
EFFICIENT PAC LEARNING FOR
EPISODIC TASKS WITH ACYCLIC STATE SPACES

AND
THE OPTIMAL NODE VISITATION PROBLEM

IN ACYCLIC STOCHASTIC DIGRAPHS

A Thesis
Presented to

The Academic Faculty

by

Theologos N. Bountourelis

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
May 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4723952?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EFFICIENT PAC LEARNING FOR
EPISODIC TASKS WITH ACYCLIC STATE SPACES

AND
THE OPTIMAL NODE VISITATION PROBLEM

IN ACYCLIC STOCHASTIC DIGRAPHS

Approved by:

Professor Spyros Reveliotis, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Bert Zwart
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Hayriye Ayhan
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Jeff Shamma
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor David Goldsman
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: December 5, 2008



To my family.

iii



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Spyros Reveliotis,

for his direction and support throughout this research. His patience, devotion, and

academic integrity will inspire me long after my graduation. Spyros is not only an

advisor but a lifetime friend.

I also want to thank, Dr. Hayriye Ayhan, Dr. David Goldsman, Dr. Jeff Shamma

and Dr. Bert Zwart for their willingness to serve on my thesis committee. Fur-

thermore, I am grateful to the School of Industrial and Systems Engineering for the

excellent academic environment, and particularly the head of the graduate program,

Dr. Gary Parker, for the financial support he provided whenever needed. Further-

more, I would like to thank the National Science Foundation which has supported

most part of my research.

I am thankful to my friends that made my life so much beautiful during the course

of this study. I particularly want to thank Andrei Prudius for his friendship and his

ingenious suggestions on the programming task of my research.

Finally, I want to thank my family back home in Greece, my father Nikolaos, my

mother Maria, and my sister Amalia, for their unconditional love and support.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II EFFICIENT PAC-LEARNING FOR EPISODIC TASKS WITH ACYCLIC
STATE SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 A formal characterization of the considered learning problem . . . . 16

2.2 Efficient PAC learnability . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Developing an efficient PAC learning algorithm for the considered
RL problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Establishing the PAC capability of the proposed algorithm . 23

2.3.2 Establishing the efficiency of the proposed algorithm . . . . 28

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III EFFICIENT SCHEDULES FOR THE PROBLEM OF OPTIMAL NODE
VISITATION IN ACYCLIC STOCHASTIC DIGRAPHS . . . . . . . . . 39

3.1 Problem description and its MDP formulation . . . . . . . . . . . . 42

3.1.1 A formal description of the considered problem . . . . . . . 42

3.1.2 The induced stochastic shortest path problem . . . . . . . . 44

3.2 Suboptimal control policies . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 The class of simple randomized policies . . . . . . . . . . . 48

3.2.2 Asymptotically optimal simple randomized policies . . . . . 54

3.2.3 Adaptive Policies . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Computational Studies . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



IV PERFORMANCE ANALYSIS OF POLICY πADREL . . . . . . . . . . . 77

4.1 An alternative characterization of the relaxing-LP . . . . . . . . . . 77

4.2 A first look into the expected performance of πadrel . . . . . . . . . 81

4.3 Some observations on the optimal solution of the
relaxing-LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 The dynamics of the ONV problem under πadrel . . . . . . . . . . . 89

4.5 Asymptotic optimality of πadrel on the modified ONV problem . . . 93

4.6 The asymptotic optimality of πadrel . . . . . . . . . . . . . . . . . . 99

4.6.1 A closer look at the probability P (En) . . . . . . . . . . . . 101

4.6.2 A closer look at the quantities Gi,k . . . . . . . . . . . . . . 105

4.6.3 A closer look at the quantities U i,k . . . . . . . . . . . . . . 107

4.6.4 Bringing everything together . . . . . . . . . . . . . . . . . 111

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

V OPTIMAL NODE VISITATION IN ACYCLIC STOCHASTIC DIGRAPHS
WITH MULTI-THREADED TRAVERSALS AND INTERNAL VISITA-
TION REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 The ONV problem with multi-threaded traversals . . . . . . . . . . 116

5.1.1 Problem description and its MDP formulation . . . . . . . . 116

5.1.2 A computationally efficient and asymptotically optimal pol-
icy for the ONV-I problem . . . . . . . . . . . . . . . . . . . 120

5.2 Adding the Internal Visitation Requirements . . . . . . . . . . . . . 129

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VI THE COMPUTATIONAL COMPLEXITY OF THE ONV PROBLEM VARI-
ATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 The computational complexity of the ONV-I problem . . . . . . . . 136

6.2 A complexity result for the ONV-II problem . . . . . . . . . . . . . 139

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

VII A PRACTICAL IMPLEMENTATION OF THE PROPOSED PAC-LEARNING
ALGORITHM AND ITS EMPIRICAL EVALUATION . . . . . . . . . . 146

7.1 The need for efficient routing policies for the proposed PAC-learning
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vi



7.2 An enhanced PAC-learning algorithm . . . . . . . . . . . . . . . . . 148

7.3 A computational study of the proposed algorithm . . . . . . . . . . 151

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

VIII CONCLUDING REMARKS AND FUTURE WORK . . . . . . . . . . . 166

APPENDIX A A STOPPING TIME RESULT FOR RANDOM VARIABLES
WITH A PERMUTATION DISTRIBUTION . . . . . . . . . . . . . . . 168

APPENDIX B A FLUID RELAXATION FOR THE ONV-II PROBLEM . 174

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

vii



LIST OF TABLES

1 A tabular characterization of the stochastic graph G and the visitation
requirement vector N corresponding to the ONV-II problem instance
E(Θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

2 The intervals defining the uniform distributions of the immediate re-
wards that result from the different actions . . . . . . . . . . . . . . . 151

viii



LIST OF FIGURES

1 The basic RL framework: The agent chooses an action at, at state
st, and receives a reward rt as a result of this state-action transition.
This produces a sequence of states and rewards as shown in the figure.
The agent must use this sequence in order to determine a policy that
maximizes a function of the collected rewards. . . . . . . . . . . . . . 3

2 The Optimal Disassembly Planning Problem . . . . . . . . . . . . . . 7

3 The proposed PAC algorithm for the RL problem considered in this
chapter: Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The proposed PAC algorithm for the RL problem considered in this
chapter: Policy computation and Exit. . . . . . . . . . . . . . . . . . 38

5 An example problem instance . . . . . . . . . . . . . . . . . . . . . . 43

6 The State Transition Diagram for the stochastic shortest path problem
induced by the problem instance depicted in Figure 5 . . . . . . . . . 46

7 The STD cuts C1(1) and C1(2) defined by the target leaf node x1 in the
optimal node visitation problem of Figure 5. . . . . . . . . . . . . . . 58

8 Example 2 – The considered problem instance . . . . . . . . . . . . . 62

9 Example 3 – The considered problem instance . . . . . . . . . . . . . 70

10 Example 3 – The performance of the simple randomized policies ob-
tained for different values of the selection probability, χ, for action
α2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11 Example 3 – The performance of the adaptive randomized policies
obtained for different values of the selection probability, χ, for action
α2 in the initial macro-state . . . . . . . . . . . . . . . . . . . . . . . 71

12 Example 4 – The stochastic graph for the considered problem instances 74

13 Example 4 – The performance of various simple and adaptive ran-
domized policies compared to the lower bound V ∗rel(n), for the basic
visitation requirement vector N = (3, 1, 1, 0, 0) and n = 1, . . . , 7 . . . 75

14 Example 4 – The performance of various simple and adaptive ran-
domized policies compared to the lower bound V ∗rel(n), for the basic
visitation requirement vector N = (1, 2, 2, 2, 1) and n = 1, . . . , 15 . . . 75

15 The optimality gap V πadrel(n ·N )−V ∗(n ·N ) against the scaling factor
n ∈ Z+, for the relaxing-LP of Example 5. . . . . . . . . . . . . . . . 112

16 The stochastic graph for the problem instance considered in Example 6.117

ix



17 The acyclic graph corresponding to the boolean formula φ with two
variables x1, x2 and three clauses c1 = x1∨x2, c2 = x1 and c3 = x1∨x2.
The dashed lines indicate the multi-sets corresponding to each decision. 138

18 The rooted in-tree modelling the precedence constraints for the tasks
of the “Poisson-tree” scheduling problem Θ considered in this example. 141

19 The proposed PAC3-learning algorithm for the RL problem considered
in this work: Initialization . . . . . . . . . . . . . . . . . . . . . . . . 152

20 The proposed PAC3-learning algorithm for the RL problem considered
in this work: Main Iteration and Exit . . . . . . . . . . . . . . . . . . 153

21 The stochastic acyclic digraph used in the presented experiments . . . 154

22 Characterizing the gains attained by the enhanced sampling process of
the PAC2 and PAC-3 learning algorithms . . . . . . . . . . . . . . . . 155

23 Relative performance of the Q(θ) and PAC3-learning algorithms for
different selections of K and an optimized selection of the parameter θ 161

24 Relative performance of the Q(θ) and PAC3-learning algorithms for
different selections of K and an optimized selection of the parameter
θ (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

25 An example problem instance . . . . . . . . . . . . . . . . . . . . . . 176

26 The control modes and interconnecting transitions of the graph G cor-
responding to the example problem instance of Figure 25 . . . . . . . 181

x



SUMMARY

The first part of this research program concerns the development of customized

and easily implementable Probably Approximately Correct (PAC)-learning algorithms

for episodic tasks over acyclic state spaces. The defining characteristic of our algo-

rithms is that they take explicitly into consideration the acyclic structure of the

underlying state space and the episodic nature of the considered learning task. The

first of the above two attributes enables a very straightforward and efficient resolution

of the “exploration vs exploitation” dilemma, while the second provides a natural re-

generating mechanism that is instrumental in the dynamics of our algorithms. Some

additional characteristics that distinguish our algorithms from those developed in

the past literature are (i) their direct nature, that eliminates the need of a complete

specification of the underlying MDP model and reduces their execution to a very

simple computation, and (ii) the unique emphasis that they place in the efficient

implementation of the sampling process that is defined by their PAC property.

More specifically, the aforementioned PAC-learning algorithms complete their

learning task by implementing a systematic episodic sampling schedule on the un-

derlying acyclic state space. This sampling schedule combined with the stochastic

nature of the transitions taking place, define the need for efficient routing policies

that will help the algorithms complete their exploration program while minimizing,

in expectation, the number of executed episodes. The design of an optimal policy that

will satisfy a specified pattern of arc visitation requirements in an acyclic stochastic

graph, while minimizing the expected number of required episodes, is a challenging

problem, even under the assumption that all the branching probabilities involved

xi



are known a priori. Hence, the sampling process that takes place in the proposed

PAC-learning algorithms gives rise to a novel, very interesting stochastic control /

scheduling problem, that is characterized as the problem of the Optimal Node Visi-

tation (ONV) in acyclic stochastic digraphs. The second part of the work presented

herein seeks the systematic modelling and analysis of the ONV problem.

The last part of this research program explores the computational merits ob-

tained by heuristical implementations that result from the integration of the ONV

problem developments into the PAC-algorithms developed in the first part of this

work. We study, through numerical experimentation, the relative performance of

these resulting heuristical implementations in comparison to (i) the initial version

of the PAC-learning algorithms, presented in the first part of the research program,

and (ii) standard Q-learning algorithm variations provided in the RL literature. The

work presented in this last part reinforces and confirms the driving assumption of this

research, i.e., that one can design customized RL algorithms of enhanced performance

if the underlying problem structure is taken into account.
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CHAPTER I

INTRODUCTION

Machine Learning in control applications The field of Machine Learning (ML)

[29] is a discipline that has received extensive attention in the recent years. It concerns

the development of computer programs and systems that improve their performance

from their experience. Learning is one of the most significant components of intelli-

gent behavior, and the analysis of methods that would enable a computer to learn has

always been a challenging question for the broader scientific community. In the last

few decades, researchers have developed the statistical and computational methods

needed to establish the theoretical foundations of ML. This effort was concentrated

primarily towards the development of the theory that would enable the ML researchers

and practitioners to (i) characterize the nature of the computations and experience

sufficient for successful learning, and (ii) develop the algorithms that extract infor-

mation from given data sets and observations based on statistical and computational

principles.

Presently, the field of ML has evolved from a field of laboratory experimentation

to a field of widely used commercial products. Learning algorithms are routinely used

in commercialized computer programs designed for a wide spectrum of tasks, ranging

from data mining, credit card fraud detection and speech recognition, to autonomous

agents that navigate and adapt in their environment through experience. Among

these learning applications, there is a wide class of sequential decision making nature,

were the objective is to learn a control policy in order to achieve a certain set of

goals. This includes, for example, sequential scheduling applications, such as choosing

aircraft departure and arrival schedules in order to minimize passenger waiting times
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and fuel costs. It also includes manufacturing optimization problems where a series

of manufacturing decisions have to be made in order to maximize the production

volume while minimizing the production costs. In this work, we shall focus to such a

control application of ML.

When it comes to control applications of ML, Reinforcement Learning (RL) or

Neuro-Dynamic Programming (NPD) [5] is one of the most conspicuous and prolific

areas. RL is concerned with the question of how an autonomous agent can successfully

learn control policies to achieve its objectives while interacting with its environment.

The basic structure of a typical RL problem, as depicted in Figure 1, involves a control

agent evolving in a discrete state space through the execution of a series of actions.

The agent observes the current state of the environment and chooses to execute upon

it some action that will change this state. The objectives of the agent are expressed

by a reward function that assigns a numerical payoff to each action executed by the

agent at each state. The task of the agent is to select a sequence of actions in order to

maximize some objective function of the sequence of the rewards collected over time.

In order to decide which action should perform, the agent must take into account the

experienced history of states and rewards, in an effort to predict the resultant states

and the (expected) immediate reward.

More formally, RL seeks to incrementally compute an optimal policy for problems

with a Markov Decision Process (MDP) [2] structure in the absence of complete

information about the environment, by taking advantage of the information contained

in the observed transitions and the collected rewards. Its main contributions are

focused on (i) the development of algorithms that will converge asymptotically to an

optimal policy, and (ii) the efficient representation of the information necessary for

the efficient learning of the target (near-)optimal policies, especially in the case of

tasks with very large discrete state spaces. In the most typical RL implementations,

the optimal action selection scheme can be characterized by an optimal value function

2
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Figure 1: The basic RL framework: The agent chooses an action at, at state st,
and receives a reward rt as a result of this state-action transition. This produces
a sequence of states and rewards as shown in the figure. The agent must use this
sequence in order to determine a policy that maximizes a function of the collected
rewards.

that associates an (expected) value with every state-action pair, such that the optimal

actions for any given state are the maximizers of the restriction of this value function

to that state. Hence, given an objective function, the RL controller tries to identify

an optimal policy by “learning” the corresponding optimal value function. More

specifically, the learning controller maintains an estimate of this value function, that

is initialized to some arbitrary set of values, and is subsequently updated every time

that a new reward observation is obtained, in a way that brings the maintained value

estimates closer to the value function corresponding to the observed behavior. On

the other hand, the running estimate of the optimal value function affects the action

selection process itself, since, at every decision epoch, actions are selected in a way

that seeks to balance the conflicting objectives of (i) maximizing the resulting value,

as perceived by the currently available estimate of the optimal value function, and

(ii) enhancing the quality of this estimate through further exploration over the state-

action space. This trade off is known as the “exploration vs. exploitation” dilemma

in the relevant terminology, and its pertinent resolution constitutes one of the key
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challenges in the design of RL algorithms with good convergence behavior. In most

typical cases it has been addressed by a number of heuristics (”rules of thumb”) that

try to adjust a set of probabilities that randomize the action selection process in a

way that improves (or seems to improve) the empirical performance of the algorithm.

A particular class of RL algorithms that attempts to learn a value function defined

over states and actions and then implement the optimal policy in terms of this value

function, is known as Q-learning. Q-learning algorithms maintain a set of Q-factors,

defined for each state-action pair (i, u), such that the optimal Q-factor values - to be

denoted by Q∗(i, u) - express the expected (total) value that results by selecting action

u at state i and following the optimal policy thereafter [42, 5]. Obviously, the learning

agent can acquire the optimal action at every state i, π∗(i), by learning Q∗:

π∗(i) = arg max
u
{Q∗(i, u)}

According to the previous discussion of RL algorithms, a Q-learning algorithm will

try to develop accurate estimates, Q(i, u), of the optimal Q-factor values, Q∗(i, u),

by exploiting the information contained in the sequence of the received rewards.

Under some standard assumptions, the Q-learning algorithm can be applied with

guaranteed (asymptotic) convergence to optimality [5]. However, the original studies

of the Q-learning algorithm did not provide any further information regarding its

rate of convergence, while some more recent developments indicate that, under some

of its typically used configurations, the algorithm might need an exponentially large

amount of sampling in order to attain any ε-optimal performance [17].

The study of the complexity of the RL problem and algorithms falls into the realm

of computational learning theory (CLT) [27]. This line of research has tried to establish

that, under certain assumptions, the considered RL problems can be resolved by

Probably Approximately Correct (PAC)-learning algorithms, i.e., by algorithms that,

for any given parameters δ ∈ (0, 1/2) and ε > 0, will execute finitely, using a number

of observations that are polynomially related to 1/δ, 1/ε, and some other parameters
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characterizing the “problem size”, and, upon termination, with probability 1 − δ,

they will return, an ε-optimal policy. For example, the work in [19] considers the

discounted payoff case for MDP’s equipped with a “reset” action that directs the

agent to a set of given starting states and allows the partition of the learning process

into episodes of fixed length. The learning agent uses an “indirect” or “model-based”

approach by observing its environment and updating a model of it. In particular,

the learning agent updates empirical estimates of the transition probabilities and

immediate rewards every time a particular action is exercised. Subsequently, it uses

those estimates to compute an approximation of the optimal policy while exercising

actions that are considered the least accurate, according to some accuracy measure.

More recently, the work in [26] introduced the so-called E3 PAC-learning algo-

rithm, over general MDP’s for both discounted and un-discounted cases. This is also

an “indirect” algorithm that maintains and updates a partial model on the environ-

ment and navigates by computing an optimal policy for it. The departing point of the

analysis is the partition of the state space into “known”, “visited but unknown” and

“non-visited” states and the introduction of the notion of“mixing-time” into the con-

text of RL. In the same spirit is the work of [11], where the similar, R-Max algorithm

is presented for two-player stochastic games with deterministic rewards. Another line

of research has also established PAC-style bounds for the classical multi-armed bandit

problem and uses them to derive RL algorithms for MDP’s [16]. We should further

notice that the algorithms presented in the aforementioned work, except from pro-

viding polynomial-type bounds on the sampling required for learning a near-optimal

policy, they also incorporate built-in mechanisms that seek to resolve the “exploration

vs exploitation” dilemma.

However, it is widely accepted in the RL community that the sampling effort pro-

posed by the PAC-learning algorithms found in the literature, is overly conservative

5



and, primarily, facilitates the analysis of the problem complexity rather than prac-

tical implementations. This belief is clearly reflected in the closing statement found

in [11]:

“At this point, we have little intuition about how well R-MAX will perform in prac-

tice. Practical environments are likely to have many states (exponentially many in

the number of state variables) and a large mixing-time. Thus, convergence-time poly-

nomial in these parameters is not likely to be a useful practical guarantee. In that

case, algorithms that take into account the structure of the state space are likely to be

required, and the generation and analysis of such algorithms is an important area of

future work.”

In the light of the above discussion, one of the major contributions of this research

program is the development of customized and easily implementable PAC-learning

algorithms for the RL problem under consideration. The defining characteristic of our

algorithms is that they take explicitly into consideration the acyclic structure of the

underlying state space and the episodic nature of the considered learning task. The

first of the above two attributes enables a very straightforward and efficient resolution

of the “exploration vs exploitation” dilemma, while the second provides a natural

regenerating mechanism that is instrumental in the dynamics of our algorithms. Some

additional characteristics that distinguish our algorithms from those developed in the

past literature are (i) their direct nature, that eliminates the need of a complete

specification of the underlying MDP model and reduces their execution to a very

simple computation, and (ii) the unique emphasis that they place on the efficient

implementation of the sampling process that is defined by their PAC property. All

these aspects will be revealed and substantiated in the material provided in the rest of

this document. We start, however, with some discussion of the practical application

that motivated this entire line of work.

6



Figure 2: The Optimal Disassembly Planning Problem

The motivating application The work proposed and pursued in this thesis is

motivated by an effort to apply RL theory in the emerging area of reverse logistics.

Reverse logistic processes are characterized by high levels of uncertainty that differ-

entiate them from the processes encountered in the more traditional forward logistics.

The uncertainty present in those processes results (primarily) from the fact that their

input stream comes from an unobservable environment -i.e. the end users themselves

- and renders many significant attributes of the processed items an unknown param-

eter in the relevant process design and control problem. Next we concretize these

observations by providing a brief description of the “Optimal Disassembly Planning”

(ODP) problem [37, 36, 35] which has been the main focus of our work.

Presently, under the pressure of environmental, safety, and other societal and eco-

nomic concerns, a number of industrial sectors have started deploying additional op-

erations that seek to retrieve the corresponding product units at the end of their func-

tional life, extract from them any possible value, and dispose the remaining material in
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an environmentally friendly manner. Hence, the retrieved product units are brought

to designated facilities, known as re-manufacturing centers, where those in fairly good

condition are refurbished and re-introduced in the supply chain1, while the remaining

are disassembled in order to retrieve potentially re-usable components and/or raw

material. Any remaining unusable material is forwarded to landfills and/or inciner-

ation (see the upper part of Figure 2). Typically, decisions will be made without

complete knowledge of the quality status of the various components and their sal-

vage value. However, the missing information is partially regained through a number

of measurements that are performed on the considered artifact and classify it to a

certain quality category, that will eventually influence the decision making process.

The classification procedure applied to the initial item will repeat itself on the

derived components until all the obtained artifacts have been directed to a particular

disposition venue. The dynamics of the aforementioned process are depicted in the

lower part of Figure 2: Starting with the initially retrieved unit, the decision maker

must select among the disposition options depicted in the figure, until the complete

disposition of the unit. It is clear from this description that the decision making

process is sequential and it evolves in episodes over a finite, acyclic state space, with

each episode corresponding to the complete disposition of a particular product unit.

Furthermore, in an optimized setting, the decision taken at each stage must maximize

the value extracted from the corresponding artifact. Hence, we can model the ODP

problem as a problem of computing an optimal policy for an MDP, under lack of

complete a priori knowledge of (i) the branching probability distributions determining

the evolution of the process state upon the execution of different actions, and (ii)

the probability distributions characterizing the immediate rewards returned by the

environment as a result of the execution of these actions. In addition, the underlying

process evolves in a repetitive, episodic manner, with each episode starting from a

1typically directed to a secondary market
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well defined initial state and evolving over an acyclic state space.

In this research program we design a customized RL algorithm for the ODP prob-

lem presented above. Our starting point is that the acyclic structure and episodic

nature that are inherent in this problem, imply that that the information necessary

to characterize the optimal policy, flows from the leaf nodes towards the root node.

Hence, we should bias the execution of the algorithm so that it facilitates this infor-

mation flow. The design of this algorithm is at the core of the thesis program outlined

next.

The thesis research program As discussed above, the topic of this research pro-

gram is motivated by the application of Optimal Disassembly Planning (ODP), and

it concerns the modeling and management of the uncertainty that is inherent in that

application. Hence, the first part of this research program develops a theory of PAC

learnability for tasks evolving over discrete acyclic state spaces. Our main objective

is to establish that in the case of repetitive tasks evolving episodically over acyclic

state spaces, as is the case of the aforementioned ODP problem, one can obtain PAC-

learning algorithms that are computationally efficient and effectively implementable.

As it will be shown in the subsequent parts of this document, the suggested com-

putational and implementational efficiency stem from (i) the ability to characterize

and exploit the flow of the information necessary for the computation of the optimal

policy, and (ii) results coming from the area of statistical inference - in particular,

the area known as “ranking and selection ”(RS) [28]- that enable the resolution of

the action selection problem arising at the different problem states.

Our work proceeds as follows: First, we characterize the environment in which

the considered learning task takes place. Then, we propose an algorithm that, for

any given parameters δ ∈ (0, 1/2) and ε > 0, with probability 1 − δ, will return a ε-

optimal policy in a number of episodes polynomially related to 1/δ, 1/ε and some other
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parameters characterizing the problem size. This algorithm bases the identification

of the returned policy on a number of observations taken across all the state-action

pairs of the underlying acyclic state space. More specifically, the proposed algorithm

starts from the terminal states of the underlying acyclic state space, and maintains

a “frontier set of actively explored states”, for which it will try to learn and assign

an “apparent optimum action” when a pre-defined sampling program is complete. A

state reaching that point is declared “fully explored” and is removed from the set

of actively explored states. On the other hand, a state enters the set of actively

explored states when all of its successors become fully explored. In the proposed

scheme, sampling a state-action pair during some episode corresponds to collecting

the total reward obtained by the learning agent when selecting the particular action,

and subsequently following the apparent optimum actions for the fully explored states

that will be visited until the end of the episode. The amount of sampling for each

state-action pair is obtained by applying results coming from the RS theory. The

algorithm pursues the above exploration pattern for a pre-defined number of episodes,

and terminates either upon the selection of an apparent optimum action for the initial

state or upon the exhaustion of the specified budget of episodes. Hence, the above

algorithm can fail either (i) because the algorithm failed to materialize the sampling

program within the allocated number of episodes, or (ii) because the objective value

of the returned policy differs from the optimal value by more than ε.

It is evident from the above description that the notions of actively explored

states and the visitation requirements associated with them, when combined with

the stochastic nature of the transitions taking place in the underlying state space,

define the need for efficient routing policies that will help the algorithm complete its

exploration program while minimizing the number of executed episodes. As we will

show in the following developments, the design of an optimal policy that will satisfy

a specified pattern of arc visitation requirements in an acyclic stochastic graph, while
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minimizing the expected number of required episodes, is a challenging problem, even

under the assumption that all the branching probabilities involved are known a priori.

In other words, the sampling process that takes place in the proposed PAC-learning

algorithm gives rise to a novel, very interesting stochastic control / scheduling prob-

lem, that will be characterized as the problem of the Optimal Node Visitation (ONV)

in acyclic stochastic digraphs.

Hence, the second part of the work presented herein, seeks the systematic mod-

elling and analysis of the ONV problem, which can be abstracted as follows: Given

a stochastic, acyclic, connected digraph with a single source node and a control agent

that repetitively traverses this graph, each time starting from the source node, we want

to define a control policy that will enable this agent to visit each of the graph termi-

nal nodes a prespecified number of times while minimizing the expected number of

graph traversals. In the this research program, first we provide a detailed formulation

of the ONV problem as a specially structured MDP. It is shown that the problem

admits a straightforward Stochastic Shortest Path formulation but the state space

of this formulation grows exponentially with respect to the problem size. Therefore

we introduce a problem relaxation that further implies a randomized policy which is

implementable in polynomial time and asymptotically optimal; more specifically, the

ratio of the value of this policy to the value of the optimal policy converges to unity,

as the non-zero node visitation requirements grow uniformly to infinity. Further-

more, the proposed randomized policy admits a closed form performance evaluation,

and this capability subsequently enables (i) a more detailed analysis of the asymp-

totic performance of the policy, and (ii) its embedding in suboptimal control schemes

that can lead to even more enhanced performance. In particular, we propose some

adaptive implementation schemes of the aforementioned randomized policies that ex-

perimentally are found to have a very attractive performance while they maintain
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computational efficiency. Those results stem from the special structure of the consid-

ered problem and the application of ideas and results coming from MDP suboptimal

control [4, 2].

In a subsequent step, we complement the empirical results on the very high effi-

ciency of our adaptive suboptimal policies for the ONV problem, with the analytical

treatment of the performance of a particular adaptive implementation that is sug-

gested by the problem relaxation. We prove that, for a wide range of visitation

requirement choices, the expected performance of this adaptive policy is within a

constant factor from the expected optimal cost as the visitation requirements grow

uniformly to infinity. To deliver this result, we also develop an alternative charac-

terization of the problem relaxation which provides useful geometric insights for the

underlying dynamics.

The next part of our work extends many of the aforementioned results for the

ONV problem, to some additional variations that are defined from the following two

assumptions: (i) The control agent is replaced by tokens that traverse the graph and

can “split” during certain transitions to a number of (sub-)tokens, allowing thus the

satisfaction of many visitation requirements during a single graph traversal. (ii) There

are additional visitation requirements attached to the internal graph nodes, which,

however, can be served only when the visitation requirements of their successors

have been fully met. Notice that these new assumptions accommodate the more

complex version of the PAC-learning algorithm pursued in our work, where a certain

task can split into a number of subtasks that execute in parallel, as in the case

with the ODP problem. It is shown that, similar to the basic ONV case, the new

problem variations admit a Stochastic Shortest Path formulation with a state space

that grows exponentially with respect to the size of the problem-defining graph and

the number of its target nodes, and that it is possible to obtain a computationally

efficient suboptimal policy for each of those formulations by exploiting the information
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provided in the optimal solution of the continuous relaxation of the original problem.

Furthermore, the resulting policies are asymptotically optimal. A final contribution

of our work with respect to the ONV problem is a set of results that place the

considered ONV variations in the complexity hierarchy established by the theory

of computational complexity and establish their relationship to other well known

stochastic scheduling problems.

The last part of this research program explores the computational merits obtained

by heuristical implementations that are obtained by integrating the ONV problem

developments into the initial PAC framework that was outlined above and is further

detailed in the rest of this document. We study, through numerical experimentation,

the performance of the resulting heuristical implementations, in comparison to (i)

the initial version of the PAC-learning algorithm, as presented in the first part of the

research program, and (ii) standard Q-learning algorithm variations provided in the

RL literature. The work presented in this last part, reinforces and confirms the driving

assumption of this research, i.e., that one can design customized RL algorithms of

enhanced performance if the underlying problem structure is taken into account.

Recapitulating the above discussion, we summarize the main tasks of our research

program as follows:

• Development of a learning algorithm with a PAC capability for tasks evolving

episodically over discrete acyclic state spaces.

• Formal characterization of the basic ONV problem and a number of its vari-

ations as specially structured stochastic shortest path problems; investigation

of their computational complexity and their relationship to other well known

stochastic scheduling problems; development of a series of computationally ef-

ficient and asymptotically optimal policies for these variations, that seek to es-

tablish a systematic trade-off between operational efficiency and computational

tractability.
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• Integration of the initial PAC algorithm with the ONV problem developments,

that aim at the specification of more efficient sampling schemes for the algo-

rithm. Investigation of the performance of the derived learning algorithms and

comparison with standard Q-learning algorithm variations available in the RL

literature.

The rest of this document is organized as follows: Chapter 2 presents the de-

velopment of the PAC-learning algorithm for tasks with discrete acyclic state spaces.

Chapters 3 and 4 are concerned with the formal characterization of the ONV problem

and the relevant results. Subsequently, Chapter 5 introduces the further variations

of the ONV problem and it extends the results of Chapter 3 to these new variations.

Chapter 6 is concerned with the investigation of the computational complexity of

the ONV problem variations and their relationship to other well known stochastic

scheduling problems. Finally, Chapter 7 is concerned with the integration of the pre-

vious developments into a practical learning algorithm for the ODP problem context.

