc.) of the polymer (29).  Adaptations have taken a step further in the 

form of using PLL and PEI motifs as part of a larger polycation.  Examples of more 

extensive modifications include: PEG modified PEI and PLL (30-34), low molecular 

weight PEI cross-linked with biodegradable linkages (35, 36), polyhistidine graft-PLL 

(37), PEI conjugated to a biodegradable polyglutamic acid derivative (38), cholesterol 

modified PEI (39), lipid substituted PLL (40, 41), etc (42-45).  This is by no means an 

exhaustive list of all the different modifications, but just a sample of the modifications 

that have been introduced over time.  Some of these adaptations have met the goal of 

increased biocompatibility, but the issue of toxicity has never been overcome completely.   
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While efforts were focused on improving PLL and PEI, other research introduced 

other many polycations.  Some of the polycations that have resulted from this research 

include DEAE(diethylaminoethyl)-dextran, polyamidoamine (PAMAM) (46), and 

dimethyl aminoethyl methacrylate (DMAEMA) (47).  In the evolution of synthetic 

polycations, these polymers have also been modified to interact with their environment.  

These polymers are often referred to as “smart’ biomaterials.  These attributes can be 

seen in present polycations that are thermo-responsive (48, 49), pH responsive (50-52), 

and target different cellular functions (entry into the nucleus, escape endosome, etc.) (53-

56).    Nearly all of the synthetic polycations mentioned have been used for gene delivery 

applications, but there are also others that have been used in different areas of biomedical 

engineering such as tissue engineering and drug delivery. 

One hypothesis of why these polycations remain toxic was because of their lack 

of biodegradability (57, 58).  A class of synthetic polycations that have showed improved 

biocompatibility is the degradable polyester that carries a positive charge.  This class of 

polycations has been used in gene delivery and as components of layer-by layer thin film 

applications.  There have been a number of groups that have focused their efforts on the 

synthesis of biodegradable polycations, and this research has resulted in improvements in 

biocompatibility (59-62).  Even given their biodegradable nature, these polycations have 

shown signs of toxicity at higher concentrations and have not been evaluated for 

biocompatibility in an in vivo setting.  After these advancements, the search for a 

completely biocompatible polycations has yet to be achieved.  In this pursuit, there has 

been a great amount of energy invested in elucidating the mechanism of polycation 
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toxicity.  With a better understanding of how polycations elicit a toxic response, a more 

efficient synthesis strategy can be found. 

 

Polycation Toxicity   

Synthetic polycations are well-known for being cytotoxic to biological 

environments.  The exact mechanism that causes these toxic effects is not fully 

understood, but there have been many hypotheses to explain the occurrence.  

Biocompatibility for polycations has been hypothesized to be influenced by a number of 

different properties that include: molecular weight, charge density, order of amines 

present within polycation, structure (block, graft, branched, etc.), and conformational 

flexibility (18, 28, 63).   

A standard observation with polycation toxicity is an increase in the molecular 

weight of the polycation, results in an increase in toxicity as well.  This trend has been 

extensively studied and has been seen with numerous synthetic polycations.  Examples of 

polycations that have exhibited this observation are PEI, PLL, Polyarginine, DEAD-

dextran, and PAMAM dendrimers (28, 64-67).  This trend in molecular weight is only 

seen within the same monomeric species of polycations and cannot be globalized across 

different polycations.    

Because the molecular weight hypothesis cannot be used to compare different 

polycation species, the charge density of polymer’s has been introduced as a means to 

predict cytotoxicity.  Charge density is the number of positive charge carriers per 

monomer subunit.  Figure 2.1 illustrates an example of how charge density is calculated 

for PEI.  The hypothesis of charge density predicting toxicity has been well documented 
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in PEI.  PEI has a high charge density, as every third atom within the polymer is a charge 

carrying unit. This high charge density of PEI has demonstrated more deleterious effects 

than PLL, PAMAM, and other synthetic polycations with a lower charge density (18, 28).  

While using the use of charge density seems to be validated with this observation, there 

are issues with using it as an indicator of toxicity.   The polymer comparisons listed 

earlier did not standardize molecular weight, polymer structure, among other properties.  

This makes it difficult to elucidate whether the toxicity primarily results from charge 

density or is their other factors that play a role. 

 

N
H

Molecular Weight of Monomer Unit (MWM): 43

Charge Carrying Units per Monomer Unit (CCU): 1

Charge Density: CCU/MWM = 0.0233

n

PEI

 

 

Figure 2.1.  Charge density calculation.  The charge density of PEI is 0.0233.  This is 

calculated by dividing the number of charge carrying units per monomer by the 

molecular weight of the monomer unit. 

 

Other groups have hypothesized that the order of amines present in the polycation 

are critical in determining toxicity.  PLL and its derivatives have been used to assess the 

role of amine order on toxicity (68).  They demonstrated that primary amines are more 
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toxic than molecules that contain secondary and tertiary amines.  This trend of primary 

amines being more toxic was also concluded by another group (69).  This was 

accomplished by using a glutamic acid derivative based polycation in comparison to PEI 

and PLL.   In this study, they found that polycations with primary amines were more 

toxic to red blood cells than the polycations with tertiary amines.  Research on this topic 

is not as extensive as other hypotheses, and more is needed to prove its merit.  None of 

these toxicity theories can be used as a governing law to predict biocompatibility, so a 

more thorough understanding of polycation-cell membrane interactions is needed.   

There are many theories on why polycations elicit toxic effects, but investigating 

their interactions with cell surfaces can hopefully better explain their toxicity.  The 

generally accepted mechanism for internalization of polycations is mediated by 

endocytosis (70).  Endocytosis is a three-step process that includes binding with 

phospholipids and/or glycolipids of the cell membrane, internalization of the complex 

into the cell, and then either being released by the endosome, trafficked to a specific 

region or the cell, or targeted for degradation in the lysosome (71).  Of these steps, there 

has been particular interest of the initial interactions between polycations with the cell 

membrane surface.  A number of groups have attempted to model these interactions and 

have provided evidence for membrane disruption initiated by polycation contact.  The 

knowledge of these mechanisms is not well understood, and this lack of understanding 

can be greatly attributed to the complexity and heterogeneity of the biomembrane matrix 

which makes it difficult to interpret results (70).   

There are two main approaches to study the interactions between cationic 

macromolecules and membrane stability.   One strategy is the use of tissue cultured or 
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fixed cells (72-74). This strategy has shown that the adsorption of polycations on cell 

membranes can result in critical physiological events such as: receptor clustering (75), 

changes in membrane permeability (76), and the functioning of ion channels (77).  A 

theory on how this interaction is facilitated is through the conformation in which 

polycations adsorb onto the surface of membranes.  It has been suggested that a three 

point attachment is necessary to achieve a biological response on cell membranes.  It was 

then further hypothesized that the activity of the polymer to interact with the cell 

membrane will decrease as the space between the active amines is increased within the 

polymer structure (78).  Under this same line of thinking, membrane interactions should 

also decrease as the polymer becomes more rigid in structure.  This hypothesis is 

supported by DEAE-dextran being less toxic than PLL or protamine.  DEAD-dextran is a 

rigid molecule, while PLL and protamine are linear, flexible molecules that can better 

neutralize the charge on the cell surface.  This is then further supported by branched PEI 

being more toxic than all of the aforementioned polycations.  The branched structure 

allows more accessibility of the cell membrane to interact with a positive charge within 

the PEI structure. 

The second approach to investigate the interactions between a polycation and a 

cell membrane consists of using model systems to mimic some of the essential features of 

the cell membrane (76).  The cell membrane is a selectively permeable bilayer that is 

composed primarily of lipids and proteins. The simplest cell mimetic model is a bilayer 

vesicle composed of phospholipids that carries a net negative charge.   It has been 

demonstrated that polycation adsorption on liposomal membranes can result in migration 

of anionic lipids from the inner to the outer leaflet, lateral liposomal segregation, and 
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incorporation of polyelectrolytes into the membrane (79-81).  Polycation adsorption at 

higher concentration can have more deleterious effects such as membrane leakage or 

complete disruption of liposomal formulations. This membrane disruption is not entirely 

a detergent-like effect (76).  One model that has been proposed to explain how cationic 

dendrimers interact with cell membrane is the membrane bending model (Figure 2.2) 

(70).  This model explains the interactions as being between a malleable anionic bilayer 

and a rigid, cationic dendrimer.  These electrostatic forces induce a local region of 

inverse curvature, which in turns induces packing stresses to initiate lipid mixing.  This 

lipid mixing eventually leads to membrane disruption.  This model is biomimetic in the 

sense that protein-induced bending is thought to be an important factor in the fusion 

mechanism of the Influenza virus (82).  This model is similar to the model from live cell 

experiments in that branched structures have a greater ability to interact with the cell 

membrane, thus creating a more toxic effect.  A difference between these theories is that 

the membrane bending model assumes a polycation as a rigid object in contrast to a 

branched polycation being flexible.  This flexibility then increases the probability of 

electrostatic interactions with the cell membrane. 
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Figure 2.2.  Membrane bending model.  This is a schematic representation of the 

membrane bending model.  Lipids represented with black head groups are anionic and 

lipids with white head groups are zwitterionic.  (A) Cross-section of two lipid membranes 

cross-linked by a cationic dendrimer.  Electrostatic forces between charged species bend 

the membrane and induce local regions of inverse curvature.  This can lead to enhanced 

lipid mixing between vesicles.  (B)  Cross-section of cationic dendrimer bound two fused 

lipid membranes at the vesicle-vesicle contact point.  This lipid mixing then leads to 

membrane rupture (70). 

 

 There has been great interest in elucidating the mechanism of polycation 

cytotoxicity.  This interest has resulted in theories and hypotheses that have helped 

explain the toxicity of some polycations, but a theory that can encompass all polycation 

has not been found yet.  There have also been efforts to model the interactions between a 

polycation and the cell membrane in an attempt to predict trends in toxicity.  Both models 

listed here have their merits, but fail to accurately predict cytotoxicity for all polycations.  

Furthermore, it is still not completely known whether cell death from polycation 

interaction is mediated by necrosis or apoptosis.  Given this situation, focusing on a 

positively charged polymer that is synthesized by the body might give rise to a synthesis 

template that would have increased biocompatibility. 

 

Cationic Peptides   

Cationic peptides are short polymers involved in numerous regulatory pathways.  

These regulatory pathways play an important role in maintaining biological homeostasis.  
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They generally consist of 12-50 amino acids and can be itself a biomolecule or be a 

cationic domain within a protein.  These peptides consist of hydrophilic, positively 

charged domains and neutral, hydrophobic domains that are spatially separated (83, 84).  

They may also contain negatively charged domains as well.  The positive charge of these 

peptides arises from the presence of arginine, lysine, and/or histidine residues. It is this 

positively charged domain that is used to biologically interact with its environment, most 

notably negatively charged biomolecules. 

Cationic peptides are most often found within organisms as antimicrobial agents.  

These peptides were first discovered approximately 25 years ago.  They were initially 

found in the skins of frogs, the lymph of insects, and human neutrophils.  Presently, more 

then 600 cationic peptides have been discovered throughout all species (83).  An example 

of an antimicrobial peptide found in humans is defensin (Figure 2.3A).  Defensin is 

secreted by neutrophils and contributes to the killing of foreign microbes.  It has even 

been proposed that defensins interfere with the ability of HIV to infect cells.  These 

peptides have a broad range of antimicrobial activity including activity against bacteria, 

eukaryotic parasites, viruses, and fungi.  The reason why cationic peptides are effective 

antimicrobial agents is because of their ability to interact with the membranes of these 

different threats (84, 85).  As mentioned earlier, the hydrophilic and hydrophobic 

properties result in a three dimensional structure that is ideal to interact with membranes.  

This is because membranes are typically comprised of hydrophilic head groups with a 

hydrophobic core, a similar structure relative to cationic peptides. 
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Even though the majority of cationic peptides present in the body have 

antimicrobial roles, there are cationic proteins that facilitate other important biological 

functions.  One example is the balancing of iron concentrations in the body.  Iron is 

 

 

 

Figure 2.3.  Examples of cationic peptides in nature.  (A) Human neutrophils secrete 

the antimicrobial peptide, defensin, in response to bacterial infection.  This peptide forms 

a dimeric structure that contains beta sheets (purple), disulphide bonds (orange), 

positively charged residues (blue), and negatively charged residues (red).  (B) Histones 

are proteins that compact DNA and ultimately help to regulate gene regulation.  Histones 

use cationic peptide sequences to interact with the negatively charged phosphates present 

within DNA.  DNA (shown in black and grey) winds around an ocatmer of histones, 

shown in blue.  (C)  Hepcidin, a cationic peptide, is a key regulator of iron levels in the 

body.  Iron levels control the secretion of hepcidin.  Hepcidin then facilitates the 

A. C. 

B. 
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concentration of ferroportin on the surface of cells that regulate the storage of iron.  

Ferroportin is an iron receptor responsible for the transport of iron from inside to outside 

of these cells (85-87).  

 

essential to life, but it is also highly reactive and can be toxic when in excess.  Iron 

homeostasis is a complex biological process, as a number of different proteins respond 

not only to total iron levels in the body but also to stimuli such as hypoxia, anemia, and 

inflammation.  One of the key regulators of this critical biological process is hepcidin 

(Figure 2.3C) (87, 88).  Hepcidin is a peptide hormone secreted by the liver in response 

to iron loading and inflammation.  Hepcidin is composed of 25 amino acids and has a 

structure similar to antimicrobial cationic peptides.  It has been reported that the 5 amino-

terminal amino acids of hepcidin are key to maintaining its bioactivity.  This 5 N-

terminal amino acid sequence is known as an amino terminal Cu(II) and Ni(II) binding 

motif (89, 90).   Histidine is a key mediator of these interactions through the nitrogen on 

its imidazole group, which is present on the amino acid side chain.  Decreased hepcidin 

levels leads to tissue iron overload, while excess hepcidin production results in 

hypoferremia and anemia of inflammation.  Hepcidin regulates plasma iron levels by 

controlling the absorption of dietary iron from the intestine, the release of recycled 

hemoglobin iron from macrophages, and the movement of stored iron from hepatocytes.  

The process in which hepcidin operates is as follows (Figure 2.3C): iron regulates 

hepcidin secretion by the liver, which in turn controls the concentration of ferroportin on 

the cell surface.  Ferroportin’s main role is to transport iron from inside the cell to 

outside.  When ferroportin’s concentration decreases, less iron will be available.  
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As mentioned earlier, hepcidin is a mediator of innate immunity as well (87).  The 

interplay between iron levels and immune defense can be seen with a pathogens need of 

iron to survive, such as bacteria.  Bacteria go to great lengths to obtain iron and a 

molecule like hepcidin can decrease iron levels within the body.  It has been seen in 

patients with high iron levels that they are more susceptible to numerous intracellular and 

blood pathogens (91).  Also, even a small increase in iron intake may diminish host 

resistance to infection.  Hepcidin could also have an antimicrobial effect as seen with 

other cationic peptides given it structure.   Hepcidin’s role in immune response was 

evidenced in a reported study, where patients that developed a systematic infection had 

their hepcidin levels increase a 100 fold (91).   

Examples of cationic peptide sequences contained within larger proteins are 

histones and heparin-binding motifs in growth factors.  Chromatin is the complex 

combination of DNA, RNA, and proteins.  Chromatin makes up the biological template 

of all eukaryotic genetic material (71, 92).  The chief proteins present in chromatin are 

histones (Figure 2.3B).  Histones serve as a tool for the compaction of the large amount 

of DNA present in the genome, but more importantly they serve as gatekeepers for gene 

regulation.  Histones are a dynamic group of proteins that undergo post-translational 

modifications such as: acetylation, methylation, phosphorylation, among others (86, 93).  

These post-translational modifications are a complex language that plays a central role in 

gene regulation (94).  The amino acid sequences found to interact with nucleosomal DNA 

consist of positive clusters of arginine, lysine, and histidine (95).  Outside of histones, 

DNA binding sequences of other proteins contain similar amino acid sequences.  For 

example, the zinc finger and leucine zipper motifs contain positive amino acid clusters 
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spatially separated from hydrophobic residues (96).  Heparin-binding motifs are critical 

for growth factor-heparin interactions (5).  This in turn aids in the regulation of events 

such as neovascularization and bone growth and maturation.  Consensus sequence motifs 

that proteins use to interact with heparin and heparan sulfate are XBBXB and 

XBBBXXBX, where B is a basic amino acid and X is either a neutral or hydrophobic 

amino acid (97).  These sequences interact with the negatively charged sulfates present 

on heparin.  Heparin then allows for the sequestering of growth factors to be used during 

specific events while also maintaining their bioactivity.    

From the specific examples given here, it can be seen that cationic peptides have  

an integral role in the body.  Whether these cationic peptides are biomolecules 

themselves or present as domains within other proteins, their presence is felt from gene 

regulation to neovascularization.   Not only do cationic peptides serve important roles in 

the body, but they make attractive targets to synthetically mimic.  The reason they can 

serve as a template for synthetic targets is because they are positively charged and 

function within the body without eliciting a toxic response.  Biocompatible polycations 

are important because there are numerous applications in biomedical engineering that use 

polycations, but existing polycations have limited biocompatibility.  

 

Growth Factor Delivery for Therapeutic Neovascularization 

 

Cardiovascular Disease   

Cardiovascular disease is not only the leading cause of death, disability, and 

healthcare expenditure in the United States, but is also the leading cause of mortality in 

the world, with the exception of sub-Sahara Africa (1, 98).  Coronary artery disease 
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(CAD) falls under the umbrella of cardiovascular disease and is the end result of 

accumulation of atherosclerotic plaques (Figure 2.4).  These plaques then lead to the 

narrowing of the coronary arteries.  CAD has a broad spectrum of manifestations that 

range from effort-induced angina without myocardial injury to irreversible myocardial 

damage resulting in congestive heart failure.  The rate of progression of CAD is 

predominantly determined by the growth and/or rupture of these atherosclerotic plaques 

(99).  In situations where myocardial tissue has been compromised, treatment outside of 

what the body can offer is needed. This need for treatment arises because the mammalian 

heart has little ability to regenerate cardiac tissue (2). 

Presently, there are a number of invasive and noninvasive treatments for patients 

with CAD.  Treatment options encompass mechanical revascularization (invasive 

examples: angioplasty and coronary bypass surgery) to medical therapies (noninvasive 

examples: nitrates and β-blockers).  Mechanical revascularization physically restores 

flow to myocardial tissue, while medical therapies restore the perfusion supply and 

demand balance by reducing oxygen requirements of cardiac tissue.  Despite the 

advancements that have been made in treating ischemic heart disease there is still a subset 

of patients that do not improve with current therapies and the patients that receive 

treatment are more likely to have reoccurring myocardial episodes.  Also, this subset of 

patients is expected to increase with an aging population and the rise of diseases such as 

obesity and diabetes mellitus (3).  Present therapies do not have the capacity to regenerate 

cardiac tissue and this presents a need for a therapy that can regenerate myocardial tissue.  

One approach to this growing problem is therapeutic neovascularization. 
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Figure 2.4.  Cardiovascular disease.  This is a schematic representation of the 

progression of atherosclerotic plaques.  The accumulation of plaques is a chronic 

inflammatory response in arteries and eventually results in ischemic heart disease (100).  

 

Therapeutic Neovascularization as a Promising Treatment for Ischemic Diseases 

New blood vessel growth is referred to as neovascularization and is the result of 

several processes including angiogenesis, arteriogenesis, and, potentially vasculogenesis.  

Angiogenesis is defined as the sprouting of new capillaries from pre-existing vessels 

resulting in new capillary networks (101).  In adults it is predominantly stimulated by 

tissue ischemia via the hypoxia-inducible factor (HIF-1α) pathway.  HIF-1α in turn up-

regulates the gene products of vascular endothelial growth factors (VEGF), fibroblast 

growth factors (FGF), angiopoietins, and other angiogenic factors (102, 103).  These 

factors orchestrate the events that encompass angiogenesis, from degradation of the 

basement membrane to maturation of new vasculature.  In contrast, arteriogenesis 

describes the growth of functional collateral arteries from pre-existing alterio-arteriolar 

anastomoses.  Arteriogenesis typically occurs outside the area of ischemia in response to 
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physical forces such as altered shear forces.  These forces generally appear within the 

collateral artery after an increase in blood flow (99, 101).  Since arteriogenesis leads to 

the formation of arterial conduits, its potential to fully restore blood flow is much greater 

than angiogenesis.   Finally, vasculogenesis is the process of formation of new blood 

vessels from circulating endothelial progenitor cells (104).  The role of vasculogenesis in 

ischemic tissues has not been conclusively established and benefits have been reported 

from significant to none (105, 106).  In the situations where native neovascularization is 

insufficient to restore arterial blood flow, such as CAD, myocardial tissue will become 

necrotic.  In these situations, exogenous cues are needed to stimulate the formation of 

new blood vessels. 

Neovascularization is a tightly regulated process and when uninhibited is 

implicated in a multitude of diseases. Because of neovascularization’s central role in 

many disorders, there have been intensive efforts undertaken to develop therapeutic 

strategies to manipulate this process.  Therapeutic neovascularization is the process of 

altering native vascular architecture under the direction of exogenous mediators (Figure 

2.5).  This type of therapy has had mixed results thus far in a clinical setting.  The most 

successful therapeutics have come in the form of anti-cancer drugs that act as 

angiogenesis inhibitors.  These angiogenesis inhibitors target predominantly endothelial 

cells with VEGF inhibitors, but have also been used to target mural and stromal cells 

(PDGF inhibitors) and haematopoietic cells (VEGFR-1 inhibitors) (107).  In contrast, 

therapeutic strategies to promote revascularization of ischemic tissues have not achieved 

the desired results clinically.  This sub-optimal outcome can be mostly attributed to the 

mode of delivery of biological agents, while other factors such as choice of therapeutic 
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agents and vasculature responsiveness also play important roles (98, 108).  In response to 

the deficiency of an ideal delivery system, there has been a great deal of effort invested in 

achieving a strategy that has a sustained pro-neovascularization effect.  Presently, there 

are two predominant thrusts being pursued in therapeutic neovascularization of 

myocardial tissue: cell-based and growth factor strategies. 

 

Figure 2.5.  Therapeutic neovascularization.  This is a schematic of therapeutic 

neovascularization using growth factors.  The addition of exogenous growth factors 

results in the formation of new vasculature. 

 

Myocardial Regeneration: Growth Factor vs. Cell-based Therapy 

The lack of a successful delivery strategy for myocardial regeneration is a critical 

determinant in unsuccessful clinical trials.  Currently, the two most investigated 

approaches to bridge the gap are cell-based and protein therapies.  Over the past decade, 

there has been a variety of different cell types used to regenerate cardiac tissue.  The cell 

types used include skeletal myoblasts, bone marrow cells, endothelial progenitor cells, 

mesenchymal stem cell, as well as others (4, 109).  Even with the optimism this strategy 
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has generated, there are still many obstacles to overcome.  The first challenge is to 

optimize the delivery of cells to the heart.  It has been reported that approximately 90% 

of transplanted cells are lost to the circulation or leak out at the injection site (110).   A 

second problem is the extensive death of injected populations regardless of cell type.  

Numerous studies have indicated that approximately 90% of cells delivered to the 

myocardium die within one week of injection (111).  Another area of concern is nearly all 

studies of cell transplantation have found that scar tissue creates a barrier between 

damaged myocardium and delivered cells.  This barrier then results in poor host-tissue 

integration of implanted cells (112).  These challenges have left cell-based therapies 

without clinical success and are a reason why other alternatives are still being pursued for 

myocardial regeneration. 

Growth factor-based therapy is another strategy for the regeneration of ischemic 

cardiac tissue and has been investigated more extensively in clinical trials compared to 

cell-based therapies.  After being successful in a variety of animal models, therapeutic 

neovascularization via growth factor delivery has yet to attain the same level of 

achievement in a clinical setting.  As stated earlier, there are a number of reasons why 

clinical trials have been unsuccessful.  In these trials, growth factors were administered 

via bolus injection at the site of injury.  This type of delivery is inefficient in that under 

1% of growth factor injected is deposited in the myocardium at 1 hour and even less is 

present after 24 hours (108, 113).  This time frame does not correspond with the time 

needed to alter native vasculature, which likely happens on a week to month timescale.  

As mentioned earlier, there are many factors involved with neovascularization and only 

two (VEGF, FGF) have been used in clinical studies, although many other growth factors 
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are being examined in animal studies.  To achieve improved results, a cocktail of 

different therapeutic growth factors will most likely have to be used.  Also, there may be 

a need for other factors (example: IGF) that could stimulate cardiomyocyte proliferation.  

Finally, endothelial dysfunction could also comprise a critical role in clinical trials failing 

(98, 99).  Based on the criteria that has been listed, a strategy for growth factor delivery 

will have to encompass the following: a release of therapeutics over an extended period 

of time (weeks to months), delivery of a cocktail of different growth factors (VEGF, 

PDGF, etc.) (most likely at different concentrations and time scales), and find a way to 

circumvent endothelial dysfunction by choosing a more suitable patient subset for clinical 

trials or deliver factors (example: L-arginine) that could return function to damaged 

endothelium (114). 

 

Polymeric Strategies for Growth Factor Delivery 

Given the state of growth factor delivery for neovascularization, there are many 

researchers pursuing an improved solution.  One approach is to deliver genetic material 

encoding growth factors, however in vivo gene delivery experiments have led to 

unpredictable results.  Some of which have resulted in complications and even the death 

of patients (115).  An alternative strategy to gene delivery is the delivery of the target 

growth factors.  For a growth factor delivery strategy to be successful it should be able to 

mimic the native neovascularization process (116).  The essential characteristics of the in 

vivo response include a delivery of different growth factors, the delivery should be under 

controllable release kinetics, and the target growth factors should maintain their 

bioactivity.    A set of substrates that have made strides in duplicating neovascularization 
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in vivo events are polymeric delivery systems.  Both synthetic and naturally derived 

polymeric systems have been used for the delivery of growth factors (Figure 2.6A, B) 

(117).  Aliphatic polyesters (examples: poly(glycolic acid) (PGA), poly(lactic) acid 

(PLA), their copolymers (PLGA), and poly(ethylene glycol) (PEG)) (118) have been the 

most extensively used synthetic polymers for therapeutic delivery.  These types of 

polymers allow for facile manipulation of their physiochemical properties, while also 

being readily available.  In contrast, naturally-derived polymers (examples: collagen, 

hyaluronic acid, and alginate) are more limited in their scope of properties but often 

exhibit enhanced biocompatibility (119). 

 

     

 

 

Figure 2.6.  Examples of growth factor delivery strategies.  Different strategies have 

been used to deliver growth factors safely and efficiently.  Strategies can be classified as 

(A) synthetic polymers, (B) natural polymers, (C) and the combination of synthetic and 

natural strategies (7). 

 

A. 

B. 

C. 
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There have been numerous approaches used in polymeric delivery strategies.  The 

simplest approach is the delivery of therapeutic growth factors alone.  Examples of this 

type of delivery systems include micro/nano particles, micelles, microneedles, and 

hydrogels (120-123).  These systems have take advantage of both synthetic and natural 

polymers to control release kinetics.  Another approach is to delivery growth factors 

within a scaffold with the presence of cells (12, 124, 125).  The delivered growth factors 

are then anticipated to help direct the fate of delivered cells.  Scaffold materials, like 

other listed methods, use both synthetic and natural polymers.  

Polymeric systems have made drastic improvements in growth factor delivery 

through the original goal of mimicking the in vivo neovascularization events.  One way 

they have accomplished this is through physiochemical control of the delivery system.  

The release rate of therapeutics can be modulated by altering characteristics of the 

polymer such as molecular weight and cross-linking density (126).  A sustained release 

over a period of weeks has been accomplished by adapting these polymer properties.  

Another improvement polymeric systems have provided is a localized delivery with 

spatial gradients (113).  This type of delivery can be achieved by modifying polymer 

properties (example: cross-linking density) and substrate formation.  These strategies also 

allow for the use of multiple growth factors at variable rates and gradients, similar to 

those in native tissue (127).  Some problems with using these delivery strategies are that a 

number use harsh organic solvents that can limit the bioactivity of its growth factor 

cargo.  It should also be noted that these systems have little to no affinity for their target 

growth factors.  This can create limitations with loading capacity and efficiency of the 

delivery vehicles.  
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Finally, polymer strategies have used the combination of synthetic and natural 

polymers along with other biological motifs to create an environment similar to native 

ECM.  These systems use non-covalent interactions to simulate ECM interactions with 

proteins (7, 128-130).  Some examples include the use of growth factor binding motifs 

and native biomolecule incorporation (examples: alginate, heparin).  One well 

characterized affinity-based delivery system is the heparin-based delivery system. 

 

Heparin-based Delivery Systems 

Heparan sulfate (HS) and heparin are glycosaminoglycans (GAGs) that are 

usually present as proteoglycans.  In native tissues, heparan sulfate is widely distributed 

on cellular surfaces as well as in the ECM.  Heparan sulfate and heparin are involved in a 

variety of biological functions.  These functions include cell adhesion, migration, and 

mediating growth factor interactions.  Heparin is a highly sulfated variant of heparan 

sulfate and is more commercially available.  For these reasons, it has been used as a 

model agent in experimental studies which in a physiological setting would most likely 

involve heparan sulfate.  Heparin has the highest negative charge density of any known 

biological macromolecule, and this property gives heparin the capacity to interact 

electrostatically with other biological molecules such as enzymes, ECM proteins, and 

various cytokines (5, 131).  Also, heparin sequesters growth factors in the ECM, serving 

to localize growth factor activity, and in some instances increases the bioactivity through 

its interactions with the growth factor and its receptor (Figure 2.7).  This function 

prevents growth factor degradation and keeps them readily available for biological 

events.  Thus, heparin allows an environment for growth factors to remain bioactive over 
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an extended period of time.  This is a valuable trait to have because it has been found that 

recombinant proteins have a very short half-life when introduced in vivo (132).  These 

characteristics of heparin have made it an attractive candidate for use in growth factor 

delivery strategies.  For example, heparin’s capability for the controlled release of FGF-2 

has been employed on heparin-sepharose beads.  Other examples include functionalizing 

hydrogels and polymeric scaffolds with heparin or heparin moieties (7, 133-137) and 

incorporating heparin into polymeric microspheres/micelles (138-140).  These delivery 

strategies have taken advantage of heparin to develop a system that is capable of a 

localized, sustained release for a multitude of therapeutic growth factors. 

  

 

Figure 2.7.  FGF-2 interactions.  Heparin plays a key role in FGF-2 signaling by direct 

association with FGF-2 and its FGF receptor in a ternary complex on the surface of cells.  

Heparin is represented as the yellow molecule, FGF-2 as the bluish-grey molecule, and 

FGFR as the orange and green molecule (141). 
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Heparin-based delivery vehicles have generated much success in research, but there are 

still flaws that need improvement for clinical success.  The majority of these systems do 

not incorporate heparin in its native form.  This can lead to limitations with bioactivity.  

Also, these strategies do not have compositions that allow for easily tunable release 

kinetics of growth factor.  A delivery strategy that uses native heparin and allows for a 

controllable release of growth factors is needed and would provide an improvement over 

these current systems.  With continued improvement of delivery vehicles for therapeutic 

proteins, the present optimism should eventually lead to clinical realization. 
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Chapter 3 

Synthesis of Poly(Arginate Glycerol Succinate) (PAGS) 

 

Introduction 

In the field of biomedical engineering there is still a need for the introduction of 

new biomaterials (8).  A specific example of an area that would benefit from this is the 

synthesis of polycations.  Presently, there are numerous synthetic polycations that are 

used in biomedical engineering ranging from tissue engineering to drug delivery (23, 

142).  These synthetic polycations have contributed greatly to the field over the years, but 

current polycations still have not met the challenge of biocompatibility (57).  Present 

synthetic polycations have been modified extensively and a biocompatible polycation still 

has not been achieved.  It is at this point where the introduction of a novel, rationally 

designed polycation could succeed where other polycations have failed.  In the goal of 

designing a biocompatible polycation, it was decided to mimic cationic peptides because 

they are positively charged polymers that the body uses in a variety of different processes 

(91, 143).  The rationale design of a polycation that had the essential traits of cationic 

peptides was hypothesized to yield a biocompatible polycation.   

The essential traits of a cationic peptide include positively charged domains, 

biodegradability, and a naturally derived composition (83).  It was hypothesized that 

combining these features within a polymer would yield a synthetic polycation that was 

biocompatible.  We chose to instill biodegradability through the introduction 

hydrolysable ester linkages.  The positive charge of the polycation originated through the 

incorporation of a positively charged amino acid.  We chose a polycondensation reaction 
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to carry out the polycation synthesis.  The polymerization was mediated between the 

primary amine on the cationic amino acid and the epoxy of the synthetic linker through a 

ring opening mechanism.  The path of synthesizing this polycation was one that went 

through a series of adaptations and modifications before settling on the final synthesis 

strategy. 

 

Results and Discussion 

Cationic Species 

The first component decided upon was arginine and this was the positive charge 

carrying unit.  Arginine is the most positively charged amino acid found in nature and 

there has been evidence that arginine heavy motifs are advantageous for cellular transport 

(entry into the cell and nucleus).    In this synthesis, there are two monomers that needed 

to be brought into solution (arginine and the synthetic linker).  An aqueous solvent was 

not an option because this type of polycondensation would not occur in this solvent.  This 

reaction needed an organic solvent that would dissolve both monomers to be successful.  