It also provides some closing remarks for this work.
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CHAPTER II

EFFICIENT PAC-LEARNING FOR EPISODIC TASKS

WITH ACYCLIC STATE SPACES

The main objective of the first part of the presented research program, is to establish

that in the case of repetitive tasks evolving over acyclic state spaces, as is the case of

the ODP problem, one can obtain PAC-learning algorithms that are computationally

efficient and effectively implementable. The problem considered in this chapter can be

stated as follows: A certain task is executed repetitively in an episodic manner. Each

episode starts from a well-defined initial state and evolves sequentially over an acyclic

state space. At each state, the task evolution is the result of an action that is selected

by a controlling agent; the execution of this action determines probabilistically the

subsequent state, but it also results in a certain reward for the controlling agent. The

returned reward can be of arbitrary sign,1 and it is a random quantity drawn from

some bounded2 general distribution that is dependent on the current state and the

commanded action. The agent’s objective is to select the actions to be commanded at

the different states of the underlying task in a way that maximizes the expected total

reward to be collected over any single episode. However, the initial knowledge of the

controlling agent about the underlying task and its operational environment is limited

to (i) the set of the environmental states, (ii) the available actions at each state, (iii)

an upper bound for the magnitude of the experienced rewards, and (iv) a set of action

sequences that can lead with positive probability to each of the environmental states,

together with a lower bound for the corresponding state-reaching probabilities. The

1A negative reward can be considered as a cost.
2i.e., a distribution with bounded support
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agent knows neither (v) the branching probability distributions that determine the

state evolution as a result of the different actions, nor (vi) the type and the moments

of the distributions determining the experienced rewards. Hence, the agent must

compute a (near-)optimal policy for the aforestated objective, while observing and

appropriately compiling the results of its decisions on the operational environment.

The rest of the chapter is organized as follows: Section 2.1 provides a rigorous

characterization of the learning problem considered in this work, and Section 2.2

presents a notion of computational efficiency that is pertinent to machine learning

algorithms. Subsequently Section 2.3 proposes a methodology for developing efficient

learning algorithms for the learning task under consideration, and finally, Section 2.4

concludes the chapter by summarizing the key contributions of this first part of the

research program and by providing with some further comments.

2.1 A formal characterization of the considered learning
problem

We begin our discussion of the learning problem of interest in this work, by provid-

ing a formal characterization of the “environment” in which the considered learning

task will take place. This environment essentially constitutes a discrete-time Markov

Decision Process (DT-MDP) [5], the structure of which is completely characterized

by a quadruple:

E = (X,A,P ,R) (1)

where the components X, A, P , and R are further defined as follows:

• X is the finite set of the process states , and it is partitioned into a sequence

of “layers”, X0, X1, . . . , XL. X0 = {x0} and defines the initial state of the

process, while states x ∈ XL are its terminal states .

• A is a set function defined on X, that maps each state x ∈ X to the finite,

non-empty set A(x), comprising all the decisions / actions that are feasible in
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x. It is further assumed that for x 6= x′, A(x) ∩ A(x′) = ∅. For subsequent

development, we also define ¯|A| ≡ maxx∈X |A(x)|.

• P is the state transition function, defined on
⋃
x∈X A(x), that associates with

every action a in this set a discrete probability distribution p(·; a), that is un-

known to the learning agent. The support sets, S(a), of the distributions p(·; a)

are subsets of the state set X that satisfy the following property: For any given

action a ∈ A(x) with x ∈ X i for some i = 0, . . . , L − 1, S(a) ⊆
⋃L
j=i+1 X

j; for

a ∈ A(x) with x ∈ XL, S(a) = X0. In words, the previous assumption implies

that the environment operates in an episodic fashion, where each episode is an

acyclic traversal of the underlying state space from the initial state to a terminal

state. Furthermore, it is assumed that every state x ∈ X can be reached from

the initial state x0 with positive probability, through some sequence of actions,

and that the learning agent knows (i) at least one such sequence of actions for

every state, and also (ii) a lower bound, q, for the corresponding state-reaching

probabilities.3

• R is the immediate reward function, defined on
⋃
x∈X A(x), that associates with

each action a in this set a probability distribution, D(µ(a), v(a)), characterizing

the immediate reward experienced by the learning agent every time that action

a is selected and executed. The parameters µ(a) and v(a) denote respectively

the mean and the maximum possible magnitude of the rewards drawn from the

distribution D(µ(a), v(a)), and they take finite values for every a. On the other

hand, the only information initially available to the learning agent about R()

is an upper bound v̄ for the quantities v(a), a ∈
⋃
x∈X A(x).

3The reader should notice that this characterization of the state transition function ignores the
multi-threading effect that results from the disassembly operation in the ODP problem. We have
opted to omit this particular feature from the basic positioning of the problem considered in this
chapter, since it would complicate the exposition of the main ideas without contributing substantially
to the underlying analysis. The extension of the developed results in order to accommodate this
particular feature is very straightforward and it is briefly outlined in the concluding section.
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The learning agent controls the selection of the action to be executed at every state

of the environment. More specifically, starting from the initial state x0 at period t = 0,

and at every consecutive period t = 1, 2, 3, . . . , the agent (i) observes the current state

of the environment, xt, (ii) selects an action at ∈ A(xt) and commands its execution

upon the environment, and subsequently (iii) it experiences a reward rt, where the

latter is a random sample drawn from the distribution D(µ(at), v(at)). Hence, at the

end of some period t, the agent has experienced an entire “history”

x0, a0, r0, x1, a1, r1, . . . , xt, at, rt (2)

The ultimate objective of this agent is to determine an action selection scheme –

or, in the relevant terminology, a policy – π∗, that maps each state x ∈ X to an action

π∗(x) ∈ A(x) in a way that maximizes the expected total reward experienced over

any single episode. Letting M denote the (random) duration of any single episode in

terms of number of periods, t, the aforestated objective can be formally expressed as

follows:

π∗ = arg max
π

Eπ[
M∑
t=0

rt|x0 = x0] (3)

In the above equation, the expectation Eπ[·] is taken over all the possible episode

realizations under policy π. It is easy to see that, in the considered operational

context, an optimal policy π∗ can be obtained through the following simple recursion:

∀x ∈ XL,

π∗(x) := arg max
a∈A(x)

{µ(a)} (4)

V ∗(x) := µ(π∗(x)) (5)
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∀x ∈ X i, i = L− 1, . . . , 0,

π∗(x) := arg max
a∈A(x)

{µ(a) +∑
x′∈S(a)

p(x′; a) · V ∗(x′)} (6)

V ∗(x) := µ(π∗(x)) +∑
x′∈S(π∗(x))

p(x′; π∗(x)) · V ∗(x′) (7)

The quantity V ∗(x) appearing in the above recursion is known as the (optimal) value

of the corresponding state x, and it expresses the expected return to be collected by

the learning agent in a single episode, when it starts from state x and follows the

optimal policy π∗ until the completion of the episode.

Yet, despite the fact that it provides a pertinent characterization of the optimal

policy, the algorithm defined by Equations 4–7 is not directly applicable in the con-

sidered problem context, since the quantities µ(a) and p(x; a), x ∈ X, a ∈ A(x), are

not initially known to the agent. Furthermore, as discussed in the introductory chap-

ter, the application of standard RL algorithms, like Q-learning [42], guarantees only

asymptotic convergence to optimality, and to the best of our knowledge, currently

there are no formal results characterizing the convergence rate of the “standard” Q-

learning algorithm to an optimal policy. At the same time, Q-learning is notorious

for rather slow convergence. Hence, in the rest of this chapter, we seek to exploit

the special structure of the considered problem in order to derive customized learning

algorithms with proven convergence and complexity properties. However, before delv-

ing into this discussion, we shall formalize the notions of computational complexity

and efficiency to be employed in the considered problem context.

2.2 Efficient PAC learnability

In computational learning theory [27], a learning algorithm is characterized as probably

approximately correct (PAC), if, upon its completion, it provides with probability at
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least (1 − δ), an approximation, ĥ, of the target concept h∗, that differs from h∗

by an “error”, err(ĥ), less than or equal to ε. In this definition, both δ and ε are

externally specified parameters, and the quantity err(ĥ) is appropriately specified

from the attributes of the target concept h∗. In addition, a PAC algorithm is said to

be efficient , if it executes in a number of steps that is a polynomial function of 1/δ,

1/ε, and some additional parameters that characterize the complexity of the learning

task and the “size” of the target concept h∗.

In the context of the learning problem considered in this work, the target concept

is any optimal policy π∗, and a natural solution space is the set Π consisting of all the

deterministic policies π that map each state x ∈ X to a unique action π(x) ∈ A(x).

For these policies, we define:

err(π) = Eπ∗ [
M∑
t=0

rt|x0 = x0]− Eπ[
M∑
t=0

rt|x0 = x0] (8)

On the other hand, the complexity of the considered learning problem is measured by

the magnitude of the environmental parameters |X|, ¯|A|, L, v̄, and 1/q, respectively

characterizing the size of the task state space, the extent of choice at each state, the

length of the decision sequences, the magnitude of the collected rewards, and the

difficulty of accessing the various states of the task state space.

In the light of the above characterizations, an efficient PAC algorithm for the

learning problem considered in this work is defined as follows:

Definition 1: An efficient PAC algorithm for the RL problem considered in this

work is an algorithm that, for any environment E = (X,A,P ,R) and parameters

δ ∈ (0, 1/2) and ε > 0,

i. will execute in a finite number of steps, that is polynomial with respect to 1/δ,

1/ε, |X|, ¯|A|, L, v̄ and 1/q, and

ii. upon its completion, will return, with probability at least 1− δ, a policy π̂ with

err(π̂) ≤ ε. 2
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The next section discusses the special structure of the considered RL problem that

enables the development of an efficient PAC algorithm for it.

2.3 Developing an efficient PAC learning algorithm for the
considered RL problem

The PAC algorithm proposed in this work for the RL problem of Section 2.1 is strongly

based upon the following fundamental observation:

Observation 1: According to Equations 4–7, that characterize the structure of an

optimal policy, π∗, for the RL problem considered in this work, we can assess the

optimal value V ∗(x) of any state x ∈ X only when we have already computed the

optimal values V ∗(x′) for all the states x′ ∈ X that constitute successor states of

x through some action a ∈ A(x). Therefore, any learning agent that will base the

identification of an optimal policy on the computation of the optimal value function

V ∗, must acquire its knowledge proceeding from the terminal states, x ∈ XL, of the

underlying state space to the initial state, x0. This observation subsequently suggests

the following basic structure for the proposed algorithm:

• Starting with the set of terminal states, XL, the proposed algorithm maintains

a “frontier set of actively explored states”, for which it tries to learn the optimal

action π∗(x).

• An actively explored state x is assigned an “apparent optimum action”, π̂(x),

when it satisfies a criterion to be defined in the following. At that point, x is

declared as “fully explored”, and it leaves the “frontier” set, while action π̂(x)

is the action to be executed at state x, any time that this state is visited until

the completion of the algorithm.

• On the other hand, a state x ∈
⋃L−1
i=0 X

i becomes an actively explored state as

soon as all the states x′ ∈ X that constitute successor states of x through some

action a ∈ A(x), become fully explored.
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• The algorithm pursues the above exploration pattern for a pre-defined number

of episodes, N , and it terminates either upon the selection of an action π̂(x0),

for the initial state x0, or upon the depletion of the episode budget, N . In the

first case, the algorithm returns the computed policy π̂(x), ∀x ∈ X, while in

the second case it reports failure. 2

Notice that the algorithm defined in Observation 1 can fail either (i) because it

did not manage to determine a complete policy π̂(x), ∀x ∈ X, within the specified

episode budget, N , or (ii) because the chosen policy π̂(x), ∀x ∈ X, had an error

err(π̂) > ε. Letting δI and δII denote the respective probabilities of failure according

to the modes (i) and (ii), we obtain, by Boole’s inequality, that

δ ≤ δI + δII (9)

where δ denotes the total probability of failure of the considered algorithm. Therefore,

we can guarantee a success probability of at least 1− δ for this algorithm, by picking

δI and δII such that δI + δII = δ. For expository purposes, in the following we shall

assume that δI = δII = δ/2.

Generally speaking, the proposed algorithm will fail according to mode (ii) only

because it was not able to assess adequately the consequences of its various actions

upon the environment, which further translates to inadequate observation and explo-

ration of these consequences. Hence, the ability of the proposed algorithm to satisfy

a particular PAC requirement, expressed in terms of the tolerated error ε and the

failing probability δII = δ/2, will depend on the establishment of a pertinent and ad-

equate exploration scheme. On the other hand, in order to prevent failure according

to mode (i), the proposed exploration scheme must be efficient , i.e., there must exist

an episode budget, N , that is polynomially related to 1/δ, 1/ε, |X|, ¯|A|, L, v̄ and

1/q, and will permit the execution of the aforementioned exploration scheme with

probability at least 1− δI = 1− δ/2. We address each of these two issues below.
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2.3.1 Establishing the PAC capability of the proposed algorithm

In this section we establish that the aforestated PAC requirement for the algorithm of

Observation 1 – i.e., the requirement that the policy π̂(x), ∀x ∈ X, returned by the

algorithm defined in Observation 1, will have an error err(π̂) ≤ ε with probability

at least 1− δII = 1− δ/2 – can be replaced by the following more local requirement:

At every actively explored state, x, the algorithm must be able to identify, with a

certain probability of success, 1 − δ(x), an action π̂(x) ∈ A(x) with an expected

total reward that differs by at most ε(x) from the maximal expected total reward

that can be collected by performing some action a ∈ A(x), while in state x, and

subsequently following the pre-determined policy, π̂, until the environment resets

itself to the initial state x0. This localized version of the PAC policy resolution

problem can be addressed through results from statistical inference. One particular

approach is that presented in the next theorem, which constitutes a generalization of

Bechhofer’s “indifference-zone” (IZ) approach for the “ranking-and-selection” (R&S)

problem [1], to populations with bounded general distributions.

Theorem 1 Suppose that there are k populations distributed according to some bounded

general distributions with respect to some attribute of interest, and that v̄ constitutes

a known uniform absolute bound for this attribute. Furthermore, suppose that the

means µi of these k populations are unknown, and that it is desired to determine

which population has the largest mean µi. In particular, the experimenter specifies a

confidence level 1− δ and an “indifference” parameter ε with the requirement that

µ[k] − µ[k−1] ≥ ε =⇒ PCS ≥ 1− δ (10)

where µ[1] ≤ . . . ≤ µ[k] are the ordered population means and PCS is the probability

for correct selection, i.e., the probability of correctly identifying the population with

the largest mean µi.

Then, this problem can be resolved by:
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1. taking a sample from each of the k populations, of size

n = d4v̄
2

ε2
ln(

k − 1

δ
)e (11)

2. computing the corresponding sample means X̄i, i = 1, . . . , k, and

3. selecting the population with the largest sample mean.

Proof: The probability for correct selection, PCS, can be bounded as follows:

PCS = Pr{select k} (12)

= Pr{X̄k > X̄i, ∀i 6= k} (13)

= Pr{X̄i − X̄k − (µi − µk) < −(µi − µk), ∀i 6= k} (14)

≥ Pr{X̄i − X̄k − (µi − µk) < ε, ∀i 6= k} (15)

Equation 12 above holds by the definition of PCS and the assumption that µ[k] = µk

and µk − µi ≥ ε, ∀i 6= k, Equation 13 holds from the definition of the selection

procedure provided in Theorem 1 (c.f. Step 3), and Equation 15 holds from the fact

that µk − µi ≥ ε, ∀i 6= k. Setting

Ei ≡ {X̄i − X̄k − (µi − µk) < ε}, ∀i 6= k (16)

and applying the Bonferroni inequality, we get:

PCS ≥ Pr(
k−1⋂
i=1

Ei) (17)

≥ 1−
k−1∑
i=1

[1− Pr(Ei)] (18)

= 1−
k−1∑
i=1

Pr{X̄i − X̄k − (µi − µk) ≥ ε} (19)

Recognizing that each single observation Xi will belong in the interval [−v̄, v̄], for all

i ∈ {1, . . . , k}, and using the relevant Hoeffding inequality for the difference of two

sample means (c.f. [22], Eq. 2.7) , we get:

Pr{X̄i − X̄k − (µi − µk) ≥ ε} ≤ e−nε
2/(2v̄)2

(20)

24



When combined with Equations 17–19, Equation 20 implies that

PCS ≥ 1− (k − 1)e−nε
2/(2v̄)2

(21)

Setting

1− (k − 1)e−nε
2/(2v̄)2 ≥ 1− δ (22)

and solving for n, we get:

n ≥ 4v̄2

ε2
ln(

k − 1

δ
) (23)

Equation 23 implies the selection of the sample size n stated in Theorem 1, and

concludes the proof. 2

In order to completely characterize the application of Theorem 1 in the context

of the algorithm outlined in Observation 1, we need to specify the parameters δ(x),

ε(x) and v̄(x) to be employed at each state x ∈ X. The pricing of v̄(x) is a direct

consequence of the acyclic structure presumed for the underlying task state space.

Observation 2: For any given state x ∈ X l, l = 0, 1, . . . , L, any action sequence

leading the environment from state x to the initial state x0 will contain at most

L − l + 1 actions. As a result, the magnitude of the total reward collected by the

execution of any such action sequence will be bounded from above by (L− l+ 1)v̄. 2

The pricing of the remaining parameters ε(x) and δ(x) is performed through the

following two lemmas:

Lemma 1 Under the assumption that PCS = 1 at every state x ∈ X, the policy

π̂, returned by the algorithm defined in Observation 1, will have err(π̂) ≤ ε, if the

“indifference” parameter ε(x), employed during the implementation of Theorem 1 at

each state x ∈ X, is set to a value ε(x) ≤ ε/(L+ 1).

Proof: Let V π̂(x) denote the value of state x under policy π̂, i.e., the expected

total reward to be obtained by starting from state x ∈ X and following policy π̂
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until the environment resets itself to the initial state x0. We shall prove Lemma 1 by

establishing the stronger result that

∀l = 0, . . . , L, ∀x ∈ X l, V ∗(x)− V π̂(x) ≤ L− l + 1

L+ 1
· ε (24)

This last result is proven with induction on l, starting from l = L and proceeding

to l = 0. The satisfaction of the base case for l = L is immediately implied by the

definition of V ∗(x) and V π̂(x) for x ∈ XL (e.g., c.f. Equation 5) and the proposed

value for the “indifference” parameter, ε/(L + 1). Next, suppose that the inequality

of Equation 24 holds true for x ∈
⋃L
i=lX

i. We shall show that it also holds true for

x ∈ X l−1. For this, consider a state x ∈ X l−1 and let π̂(x) denote the action selected

by policy π̂. Also, let Qπ̂(x, a) (resp., Q∗(x, a)) denote the expected total reward

obtained by initializing the environment at state x, executing the action a ∈ A(x) in

that state, and following the policy π̂ (resp., an optimal policy π∗) thereafter, until

the environment resets itself to state x0. Finally, let â = arg maxa∈A(x){Qπ̂(x, a)} and

a∗ = arg maxa∈A(x){Q∗(x, a)}. Then,

V ∗(x)− V π̂(x) = Q∗(x, a∗)−Qπ̂(x, π̂(x)) (25)

= Q∗(x, a∗)−Qπ̂(x, â) +

Qπ̂(x, â)−Qπ̂(x, π̂(x)) (26)

≤ Q∗(x, a∗)−Qπ̂(x, â) +
ε

L+ 1
(27)

= Q∗(x, a∗)−Qπ̂(x, a∗) +Qπ̂(x, a∗)

−Qπ̂(x, â) +
ε

L+ 1
(28)

≤ Q∗(x, a∗)−Qπ̂(x, a∗) +
ε

L+ 1
(29)

Equation 25 is an immediate consequence of the definitions of V ∗(x), V π̂(x), Q∗(),

Qπ̂(), a∗, and π̂(x). Equation 27 results from the definition of the “indifference”

parameter ε(x) for state x and the assumption that PCS = 1 at every node x ∈ X.
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Finally, Equation 29 results from the definition of â. We also have that:

Q∗(x, a∗)−Qπ̂(x, a∗) =
∑

x′∈S(a∗)

p(x′; a∗) ·

[V ∗(x′)− V π̂(x′)] (30)

≤ [
∑

x′∈S(a∗)

p(x′; a∗)] ·

L− l + 1

L+ 1
· ε (31)

=
L− l + 1

L+ 1
· ε (32)

Equation 30 results from the definition of Q∗() and Qπ(), Equation 31 results from the

induction hypothesis, and Equation 32 results from the fact that S(a) is the support

set for the discrete distribution p(·; a). The combination of Equations 29 and 32 gives:

V ∗(x)− V π̂(x) ≤ L− l + 1

L+ 1
· ε+

1

L+ 1
· ε (33)

=
L− (l − 1) + 1

L+ 1
· ε (34)

and completes the inductive argument for the proof of Equation 24.

Finally, the proof of Lemma 1 is established by applying Equation 24 for l = 0. 2

Lemma 2 The policy π̂, returned by the algorithm defined in Observation 1, will

have err(π̂) ≤ ε, with probability at least 1 − δ/2, if, during the implementation of

Theorem 1 at each node x ∈ X,

1. the “indifference” parameter ε(x) is set to ε(x) = ε/(L+ 1), and

2. the PCS parameter δ(x) is set to δ(x) = δ/(2|X|).

Proof: The validity of Lemma 2 is an immediate consequence of the proof of

Lemma 1, when noticing that, for a nodal PCS value of 1 − δ(x), the conditions of

Lemma 1 will hold with probability [1−δ(x)]|X|. Hence, setting 1−δ/2 ≤ [1−δ(x)]|X|,

we obtain δ(x) ≤ 1− (1− δ/2)1/|X|. The result of Lemma 2 is implied from this last

inequality, when noticing that, for δ ∈ (0, 1), (1− δ/2)1/|X| ≤ 1− (1/|X|) · δ/2. 2
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2.3.2 Establishing the efficiency of the proposed algorithm

In order to establish the efficiency of the proposed algorithm, we need to show that,

for any environment E = (X,A,P ,R) and parameters δ ∈ (0, 1/2) and ε > 0, the

sampling scheme defined by Observation 1, the results of Theorem 1, Observation 2

and Lemma 2 can be executed, with probability of success at least 1− δI = 1− δ/2,

within an episode budget, N , that is polynomially related to 1/δ, 1/ε, |X|, ¯|A|, L,

v̄ and 1/q. This result is established in the rest of this section. In the subsequent

discussion, Ψ(x, a) denotes an observation of the total reward obtained by the learning

agent when selecting action a ∈ A(x), while in state x ∈ X, and subsequently

following the pre-determined policy π̂ until the end of the running episode.

As a first step, we argue that focusing on the number of the budgeted episodes in

order to establish the polynomial complexity of the proposed algorithm is justifiable,

since the execution of each single episode is of polynomial complexity with respect to

the parameters of interest. This result is formally stated in the following observation:

Observation 3: The combined computational cost experienced by the proposed algo-

rithm with respect to (i) the action selection and (ii) the collection and processing of

a single observation, Ψ(x, a), during any single episode, is O(L ¯|A|). Also, for any ac-

tively explored state x that has completed the sampling requirements of Theorem 1,

the determination of the apparent optimum action π̂(x) is of complexity O( ¯|A|).

Hence, the overall computational cost experienced by the proposed algorithm during

any single episode is O((L+ 1) ¯|A|). 2

On the other hand, the total number of observations Ψ(x, a) that must be taken

across all the state-action pairs, (x, a), of the environment, is σ =
∑

x∈X |A(x)| ·n(x),

where n(x) is obtained from Equation 11, by substituting: (i) k with |A(x)|; (ii) v̄

with (L − l + 1)v̄, where l is the level of node x; (iii) ε with ε(x) = ε/(L + 1); and

(iv) δ with δ(x) = δII/|X| = δ/(2|X|). Hence, we have:

Observation 4: The total number of observations, Ψ(x, a), that must be taken across
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all the state-action pairs, (x, a), of the environment, is

σ = O(
|X| ¯|A|(L+ 1)4v̄2

ε2
ln(
|X| ¯|A|
δ

)) (35)

i.e., σ is a polynomial function of 1/ε, 1/δ and the parameters ¯|A|, |X|, L and v̄, that

characterize the problem “size”. 2

However, the stochastic nature of the state transitions taking place in the con-

sidered environment, implies that the number of episodes n(σ) required to collect

these σ observations will be, in general, larger than σ; in fact, n(σ) can be infinitely

large, in the worst case. A systematic characterization of the statistics of n(σ) can

be facilitated by the following observation.

Observation 5: Under the assumption that, at every unexplored state x, the proposed

algorithm selects the exercised action a ∈ A(x) in a way that maintains a positive

probability for accessing the set of actively explored states, the materialization of an

observation Ψ(x, a) at any single episode constitutes a Bernoulli trial [18], with its

probability of success bounded from below by q. 2

Next, we show that the combination of Observations 4 and 5 enables the de-

termination of an episode budget, N , that is polynomially related to the problem

parameters and will suffice for the collection of the σ requested observations, with

probability at least 1 − δI = 1 − δ/2. For this, we make the very conservative but

simplifying assumption that the requested observations, Ψ(x, a), are pursued one at

a time; i.e., at every single episode, the algorithm focuses on a particular observa-

tion Ψ(x, a) that it tries to achieve, and it ignores any other potentially available

observations. Focusing on this particular algorithmic implementation enables the

determination of the required budget, N , according to the decomposing scheme de-

scribed below in Observation 6. Furthermore, the derived result remains applicable

to the more practical algorithmic implementations where actively explored states are

sampled in parallel, since these more realistic operational schemes do increase the

probability of reaching an actively explored state at any single episode.
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Observation 6: An episode budget, N , that is adequate for the collection of the

σ observations of Equation 35, with probability at least 1 − δI = 1 − δ/2, and is

polynomially related to the problem parameters 1/δ, 1/ε, |X|, ¯|A|, L, v̄, 1/q, can be

obtained by:

a. first determining an episode budget, N(x, a), that (i) will enable the considered

algorithm to obtain a single observation Ψ(x, a) with probability of success 1−

δI/σ = 1−δ/(2σ) and (ii) it is polynomially related to σ and the aforementioned

parameters of interest, and

b. subsequently setting N = σ ·N(x, a).

2

The result of Observation 6 is an immediate consequence of the application of the

Bonferroni inequality to the particular algorithmic implementation described above.

The next lemma determines an episode budget N(x, a) that satisfies the requirements

of Observation 6.

Lemma 3 An episode budget, N(x, a), that guarantees the collection of a single ob-

servation, Ψ(x, a), with probability at least 1− δ/(2σ), is

N(x, a) = d1
q

ln(
2σ

δ
)e (36)

Proof: It is well known from basic probability theory [18], that the number of

failures, y, before the first success, in a sequence of independent Bernoulli trials with

success probability q, follows a geometric distribution with cdf

F (y) =

 1− (1− q)byc+1 if y ≥ 0

0 otherwise
(37)
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In the context of Lemma 3, we are essentially requesting that the number of failures

experienced in the involved sequence of Bernoulli trials, does not exceed N(x, a)− 1

with probability at least 1− δ/(2σ). Hence, according to Equation 37, the allocated

budget, N(x, a), must satisfy:

1− (1− q)N(x,a) ≥ 1− δ/(2σ) ⇐⇒ (38)

(1− q)N(x,a) ≤ δ/(2σ) (39)

Notice that, since Equation 38 applies for any state-action pair (x, a), we have used

the minimal success probability q. From the well-known inequality 1 − y ≤ e−y, it

follows that Equation 39 can be satisfied by picking N(x, a) such that:

e−N(x,a)q ≤ δ/(2σ) (40)

Solving Equation 40 for N(x, a), we obtain:

N(x, a) ≥ 1

q
ln(

2σ

δ
) (41)

which proves the validity of the lemma. 2

The above discussion can be recapitulated as follows: Observation 3 establishes

that the execution of a single episode under the proposed algorithm has a compu-

tational cost that is a polynomial function of the problem-defining parameters, |X|,
¯|A|, L, v̄ and 1/q. Furthermore, Observation 4 establishes that the total number of

observations, σ, that must be collected across all state-action pairs (x, a), in order to

guarantee the PAC performance of the proposed algorithm, is polynomially related

to the parameters 1/ε, 1/δ, |X|, ¯|A|, L, v̄ and 1/q. Observation 5 establishes that

the acquisition of a single observation, Ψ(x, a), can be perceived as a Bernoulli trial

with its success probability bounded from below by q. Lemma 3 exploits this result in

order to determine an episode budget, N(x, a), that enables the acquisition of a single

observation, Ψ(x, a), with probability at least 1− δ/(2σ) and is polynomially related

to the parameters 1/ε, 1/δ, |X|, ¯|A|, L, v̄ and 1/q. Finally, Observation 6 establishes
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that the episode budget N = σ · N(x, a) is adequate for collecting the requested σ

observations with probability 1−δI = 1−δ/2. Since the quantity σ ·N(x, a) remains a

polynomial function of 1/ε, 1/δ, |X|, ¯|A|, L, v̄ and 1/q, the proposed algorithm is effi-

cient . A detailed description of this algorithm, according to its basic characterization

in Observation 1 and its further parametrization through the results of Sections 2.3.1

and 2.3.2, is provided in Figures 3 and 4. Furthermore, the next theorem is a direct

consequence of all the previous developments.

Theorem 2 The algorithm of Figures 3 and 4 is an efficient PAC algorithm for the

RL problem considered in this work.

2.4 Discussion

In this chapter we investigated the RL problem for the case that the underlying tar-

get task evolves in an “episodic” manner over a state space with a well-defined initial

state and acyclic structure. The departing point of our analysis was the observation

that the acyclic structure of the underlying state space implies a certain information

flow for the overall learning process, which admits a natural and effective translation

to an exploration strategy. Subsequently, the main body of our results combined this

exploration strategy with further relevant results from the area of statistical inference,

in order to design a RL algorithm customized to the special structure of the consid-

ered problem. The derived algorithm is computationally simple, and therefore, easily

implementable in “real-world” applications. It was also shown to be efficient, accord-

ing to the formal characterizations of efficiency provided by computational learning

theory. By taking advantage of the admittedly simpler structure of the RL problem

considered in this work, the proposed algorithm presents significantly lower compu-

tational complexity than the efficient PAC learning algorithm proposed in [25, 26]

for more general RL problems, and it also compares favorably, in terms of computa-

tional complexity and implementational feasibility, with the algorithm developed in
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[19], which also addresses episodic RL problems evolving over acyclic state spaces.

Finally, an additional contribution of the presented work was the extension of the

applied statistical theory itself, through Theorem 1, which establishes a new criterion

for Ranking & Selection that is applicable to populations with general distributions.

We should notice, at this point, that the developed algorithm is immediately ex-

tensible to the more complex version of the problem where, at every episode, a task

is splitting to a number of subtasks that execute in parallel and contribute to the

total reward collected by the learning agent. This is actually the case with the ODP

problem described in the introductory chapter, where a single episode involves the

concurrent processing of all the items extracted at the different stages of the disas-

sembly process. The only necessary modification for accommodating this additional

problem element concerns the appropriate evaluation of the quantity v̄(x) in a way

that it applies to the notion of observations Ψ(x, a) experienced by the learning agent

in this new operational context; the resolution of this issue is straightforward and the

relevant technical details are omitted.

The proposed methodology is also extensible to the case of RL problems where

the immediate rewards can be drawn from unbounded distributions, which, however,

possess bounded mean and variance. Under the assumption that the learning agent

possesses a uniform upper bound, v̄, for the variances of the aforementioned distri-

butions, and using the Chebychev instead of the Hoeffding inequality in the relevant

derivation, one can establish a R&S criterion similar to that of Theorem 1, with the

new sample size being equal to n = d2(k−1)v̄
ε2δ
e, and with the parameters k, ε and δ

having the same interpretation with that stated in Theorem 1.

A third important aspect of the results developed herein is that they are directly

applicable to partially observable (PO-) MDP’s. This capability stems from the direct,

on-line nature of the proposed algorithm, which enables it to forego the explicit

characterization of the internal system dynamics, and to work exclusively on the space
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induced by the measurement / observation sequences. This situation is exemplified by

the state space definition of the ODP problem discussed in the introductory chapter,

and it is reminiscent of the class of Augmented MDP (AMDP) algorithms in the

emerging PO-MDP literature (cf. [41], Chpt. 16).