DMF was chosen because it is a polar, aprotic solvent and had the best chance to dissolve 

arginine as well the organic synthetic linker.  DMF was first used to dissolve arginine, 

but had little to no solubility in this solvent.  It was then decided to use an arginine 

variant that would be more soluble in an organic solvent.  We chose arginine ethyl ester 

and this compound proved to be soluble in DMF.  The addition of the ethyl group 

through esterifcation of the acid on arginine is what led to this increase in solubility in 

DMF.  Arginine ethyl ester comes as a salt (dihydrochloride) for stability issues and the 

hydrochloride present on the primary amine had to be liberated to ensure the reaction 
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would take place between this primary amine and the epoxide of the synthetic linker 

through a ring opening mechanism.  The liberation of arginine ethyl ester is exhibited in 

Figure 3.1.  Arginine ethyl ester was ensured to be liberated by the shift of the proton on 

the alpha carbon.  After liberation this proton shifted up field from 4.08 ppm to 3.76 ppm.  

Once arginine ethyl ester has been liberated it can then be used for polymerization.  

Following polymerization, the incorporation of arginine ethyl ester was verified by 

presence of the guanidinuim side chain via spectral analysis (Figure 3.1B, C). 

 

 

 

A 
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Figure 3.1.  Spectral analysis of arginine ethyl ester.  Before arginine ethyl ester could 

be used in the polymerization, it had to be ensured that the primary amine was liberated.  

(A) This is the NMR spectrum of unliberated arginine ethyl ester.  The proton and alpha 

carbon are colored in red.  (B) This is the NMR spectrum when the primary amine on 

arginine ethyl ester has been liberated.  The key difference between the two spectra is the 

proton on the alpha amine has shifted upfield after it has been liberated.  It shifts from 

4.08 ppm in the unliberated form to 3.76 ppm in the liberated form.  The spectrum in B 

also details the proton arrangement by the protons being colored as well as its attached 

carbon.  (C)  The IR spectrum of arginine details the guanidinuim side chain 

(approximately 1673 cm
-1

 with a shoulder at 1635 cm
-1

).  Both NMR and IR spectra were 

used to ensure the incorporation of arginine into resultant polycations.   

 

Synthetic Linker 

 The second component of the biodegradable polycation was an organic synthetic 

linker.  The reactive groups on the synthetic linkers were glycidyl functional groups that 

facilitated the polycondensation reaction.  There were many avenues pursued before 

settling on a monomer that resulted in a polycation that could be used for our desired 

applications.  The first attempt used for the synthetic linker was 1,2 diglycidyl 

cyclohexane (Figure 3.2).  This was chosen first because it was available commercially.  

Attempts to use this monomer never yielded a polymer with a molecular weight suitable 

for the delivery of anionic molecules.  One reason this monomer did not yield a high 

molecular weight polymer was because the diglycidyl functional groups were in the 1, 2 

conformation on the cyclohexane.  This conformation will likely result in a cyclic 
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polymer where the polymerization would end before a suitable molecular weight was 

achieved.   

 

 

 

Figure 3.2.  Infrared spectrum of 1, 2 diglycidyl cyclohexane.  The IR spectrum of 1,2 

diglycidyl cyclohexane was used to confirm the presence of this monomer in resultant 

polymers.  Distinguishable absorptions of this monomer are noted with red arrows 

(cyclohexane at approximately 3000 cm
-1

 and ester functional group at approximately 

1700 cm
-1

).  

 

The next organic synthetic linker that was used was diglycidyl sebacate.  This 

organic compound is a linear aliphatic ester that contains eight carbons between the ester 

functional groups.  This monomer resulted in a polycation that was used for gene 

delivery.  The sebacate-based polycation did not lead to high transfection efficiency in 
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gene delivery.  It was hypothesized that a monomer that could yield a polycation with a 

higher charge density would improve the gene delivery results.  A higher charged density 

could compact plasmid DNA with less polycation and these complexes could potentially 

be compacted into smaller nanoparticles.  This in turn could potentially lead to more 

[polycation:DNA] complexes entering the cell.    

   The final synthetic organic linker attempted was diglycidyl succinate.  Diglycidyl 

succinate is another linear aliphatic ester but it is smaller than sebacate, only containing 

two carbons between the ester functional groups.  Diglycidyl succinate was elected as a 

synthetic linker because it ensured the highest charge density for the polymer while being 

a derivative of succinic acid.  As mentioned prior, we hypothesized that a polycation 

synthesized from naturally derived compounds or derivatives of this compounds would 

result in better biocompatibility.  Succinic acid is substance readily found in the body and 

plays a key role in cellular respiration by being a central substrate in the citric acid cycle.   

Succinate also allowed for a high charge density by having the shortest aliphatic chain 

that allowed for a benign degradation product.  For example, diglycidyl oxalate was also 

considered but abandoned because of its capacity to chelate calcium and other divalent 

cations when used for in vivo applications.  The final synthesis strategy used for our 

biodegradable polycation is exhibited in Figure 3.3. 
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Figure 3.3.  Synthesis of PAGS.  The first step in PAGS synthesis is to synthesize the 

diallyl succinate from succinic acid.  Then the diallyl succinate is oxidized by 1,3 

mCPBA to yield the diglycidyl succinate.  Finally, the diglycidyl succinate is combined 

with arginine ethyl ester to form PAGS. 
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Conclusion 

The synthesis strategy for a synthetic, biodegradable polycation was 

accomplished through a great amount of effort.  There were a number of different 

monomer and synthesis techniques attempted before a successful strategy was found.  

The period of time taken to accomplish may seem small compared to other parts of this 

thesis, but in reality took the longest.  The synthesis template present here represents a 

strategy to improve the biocompatibility of a polycation through a rationale design.  This 

rationale design attempted to mimic the essential traits of cationic peptides.  The 

biocompatibility of this polycation was investigated in the next chapter. 

Materials and Methods 

Polymer Synthesis and Characterization  

Diallyl succinate (Figure 3.4) was synthesized by esterfication of succinic acid (5 

g) in allyl alcohol (20 g) in the presence of catalytic amount of sulfuric acid (98%, 12 µl).  

The reaction mixture was stirred and refluxed at 105
o
C overnight.  Sodium bicarbonate 

was added to the reaction to neutralize the sulfuric acid and the reaction mixture was 

evaporated under vacuum.  The organic phase was extracted using ethyl acetate, and 

dried by brine.  The product was then exposed to anhydrous sodium sulfate overnight, 

and stored at room temperature.  
1
H NMR (CDCl3-d1):  5.87 (m, 2H), 5.23 (m, 4H), 4.57 

(d, 4H), 2.65 (s, 4H). 
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Figure 3.4.  NMR spectrum of diallyl succinate. 

 

Diglycidyl succinate (Figure 3.5) was synthesized by the epoxidation of diallyl 

succinate (1.3 g) with meta chloro peroxy benzoic acid (mCPBA, 5 g) in 

dichloromethane (100 ml).  The reaction was stirred and refluxed at 40
o
C overnight.  

Reaction mixture was then run through an ionic resin column containing tertiary amine 

beads.  Diglycidyl sucinate was further purified using flash chromatography and the final 

product was stored under N2 at -20
o
C.  

1
H NMR (CDCl3-d1): 4.40 (dd, 2H), 3.95 (q, 2H), 

3.20 (m, 2H),   2.84 (t, 2H), 2.68 (s, 4H), 2.63 (q, 2H). 
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Figure 3.5.  NMR spectrum of diglycidyl succinate. 

The arginine-based polymer (PAGS) was synthesized via polycondensation reaction of a 

1:1 molar ratio of diglycidyl succinate and arginine ethyl ester in anhydrous N,N-

dimethylforamide under N2.  The reaction mixture was stirred and kept at 60
o
C for 7 

days. The resultant polymer was placed under vacuum and heated to 60
o
C for 24 hours to 

remove solvent.  The residual dimethylforamide was removed by dissolving the polymer 

in methanol, precipitating polymer out with ethyl acetate, and dried under vacuum at 

60
o
C overnight.  Ethyl acetate wash is used to remove unreacted product and oligomers.   

The polymer was characterized by FTNMR, FTIR, differential scanning calorimetry, and 

gel permeation chromatography. 
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CHAPTER 4 

Characterization of PAGS 

Abstract 

Cationic peptides participate in many critical events in the body.  Their 

importance in gene regulation, host defense, and many other processes has made them 

ideal targets to synthetically mimic.  Over the years, a multitude of polycations have been 

synthesized, but a synthetic polycation that is biocompatible has yet to be realized.  We 

created a synthesis platform that has resulted in a synthetic polycation that is orders of 

magnitude more biocompatible than existing polymers.  This design template was 

inspired by the fundamental characteristics (biodegradability, natural composition) that 

make native cationic proteins biocompatible.   This synthetic, biocompatible polycation 

holds the potential to improve a wide array of applications in areas from drug delivery to 

tissue engineering. 
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Introduction 

Cationic peptides are key mediators in a variety of homeostatic processes critical 

for survival, including histone that regulates DNA replication and gene expression, 

hepcidin that balances iron concentrations, heparin-binding domains that control growth-

factor stability and activity, and defensins that act as anti-microbial agents in host 

defense.  The important functions of cationic peptides in numerous biological pathways 

have generated great interests in synthetic polycations.    

Cationic peptides are a series of amino acids linked through peptide bonds 

yielding a hydrolyzable polymer.  These resultant polypeptides are composed of 

hydrophobic and positively charged domains that control their physiological functions  

(84).    Cationic peptides make ideal targets to mimic because polycations are used 

widely in biomedical applications from drug delivery to tissue engineering.  There have 

been numerous attempts to synthetically duplicate the characteristics of cationic peptides 

to take advantage of their potential (23, 144), however these existing polycations are 

limited by their biocompatibility (57, 58).  Here we report a design platform that gives 

rise to a polycation that is orders of magnitude more compatible than existing 

polycations.   

We hypothesized that mimicry of the essential chemical structure of cationic 

peptides would result in a biocompatible polycation.  Firstly, natural cationic peptides can 

be digested by appropriate proteases into molecules that can be recycled by the body or at 

least elicit an acceptable host response. Secondly, the positive charge of cationic peptides 

arises from endogenous amino acids such as arginine and lysine.  A minimalistic mimicry 

of a cationic peptide is to design a synthetic polycation with hydrolytic degradability and 
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to incorporate a positive charge through an amino acid.  We chose to use ester functional 

groups in the polymer to introduce susceptibility to hydrolysis because of its well defined 

synthetic routes and familiarity to the biomaterials community (145).  We chose to use 

arginine because of its prevalence in endogenous polyanion-binding domains. 

Furthermore, arginine carries the most positive charge among the 20 naturally occurring 

amino acids. The incorporation of arginine facilitates ionization of the resultant 

polycations at a neutral pH.  We chose to integrate arginine into a polyester using a ring 

opening reaction between the α-amino group of arginine and the epoxy ring of diglycidyl 

succinate (Figure 4.1A).  The resultant polycation is referred to as poly(argininate 

glyceryl succinate), or  PAGS.  Outside of arginine, the other building blocks of PAGS 

are derived from succinic acid and glycerol.  Succinic acid is readily found in the body, 

and plays a key role in cellular respiration as a central substrate in the citric acid cycle 

(71).  Glycerol derivatives are prevalent throughout the body in lipids and many signaling 

molecules.  We anticipate that using derivatives of endogenous building blocks are 

necessary to design a polycation with good biocompatibility.  

 

Results and Discussion 

Polycation Synthesis 

The polycation reported here is synthesized through a polycondensation reaction 

between arginine ethyl ester and diglycidyl succinate in N,N-dimethylforamide.  The 

resultant polymer, PAGS, is a pale yellow powder soluble in water.  The polymer was 

purified by repetitive evaporation under vacuum and solvent washes using methanol and 

ethyl acetate.   Nuclear magnetic resonance spectroscopy (NMR) revealed a change in 
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chemical shift from approximately 3.2 ppm in the diglycidyl ester to approximately 4.0 

ppm in PAGS (Figure 4.1B).  This shift corresponds to the opening of the epoxy ring in 

the diglycidyl ester.  The intense C=O stretch at 1735  cm
-1

 in the Fourier transform 

infrared spectroscopy (FTIR) confirmed the formation of ester bonds, and the intense 

band at 1673 cm
-1

 with a shoulder at 1635 cm
-1

 (Figure 4.1C) indicated the presence of 

the guanidinium side chain of arginine (146).  PAGS has a glass transition temperature of 

42.8 
°
C and a melting temperature of 88.1

°
C as revealed by differential scanning 

calorimetry measurements. 
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Figure 4.1.  Synthesis and characterization of PAGS.  A.  PAGS was synthesized by a 

polycondensation between equimolar amounts of arginine ethyl ester and diglycidyl 

succinate.  The starting materials are derivatives of arginine, glycerol, and succinic acid. 

The reactive groups (glycidyl and amine functional groups) involved in the 

polycondensation reaction are colored in red and blue respectively. B and C. The FTIR 

spectrum of PAGS showed an intense absorbance at 1730 cm
-1

 indicating the formation 

of esters, and a strong absorption at 1673 cm
-1

 with a shoulder at 1635 cm
-1

 suggesting 

the presence of guanidinium groups (147).  D.  The NMR spectrum of PAGS 

demonstrated the shift in the protons of the ester and the incorporation of the guanidinium 

side chain of arginine ethyl ester. 

 

PAGS was synthesized from an amino acid and an aliphatic diglycidyl ester.  This 

synthesis platform can be applied to virtually any primary amine and diglycidyl ester.  

The flexibility in polymer architecture allows the control of biomaterial properties, 

making it adaptable for various applications.  For example, the backbone of the 

diglycidyl ester can be modified to a longer aliphatic chain, aromatic, or cyclic aliphatic. 

D 
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Each modification will bring unique properties to the resultant polymer.  Other 

biomolecules that have been introduced through amine groups include acetylcholine 

(148) and dopamine (149).  
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Figure 4.2. In vitro biocompatibility of PAGS. A. PAGS experimental groups are 

normalized to the control (SMCs exposed to normal cell culture medium) groups. The 

assays showed that the cells had intact membrane, exhibited normal metabolic activities 

and were viable when exposed to up to at least 10 mg/ml of PAGS supplemented media.  

Cells were incubated for 4 hours except in live/dead assay, which was incubated for 24 

hours. B and C. Fluorescent (10x) and phase contrast (10x) images were captured during 

live/dead assay: live cells are stained green (calcein AM) and dead cells are stained red 

(ethiduim homodimer-1). SMCs had high viability and expressed normal morphology 

even after a 24 hour incubation with PAGS. D. PEI exhibited toxicity at a concentration 

as low as 0.05 mg/ml under identical conditions using identical assays. E and F. A 

majority of cells exposed to 0.05 mg/ml of PEI exhibited cell death. Multicomparison 

ANOVA, Tukey method, p < 0.05 was considered statistically significant. Any 

statistically significant difference between the experimental and the control group is 

noted by an “*”. 

 E 

F 

D 
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In vitro Biocompatibility 

We investigated the biocompatibility of PAGS in vitro using primary baboon 

smooth muscle cells (SMCs).  In vitro biocompatibility assays of polycations often use 

cell lines, which tend to be more robust than primary cells.  We chose primary cells 

because they are likely to be more accurate indicators of the in vivo biocompatibility of 

PAGS.  PEI of nearly identical molecular weight served as the control because it is a well 

studied polycation and has been used in a wide variety of biomedical applications.  There 

is no standardized procedure to determine a polycation’s biocompatibility in vitro, so we 

chose four assays that can evaluate toxicity from different perspectives and at 

progressively more severe levels.  We examined the effects of PAGS on cell membrane 

integrity using lactate dehydrogenase (LDH) assay, metabolic activity using 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis using 

caspase-3 assay , and cell viability using calcein AM and ethiduim homodimer-1 staining 

followed by fluorescence measurements (live/dead assay).  Many existing polycations 

disrupt cell membranes within minutes of contact, and consequently the extracellular 

concentration of LDH, an intracellular enzyme, will increase (150).  MTT, metabolic 

activity assay, provides a good indication to the level of stress cells experience (151).  If 

the stress crosses a threshold, cell apoptosis will occur and caspase-3 levels correlate with 

the severity of apoptosis (152) . Finally, differences in cell viability resulted from 

apoptosis and necrosis were evaluated by live/dead assay (153).  

We examined the in vitro biocompatibility of PAGS by subjecting the cells to 

media with increasing concentrations of either PAGS (MW = 10,500 Da) or PEI (MW = 

10,000 Da).  The PAGS concentrations used were 1, 2, 5, and 10 mg/ml, and the PEI 
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concentrations used were 0.05, 0.5, and 5 mg/ml. Cell incubation time with polycation 

supplemented media was either 4 hours or 24 hours. The 4 hour incubation time was used 

to analyze earlier stresses and the 24 hour incubation was used to assess cell death.  A 4 

hour incubation time demonstrated that PAGS was non-toxic up to at least 10 mg/ml 

(Figure 4.2A) as determined by LDH, MTT, and caspase-3 assays. Live/dead assay 

indicated that even after a 24 hour exposure to a PAGS concentration of 10 mg/ml, cells 

were as viable as control populations subjected to normal culture medium (Figure 4.2A). 

At this concentration of PAGS, a majority of cells (Figure 4.2B) were observed to be 

alive and displayed normal morphology (Figure 4.2C).  In contrast, PEI induced 

significant cell toxicity as indicated by LDH and MTT assays at a concentration as low as 

0.05 mg/ml (Figure 4.2D). Furthermore, extensive cell death was observed by the 

expression of ethidium homodimer-1 at 0.05 mg/ml (Figure 4.2E). The morphology of 

cells exposed to PEI was consistent with the results of the viability assay indicating 

massive cell death (Figure 4.2F). These assays revealed that PAGS has excellent in vitro 

biocompatibility and is orders of magnitude improvement over PEI.  

Many state-of-the-art polycations have been tested in vitro at concentrations 

hundreds of times lower than PAGS with the same type of assays using various cell lines.  

To the best of our knowledge, none displayed biocompatibility close to that of PAGS.  

Polycations are known to disrupt cell membranes, resulting in the leakage of LDH.  

Polycations such as polylysine have been shown to release significant amounts of LDH 

within 30 minutes of exposure (18, 28).  For PAGS, no difference in LDH level was 

observed between the normal culture medium and PAGS media after a 4 hour exposure. 

Several propositions suggested that polycation toxicity increases with increasing 
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molecular weight and charge density [expressed as (number of charge 

carriers)/(molecular weight of the polymer repeating unit)] and decreasing orders of 

amines respectively (18, 69, 78).  PAGS exhibited orders of magnitude higher 

biocompatibility than existing polycations regardless of which proposed criterion was 

used. Relative to PEI (10,000 Da), which was cytotoxic at a concentration as low as 0.05 

mg/ml, PAGS (10,500 Da) exhibited no toxicity up to at least 10 mg/ml. Thus PAGS was 

at least 200 times more compatible than PEI of near identical MW. The charge density 

differs between PEI and PAGS. Each PEI repeating unit (43 g/mol) has one positive-

charge carrier (amine). This leads to a charge density of 0.0233. Each PAGS repeating 

unit (418 g/mol) has two positive-charge carriers (guanidine and amine). This leads to a 

charge density of 0.00478. Thus the charge density of PEI is approximately 5 times that 

of the PAGS. A synthetic polycation with a similar charge density to PAGS is poly(vinyl 

pyridinium bromide) (PvPBr, charge density: 0.0054), which was shown to be cytotoxic 

to a fibroblast cell line at 0.1 mg/ml (21). Thus PAGS was at least 100 times more 

compatible than a polycation with approximately the same charge density.  For order of 

amines, the third proposed criterion, PAGS contained tertiary amines and guanidiniums.  

We could not find a synthetic polycation that contained both. Thus we compared PAGS 

with polyarginine and polyamidoamine (PAMAM).  These two polycations contain 

guanidiniums and tertiary amines respectively.  Polyarginine was cytotoxic to HeLa cells 

at 0.03 mg/ml (64).  Other arginine-rich polymers, such as an arginine-modified, proline-

based biodendrimer, exhibited cytotoxicity to HeLa cells at 0.22 mg/ml (67).  Poly(3-

guanidinopropyl methacrylate), a guanidinium-containing polymer was toxic to COS-7 

cells at 0.03 mg/ml (66).   Finally, PAMAM exhibited toxicity to L929 murine fibroblasts 
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at 1 mg/ml (18).  Again, this demonstrated that PAGS possessed unprecedented 

biocompatibility relative to existing polycations. 

 

In vivo Biocompatibility 

In vitro biocompatibility can provide valuable indications of overall 

biocompatibility and help determine the mechanism of toxicity.  Complex responses at 

the organ and whole body level can only be obtained through in vivo analyses.  We 

investigated the in vivo biocompatibility of PAGS by intraperitoneal injection of 150 µl 

of polycation solution in saline in six-week old BALB/c mice that weighed 

approximately 20 g.  Each mouse was weighed and injected with either a PAGS solution 

(8 mg/20 g body weight), PEI solution (0.2 mg/20 g body weight), or saline. Organs 

including heart, liver, lungs, spleen, kidneys, and bladder were collected on day 1, 5 and 

30 after injection. Tissues were fixed and stained by hematoxylin and eosin (H and E) 

and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. All 

slides were analyzed blindly by Dr. Adeboye Osunkoya at Emory University. The organs 

were analyzed for tissue damage (H and E) and cell apoptosis (TUNEL).   

The animals injected with PAGS showed normal tissue architecture relative to 

saline control throughout all time points (Figure 4.3A, B).  Mice injected with PAGS 

showed no observable change in apoptosis compared to control mice (Figure 4.3C).  

Mice injected with PEI were the only animals that showed signs of toxicity.  Of the 

organs harvested, only liver tissues harvested on day 1 suffered significant damage 

(Figure 4.3E, F).  On average, these liver tissues exhibited 15% necrosis.  Similarly, 

extensive apoptosis was observed in livers of the PEI, day 1 group only (Figure 4.3G).  
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All other PEI tissues at other time points did not exhibit apoptosis.  Also, all tissues in the 

PAGS group at all time points showed no signs of apoptosis.  The tissues from all the 

organs except livers in the PEI, day 1 post-injection were indistinguishable 

histopathologically from healthy controls in terms of inflammation and necrosis.  The 

PEI, day 1 group liver exhibited 15% focal centrilobular necrosis on average. 

Hepatocytes surrounding the necrotic areas were characterized by grade 2 (out of 3 

grades of severity) inflammation. The inflammation is predominantly acute in nature with 

infiltrate containing mostly neutrophils and expression of a small number of 

lymphocytes. Bile ducts were spared from the inflammatory responses. There was no 

significant bile stasis, bridging fibrosis or cirrhosis identified. No micro- or macro-

vesicular steatosis was noted. Also, there was no associated atypical or malignant 

transformation of hepatocytes.  Hepatocytes in the uninvolved areas were normal.        

The amount of PAGS used for the in vivo experiments was 40 times higher than 

that of PEI. Even so, animals exposed to PAGS displayed no toxicity and tissues 

maintained normal histological architecture. The charge density of PAGS is 

approximately 1/5 that of PEI. Thus the total charges in the PAGS sample was 

approximately 8 times that of PEI. Therefore PAGS is orders magnitude more compatible 

than PEI either by matching MW or total charge. Because of arginine’s size (MW = 174), 

it is impossible to create an arginine-based polycation that equates the charge density of 

PEI (monomer MW = 43). In summary, the in vitro and in vivo evaluations demonstrated 

that PAGS possesses excellent biocompatibility unfound in existing polycations. 
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Figure 4.3.   In vivo biocompatibility analysis of PAGS.  Mice were either injected 

with 8 mg of PAGS or 0.2 mg of PEI intraperitoneally. Of all the organs isolated, liver 

was the only one that showed any significant histological change. A representative image 

of liver tissue in the PAGS group, H and E staining (A, 10x and B, 20x) revealed normal 

tissue architecture and TUNEL (green fluorescence, C) revealed no apoptotic response.  

Image D is the same tissue represented in C stained with DAPI to reveal nuclei.  For PEI 

at 0.2 mg/animal, H and E staining (E and F) revealed that liver tissue suffered 

approximately 15% necrosis.  TUNEL staining (G) exhibited extensive apoptosis in the 

livers of the PEI groups.  Image H is the same tissue represented in G stained with DAPI.  

All images were from samples isolated day 1 post injection. All image acquisition 

parameters are identical for PAGS and PEI. 

 

We set out to investigate the importance of biodegradability and use of 

endogenous building blocks on the biocompatibility of polycations.  Many polycations 

satisfy one of the parameters. To the best of our knowledge, none meets both.  Polylysine 

G H 
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(11.2 kDa) has been shown to be highly toxic (0.1 mg/ml) and induce apoptosis in a wide 

range of cells (28, 65).   Polyarginine has shown toxicity to HeLa cells at a concentration 

of 0.03 mg/ml (64).  These polycations are built from endogenous amino acids, but are 

orders of magnitude less biocompatible than PAGS. The ester bonds in PAGS are more 

susceptible to hydrolysis than the amide bonds in polyarginine and polylysine. This 

difference likely contributed to the significant improvement of PAGS’s biocompatibility.  

To improve biocompatibility, many synthetic polycations have been designed to be 

hydrolyzable (57-62).  These polycations have in general displayed higher 

biocompatibility than non-degradable ones.  The highest reported concentration for their 

in vitro tests was 1 mg/ml.  To the best of our knowledge, there has been no report on the 

in vivo biocompatibility of these existing hydrolyzable polycations. The essential 

difference between these hydrolyzable polycations and PAGS is the charge carrier in 

PAGS is derived from arginine, an endogenous molecule. This supports the hypothesis 

that biodegradability and the use of endogenous building blocks are necessary for a 

biocompatible polycation. 

The important functions of cationic peptides in numerous biological events make 

them attractive molecules to synthetically mimic.  Synthetic polycations are commonly 

used to complex polyanions through Coulomb interactions.  One can take advantage of 

these interactions between oppositely charged macromolecules to precipitate negatively 

charged biomacromolecules such as nucleic acids and glycosaminoglycans (7).  Synthetic 

polycations are widely used in non-viral gene delivery to increase transfection efficiency 

of genetic materials.  The binding with a polycation protects the DNA from damaging 

enzymes and there is tentative evidence that the complexes might move along 
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microtubules to reach the nucleus thus helps to direct the path of the nucleic acid (154).  

PAGS interacts with plasmid DNA electrostatically to form complexes that are 

approximately 70 nm in diameter (Figure 4.4A), a size suitable to be endocytosed for 

gene delivery. As more PAGS was added to the DNA solution, the charge was 

neutralized as indicated by the titration curve of the zeta potential (Figure 4.4B). The 

nonlinearity of the charge neutralization curve likely resulted from the summation of 

changes in pH and the particle size. 

The affinity associated with polycations can also allow negatively charged 

glycosaminoglycans such as heparin to form complexes with polycations.  The resultant 

polycation/heparin complex can be used to deliver heparin-binding growth factors.  The 

interaction between heparin and heparin-binding growth factors is expected to stabilize 

and potentially activate the growth factors upon binding with the corresponding growth 

factor receptors. Furthermore, it is possible to control the release of the growth factors by 

adjusting the polyvalency between the polycation and heparin. PAGS complexes heparin 

through Coulomb forces and precipitates it out of an aqueous solution as a fibrillar matrix 

(Figure 4.4C).  The diameter of the fibrils ranged from approximately 1 µm to sub-

micron in diameter and sheets range from 5-20 µm in diameter.  Globular structures were 

also observed dispersed among the fibrils.  As more PAGS was added to the heparin 

solution, the zeta potential increased following a nearly sigmoidal curve (Figure 4.4D).  

The nonlinearity of the charge neutralization is likely a result of the summation of pH 

changes and the progressive precipitation of heparin.  The ability of complexation in an 

aqueous buffer is expected to increase the bioactivity of the growth factors compared to 

procedures involving organic solvents.  
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Another application for a biocompatible polycation is cell encapsulation.  

Presently, alginate hydrogels are the most frequently used biomaterial for cell 

immobilization.  Alginate can interact with a polycation to form a hydrogel with 

increased bioactivity and improved mechanical properties such as faster gel kinetics and a 

higher compressive modulus (155).  Polycations can also stabilize and control the 

molecular weight cut-off of the alginate microcapsule membrane (156).  Additionally, 

polycations can mediate cell encapsulation by forming multilayers through Coulomb 

interactions with polyanions.  Polyelectrolyte multilayers are advantageous for cell 

encapsulation because it allows control of the local biochemical environment.  

Polyelectrolyte multilayers have also been used to condense genetic material for gene 

delivery (157).  Polycation toxicity has been a great concern in these applications as well, 

and a more biocompatible polycation is expected to significantly advance the clinical 

translation of cell encapsulation and polyelectrolyte multilayers (142, 158). 
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Figure 4.4.  Biomedical application of PAGS.  A and B.  PAGS can be used to compact 

plasmid DNA to particles under 100 nm.  PAGS:DNA complex size was measured by 

dynamic light scattering (68 nm +/- 15 nm, fit error: 1.28).  B  The positive charge of 

PAGS has shown that is can neutralize negatively charged plasmid DNA   C and D. 

PAGS can also precipitate heparin out of solution to form a fibrillar matrix with the 

potential to deliver therapeutic proteins.  PAGS:heparin complexes were visualized by 

SEM at a magnification of 1000x.  PAGS’s uses it’s positive charge to interact with 

heparin and this is exhibited by the heparin titration with PAGS.  Titration of DNA and 

heparin was analyzed by zeta potential measurements.   
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Conclusion 

Polycations are implemented in a variety of biomedical applications.  They have 

been utilized in areas from drug delivery to tissue engineering.  Even though they have 

experienced some success in these fields, synthetic polycations still face the issue of 

biocompatibility.  Given this predicament, research has been focused on finding a 

completely biocompatible polycation.  With the synthesis reported here, we have shown a 

biocompatible polycation is achievable by mimicking nature’s own version of a cationic 

polymer.  This biomimetic strategy resulted in PAGS exhibiting exceptional in vitro and 

in vivo biocompatibility, specifically when compared to other synthetic polycations.  The 

design philosophy employed by PAGS will hopefully serve as template for a new 

generation of biocompatible polycations.  

 

Materials and Methods 

Chemicals and General Methods 

Succinic acid (TCI, Tokyo, Japan), arginine ethyl ester dihydrochloride (Research 

Organics, Cleveland, OH),  1,3 meta chloro peroxy benzoic acid (Acros Organics, Morris 

Plains, NJ), and all other chemicals (Alfa Aesar, Medford, MA) were used without 

purification, except for 1,3 meta chloro peroxy benzoic acid.  This compound was 

lyophilized overnight to remove water.  Flash chromatography was performed on a Buchi 

Fraction Collector C-660 equipped with a UV photometer C-635 (Flawil, Switzerland).   

Nuclear magnetic resonance (NMR) spectra were recorded on a 400 MHz Varian 

Mercury-400BB NMR. Fourier-transform infrared (FTIR) spectra were recorded on a 

Thermo Nicolet IR-100 spectrometer (Madison, WI).  Gel permeation chromatography 
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was performed on a Viscotek GPCmax VE2001 GPC Solvent/Sample Module with 270 

Dual Detector (RALS and RI) using a Viscotek Viscogel I-MBMMW column (Houston, 

TX). The molecular weight and polydispersity of the polymer are reported relative to 

polystyrene standards.  Lyophilization was perfomed on a Labconco FreeZone 2.5 

(Kansas City, MO).  In vitro biocompatibility assays include: Cytotox 96 Non-

Radioactive Cytotoxicity Assay (Promega, Madison, WI), Vybrant MTT Cell 

Proliferation Assay Kit (Molecular Probes, Eugene, OR), EnzCheck Caspase-3 Assay Kit 

(Molecular Probes, Eugene, OR), and Live/Dead Viability/Cytotoxicity Kit (Molecular 

Probes, Eugene, OR).  TUNEL staining was done using DeadEnd Fluorometric TUNEL 

System (Promega, Madison, WI).  Fluorescence and absorbance measurements were 

performed on a Nikon Eclipse TE2000-U (Melville, NY) equipped with X-cite 120 

Fluorescence Illumination System and a 4 MP Diagnostics Spot Flex digital camera 

(Sterling Heights, MI). 

 

PAGS Synthesis 

The arginine-based polymer (PAGS) was synthesized via polycondensation 

reaction of a 1:1 molar ratio of diglycidyl succinate and arginine ethyl ester in anhydrous 

N,N-dimethylforamide under N2.  The reaction mixture was stirred and kept at 60
o
C for 7 

days. The resultant polymer was placed under vacuum and heated to 60
o
C for 24 hours to 

remove solvent.  The residual dimethylforamide was removed by dissolving the polymer 

in methanol, precipitating polymer out with ethyl acetate, and dried under vacuum at 

60
o
C overnight.  Ethyl acetate wash is used to remove unreacted product and oligomers.   
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The polymer was characterized by FTNMR, FTIR, differential scanning calorimetry, and 

gel permeation chromatography. 

 

In Vitro Biocompatibility 

Cell Membrane Interaction 

Primary baboon smooth muscle cells (SMCs, passage 12-14) were cultured in 96-

well tissue culture treated polystyrene plates at a seeding density of approximately 8,000 

cells per well in 200 µl of MCDB 131 growth medium with 10% FBS and 1% glutamine.  

Cells were grown overnight up to approximately 70% confluency and the growth medium 

was replaced with appropriate amounts of 0.2 μm filtered PAGS dissolved in 200 µl 

growth media.  Cells were incubated at 37
o
C, 5% CO2 for 4 hours, with polycation 

containing media.  Samples were then analyzed for LDH present in media.  The 

manufacturer’s procedure was used for CytoTox96 Non-radioactive Cytotoxicity Assay 

(Promega, Madison, WI).  All data was standardized to the control, which was baboon 

SMCs that were not exposed to polycation media. 