When viewed from a more practical implementational standpoint, the PAC nature

of the proposed algorithm implies that it should be perceived as the “Phase I” of a

broader learning process, during which the agent tries to learn a (near-)optimal policy

fast and with very high probability. Once the execution of this algorithm has been

completed, the agent will switch to “Phase II”, where a more standard – e.g., the

Q-learning – RL algorithm will be employed, in a way that incorporates and exploits

the information obtained in Phase I. Notice that maintaining some active exploration

in Phase II is important, since (i) this exploration can counter-balance the potential

of error tolerated, through the error probability δ, in Phase I, and (ii) it enables the

reaction of the learning agent to any non-stationarity of the environmental param-

eters. On the other hand, the above interpretation of the presented algorithm as a

“Phase I” computation in a broader learning process naturally raises the question of

how much effort should be expended on it. Clearly, this effort depends on the “tight-

ness” of the PAC requirement, as expressed by the values of the parameters ε and δ,

and while the resolution of this issue will be context-specific, in general, some relevant

observations are in order. First of all, it should be clear from the above developments

that the proposed algorithm is more “exploration” than “exploitation”-oriented. More

specifically, during the algorithm execution, the primary concern underlying the ap-

plied action selection policy is the coverage of the necessary sampling requirements

that will lead to the identification of a target ε-optimal policy, rather than the max-

imization of the value accumulated during that period. Such a strategy is consistent

with the implicit stationarity assumption underlying the problem statement, since

in that case, the earlier an optimized strategy is identified, the higher the long-run
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profitability of this strategy will be. On the other hand, things are different in a non-

stationary operational context. In that case, expending an extensive effort to find an

optimized policy for the prevailing conditions might be futile, since this policy will

be rendered irrelevant by the future evolution of the system dynamics. In fact, for

highly non-stationary environments, the execution of the considered algorithm might

not be even feasible, since the system sojourn in any particular parametric regime

might not be long enough in order to perform the necessary sampling. Hence, in the

case of non-stationary operational environments, one should compromise for a rapidly

obtainable policy with a decent performance and maintain a high level of exploration

in the algorithm implementing the “Phase II” computation.4 From a more technical

standpoint, the selection of a pertinent value for the performance parameter ε, that

characterizes the suboptimality of the derived policy, should be relativized with re-

spect to the magnitude of the expected immediate rewards. In fact, this relativistic

interpretation of the value of ε is applied automatically by the algorithm of Figures 3

and 4, since in the calculation of n(x) – the only place where the parameter ε is

actually involved during the algorithm implementation – the factor 4v̄(x)2/ε(x)2 can

be rewritten as 1/(ε(x)/(2v̄(x)))2. At the same time, the formulae determining the

episode budget, N , in Figures 3 and 4, also reveal that this quantity is affected by the

second performance parameter, δ, only through the value of ln(1/δ). Hence, one can

afford to be more demanding regarding the success of the computation performed in

Phase I rather than the quality of the result of this computation. This last remark

corroborates the above suggestion that, in many applications, a pertinent implemen-

tation of the developed algorithm should seek to compute with high success an initial

near-optimal policy, rather than expend a very large amount of effort for getting (very

close) to the optimal policy.

4More generally, there is an obvious trade-off between the “tightness” expressed by the parameters
ε and δ, and the level of exploration that must be maintained in Phase II.
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Finally, it is clear from all the previous discussion that the main focus of the above

developments was the establishment of the PAC nature of the proposed algorithm and

its efficiency, where this last concept was interpreted according to the definitions pro-

vided by computational learning theory. In particular, all the presented developments

sought to explicitly establish the ability of the proposed algorithm to guarantee the

PAC requirement, within a number of episodes that is polynomially related to the

parameters of interest, rather than provide the tightest possible bound for such an

episode budget. Additional future research should seek to identify a tighter bound for

the episode budget, N , that will guarantee the PAC performance of the algorithm.

Such an immediate improvement can be achieved, for instance, by replacing the cal-

culation N = σN(x, a) = σd(1/q) ln(2σ/δ)e, in the algorithm of Figures 3 and 4,

with another calculation that computes the required episode budget, N , by inverting

the binomial distribution for any given triplet of σ, q and 1 − δI . In a similar vein,

one can consider the possibility of replacing the R&S criterion of Theorem 1 with

other R&S criteria that will employ sampling techniques of more sequential nature,

e.g., similar to those discussed in [15, 28]. Finally, two additional issues that concern

the further detailing of the implementation of the algorithm outlined in Figures 3

and 4, are (i) the design of more pertinent strategies to be followed by the algorithm

when trying to obtain the required samples Ψ(x, a) for the different state-action pairs

(x, a), and (ii) the organization of the information provided in the collected rewards

in a concise set of data structures that will enable the more expedient application of

the applied R&S criteria. Some of the above issues are addressed in subsequent parts

of this document. In particular, the design of pertinent sampling strategies motivates

the Optimal Node Visitation (ONV) problem that is defined and studied in the next

four chapters of this work.
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Input: L; X l, l = 0, . . . , L; A(x), ∀x ∈ X; v̄; q; ε; δ Output (under successful
completion): π̂(x),∀x ∈ X

I. Initialization

(a) Compute X ≡
⋃L
l=0X

l; |X|; |A(x)|,∀x ∈ X;

(b) Set
v̄(x) := (L− l + 1)v̄, ∀l = 0, . . . , L, ∀x ∈ X l;
ε(x) := ε/(L+ 1), ∀x ∈ X;
δ(x) := δ/(2|X|), ∀x ∈ X;

n(x) := d4v̄(x)2

ε(x)2 ln( |A(x)|−1
δ(x)

)e,∀x ∈ X;

σ :=
∑

x∈X |A(x)|n(x);
N := σd(1/q) ln(2σ/δ)e;
Q(x, a) := 0,∀x ∈ X, ∀a ∈ A(x);
O(x, a) := 0,∀x ∈ X, ∀a ∈ A(x);
AE := XL; UE :=

⋃L−1
l=0 X

l;
i := 1

Figure 3: The proposed PAC algorithm for the RL problem considered in this
chapter: Initialization
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II. Policy Computation
while (AE 6= ∅ ∧ i ≤ N) do

(a) Initiate a new episode by placing a token at the initial state, x0, and try to
route this token to an actively explored state, x ∈ AE, by picking actions
that maintain a positive probability to reach such a state;

(b) If successful

i. select an action a ∈ A(x) for which O(x, a) < n(x);

ii. obtain an observation Ψ(x, a), by accumulating the total reward ob-
tained by exercising action a at state x, and subsequently following the
pre-computed policy π̂ until the termination of the current episode;

iii. Q(x, a) := Q(x, a) + Ψ(x, a); O(x, a) := O(x, a) + 1;

iv. If (O(x, a) = n(x))

• Q(x, a) := Q(x, a)/n(x);

• If (∀a′ ∈ A(x), O(x, a′) = n(x))

– π̂(x) := arg maxa∈A(x){Q(x, a)};
– remove state x from AE;

– Remove from UE every state x′ ∈ UE for which all the imme-
diately successor states are not in AE ∪ UE, and add them to
AE.

(c) i := i+ 1;

endwhile

III. Exit
If (AE = ∅) return π̂(x),∀x ∈ X, else report failure

Figure 4: The proposed PAC algorithm for the RL problem considered in this
chapter: Policy computation and Exit.
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CHAPTER III

EFFICIENT SCHEDULES FOR THE PROBLEM OF

OPTIMAL NODE VISITATION IN ACYCLIC

STOCHASTIC DIGRAPHS

The problem addressed in this chapter can be stated as follows: Given a stochastic,

acyclic, connected digraph with a single source node and a control agent that repeti-

tively traverses this graph, each time starting from the source node, we want to define

a control policy that will enable this agent to visit each of the graph terminal nodes

a prespecified number of times, while minimizing the expected number of the graph

traversals. A practical motivation for this problem has been the work presented in

Chapter 2, where a learning agent must compute on-line an optimal policy for a task

that evolves episodically over a state space that is stochastic and acyclic, and it has a

single source state that defines the task initial state. As established in Chapter 2, the

agent can obtain an ε-optimal policy with probability at least 1− δ, by sampling the

various actions available at each state a certain number of times1 and selecting the

action that results to the highest sample mean. Furthermore, this sampling must be

performed on a layer by layer basis, starting from the terminal states and proceeding

towards the initial state of the underlying state space. Higher-level states that have

covered all the required sampling and have their actions selected are declared “fully

explored” and abandon the layer of “actively explored” states. On the other hand,

lower-level states join the layer of “actively explored” states when all their immediate

successors become fully explored. It is clear that, in this setting, expedient learning

translates to the completion of all the required sampling in a minimum number of

1that depends on the graph structure and the performance parameters ε and δ
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episodes. However, this minimization can be defined only in an expected sense, since

the stochasticity of the environment implies that the agent might fail to reach any

of the actively explored states during some episodes, under any policy. Another po-

tential application context for the problem considered in this chapter is provided by

various experimental setups where the subject must be studied in a number of states

that are obtained from an initial state through some sequential treatment with proba-

bilistic outcomes at the various stages. Assuming that the performed treatment has a

destructive effect on the subject, one would like to obtain the required measurements

while minimizing the number of subjects utilized in the experiment.

From a methodological standpoint, the aforementioned problem falls in the broader

category of stochastic scheduling problems [30, 33]. As indicated in [30], most stochas-

tic scheduling problems are notoriously hard to solve optimally, and one has to com-

promise for solutions that are suboptimal but computationally tractable. In partic-

ular, the last few years have seen the emergence of a number of works that seek to

provide suboptimal solutions to various stochastic scheduling problems by exploiting

some “relaxed” version of the original problem. Furthermore, in many cases, this

line of analysis also provides guaranteed bounds for the potential suboptimality of

the derived policies; c.f., for instance, the works of [6, 7] and the references provided

therein.

Our results follow the spirit of these broader developments. Hence, in the first

part of the chapter, we provide a formal characterization of the considered problem

and we show that it abstracts to a specially structured “stochastic shortest path”

(SSP) problem [5]. However, the solution of this SSP formulation through standard

approaches based on Dynamic Programming is of non-polynomial complexity with

respect to the underlying problem size, and therefore, in the rest of the chapter we

develop a series of suboptimal policies that seek to trade off operational efficiency for

computational tractability. Some important traits of these policies are that (a) they
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are asymptotically optimal , with the ratio of their performance to the performance

of the optimal policy converging to unity as the node visitation requirements grow

uniformly to infinity,2 and (b) collectively they establish a broad range of options

for the effective and systematic resolution of the aforementioned trade-off between

efficiency and computational expedience and tractability. The development of these

policies is based on (i) the pertinent exploitation of a continuous – or “fluid” –

relaxation of the problem towards the characterization of an efficient randomized

policy, and (ii) the ability to derive a closed-form expression for the performance

of this randomized policy, which further enables (iii) the optimization of the policy

parameters, and (iv) its embedding to adaptive control schemes that can lead to

even more enhanced performance. Our results regarding item (i) above are similar

in spirit to the results of [6, 7] concerning the computation of near-optimal policies

for the job shop scheduling problem, but the underlying analysis is substantially

different. The results regarding item (ii) are based on our ability to represent the

dynamics generated by the considered randomized policy as a Generalized Semi-

Markov3 Scheme (GSMS) [20]. The results on item (iii) employ standard techniques

borrowed from non-linear optimization [3], and those on item (iv) are building on

notions borrowed from adaptive control and “rollout” algorithms [4, 5].

The rest of the chapter is organized as follows: Section 3.1 provides a formal char-

acterization of the considered problem and its abstraction to a specially structured

SSP. Section 3.2 introduces the aforementioned suboptimal policies, establishes their

properties, including their asymptotic optimality, and investigates their relevant dom-

inance. Subsequently, Section 3.3 complements the results developed in Section 3.2

through a number of computational experiments that demonstrate and validate them,

but also offer additional practical insights. Finally, Section 3.4 concludes the chapter

2We also identify significant special structure that guarantees stronger convergence results for
the proposed policies.

3actually, Markovian
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and suggests directions for the extension of the presented results.

3.1 Problem description and its MDP formulation

3.1.1 A formal description of the considered problem

An instance of the problem considered in this chapter is completely defined by a

quadruple E = (X,A,P ,N ), where

• X is a finite set of nodes , that is partitioned into a sequence of “layers”, X0,

X1, . . . , XL. X0 = {x0} defines the source or root node, while nodes x ∈ XL

are the terminal or leaf nodes.

• A is a set function defined on X, that maps each x ∈ X to the finite, non-empty

set A(x), comprising all the decisions / actions that can be executed by the

control agent at node x. It is further assumed that for x 6= x′, A(x)∩A(x′) = ∅.

• P is the transition function, defined on
⋃
x∈X A(x), that associates with every

action a in this set a discrete probability distribution p(·; a). The support

sets, S(a), of the distributions p(·; a) are subsets of the set X that satisfy the

following property: For any given action a ∈ A(x) with x ∈ X i for some

i = 0, . . . , L − 1, S(a) ⊆
⋃L
j=i+1X

j; for a ∈ A(x) with x ∈ XL, S(a) = X0.

In words, the previous assumption implies that the control agent traverses the

considered graph in an iterative manner, where each iteration is an acyclic

traversal that starts from the root node and ends at a leaf node x ∈ XL.

Furthermore, it is assumed that for every x ∈ X, there exists at least one action

sequence ξ(x) = a(0)a(1) . . . a(k(x)) such that (i) a(0) ∈ A(x0), (ii) ∀i = 1, . . . , k(x),

a(i) ∈ A(x(i)) with p(x(i); a(i−1)) > 0, and (iii) p(x; ak(x)) > 0; we shall refer to

this action sequence as an action path from node x0 to node x.

• N is the visitation requirement vector , that associates with each node x ∈ XL

a visitation requirement Nx ∈ Z+ ∪ {0}. The support ||N || of N is defined by
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Figure 5: An example problem instance

the nodes x ∈ XL with Nx > 0; we shall refer to nodes x ∈ ||N || as the problem

target nodes.

• Finally, we define the instance size |E| ≡ |X| + |
⋃
x∈X A(x)| + |N |, where

application of the operator | | on a set returns the cardinality of this set, while

application on a vector returns its l1 norm.

In the subsequent discussion we shall also employ the variable vector N c to denote

the vector of the remaining visitation requirements . The control agent starts from

the initial node x0 at period t = 0, sets N c := N , and at every consecutive period

t = 1, 2, 3, . . . , it (i) observes its current position, x, on the graph, and the vector of

the remaining node visitation requirements, N c, (ii) selects an action a ∈ A(x) and

commands its execution, and (iii) upon reaching one of the terminal nodes, x ∈ XL,

updates Nxc to (Nxc − 1)+, and subsequently, resets itself back to the initial node

x0, in order to start another traversal. The entire operation terminates when all the

node visitation requirements have been satisfied, i.e., N c has been reduced to zero.

Our intention is to determine an action selection scheme – or, a policy – π, that maps

each tuple (x,N c) to an action π(x,N c) ∈ A(x) in a way that minimizes the expected

number of graph traversals until N c = 0.
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Example 1 Figure 5 depicts a problem instance E where X is partitioned into lay-

ers X0 = {x0} and X1 = {x1, x2}. The decisions associated with each node are

A(x0) = {α1, α2}, A(x1) = {α3}, and A(x2) = {α4}. The corresponding transition

probabilities are p(x1;α1) = 0.5, p(x2;α1) = 0.5, p(x1;α2) = 0.3, p(x2;α2) = 0.7, and

p(x0;α3) = p(x0;α4) = 1. Finally, the visitation requirement vector is defined by

Nx1 = 2, Nx2 = 1. 2

3.1.2 The induced stochastic shortest path problem

The problem defined in Section 3.1.1 can be further abstracted to a Discrete Time

Markov Decision Process (DT-MDP), M = (S,A, t, c), where

• S is the finite set of states, identified with the tuples (x,N c), where x ∈ X and

N c ∈
∏

x∈XL{0, . . . ,Nx}.

• A is a set function defined on S that maps each state s ∈ S to the finite, non-

empty set A(s), comprising all the decisions / actions that are feasible in s.

More specifically, for s = (x,N c), A(s) coincides with A(x) as specified in the

definition of E .

• t : S×
⋃
s∈S A(s)×S −→ [0, 1] is the MDP state transition function, i.e., a partial

function defined on all tripletes (s, a, s′) with a ∈ A(s), and with t(s, a, s′) being

the probability to reach state s′ from state s on decision a. More specifically,

for s = (x,N c), a ∈ A(s), s′ = (x′,N c′),

t(s, a, s′) =



p(x′; a), if x ∈ X l, l ∈ {0, . . . , L− 1}, x′ ∈
⋃L
k=l+1 X

k,

N c′ = N c;

1, if x ∈ XL, x′ = x0, N c′
x = (N c

x − 1)+, N c′
y = N c

y ,

∀y ∈ XL/{x};

0, otherwise.

(42)
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• c : S −→ {0, 1} is the cost function, where for s = (x,N c),

c(s) =


1, if x ∈ XL and N c 6= 0;

0, otherwise.

(43)

Notice that the cost function defined by Equation 43 assigns a unit cost to every

resetting transition that takes the control agent from a leaf node back to the root

node, but only when there is at least one leaf node with a positive requirement.

Hence, the set of states s = (x,N c) with N c = 0 constitute a closed class which

is also cost-free, i.e., once the process enters this class of states it will remain in it,

and there will be no further cost accumulation. For the purposes of the subsequent

development, we shall represent this entire class of states with a single aggregate state,

sT , which we shall refer to as the problem terminal state; clearly, sT is absorbing and

cost-free under any policy π. Furthermore, the MDP state set S will be redefined to

S ≡ {(x,N c)|N c 6= 0} ∪ {sT}, and the action, state transition and cost functions,

A, t and c, will also be appropriately redefined to reflect the above aggregation. In

particular, for the terminal state sT , we define A(sT ) = {aT} with t(sT , aT , sT ) = 1;

t(sT , aT , s) = 0, ∀s ∈ S\{sT}, and c(sT ) = 0. The redefinition of the remaining

elements of A, t and c is straightforward and the relevant details are omitted. Figure 6

exemplifies the above construct by depicting the state transition diagram for the MDP

induced by the problem instance depicted in Figure 5.

In the above MDP modelling framework, we are particularly interested in a policy,

π∗, that, starting from the initial state s0 ≡ (x0,N ), will drive the underlying process

to the terminal state sT with the minimum expected total cost. Formally,

π∗ = arg min
π∈Π

Eπ[
∞∑
t=0

c(st)|s0 = s0] (44)

where Π denotes the entire set of policies and the expectation Eπ[ ] is taken over all

possible realizations under policy π. This specification of π∗ brings the considered

MDP problem to a particular class of MDP problems known as stochastic shortest

45



1

    
1 1 2 0

1 0

0.70.30.5 0.5

0 1

2 1

0.70.30.5 0.5

0.70.30.5 0.50.70.30.5 0.5

0.70.30.5 0.5

1

1

11

0 0 00

1

1

11

00

0 0 00

sT

1

Figure 6: The State Transition Diagram for the stochastic shortest path problem
induced by the problem instance depicted in Figure 5

path (SSP) problems [5]. It is easy to see that, under the assumptions stated in

Section 3.1.1, this SSP problem is well-defined, and therefore, according to [5]:

Theorem 3 For the SSP formulation characterizing the problem considered in this

chapter there exists a unique vector V ∗(s), s ∈ S, with V ∗(sT ) = 0 and with its

remaining components satisfying the Bellman equation

∀s ∈ S\{sT},

V ∗(s) = min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (45)

Furthermore, the vector V ∗(s) defines an optimal policy π∗ by setting

∀s ∈ S\{sT}, π∗(s) :=

arg min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (46)
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The vector V ∗(s) introduced in Theorem 3 is known as the optimal value function

or the optimal cost-to-go vector for the considered SSP formulation. Each component

of V ∗(s) expresses the expected total cost of initiating the underlying process at state

s ∈ S and subsequently following an optimal policy. In particular, the expected

performance for an optimal policy π∗ is characterized by V ∗ ≡ V ∗(s0). From a

computational standpoint, V ∗(s) can be obtained through a number of approaches

coming from the broader area of Dynamic Programming (DP) [5]. Next, we focus

on an approach that employs a linear programming (LP) formulation and it will be

useful in the subsequent developments presented in this document.

Theorem 4 [5] The optimal value vector V ∗(s), s ∈ S\{sT}, for the SSP formula-

tion considered in this chapter is the optimal solution of the following linear program:

max
∑

s∈S\{sT }

V (s) (47)

s.t.

∀s ∈ S\{sT}, ∀a ∈ A(s),

V (s) ≤ c(s) +
∑

s′∈S\{sT }

t(s, a, s′) · V (s′) (48)

From a practical computational standpoint, the value of Theorems 3 and 4 in the

determination of the optimal policy for any given problem instance, E = (X,A,P ,N ),

is severely limited by the fact that the size of the state space, S, of the induced SSP

problem grows exponentially to the number of the problem target nodes, |(||N ||)|,

since |S| = |X| ·
∏

x∈XL(Nx+1)−|X|+1. On the other hand, the monotonic decrease

of N c, and the acyclic structure in the underlying state space that is implied by this
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effect, enable the incremental solution of the formulation of Theorem 4 through a se-

ries of subproblems that are defined on the subspaces obtained by fixing the value for

the remaining visitation requirement vector N c. Clearly, each of these subproblems

will be of polynomial complexity with respect to |E|. But the set of all possible values

for N c is an exponential function of |(||N ||)|, and therefore, the complexity of the

overall approach remains super-polynomial. Motivated by these observations, in the

next section we develop a number of suboptimal policies for the considered problem

that seek to trade off some operational efficiency for computational tractability. How-

ever, all of the presented policies maintain asymptotic optimality, in that the ratio of

their expected value over the expected value of the optimal policy converges to unity

as the node visitation requirements grow uniformly to infinity. Furthermore, when

viewed from a collective standpoint, the proposed policies define a broad and system-

atic range of options for effecting the aforementioned trade-off between performance

and computational expediency and tractability.

3.2 Suboptimal control policies

3.2.1 The class of simple randomized policies

It is clear from the concluding discussion of the previous section that the main reason

for the non-polynomial complexity presented by the standard DP-based approaches

when applied to the considered SSP problem, is the exponentially large number of the

possible values of the vector N c that constitutes part of the system state s = (x,N c).

This observation motivates the introduction and study of a class of policies that

is defined only on the basis of the first component of the system state, i.e., the

position x ∈ X of the acting agent. This idea is formalized by the concept of simple

randomized policy as follows:

Definition 1 Given a problem instance E, the class of simple randomized policies,

ΠS, is defined by the following two properties: (i) For any π ∈ ΠS and s = (x,N c) ∈
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S, the action π(s) is chosen according to a probability distribution Dπ(·; s) = Dπ(·;x),

i.e., this distribution depends only upon the first component of s. (ii) For Nx > 0,

x ∈ XL, π connects (x0,N ) and (x,N ) with a path of positive probability.2

The satisfaction of Assumption (ii) in Definition 1 is guaranteed by the existence

of action paths from node x0 to any node x ∈ X, that was presumed in the prob-

lem statement, and the policy randomization. The next proposition establishes that

simple randomized policies are characterized uniquely by the action selection prob-

abilities that they induce for any single traversal of the underlying graph, and it

provides an interesting “flow” interpretation for these probabilities.

Proposition 1 There is a bijection between the space of simple randomized policies

ΠS and the space X of vectors χ = {χa| α ∈ A(x), x ∈ X\XL} satisfying

∑
α∈A(x0)

χα = 1 (49)

∑
α:x∈S(α)

χα · p(x, α) =
∑

α∈A(x)

χα, ∀x ∈ X\{x0, XL}, (50)

∑
α:x∈S(α)

χα · p(x, a) > 0, ∀x ∈ XL,Nx > 0. (51)

Proof: First we prove by induction that, given a simple randomized policy π, there

is a unique vector χπ such that χπa , α ∈ A(x), x ∈ X\XL, denotes the probability

that action a will be executed during a single graph traversal under π, and this

vector satisfies Constraints 49–51. Our induction runs on the number of layers, L, of

the underlying acyclic graph. Hence, first consider a problem instance with L = 1

and assume two different simple randomized policies π and π′ and the respective

vectors χπ and χπ
′

defined by χπa = Dπ(α;x0) and χπ
′
a = Dπ′(α;x0), α ∈ A(x0).4

Since π 6= π′ and L = 1, there is an α ∈ A(x0) such that Dπ(α;x0) 6= Dπ′(α;x0),

4We remind the reader that, according to the definitions provided in Section 3.1.1, L = 1 implies
a two-layered graph G, where the first layer consists of the source node x0, and the second layer
consists of the terminal nodes.
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which further implies that χπ 6= χπ
′
. Next, assume that the hypothesis holds for

all problem instances with L ≤ n. We consider a problem instance with L = n + 1

and two different simple randomized policies π, π′. To proceed, first consider the two

policies, π, π′, on the truncated acyclic graph consisting of the layers X0, . . . , Xn.

According to our induction hypothesis, there exist vectors ψπ, ψπ
′

such that for all

α ∈ A(x), x ∈ X l, 0 ≤ l ≤ n− 1, the components ψπa , ψ
π′
a denote the probability that

action α will be executed during a single traversal of the truncated graph, under π

and π′ respectively. Define the vector χπ where

χπα =


ψπα, if α ∈ A(x), x ∈ X l, 0 ≤ l ≤ n− 1

(
∑

α′:x∈S(α′) ψ
π
α′ · p(x, α′)) · Dπ(α;x),

if a ∈ A(x), x ∈ Xn

(52)

The vector χπ
′

is defined accordingly. Clearly, χπα,χπ
′
α denote the probability that

action α will be executed during a single graph traversal under π and π′ respectively.

Now let l∗ = min{l|α ∈ A(x), x ∈ X l,Dπ(a;x) 6= Dπ′(a;x), 0 ≤ l ≤ n}. In words,

l∗ is the first graph layer where the two policies π, π′ disagree. If l∗ ≤ n − 1 then,

according to the induction hypothesis, there is an α ∈ A(x), x ∈ X l, 0 ≤ l ≤ n− 1,

such that ψπα 6= ψπ
′

α , which together with Equation 52 imply that χπ 6= χπ
′
. On the

other hand, if l∗ = n, there is an α ∈ A(x), x ∈ XL, such that Dπ(α;x) 6= Dπ′(α;x),

whereas ψπa = ψπ
′

a for all α ∈ A(x), x ∈ X l, 0 ≤ l ≤ n − 1, which when combined

with Equation 52, imply again that χπ 6= χπ
′
. Hence for every simple randomized

policy π, there is a unique vector χπ such that χπα, α ∈ A(x), x ∈ X\XL, denotes the

probability that action α will be executed during a single traversal of graph G under

π. Clearly, χπ should satisfy the balance conditions expressed by Equations 49-50.

Furthermore, part (ii) of Definition 1 implies that every target leaf node, x ∈ XL,

of the underlying graph G, is reachable under π, and therefore, Equation 51 is also

satisfied by χπ. Hence, χπ ∈ X and π → χπ is injective.
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On the other hand, given a vector χ ∈ X , we define the simple randomized policy

π that assigns to a state s = (x,N c), with x ∈ X\XL and
∑

α∈A(x) χa > 0, an action

π(x,N c) ∈ A(s) according to the probability distribution

Dπ(α;x) =
χa∑

a∈A(x) χa
, α ∈ A(x). (53)

Furthermore, for states s = (x,N c) with x ∈ X\XL and
∑

α∈A(x) χα = 0, the policy

is indeterminate. Finally, for states s = (x,N c), x ∈ X\XL, the policy executes

the unique transition α ∈ A(s) with probability 1. Then, it can be shown, with a

simple induction on the number of layers of graph G, that χα, α ∈ A(x), x ∈ X\XL,

denotes the probability that action α will be executed during a single graph traversal

under π. Hence, for every terminal node x ∈ XL, the underlying process guided by

the randomized policy π, reaches x with probability

ρx =
∑

α:x∈S(α)

χα · p(x, a). (54)

When combined with Equation 51, this last equality implies that ρx > 0, for Nx > 0,

and establishes that π belongs to the class of simple randomized policies. Thus, the

mapping π → χπ is also surjective. 2

As established in the previous proof, the variables χα, α ∈ A(x), x ∈ X\XL,

denote the probability of executing action α during any single traversal of the graph

under policy π. Equations 49-51 also imply that the vector χ can be interpreted

as the “flow” pattern that would result in the considered graph if a unit flow was

induced in the source node x0 and subsequently it was distributed at the different

nodes x ∈ X\XL according to the proportions suggested by the distributions Dπ(·, x).

Given a simple randomized policy π and the corresponding vector χπ ∈ X , we

also define the vector ρπ ≡ ρ(χπ), of dimensionality |XL|, with

ρπx ≡
∑

α:x∈S(α)

χπα · p(x, a), x ∈ XL (55)
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Clearly, ρπx, x ∈ XL, expresses the probability of reaching node x ∈ XL during a

single traversal of the underlying graph G, under π. The following theorem gives an

explicit characterization of the connection between the vector ρπ and the performance

of a policy π ∈ ΠS.

Theorem 5 Consider a problem instance E = (X,A,P ,N ), a simple randomized

policy π ∈ ΠS for it, and the corresponding probability vector ρπ = ρ(χπ). Then,

V π = V (ρπ) = E[ max
j:Nj>0

{ 1

ρπj

Nj∑
i=1

Ξi
j}] (56)

where Ξi
j are independent identically distributed exponential random variables with

rate λ = 1.

Proof: Consider a continuous-time version of the problem where the process is

guided by the simple randomized policy π and a graph traversal is concluded at

random times Yi generated by a Poisson process with rate λ = 1. Let Tj denote the

time until target leaf node j has satisfied its visitation requirements, and N denote

the total number of graph traversals required until every visitation requirement is

satisfied. Then it is easy to see that (i) Tj is distributed according to a Gamma

distribution with parameters Nj and ρπj , and (ii) the Tj’s are independent. Let T =

maxj:Nj>0{Tj}. Then

E[ max
j:Nj>0

{Tj}] = E[T ]

= E[
N∑
i=1

Yi]

= E[E[
N∑
i=1

Yi|N ]]

= E[N · E[Y1]]

= E[N ]

= V π (57)
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Since Tj is equal in distribution to 1
ρπj

∑Nj
i=1 Ξi

j, we have that

E[ max
j:Nj>0

{Tj}] = E[ max
j:Nj>0

{ 1

ρπj

Nj∑
i=1

Ξi
j}]. (58)

The result now follows by combining Equations 57 and 58. 2

An immediate implication of Theorem 5 is that the performance, V π, of a sim-

ple randomized policy π, can be evaluated through the numerical integration of a

continuous function since, for ρπ = ρ(χπ),

V π = V (ρπ)

= E[ max
j:Nj>0

{ 1

ρπj

Nj∑
i=1

Ξi
j}]

=

∫ ∞
0

P ( max
j:Nj>0

{ 1

ρπj

Nj∑
i=1

Ξi
j} > t)dt

=

∫ ∞
0

(1−
∏

j:Nj>0

P (
1

ρπj

Nj∑
i=1

Ξi
j ≤ t))dt

=

∫ ∞
0

(1−
∏

j:Nj>0

FNj(ρ
π
j · t))dt (59)

where FNj(t) is the cumulative distribution function of the Gamma(Nj, 1) distribu-

tion. Another consequence of Equation 56 is the convexity of the function V (ρπ)

with respect to ρπ. This last property subsequently enables the effective and efficient

solution of the optimization problem

min
π∈ΠS

V π (60)

which, under Theorem 5 and Proposition 1, can be alternatively stated as

minV (ρ) (61)

s.t. ρ = ρ(χ), χ ∈ X .
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Indeed, the objective function of Formulation 61, V (ρ), is convex in ρ and continu-

ously differentiable. Furthermore, the convexity of space X , as delineated by Equa-

tions 49-51, when combined with the linearity of ρ(χ) with respect to χ, as revealed

by Equation 55, imply that the space {ρ | ρ = ρ(χ), χ ∈ X} is also convex. Hence, the

optimization problem defined by Equation 61 possesses a convex smooth structure

and therefore it can be effectively addressed by standard solution techniques coming

from the area of non-linear programming; we refer to [3] for the relevant details. In

the following, we shall denote an optimal solution for the formulation of Equation 61

by χopt, and the corresponding simple randomized policy by πopt.