Metabolic Activity 

Baboon SMCs were prepared and exposed to PAGS media in the same manner as 

in measuring metabolic activity.  Cells were incubated at 37
o
C, 5% CO2 for 4 hours, with 

polycation containing media before the culture medium was replaced with 400 μl growth 

medium and 100 μl MTT solution (5 mg/ml), and incubated at 37
o
C for 4 hours.  MTT 

media was removed, and replaced with 500 μl of lysis buffer (10% w/v sodium dodecyl 

sulfate in 0.01M HCl) following a D-PBS wash. Cell digest was incubated at room 

temperature for 90 minutes and absorbance of each sample was measured at 560 nm.  All 
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data was standardized to the control, which was baboon SMCs that were not exposed to 

polycation media. 

Apoptotic Activity 

Baboon SMCs were prepared and exposed to PAGS media in the same manner as 

in measuring metabolic activity.  After the 4 hour incubation with PAGS media, caspase-

3 levels were examined by fluorescence measurements at 496 nm.  All data was 

standardized to the control, which was baboon SMCs that were not exposed to PAGS 

media. 

Cell Viability 

Baboon SMCs were prepared and exposed to PAGS media in the same manner as 

in measuring metabolic activity.  After the 4 hour incubation with PAGS media, cell 

viability was examined by fluorescence measurements at 494 nm.  All data was 

standardized to the control, which was baboon SMCs that were not exposed to PAGS 

media.  Cell morphology and fluorescence images were then visualized for cell 

morphology and fluorescence. 

 

In Vivo Biocompatibility 

Male Balb/C (Harlan, Indianapolis, IN) mice weighing 19-21 g were injected 

intraperitoneally with PAGS/saline solution, PEI/saline solution, or saline.  Twenty four 

animals received intraperitoneal injections of either PAGS (n=10), PEI (n=9), or control 

animals (n=3).  Animals were cared for in compliance with protocols approved by the 

Committee on Animal Care of the Georgia Institute of Technology following NIH 

guidelines for the care and use of laboratory animals (NIH publication No. 85-23 rev. 
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1985).  Organs were harvested at 1, 5, and 30 days post-injection.  The organs harvested 

include heart, liver, lung, kidney, spleen, and bladder with prostate gland.  These organs 

were rinsed with PBS and fixed in 10% neutral buffered formalin overnight then 

submersed in 30% sucrose overnight at 4°C prior to histological analysis.  All samples 

were embedded in optimal cutting temperature compound (O.C.T, Tissue-Tex, Sakara 

Finetek U.S.A. Torrance, CA) for cryosection. Cross-sections (10 μm thick, the 

longitudinal axis cut) were stained with hematoxylin and eosin (H and E) staining 

method.  Sections were stained using a standard protocol for haematoxylin and eosin (H 

and E) and analyzed for degree of inflammation and fibrosis.  Sections were also stained 

for apoptosis using manufacturer’s procedure for TUNEL staining.  TUNEL stained 

sections were then visualized and assessed for apoptosis. 

  

Statistical Analysis 

 

 For each variable group tested there were four replicates for the experimental and 

control samples.  Multicomparisons ANOVA, Tukey Method, was used to statistically 

compare the different experimental values; p < 0.05 was considered statistically 

significant.  The results are reported as mean values with standard deviations. 
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CHAPTER 5 

A [Polycation:Heparin] Complex for the Controlled Release  

of Growth Factors 

 

Abstract 

Therapeutic neovascularization facilitated by growth factors could serve as a new 

alternative to the treatment of cardiovascular disease.  Neovascularization is a 

complicated biological response regulated by a series of different growth factors.  In 

order for a growth factor delivery strategy to be successful it should meet certain criteria: 

bind relevant growth factor or cocktail of growth factors, have controllable release 

kinetics, and maintain the bioactivity of the therapeutic growth factors.  We hypothesize 

that a delivery strategy consisting of a biocompatible polycation and heparin would meet 

these criteria.  Heparin provides the ability to bind a multitude of growth factors and has 

been shown to maintain their bioactivity for an extended period of time.  Our 

biocompatible polycation has exhibited the ability to complex heparin and form water-

insoluble complexes.  These resultant complexes have demonstrated controllable release 

kinetics of FGF-2 by altering the molecular weight of the polycation.  The FGF-2 

released from the delivery complex maintained its bioactivity and provided comparable 

cellular responses to bolus FGF-2 and heparin stabilized FGF-2.  The delivery system 

described here represents an attractive new therapeutic delivery vehicle for the treatment 

of cardiovascular diseases because it has the potential to deliver heparin-binding growth 

factors in a bioactive form with controllable release rates.   
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Introduction 

Cardiovascular disease is the leading cause for death of men and women in the 

United States, accounting for nearly 2,400 deaths daily (159).  Worldwide, cardiovascular 

disease is the cause of more than seven million deaths annually (1).  Cardiovascular 

disease encompasses many forms, ischemic heart disease being the deadliest.  Ischemic 

heart disease can potentially lead to myocardial infarction and ultimately a damaged 

myocardium (98, 99).   Given that the mammalian heart has little capacity to regenerate 

this damaged tissue, there has been great effort to develop treatments to alleviate this 

problem (2).  Current therapies (invasive and noninvasive strategies) have made 

improvements in extending the life of these patients but do little to regenerate the 

damaged tissue (3).  Patients who have undergone these therapies have a greater chance 

of experiencing additional myocardial episodes in the future, compared to people who 

have never experienced a heart attack (159).  Furthermore, there is a subset of patients 

whose conditions do not improve despite these therapies.  This same subset of patients is 

expected to increase with an aging population and the rise of diseases such as obesity and 

diabetes mellitus (4).  It is clear that current therapies for ischemic heart disease do not 

help every patient and the patients that do benefit are more likely to have reoccurring 

symptoms in the future.  To improve the effectiveness of myocardial therapies it is 

important to heal the heart on a tissue level.  A potential treatment is therapeutic 

neovascularization (113).   

Therapeutic neovascularization is the process of altering native vascular 

architecture under the direction of exogenous mediators.  One approach to therapeutic 

neovascularization is the delivery of therapeutic proteins, and this has been pursued to the 
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level of clinical trials (108).  These pursuits were determined inconclusive and led to 

reevaluating strategies to deliver therapeutic proteins.  For therapeutic neovascularization 

to be successful, a delivery strategy should attempt to mimic the in vivo 

neovascularization response.  In order to mimic the in vivo neovascularization response, 

certain criteria should be met.  These criteria include the ability to bind appropriate 

growth factors, control the release of these growth factors, and maintain their bioactivity. 

There have been numerous attempts to delivery growth factors in a safe, efficient 

manner.  These delivery strategies can be classified as consisting of natural (chitosan, 

alginate, collagen, etc.) or synthetic (PLG, PLA, PEG, etc.) polymers, and the 

combination of the two (self-assembling amphiphile, PEG-heparin, etc.) (7, 118, 119).  

These strategies have had some success but have also faced challenges.  A major 

challenge of some of these delivery strategies is the use of organic solvents.   The use of 

harsh organic solvents can result in denatured proteins, ultimately limiting bioactivity.  

Another challenge in some of these strategies is the delivery vehicles have little to no 

affinity for the growth factors.  This can lead to decreased loading capacity and 

efficiency.  A delivery complex that bypasses these issues could be an attractive 

candidate for therapeutic neovascularization.    

We hypothesized a system governed by polyvalent interactions between the 

delivery matrix, heparin, and growth factors will enable a controlled release and preserve 

the bioactivity of the growth factors.  We chose to test this hypothesis by combining a 

polycation (poly(arginate glycerol succinate), PAGS), a glycosaminoglycan (heparin), 

and FGF-2 to form a delivery matrix.  All three components are water soluble and their 

interactions result in a precipitate insoluble in water.  Having water-soluble compounds 
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avoids the use of organic solvents.   The resultant complex will be capable of binding 

multiple heparin-binding growth factors through non-covalent interactions.  The use of 

heparin in its native form is also expected to provide a more potent growth factor 

response.  For example, FGF-2 has been shown to have a more potent effect when it 

binds its receptor as a ternary complex with heparin (141, 160). 

In this study we investigated whether the [polycation:heparin] complex (Figure 

5.1) could bind FGF-2 and subsequently control its release in a bioactive form.  We 

found that the loading efficiency and release kinetics can be controlled by the molecular 

weight of PAGS.  Also, this system is controlled by the polyvalent interactions between 

the polycation, heparin, and growth factor and all of these components are soluble in 

water.  These characteristics combined were anticipated to preserve growth factor 

bioactivity.  This preservation of bioactivity was exhibited by two different methods: an 

endothelial cell proliferation assay and an endothelial tube formation assay.  The results 

indicated that the [PAGS:heparin] complex holds great  potential for therapeutic 

neovascularization. 

 

Results and Discussion 

[PAGS:heparin] Complex Characterization 

The charge of [PAGS:heparin] complex was examined by zeta potential titration 

by adding a PAGS solution into a heparin solution (Figure 5.2A).  A solution of heparin 

alone had a charge of approximately -30 mV.   An increasing amount of PAGS was 

added to the heparin solution, and the resultant zeta potential increased following a nearly 

sigmoidal curve.  A ratio of [35:1] of PAGS to heparin resulted in a complex closest to 
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neutral.  This ratio was then used for subsequent experiments because it was 

hypothesized this ratio would result in the greatest amount of precipitate. 

 

 

Figure 5.1.  The [PAGS:heparin] complex.  The interactions between PAGS and 

heparin resulted in a white precipitate when combined in an aqueous solution. 

 

Both PAGS and heparin are soluble in water.  When the two are combined in 

solution, a white precipitate forms.  To further characterize complex formation, scanning 

electron microscopy was used.  Scanning electron microscopy revealed [PAGS:heparin] 

complexes as a matrix composed of fibers, sheets, and beads (Figure 5.2B).  Fiber 

diameters were approximately 1 µm to sub-micron and the sheets ranged from 5-20 µm 

in size.  Examination of the matrix at 25000x magnification (Figure 5.2C) revealed the 

fibers were more like thin ribbons and the apparent beads were in fact rings. 

 

Heparin PAGS 
[PAGS:

heparin] 
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Figure 5.2.  [PAGS:heparin] complex characterization.  (A) The charge of the 

[PAGS:heparin] complex was analyzed by zeta potential measurements.  The charge of 

the suspension increased as PAGS was incrementally added and exhibited a sigmoidal 

shape.  A mass ratio of [35:1] resulted in a complex closest to an overall neutral charge.  

Scanning electron microscopy was used to characterize the morphology of the 

[PAGS:heparin] complexes and revealed them as a matrix composed of fibers and 

rounded sheets (B, 1000x).  Fiber diameters measured approximately 1 µm to sub-

micron, and the sheets range from 5-20 µm in size. (C, 25000x) Examination of the 

matrix at higher magnification revealed the fibers were more like thin ribbons and the 

apparent beads were in fact rings. 

 

 

 

B 

C 
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FGF-2 Incorporation 

The loading capacity and efficiency of [PAGS:heparin] complexes was 

characterized through the use of radiolabeled FGF-2.  When preparing complexes, 0.1% 

to 1% of the growth factor was 
125

I
 
-labeled FGF-2.  Loading efficiency was investigated 

using two different molecular weights of PAGS and at different [PAGS:heparin] ratios.   

The high molecular weight (HMW, Mn: 73,947 Da, Mw: 238,802 Da) [35:1] ratio 

corresponded to the highest loading efficiency at 66%, corresponding to 132 ng out of the 

attempted 200 ng of FGF-2 (Figure 5.3A).  It should be noted that FGF-2 incorporation 

was calculated by measuring the amount of radioactivity present within the samples.   

Ratios of [21:1] and [7:1] resulted in loading efficiencies of approximately 59% (118 ng) 

for the HMW species.  Mass ratios lower than [7:1] did not form visible precipitates.  A 

higher mass ratio of [49:1] was also attempted but did not improve upon the loading 

efficiency of the [35:1] ratio (data not shown).  Low molecular weight (LMW, Mn: 

63,944 Da, Mw: 182,023 Da) [35:1] ratio corresponded to a loading efficiency of 50% 

(100 ng) of the attempted 200 ng.  LMW ratios of [21:1] and [7:1] resulted in efficiencies 

of 43% (86 ng) and 40% (80 ng) respectively.  The higher molecular weight species of 

PAGS corresponded to a higher loading efficiency across all ratios relative to lower 

molecular weight species.  HMW PAGS loaded approximately 15% more FGF-2 across 

the aforementioned ratios.  The loading capacity of [PAGS:heparin] complexes were also 

examined.  This was done using a [35:1] ratio of LMW PAGS and increasing amounts of 

attempted loaded FGF-2 (Figure 5.3B).  The attempted amount of FGF-2 loaded was 

increased from 20 to 2000 ng.  In all cases, FGF-2 was loaded with the same efficiency of 

50%.  This efficiency corresponds to loading range of 10 ng to 1000 ng.  From these 
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experiments, it was demonstrated the [PAGS:heparin] complexes can incorporate at least 

1000 ng FGF-2. 
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Figure 5.3.  [PAGS:heparin:FGF-2] complex loading analysis.  Complex loading 

efficiency and capacity was investigated using 
125

I-FGF-2.  Loading efficiencies (A) of 

different molecular weight PAGS was investigated for different [PAGS:heparin] ratios.  

The higher molecular weight PAGS was more efficient at incorporating FGF-2 at all 

[PAGS:heparin] ratios than the lower molecular weight species.  A ratio of [35:1] was the 

most efficient at incorporating FGF-2 for both molecular weight species.  The loading 

A 

B 
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capacity (B) of complexes was investigated for a [35:1] ratio of low molecular weight 

PAGS and demonstrated a loading efficiency of 50%.  From this experiment, it was 

exhibited that FGF-2 could be incorporated up to at least 1000 ng.  Statistical significance 

between control and other experimental groups was noted as “*”, p < 0.05. 
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Figure 5.4.  [PAGS:heparin:FGF-2] complex release kinetics.  Release kinetics were 

examined by measuring the amount of 
125

I-FGF-2 released from complexes.  The percent 

of FGF-2 released from complexes (A) was monitored over a period of 28 days.  Two 

different molecular weight species of PAGS were used to characterize whether release 

kinetics were controllable.  The LMW species of PAGS released nearly 20% of its loaded 

growth factor, while the HMW species of PAGS released approximately 50% of 

incorporated growth factor over the same period of time.  The amount of growth factor 

(ng) is also shown (B) to further illustrate the ability to control the amount of FGF-2 

released by altering the molecular weight of PAGS.  HMW PAGS released 69 ng of 

FGF-2 over 28 days, compared to 17 ng of FGF-2 released by the LMW PAGS.  

  

FGF-2 Release Kinetics 

The FGF-2 release profile from the [PAGS:heparin] complexes was examined 

using 
125

I-labeled growth factor (1%).  The subsequent release of radiolabeled FGF-2 

from complexes was monitored for a period of 28 days.  Two different molecular weight 

species of PAGS were used for these release experiments.  These different molecular 

weights were used to investigate if the release kinetics could be controlled through 

molecular weight.  The release kinetics (Figure 5.4A) of both PAGS species starts with a 

small initial burst and then has a sustained release over the remainder 28 days.  The initial 

burst (7% of loaded FGF-2) was approximately the same for both molecular weight 

species.  The release profile of the HMW PAGS follows that of a power law and 52% of 

the loaded FGF-2 was released over these 28 days.  If this release profile continues along 

the pattern exhibited in the first 28 days then it should release growth factor up to 110 
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days.  The lower molecular weight species resulted in releasing 19% of loaded FGF-2 

over this same time period. 

The release profile was further characterized to express the specific amount of 

growth factor released from the different complexes.  Once again it should be noted the 

amount of FGF-2 released was calculated by measuring the amount of radioactivity 

present within the supernatant.  The specific amount of FGF-2 released from both 

molecular weight species exhibited similar profiles relative to the percentage of loaded 

FGF-2 released (Figure 5.4B).  In comparing the different PAGS molecular weights, the 

HMW species released 18 ng of FGF-2 within 3 days and the LMW species released the 

same amount of FGF-2 over a period of 28 days.  This observation further demonstrated 

that modifying PAGS’s molecular weight results in controllable release kinetics.   

 

Bioactivity of Released FGF-2  

 The bioactivity of released FGF-2 was investigated by two different assays.  The 

initial examination was the number of endothelial cells present after being exposed to 

different media conditions.  Basic fibroblast growth factor’s ability to stimulate 

proliferation of endothelial cells has been well documented.  In this assay, if FGF-2 

released from [PAGS:heparin] complexes maintains its bioactivity, then HUVECs 

exposed to this media will proliferate at a rate similar to that of bolus FGF-2.  HUVECs 

were exposed to different media conditions and cell number was assessed using a Coulter 

Counter after 48 hours of incubation with this media (Figure 5.5A).  Media conditions 

included: [PAGS:heparin] release media, media without FGF-2 (control), FGF-2 

supplemented media, and [heparin:FGF-2] supplemented media.  HUVECs incubated 
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with [PAGS:heparin]  day 1 release media and [FGF-2:heparin] media resulted in 

approximately a 1.7 fold  increase over control groups at the end of the 48 hour 

incubation.  The FGF-2 released from the [PAGS:heparin] complexes proved to have a 

proliferative effect on the same level as FGF-2 added directly to culture media.  When 

HUVECs were incubated with [PAGS:heparin] day 3 release media, it resulted in 

approximately a 3 fold increase over control groups.  As seen with the day 1 release 

media, day 3 release media also a similar proliferative effect as bolus FGF-2.  
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Figure 5.5.  Bioactivity of released FGF-2.  The bioactivity of released FGF-2 was 

examined by potency and functionality assays.  (A) HUVECs exposed to different types 

of conditioned medium were analyzed by cell number to evaluate the potency of the 

FGF-2 released from complexes.  [PAGS:heparin:FGF-2] release media from days 1 and 

3 stimulated HUVEC proliferation that approached [heparin:FGF-2] supplemented 

media.   (B) The bioactivity of released FGF-2 was also assessed by examining its ability 

to stimulate endothelial tube formation.  The FGF-2 released from [PAGS:heparin:FGF-

2] complexes stimulated approximately the same amount of tube formation as 

[heparin:FGF-2] supplemented media and bolus FGF-2 media.  These trends were seen in 

C D 

E F 
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both HUVECs and HAECs.  Visualization of HUVECs exposed to the different media 

conditions: C – control, D – bolus FGF-2, E – [heparin:FGF-2], and F – 

[PAGS:heparin:FGF-2] release media.  Statistical significance between control and other 

experimental groups was noted as “*”, p < 0.05. γ denotes the statistical significance 

between an experimental groups and the bolus FGF-2 group, p < 0.05. 

  

Bioactivity of released FGF-2 was further analyzed using a functional assay of 

endothelial cells. It has been shown that endothelial cells grown on Matrigel
®
 form tube-

like structures.  An angiogenic growth factor such as FGF-2 should stimulate the 

formation of tubes if presented in a bioactive form.  Both HUVECs and HAECs were 

exposed to the same media conditions as the proliferation assay but cultured on matrigel 

(Figure 5.5B).  These endothelial cells were then investigated for the formation of tubes 

and the total tube length was measured using Image Pro.  HAECs incubated with 

[PAGS:heparin:FGF-2] release media exhibited approximately a 4.5 fold increase in 

measured tube length compared to the control group.  HUVECs exposed to this same 

release media also displayed an increase (1.2 fold) relative to control group but not as 

extensive.  Also, as seen in the proliferative assay, the trend that FGF-2 released from 

[PAGS:heparin:FGF-2] complexes stimulated a response similar to heparin stabilized 

FGF-2 media was demonstrated (Figure 5.5C, D).  It should be noted that 

[PAGS:heparin:FGF-2] media in HAEC’s stimulated more tube formation than bolus 

FGF-2 supplemented media. 

 

 



79 

 

 

Preliminary In Vivo Biocompatibility of [PAGS:heparin] Complexes 

 The [PAGS:heparin] delivery system will eventually be evaluated for in vivo 

applications.  As a preliminary in vivo biocompatibility examination, Sprague–Dawley 

rats were exposed to the [PAGS:heparin] networks.  The animals were injected 

subcutaneously in their hindlimbs with [PAGS:heparin] solutions.  These solutions 

consisted of [PAGS:heparin] ratios of [35:1].  Rats were sacrificed and examined for 

acute tissue toxicity on days 3, 7, and 12 via H and E staining.  Day 3 (Figure 5.6) was 

the only time point that showed any signs of inflammation.  This time point demonstrated 

signs of inflammation.  In a normal injection, there would be no signs of this at day 3 but 

it is hypothesized because heparin was part of the injected formulation, clotting and 

wound healing was hindered.  On days 7 and 12, no signs of inflammation were seen.  

Further investigation is needed to support the hypothesis for inflammation at day 3.  If 

this hypothesis holds true, then this preliminary study gives optimism that PAGS is 

biocompatible for in vivo applications. 
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Figure 5.6. Preliminary in vivo biocompatibility of [PAGS:heparin] complexes.  Rats 

were injected subcutaneously in hind-limbs with [PAGS:heparin] suspension.  Day 3 

shows inflammation (arrow) that is most likely due to the injection and the presence of 

heparin.  Magnification of presented image was taken at 40x. 

 

There have been many attempts to deliver growth factors in a safe, efficient 

manner.  The delivery strategy reported here is the first to deliver growth factors by a 

system composed of only a polycation and a polysaccharide.  In trying to mimic the in 

vivo neovascularization response, the goal of this strategy was to have the aptitude to 

bind a multitude of growth factors, maintain their bioactivity, and deliver them under 

controllable release kinetics.  The resultant [polycation:heparin] complex demonstrated 

that it can deliver bioactive FGF-2 for at least 28 days, and that the release rate of FGF-2 

can be controlled through the molecular weight of the polycation.   

The use of a synthetic polycation as a component of this delivery strategy was a 

difficult proposition.  Without a polycation in this strategy, heparin will not precipitate 

out of solution.  Conversely, synthetic polycations are well-known for being cytotoxic.  

The use of PAGS meets the requirements of being both a polycation and biocompatible.  

This claim of PAGS’s biocompatibility is explained in detail in prior chapter.  In this 

system, the polycation served as an anchoring mechanism for heparin and ultimately 

FGF-2.  This then allowed for the controllable release kinetics of FGF-2 through PAGS’s 

molecular weight.  By using a lower molecular weight species of PAGS, the release rate 

of FGF-2 was dramatically slower and the amount of growth factor released was 

considerably less when compared to the higher molecular weight species of PAGS.  It is 
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hypothesized that the difference between release kinetics is due to a change in bind 

affinities between the [PAGS:heparin:FGF-2] ternary complex (Figure 5.7).  The higher 

molecular weight PAGS has a higher binding affinity (kon2) for heparin.  This leads to an 

increase in formation of C3, thus there is more heparin and FGF-2 present in the ternary 

complex.  It is assumed that FGF-2 and heparin interact with PAGS as a complex (C1) 

because of its prior incubation together.  To explain why kon4 does not have a larger role 

in the loading efficiency is because the ternary complex has not reached equilibrium at 

the time the loaded FGF-2 was measured, thus it is more kinetically regulated. This 

explains the increased loading efficiency of the high molecular weight PAGS.  This 

higher molecular weight PAGS also leads to a higher dissociation constant (koff3) with 

FGF-2 and the [PAGS:heparin:FGF-2] complex (C3).  The higher molecular weight 

PAGS competes with FGF-2 for binding sites, thus making it more difficult for FGF-2 to 

stably interact with heparin.  This results in the equilibrium shifting to [PAGS:heparin] 

(C2) quicker than in the lower molecular weight species.  This ultimately results in more 

FGF-2 released from the high molecular weight PAGS complexes. 

Moreover, the release mechanism of the [PAGS:heparin] complex has yet to be 

completely elucidated.  It is hypothesized that FGF-2 release kinetics are a function of 
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Figure 5.7.  [PAGS:heparin:FGF-2] binding model.  This model is used to explain the 

release kinetics and loading efficiency between the 3 different components of the ternary 

complex.  Heparin is denoted as HEP and FGF-2 is denoted as GF.  

 

dissolution of [PAGS:heparin:FGF-2], [PAGS:heparin], and [heparin:FGF-2], the 

degradation of PAGS and subsequent release of [heparin:FGF-2], and the diffusion of 

FGF-2 from the complex.  Preliminary experiments investigating the degradation profile 

of PAGS exhibit the PAGS’s half-life in aqueous solution at 37
o
C is approximately 70 

days.  This observation makes a claim that the release mechanism could be influenced by 

polymer degradation.  This degradation rate would likely be slower when PAGS is 

complexed with heparin because the complex is no longer in solution, but degradation 

might still have a small role in the release of FGF-2.  This then points to the release of 
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FGF-2 as a function of dissolution and diffusion mechanisms.  Further investigation of 

the affinities of PAGS for heparin as well as a more in depth PAGS degradation profile 

will help characterize the release mechanism.  It should be noted that the degradability of 

PAGS may have a more intricate role for in vivo applications in determining release 

kinetics.  

 The [PAGS:heparin] delivery system takes advantage of heparin’s ability to 

interact with FGF-2.  Heparin is known to have a high affinity to FGF-2 (Kd: 8.6 x 10
-

9
M) (161).  Heparin’s high affinity for FGF-2 allows the [PAGS:heparin] system to 

sequester FGF-2 and have a high loading capacity and efficiency of this growth factor.   

This is an improvement compared to most synthetic growth factor delivery systems that 

have little or no affinity to the target growth factor.  Heparin is also known to prolong the 

biological half-life of FGF-2 as well as increase the stimulatory effects of the FGF-2 

signaling pathway.  These effects are demonstrated in the bioactivity experiments 

reported here as well in other reported bioactivity assays (138).  Moreover, the formation 

of the [PAGS:heparin] complex is carried out in aqueous solution and does not use any 

harsh organic solvents.  Some delivery systems lose bioactivity of growth factor because 

they have to use these organic solvents.   

This maintained bioactivity of FGF-2 was confirmed in two different 

examinations and cell types.  The first assay and cell type was a proliferative examination 

using HUVECs.  HUVEC cells numbers were slightly lower in the day 1 release media 

compared to the day 3 release media.  The opposite would be the intuitive because the 

concentration of FGF-2 is higher than the day 3 release media.  A possible explanation of 

these results is the passage number of the HUVECs used for the day 1 release media 
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experiment was higher than the HUVECs in the day 3 release media experiments.  The 

stimulatory effects of FGF-2 could elict a stronger response in lower passage HUVECs.    

The second assay was a functional examination of both HUVECS and HAECs 

cultured on Matrigel
®
.  The amount of tube formation from the [heparin:FGF-2]  media 

was slightly more than the release media in the HUVEC samples.  In the HAEC samples, 

the opposite was true with the release media exhibiting higher results than the 

[heparin:FGF-2] media.  This same trend between these experimental groups was also 

displayed in the potency assay using HUVECs.  It should be noted, the results between 

these two experimental groups were not statistically significant.  A possible reason for 

this result is that HUVECs are more sensitive than HAECs to the concentration of 

heparin present in the media.  In the samples incubated with [heparin:FGF-2], the amount 

of heparin is known.  In the samples incubated with [PAGS:heparin:FGF-2] release 

media, the amount of heparin is unknown.  For example, if the concentration of heparin 

in the release media is higher than the [heparin:FGF-2] media, then HUVECs could be 

over stimulated and experience receptor down regulation.  This in turn could result in a 

lower stimulatory effect of FGF-2.   The amount of heparin present in the release media 

is an experiment that should be investigated in the future.  The donor age of the cells also 

could also have a role in this observation.  A younger donor would most likely have a 

more robust result relative to an older donor.  The donor age of these cell were unknown 

at the time of their use.  

 The [PAGS:heparin] delivery strategy has demonstrated it can deliver bioactive 

growth factors with release kinetics that are governed by the molecular weight of the 

polycation.  These experiments were initially done with FGF-2 as a proof of concept 
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evaluation, but this delivery system theoretically could work with any growth factor that 

binds heparin.  Heparin and heparin derivatives are known to bind growth factor and 

cytokines including fibroblast growth factors, hepatocytes growth factor, vascular 

endothelial growth factor, heparin-binding epidermal growth factor, platelet derived 

growth factor, transforming growth factor β, macrophage-colony stimulating factor, 

interleukins (examples: IL-1,2,3,4,6,7,8), interferon γ, among others (134).  From this 

list, it can be seen there are multitude of  potential applications.  It is expected that release 

kinetics will vary from growth factor to growth factor due to their varied affinities for 

heparin.  It should also be noted that the [PAGS:heparin] delivery strategy is not strictly 

limited to applications involving therapeutic neovascularization.  The scope of 

applications could potentially include nerve regeneration to orthopedics and is essentially 

dictated by the growth factors that bind to heparin.   Additionally, the [PAGS:heparin] 

delivery strategy is an injectable suspension that could serve a non-invasive alternative to 

therapeutic treatments.            

 

Conclusion 

 The PAGS-based delivery strategy has the ability to deliver bioactive FGF-2 with 

controllable release kinetics.  The release of FGF-2 correlates directly to the molecular 

weight of the polycation in the complex.  The [PAGS:heparin] complex is able to deliver 

FGF-2 for at least 28 days and likely over 100 days if  the observed trend continues.  The 

FGF-2 released from [PAGS:heparin] complexes has bioactivity similar to bolus FGF-2 

and comparable to heparin stabilized FGF-2.  The bioactivity of FGF-2 is preserved by 
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using heparin in its native form.  Finally, this deliver strategy has the potential to deliver 

numerous therapeutic growth factors for a multitude of different applications.  

 

Materials and Methods 

General Materials and Methods 

 Succinic acid (TCI, Tokyo, Japan), arginine ethyl ester dihydrochloride (Research 

Organics, Cleveland, OH),  1,3 meta chloro peroxy benzoic acid (Acros Organics, Morris 

Plains, NJ), and all other chemicals (Alfa Aesar, Medford, MA) were used without 

purification, except for 1,3 meta chloro peroxy benzoic acid.  This compound was 

lyophilized overnight to remove water.  Flash chromatography was performed on a Buchi 

Fraction Collector C-660 equipped with a UV photometer C-635 (Flawil, Switzerland).  

FGF-2 was purchased from R&D Systems (Minneapolis, MN) and is an N terminally 

truncated form of human FGF-2 that contains the amino acid residues Proline 10 to 

Serine 155.  It is a carrier free product that was reconstituted in PBS with 1mM DTT. 

 

Synthesis of PAGS 

 PAGS was synthesized via polycondensation reaction of a 1:1 molar ratio of 

diglycidyl succinate and arginine ethyl ester in anhydrous N,N-dimethylforamide under 

N2.  The reaction mixture was stirred and kept at 60
o
C for 7 days. The resultant polymer 

was placed under vacuum and heated to 60
o
C for 24 hours to remove solvent.  The 

residual dimethylforamide was removed by dissolving the polymer in methanol, 

precipitating polymer out with ethyl acetate, and dried under vacuum at 60
o
C overnight.  

Ethyl acetate wash is used to remove unreacted product and oligomers.   The polymer 
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was characterized by FTNMR, FTIR, differential scanning calorimetry, and gel 

permeation chromatography. 

 

Preparation of [PAGS:heparin:FGF-2] Complexes 

 PAGS (8 mg/ml) and heparin (10 mg/ml) were prepared in a solution of D-PBS 

(with Ca
+2

/Mg
+2

).  A solution FGF-2 (100 µg/ml) was prepared as described by the 

manufacturer.  Heparin and FGF-2 were combined at a mass ratio of 1:0.002 (114 µg/200 

ng).  This solution was incubated at room temperature for 15 minutes with mild agitation.  

PAGS solution was then added drop-wise to the aforementioned solution and allowed to 

incubate at room temperature for 30 minutes with mild agitation.  The amount of PAGS 

used relative to heparin was a mass ratio of 35:1 (4 mg:114 µg).  After this incubation 

time, samples were centrifuged for 10 minutes at 12,100 x g (2x).  Supernatant was 

removed and fresh D-PBS was added to pellet.   Each sample contained 4 mg PAGS, 114 

μg, and 200 ng FGF-2 (mass ratio of [35:1:0.002]).  Other ratios of [PAGS:heparin:FGF-

2] were also used and noted as such. 

 

[PAGS:heparin] Charge 

[PAGS:heparin] complexes were prepared as detailed in sample preparation 

section with the exception of using molecular grade water in place of PBS and without 

the presence of FGF-2.  From prepared samples, 750 µl was diluted to a final volume of 

1.5 ml and analyzed via for zeta potential measurements. 
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[PAGS:heparin] Morphology 

[PAGS:heparin] complexes were prepared as detailed in the sample preparation 

section with the exception of using molecular grade water in place of PBS.  A volume of 

100 µl of matrix suspension was then added to a 1 mm aluminum stub and lyophilized for 

4 h.  All samples were sputtered with gold, and viewed with a Hitachi S-800 SEM (15 

kV, 3–5 nm spot size) or a Leo 1530 SEM (10 kV, 3 nm spot size).  

 

 [PAGS:heparin] Complex Loading Analysis 

[PAGS:heparin:FGF-2] complexes were prepared as detailed in sample 

preparation section.  Radiolabeled 
125

I-FGF-2 (0.1% of FGF-2 was hot, Perkin Elmer) 

was incorporated into the complex.  After the supernatant had been removed (after final 

centrifugation), a 5% solution of acetic acid in PBS (with Ca
+2

/Mg
+2

) was added to pellet.  