3.2.2 Asymptotically optimal simple randomized policies

In this section we establish that the simple randomized policy πopt, introduced in the

previous section, is asymptotically optimal , with the ratio of its expected performance

to V ∗ converging to unity, as the node visitation requirement vector, N , grows uni-

formly to infinity. However, in order to establish this result, we need to introduce

and analyze the performance of another simple randomized policy that is obtained

through a continuous – or “fluid” – relaxation of the original MDP problem. We shall

refer to this policy as πrel, and as it will be revealed in the following, πrel has its own

merit as a suboptimal policy for the considered problem, since (i) it demonstrates

the same asymptotically optimal performance with πopt, but (ii) it is computationally

simpler to derive than the latter, and in addition, (iii) as it will be shown in the

following, it provides the basis for one of the most efficient suboptimal policies for

this problem. The definition of πrel relies on the optimal solution of the following LP

formulation, that will be called the “relaxing LP”:

min
∑

a∈A(x0)

χa (62)
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s.t. ∑
a:x∈S(a)

p(x; a) · χa =
∑
a∈A(x)

χa, ∀x ∈ X\({x0} ∪XL) (63)

∑
a:x∈S(a)

p(x; a) · χa ≥ Nx, ∀x ∈ XL (64)

χa ≥ 0, ∀a ∈
⋃

x∈X\XL

A(x) (65)

In the light of the flow-based interpretation of Equations 49–51, a natural interpre-

tation of an optimal solution of the relaxing LP, χ∗, is that it constitutes a flow pattern

that can satisfy the flow requirements for the terminal nodes x ∈ XL expressed by the

visitation requirement vector, N , while minimizing the total amount of flow induced

into the graph. Policy πrel is the simple randomized policy induced by χ∗ according to

Proposition 1.5 More specifically, given an optimal solution {χ∗a | a ∈
⋃
x∈X\XL A(x)}

of the LP defined by Equations 103-106, policy πrel assigns to a state s = (x,N c)

with x ∈ X\XL and
∑

a∈A(x) χ
∗
a > 0, an action π(x,N c) ∈ A(s) according to the

probability distribution

Prob(πrel(x,N c) = a) =
χ∗a∑

a∈A(x) χ
∗
a

, a ∈ A(x). (66)

On the other hand, states s = (x,N c) with x ∈ X\XL and
∑

a∈A(x) χ
∗
a = 0, are

inaccessible under πrel, and the policy is indeterminate at them. Finally, for states

s = (x,N c), x ∈ XL, the policy executes the unique transition a ∈ A(s) with

probability one. Clearly, the deployment and execution of the aforestated policy

πrel is of polynomial complexity with respect to the problem size |E|. Furthermore,

another consequence of the above characterizations of the relaxing LP and the policy

πrel, is the following theorem:

Theorem 6 Given a problem instance E = (X,A,P ,N ), let V ∗rel(N ) denote the

optimal value of the relaxing LP, χ∗ denote an optimal solution of it, and ρrel = ρ(χ∗).

5Notice that a single problem instance, E , can have more than one instantiations of πrel since, in
general, there will be more than one optimal solutions, χ∗, for the corresponding relaxing LP.
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Then,

V ∗rel(N ) = max
j:Nj>0

{ Nj
ρrelj
} ≤ V ∗. (67)

Proof: The validity of the equality part in Equation 67 is immediately obvious

when realizing that ρrelj , j ∈ XL, denotes the amount of flow routed to node j by

the flow pattern corresponding to policy πrel, for every unit of flow induced in the

underlying graph (cf. the discussion after Prop. 1).

In order to prove the inequality of Equation 67, first notice that V ∗ can also be

computed by a variation of the LP formulation of Equations 47–48 where the original

objective function has been substituted by maxV (s0); this substitution is legitimate

since it is well-known in the relevant MDP theory that the SSP optimal value function

V ∗(s), s ∈ S, is the componentwise maximal vector that satisfies the constraint

of Equation 48. Then, taking the dual of this new LP formulation, it suffices to

show that (i) every feasible solution for this dual problem induces a feasible solution

χa, a ∈
⋃
x∈X\XL A(x), for the relaxing LP, and (ii) the corresponding objective

values are equal. The considered dual LP formulation is as follows [13]:

min
∑

s∈S\{sT }:x(s)∈XL

∑
a∈A(s)

q(s, a) (68)

s.t.

∀s ∈ S\{sT}, (69)∑
a∈A(s)

q(s, a) = 1{s=s0} +
∑

s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, s) · q(s′, a)

∀s ∈ S\{sT}, ∀a ∈ A(s),

q(s, a) ≥ 0 (70)

Let q(s, a), s ∈ S\{sT}, a ∈ A(s), denote a feasible solution for this formulation,
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and define

χa ≡
∑

s∈S\{sT }:a∈A(s)

q(s, a), ∀a ∈
⋃

x∈X\XL

A(x) (71)

In the remaining part of this proof we shall show that the vector {χa} defined by

Equation 71 satisfies the aforestated requirements (i) and (ii).

Clearly, Constraint 106 is immediately satisfied by Constraint 70 and the definition

of {χa}. Next we prove the feasibility of {χa} with respect to Constraint 104. Hence,

consider a node x ∈ X\({x0} ∪XL). For it, we have that:∑
a∈A(x)

χa =
∑
a∈A(x)

∑
s∈S\{sT }:a∈A(s)

q(s, a) (from Eq. 71)

=
∑

s∈S\{sT }:x(s)=x

∑
a∈A(s)

q(s, a) (by term rearrangement)

=
∑

s∈S\{sT }:x(s)=x

∑
s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, s) · q(s′, a) (from Eq. 69)

=
∑

a:x∈S(a)

p(x; a)
∑

s′∈S\{sT }:a∈A(s′)

q(s′, a)

(from Eq. 42 and term rearrangement)

=
∑

a:x∈S(a)

p(x; a) · χa (from Eq. 71)

To prove the satisfaction of Constraint 105 by the vector {χa}, first notice that

this constraint is trivially satisfied for all non-target nodes x ∈ XL. Hence, consider

a node x ∈ XL with Nx > 0. Then, by working as in the proof of the validity of

Constraint 104, we can easily establish that∑
a:x∈S(a)

p(x; a) · χa =
∑

s∈S\{sT }:x(s)=x

∑
a∈A(s)

q(s, a) (72)

In the STD of the underlying SSP problem, consider the arc set Cx(Nx), consisting

of all the arcs that lead from any state s ∈ Sx(Nx) ≡ {(x,N c) : N c
x = Nx} to the

resultant state s′ = (x0,N c−1x), where 1x denotes the unit vector of dimensionality

|XL| and with the non-zero component corresponding to node x.6 Clearly, since x

6The reader is referred to Figure 7 for a more concrete visualization of the concepts and arguments
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Figure 7: The STD cuts C1(1) and C1(2) defined by the target leaf node x1 in the
optimal node visitation problem of Figure 5.

is a target node, Cx(Nx) is non-empty. Furthermore, since this set aggregates all the

possible transitions through which the visitation requirements for x are reduced from

Nx to Nx− 1, it defines a cut on the underlying graph defined by S and A(s), s ∈ S.

This last observation combined with the fact that {q(s, a)} can be interpreted as a

flow that conveys a unit load from state s0 to state sT imply that

∑
(s,a)∈Cx(Nx)

q(s, a) = 1 (73)

In the same way, we can define the arc sets Cx(Nx − k), k ∈ {1, . . . ,Nx − 1}, each

related to this part of the proof.
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consisting of all the arcs that lead from any state s ∈ Sx(Nx − k) ≡ {(x,N c) : N c
x =

Nx − k} to the state s′ = (x0,N c − 1x), and establish that∑
(s,a)∈Cx(Nx−k)

q(s, a) = 1, ∀k ∈ {1, . . . ,Nx − 1} (74)

But then, the satisfaction of Constraint 105 results immediately from the fact that

each of the summations appearing in Equations 73 and 74 is subsumed in the double

summation that appears in the right-hand-side of Equation 72.

It remains to show that∑
a∈A(x0)

χa =
∑

s∈S\{sT }:x(s)∈XL

∑
a∈A(s)

q(s, a)

The validity of this equation is established as follows:

∑
a∈A(x0)

χa =
∑

s∈S\{sT }:x(s)=x0

∑
a∈A(s)

q(s, a) (as in the proof of Constraint 104)

=
∑

s∈S\{sT ,s0}:x(s)=x0

∑
a∈A(s)

q(s, a) +
∑

a∈A(s0)

q(s0, a)

=
∑

s∈S\{sT ,s0}:x(s)=x0

∑
s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, s) · q(s′, a) +

1 +
∑

s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, s0) · q(s′, a) (from Eq. 69)

= 1 +
∑

s∈S\{sT }:x(s)=x0

∑
s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, s) · q(s′, a)

= 1 +
∑

s∈S:x(s)=x0

∑
s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, s) · q(s′, a)

−1 (since
∑

s′∈S\{sT }

∑
a∈A(s′)

t(s′, a, (x0,0)) · q(s′, a) = 1)

=
∑

s∈S\{sT }:x(s)∈XL

∑
a∈A(s)

q(s, a) (from Eq. 42)

2

Next, we proceed to establish the asymptotic optimality of πrel. For this, con-

sider the problem sequence, {E(n)}, that is induced by a problem instance E =
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(X,A,P ,N ), through the scaling of the visitation requirement vector, N , by a fac-

tor n ∈ Z+. Also, let {V ∗rel(n)} denote the sequence of the optimal objective values

of the relaxing LP implied by the problem sequence {E(n)}, and {V ∗(n)} denote

the sequence of the corresponding optimal expected total costs. On the other hand,

the perusal of the formulation of Equations 103–106 and of the first part of Equa-

tion 67 reveals that the policy πrel remains invariant across the entire sequence {E(n)}.

Hence, we also define {V πrel(n)} as the sequence of the expected costs resulting by

the application of the randomized policy πrel to the problem instances E(n). Then,

we have:7

Theorem 7

V πrel(n)− V ∗(n) = O(
√
n), n ∈ Z+. (75)

Proof: Since V ∗rel(n) ≤ V ∗(n), n ∈ Z+, it suffices to prove that

V πrel(n)− V ∗rel(n) = O(
√
n). (76)

Observe that

V πrel(n)− V ∗rel(n) = E[ max
j:Nj>0

{ 1

ρrelj

nNj∑
i=1

Ξi
j}]− n · max

x:Nx>0
{Nx
ρrelx
}

≤ E[ max
j:Nj>0

{| 1

ρrelj

nNj∑
i=1

Ξi
j −

nNj
ρrelj
|}] (77)

where the above equality results from Theorems 5 and 6 and the inequality is the

result of the following property:

∀ai, bi ∈ R, i = 1, . . . , n,

|max{a1, a2, . . . , an} −max{b1, b2, . . . , bn}| ≤ max{|a1 − b1|, |a2 − b2|, . . . , |an − bn|}

7We remind the reader that the notation f(n) = O(g(n)) implies that there exist positive con-
stants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0. Similarly, the notation f(n) = Θ(g(n))
implies that there exist positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for
all n ≥ n0. [14]
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The application of the Central Limit Theorem [9] gives

1√
n
· ( 1

ρrelj

nNj∑
i=1

Ξi
j −

nNj
ρrelj

)⇒ N(0,Nj/(ρrelj )2), j : Nj > 0 (78)

where ‘⇒’ denotes convergence in distribution as n → ∞ and N(a, b) denotes the

normal distribution with mean a and variance b.

Also, observe that

1

n
· E[(

1

ρrelj

nNj∑
i=1

Ξi
j −

nNj
ρrelj

)2] =
Nj

(ρrelj )2
, n ∈ Z+, j : Nj > 0 (79)

which implies the uniform integrability [9] of { 1√
n
( 1
ρrelj

∑nNj
i=1 Ξi

j −
nNj
ρrelj

)| n ∈ Z+}, for

every j with Nj > 0. But then, Equation 78, when combined with the independence

of the Ξi
j’s and the Continuous Mapping Theorem [9], imply that

1√
n
E[ max

j:Nj>0
{| 1

ρrelj

nNj∑
i=1

Ξi
j −

nNj
ρrelj
|}] −→ E[ max

j:Nj>0
{|N(0,Nj/(ρrelj )2)|}] (80)

as n→∞. Finally, Equation 307 follows by combining Equation 80 with Equation 77.

2

An immediate implication of Theorem 7 is the asymptotic optimality of the policy

πrel:

Corollary 1

V πrel(n)

V ∗(n)
→ 1 as n→∞ (81)

Proof: The combination of Theorems 6 and 7 implies that limn→∞
V π

rel
(n)

V ∗(n)
≤ 1, while

the definition of V ∗ implies that V πrel(n) ≥ V ∗(n), ∀n ∈ Z+. 2

Theorem 7 implies also the asymptotic optimality of the policy πopt, which was

defined in Section 3.2.1. To obtain a formal statement of this result, let {V πopt(n)}

denote the sequence of the expected costs that results from the application on the

problem sequence {E(n)} of the corresponding randomized policies πopt(n). Then, we

have:
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Figure 8: Example 2 – The considered problem instance

Corollary 2

V πopt(n)

V ∗(n)
→ 1 as n→∞ (82)

Proof: Equation 82 is an immediate consequence of Corollary 1 when noticing that

the definition of πopt(n) implies that V ∗(n) ≤ V πopt(n) ≤ V πrel(n). 2

Next we show that the bound implied by Equation 75 can be tight – i.e., that

V πrel(n)− V ∗(n) = Θ(
√
n) – in certain cases, but there is also a significant problem

sub-class for which the difference of Equation 75 converges to zero, as n → ∞. The

first of these two results is established through the following example:

Example 2 Consider the very simple problem instance depicted in Figure 8, where

the root node, x0, is immediately connected to the two leaf nodes, x1 and x2, through

two actions, α1 and α2, each leading to the corresponding leaf node with probability

1. Also, assume that the visitation requirement vector is N = (1, 1). Then, it is clear

that for any scaled requirement visitation vector n·N = (n, n), V ∗(n) = V ∗rel(n) = 2n.

Furthermore, the problem symmetries imply that πopt = πrel, with ρreli = ρopti =

0.5, i = 1, 2. Finally, V πopt(n) = V πrel(n) = E[max{ 1
0.5

∑n
i=1 Ξi

1,
1

0.5

∑n
i=1 Ξi

2}], which

gives

V πopt(n)− V ∗(n) = V πrel(n)− V ∗(n) = V πrel(n)− V ∗rel(n) =

E[max{ 1

0.5

n∑
i=1

Ξi
1,

1

0.5

n∑
i=1

Ξi
2}]− 2n =

E[max{ 1

0.5

n∑
i=1

(Ξi
1 − 1),

1

0.5

n∑
i=1

(Ξi
2 − 1)}] (83)

62



According to an argument similar to that provided in the proof of Theorem 7,

1√
(n)

E[max{ 1

0.5

n∑
i=1

(Ξi
1 − 1),

1

0.5

n∑
i=1

(Ξi
2 − 1)}]→ E[max{N(0, 4),N(0, 4)}] (84)

as n → ∞. But then, the Θ(
√
n) nature of the quantities involved in the different

parts of Equation 83 follows immediately from the fact that E[max{N(0, 4),N(0, 4)}] >

0. 2

Notice that in the previous example, N1/ρ
rel
1 = N2/ρ

rel
2 . The equality of these ratios

can be interpreted as an equality of the “difficulty” for the posed visitation require-

ments, and it turns out that it is a fundamental reason for the inability of the difference

V πrel(n)− V ∗(n) to converge to zero, as n grows to infinity. A formal statement and

a proof for this result is provided in Theorem 8 below. However, first we introduce a

technical lemma that is needed in the proof of this theorem.

Lemma 4 Let {Ξi} be a sequence of independent identically distributed exponential

random variables with rate λ = 1. Then, for any ρ ∈ R\{0} and N ∈ Z+, it holds

that

E[exp{1

ρ

n·N∑
i=1

Ξi − 1√
n
}]→ eN/2·ρ

2

(85)

as n→∞.

Proof: For all n ∈ Z+ with
√
n > 1

ρ
, we can write

E[exp{1

ρ

n·N∑
i=1

Ξi − 1√
n
}] = e−

√
n·N
ρ · (E[exp{1

ρ

Ξ1

√
n
}])n·N

= e−
√
n·N
ρ · ( 1

1− 1
ρ
√
n

)n·N

= e−
√
n·N
ρ · ( ρ

√
n

ρ
√
n− 1

)n·N

= e−
√
n·N
ρ · en·N ·ln( ρ

√
n

ρ
√
n−1

)
(86)
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But

lim
n→∞

−
√
n

ρ
+ n · ln(

ρ
√
n

ρ
√
n− 1

) = lim
n→∞

− 1
ρ
√
n

+ ln( ρ
√
n

ρ
√
n−1

)

1/n

= lim
n→∞

1
2ρ
· 1
n
√
n
− 1

2n
· 1
ρ
√
n−1

−n−2

= lim
n→∞

1

2
·

√
n

ρ · (ρ
√
n− 1)

=
1

2ρ2
(87)

where the second equality above is obtained through application of L’ Hôpital’s rule.

The result now follows from Equations 86 and 87. 2

Theorem 8 Suppose that for a given problem instance E = (X,A,P ,N ), with l ≥ 2

target leaf nodes, there exists a target leaf node xk such that, for any other target leaf

node xj, Nk
ρrelk

>
Nj
ρrelj

. Then, as n→∞,

V πrel(n)− V ∗rel(n)→ 0 (88)

Proof: Without loss of generality assume that k = 1. Then, the left part of Equa-

tion 88 can be re-written as follows:

V πrel(n)− V ∗rel(n)

= E[ max
j:Nj>0

{ 1

ρrelj

n·Nj∑
i=1

Ξi
j}]−

n · N1

ρrel1

= E[max{ 1

ρrel1

n·N1∑
i=1

Ξi
1, . . . ,

1

ρrell

n·Nl∑
i=1

Ξi
l}]− E[

1

ρrel1

n·N1∑
i=1

Ξi
1]

= E[max{0, 1

ρrel2

n·N2∑
i=1

Ξi
2 −

1

ρrel1

n·N1∑
i=1

Ξi
1, . . . ,

1

ρrell

n·Nl∑
i=1

Ξi
l −

1

ρrel1

n·N1∑
i=1

Ξi
1}]

≤ E[(
1

ρrel2

n·N2∑
i=1

Ξi
2 −

1

ρrel1

n·N1∑
i=1

Ξi
1)+] + . . .+ E[(

1

ρrell

n·Nl∑
i=1

Ξi
l −

1

ρrel1

n·N1∑
i=1

Ξi
1)+]

In order to prove the result of Theorem 8, it suffices to prove that, for all j = 2, . . . , l,

E[(
1

ρrelj

n·Nj∑
i=1

Ξi
j −

1

ρrel1

n·N1∑
i=1

Ξi
1)+]→ 0 (89)
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as n→∞.

Hence, consider an arbitrary j ∈ {2, . . . , l}, and let aj = N1

ρrel1
− Nj

ρrelj
> 0. Then, by

basic probability arguments and the Markov inequality, we get:

E[(
1

ρrelj

n·Nj∑
i=1

Ξi
j −

1

ρrel1

n·N1∑
i=1

Ξi
1)+]

= E[(
1

ρrelj

n·Nj∑
i=1

(Ξi
j − 1)− 1

ρrel1

n·N1∑
i=1

(Ξi
1 − 1)− n(

N1

ρrel1

− Nj
ρrelj

))+]

=
√
n · E[(

1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n
−
√
n(
N1

ρrel1

− Nj
ρrelj

))+]

=
√
n ·
∫ ∞
aj
√
n

P (
1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n

> t)dt

=
√
n ·
∫ ∞
aj
√
n

P (exp{ 1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n
} > exp{t})dt

≤
√
n ·
∫ ∞
aj
√
n

e−tE[exp{ 1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n
}]dt

=
√
n · e−aj

√
nE[exp{ 1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n
}]

=
√
n · e−aj

√
n · E[exp{ 1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
}] · E[exp{− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n
}] (90)

The result of Equation 89 follows from Equation 90, when noticing that, according

to Lemma 4,

E[exp{ 1

ρrelj

n·Nj∑
i=1

Ξi
j − 1
√
n
}]→ eNj/2·(ρ

rel
j )2

E[exp{− 1

ρrel1

n·N1∑
i=1

Ξi
1 − 1√
n
}]→ eN1/2·(ρrel1 )2

as n→∞, while
√
n · e−aj

√
n → 0

2
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Hence, under the condition of Theorem 8, the performance of all three policies,

πrel, πopt and π∗, converges to the lower bound V ∗rel(n), as the scaling factor n grows

to infinity. Furthermore, Equation 90 indicates that this convergence will be quite

fast, and its rate will be determined by the maximum difference Nk
ρrelk
− Nj

ρrelj
among

all the target leaf nodes xj with j 6= k. An intuitive interpretation of this result

is that, as this difference grows to larger values, the information contained in the

optimal solution of the relaxing LP is adequate in order to strongly bias the system

behavior towards the optimal policy. On the other hand, when the maximal ratio

Nk
ρrelk

is attained at more than one leaf nodes, both πrel and πopt will treat all these

nodes as “equally difficult targets”. But due to the static nature of these policies, this

impartiality can turn into a disadvantage in the later stages of the problem evolution,

where the original ties have been resolved by the underlying randomness. In the next

section we discuss how these problems can be alleviated, and the performnce of the

considered policies can be substantially improved, through some adaptive implemen-

tation mechanisms that enable the applied policy to revise its action selection scheme,

and the resultant probability vector ρπ, according to the information provided by the

remaining requirement vector N c.

3.2.3 Adaptive Policies

In order to derive the enhanced suboptimal policies sought in this section, it is per-

tinent to consider the partitioning of the state space S, of the SSP defined in Sec-

tion 3.1.2, into the state subsets defined by a common remaining visitation require-

ment vector, N c. Each of these subsets defines a notion of “macro-state” for the

underlying process, while, as it was observed at the end of Section 3.1.2, the mono-

tonic decrease of N c implies that the induced space of macro-states is traversed in

an acyclic manner. More specifically, the process starts from the macro-state defined

by N c = N , and at every macro-transition, it proceeds to a macro-state where the
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corresponding vector N c′ is obtained from N c by reducing one of its components by

one unit. Next we show that this structure enables the specification of computation-

ally efficient suboptimal policies that perform better than the policy πopt defined in

Section 3.2.1. In the subsequent developments, we shall use the notation π(N ) to

denote the instantiation of the policy π on the problem instance E = (X,A,P ,N ),

and this notation will extend to any other element pertaining to the considered policy

π.

The first improvement to πopt is easily obtained by an adaptive implementation of

it, that recomputes the optimized vector χopt at every visited macro-state, by solving

the corresponding optimization problem defined by Equation 61. We shall refer to

the resulting policy as πadopt. Next we establish that

Proposition 2 V πadopt ≤ V πopt

Proof: We prove this result by induction on |N |, i.e., the total number of visitation

requirements. For |N | = 1, the process will visit only one macro-state before its

termination, and therefore, V πadopt = V πopt . Next, we assume that the inequality of

Proposition 2 holds for |N | ≤ n, and we show that it will also hold for |N | = n + 1.

To obtain this result, notice that the value function of any proper policy π will satisfy

the following recursion:

V π(x0,N ) =
1∑

x∈XL:Nx>0 ρ
π(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ(N )
x · V π(x0,N − 1x)] (91)

where (i) ρ
π(N )
x denotes the probability of reaching node x ∈ XL in any single traversal

of graph G under policy π, while starting from state (x0,N ) (c.f. Equation 55), and

(ii) 1x denotes the unit vector of dimensionality equal to |XL| and with its non-zero

component corresponding to node x. Application of Equation 91 to πadopt gives that

V πadopt(N )(x0,N ) (92)

=
1∑

x∈XL:Nx>0 ρ
πadopt(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
adopt(N )
x · V πadopt(N )(x0,N − 1x)](93)
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However, the definition of πadopt implies that ρ
πadopt(N )
x = ρ

πopt(N )
x and V πadopt(N )(x0,N−

1x) = V πadopt(N−1x)(x0,N − 1x), for all x ∈ XL. Furthermore, V πadopt(N−1x)(x0,N −

1x) ≤ V πopt(N−1x)(x0,N − 1x) ≤ V πopt(N )(x0,N − 1x), ∀x ∈ XL : Nx > 0, where

the first inequality results from the induction hypothesis and the second from the

definition of πopt. But then, Equation 93 implies that

V πadopt(N )(x0,N ) (94)

≤ 1∑
x∈XL:Nx>0 ρ

πopt(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
opt(N )
x · V πopt(N )(x0,N − 1x)]

= V πopt(N )(x0,N ) (95)

2

When combined with Corollary 2, Proposition 2 implies also the asymptotic op-

timality of policy πadopt, in the sense of Corollaries 1 and 2. Next we define another

class of policies that can outperform πopt and they constitute a customized implemen-

tation on the considered MDP problem of the “rollout” policies discussed in [4, 5].

Under this new regime, the policy to be applied at the macro-state defined by the

visitation requirement vector N c, is the “greedy” policy determined by Equation 46

while employing the value function V (s), s ∈ {(x,N c) | x ∈
⋃L
l=0X

l}, that is ob-

tained by restricting the LP of Theorem 4 to the considered macro-state and setting

the value function of the “boundary” states (x0,N c−1y), y = 1, . . . , |XL| : N c
y > 0,

equal to V πopt(N c−1y)(x0,N c− 1y). The solution of these LP’s and the determination

of the corresponding local policies is performed every time that the process enters a

new macro-state. The resulting policy is characterized as πroll, and it holds that

Proposition 3 V πroll ≤ V πopt

Proof: Similar to the case of Proposition 2, we prove this result by induction on |N |.

It is clear that for |N | = 1, V πroll = V ∗, and therefore, Proposition 3 is true. Next

suppose that Proposition 3 holds true for |N | ≤ n. We shall show that it also holds

68



true for |N | = n+ 1. The application of Equation 91 to policy πroll gives

V πroll(N )(x0,N ) =
1∑

x∈XL:Nx>0 ρ
πroll(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
roll(N )
x ·V πroll(N )(x0,N −1x)]

(96)

The definition of the policy πroll implies that V πroll(N )(x0,N−1x) = V πroll(N−1x)(x0,N

−1x), which when combined with the induction hypothesis and Equation 96 imply

that

V πroll(N )(x0,N ) ≤ 1∑
x∈XL:Nx>0 ρ

πroll(N )
x

·[1+
∑

x∈XL:Nx>0

ρπ
roll(N )
x ·V πopt(N−1x)(x0,N−1x)]

(97)

From the definition of the policy πroll we also have that

1∑
x∈XL:Nx>0 ρ

πroll(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
roll(N )
x · V πopt(N−1x)(x0,N − 1x)] ≤

1∑
x∈XL:Nx>0 ρ

πopt(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
opt(N )
x · V πopt(N−1x)(x0,N − 1x)] (98)

while the definition of the policy πopt further implies that

1∑
x∈XL:Nx>0 ρ

πopt(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
opt(N )
x · V πopt(N−1x)(x0,N − 1x)] ≤

1∑
x∈XL:Nx>0 ρ

πopt(N )
x

· [1 +
∑

x∈XL:Nx>0

ρπ
opt(N )
x · V πopt(N )(x0,N − 1x)] =

V πopt(N )(x0,N ) (99)

But then, Proposition 3 follows immediately from Equations 97–99. 2

Clearly, policy πroll is also asymptotically optimal in the sense of Corollaries 1

and 2. Furthermore, by employing V πadopt(N c−1y)(x0,N c − 1y) instead of V πopt(N c −

1y)(x
0,N c−1y) as an estimate of the value function of the “boundary” states (x0,N c−

1y), y = 1, . . . , |XL| : N c
y > 0, and denoting the resulting rollout policy as πadroll,

we can also establish through arguments similar to those provided above that

Proposition 4 V πadroll ≤ V πadopt
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Figure 9: Example 3 – The considered problem instance

One complication regarding the implementation of policy πadroll compared to those

of πadopt and πroll, is that the estimates V πadopt(N c−1y)(x0,N c − 1y) are not available

in closed form. However, in most practical cases they should be easily computed

through simulation. Finally, one can also envision additional versions of πroll and

πadroll where the LP that specifies the policy to be followed at any given macro-state

is formulated over an extended state subset that includes the states of the considered

macro-state plus the states of all the macro-states that can be reached from it in

up to k transitions. These policies are characterized as k-step rollout policies, and

typically, they will outperform the corresponding policies resulting from single-step

lookahead; we refer to [5] for some relevant discussion.

3.3 Computational Studies

In this section we present two examples that provide a concrete demonstration of the

convergence results developed in Section 3.2, and also enable an assessment of the

relative performance of the policies introduced in that section.

Example 3 This example pursues a detailed study of the problem instance depicted

in Figure 9, in an effort to provide some additional insights on (i) the effects underlying

the suboptimality of the simple randomized policies πrel and πopt; (ii) the role of the

policy adaptation for mitigating this suboptimality, through the recalculation of the
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Figure 10: Example 3 – The performance of the simple randomized policies obtained
for different values of the selection probability, χ, for action α2
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Figure 11: Example 3 – The performance of the adaptive randomized policies ob-
tained for different values of the selection probability, χ, for action α2 in the initial
macro-state
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policy-defining vectors χrel and χopt at the visited macro-states; and (iii) the relative

performance of the resulting policies πadrel and πadopt with respect to each other and

the optimal policy.8 It should be obvious to the reader that, for the case depicted in

Figure 9, the optimal policy is to choose action α2 until the visitation requirement

of node x2 has been satisfied. At this point, if the visitation requirement of node

x1 is still unmet, the policy switches to action α1 and satisfies this requirement in a

single traversal. But any simple randomized policy, π, will fail to take advantage of

the deterministic nature of action α1, as suggested above, since it must maintain a

fixed vector ρπ at every visited macro-state. Hence, both πrel and πopt will apply a

randomization over α1 and α2 that will maintain a significant positive probability for

selecting action α1, in an effort to increase the accessibility of node x1. In particular,

πrel will choose action α2 with a probability χrel that balances the ratios Ni/ρreli for

i = 1, 2; i.e.,

1

0.5χrel
=

1

0.01χrel + 1− χrel
⇐⇒ χrel = 0.671 (100)

Furthermore, Equation 91 implies that the performance, V πrel , of the resulting policy,

can be evaluated by plugging the obtained value for χrel into the following function:

V π(χ) =
1

0.51χ+ 1− χ
(1 +

0.5χ

0.01χ+ 1− χ
+

0.01χ+ 1− χ
0.5χ

) (101)

Thus, it is found that V πrel = 4.47. On the other hand, the χ value that defines

πopt can be computed by solving the equation dV π(χ)

dχ
= 0 and picking the root that

belongs in the interval [0, 1]. It turns out that χopt = 0.611291 and V πopt = 4.37693.9

Finally, Figure 10 characterizes the performance of all simple randomized policies for

the considered problem instance, by plotting V π(χ) for χ ∈ [0.1, 0.9].

Policies πadrel and πadopt present enhanced performance with respect to their static

8Obviously, the policy πadrel is defined in a way similar to πadopt, but with the policy πrel being
used as the base policy.

9It is interesting to notice the proximity of the χrel and χopt values. This seems to be a more
general effect for the considered problem, with χopt and the resulting probability vector ρopt being
minor “corrections” of χrel and ρrel. Furthermore, it can be shown that ρopt(n)→ ρrel as n→∞.
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counterparts, πrel ad πopt, since they are able to optimize their decision in the second

macro-state, on the basis of the remaining requirement vector N c. However, they

remain suboptimal since their decision in the initial macro-state is compromised by

the aforementioned suboptimality of πrel and πopt. A closed-form evaluation of these

policies can be based again on Equation 91: The performance of the adaptive ran-

domized policy that selects action α2 at the initial macro-state with probability χ,

and in the next macro-state applies the optimal policy, is given by:

V ad−π(χ) =
1

0.51χ+ 1− χ
(1 + 0.5χ+ 2(0.01χ+ 1− χ)) (102)

Hence, from Equation 102 we obtain that V πadrel = 2.99, V πadopt = 2.99127 and

V ad−π(1.0) = 2.98039. Furthermore, Figure 11 plots the performance of all the adaptive

randomized policies that are obtained by varying χ ∈ [0, 1] and validates our original

suggestion that the optimal policy is obtained for χ∗ = 1.0.

We conclude the discussion of this example with two additional observations:

First, it is interesting to notice the proximity of V πadrel and V πadopt to each other and

to the value of the optimal policy, V ad−π(1.0). Second, in this example it even holds

that V πadrel < V πadopt , as manifested by the values quoted above and by the strictly

decreasing nature of V ad−π(χ). These two observations are indicative of our collective

experience with the empirical performance of the aforementioned policies, and when

combined with the computational simplicity of πadrel compared to πadopt and πroll,

make us believe that πadrel can be the preferred policy in most practical applications.

The next example provides further corroboration to this statement. 2

Example 4 In this example we consider two problem instances defined by the stochas-

tic graph of Figure 12 and the visitation requirement vectors N = (3, 1, 1, 0, 0) and

N = (1, 2, 2, 2, 1). The solution of the corresponding relaxing LPs indicates that the

problem instance defined by N = (3, 1, 1, 0, 0) satisfies the conditions of Theorem 8,

with the most difficult visitation requirement determined by the leaf node x4. On
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Figure 12: Example 4 – The stochastic graph for the considered problem instances

the other hand, the problem instance defined by N = (1, 2, 2, 2, 1) has a constant

ratio Ni/ρreli across all i = 4, . . . , 8. Figures 13 and 14 report the performance of the

policies πrel, πadrel and πroll in each of these two cases, as the corresponding vector

N is scaled to increasingly larger values. The reported values for the policy πrel

were obtained from the closed-form expression that characterizes the performance of

a simple randomized policy π as a function of the corresponding probability vector

ρπ, that was derived in Section 3.2. The performance of the policies πadrel and πroll

was estimated through simulation. As expected from Theorem 8, in the case of the

visitation requirement vector N = (3, 1, 1, 0, 0), the performance of all three policies

converges very fast to the lower bound V ∗rel(n) – c.f. Figure 13. On the other hand,

the ties of the ratios Ni/ρreli , i = 4, . . . , 8, in the case of the visitation requirement

vector N = (1, 2, 2, 2, 1), result in the divergence of the performance of the considered

policies from the lower bound V ∗rel(n) – c.f. Figure 14. However, as expected, the dis-

tance of the performance of these policies from V ∗rel(n) increases in a slow, sub-linear

manner with respect to n, so that the corresponding ratios V π(n)/V ∗rel(n) decrease to

one. Finally, it is worth-noticing that πadrel outperforms again the other two policies,

demonstrating a performance that is pretty close to the lower bound V ∗rel(n). 2
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Figure 13: Example 4 – The performance of various simple and adaptive randomized
policies compared to the lower bound V ∗rel(n), for the basic visitation requirement
vector N = (3, 1, 1, 0, 0) and n = 1, . . . , 7
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Figure 14: Example 4 – The performance of various simple and adaptive randomized
policies compared to the lower bound V ∗rel(n), for the basic visitation requirement
vector N = (1, 2, 2, 2, 1) and n = 1, . . . , 15
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3.4 Discussion

In this chapter we introduced the problem of the optimal node visitation in acyclic

stochastic digraphs, and developed a number of suboptimal but computationally ef-

ficient policies for it that are expected to demonstrate very good performance, espe-

cially as the posed visitation requirements grow to larger values. The presented results

are motivated by and are similar in spirit to some recent developments in stochastic

scheduling theory and the suboptimal control of Markov Decision Processes.

A remaining open issue is the formal investigation of the computational complex-

ity of the considered ONV problem. Some partial results along this line are provided

in Chapter 6 of this document. In the next chapter, we present an analytic treat-

ment of the performance of πadrel and we prove that for a broad set of requirement

vector choices, its expected performance is within a constant from the optimal as

the requirement vector is uniformly scaled to infinity. On the other hand, Chapter 5

introduces some additional variations of the ONV problem, that are motivated by

the implementational needs of the learning algorithm discussed in Chapter 2, and it

extends the results developed in this chapter to these new variations.
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CHAPTER IV

PERFORMANCE ANALYSIS OF POLICY πADREL

In this chapter, we complement the results of Chapter 3 by exploring the dynamics

underlying policy πadrel, the adaptive implementation of the randomized policy πrel.

We remind the reader that policy πadrel will revise the routing probabilities every time

a visitation requirement is satisfied, by formulating and re-solving the relaxing-LP.

The computational studies reported in Chapter 3 showed that πadrel has an excellent

performance and outperforms any other suboptimal policy applied on the ONV prob-

lem. These computational findings are backed up by the key result presented in this

chapter, that for a large set of requirement vector choices, the expected performance

of πadrel is O(1)-i.e, it is within a constant factor from the optimal- as the visitation

requirement vector is uniformly scaled to infinity.

4.1 An alternative characterization of the relaxing-LP

In this section we provide with an alternative characterization of the relaxing-LP,

defined in Chapter 3, that will guide the subsequent analysis of this chapter. Recall

that the relaxing-LP is given by the following linear program:

min
∑

a∈A(x0)

χa (103)

s.t. ∑
a:x∈S(a)

p(x; a) · χa =
∑
a∈A(x)

χa, ∀x ∈ X\({x0} ∪XL) (104)

∑
a:x∈S(a)

p(x; a) · χa ≥ Nx, ∀x ∈ XL, Nx > 0 (105)

χa ≥ 0, ∀a ∈
⋃

x∈X\XL

A(x) (106)
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An interpretation of an optimal solution of the relaxing LP, χ∗, is that it consti-

tutes a flow pattern that can satisfy the flow requirements for the terminal nodes,

x ∈ XL, expressed by the requirement vector N . Furthermore, let ρ be a vector of

dimensionality L that associates with each terminal node, x ∈ XL, the quantity

ρx =

∑
a:x∈S(a) p(x; a) · χ∗a∑

a∈A(x0) χ
∗
a

. (107)

Vector ρ is a probability distribution vector where each component ρx is the probabil-

ity of reaching terminal node x ∈ XL, given that the agent starts its graph traversal at

the root node x0 and subsequently follows the randomized policy πrel. More generally,

consider the set V consisting of the probability distribution vectors ρ′ that correspond

to the feasible solutions of the relaxing-LP. Assume the polyhedron P consisting of

all those vectors (χ, ρ′) that satisfy the following equations:

∑
a∈A(x0)

χa = 1 (108)

∑
a:x∈S(a)

p(x; a) · χa =
∑
a∈A(x)

χa, ∀x ∈ X\({x0} ∪XL) (109)

∑
a:x∈S(a)

p(x; a) · χa = ρ′x, ∀x ∈ XL (110)

χa ≥ 0, ∀a ∈
⋃

x∈X\XL

A(x) (111)

ρ′x ≥ 0, x ∈ XL, (112)

and define the projection [8] Π(P) by letting

Π(P) = {ρ′| there exist χ s.t. (χ, ρ′) ∈ P}. (113)

Then we have that V = Π(P). We proceed with the following theorem that provides

an alternative characterization of the relaxing-LP in terms of probability vectors

φ ∈ V .
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Theorem 9 There exist M probability vectors φ1, . . . , φM ∈ V, such that the relaxing-

LP of Equations 103-106 is equivalent to the following linear program:

min{
M∑
k=1

xk} (114)

s.t.

M∑
k=1

xk · φk −
M+L∑
k=M+1

xk · rk−M = N (115)

xk ≥ 0, k = 1, . . . ,M + L (116)

where r1, . . . , rL are the L-dimensional unit vectors.

Proof Since V is equal to the projection Π(P) then, from Chapter 2.8 of [8], V is

also a polyhedron. It is trivial to check that V is also bounded. Then, from Theorem

2.9 of [8], the set V is the convex hull of its extreme points. Hence, V can be assumed

to be of the form

V = {
M∑
i=1

λi · φi :
M∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,M} (117)

where φ1, . . . , φM are probability vectors and the extreme points of V . From Theorem

6 of Chapter 3, the objective value of the relaxing-LP is equal to

min
ρ̂∈V

max
x∈XL
{Nx
ρ̂x
} (118)

Note that,

max
x∈XL
{Nx
ρ̂x
} = min{y| y · ρ̂ ≥ N} (119)

= min{y| y ·
M∑
i=1

λi · φi ≥ N} (120)

where ρ̂ is replaced by a convex combination of the extreme points of V . By combining

Equations 118 and 120, the relaxing-LP can now be equivalently written

min{y} (121)
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s.t.

y ·
M∑
i=1

λi · φi ≥ N (122)

M∑
i=1

λi = 1 (123)

λi ≥ 0, i = 1, . . . ,M, (124)

x ≥ 0. (125)

Let xi = λi · y, i = 1, . . . ,M . Then, it is not hard to see that the linear program

expressed by Equations 121-125 can be re-written as

min{
M∑
i=1

xi} (126)

s.t.

M∑
i=1

xi · φi ≥ N (127)

xi ≥ 0, i = 1, . . . ,M. (128)

Finally, note that the linear program expressed by Equations 114-116 is the above

linear program in standard form.

From now on, when we refer to the relaxing-LP, we assume the formulation given

by Equations 114-116. Furthermore, we shall let y∗x denote the optimal dual variable

corresponding to the primal constraint for x ∈ XL. We shall refer to that dual linear

program as the dual-relaxing-LP. A first result that will be useful in the sequel, relates

the vector ρ defined by Equation 107, with the optimal solution of the dual-relaxing-

LP and is given by the following lemma:

Lemma 5 ∑
x:Nx>0

y∗x · ρx = 1. (129)
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Proof ∑
x:Nx>0

y∗x · ρx =
∑

x:Nx>0

y∗x · (
∑

a:x∈S(a) p(x; a) · χ∗a∑
a∈A(x0) χ

∗
a

) (130)

=
∑
x:y∗x>0

y∗x · (
Nx∑

a∈A(x0) χ
∗
a

) (131)

=

∑
x:y∗x>0 y

∗
x · Nx∑

a∈A(x0) χ
∗
a

(132)

= 1. (133)

Equation 130 follows from Equation 107 and Equation 131 follows from the comple-

mentary slackness conditions satisfied by the optimal solutions {χ∗a| a ∈ A(x), x ∈

X\XL} and {y∗x| x ∈ X}. Finally, Equation 133 is a direct consequence of the strong

duality property; the optimal objective value of the relaxing-LP is equal to the opti-

mal objective value of its dual.

In this section we developed an alternative characterization of the relaxing-LP that

is given by Theorem 9. This LP will be heavily used in the subsequent developments.

4.2 A first look into the expected performance of πadrel

In order to proceed with the analysis of πadrel, we recall the notion of macro-state

that was introduced in Section 3.2.3. We remind the reader that the ONV problem

state space can be partitioned into the state subsets defined by a common remaining

visitation requirement vector, N c, each of these subsets is called a macro-state. The

underlying process starts from the macro-state defined by N c = N , and at every

macro-transition, it proceeds to a macro-state where the corresponding vector N c′ is

obtained from N c by reducing one of its positive components by one unit. Further-

more, πadrel revises the routing probabilities at every visited macro-state, by replacing

the requirement vector N by the vector of the remaining visitation requirements N c

and re-solving the relaxing-LP. For each requirement vector N c, let V πadrel(N c) de-

note the expected cost-to-go implied by πadrel, let χ∗c be the optimal solution of the
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relaxing-LP corresponding to N c, and let Vrel(N c) denote its optimal value. Fur-

thermore, let ρc be the probability vector defined by the optimal solution χ∗c and

Equation 107.

For the rest of this section, we will work towards characterizing the difference

V πadrel(N )-Vrel(N ). For every requirement vectorN c, we define the quantities V k(N c),

k = 0, 1, . . . , |N c| through the following recursion:

V 0(N c) = Vrel(N c) (134)

V k(N c) = 1 +
∑

x:N cx>0

ρcx · V k−1((N c − Ix)) +
∑

x:N cx=0

ρcx · V k(N c) (135)

It is worth noticing that the quantity V k(N c) can be considered as the cost-to-go of a

finite horizon process that starts at the macro-state defined by N c, is driven by πadrel

for the first k macro-state transitions, and, thereafter, accumulates a boundary cost

given by Equation 134. Therefore, V |N
c|(N c) = V πadrel(N c). For every x ∈ XL with

N c
x > 0, define

δc,kx = V k(N c)− V k(N c − Ix), k = 0, . . . , |N c| − 1. (136)

Then Equation 135 can be re-written as

V k(N c) =
1∑

x:N cx>0 ρ
c
x

+
1∑

x:N cx>0 ρ
c
x

·
∑

x:N cx>0

ρcx · V k−1(N c − Ix) (137)

=
1∑

x:N cx>0 ρ
c
x

+
1∑

x:N cx>0 ρ
c
x

·
∑

x:N cx>0

ρcx · (V k−1(N c)− δc,k−1
x ) (138)

= V k−1(N c) +
1∑

x:N cx>0 ρ
c
x

· (1−
∑

x:N cx>0

ρcx · δc,k−1
x ) (139)

For any two visitation requirement vectors N c,N c′ such that N c′ ≤ N c, let padrel(N c,

N c′) denote the probability that the underlying process will visit macro-state N c′

given that it starts fromN c, and it is guided by πadrel. Then, the following proposition

will be useful in the sequel:
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Proposition 5 For every N c and 0 ≤ k ≤ |N c| − 1, we have that,

V k+1(N c)−V k(N c) =
∑

N c′≤N c,|N c′ |=|N c|−k

padrel(N c,N c′) ·(V 1(N c′)−V 0(N c′)) (140)

Proof Assume a vectorN c. We will prove Proposition 5 with an induction argument.

For k = 0, Equation 140 holds trivially. Assume that Proposition 5 holds for k = n−1.

Then we have that

V n+1(N c)− V n(N c)

=
1∑

x:N cx>0 ρ
c
x

·
∑

x:N cx>0

ρcx · (V n(N c − Ix)− V n−1(N c − Ix))

=
1∑

x:N cx>0 ρ
c
x

·
∑

x:N cx>0

ρcx · ∑
N c′ : |N c′ |=|N c−Ix|−(n−1)

padrel(N c − Ix,N c′) · (V 1(N c′)− V 0(N c′))


=

1∑
x:N cx>0 ρ

c
x

·
∑

x:N cx>0

ρcx · ∑
N c′ : |N c′ |=|N c|−n

padrel(N c − Ix,N c′) · (V 1(N c′)− V 0(N c′))


=

∑
N c′ : |N c′ |=|N c|−n

padrel(N c,N c′) · (V 1(N c′)− V 0(N c′))

The first equality follows from Equation 137 whereas the second equality is a direct

consequence of the induction hypothesis. Finally, the fourth equality follows from the

definition of the probabilities padrel(N c,N c′). Hence, the induction is complete and,

thus, Equation 140 holds for all k.

Now we are ready to provide a first characterization of the difference V πadrel(N ) −

83



Vrel(N ). From Proposition 5 we get that

V πadrel(N )− Vrel(N ) (141)

=

|N |−1∑
k=0

(V k+1(N )− V k(N )) (142)

=

|N |−1∑
k=0

∑
N c≤N ,|N c|=|N |−k

padrel(N ,N c) · (V 1(N c)− V 0(N c)) (143)

=
∑
N c≤N

padrel(N ,N c) · (V 1(N c)− V 0(N c)) (144)

For the rest of this section, we work towards a refined version of Equation 144. In

fact, the sum on the right hand side of Equation 144 can be restricted to a smaller

set of requirement vectors N c. In order to see this, let’s take a closer look at the

quantities V 0(N c) and V 1(N c). From Equations 139-134, we have that

V 1(N c)− V 0(N c) (145)

=
1∑

x:N cx>0 ρ
c
x

· (1−
∑

x:N cx>0

ρcx · δc,0x ) (146)

=
1∑

x:N cx>0 ρ
c
x

· (1−
∑

x:N cx>0

ρcx · (Vrel(N c)− Vrel(N c − Ix)) (147)

The differences Vrel(N c)− Vrel(N c − Ix) that appear at the right hand side of Equa-

tion 147 are bounded by the dual variables of the dual-relaxing-LP. That is, if

{yc∗x | x ∈ X} is an optimal solution of the Dual-Relaxing-LP, when the right hand

side vector N is replaced by the vector N c, then we have:

Lemma 6

Vrel(N c)− Vrel(N c − Ix) ≤ yc
∗

x , ∀x ∈ XL, N c
x > 0. (148)

Proof The vector yc
∗

is a subgradient [8] of Vrel at N c that is,

Vrel(N c) + (yc
∗
)T · (N c′ −N c) ≤ Vrel(N c′), ∀N c′ . (149)

84



Equation 148 now follows if we set N c′ = N c − Ix at Equation 149.

Now, from Lemmas 5 and 6, Equation 147 becomes

V 1(N c)− V 0(N c) ≥ 1∑
x:N cx>0 ρ

c
x

· (1−
∑

x:N cx>0

ρcx · yc
∗

x ) (150)

= 0 (151)

It becomes clear that if we define the set

M = {N c| V 0(N c) < V 1(N c)}, (152)

then, from Equation 151, Equation 144 can be refined to

V πadrel(N )− Vrel(N ) =
∑
N c∈M

padrel(N ,N c) · (V 1(N c)− V 0(N c)). (153)

The nature of the set M To make use of Equation 153, it is necessary to further

investigate the set M defined by Equation 152. From Equation 139 we get that

N c ∈M if and only if 1−
∑

x:N cx>0 ρ
c
x · δc,0x > 0. This last inequality is equivalent to

1−
∑

x:N cx>0

ρcx · (Vrel(N c)− Vrel(N c − Ix)) > 0. (154)

Furthermore, from Lemmas 5 and 6, we get that Equation 154 holds if and only if

there is an x ∈ XL, N c
x > 0, such that

Vrel(N c)− Vrel(N c − Ix) < yc
∗

x . (155)

Now, it is known from duality theory that Equation 155 holds if the two relaxing-

LP’s corresponding to N c and N c − Ix have a different optimal basis. Hence, we

conclude that the set M consists of those vectors N c for which there is at least one

x ∈ XL, N c
x > 0, such that the relaxing-LP’s corresponding to the requirement

vectors N c and N c − Ix have different optimal bases. This interpretation of the set

M will be extremely useful when we make use of Equation 153.

A result that will further facilitate the use of Equation 153 concerns the following

uniform bounding of the differences V 1(N c)− V 0(N c) for all N c:
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Theorem 10 There exist a positive number K > 0 such that

V 1(N c)− V 0(N c) ≤ K, ∀N c (156)

Proof It follows from Equations 136 and 139 that

V 1(N c)− V 0(N c) ≤ 1∑
x:N cx>0 ρ

c
x

. (157)

Now suppose that for every ε > 0, there is a requirement vector N c′ , such that the

corresponding probability vector ρc
′
, given by

ρc
′
= arg min

ρ̂∈V
max
x:N c′x >0

{N
c′
x

ρ̂x
}, (158)

satisfies
∑

x:N c′x >0 ρ
c′
x ≤ ε. Furthermore, let ρ∗ = arg minhatrho∈V maxx∈XL{1

ρ̂
} and

assume that ε is chosen small enough to satisfy ε < ρ∗x, ∀x ∈ XL. Then, we have that

max
x:N c′x >0

{N
c′
x

ρc′x
} ≥ max

x:N c′x >0
{N

c′
x

ε
} (159)

> max
x:N c′x >0

{N
c′
x

ρ∗x
} (160)

Now, from Equations 158 and 160, we reach a contradiction. Hence,
∑

x∈XL ρcx is

bounded from below for every N c. Finally, Theorem 10 follows immediately from

Equation 157.

In this section, we investigated the difference V πadrel(N ) − Vrel(N ) and derived

Equation 153. The main tools that we will use in the sequel is the alternative relaxing-

LP characterization given by Theorem 9, Equation 153 and Theorem 10.

4.3 Some observations on the optimal solution of the
relaxing-LP

In this section, we take a closer look at the optimal solution of the relaxing-LP and

uncover some useful properties of it. The linear program expressed by Equations 114-

116, is a standard form linear program with L equality constraints andM+L variables.
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A vector x is a basic solution if there exist indices B(1), . . . , B(L) such that the cor-

responding problem columns are linearly independent and xi = 0, i 6= B(1), . . . B(L).

The variables xi, i = B(1), . . . , B(L), are called basic variables. Let x∗ be an opti-

mal solution of the linear program expressed by equations 114-116, let m ≥ 1 be the

number of the basic variables xi for which 1 ∈ {1, . . . ,M and let

B = [φB(1), . . . , φB(m), rB(m+1)−M , . . . , rB(L)−M ] (161)

be the corresponding optimal basis matrix. Then, we have xi = 0 for every non-basic

variable, while the vector of the basic variables, x∗B = [xB(1), . . . , xB(L)], is given by

x∗B = B−1 · N (162)

Furthermore, for a standard form linear program with m constraints and n variables

(m < n), a basic solution x is said to be degenerate if more than n − m of the

components of x are zero. In other words, a basic solution is degenerate if one or

more basic variables is zero. Hence, for the relaxing LP expressed by Equations 114-

116, we have the following observation:

Observation 1: The optimal solution x∗ is non-degenerate if and only if B−1·N > 0.

If we replace the requirement vector N of Equation 115 by the vector N c, we

want to check whether the basis expressed by the matrix B is still optimal. The basic

matrix B is optimal if (i) B−1 · N c ≥ 0 and (ii) the reduced costs are no-negative.

Since the reduced costs do not involve the vector N c, this leads us to the following

observation:

Observation 2: If we replace the vector N of Equation 115 by a vector N c, the

basis B remains optimal if B−1 · N c ≥ 0.

We provide with a definition and two additional observations that will be useful

in the sequel.

Definition 2 Let the ith row of the matrix B−1 be given by (bi)T = [bi1, . . . , b
i
L].
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The next observation concerns the first m rows (bi)T , i = 1, . . . ,m. Recall that m

is the number of probability vectors φB(i), i = 1, . . . ,m, that belong to the optimal

basis B. Then,

Observation 3:

bij = 0, 1 ≤ i ≤ m, j ∈ {B(m+ 1)−M, . . . , B(L)−M}. (163)

To prove Equation 163, notice that, as a direct consequence of Equation 161, the

relation B−1 ·B = I, and the definition of the vectors bi, i = 1, . . . , L, we have that

(bi)T · rB(m+1)−M = . . . = (bi)T · rB(L)−M = 0, 1 ≤ i ≤ m. (164)

We also have that

(bi)T · rj = bij, i, j = 1, . . . , L (165)

Now, Equation 163 follows from Equation 164 and 165.

The next observation concerns the rows (bi)T , i = m + 1, . . . , L. Each such row

i corresponds to a terminal node B(i) −M . Under the assumption that B is non-

degenerate, the terminal nodes B(i)−M, i = m+ 1, . . . , L receive fluid that exceeds

their respective requirement. We notice that

Observation 4:

bij =


0, if j ∈ {B(m+ 1)−M, . . . , B(L)−M}\{B(i)−M},

−1, if j = B(i)−M,

(166)

and

(bi)T · φB(j) = 0, m+ 1 ≤ i ≤ L, j = 1, . . . ,m. (167)

From know on, we define

j(i) = B(i)−M, i = m+ 1, . . . , L. (168)

and let

B = {1, . . . , L}\{B(m+ 1)−M, . . . , B(L)−M} (169)
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Then for every requirement vector N c and i ∈ {m+ 1, . . . , L}, we have

L∑
j=1

bij · N c
j =

∑
j∈B

bij · N c
j −N c

j(i). (170)

Recapitulating this section, we defined the notation for the optimal basis and the

corresponding solution of the relaxing-LP, and we provided some properties of them.

In particular, Observation 1 provided a non-degeneracy condition for the optimal

solution of the relaxing-LP, Observation 2 provided an optimality condition for the

optimal basis B, and Observations 3 and 4 provided some properties of the rows of

B−1 that will be useful in the sequel. Now we are ready to explore in more detail the

dynamics governing the ONV problem evolution under πadrel.

4.4 The dynamics of the ONV problem under πadrel

The policy πadrel is obtained by re-solving the relaxing-LP at every visited macro-

state. For the rest of this section, when we refer to πadrel, we assume that the process

starts at the macro-state defined by N c = n · N , and at every macro-transition, it

proceeds to a macro-state where the corresponding vector N c′ is obtained by N c by

reducing one of its positive components by one unit. We also let W k, k = 1, . . . , n·|N |

denote the requirement vector characterizing the kth visited macro-state.

Since the starting macro-state is characterized by a scaled requirement vector n·N ,

the optimal basis characterizing the macro-state, is the same basis B corresponding

to vector N . For the initial macro-state, we distinguish two sets of terminal nodes.

Those nodes j that receive exactly n ·Nj volume of fluid in the optimal solution of the

relaxing-LP, and those that the received fluid exceeds their respective requirement.

Given that the optimal solution of the relaxing-LP, described by Equations 114-116,

is non-degenerate, we can identify these two sets of nodes by examining the unit

vectors ri, i = 1, . . . , L, that are members of the optimal basis B. If, for example,

r1 belongs to B then the terminal node 1 receives a fluid volume that exceeds its

requirement n · N1. From the description of the basis B, given by Equation 161, the
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set {B(m + 1) −M, . . . , B(L) −M} contains the indices of the terminal nodes that

receive positive excess fluid. Hence,the set B defined by Equation 169 admits the

following natural interpretation:

Property B1: For a non-degenerate optimal basis B, the set B defined by Equa-

tion 169 contains the indices of those terminal nodes that receive no excess fluid.

The set of terminal nodes B will play an important role in the analysis of the ex-

pected performance of πadrel. As we will see later, the reductions of the visitation

requirements at nodes belonging in set B play a crucial role in the shaping of the per-

formance of πadrel. This understanding will be an important step towards the main

result of this chapter.

Now, let’s take a look at the macro-state transition probabilities under πadrel. Re-

call that W k denotes the requirement vector characterizing the kth visited macrostate.

Furthermore, recall that the terminal node fluid pattern defines the probability dis-

tribution of visiting the graph terminal nodes. The following definition will be useful

in the sequel:

Definition 3 Let the terminal node fluid pattern, at the kth macro-state, be given by

the vector fk = (fk1 , . . . , f
k
L) and let fk0 =

∑
j:Wk

j >0 f
k
j be the total amount of fluid that

reaches the nodes with a positive visitation requirement.

Then the probability of transitioning out of the kth macro-state through terminal

node j : W k
j > 0 is given by pkj =

fkj
fk0

. Notice that pkj is the conditional probability

that the process will visit terminal node j : W k
j > 0 given that the process will visit

a terminal node with a positive visitation requirement. Hence, we can state that:

Property B2: Given a requirement vector W k, the probability of a macro-state

transition through terminal node j : W k
j > 0 is given by pkj =

fkj
fk0

.

Next we consider the impact of a requirement reduction (i) on the optimal solution

of the relaxing-LP, and, (ii) on the implied terminal node fluid pattern. Assume that

we are on the kth macro-state, with a requirement vector W k, the optimal basis
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B is given by Equation 161 and it is non-degenerate. Then the vector of the basic

variables is given by B−1 ·W k and, hence, the values of the L basic variables are equal

to
∑L

j=1 b
i
j ·W k

j , i = 1, . . . , L. Assume now, that we have a requirement reduction at

a node j 6∈ B, that is, at a node with an excess flow and let W k+1 be the resulting

requirement vector. Since the reduction is made at a node j 6∈ B, we must have that

W k+1
i = W k

i , i ∈ B. From Observation 3 we know that bij = 0for 1 ≤ i ≤ m and

j 6∈ B. Hence, for 1 ≤ i ≤ m, we have that

L∑
j=1

bij ·W k+1
j =

∑
j∈B

bij ·W k+1
j (171)

=
∑
j∈B

bij ·W k
j (172)

> 0 (173)

On the other hand, from Observation 4, we know that bij = 0 or bij = −1 for m+ 1 ≤

i ≤ L and j 6∈ B. Hence, for m+ 1 ≤ i ≤ L we have that

L∑
j=1

bij ·W k+1
j =

∑
j∈B

bij ·W k+1
j −W k+1

j(i) (174)

≥
∑
j∈B

bij ·W k
j −W k

j(i) (175)

=
L∑
j=1

bij ·W k
j (176)

> 0 (177)

Hence, from Equations 173 and 177, we get that

L∑
j=1

bij ·W k+1
j > 0, i = 1, . . . , L. (178)

Equation 178 implies that, after a requirement reduction from a node j 6∈ B, the

basis B remains optimal and non-degenerate. Furthermore, the fluid that reaches

each terminal node is unaffected. To see this, notice that the terminal node fluid

pattern depends on the first m basic variables given by
∑L

j=1 b
i
j ·W k

j , i = 1, . . . ,m.

Each such variable
∑L

j=1 b
i
j ·W k

j , denotes a fluid volume that is distributed to the
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terminal nodes according to proportions defined by the probability vector φB(i), i =

1, . . . ,m. We already argued that the basis B remains optimal for W k+1. Also,

Equations 171-172 imply that the first m basic variables remain the same for the

relaxing-LP’s corresponding to the vectors W k and W k+1. Therefore, the terminal

node fluid pattern remains unaffected for the macro-states W k and W k+1. Hence, we

conclude that:

Property B3: Given a non-degenerate optimal basis B, a requirement reduction

from a terminal node j 6∈ B does not affect either the optimal basis or the terminal

node fluid pattern induced by the new relaxing-LP.

Property B3 further implies that if we replace the requirement vector n · N by

n · N ′, where

N ′x =


Nx, x ∈ B,

0, otherwise,

(179)

then the new relaxing-LP corresponding to n · N ′, has the same optimal basis B and

the terminal node fluid pattern remains the same. Therefore,

Property B4: The optimal value of the relaxing-LP and the terminal node fluid

pattern remains unaffected if we replace n · N by n · N ′ defined by Equation 179.

Next, we focus on the ONV problem with the visitation requirement vector N ′

defined by Equation 179. We have already argued that for W 0 = n · N ′ and while

the optimal basis is equal to B, the flow reaching a node j ∈ B is exactly equal to

the remaining visitation requirement. An immediate implication is that, for W 0 and

the subsequent macro-states W k where the optimal basis is B, we choose a node j

with probability
Wk
j

n|N ′|−k , where W k
j is the number of remaining requirements for the

terminal node j. Notice that, while the optimal basis is B, the requirement reduction

process for this ONV problem is a sampling without replacement from a population

of n · |N ′| objects with n · N ′j objects of each kind.
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Property B5: For W 0 = n · N ′ and all the subsequent macro-states where the op-

timal basis remains equal to B, the requirement reduction process under πadrel is a

sampling without replacement from a population of n · |N ′| objects with n ·N ′j , j ∈ B,

objects of each kind.

Properties B4 and B5 provide with some properties for the ONV problem correspond-

ing to the truncated requirement vector N ′, given by Equation 179. Our further line

of analysis will first explore the expected performance of πadrel on this modified ONV

problem and it will show it to be O(1) with respect to the performance of the cor-

responding optimal policy. Subsequently, in a second step, we shall prove that the

performance attained by πadrel on the modified ONV problem is close to that attained

by the same policy on the original ONV problem.

Summarizing this section, we took a closer look at the solution of the relaxing-

LP and its implied macro-state transition dynamics. In particular, in Property B1

we identified a set of terminal nodes that will play a pivotal role in the subsequent

developments. In Property B2, we characterized the macro-state transitions according

to the fluid volumes reaching the set of terminal nodes. In Property B3, we examined

the implications that a requirement reduction has on the solution of the relaxing-

LP. Finally, in Properties B4 and B5 we examined an ONV problem version that is

defined by the reduced requirement vector given by Equation 179. The next section

considers the performance of πadrel on this modified ONV problem.