The pellet was then agitated overnight and read on a gamma counter the following day.  

The amount of FGF-2 loaded was measured relative to a control of 
125

I labeled FGF-2 

alone in solution.  Mass ratios of [PAGS:heparin:FGF-2] include [35:1:0.002], 

[21:1:0.002], [7:1:0.002], [35:1:0.0002], and [35:1:0.02]. 

 

[PAGS:heparin:FGF-2] Complex Release Kinetics 

[PAGS:heparin:FGF-2] complexes were prepared as detailed in sample 

preparation section.  Radiolabeled 
125

I-FGF-2 (0.1% of total FGF-2 was “hot”) was 

incorporated into the complex.  Supernatant was removed, replaced with 1 ml fresh PBS 

(with Ca
+2

/Mg
+2

), and incubated at 37
o
C.    At specified time points (1, 3, 7, 10, 14, 17, 

21, 24, and 28 days) the complex was centrifuged for 10 minutes at 12,100 x g.  
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Supernatant was removed and analyzed on a gamma counter.  After each time point, 1 ml 

of fresh PBS (with Ca
+2

/Mg
+2

) was added to complex.  Mass ratios of 

PAGS/heparin/FGF-2 used in these experiments include: [35:1:0.002] and [7:1:0.002]. 

 

Potency of Released FGF-2 

 [PAGS:heparin:FGF-2]  complexes were formed in the same manner as 

described in prior section.  Supernatant was removed, replaced with 1 ml M-199 medium, 

and incubated at 37 °C.  After 1 and 3 days, the suspension was centrifuged for 10 

minutes at 12,100 x g. The FGF-2-containing supernatant was removed and the tube was 

replenished with 1 ml of fresh M-199 medium.  Human umbilical vein endothelial cells 

(HUVEC, P5-10) were seeded in a 24-well tissue culture treated polystyrene plate at a 

density of approximately 10,000 cells/well with 1 ml of M-199 growth media.  HUVECs 

were incubated overnight at 37 °C, 5% CO2, washed with PBS, and then incubated with 

different media conditions.  After the different media conditions had been added, cells 

were incubated at 37 °C, 5% CO2 for 48 hours.  After the 48 hour incubation period, 

HUVECs were detached via trypsinization and counted on a Coulter cell counter (Coulter 

Multisizer II).  The biological activity of FGF-2 released from [PAGS:heparin] 

complexes was determined by comparing the stimulatory effects observed in wells 

containing basal M-199 Media (no FBS or growth factors), M-199 media supplemented 

with bolus FGF-2 (11 ng/ml for day 1 and 7 ng/ml for day 3), release media from 

[PAGS:heparin] matrices, and media supplemented with [heparin:FGF-2].  The amount 

of heparin used is 1:25 weight ratio of heparin:FGF-2 (138).  Concentration of FGF-2 in 
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bolus and [heparin:FGF-2] media is identical to the amount of FGF-2 in [PAGS:heparin] 

release media. 

 

Functional Analysis of Released FGF-2 

HAECs (Human Aortic Endothelial Cells) (P4-6) and HUVECs (P4-6) were 

seeded on ECMatrix (Chemicon In Vitro Angiogenesis Assay Kit) in a 96-well tissue 

culture treated polystyrene (TCPS) plate at a density of 10,000 cells/well.  HAECs were 

exposed to different media conditions for a period of 8 hours.  [PAGS:heparin:FGF-2]  

complexes were formed in the same manner as described prior.  Supernatant was 

removed, replaced with 1 ml EGM-2 medium, and incubated at 37°C. After 1 day, the 

suspension was centrifuged for 10 minutes at 12,100 x g.  Supernatant (150 µl) 

containing the released FGF-2 was added to the HAECs cultured on a 96-well TCPS 

plate with ECMatrix.  Endothelial tube formation was quantified by measuring total 

capillary tube length.  Capillary tubes were measured from representative images using 

Image Pro.  These values were averaged and tested for significance against HAECs 

incubated with the EGM-2 medium, FGF-2- and [heparin:FGF-2]-supplemented EGM-2 

media under the same conditions.  Each experimental set contained n = 4. 

 

Preliminary In Vivo Investigation of [PAGS:heparin] 

PAGS was dissolved in D-PBS (with Ca
+2

/Mg
+2

) at a concentration of 15 mg/ml.  

Heparin (10 mg/ml) was then added to PAGS solution drop-wise and allowed to incubate 

at room temperature for 15 minutes.  The [PAGS:heparin] suspension was then injected 

(300 µl) subcutaneously in the hind limbs of Sprague–Dawley (Harlan, Indianapolis, IN) 
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rats (Female, 9-10 weeks old, 280g, n=3).  Animals were cared for in compliance with 

protocols approved by the Committee on Animal Care of the Georgia Institute of 

Technology following NIH guidelines for the care and use of laboratory animals (NIH 

publication No. 85-23 rev. 1985).  Rats were anesthetized with isofluorane during the 

injections.  Acute tissue toxicity in rats were examined on days 3, 7, and 12.  On each 

respective day, rats were sacrificed by carbon dioxide.  Skin and muscle samples from the 

site of injection were collected, and dehydrated in a graded series of ethanol and xylenes 

and embedded in paraffin.  All parrafin molds were sectioned into 10 µm slices and 

subsequently stained with hematoxylin and eosin. Sections were analyzed for the degree 

of inflammation and fibrosis. The inflammatory response to each implant was assessed 

by rating the levels of lymphocytic and histiocytic infiltrate, and fibrosis was identified 

by collagen deposition 

 

Statistics 

 For each variable group tested there were at least three replicates for the 

experimental and control samples.  Multicomparisons ANOVA, Tukey Method, was used 

to statistically compare the different experimental values; p < 0.05 was considered 

statistically significant.  The results are reported as mean values with standard deviations. 
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CHAPTER 6 

Future Considerations and Conclusion 

 

A Biocompatible, Synthetic Polycation 

The synthesis of a biocompatible polycation is a far from trivial accomplishment.  

Presently, there is no reported polycation that has demonstrated to be biocompatible in 

both in vitro and in vivo environments.  PAGS has exhibited unprecedented 

biocompatibility in both of these settings, thus making it a ground breaking discovery.  

Now that a biocompatible polycation has been synthesized, it can now be reverse 

engineered to discover what exactly makes PAGS non-toxic.  We have hypothesized that 

a biodegradable polycation composed of naturally derived compounds or derivatives of 

these components would result in a biocompatible polycation.  This hypothesis needs to 

be tested in a more rigorous manner to be completely validated.  A more in depth 

investigation of PAGS’s interactions with the cell membrane, how it gets into the cell, 

and where it is trafficked within the cell needs to be done.  Also, a study of PAGS’s 

degradation products should be examined.  Ultimately, it is PAGS’s degradation product 

that the cell will finally interact with in both in vitro and in vivo.  A characterization of 

PAGS’s degradation products would help elucidate whether our hypothesis is valid.  

Currently, the Wang Lab is in the process of synthesizing these degradation products.      

Other than further characterizing PAGS’s biocompatibility, the synthesis itself 

could be optimized.  PAGS was the first successful generation of biocompatible 

polycations from the Wang Lab and optimization of the polymer synthesis was not the 

initial goal of the project.  The synthesis of PAGS could be improved as far as yield, 
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control of molecular weight, and overall polymerization.  Presently, the Wang Lab is 

working on the synthesis of other biocompatible polycations that follow the same 

template that proved successful with PAGS, and these polycations should be synthesized 

more efficiently as well as yield higher molecular weight species.   

Overall, I believe the synthesis of PAGS has introduced a novel biomaterial that 

holds the potential to be the stepping stone to unlocking the biocompatibility concerns of 

synthetic polycations.  I say stepping stone because PAGS is far from perfect.  It takes an 

extremely long time to synthesize and the control of molecular weight is poor at best.  I 

also say stepping stone because PAGS has introduced increased biocompatibility but the 

exact mechanism behind it is unknown.  PAGS interactions with cells can be studied and 

this mechanism can hopefully be elucidated.  When and if this can be accomplished, 

PAGS will serve as another example of a biomaterial that provided a breakthrough by 

rationale design. 

In conclusion, the field of synthetic polycations has yet to produce a polycation 

that has exhibited both in vitro and in vivo biocompatibility.  To circumvent this problem, 

we chose to mimic a polycation that is biocompatible and present in the body, a cationic 

peptide.  The essential traits of a cationic peptide we incorporated into our polycation 

were biodegradability and a cationic species originated from a biological molecule that is 

found in the body.  We also used a synthetic linker that was a derivative of a biomolecule 

found in the body.  Through a rational design template we synthesized a polycation that 

exhibited both in vitro and in vivo biocompatibility.  This is the first reported polycation 

to demonstrate these characteristics.  For decades research has attempted to synthesize a 

polycation with this type of biocompatibility, and this research is the first to report one.   
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[PAGS:heparin] Delivery Strategy 

The [PAGS:heparin] delivery strategy presented in this research was a proof of 

concept study.  The aptitude to deliver bioactive growth factor under a controllable 

release was investigated with FGF-2.  The [PAGS:heparin] complex demonstrated that it 

was capable of releasing a growth factor for a period of at least 28 days with a 

controllable release rate.  The FGF-2 released from the complex also maintained its 

bioactivity. 

From this point there are a couple of different paths that could be pursued.  A 

more extensive in vitro assessment of the complex can be investigated and will be need to 

be done at some point.  This would include characterizing the interactions and affinity 

between PAGS and heparin.  Other growth factors will also have to be examined for 

release kinetics.  In order to truly mimic the in vivo neovascularization response a number 

of different growth factors will need to be used.  An example of two other growth factors 

that will be needed is VEGF and PDGF.  The release kinetics of these growth factors 

would have to be determined accurately to mimic the in vivo response. 

The other path that will eventually be examined is the in vivo potential of the 

[PAGS:heparin] complex.  Its potential could initially be tested with FGF-2 alone or with 

a combination of growth factors.  Regardless if it is using FGF-2 alone or as a 

combination of different growth factors, there are a number of different disease models 

that could be used.  The initial disease model would be a hind limb ischemia model, 

which is a standard model of peripheral ischemia that mimics some aspects of human 

atherosclerosis.  In this animal model,
 
mice would be subjected to femoral artery and vein 

ligation.  Mice would then be injected with the [PAGS:heparin:FGF-2] suspension.  Hind 
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limb tissue would then be retrieved at specified time points and analyzed via 

immunohistochemistry, perfusion levels, and quantitatively by the appearance of hind 

limb.  The growth factors incorporated into complexes could also be radiolabelled to 

examine the growth factor’s diffusion radius.  The hind limb recovery results would most 

likely be more positive if a combination of different growth factors were used, as in 

neovascularization.  If done with a combination of different growth factors, these will 

have to be investigated in vitro first.  One aspect that concerns myself is how the stability 

of these complexes will hold up in vivo.  The complex is regulated by non-covalent 

interactions and has been studied in simplified in vitro environments.  When exposed to 

the more complicated in vivo environment it is hard to predict how if it will exhibit the 

same in vitro characteristics.  The future of the [PAGS:heparin] delivery strategy hinges 

on its success in these in vivo experiments, as it does with most biomaterials.   

The [PAGS:heparin] delivery vehicle is not limited to cardiovascular diseases, but 

can be used for any therapy that would benefit from the presence of exogenous growth 

factors.  This is true as long as the potential growth factor has some affinity for heparin.  

A potential application of the [PAGS:heparin] complex in the Wang Lab would be for 

nerve tissue engineering.  Presently, the Wang Lab is attempting to produce a scaffold 

fabrication method for nerve guidance channels made from PGS.  These nerve guidance 

channels could be coated with the [PAGS:heparin:growth factor] suspension prior to 

being implanted.  The delivery of growth factors (example: NGF) could potentially aid in 

nerve regeneration. 

In conclusion, the [PAGS:heparin] delivery system has provided a novel strategy 

for the delivery of growth factors.  There have been other heparin-based delivery 
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systems, but none that have accomplished an efficient delivery through the type of 

simplicity.  In this situation, simple is good because it could potentially cut down on cost 

by only having 3 components.  Other systems that bind heparin either use covalent 

modifications of heparin or bind heparin through non-covalent interactions.  Covalent 

modifications of heparin can potentially alter the bioactivity of heparin and its target 

growth factor.  Systems that use non-covalent interactions to bind heparin use heparin-

binding domains (amino acid sequences).  The PAGS system uses only 1 amino acid, 

arginine, and this should not only maintain heparin’s bioactivity but also cut the cost of 

the delivery vehicle.  This strategy not only accomplished controllable release kinetics of 

bioactive FGF-2, but did it in a more efficient manner than other reported systems.  

Another characteristic of the PAGS system is it is injectable through 25G needles, thus it 

is expected that a minimally invasive delivery system is feasible.  Further development of 

this growth factor delivery system may lead to tangible clinical benefits in a variety of 

medical fields. 
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Appendix A 

Gene Delivery Applications 

 

Introduction 

The field of gene therapy holds the potential to treat a broad array of diseases that 

are considered incurable including: cystic fibrosis, hemophilia, and severe combined 

immunodeficiency disease.  This potential has yet to be realized due to the remaining 

obstacle of a safe and efficient approach to deliver genetic material.  Presently, viral 

vectors, such as recombinant viral and adenoviral vectors, are the most efficient gene 

delivery vehicles but this efficiency is burdened with certain concerns.  Some of these 

drawbacks including immunogenicity, size limitations of inserted genetic material, and 

potential of oncogenicity have impeded its clinical impact.   Conversely, non-viral gene 

delivery agents offer a safer alternative compared to their viral counterparts.  They can 

potentially allow for greater control of their molecular architecture, flexibility in the size 

of the genetic information delivered, and lower immunogenicity (29, 115, 154, 162-164).  

Consequently, this has led to an increased interest in non-viral vectors as gene delivery 

agents, specifically cationic polymers.   

Cationic polymers have been widely used as vectors because of their ability to 

protect DNA from nucleases and to condense DNA through electrostatic interactions.  

Examples of cationic polymers currently being used are: polyethyleneimine (PEI), poly-

L-lysine (PLL), and polyamidoamine dendrimers (165, 166). These cationic polymers 

have been the most successful cationic vectors but there still remains the problem of 

having a low transfection efficiency and being cytotoxic. This issue of cytotoxicity is due 
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mostly to the poor biocompatibility of these non-degradable polymers (57).  Due to the 

latter complication, our research has been concentrated on the advancement of 

biocompatible polymers for gene delivery.   

Arginine is one of the most positively charged biomolecules found in nature and it 

is an amino acid that has been associated with important cellular functions such as 

transmembrane and nuclear transport (167).  This is why arginine has generated interest 

in the scope of gene delivery with the hope of harnessing its abilities and exploiting them 

for gene delivery applications.  Arginine has been incorporated into vectors as a single 

molecule, part of a peptide (homo and hetero peptides), and as its functional group 

(guanidiniuim side chain).  These methods have met with varying degrees of success and 

these vectors have also been saddled with cytotoxicity concerns (67, 168-170).   

In this study we designed an arginine-based polymer that is biocompatible. The 

biocompatibility of PAGS ensures that it will not be cytotoxic to cells and the positively-

charged arginine incorporated into the polymer backbone will allow PAGS to compact 

genetic information efficiently and transport it across the cell membrane.  Furthermore, 

the versatile design of this polymer allows for the incorporation of different modalities 

for varied applications.     

 

Results and Discussion 

[Polycation:DNA] Complex Characterization  

The ability of a polymer to compact DNA through electrostatic interactions 

between the positively charged nitrogens of the polymer and the negatively charged 

phosphates in the DNA backbone is critical to its success in gene delivery.  This ability of 
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A

. 

PAGS and PAHGS to self-assemble with plasmid DNA was demonstrated through an 

agarose gel retardation assay, particle size analysis, and zeta potential measurements. 

 

 

Figure A.1. Potential of polycation as gene delivery vectors.  (A)  Gel electrophoresis 

was used to investigate the N/P ratio need to completely neutralize plasmid DNA.  Gel 

retardation assay displays complete retardation of plasmid DNA at N/P ratio between 4/1-

8/1 for PAGS.  From right to left: naked DNA, 4/1, 8/1, 12/1, and 16/1 N/P ratios.  (B)  

PAHGS retarded plasmid DNA at a ratio between 10/1-15/1.  From right to left: naked 

DNA, 1/1, 5/1, 10/1, 20/1 and 40/1 N/P ratios.  The second well from the right was 

supposed to be empty but a small amount of sample had fallen into it while placing 

samples in the other lanes.  (C) [PAGS:DNA] complexes were characterized by dynamic 

B. 

C. 

A. 

A

. 
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light scattering experiments.  [PAGS:DNA] complexes averaged a diameter of 

approximately 70 nm and carried a charge of + 41 mV. 

Agarose gel electrophoresis separates molecules based on charge and size.  