4.5 Asymptotic optimality of πadrel on the modified ONV
problem

In this section we examine the ONV problem where the requirement vector N is

replaced by the truncated vector N ′ given by Equation 179. We prove that, under

the assumption of the non-degeneracy of the basis B, the expected performance of

πadrel is O(1) from the optimal as the requirement vector N ′ is scaled by a factor

n ∈ Z+ to infinity. This is an important step towards proving the same result for the
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original vector N , since, as we will see in the next section, the two problems do not

differ significantly under πadrel.

The starting point for the subsequent derivation will be Equation 153 of Sec-

tion 4.2. Hence, first we show that

lim
n→∞

∑
N c∈M

padrel(n · N ′,N c) <∞. (180)

We remind the reader that for any requirement vectors N c and N c′ , padrel(N c,N c′)

denotes the probability that the underlying process will visit macro-state N c′ given

that it starts from N c, and it is guided by πadrel thereafter. In order to prove Equa-

tion 180 we should also recall the discussion towards the end of Section 4.2 where we

argued that the set of requirement vectorsM, given by Equation 152, consists of vec-

tors N c with the following property: There exists a terminal node x ∈ XL : N c
x > 0,

such that the relaxing-LP’s corresponding to N c
x and N c

x − Ix have a different opti-

mal basis. Since the basis B is, by hypothesis, non-degenerate, from Observation

1 of Section 4.3 we get that the optimality constraints are strictly positive, i.e.,∑
j∈B b

i
j · Nj > 0, i = 1, . . . , L. Hence, for a large enough n ∈ Z+, we may have

that n ·
∑

j∈B b
i
j · Nj − bix > 0, ∀x ∈ XL, i = 1, . . . , L. Therefore, from Observation

2, we conclude that the optimal basis B remains optimal for all requirement vectors

n · N ′ − Ix : N ′x > 0. In other words, n · N ′ 6∈ M. Hence, we may assume that

W 0 = n · N ′ 6∈ M. In order to prove Equation 180 we consider the first time (or first

macro-state transition) when the process enters the setM given that it started from

n · N ′, n ∈ Z+. Therefore, we define the hitting time

T nM = min{k ≤ n · |N ′| : W k ∈M, W 0 = n · N ′ 6∈ M}. (181)
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Then,

∑
N c∈M

padrel(n · N ′,N c) =

n|N ′|∑
k=1

∑
N c∈M: |N c|=n·|N ′|−k

padrel(n · N ′,N c) (182)

=

n|N ′|∑
k=1

E[I(W k ∈M)] (183)

= E[

n|N ′|∑
k=TnM

I(W k ∈M)] (184)

≤ E[n|N ′| − T nM]. (185)

Therefore if we prove that

lim
n→∞

E[n|N ′| − T nM] <∞, (186)

Equation 180 will follow. Equation 186 is proved in the next proposition.

Proposition 6 Assume a requirement vector N for which the optimal solution of

the relaxing-LP is non-degenerate. Then, for the requirement vector N ′ given by

Equation 179, and the hitting time T nM defined by Equation 181, we have that

lim
n→∞

E[n|N ′| − T nM] <∞, (187)

Proof Before proceeding with the proof, notice that during the evolution of the

ONV problem, the visitation requirements at nodes j 6∈ B will be zero. From now

on, we restrict summations over the set of terminal nodes to the set B. In order to

get a first insight on the hitting time T nM we define the cone, [8],

S1 = {N c| N c
j = 0, j 6∈ B, and

∑
j∈B

bij · N c
j ≥ 0, i = 1, . . . , L}. (188)

It is obvious that the requirement vector characterizing the starting macro-state,

W 0 = n ·N ′, lies strictly within the cone S1. As we already know, the setM contains

those requirement vectors N c with the property that there is a leaf node x : Nx > 0,

such that the relaxing LP’s corresponding to N c and N c − Ix have different optimal
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bases. As a result, the states belonging to S1∩M are on the “boundary” of the cone

S1; i.e. if N c ∈ S1 ∩M, then there is an x ∈ B with N c
x > 0 and an i ∈ {1, . . . , L}

such that ∑
j∈B

bij · N c
j − bix < 0, for some i = 1, . . . , L. (189)

Therefore, when we hit the set M for the first time, then we have already exited or

we are close to exit the cone S1. In the subsequent analysis, we will construct a cone

S2 such that S2 ⊂ S1 and the set S2 ∩M is finite. In the sequel, we will prove that

our process stays within the cone S2 all but a finite number of times as n→∞. This

construction will naturally lead us to prove Equation 186.

To construct the cone S2 we pick an ε > 0 and consider the vectors di ∈ RL, i =

1, . . . , L, such that

dij =


bij − ε, j ∈ B,

0, otherwise.

(190)

i = 1, . . . , L. Since the relaxing-LP is non-degenerate, by Observation 1 we have that∑L
j=1 b

i
j · N ′j > 0, i = 1, . . . , L. We choose ε small enough such that

∑
j∈B

dij · N ′j > 0, i = 1, . . . , L. (191)

Now define the cone

S2 = {N c| N c
j = 0, j 6∈ B, and

∑
j∈B

dij · N c
j ≥ 0, i = 1, . . . , L}. (192)

Equation 191 implies that N ′ lies strictly in S2. Next, and, given W 0 = n · N ′,

consider the hitting time

T nS2
= min{k ≤ n · |N ′| : W k /∈ S2, W

0 = n · N ′}. (193)

The hitting time T nS2
, defined by Equation 193, can be written as

T nS2
= min{k ≤ n|N ′| :

∑
j∈B

dij ·W k
j < 0, for some i ∈ {1, . . . , L}}. (194)
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It is easy to check that S2 ⊂ S1. Furthermore, the set S2 ∩M is finite. In order

to see it, assume a requirement vector N c ∈ S2 such that∑
j∈B

N c
j >

maxi,j b
i
j

ε
. (195)

Then we have ∑
j∈B

dij · N c
j ≥ 0 ⇒

∑
j∈B

bij · N c
j ≥ ε ·

∑
j∈B

N c
j (196)

⇒
∑
j∈B

bij · N c
j > max

i,j
bij. (197)

i = 1, . . . , L. Hence, from Equations 189 and 197, we conclude that, for any N c ∈ S2

satisfying the condition given by Equation 195, N c 6∈ M. Therefore, there is a

constant C =
maxi,j b

i
j

ε
such that

S2 ∩M ⊂ {N c : N c
j ≤ C, j = 1, . . . , L}. (198)

Consider the case where T nM ≤ T nS2
. Then W k hits the setM before it exits the cone

S2. In other words, W TnM ∈ S2 ∩M and, from Equation 198, we have W TnM ∈ {N c :

N c
j ≤ C, j = 1, . . . , L}. Consequently,

T nM ≤ T nS2
⇒ n · |N ′| − C · L ≤ T nM ≤ n · |N ′| (199)

⇒ n · |N ′| ≤ T nM + C · L. (200)

⇒ T nS2
≤ T nM + C · L. (201)

Equation 201 implies that, in order to prove 186, it suffices to show

E[n · |N ′| − T nS2
] <∞, as n→∞. (202)

For the rest of this proof, consider the random vectors Y λ ∈ Z+ defined by

Y λ := W λ−1 −W λ, λ = 1, . . . , n · |N ′|. (203)

It is evident from Equation 203, that the vector Y λ characterizes the λth macro-state

transition. In particular, it associates with each terminal node x ∈ XL a random
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variable Y λ
x , such that Y λ

x = 1 if there is a requirement reduction at terminal node x,

during the λth macro-state transition, and Y λ
x = 0 otherwise. Then, the process W λ

can be expressed as

W λ = n · N ′ −
λ∑
k=1

Y k, λ = 0, . . . , n · |N ′|. (204)

Define

d̄i =
∑
j∈B

dij ·
N ′j
|N ′|

, (205)

and

X i,λ =
∑
j∈B

dij · Y λ
j (206)

i = 1, . . . , L, λ = 1, . . . , n · |N |. Then from Equations 192, 193, 203, 205 and 206,

T nS2
= min{k ≤ n · |N ′| :

∑
j∈B

dij · (n · N ′j −
∑
j∈B

·Y λ
j ) < 0, for some i ∈ {1, . . . , L}}

= min{k ≤ n · |N ′| :
∑
j∈B

dij ·
k∑

λ=1

Y λ
j > n ·

∑
j∈B

dij · N ′j , for some i ∈ {1, . . . , L}}

= min{k ≤ n · |N ′| :
k∑

λ=1

∑
j∈B

dij · Y λ
j > n ·

∑
j∈B

dij · N ′j , for some i ∈ {1, . . . , L}}

= min{k ≤ n · |N ′| :
k∑

λ=1

X i,λ > n · |N ′| · d̄i, for some i ∈ {1, . . . , L}} (207)

From Property B5, we know that while the optimal basis is B, the requirement

reduction Y λ is a sampling without replacement from a population of n · N ′ objects

with n · |N ′j |, j ∈ B, objects of each type. Hence, for λ = 0, . . . , T nS2
and i = 1, . . . , L,

the random variables X i,λ can be considered as a sampling without replacement from

a population of n·|N ′| objects taking values in the set {dij : j ∈ B} with n·N ′j objects

having a value equal to dij. Then, from Equation 191 we have d̄i > 0, i = 1, . . . , L,

and from Proposition 7 in Appendix A, Equation 202 results immediately.

Now we have all the ingredients for the main result of this section. If we combine

Proposition 6 and Equation 185 we get that Equation 180 holds. Then, in the light
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of Equation 153, if we combine Equation 180 and Theorem 10, we get the following

result:

Theorem 11 Assume a requirement vector N for which the optimal solution of the

relaxing-LP is non-degenerate. Then, for the requirement vector N ′ given by Equa-

tion 179, we have that

lim
n→∞

(V πadrel(n · N ′)− Vrel(n · N ′)) <∞.

Now we are ready to proceed towards the main result of this chapter.

4.6 The asymptotic optimality of πadrel

In the previous section, we investigated the performance of πadrel on a truncated

version of the requirement vector n · N , n · N ′. In this section we examine the

performance of πadrel on the vector n · N . We show that the additional visitation

requirements of N do not contribute to the expected cost as N and N ′ are scaled to

infinity. In particular, we prove that

V πadrel(n · N )− V πadrel(n · N ′) <∞, (208)

as n→∞.

In order to prove Equation 208, we will simulate in parallel the two ONV problems

corresponding to N and N ′ using a common random number stream. In particular,

we generate in parallel the terminal node visitations using the node visitation prob-

abilities implied by the fluid volumes reaching the terminal nodes at every visited

macro-state. Let ONV-1 and ONV-2 be the problems corresponding to N and N ′

respectively. Keep in mind that ONV-1 and ONV-2 have a different macro-state

space and, hence, at every step of the simulation, each problem may be at different

macro-states.

From Property B4, the fluid pattern at the initial macro-state of ONV-1 and ONV-

2 is the same. Hence, our simulation will generate the same terminal node visitations
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for the first and the subsequent simulation steps while the terminal node fluid pattern

remains the same for both problems. We want to show that the dynamics of ONV-1

and ONV-2 are the same for the most part of the parallel simulation. Therefore, we

are interested in the first time when the terminal fluid pattern for the ONV-1 and

ONV-2 will differ, and, hence, the parallel simulation may generate different terminal

node visitations. Assume that, at some simulation step, there is a reduction at some

node j /∈ B for problem ONV-1. Then, from Property B3, the terminal node fluid

pattern will remain unaffected. The same thing will happen for problem ONV-2 since

there will be no requirement reduction at all. Hence, it is safe to assume that the

terminal node fluid pattern for ONV-1 and ONV-2 will differ only after a simulation

step that resulted in a reduction at a node j ∈ B for both ONV-1 and ONV-2.

In the light of the above observation, we will trace the evolution of the simulation

with respect to the ONV-2 problem. For reasons that will be evident later, we define

the following stopping time:

Definition 4 Let τn ∈ {1, . . . , n · |N ′|} be the macro-state transition for the ONV-

2 problem where, for the first time, there is a basis change for this problem or the

visitation requirements for some node j ∈ B are totally covered.

Let Dn denote the random difference between the cost realizations of the policy

πadrel over the requirement vectors n · N and n · N ′. Then

E[Dn] = V πadrel(n · N )− V πadrel(n · N ′) (209)

Now we define an event that will help us in the subsequent analysis:

Definition 5 Let En be the event that up to time τn, (i) the terminal node fluid

pattern is the same for problem ONV-1 and ONV-2, and (ii) all the visitation re-

quirements at nodes j 6∈ B for the ONV-1 problem have been covered.

It is important to notice that, under En, the cost realization for problems ONV-1

and ONV-2 will be the same under the parallel simulation, that is, E[Dn| En] = 0 .
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Hence, we can write

E[Dn] = E[Dn| En]P (En) + E[Dn| E ′n] · P (E ′n) (210)

= E[Dn| E ′n] · (1− P (En)) (211)

Now it is easy to see that E[Dn| E ′n] = O(n). Hence, in order to prove Equation 208,

it suffices to prove that

1− P (En) = O(n−1). (212)

For the rest of this section we will work towards proving Equation 212.

4.6.1 A closer look at the probability P (En)

For the ONV-2 problem, let Zk
j , j ∈ B, be random variables such that Zk

j = 1 if there

is a requirement reduction for a node j ∈ B during the kth requirement reduction from

the set B and zero otherwise. For j 6∈ B, let Zk
j be the number of node visitations to

terminal node j between the (k − 1)th and the kth reduction from B. Observe that,

for the ONV-1 problem, the amount of remaining requirements at a node j 6∈ B at

time τn is given by (n · Nj −
∑τn

λ=1 Z
λ
j )+. We are now ready to describe the event En

using the notation given above.

From Definition 5, the event En is the intersection of the following two events:

(i) the ONV-1 and ONV-2 problems have the same terminal fluid pattern up to the

time τn, and, (ii) the remaining visitation requirements at nodes j 6∈ B, for problem

ONV-1, have been covered by time τn. Let’s take a closer look at the first event.

If the terminal fluid patterns corresponding to problems ONV-1 and ONV-2 become

different some time before τn, then there should be a basis change for the ONV-1

problem before τn (by the definition of τn, the basis B of the ONV-2 problem will

remain the same up to τn). Remember that the ONV-1 and ONV-2 problems differ

because of the non-zero requirements that are present at nodes j /∈ B of the ONV-1

problem. Hence, those requirements should be the cause of a basis change for the
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ONV-1 problem before τn. This can happen only if the flow reaching a node j 6∈ B

is not enough to cover the respective requirement at ONV-1. In mathematical terms,

an optimality constraint corresponding to an index i ∈ {m + 1, . . . , L} 1 becomes

negative before τn. Recall that the relaxing-LP optimality constraints for the vector

N , are given by B−1 · N ≥ 0. Furthermore, recall that the ith row of B−1 is given by

the vector (bi)T , i ∈ {m+ 1, . . . , L}. Hence, the optimality constraints corresponding

to an index i ∈ {m+ 1, . . . , L} remain non-negative up to time τn if

min
k≤τn

L∑
j=1

bij ·W k
j ≥ 0, i ∈ {m+ 1, . . . , L}. (213)

From Observation 4, and for every requirement vector W k, we can write

L∑
j=1

bij ·W k
j =

∑
j∈B

bij ·W k
j − bij(i)W k

j(i), i ∈ {m+ 1, . . . , L}. (214)

Then Equation 213 can be written

min
k≤τn

(
∑
j∈B

bij ·W k
j −W k

j(i)) ≥ 0, i ∈ {m+ 1, . . . , L}. (215)

From the definition of the random vectors Zλ, λ = 0, . . . , n · · · |N ′|, given at the

beginning of this section, the remaining requirement W k
j , j ∈ B, can be replaced by

n ·Nj−
∑k

λ=1 Z
λ
j . On the other hand, for j 6∈ B, the requirement W k

j can be replaced

by (n · Nj(i) −
∑k

λ=1 Z
λ
j(i))

+. Then, Equation 215 can be written:

min
k≤τn

(
∑
j∈B

bij · (n · Nj −
k∑

λ=1

Zλ
j )− (n · Nj(i) −

k∑
λ=1

Zλ
j(i))

+) ≥ 0, (216)

i ∈ {m + 1, . . . , L}. Remember that for k ≤ τn, we have that
∑

j∈B b
i
j · (n · Nj −∑k

λ=1 Z
λ
j ) ≥ 0, i ∈ {m+1, . . . , L}, since those last equations are necessary optimality

1We remind the reader that, for a requirement vector N c with the corresponding relaxing-LP
optimal basis equal to B, the vector of optimal basic solutions is given by B−1 · N c. In the light of
Equations 115 and 161, the pricing of the last L−m variables denotes the excess flow at the nodes
j /∈ B, i.e., each of the optimality constraints,

∑L
j=1 b

i
j · N c

j ≥ 0, i ∈ {m + 1, . . . , L}, denotes the
excess flow at nodes j /∈ B.
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constraints for the ONV-2 problem. Hence, the event expressed by Equation 216 can

also be expressed as

min
k≤τn

(
∑
j∈B

bij · (n · Nj −
k∑

λ=1

Zλ
j )− (n · Nj(i) −

k∑
λ=1

Zλ
j(i))) ≥ 0, i ∈ {m+ 1, . . . , L}(217)

which can be further written as

min
k≤τn

L∑
j=1

bij · (n · Nj −
k∑

λ=1

Zλ
j ) ≥ 0 (218)

⇒ max
k≤τn

k∑
λ=1

L∑
j=1

bij · Zλ
j ≤ n ·

L∑
j=1

bij · Nj, i ∈ {m+ 1, . . . , L}. (219)

As we already mentioned, the event En is the intersection of two events, the first

of which is expressed by Equation 219. Furthermore, for the En to be true, we want

the visitation requirements at nodes j /∈ B for problem ONV-1 to have been covered

by time τn. This requirement can be expressed as

τn∑
λ=1

Zλ
j ≥ n · Nj, j 6∈ B. (220)

Hence, the event En is the intersection of the events expressed by Equations 219

and 220.

In order to simplify the above equations, for every i ∈ {m+ 1, . . . , L}, we define

U i,k =
k∑

λ=1

L∑
j=1

bij · Zλ
j , (221)

and

Gi,k =
∑
j∈B

bij · (n · Nj −
k∑

λ=1

Zλ
j ), (222)

k = 1, . . . , n · |N ′|. Then Equation 219 can be re-written as

max
k≤τn

U i,k ≤ n ·
L∑
j=1

bij · Nj, i ∈ {m+ 1, . . . , L}. (223)

From Observation 4 and Equations 221-222 we have that, for i ∈ {m+ 1, . . . , L},
τn∑
λ=1

Zλ
j(i) =

τn∑
λ=1

∑
j∈B

bijZ
λ
j − U i,τn (224)

= n ·
∑
j∈B

bij · Nj −Gi,τn − U i,τn . (225)

103



Then, Equation 220 can be re-written as

n ·
∑
j∈B

bij · Nj −Gi,τn − U i,τn ≤ n · Nj(i), i ∈ {m+ 1, . . . , L}, (226)

or

Gi,τn + U i,τn ≤ n ·
L∑
j=1

bij · Nj, i ∈ {m+ 1, . . . , L}. (227)

Hence, En is the intersection of the events given by Equations 223 and 227. Since,

from the non-degeneracy hypothesis,
∑L

j=1 b
i
j · Nj > 0, i = 1, . . . , L, we can assume

the existence of a constant b̄ > 0 such that min1≤i≤L
∑L

j=1 b
i
j · Nj > b̄. Then the

probability on the complement E ′n can be written as:

P (E ′n) ≤
L∑

i=m+1

P (max
k≤τn

U i,k > n ·
L∑
j=1

bij · Nj) (228)

+
L∑

i=m+1

P (Gi,τn + U i,τn > n ·
L∑
j=1

bij · Nj) (229)

≤
L∑

i=m+1

P (max
k≤τn

U i,k > n · b̄) (230)

+
L∑

i=m+1

P (Gi,τn + U i,τn > n · b̄) (231)

≤
L∑

i=m+1

P (max
k≤τn

U i,k > n · b̄) (232)

+
L∑

i=m+1

P (Gi,τn > n · b̄
2

) +
L∑

i=m+1

P (U i,τn > n · b̄
2

) (233)

≤ 2
L∑

i=m+1

P (max
k≤τn

U i,k > n · b̄
2

) (234)

+
L∑

i=m+1

P (Gi,τn > n · b̄
2

) (235)

In the next two sections, we concentrate on characterizing the probabilities on the

right hand side of Equation 235 involving the quantities U i,k and Gi,k.
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4.6.2 A closer look at the quantities Gi,k

Before we proceed with the analysis of the quantities Gi,k, we prove that for the most

part of the ONV-2 problem, the optimal basis is B and the visitation requirements

of the nodes j ∈ B are positive, as n · N ′ is scaled to infinity. This result is of similar

nature and essentially strengthens the result of Equation 186, where we prove that

for the most time, the optimal basis is B. The result is given by the following lemma:

Lemma 7

E[n · |N ′| − τn] <∞ (236)

as n→∞.

Proof Before we proceed with the proof, we remind the reader that we observe the

time τn on the evolution of the ONV-2 problem. Furthermore, we remind the reader

the definition of the random vectors Y λ ∈ ZL, λ = 0, . . . , n · |N ′|, given in the proof of

Proposition 6: Y λ ≡ W λ−1−W λ, λ = 1, . . . , n · |N ′|, i.e., the vector Y λ characterizes

the λth macro-state transition, associating with each terminal node x ∈ XL, a random

variable Y λ
x , such that Y λ

x = 1 if there is a requirement reduction at terminal node x,

during the λth macro-state transition, and Y λ
x = 0 otherwise.

Then, if T n0 is the first time for the ONV-2 problem, when the visitation require-

ment for some node j ∈ B reduces to zero, we can write

T n0 = min{k ≤ n · |N ′| : W k
i ≤ 0, for some i ∈ B}

= min{k ≤ n · |N ′| : n · Ni −
k∑

λ=1

Y λ
i ≤ 0, for some i ∈ B}

= min{k ≤ n · |N ′| :
k∑

λ=1

Y λ
i ≥ n · Ni, for some i ∈ B}. (237)

If we consider the vectors ci ∈ ZL, i = 1, . . . , L, such that cii = 1 and cij = 0, j 6= i,

and let

c̄i =
∑
j∈B

cij ·
Nj
|N ′|

, i ∈ B, (238)
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and

X i,λ
0 =

∑
j∈B

cij · Y λ
j , i ∈ B, 1 ≤ λ ≤ n · |N ′|,

then,

T n0 = min{k ≤ n · |N ′| :
k∑

λ=1

∑
j∈B

cij · Y λ
j ≥ n ·

∑
j∈B

cij · Nj, for some i ∈ B}

= min{k ≤ n · |N ′| :
k∑

λ=1

∑
j∈B

cij · Y λ
j ≥ n · |N ′| ·

∑
j∈B

cij ·
Nj
|N ′|

, for some i ∈ B}

= min{k ≤ n · |N ′| :
k∑

λ=1

X i,λ
0 ≥ n · |N ′| · c̄i, for some i ∈ B} (239)

Similarly, if T nB is the first time there is an optimal basis change for the ONV-2

problem, then

T nB = min{k ≤ n · |N ′| :
∑
j∈B

bij · (n · Nj −
k∑

λ=1

Y λ
j ) ≤ 0, for some i ∈ {1, . . . , L}}

If we define

X i,λ
B =

∑
j∈B

bij · Y λ
j , i = 1, . . . , L, λ = 0, . . . , n · · · |N ′|, (240)

and

b̄i =
∑
j∈B

bij ·
Nj
|N ′|

, i = 1, . . . , L, (241)

then, after some algebra, T nB can be written

T nB = min{k ≤ n · |N ′| :
k∑

λ=1

XB
i,λ ≥ n · |N ′| · b̄i, for some i ∈ {1, . . . , L}}.

We now have that

τn = min{T n0 , T nB}. (242)

Hence, τn is the minimum k ∈ {1, . . . , n · |N ′|} such that
∑k

λ=1 X
i,λ
0 ≥ n · |N ′| · c̄i for

some i ∈ B, or
∑k

λ=1 XB
j,λ ≥ n · |N ′| · b̄j for some j ∈ {1, . . . , L}. It is evident that

up to time τn, the processes X0
i,λ and XB

i,λ are a sampling without replacement and

from Proposition 7 given in Appendix A, we have that

lim
n→∞

E[n · |N ′| − τn] <∞. (243)
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Now, we have that

E[|Gi,τn|] = E[|
∑
j∈B

bij · (n · Nj −
τn∑
λ=1

Zλ
j )|] (244)

≤ E[max
i,j
{bij} ·

∑
j∈B

(n · Nj −
τn∑
λ=1

Zλ
j )] (245)

= max
i,j
{bij} · E[n · |N ′| − τn] (246)

where the first equality is a result of Equation 222, and the last equality is a direct

result of the definition of the random variables Zk
j . Hence, from Markov inequality

we get that

P (|Gi,τn| ≥ n · b̄
2

) ≤ 2

n · b̄
· E[|Gi,τn|] (247)

Finally from Equations 246 and 247 we get that

P (Gi,τn ≥ n · b̄
2

) = O(n−1). (248)

4.6.3 A closer look at the quantities U i,k

In this section we take a closer look at the quantities U i,k. Recall from the Definition 3

that, at the kth macro-state of the ONV-2 problem, the terminal node fluid pattern

is given by the vector fk = (fk1 , . . . , f
k
L). Let fkB =

∑
j∈B f

k
j . Under the assumption

that the terminal nodes j ∈ B have positive remaining visitation requirements, i.e.,∑k
λ=1 Z

λ
j < n · Nj, j ∈ B, we have that

E[Zk
j ] =

fkj
fkB
, j = 1, . . . , L. (249)

Notice that the fluid volume reaching the set of terminal nodes is determined by

the amount of fluid routed through each of the probability vectors φi, i = 1, . . . ,M ,

that belong to the optimal basis of the relaxing-LP, expressed by Equations 114-

116. Hence, while the optimal basis is B, the terminal node fluid vector, fk, is a
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linear combination of the basis vectors φB(i), i = 1, . . . ,m. From Equation 167 of

Observation 4, we have that (bi)T · φB(j) = 0, i = m+ 1, . . . , L, j = 1, . . . ,m. Hence,

we must also have (bi)T · fk = 0, i = m+ 1, . . . , L. Therefore,

fkj(i) =
∑
j∈B

bij · fkj , i = m+ 1, . . . , L. (250)

In the light of the above equation we have that:

E[
L∑
j=1

bij · Zk
j ] = E[

∑
j∈B

bij · Zk
j − Zk

j(i)] (251)

=
∑
j∈B

bij ·
fkj
fB
−
fkj(i)
fB

(252)

= 0, i = m+ 1, . . . , L. (253)

Remember that Equation 253 holds under the condition that (i) the optimal basis is B,

and (ii) the remaining visitation requirement for every node j ∈ B is positive. These

two conditions hold for the first macro-state of the ONV-2 problem, and, furthermore,

τn is the first time one of the above two conditions is violated. Therefore Equation 253

holds for all k’s such that 0 ≤ k ≤ τn. From the definition of the processes U i,k, given

by Equation 221, and Equation 253, we have the following lemma:

Lemma 8 For i = m+ 1, . . . , L, the process U i,k, 0 ≤ k ≤ τn, is a martingale.

Since τn is a stopping time, then U i,k∧τn , 0 ≤ k ≤ n · |N ′|, is a stopped martin-

gale [38]. A stopped martingale is a martingale [38] and, therefore, if we re-define

U i,k = U i,k∧τn , 0 ≤ k ≤ n · |N ′|, then U i,k, 0 ≤ k ≤ n · |N ′| is a martingale. In

order to quantify the probability involving the processes U i,k in the right hand side

of Equation 235, we use a martingale inequality given by the following theorem:

Theorem 12 [12] Let U be a martingale satisfying

1. Var(Uk|Uk−1) ≤ σ2
k, for 1 ≤ k ≤ n;

2. Uk − Uk−1 ≤ Λk, for 1 ≤ k ≤ n.
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Then, we have

P (Un − U0 ≥ λ) ≤ e
− λ2

2
Pn
i=1

(σ2
i

+Λ2
i
) (254)

In order to make use of Theorem 12 we have to establish that its conditions are

satisfied by the processes U i,k. The first condition is established by the following

lemma:

Lemma 9 There is a constant σ > 0 such that

Var(U i,k|U i,k−1) ≤ σ2 (255)

for all i = m+ 1, . . . , L, k = 0, . . . , n · |N ′|.

Proof We have that

Var(U i,k|U i,k−1) = E[(U i,k − E[U i,k|U i,k−1])2|U i,k−1] (256)

= E[(U i,k − U i,k−1)2|U i,k−1] (257)

We also have that

U i,k − U i,k−1 =


∑L

j=1 b
i
j · Zk

j , k ≤ τn

0, k > τn.

(258)

The quantity
∑L

j=1 b
i
j · Zk

j can be alternatively written as
∑

j∈B b
i
j · Zk

j − Zk
j(i) and

takes values in the set {bij −m : j ∈ B, m = 0, 1, . . .}. Each such value bij −m is

taken with probability (
fk
j(i)

fk
j(i)

+fkB
)m · f

k
j

fkB
. Let pi,k =

fk
j(i)

fk
j(i)

+fkB
and qkj =

fkj
fkB

, then

Var(U i,k|U i,k−1) =
∑
j∈B

∞∑
m=0

(bij −m)2 · (
fkj(i)

fkj(i) + fkB
)m ·

fkj
fkB

(259)

=
∑
j∈B

∞∑
m=0

(bij −m)2 · (pi,k)m · qkj (260)

=
∑
j∈B

qkj ·
∞∑
m=0

(m2 − 2 ·m · bij + (bij)
2) · (pi,k)m (261)

=
∑
j∈B

qkj · (
pi,k(1 + pi,k)

(1− pi,k)3
− 2bij

pi,k

(1− pi,k)2
+ (bij)

2 1

1− pi,k
)(262)

≤
∑
j∈B

pi,k(1 + pi,k)− 2bijp
i,k(1− pi,k) + (bij)

2(1− pi,k)2

(1− pi,k)3
(263)
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There is a constant C > 0 such that pi,k(1+pi,k)−2bijp
i,k(1−pi,k)+(bij)

2(1−pi,k)2 ≤ C.

Hence, Equation 263 now becomes

Var(U i,k|U i,k−1) ≤ C · L
(1− pi,k)3

(264)

It can be proved that there is an ε > 0 such that 1− pi,k ≥ ε and, hence,

Var(U i,k|U i,k−1) ≤ C · L
ε3

(265)

for all i = m+1, . . . , L, k = 0, . . . , n·|N ′|. Set σ2 = C·L
ε3

and Lemma 9 is now proved.

The second condition of Theorem 12 is implied by the fact that

U i,k − U i,k−1 ≤
∑
j=1

bij · Zk
j (266)

≤ max
i,j

bij. (267)

Hence, if we set Λ = maxi,j b
i
j, Theorem 12, Lemma 9 and Equation 267 imply that

for all a > 0,

P (U i,k ≥ α · n) ≤ e
− α2·n2

2k(σ2+Λ2) (268)

and hence,

P ( max
0≤k≤τn

U i,k ≥ α · n) = P ( max
0≤k≤n·|N ′|

U i,k ≥ α · n) (269)

≤
n·|N ′|∑
k=0

P (U i,k ≥ α · n) (270)

≤
n·|N ′|∑
k=0

e
− α2·n2

2k(σ2+Λ2) (271)

≤ n · |N ′| · e−
α2·n

2(σ2+Λ2) (272)

Therefore,

P ( max
0≤k≤τn

U i,k ≥ α · n) = O(e−n) (273)

Now we are ready for the main result of this chapter.
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4.6.4 Bringing everything together

From Equations 248 and 273, Equation 235 becomes

1− P (En) = O(n−1) (274)

and, hence, in the light of the introductory discussion of section 4.6,

V πadrel(n · N )− V πadrel(n · N ′) <∞ (275)

as n→∞. Finally,

Theorem 13 Assume a requirement vector N such that the corresponding solution

of the relaxing-LP is non-degenerate. Then,

lim
n→∞

(V πadrel(n · N )− V ∗(n · N )) <∞. (276)

Proof Theorem 13 follows from Theorem 11, Equation 275 and the properties

Vrel(n · N ′) = Vrel(n · N ) and V ∗(n · N ) ≥ Vrel(n · N ).

The question that naturally arises after Theorem 13, is what happens when the

relaxing-LP basis is degenerate. Up to this date we do not have a clear cut result

regarding this case. However, we have numerical evidence that in the case of degen-

eracy, the tight performance bound suggested by Theorem 13 may not hold, as we

see in the following example.

Example 5 In this example we examine the relaxing-LP for the acyclic graph given

in Figure 5 of Section 3.1.1. For a requirement vector N=

N1

N2

, the relaxing-LP is

expressed by the following formulation:

min{x1 + x2}
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Figure 15: The optimality gap V πadrel(n · N )− V ∗(n · N ) against the scaling factor
n ∈ Z+, for the relaxing-LP of Example 5.

s.t.

x1φ
1 + x2 · φ2 − x3 · r1 − x4 · r2 = N (277)

xi ≥ 0, i = 1, . . . , 4 (278)

where

φ1=

0.5

0.5

, φ2=

0.3

0.7

, r1=

1

0

 and r2=

0

1

.

For the requirement vectorN=

2

2

, the optimal solution is (x∗1, x
∗
2, x
∗
3, x
∗
4) = (4, 0, 0, 0)

and it is degenerate. We conducted a simulation-based evaluation of V πadrel(n · N )

and we obtained the optimality gap V πadrel(n ·N )−V ∗(n ·N ), n ∈ Z+, as illustrated

in Figure 15. The optimality gap seems to be an increasing function of the scaling

factor n ∈ Z+, providing evidence that policy πadrel may not be O(1) from the opti-

mal in case of degeneracy. It is worthwhile to notice that the requirement vectors for

which the relaxing-LP has a degenerate basis, are of the form:

n·

1

1

, n·

3

7

, n ∈ Z+.
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or in other words, the requirement vectors that belong to the boundary of the cone

defined by the vectors φ1 and φ2. For any other vector, the expected cost of policy

πadrel should be within O(1) from the optimal, as it is uniformly scaled to infinity. 2

Another interesting question concerns the requirement vectors N for which the

relaxing-LP has a degenerate optimal basis. We already argued that, for a requirement

vector N with a relaxing-LP optimal basis B, the non-degeneracy condition implies

B−1 · N > 0. From a geometric viewpoint, notice that the inverse matrix of the

optimal basis, B−1, defines a polyhedral cone

PB = {b ∈ Zn
+| B−1 · b ≥ 0}. (279)

Obviously, there are finitely many bases and, hence, finitely many polyhedral cones

that cover the space ZL
+. The non-degeneracy condition for the vector N , implies that

N lies strictly within some cone PB. For those vectors, the expected cost of policy

πadrel should be within O(1) from the optimal, as this vector is uniformly scaled to

infinity.

4.7 Discussion

In this chapter, we treated the suboptimal but computationally tractable policy πadrel.

Our analysis was based on an alternative characterization of the relaxing-LP and the

partitioning of the state space into the state space subsets defined by a common visi-

tation requirement vector. The undertaken approach led to a profound understanding

of the dynamics governing the evolution of the ONV problem under πadrel, and de-

livered the main result of this chapter, that for a large number of requirement vector

choices the expected performance of πadrel is O(1) from the optimal, as the visitation

requirement vector is uniformly scaled to infinity. In the next chapter, we extend

our results on the ONV problem, to some new variations that are important for the

effective usage of the ONV problem in the application context that motivated it.
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CHAPTER V

OPTIMAL NODE VISITATION IN ACYCLIC

STOCHASTIC DIGRAPHS WITH MULTI-THREADED

TRAVERSALS AND INTERNAL VISITATION

REQUIREMENTS

In this chapter, we extend the results of Chapter 3 to some new variations of the ONV

problem, that can be obtained from the addition of the following two assumptions in

the original definition: Under the first assumption, the tokens traversing the graph

can “split” during certain transitions to a number of (sub-)tokens, allowing, thus, for

multi-threaded graph traversals and the satisfaction of many visitation requirements

during a single traversal; the resulting problem variation will be referred to as ONV-I.

Under the second assumption, there are additional visitation requirements attached

to the internal graph nodes, which, however, can be served only when the visitation

requirements of their successors have been fully met; this new problem variation will

be referred to as ONV-II. Beyond its theoretical interest, the considered extension

of the ONV problem to these new variations is crucial for the effective utilization of

the relevant results in the application context of Chapter 2 that motivated the ONV

problem in the first place.

From an analytical standpoint, the ONV problem variations present more compli-

cated dynamics compared to the dynamics underlying the original problem definition.

More specifically, the token “splitting” effect introduced to the ONV-I variation ne-

cessitates the tracing, during a single graph traversal, of a number of tokens that can

be exponentially large with respect to the size of the underlying graph, and thus, it

adds another element of complexity to that of the original problem. Similarly, in the
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ONV-II variation, an additional dimension to the problem complexity arises from the

partial ordering imposed on the visitation requirements. These complications prevent

the extension of the methodological framework originally developed in Chapter 3 to

the new problem contexts, rendering, thus, nontrivial the extension of the results

derived in that chapter to the new problem variations, and warranting a systematic

re-investigation.

In the light of the above remarks, the key developments and contributions of the

work presented in this chapter can be summarized as follows:

1. It is shown that the ONV-I problem variation can also be modeled as an SSP

problem and that, similar to the original ONV case, its fluid relaxation can

provide the basis for a suboptimal randomized policy that is computationally

tractable and asymptotically optimal. Using renewal theory [38] arguments, we

also establish bounds for the divergence of the performance of the aforemen-

tioned policy from the performance of the optimal policy, as the posed visitation

requirements are scaled by a factor n that grows to infinity. Furthermore, this

analysis has revealed a number of cases of considerable practical significance

where the aforementioned divergence remains bounded.

2. On the other hand, the optimization problem resulting from the fluid relaxation

of the ONV-II problem is of limited computational tractability. Hence, in order

to obtain computationally efficient policies for this ONV variation, we confine

our analysis within a class of randomized policies that are easily implementable,

and we provide a fluid relaxation that leads to a policy which is asymptotically

optimal within the scope of the considered policies.

The rest of the chapter is organized as follows: Section 5.1 addresses the ONV-I

problem (i.e., the ONV problem with multi-threaded traversals), discussing its SSP

formulation, the fluid relaxation, and an asymptotically optimal policy that can be
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defined on the basis of this relaxation. Subsequently, Section 5.2 introduces the

analysis of the ONV-II problem within a class of randomized policies that are easily

implementable, and we provide a fluid relaxation that leads to a policy which is

asymptotically optimal within the scope of the considered policies.

5.1 The ONV problem with multi-threaded traversals

5.1.1 Problem description and its MDP formulation

A formal description of the ONV-I problem An instance of the problem con-

sidered in this section is completely defined by a quadruple E = (X,A,P ,N ), where

• X is a finite set of nodes , that is partitioned into a sequence of “layers”, X0,

X1, . . . , XL. X0 = {x0} defines the source or root node, while nodes x ∈ XL

are the terminal or leaf nodes.

• A is a set function defined on X, that maps each x ∈ X to the finite, non-empty

set A(x), comprising all the decisions / actions that can be executed by the

control agent at node x. It is further assumed that for x 6= x′, A(x)∩A(x′) = ∅.

• P is the transition function, defined on
⋃
x∈X\XL A(x), that associates with

every action a in this set a discrete probability distribution p(·; a). The sup-

port sets, S(a), of the distributions p(·; a) consist of multi-sets1 that satisfy

the following property: For any given action a ∈ A(x) with x ∈ X i for some

i = 0, . . . , L− 1, the elements of S(a) are multi-sets defined on
⋃L
j=i+1 X

j.

• N is the visitation requirement vector , that associates with each node x ∈ XL

a visitation requirement Nx ∈ Z+
0 . The support ||N || of N is defined by the

nodes x ∈ XL with Nx > 0; we shall refer to nodes x ∈ ||N || as the problem

“target” nodes.

1We remind the reader that a multi-set defined on a set X is essentially a vector of dimensionality
|X| and with elements belonging to Z+

0 .

116



1

�
�
�
�

�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

X0
a1 a2

0.3 0.7

X1 X2 X3

0.5 0.5

1 2 1 1

2 1

Figure 16: The stochastic graph for the problem instance considered in Example 6.

• Finally, we define the instance size |E| ≡ |X| + |
⋃
x∈X A(x)| + |N |, where

application of the operator | | on a set returns the cardinality of this set, while

application on a vector returns its l1 norm.

In the subsequent discussion we shall employ the variable vector N c to denote the

vector of the remaining visitation requirements. The control agent starts at period

t = 0, by placing a token at node x0, sets N c := N , and at every consecutive period

t = 1, 2, 3, . . . , it (i) observes the current configuration g, i.e. the number and position

of the tokens in the set X\ XL, and the vector of remaining visitation requirements,

N c, (ii) selects an action a ∈ A(x) and commands its execution on a single token

at node x, (iii) generates the new tokens at the nodes indicated by the multi-set

selected according to the probabilities p(·, a), (iv) updates N c
x to (N c

x − k)+ when

k tokens reach one of the terminal nodes, x ∈ XL, and finally, when the last token

exits the set X\XL, (v) resets itself by placing a token at the initial node x0, in

order to start another traversal. The entire operation terminates when all the node

visitation requirements have been reduced to zero. Our intention is to determine

an action selection scheme – or, a policy – π, that maps each configuration g to an

action π(g) ∈
⋃
x∈X\XL A(x) in a way that minimizes the expected number of graph

traversals until N c = 0.
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Example 6 As an example, we consider the problem instance depicted in Figure 16.

In this case, there are two actions, a1 and a2, emanating from the root node x0 and

three leaf nodes, x1, x2 and x3. The set S(a1) consists of two multi-sets νa1,1 = [1, 2, 0]

and νa1,2 = [0, 1, 0] whereas S(a2) consists of νa2,1 = [0, 1, 0] and νa2,2 = [0, 0, 1].

Furthermore, p(νa1,1; a1) = 0.5, p(νa1,2; a1) = 0.5, p(νa2,1; a2) = 0.3 and p(νa2,2; a2) =

0.7. In words, for each token emanating from x0 through a1, either one copy is

generated at leaf node x1 and two copies at leaf node x2 with probability 0.5 or a

single copy is generated at leaf node x2 with probability 0.5. On the other hand, for

each token emanating from x0 through a2, either one copy is generated at leaf node

x2 with probability 0.3 or one copy is generated at leaf node x3 with probability 0.7.

Finally we assume the requirement vector N = [2, 1, 1]. 2

The induced MDP problem The problem defined above can be further ab-

stracted to a Discrete Time Markov Decision Process, M = (S,A, t, c), where

• S is the finite set of states, identified with tuples (X ,N c), where (i) X denotes

a vector of dimensionality |X| − |XL| with each component Xx denoting the

number of tokens at node x ∈ X\ XL and (ii) N c ∈
∏

x∈XL{0, . . . ,Nx} denotes

the remaining visitation requirements.

• A is a set function defined on S that maps each state s ∈ S to the finite,

non-empty set A(s), comprising all the actions that are feasible in s. More

specifically, for s = (X ,N c),X > 0, A(s) coincides with
⋃
x∈X\XL:Xx>0

A(x).

Furthermore, for all states s = (X ,N c) with X = 0 and N c 6= 0, A(s) consists

of the single “resetting” action β.

• t : S ×
⋃
s∈S A(s) × S −→ [0, 1] is the MDP state transition function, i.e., a

function on all triplets (s, a, s′) with t(s, a, s′) being the probability to reach

state s′ from state s on action a. More specifically, for s = (X ,N c), a ∈ A(s)
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and s′ = (X ′,N c′ ,

t(s, a, s′) =



p(νa,i; a), if a 6= β, X ′y = Xy − 1 ≥ 0, a ∈ A(y),

X ′x = Xx + νxa,i, ∀x ∈ X/XL

with x 6= y, and N c′
x = (N c

x − νxa,i)+,

∀x ∈ XL, 1 ≤ i ≤ |S(a)|;

1, if a = β, X = 0, X ′ = 10;

0, otherwise.

(280)

In Equation 280, 10 denotes the unit vector with all its components equal to

zero except for the one corresponding to x0.

• c : S −→ {0, 1} is the cost function, where for s = (X ,N c),

c(s) =


1, if X = 0, N c 6= 0,

0, if otherwise.

(281)

Similar to the case of the original ONV problem, the set of states s = (X ,N ) with

N c = 0 constitute a closed class which is also cost-free, i.e., once the process enters

this class of states it will remain in it and there will be no more cost accumulation.

We shall represent this entire class of states with a single aggregate state, sT , which

we shall refer to as the problem terminal state; clearly, sT is absorbing and cost-free

under any policy π. In order to ensure the reachability of sT , from the initial state

s0, it is further assumed that for every node x ∈ XL, with Nx > 0, there exists at

least one sequence ξ(x) = a(0)s(0)a(1)s(1) . . . a(k(x))s(k(x)) such that (i) a(0) ∈ A(s0) with

t(s0, a(0), s(0)) > 0, (ii) ∀i = 1, . . . , k(x), a(i) ∈ A(s(i−1)) with t(s(i−1), a(i), s(i)) > 0,

and (iii) sk(x) = (X ,N c) with N c
x < Nx; we shall refer to this sequence as an action

path from node x0 to node x.

In the following, we are especially interested in a policy π∗, that, starting from the

initial state s0 ≡ (10,N ), will drive the underlying process to the terminal state sT
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with the minimum expected total cost. Let Vπ(s0) = Eπ[
∑∞

t=0 c(st)|s0 = s0], where π

is some given policy from the policy set Π, and the expectation Eπ[·] is taken over all

possible realizations under π. Then π∗ is formally defined by

π∗ = arg min
π∈Π

Vπ(s0). (282)

It is easy to see that under the aforestated assumptions, this problem is well defined,

and therefore, according to [2]:

Theorem 14 There exists a unique vector V ∗(s), s ∈ S, with V ∗(sT ) = 0 and with

its remaining components satisfying the Bellman equation

V ∗(s) = min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (283)

Furthermore, the vector V ∗(s) defines an optimal policy π∗, by setting for all s ∈

S\{sT},

π∗(s) := arg min
a∈A(s)

{c(s) +
∑
s′∈S

t(s, a, s′) · V ∗(s′)} (284)

5.1.2 A computationally efficient and asymptotically optimal policy for
the ONV-I problem

In Section 5.1.1, the ONV-I problem was treated by formulating it as an equivalent

Dynamic Programming problem. In that formulation, the problem state was defined

by the vector (X ,N c), whose first component denotes the number and the position

of the tokens in the problem-defining graph G, and the second component the vector

of the remaining visitation requirements. However, the cardinality of both, the state

space and the action sets associated with the different states is an exponential func-

tion of the problem size |E|, rendering this particular approach intractable, for most

problem instances. In Chapter 6 we establish that the intractability of the Dynamic

Programming approach is due to the inherent difficulty of the considered problem

rather than a deficiency of the particular method. We are thus motivated to study
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and develop a class of efficient, yet computationally tractable, policies that we shall

refer to as asymptotically optimal, since the ratio of their expected performance to V ∗

converges to unity as the node visitation requirement vector, N , is scaled to infinity.

The “Relaxing LP” and the policy πrel Next, we introduce and analyze the

performance of a particular randomized policy that is obtained through a continuous

– or “fluid” – relaxation of the original MDP problem. We shall refer to this policy as

πrel, and its definition relies on the optimal solution of the following LP formulation,

that will be called the “relaxing LP”:

min
∑

a∈A(x0)

χa (285)

s.t.

∑
a∈

S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a) · νxa,i · χa =
∑
a∈A(x)

χa, (286)

∀x ∈ X\ ({x0} ∪XL) (287)∑
a∈

S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a) · νxa,i · χa ≥ Nx, ∀x ∈ XL (288)

χa ≥ 0, ∀x ∈ X\XL, ∀a ∈ A(x) (289)

A natural interpretation of an optimal solution, χ∗, of the relaxing LP, is that

it constitutes a generalized flow pattern that can satisfy the flow requirements for

the terminal nodes x ∈ XL expressed by the visitation requirement vector, N , while

minimizing the total amount of flow induced into the graph. In particular, the gen-

eralized nature of the flow is expressed by the fact that, according to Equations 287-

288, the flow leaving a node, x, is magnified by the gains defined by the multi-sets

νa,i, 1 ≤ i ≤ |S(a)|.

Example 7 Consider the problem instance described in Example 6 and depicted in
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Figure 16. Then the relaxing LP is expressed by the following linear program:

min χa1 + χa2

s.t.

0.5 · 1 · χa1 ≥ 2

0.5 · 2 · χa1 + 0.5 · 1 · χa1 + 0.3 · 1 · χa2 ≥ 1

0.7 · 1 · χa2 ≥ 1

χa1 ≥ 0, χa2 ≥ 0.

2

Given an optimal solution χ∗ = {χ∗a| a ∈
⋃
x∈X\XL A(x)} of the LP defined

by Equations 285-289, policy πrel assigns to a state s = (X ,N c) with X 6= 0 an

action πrel(X ,N c) by (i) randomly picking a node x ∈ X\XL with Xx > 0 and

(ii) executing an action πrel(X ,N ;x) ∈ A(x) on a single token according to the

probability distribution

Prob(πrel(X ,N c;x) = a) =
χ∗a∑

a∈A(x) χ
∗
a

, a ∈ A(x). (290)

For states s = (X ,N ), with X = 0 and N c > 0, the policy executes with certainty

the unique action β ∈ A(s). Clearly the deployment of the aforestated policy πrel is

of polynomial complexity with respect to the problem size |E|.

The optimal value of the relaxing LP as a lower bound to V ∗ Let erelj denote

the amount of flow reaching leaf node xj when a unit amount of flow is induced into

the graph and it is conveyed according to the flow pattern defined by the routing

probabilities of policy πrel (cf. Eq. 290). Then erelj is equal to the expected number

of tokens reaching node xj during a single graph traversal under policy πrel, and we

have the following theorem:
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Theorem 15 Given an ONV-I problem instance E = (X,A,P ,N ), let V ∗rel and χ∗

respectively denote the optimal value and an optimal solution of the relaxing LP. Also,

let erelj , xj ∈ XL, be defined on the basis of χ∗ as indicated in the previous paragraph.

Then,

V ∗rel = max
j:Nj>0

{Nj
erelj
} ≤ V ∗ (291)

The proof of this theorem is similar to the proof of Theorem 6 in Chapter 3, and it

is omitted.

Establishing the asymptotic optimality of πrel Next we proceed to prove the

asymptotic optimality of πrel. For this, consider the problem sequence, {E(n)}, that is

induced by a problem instance E = (X,A,P ,N ) through the scaling of the visitation

requirement vector, N , by a factor n ∈ Z+. Also, in the following, we shall let

{V ∗rel(n)} denote the sequence of the optimal objective values of the relaxing LP

implied by the problem sequence {E(n)}, and {V ∗(n)} denote the sequence of the

corresponding optimal expected total costs. Finally, we define {V πrel(n)} as the

sequence of the expected costs incurred by the application of the randomized policy

πrel to the problem instances E(n). Before we proceed, we present a technical lemma

that is necessary in the subsequent derivations.

Lemma 10 Let X1, X2, . . . be i.i.d. random variables such that 0 ≤ X ≤ K, a.s. and

µ = E[X1]. Set S0 = 0, Sk =
∑k

i=1Xi and define ψn = max{k : Sk ≤ n · c}. Then

{n−r/2(ψn −
n · c
µ

)r, n ≥ 1} (292)

is uniformly integrable for every r ≥ 1.

Proof: Let ψ′n = min{k : Sk > n · c}. Then ψ′n is a stopping time and, from

Lemma 2.3 of [21], we have that

E[(

ψ′n∑
i=1

(Xi − µ))r] ≤ C(r, E[Xr]) · E[(ψ′n)r/2] (293)
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where C(r, E[Xr]) is a constant depending only on r and E[Xr]. Equation 293 further

implies that

E[n−r/2 · (
ψ′n∑
i=1

(Xi − µ))r] ≤ C(r, E[Xr]) · E[(
ψ′n
n

)r/2] (294)

From Equation 294 and Theorem 2.3 of [21], we get

sup
n≥1

E[n−r/2 · (
ψ′n∑
i=1

(Xi − µ))r] <∞ (295)

which implies the uniform integrability of {n−r/2 · (
∑ψ′n

i=1(Xi − µ))r, n ≥ 1} [9].

By the definition of the renewal process ψ′n,

n−1/2·
ψ′n∑
i=1

(Xi−µ)−n−1/2·K ≤ n−1/2·(n·c−µ·ψ′n) ≤ n−1/2·
ψ′n∑
i=1

(Xi−µ)+n−1/2·K (296)

which implies

|n−1/2 · (n · c− µ · ψ′n)| ≤ |n−1/2 ·
ψ′n∑
i=1

(Xi − µ)|+ n−1/2 ·K (297)

and based on the inequality (a+ b)r ≤ 2r−1 · (|a|r + |b|r), a, b ∈ R, we also get,

|n−1/2(n · c− µ · ψ′n)|r ≤ 2r−1 · (|n−1/2

ψ′n∑
i=1

(Xi − µ)|r + n−r/2 ·Kr) (298)

Hence, the uniform integrability of {n−r/2 · (
∑ψ′n

i=1(Xi − µ))r, n ≥ 1} and Equa-

tion 298 imply the uniform integrability of {n−r/2 · (n · c − µ · ψ′n)r, n ≥ 1}. Since

ψ′n = ψn + 1 we have that,

n−1/2 · (n · c− µ · ψn) = n−1/2 · (n · c− µ · ψ′n) + n−1/2 · µ (299)

which gives

n−r/2 · |n · c− µ · ψn|r ≤ 2r−1 · (n−r/2 · |n · c− µ · ψ′n|r + n−r/2 · µr) (300)

and implies the uniform integrability of {n−r/2 · (n · c− µ · ψn)r, n ≥ 1}. 2

Then, we have the following theorem:
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Theorem 16 Given an ONV-I problem instance E = (X,A,P ,N ), consider the

problem sequence E(n) that is obtained through the uniform scaling of the visitation

requirement vector N by a factor n ∈ Z+. Then, as n→∞,2

V πrel(n)− V ∗rel(n) = O(
√
n) (301)

Furthermore, if there exists a target leaf node xk such that, for any other target leaf

node xj, Nk
erelk

> maxj 6=k{ Njerelj
}, then, as n→∞,

V πrel(n)− V ∗rel(n) = O(1). (302)

Proof: Let X i
j denote the random number of tokens ending at leaf node xj during

the ith graph traversal under πrel and σ2
j = V ar(X i

j). Also, let {ψnj , n ≥ 0} be a

renewal process [38] associated with the sequence {X i
j} defined as

ψnj = max{k :
k∑
i=1

X i
j ≤ n · Nj}, (303)

with ψnj = 0 if X1
j > n · Nj, j : Nj > 0. Then the performance of the policy πrel

satisfies

V πrel(n) ≤ E[ max
j:Nj>0

{1 + ψnj }]. (304)

Hence,

V πrel(n)− V ∗rel(n) ≤ 1 + E[ max
j:Nj>0

{ψnj }]− max
j:Nj>0

{nNj
erelj
} (305)

≤ 1 + E[ max
j:Nj>0

{|ψnj −
nNj
erelj
|}] (306)

≤ 1 +
∑
j:Nj>0

E[|ψnj −
nNj
erelj
|] (307)

2We remind the reader that f(n) = O(g(n))⇒ ∃c, n0 s.t. 0 ≤ f(n) ≤ c · g(n), ∀n ≥ n0.
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where the first inequality is the result of Equation 304 and Theorem 15, and the

second inequality is the result of the following property:

∀ai, bi ∈ R, i = 1, . . . , n,

|max{a1, a2, . . . , an} −max{b1, b2, . . . , bn}| (308)

≤ max{|a1 − b1|, |a2 − b2|, . . . , |an − bn|}. (309)

Also , from the renewal central limit theorem [38] we get that

1√
n
· (ψnj −

nNj
erelj

)⇒ N(0,
σ2
j · Nj

(erelj )3
), j : Nj > 0. (310)

as n → ∞. But then, Equation 310, when combined with Lemma 10 and the Con-

tinuous Mapping Theorem, imply that

1√
n
E[|ψnj −

nNj
erelj
|] −→ E[|N(0,

σ2
j · Nj

(erelj )3
)|], j : Nj > 0. (311)

as n → ∞. Equation 301 now follows from Equation 307 when combined with

Equation 311.

To prove Equation 302 we proceed as follows: Assume that maxj:Nj>0{nNjerelj
} =

n·N1

erel1
; then,

V πrel(n)− V ∗rel(n) ≤ 1 + E[ max
j:Nj>0

{ψnj }]− max
j:Nj>0

{nNj
erelj
} (312)

= 1 + E[ max
j:Nj>0

{ψnj }]− E[ψn1 ] + E[ψn1 ]− nN1

erel1

(313)

= 1 + E[ max
j:Nj>0

{ψnj − ψn1 }] + E[ψn1 ]− nN1

erel1

(314)

≤ 1 +
∑

j 6=1:Nj>0

E[(ψnj − ψn1 )+] + E[ψn1 ]− nN1

erel1

(315)

Since, for every n ≥ 1, ψnj + 1 is a stopping time with respect to {X i
j}, with

E[ψnj ] <∞, we can write [38]

E[

ψnj +1∑
i=1

X i
j] = E[ψnj + 1]E[X1

j ] (316)

= erelj · (E[ψnj ] + 1) (317)
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Let K denote the maximum number of tokens that can be generated during a single

graph traversal. Then, by definition of ψnj + 1,

n · Nj ≤
ψnj +1∑
i=1

X i
j ≤ n · Nj +K, j : Nj > 0. (318)

Equations 317 and 318 imply that

0 ≤ E[ψnj ] + 1− n · Nj
erelj

≤ K

erelj
(319)

Next, we prove that

E[(ψnj − ψn1 )+]→ 0, ∀j : Nj > 0 (320)

as n → ∞. Indeed, for r ≥ 1, anj = 1√
n
(ψnj −

n·Nj
erelj

) and cj = N1

erel1
− Nj

erelj
> 0, we have

that

E[(ψnj − ψn1 )+] (321)

= E[(ψnj − ψn1 ) · I(ψnj ≥ ψn1 )] (322)

≤ E[ψnj · I(ψnj ≥ ψn1 )] (323)

≤
√
E[(ψnj )2] · P (ψnj ≥ ψn1 ) (324)

=

√
E[(ψnj )2] · P ((ψnj −

n · Nj
erelj

)− (ψn1 −
n · N1

erel1

) ≥ n · N1

erel1

− n · Nj
erelj

) (325)

=
√
E[(ψnj )2] · P (anj − an1 ≥

√
n · cj) (326)

≤
√
E[(ψnj )2] · 1

crj · nr/2
· E[(anj − an1 )r] (327)

≤

√
E[(ψnj )2] · 2r−1

crj · nr/2
· E[|anj |r + |an1 |r] (328)

where the second inequality is an application of Schwarz inequality, the third inequal-

ity an application of Markov inequality, and the last inequality is a direct consequence

of (a + b)r ≤ 2r−1 · (|a|r + |b|r), a, b ∈ R. Furthermore, from Theorem 2.3 of [21] we
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have that

E[(ψnj )2] = O(n2) (329)

and if we choose r such that r
2
> 2, then Equations 311, 328, 329 and Lemma 10

imply Equation 320.

Finally, Equation 302 follows immediately from Equation 315 when combined with

Equations 319 and 320. 2

An immediate implication of Theorem 16 is the asymptotic optimality of policy

πrel, formally stated and proven in the following corollary:

Corollary 3 Given an ONV-I problem instance E = (X,A,P ,N ), consider the prob-

lem sequence E(n) that is obtained through the uniform scaling of the visitation re-

quirement vector N by a factor n ∈ Z+. Then, as n→∞,

V πrel(n)

V ∗(n)
−→ 1 (330)

Proof: The combination of Theorems 16 and 15 implies that limn→∞
V π

rel
(n)

V ∗(n)
≤ 1,

while the definition of V ∗ implies that V πrel(n) ≥ V ∗(n), ∀n ∈ Z+. 2

We conclude this section by noticing that the results of Theorem 16 and their

derivation imply that, under the condition that there exists a k such that Nk
erelk

>

maxj 6=k{ Njerelj
} , the performance of πrel and π∗ will differ from the lower bound V rel(n)

by at most K
erelk

, as the scaling factor n grows to infinity. An intuitive interpretation of

this result can be obtained by considering the ratio
Nj
erelj

to be a “measure of difficulty”

of the visitation requirement of the jth leaf node. As n grows to infinity, the differences

n·Nk
erelk
− n·Nj

erelj
are also growing, hence the solution of the relaxing LP contains enough

information in order to bias the system behavior towards the optimal solution. On the

other hand, when the number of leaf nodes corresponding to the maximal ratio n·Nk
erelk

are more than one, πrel will treat those nodes as equally difficult targets. Furthermore,

the static nature of this policy will not allow it to exploit the dynamics of the future

problem states, where the original ties will have been resolved. This last observation
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motivates the consideration of adaptive implementations of πrel, where the routing

probabilities that define the new policy are revised at every change of the vector N c.

The specification details of these policies are similar to those discussed in Chapter 4

with respect to the the original ONV problem, and they are omitted.

5.2 Adding the Internal Visitation Requirements

The new ONV problem version In this section we consider the extension of

the ONV problem, that is obtained by the introduction of visitation requirements for

the internal nodes of the stochastic graph that underlies the problem definition. An

instance of this new ONV problem is defined again by a quadruple E = (X,A,P ,N ),

where all the components remain the same as in the case of Section 5.1, except for

the visitation requirement vector N , which now is defined as follows:

• N associates with each node x ∈ X a visitation requirement Nx ∈ Z+
0 . The

support ||N || of N is defined by the nodes x ∈ X with Nx > 0. Furthermore, it

is implicitly assumed that the visitation requirements of a node x ∈ X will start

to be satisfied only after the complete satisfaction of the visitation requirements

of all its successor nodes.

The new problem described above can be further abstracted to an MDP, M =

(S,A, t, c), where all the components remain the same as in the MDP definition

of the ONV problem addressed in Section 5.1, except for the remaining visitation

requirement vector N c and its updating through the transition function t. More

specifically, in this new problem context, N c is an |X|-dimensional vector initialized

at N . Furthermore, given a state s = (X ,N c) ∈ S with Xy > 0, and a decision

a ∈ A(y), we compute the state s′ = (X ′,N c′), that results from the execution of

a in s through its outcome defined by the multi-set νa,i, according to the following

procedure:
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1. X ′y := Xy − 1;

2. ∀x ∈ X\XL, X ′x := Xx + νxa,i;

3. ∀l = L,L− 1, . . . , 0, ∀x ∈ X l,

if
∑

q∈Succ(x)N c
q = 0 then N c′

x := (N c
x − νxa,i)+ else N c′

x := N c
x ;

The notation Succ(x) appearing in the above specification denotes the immediate

successors of node x in the problem-defining graph G.3 For states s = (X ,N c) ∈ S

with X = 0, the process “resets” itself in the spirit expressed by Equation 280 in

Section 5.1. Finally, defining the cost function c(s) and the terminal state sT as

discussed in Section 5.1, and expressing the problem objective by

π∗ = arg min
π∈Π

Eπ[
∞∑
t=0

c(st)|s0 = s0] (331)

we obtain a well-defined SSP problem whose optimal solution is characterized by

Theorem 14. In the following, we shall use the notation V ∗(s) and π∗(s), s ∈ S\{sT},

in order to characterize the optimal value function and an optimal policy for this SSP.