Complete retardation of the DNA/polymer complex is a result of charge neutralization, 

and is one way to measure a polymer’s capability to complex DNA.  Polymer and DNA 

were both placed in solutions of molecular grade water, with the concentration of 

polymer changing to the desired N/P ratios.  Polyplexes were formed by adding the DNA 

solution drop-wise to the polymer solution and then gently vortexing for 15 minutes .  

The resulting polyplex solution was then run on an agarose gel by gel electrophoresis 

(Figure A.1A, B).  DNA was completely retarded at a N/P ratio between 4/1-8/1 for 

PAGS and 10/1-12/1 for PAHGS.  From these results a N/P ratio of 10/1 for PAGS and 

15/1 for PAHGS was used for all further experiments to ensure the plasmid was 

completely neutralized and compacted.   

Agarose gel retardation assays can be helpful in determining the necessary 

polymer concentration to completely complex DNA, but it cannot determine the actual 

size of the [polycation:DNA] complexes formed nor the actual zeta potential carried by 

these complexes.  Particle size and the charge of the polymer can be measured through 

dynamic light scattering (DLS).  These measurements revealed that the complexes 

averaged approximately 70 nm (Figure A.1C) in diameter and carried a charge of +41 

mV.  Particles under 200 nm in diameter are capable of entering cells through the 

endocytotic pathway, so [PAGS:DNA] complexes should not experience difficulty 

entering the cell.  Also, the positive charge on the particles could improve interactions 
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with negatively charged proteoglycans present on the cell surface.  PAHGS was not 

characterized by dynamic light scattering experiments.   

   

 

 

Figure A.2.  In vitro transfection. Plasmid DNA labeled with YOYO-1 was complexed 

with PAGS and was used to transfect lung epithelial cells.  Polyplexes appeared to be 

present in vesicles instead of evenly distributed in cytosol. Figure 3.A is using PAGS, 3.B 

is using linear PEI (25kD). 

 

In Vitro Transfection   

A gene delivery agent may be able to condense genetic information on a 

nanoscale level, but it will be not be viewed as a successful delivery vehicle unless it can 

also transport this genetic material across the cell membrane.  There are different 

techniques employed to measure a vector’s ability to transport material into cells, and 

these methods can either be qualitative or quantitative.  Some examples of these 

A

. 

B

. 
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techniques include transfecting cells with a reporter plasmid (luciferace, fluorescent 

proteins) or fluorescently labeling the nucleic acid that is being delivered.  Both green 

fluorescent protein and the fluorescent dye were used to track the movement of plasmid 

DNA in this series of transfections.         

Plasmid DNA (enhanced green fluorescent protein, eGFP) was selected as a 

reporter vector for transfection experiments.  GFP is a well-characterized reporter system 

and has been used in applications from gene delivery to tissue engineering.  Plasmid 

DNA encoding for eGFP was complexed with polycation for a period of 30 minutes at 

room temperature.  Complex solution was then added to lung epithelial cells and allowed 

to incubate at 37
o
C for 4-5 hours.  Polyplex solution was then either replaced with full 

growth medium or basal media.  Epithelial cells were then incubated overnight at 37
o
C 

and analyzed for fluorescence.  There was no fluorescence visualized, demonstrating an 

unsuccessful transfection.      

To further investigate the path of the polyplex, plasmid DNA was intercalated 

with YOYO-1.  This was then complexed with PAGS to examine its capacity to deliver 

nucleic acids across the cell membrane.  The polyplexes were observed inside of the cells 

4-5 hours after transfection (Figure A.2A), similar to the positive control, linear PEI 

(25kD) at a N/P ratio of 7/1 (Figure A.2B).  The ratio of 7/1 was used for PEI because it 

appeared from the literature to be a good compromise between transfection efficiency and 

cytotoxicity (29).  The complexes appeared to be contained within endosomes, as 

indicated by the punctated fluorescent signals.   This demonstrated that PAGS can 

transport genetic information into cells.  From these transfection experiments, it was 

hypothesized that PAGS could transfect cells but could not escape the endosome. To 
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overcome the inability to escape endosomes, histamine was incorporated into the PAGS 

polymer.  Histamine was incorporated because of its lower pKa, thus having greater 

buffering capacity.  A theory on why PEI is so successful at gene delivery is because of 

its buffering capacity, which ultimately bursts endosome through the proton sponge 

effect. The incorporation of histamine should allow PAGS the ability to escape 

endosomes.  This addition of histamine into the polymer, PAHGS, did not increase the 

transfection efficiency of the complexes.  It is possible that not enough histamine was 

incorporated into the polycation, thus the buffering capacity was not great enough.  Also, 

there may be more obstacles that PAGS could be facing during gene delivery other than 

escape from the endosome. 

 

Conclusion 

Two biodegradable poly(aminoglycerol esters) that contain a positive charged 

supplied by arginine to compact genetic material efficiently has been developed in this 

study.  PAGS proved to condense plasmid DNA and transport it across the cell 

membrane.  This transport did not result in successful gene delivery, so histamine was 

incorporated into the polymer for enhanced buffering capacity.  This did not result in 

increased gene delivery.  These arginine-based vectors are less cytotoxic than PEI and 

other synthetic polycations used for gene delivery, thus offering a biocompatible 

alternative.  With further investigation, these polymers could prove to be successful gene 

delivery agents. 
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Materials and Methods 

Chemicals and General Methods 

Succinic acid was purchased from TCI (Wellesley Hills, MA).  Arginine ethyl 

ester dihydrochloride was purchased from Research Organics (Cleveland, OH).  1,3 meta 

chloro peroxy benzoic acid was purchased from Acros (Morris Plains, NJ). All other 

chemical were purchased from Alfa Aesar (Ward Hill, MA) and used without 

purification.  Flash chromatography was done on a Buchi Fraction Collector C-660 w/ 

UV photometer C-635.   Nuclear magnetic resonance (NMR) spectra were recorded on a 

400 MHz Mercury-400BB NMR. Fourier transform infrared (FTIR) spectra were 

recorded on a ThermoNicolet IR-100 spectrometer.  Dynamic light scattering 

measurements were recorded on a Zeta Potential/Particle Sizer NICOMP 380 ZLS.  

 

Polymer Synthesis 

The arginine/histamine-based polymer (PAHGS) was synthesized via 

polycondensation reaction of a 1:1 molar ratio between diglycidyl succinate and the 

combination of arginine ethyl ester and histamine in anhydrous N,N-dimethylforamide 

under N2.  The reaction mixture was stirred and kept at 60
o
C for 7 days. The resultant 

polymer was placed under vacuum and heated to 60
o
C for 24 hours to remove solvent.  

The residual dimethylforamide was removed by dissolving the polymer in methanol, 

precipitating polymer out with ethyl acetate, and dried under vacuum at 60
o
C overnight.  

Ethyl acetate wash is used to remove unreacted product and oligomers.   The polymer 

was characterized by NMR and FTIR.  PAGS and polymer precursors were synthesized 

as mentioned in earlier experimental sections. 
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Plasmid DNA 

The 4.7 kb plasmid DNA, pEYFP-N1, contains the enhanced yellow fluorescent 

protein driven by the human CMV promoter and was obtained as a gift from Dr. Bao’s 

Lab.  Plasmid DNA was amplified by insertion into JM-109 E. coli, and was purified 

using the Maxi-Prep DNA Purification kit from Qiagen (Germantown, MD).  The purity 

of the plasmid DNA was measured by UV/Vis (TECAN Safire) with A260/A280 in the 

range of 1.7-1.85. 

 

Agarose Gel Retardation Assay 

DNA/Polymer complexes were formed by adding 50 μL of plasmid DNA solution 

(0.04 μg/μL) in molecular grade water to 50 μL of polymer solution in molecular grade 

water.  Polymer concentrations were altered to yield the desired nitrogen/phosphate (N/P) 

ratios.  These mixtures were gently vortexed and allowed to incubate at room temperature 

for 45 minutes.  From these mixtures, 10 μL was loaded on a 0.6% agarose gel with a 

10% Ficoll 400 loading buffer (without bromophenol blue) in a 20 mM HEPES buffer.  

The gel was run at 108 V for 60 minutes and visualized by ethidium bromide staining.  

Two different polymers were used for gel retardation assays: PAGS and PAHGS.    

 

Particle Sizing and ζ-Potential Measurements 

DNA/Polymer complexes were formed in the same manner as explained in the 

agarose gel retardation assay.  Samples were diluted with 900 μL of molecular grade 

water and average particle sizes and δ-potential measurements were carried out at 25
o
C.  
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Three measurements were made on each sample, and the average diameter and δ-

potential were reported.  

 

In Vitro Transfection 

L2 (mouse lung epithelial) cells were cultured in 24-well tissue culture treated 

polystyrene plates for at a seeding density of approximately 40,000 cells per well in 1 mL 

of Ham’s F12k growth medium.  Ham’s F12k growth media consisted of Ham’s F12k 

balanced salt solution, 10% fetal bovine serum, 1mM glutamine, and antibiotics.  Cells 

were grown overnight up to 70% confluency then growth medium was replaced with 

transfections medium.  Complexes were prepared in the same manner as the agarose gel 

retardation assay.  To further characterize the path of the complexes, they were prepared 

in the same manner as the agarose gel retardation assay, but prior to adding the plasmid 

DNA to the polymer solution it was complexed with a DNA intercalating agent, YOYO-1 

(gift from Dr. Bao’s Lab).  The concentration of YOYO-1 used for 2 µg DNA was 4x10
-6

 

M and they were incubated at room temperature for 30 min before adding them to PAGS 

solution (171).  The complex solution was then diluted with serum free medium to a 

volume of 1 mL to form the transfection medium. Various N/P ratios were used with 2µg 

of DNA for each well.  Linear PEI (25kD) was used as a positive control and was 

prepared in the same manner as the other polymer solutions.  Other controls included 

naked plasmid DNA with and without YOYO-1, YOYO-1, and PAGS:YOYO-1.  Cells 

were incubated at 37
o
C, 5% CO2 for 4-5 hours and visualized by fluoresce using a Nikon 

Eclipse TE 2000-U microscope equipped with a FITC filter. 
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Appendix B 

Release Kinetics of FGF-2 via ELISA 

 

Introduction 

A critical characteristic of any delivery system is the release of its cargo over 

time.  The resultant release profile of a delivery system is essential in elucidating the 

appropriate applications it can be used for.  This property of delivery systems is also 

important in ensuring it will be delivering therapeutics in a safe and efficient manner.  

The release kinetics of the [PAGS:heparin] complex, along with bioactivity of released 

FGF-2, was one of the first properties investigated. 

The first attempt to investigate the release kinetics of FGF-2 from the 

[PAGS:heparin] complex were done using an enzyme-linked immunosorbent assay 

(ELISA).  It was hypothesized that ELISA would serve a dual function for the 

characterization of the [PAGS:heparin] complex.  The two properties that could be assed 

were release kinetics and bioactivity.  ELISA could measure the concentration of FGF-2 

in the release solution.  Also, bioactivity could be quantitatively assessed because the 

released FGF-2 would still have to be in its native form to interact with the antibodies 

present in the ELISA. 
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Results and Discussion 

 

 

 

Figure B.1.  Release kinetics of FGF-2 from [PAGS:heparin] complexes.  The 

concentration of FGF-2 in the supernatant of [PAGS:heparin] complexes was examined 

by ELISA.  The concentration of FGF-2 released remained constant for the first 5 days 

and decreased in the next 5 days.  After exposing the release solution to heparinase I, the 

concentration of FGF-2 demonstrated an increase through 10 days. 

 

The release dynamics of FGF-2 from [PAGS:heparin] complexes were first 

characterized by ELISA.  ELISA was chosen to evaluate the concentration of FGF-2 

release solution because of its accuracy and because it could qualitatively investigate 
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bioactivity of released FGF-2.  The concentration of FGF-2 exhibited in Figure B.1 is an 

individual daily assessment, not a cumulative amount.  The rate of FGF-2 released was 

constant at approximately 55 pg/day from days 1-5, and then decreased to 41 pg/day on 

day 10.  It was hypothesized that FGF-2 is released in conjunction with heparin.  This 

hypothesis could potentially explain why on day 10 the amount of FGF-2 in the release 

solution had decreased.  Both heparin and the ELISA antibody for FGF-2 will have a 

high affinity for FGF-2.  The amount of heparin present in the [PAGS:heparin] release 

solution is unknown, and it is possible that the amount of heparin in the release solution 

is greater than days 1-5.  This would present a situation where two molecules are in 

competition for the binding of FGF-2, and ultimately an underestimate of the 

concentration of FGF-2.   

To validate the prior hypothesis, [PAGS:heparin] release solution underwent a 

heparinase digest.  Heparinase I is an enzyme that digests heparin, and should remove 

heparin from competing with the ELISA antibodies for FGF-2.  When the supernatant 

underwent a heparinase digest, the concentration of FGF-2 increased to 92 pg/day on day 

10.  It should also be noted that the concentration of FGF-2 on each day increased when 

exposed to the enzyme digest, compared to the concentration of FGF-2 without digest.  

This is demonstrated on day one FGF-2 concentrations of 55 pg/day (without digest) and 

60 pg/day (with digest).  The other time points have more extreme differences when 

exposed to the heparinase digest.  The release kinetics of FGF-2 involving heparinase 

demonstrated heparin was competing with antibodies within the ELISA.  This 

competition then resulted in a lower measured concentration.  As mentioned earlier, the 

day 10 concentration of FGF-2 was approximately 15 pg/day less relative to days 1-5.  A 
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possible explanation of these results could be related to PAGS.  If this batch of PAGS 

had a molecular weight lower than later reported batches, it is possible that polymer 

degradation could have an effect.  The degradation of PAGS could potentially lead to an 

increase in the [heparin:FGF-2] concentration, thus more competition with the ELISA 

antibodies. 

 

Conclusion 

ELISA is a useful tool in determining the concentration of FGF-2 in solution.  It 

also has the added benefit of examining if the FGF-2 is bioactive after being released 

from the [PAGS:heparin] complex.  In this experiment, ELISA demonstrated a release of 

FGF-2 from [PAGS:heparin] complexes at an increasing rate.  This conclusion came after 

FGF-2 release solution was exposed to a heparinase digest.  This digest was neceassay 

because soluble heparin was also present in the release solution, and this most likely 

created a situation where heparin was competing with the ELISA antibodies for the 

binding of FGF-2. 

The use of an ELISA resulted in an accurate determination of FGF-2 

concentration, but there were complications that led to the pursuit of another method for 

FGF-2 detection.  The initial problem was attempting to find the total amount of loaded 

FGF-2 in the [PAGS:heparin] complexes.  To determine the loading efficiency, 

[PAGS:heparin] complexes had to undergo a heparinase digest at 37
o
C.  The 

[PAGS:heparin] complexes contained 114 µg of heparin.  To digest this amount of 

heparin without using large amounts of heparinase I, which can be very costly, would 

take on the order of days.  The temperature could have been increased but that could lead 
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to increased denaturation of FGF-2.  Also, it is well understood that FGF-2 has a short-

half life in vitro, and this can lead to loss of bioactivity in a short amount of time.  Given 

these circumstances, total loading experiments never concluded accurate results.  This 

then creates problems in characterizing the release kinetics of FGF-2.  Another issue with 

using the ELISA was realized in the release experiments.  It is believed the release results 

were never accurate to what was measured in the release solution.  As mentioned prior, 

the heparinase digest resulted in FGF-2 being denatured because of the time it took to 

digest the heparin.  The concentration of heparin in the release solution was unknown, 

thus an estimate of time or amount of heparinase needed could have been misjudged.  

With these difficult circumstances, it was decided to pursue a different option to 

characterize the release kinetics of FGF-2.  The option we pursued was radiolabelled 

FGF-2. 

 

 Materials and Methods 

PAGS (8 mg/ml), heparin (10 mg/ml), and FGF-2 (2 μg/ml) were prepared in 

solutions of PBS.  Each sample contained 4 mg PAGS, 114 μg, and 10 ng of FGF-2.  The 

FGF-2 solution was added to the PAGS solution then the heparin solution was added to 

this mixture.  The resultant suspension was agitated and allowed to incubate at room 

temperature for 10 min.  The [PAGS:heparin:FGF-2] complex was then centrifuged for 

10 minutes at 12,100 x g, supernatant was removed, and 1ml of PBS was added to 

resuspend the pellet.  [PAGS:heparin:FGF-2] complexes were incubated at 37
o
C for 1, 2, 

5, and 10 days.  At the specified time, samples were centrifuged for 10 minutes at 12,100 

x g.  Then the supernatant was removed and stored at -80
o
C.  After supernatant was 
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removed, fresh PBS 1 ml) was added to complex. The FGF-2 concentration in each 

supernatant was quantified using a FGF-2 ELISA kit.  Supernatant was also incubated 

with 0.001 IU of Heparinase I (IBEX Pharmaceuticals) at 37
o
C for 48 h and then FGF-2 

concentration was quantified using a FGF-2 ELISA kit (R and D Systems).  
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