Problem restriction An exact fluid relaxation of the ONV problem with internal

visitation requirements is provided in Appendix B, but its practical value is rather

limited. In the following, we constrain the solution of the considered ONV problem

over the class of static randomized policies, which are simpler in their characterization

and evaluation, and more easily implementable. Hence, let ΠS denote the class of

static randomized policies and V ∗S denote the optimal value of the considered problem

when resticted in the policy space ΠS. Then, in a spirit similar to that adopted

in Section 5.1, we define a fluid relaxation and an induced randomized policy for

the ONV variation considered in this section, and we show that the proposed fluid

3Obviously, for nodes x ∈ XL, Succ(x) = ∅ and the condition in the “if” statement of item (3)
is immediately satisfied.
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relaxation provides a lower bound for V ∗S , while the induced randomized policy is

asymptotically optimal for the problem restriction in the policy space ΠS.

A computationally efficient and asymptotically optimal policy for the re-

stricted problem The problem relaxation employed in the subsequent analysis is

described by the following mathematical programming (MP) formulation:

minVx0 (332)

s.t. ∑
a∈A(x0)

χa = 1 (333)

∀x ∈ X\ ({x0} ∪XL),∑
a∈

S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a)νxa,iχa =
∑
a∈A(x)

χa (334)

erelx0 = 1 (335)

∀x ∈ X\{x0},

erelx =
∑

a∈
S
y∈X\XL

A(y)

∑
1≤i≤|S(a)|

p(νa,i; a)νxa,iχa (336)

∀x ∈ X\{x0} with Nx > 0, erelx > 0 (337)

∀x ∈ XL, Vx =
Nx
erelx

(338)

∀x ∈ X\XL, Vx = max
y∈Succ(x)

{Vy}+
Nx
erelx

(339)

∀x ∈ X\XL, ∀a ∈ A(x), χa ≥ 0 (340)

Variables χa in the above formulation denote the (generalized) flow routed through

the arcs corresponding to the different actions a ∈ A, for each unit of flow induced

to the problem-defining graph G through its root node x0 (c.f., Constraints 333, 334).
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In a similar spirit, variables erelx denote the amount of (generalized) flow reaching

each node x ∈ X, for each unit of flow induced in G through node x0 (c.f., Con-

straints 335, 336). Furthermore, Constraint 337 requests that any feasible solution

of this formulation routes a positive amount of flow to every node x with non-zero

visitation requirements. Finally, variables Vx denote the minimum amount of flow

required in order to satisfy the corresponding node visitation requirements, under

the routing scheme described by variables χa, e
rel
x , and the precedence constraints

expressed by the underlying graph G (c.f., Constraints 338, 339). From a practi-

cal computational standpoint, the solution of the above formulation can be further

facilitated by replacing Constraint 339 with the following constraint:

∀x ∈ X\XL, ∀y ∈ Succ(x), Vx ≥ Vy +
Nx
erelx

(341)

The resulting formulation is convex, and it can be easily addressed through standard

techniques borrowed from convex optimization [3].

Given an optimal flow, χ∗, for the MP formulation defined by Equations 332-340,

the definition and execution of the proposed randomized policy follows exactly the

guidelines described in Section 5.1 for the definition of the policy πrel from the fluid

relaxation of the ONV problem addressed in that section. To emphasize this affinity

between the two policies, we shall keep referring to the new policy defined in this

section as the policy πrel, while the MP formulation of Equations 332-340 will be

called the relaxing MP . The following theorem is the counterpart of Theorem 15 for

this new problem context:

Theorem 17 Given an instance E = (X,A,P ,N ) of the ONV problem with internal

visitation requirements, let V ∗rel and (χ∗, erel
∗
, V ∗) respectively denote the optimal value

and an optimal solution of the corresponding relaxing MP. Then,

V ∗rel = V ∗x0 ≤ V ∗S (342)
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where V ∗S denotes the optimal solution of the considered problem instance when re-

stricted to the space of static randomized policies.

The proof of Theorem 17 can be obtained through a technique similar to that

applied in the proof of Theorem 6, and it is omitted. The next theorem and the

accompanying corollary establish the asymptotic optimality of πrel in the considered

problem context.

Theorem 18 Given an instance E = (X,A,P ,N ) of the ONV problem with internal

visitation requirements, consider the problem sequence, E(n), that is obtained through

the uniform scaling of the visitation requirement vector N by a factor n ∈ Z+. Then,

as n→∞,

V πrel(n)− V ∗rel(n) = O(
√
n) (343)

Proof: Let X i
x denote the random number of tokens traversing node x ∈ X during

the ith graph traversal under πrel and σ2
x = V ar(X i

x). Also, let {ψnx , n ≥ 1} be the

renewal process associated with the sequence {X i
x}, defined as

ψnx = max{k :
k∑
i=1

X i
x ≤ n · Nx} (344)

with ψnx = 0 if X1
x > n · Nx, x : Nx > 0. Finally, define

Ψn
x = ψnx + 1, x ∈ XL (345)

Ψn
x = max

y∈Succ(x)
{Ψn

y}+ ψnx + 1, x ∈ X\XL (346)

Then, the performance of policy πrel satisfies

V πrel(n) ≤ E[Ψn
x0 ] (347)

Equation 347, when combined with Theorem 17, imply that, in order to prove the

result of Theorem 18, it suffices to show that

∀x ∈ X, E[|Ψn
x − V ∗x (n)|] = O(

√
n) (348)
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where V ∗x (n) denotes the optimal value of variable Vx in the relaxing MP formulated

for problem instance E(n).

We proceed to prove this result through an induction on the number of graph

layers, l. The base case, for l = L, is immediately obtained from the results in the

proof of Theorem 16. Next, we consider an l such that 0 ≤ l < L, and assume that

Equation 348 holds for all x ∈
⋃
l+1≤i≤LX

i. Then, for x ∈ X l, we have that

E[|Ψn
x − V ∗x (n)|] =

E[| max
y∈Succ(x)

{Ψn
y}+ ψnx + 1− max

y∈Succ(x)
{V ∗y (n)} − n · Nx

ex
|] ≤

E[ max
y∈Succ(x)

{|Ψn
y − V ∗y (n)|}] + E[|ψnx + 1− n · Nx

ex
|] ≤∑

y∈Succ(x)

E[|Ψn
y − V ∗y (n)|] + E[|ψnx + 1− n · Nx

ex
|] (349)

Each term of the summation appearing in Equation 349 is O(
√
n) from the induction

hypothesis, while the fact that

E[|ψnx + 1− n · Nx
ex
|] = O(

√
n) (350)

follows immediately from the results in the proof of Theorem 16. But then, the whole

quantity appearing in Equation 349 is O(
√
n), establishing the result of Equation 348,

and, through that, the result of the Theorem. 2

The next corollary derives from Theorems 17 and 18, and it is the counterpart of

Corollary 3 for the restricted ONV problem variation considered in this paragraph.

Corollary 4 Consider an instance E = (X,A,P ,N ) of the ONV problem with in-

ternal visitation requirements, restricted in the space of static randomized policies ΠS.

Also, consider the problem sequence E(n) that is obtained through the uniform scaling

of the visitation requirement vector N by a factor n ∈ Z+. Then, as n→∞,

V πrel(n)

V ∗S (n)
−→ 1 (351)
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5.3 Discussion

The work presented in this chapter, extended the previous results on the ONV prob-

lem to some new problem variations, that are important for the effective usage of

the ONV problem in the application that motivated it. Furthermore, by using tech-

niques similar to those presented in this chapter, our current results on the ONV

problem have been extended even to cases where the problem-defining digraph pos-

sesses cyclical structure. The extension is non-trivial, and the relevant results can be

found in [10]. In the next chapter, we take a more systematic look at the computa-

tional complexity of the various ONV variations introduced in this work. Our results

will position these variations in the problem hierarchy established by the theory of

computational complexity.
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CHAPTER VI

THE COMPUTATIONAL COMPLEXITY OF THE ONV

PROBLEM VARIATIONS

This chapter takes a systematic look at the computational complexity of the ONV

problems considered in Chapters 3 and 5. A key result offered in this direction is that

the introduction of the token splitting effect renders the ONV-I problem PSPACE-

hard [32]. On the other hand, we have not been able to provide a clear-cut com-

plexity characterization neither for the original ONV problem nor for ONV-II. But

as an intermediary step to the complexity analysis of these two last cases, we provide

an additional result that establishes that the ONV-II problem is at least as diffi-

cult as the “Poisson-tree” scheduling problem, a well known and, to the best of our

knowledge, still open problem in the relevant literature on computational complexity

[31, 32]. Beyond assisting with positioning the ONV and ONV-II problems in the

relevant hierarchy of the computational complexity theory, this last result also reveals

a connection between the ONV problem(s) and the problems addressed by the more

classical scheduling theory.

6.1 The computational complexity of the ONV-I problem

In this section we address the question of the computational complexity of the ONV-I

problem by studying its decision version, which corresponds to a relevant “yes” or

“no” problem. In particular, this decision problem addresses the following question:

Given a problem instance E described by the MDP M = (S,A, t, c) and an integer

K, is there a policy π such that Vπ(s0) < K ?

For a general introduction to the theory of Computational Complexity we refer
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to [32]. The primary tool for classifying computational problems has been the notion

of reduction. Given two decision problems A and B, we say that A polynomially

reduces to B, if there is a mapping f from the instances of size n of A to the instances

of size at most p(n) of B, such that, (i) p(n) is a polynomial depending on A and B,

(ii) the mapping f can be computed in polynomial time, and (iii) an instance x of A

is a “yes” instance if and only if f(x) is a “yes” instance of B. Let A be a problem,

and C be a class of problems, such as P, NP, PSPACE. We say that A is C-complete

if (i) A is a member of C, and (ii) every member B of C is reducible to A. We say

that problem B is C-hard if there is a C-complete problem A such that A is reducible

to B.

The complexity class relevant to the ONV-I problem, is the class of problems

solvable in polynomial space, PSPACE. The best known PSPACE-complete problem

is that of quantified satisfiability (QSAT). A quantified boolean formula consists of

a series of existential and universal quantifiers and a boolean formula φ in conjunc-

tive normal form. In the QSAT problem we are given a quantified boolean formula

with alternating quantifiers, ∃x1∀x2∃x3 . . . ∀xnφ(x1, . . . , xn) and we seek to determine

whether this formula is satisfiable, that is, whether there is a truth value for x1 such

that for all truth values of x2, etc. there is a truth value of xn, such that φ comes out

true. Next, we use QSAT in order to establish the following theorem:

Theorem 19 The decision version of the ONV-I problem is PSPACE-hard.

Proof: As mentioned above, to show PSPACE-hardness, we reduce QSAT to the

considered problem. For any quantified formula φ with n variables and m clauses,

we construct an ONV-I problem instance, E(X,A,P ,N ;φ), that involves an acyclic

graph with n decision and m+ 1 terminal nodes, and its optimal policy has a cost of

1 if and only if the original QSAT problem is satisfiable.

We now proceed into the details of the construction (cf. Figure 17 for a concrete

example). The acyclic graph consists of n decision nodes, partitioned in n consecutive
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Figure 17: The acyclic graph corresponding to the boolean formula φ with two
variables x1, x2 and three clauses c1 = x1 ∨ x2, c2 = x1 and c3 = x1 ∨ x2. The dashed
lines indicate the multi-sets corresponding to each decision.

layers, corresponding to the n variables x1, . . . , xn. A decision node corresponding

to an existential variable has two emanating decision arcs whereas a decision node

corresponding to a universal variable has one. Furthermore, we assume m + 1 leaf

nodes, with the first m corresponding to the m clauses c1, . . . , cm of the boolean

formula φ.

Next, we describe the decisions, the routing probabilities and the relevant multi-

sets. Each decision arc emanating from an existential node corresponds to a truth

assignment of the corresponding variable. Each such decision arc leads with certainty

to a multi-set that (i) drives tokens to the leaf nodes corresponding to the satisfied

clauses or, if no clause is satisfied, a token to the (m+ 1)th leaf node, and (ii) drives

one more token to the decision node in the subsequent layer. On the other hand, the

single decision arc that corresponds to a universal node leads to two distinct multisets

with probability 1
2
. Each such multiset corresponds to a truth assignment for the

corresponding universal variable, and is constructed in a similar fashion as before.

Finally, we assign a unit requirement to the first m leaf nodes and a requirement of

zero to the last leaf node of the acyclic graph.

We claim that the optimal expected cost of E(X,A,P ,N ;φ) is equal to one if
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and only if formula φ is satisfiable. Suppose that the optimal expected cost is 1. In

other words, we can choose a decision at the first decision node such that for any

multiset chosen in the second node, there is a decision in the third node e.t.c. such

that all leaf nodes satisfy their unit requirement. Then it is obvious that this policy

defines a truth assignment for the first existential variable x1 such that for every truth

assignment of the second variable x2, there is a truth assignment to x3 etc, such that

all the clauses are satisfied.

Conversely, if the quantified formula ∃x1∀x2∃x3 . . . ∀xnφ is true, there is a truth

assignment for x1, such that for every truth assignment of x2 there is a truth assign-

ment for x3 etc, such that φ comes out true. This last statement can be translated

into a policy for choosing the appropriate decisions so that at least one token reaches

every one of the first m leaf nodes in a single traversal of the corresponding graph,

thus resulting in an optimal expected cost of one.2

As mentioned in the introduction of this chapter, currently we lack a clear-cut re-

sult regarding the complexity of the original ONV and the ONV-II problem versions.

As an intermediary step to the development of such a complexity characterization

for the ONV-II problem, in the next section we show that the well known prob-

lem of “Poisson-tree” scheduling [31] reduces polynomially to the ONV-II problem,

and therefore, the latter is at least as difficult as the former. Beyond assisting with

positioning the ONV-II problem in the broader landscape of the computational com-

plexity theory, the provided reduction will also reveal the underlying affinity of the

ONV problem to the problems addressed by the more classical stochastic scheduling

theory.

6.2 A complexity result for the ONV-II problem

We proceed with the development of this section, by providing first a brief descrip-

tion of the “Poisson-tree” scheduling problem, borrowed from [31]. This scheduling
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problem is defined by a triplet Θ = (m, τ,Γ), where:

• m denotes the number of the identical processors that are available in the sys-

tem.

• τ = {T1, . . . , Tn} denotes a finite set of tasks that must be processed by the

system processors. It is further assumed that the processing time of each task

is exponentially distributed with rate equal to one.

• Γ = (τ,Ω) is a rooted in-tree – i.e., a directed acyclic graph with out-degree of

at most one – that expresses a set of precedence constraints imposed on the task

set τ .

The problem objective is to identify a schedule – i.e., a policy for assigning tasks to

the available processors – that minimizes the expected makespan – i.e., the expected

completion time of the last task – while respecting the imposed precedence constraints.

The memoryless property possessed by the exponential distribution [38] implies

that (i) the natural decision epochs for this scheduling problem are determined by

the task completion times, and that (ii) the uncompleted tasks can be scheduled

preemptively at those points. We shall refer to the interval between two consecutive

decision epochs as a processing cycle. The uniformly unit-valued task processing rates

imply that (i) a processing cycle involving k processors has an expected duration of

1/k, and that (ii) the probability for any of the k processed tasks to finish first is

also equal to 1/k. Next we exploit these insights in order to provide a polynomial

reduction of a k-processor “Poisson-tree” scheduling problem to an ONV-II problem.

For ease of exposition, we restrict our discussion to the 3-processor case; however,

all the key ideas underlying the following developments carry over to any k-processor

version of the problem. Furthermore, the provided reduction for the 3-processor case

has its own significant value, since, to the best of our knowledge, it remains an open

problem in terms of the formal characterization of its computational complexity.
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Figure 18: The rooted in-tree modelling the precedence constraints for the tasks of
the “Poisson-tree” scheduling problem Θ considered in this example.

Table 1: A tabular characterization of the stochastic graph G and the visitation
requirement vector N corresponding to the ONV-II problem instance E(Θ).

Node Action Outcomes and their Distribution Visitation Req.
x0 a1 (a, 1/3), (xl, 2/3) 0

a2 (b, 1/3), (xl, 2/3)
a3 (c, 1/3), (xl, 2/3)
a4 (d, 1/3), (xl, 2/3)
a5 (e, 1/3), (xl, 2/3)
a6 (b, 1/3), (c, 1/3), (xl, 1/3)
a7 (c, 1/3), (d, 1/3), (xl, 1/3)
a8 (c, 1/3), (e, 1/3), (xl, 1/3)
a9 (d, 1/3), (e, 1/3), (xl, 1/3)
a10 (c, 1/3), (d, 1/3), (e, 1/3)

a a11 (b, 1) 1
a12 (c, 1)

b a13 (d, 1) 1
a14 (e, 1)

c ∅ 1
d ∅ 1
e ∅ 1
xl ∅ 0

141



Theorem 20 The decision version of the 3-processor “Poisson-tree” scheduling prob-

lem reduces polynomially to the decision version of the ONV-II problem.

Proof: Given an instance Θ = (m, τ,Γ) of the “Poisson-tree” scheduling problem,

the corresponding instance E(Θ) = (X,A,P ,N ) of the ONV-II problem is defined as

follows (the reader is referred to Figure 18 and Table 1 for a more concrete example

of this construction):

• X = τ ∪ {x0, xλ}. In the graph G of the constructed ONV-II problem, x0 will

play the role of the root node, while xλ is a terminal node with zero requirements

that will enable the modelling of the losses resulting from the under-utilization

of the system processors.

• The action set A is defined as follows:

– For each node Ti ∈ τ , the action set A(Ti) is defined by the set of its

incoming arcs in graph Γ.

– The actions set A(x0) is defined by all the single, two and three-element

subsets of the task set τ , which do not contain pairs of tasks associated

through the precedence relationship defined by Γ.

– Finally, A(xλ) = ∅ (as already mentioned, xλ is a terminal node).

• The transition function P establishes the following connectivity:

– For each node Ti ∈ τ , the action corresponding to an incoming arc (Tj, Ti)

leads deterministically to node Tj.

– The action at node x0 corresponding to a task set {Ti} leads to node Ti with

probability 1/3, and to node xλ with probability 2/3. On the other hand,

the action corresponding to a task set {Ti, Tj} leads to each of these two

nodes with respective probability 1/3, and to node xλ with the remaining
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probability. Finally, an action corresponding to a triplet {Ti, Tj, Tk} leads

to each of these three nodes with respective probability 1/3.

• The visitation requirement vector N assigns a unit visitation requirement to

each node Ti ∈ τ and a zero visitation requirement to x0 and xλ.

Clearly, the above construction of E(Θ) can be performed in polynomial time

with respect to the size of the defining elements of problem Θ. Furthermore, a

scheduling decision d applied during a processing cycle of the original problem Θ, can

be simulated in the context of the ONV-II problem E(Θ) through the selection of

the action a ∈ A(x0) that corresponds to the tasks selected by d, and the resulting

outcomes will have the same transition structure in each problem context. At the

same time, the deterministic1 policies applied during any single traversal of the graph

G in problem E(Θ) also have a mapping decision in the original problem Θ, with the

same transition structure for the resulting outcomes. More specifically, given a state

(x0,N c) for problem E(Θ), the application over a single traversal of the graph G of

a policy π that, starting from node x0, selects the action corresponding to a single

task Ti and once in the subtree emanating from node Ti follows deterministically a

path leading to an active target node Tj, can be interpreted as the scheduling decision

of processing only the available task Tj during the corresponding processing cycle of

problem Θ. Also, similar interpretations apply to policies π that select actions at state

x0 corresponding to two or three tasks, and subsequently, they reach deterministically

one of the target nodes in the resulting subtree. Hence, it is possible to simulate any

policy π of Θ on E(Θ) and vice versa.

To conclude the proof, it suffices to show that the value functions for any pair of

policies π, π′ related through the aforementioned simulation, satisfy V π/V π′ = a, for

some pre-determined constant a (since, then, there will exist a policy π for Θ with

1Confining this analysis to the set of deterministic policies is enabled by the relevant MDP/SSP
theory that guarantees the existence of a deterministic optimal policy.
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V π < K iff there exists a policy π′ for E(Θ) with V π′ < K/a). Next we show, through

an induction on |τ |, that a = 1/3. Indeed, for the base case of |τ | = 1, there will be

only one busy processor during the relevant processing cycle, and therefore, V π = 1,

while the simulation of the corresponding decision in the E(Θ) context will result in

V π′ = 3. For a problem Θ with |τ | > 1, consider that the aforestated relationship

holds true for all “Poisson-tree” scheduling problems involving a number of tasks

less than or equal to |τ | − 1. Furthermore, let τ 1 denote the set of tasks scheduled

by π during the first processing cycle, and also let Θ\Ti denote the “Poisson-tree”

scheduling problem resulting from Θ through the removal from the task set τ of task

Ti ∈ τ 1. Then, it is easy to see that

V π(Θ) = (Expected duration of first processing cycle) +
1

|τ 1|
∑
Ti∈τ1

V π(Θ\Ti) (352)

and a similar equation applies to V π′(E(Θ)), i.e.,

V π′(E(Θ)) = (Expected duration until the first visitation) +
1

|τ 1|
∑
Ti∈τ1

V π′(E(Θ\Ti))

(353)

The induction hypothesis implies that V π(Θ\Ti)/V π′(E(Θ\Ti)) = 1/3 for every task

Ti ∈ τ 1, and the reader can easily verify that the ratio of the first terms in the

right-hand-sides of Equations 352 and 353 is also equal to 1/3. Hence, in this case,

V π(Θ)/V π′(E(Θ)) = 1/3, as well. 2

6.3 Discussion

The work presented in this chapter positioned some of the variations of the ONV

problem considered in Chapters 3 and 5, in the problem hierarchy established by the

theory of computational complexity. It was, thus, shown that the introduction of the

splitting effect in the ONV problem renders it PSPACE-hard. On the other hand, the

ONV problem with internal visitation requirements was shown to be at least as hard

as the “Poisson-tree” scheduling problem, a well known problem in scheduling theory
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whose computational complexity remains an open issue. However, the computational

complexity of the original ONV problem remains unresolved and constitutes an open

problem.
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CHAPTER VII

A PRACTICAL IMPLEMENTATION OF THE

PROPOSED PAC-LEARNING ALGORITHM AND ITS

EMPIRICAL EVALUATION

The work presented in this chapter integrates the PAC-learning algorithm of Chap-

ter 2 with the ONV results of Chapters 3 and 4 into a practical RL algorithm, and

evaluates its empirical performance. The proposed algorithm is shown to be a sub-

stantial improvement of the original algorithm developed in Chapter 2, in terms of,

both, the involved computational effort and the attained performance, where the

latter is measured by the accumulated reward. The new algorithm also leads to a ro-

bust performance gain over the typical Q-learning implementations for the considered

problem context.

7.1 The need for efficient routing policies for the proposed
PAC-learning algorithm

The reader should recall from the development of the PAC-learning algorithm of

Chapter 2, that the maximum number of episodes, N , that can be executed by the

algorithm before its termination, is determined before the initiation of the algorithm,

on the basis of the specified parameters δ and ε, and some of the parameters involved

in the definition of the problem structure E . Hence, the algorithm described in that

chapter can fail either (i) because it did not manage to determine a complete policy

π̂(x), ∀x ∈ X, within the specified episode budget, N , or (ii) because the chosen

policy π̂(x), ∀x ∈ X, had an error err(π̂) > ε. In Chapter 2 it was shown that

a total success probability of 1 − δ can be guaranteed by respectively limiting the
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probability of failure according to each of the above two failure modes to δI and δII ,

such that

δI + δII = δ (354)

The allocation of the sampling effort across all state-action pairs and the determina-

tion of an apparent optimum action at every actively explored state, in a way that

guarantees the PAC requirement, was based on the embedding into the algorithm

of results coming from the statistical inference area of R&S. In particular, the total

number of obsevations that the learning agent is required to collect for every state-

action pair, (x, a), is obtained from Equation 11, by substituting: (i) k with |A(x)|;

(ii) v̄ with (L− l + 1)v̄, where l is the level of node x; (iii) ε with ε(x) = ε/(L + 1);

and (iv) δ with δ(x) = δII/|X| = δ/(2|X|). Hence, for every actively explored state

x ∈ X and every action a ∈ A(x), the learning agent is required to collect

n(x, a) = d4v̄(x)2

ε(x)2
ln(
|A(x)| − 1

δ(x)
)e (355)

samples of the cumulative reward that results by taking action a in state x and

following the pre-determined policy in the remaining nodes, until the completion of

the running episode.

On the other hand, in order to control failure according to mode (i), the algorithm

must employ a routing policy that will enable the collection of the state-action sam-

ples, within the specified episode budgetN , with probability δI . Furthermore, in order

for the resulting scheme to be efficient according to the definitions of computational

learning theory, the specified episode budget N must be polynomially related to 1/δ,

1/ε and the other problem-defining parameters. The existence of an episode budget N

and of a corresponding routing policy presenting the aforementioned properties, was

resolved in Chapter 2 by recognizing that the collection of a single observation during

a single episode, constitutes a Bernoulli trial with its success probability bounded

from below by q.
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However, it should be clear from the above discussion that, while efficient accord-

ing to the relevant CLT definition, the routing scheme underlying the specification of

the episode budget N in Chapter 2 is very simplistic, since it tries to collect the re-

quested samples one at a time, while ignoring completely the interdependencies and

complementarities that are implied by the structure of the underlying state space.

It is natural to expect that the consideration of these additional dynamics, and the

exploitation of any available information about them through a pertinently designed

routing policy, can result in substantial gains with respect to the number of episodes,

N , that is required for the successful completion of the underlying sampling process.

This topic is systematically addressed in the next section, that discusses an enhanced

version of the original PAC-learning algorithm of Chapter 2.

7.2 An enhanced PAC-learning algorithm

This section discusses a series of enhancements for the PAC-learning algorithm de-

veloped in Chapter 2 that can lead to (i) a much more expedient execution of the

sampling process that is employed by that algorithm, and consequently, (ii) to sub-

stantial increases of the total reward that will be accumulated by the algorithm over

any given time-span. The first of these enhancements concerns the development of a

more pertinent routing policy by employing the ONV problem results of Chapters 3

and 4 in a heuristic attempt to govern the sampling process, and it is addressed in

the following paragraph.

Integrating the results on the ONV problem to the PAC-learning algo-

rithm of Chapter 2 We remind the reader that, according to the description of

the PAC-learning algorithm provided in Chapter 2, during any single episode, the

states of the underlying acyclic state space are partitioned into unexplored, actively

explored and (fully) explored states, and the learning agent traverses this state space,

starting from the single initial state, and seeking to sample the cumulative reward
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resulting from a partially explored action of some actively explored state. It should

be clear that during the execution of the n-th task episode by the learning agent,

the subset of all the unexplored states plus the states that can be reached from them

through a single transition, constitute an acyclic connected digraph Gn, with a sin-

gle source node, x0, and with the set of terminal nodes containing all the actively

explored states. Furthermore, each actively explored state has associated with it a

remaining number of samples that must be collected until it becomes fully explored,

and it can be perceived as a visitation requirement for that state. The visitation re-

quirements for the entire set of actively explored states are collectively expressed by

vector N n. Hence, the first enhancement of the PAC-learning algorithm of Chapter 2

proposed in this section, routes the learning agent to collect the next sample by (i)

solving the relaxing LP corresponding to the ONV problem instance defined by Gn

and N n, and (ii) using the resulting randomized policy πadrel(n) as the corresponding

routing policy. Furthermore, in the solution of the aforementioned ONV problem, the

algorithm uses the estimates of the branching probabilities p(x; a) that are computed

on the basis of the experienced history < x0, a0, x1, a1, . . . , xt, at >. A more detailed

description of this logic is as follows:

• The algorithm updates the empirical estimates p̂(·; a), x ∈ X, a ∈ A(x) of

the branching probabilities p(·; a), x ∈ X, a ∈ A(x), every time that an action

a ∈ ∪x∈XA(x) is exercised.

• At the beginning of the n-th episode, the algorithm solves the relaxing LP

defined by (i) the running instance Gn of the acyclic digraph, (ii) the set of em-

pirical branching probabilities p̂(·; a), x ∈ X, a ∈ A(x), and (iii) the visitation

requirement vector N n. It subsequently derives the randomized policy πrel(n)

defined on the set of unexplored states.
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• The algorithm traverses the subset of unexplored states by applying the ran-

domized policy πrel(n) until it reaches an actively explored or a fully explored

state.

We shall refer to the resulting algorithm as the PAC2-learning algorithm.

Expediting the sample collection through reuse of the historical experience

A second heuristical modification of the PAC-learning algorithm of Chapter 2, that

can lead to very dramatic reductions in the number of episodes that are necessary for

the collection of the samples indicated by Equation 355, is based on the capture of the

transitional dynamics and the rewards experienced by the algorithm in a pertinent

set of data structures, and on the exploitation of this information for reconstructing a

part of the requested samples, every time that a new state becomes actively explored.

More specifically, in addition to the information extracted by the algorithmic versions

discussed in the earlier parts of this chapter, this new variation maintains the following

two data structures:

• A vector Ω defined over the set of actions a ∈ ∪x∈X\XLA(x). The component

Ω(a) of this vector expresses the total immediate reward that has resulted from

the execution of action a over the entire history of the learning process.

• Another vector W defined over the tuples (a, x) with a ∈ ∪x∈X\XLA(x) and

x ∈ S(a). The component W (a, x) of this vector expresses the number of times

that the execution of action a resulted in state x ∈ S(a), during the entire

history of the learning process.

Every time that a state x ∈ X\XL becomes actively explored, each action a ∈

A(x) is pre-assigned
∑

x′∈S(a)W (a, x′) samples with a total observed reward equal to

Ω(a) +
∑

x′∈S(a)

W (a, x′) · V̂ π̂(x′) (356)
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Table 2: The intervals defining the uniform distributions of the immediate rewards
that result from the different actions

a1 [0.1,0.4] a2 [0.2,0.5] a3 [-0.2, 0.6] a4 [0.1, 0.5]
a5 [-0.2, 0.7] a6 [0.2, 0.5] a7 [0.1, 0.6] a8 [-0.1,0.4]
a9 [-0.5, 0.8] a10 [-0.5, -0.1] a11 [-0.5, 0.2] a12 [-0.6,-0.2]
a13 [-0.2,0.5] a14 [-0.3, 0.1] a15 [-0.2,0.4] a16 [-0.1,0.1]
a17 [-1.0,1.2] a18 [-0.4,0.4] a19 [-0.1, 0.1] a20 [0.1,0.5]
a21 [-0.1,0.4] a22 [-0.2,0.7] a23 [1.0,1.4] a24 [-0.2,0.7]
a25 [-0.1,0.8] a26 [0.1,0.2] a27 [-0.2,0.4] a28 [-0.1,0.1]
a29 [-0.1, 0.0]

The quantities V̂ π̂(x′), that appear in the right-hand-side of Equation 356, denote

the estimated values of the explored states x′ ∈ S(a) under the fixed policy π̂, and

they are obtained during the exploration of the corresponding states. In this way,

the additional samples to be collected by the algorithm with respect to each action

a ∈ A(x), until state x becomes fully explored, are reduced to

[n(x, a)−
∑

x′∈S(a)

W (a, x′)]+ (357)

The algorithmic variation obtained by the integration of the logic expressed by

Equations 356 and 357 in the PAC2-learning algorithm, will be referred to as the

PAC3-learning algorithm. It is worth-noticing that Equations 356 and 357 imply

that the number of episodes required for the collection of the samples indicated by

Equation 355 can be even less than
∑

x∈X
∑

a∈A(x) n(x, a), an effect that is actually

manifested in the computational study reported in the next section.

We conclude this section by providing in Figures 19 and 20 a complete description

of the PAC3-learning algorithm, based on the original developments of Chapter 2 and

on the two modifications introduced in this section.

7.3 A computational study of the proposed algorithm

In this section we present the results of a series of experiments that intend (i) to

highlight the gains attained by the PAC2 and PAC3-learning algorithms with respect
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Input: L; X l, l = 0, . . . , L; A(x),∀x ∈ X; v̄; q; ε; δI ; δII

Output (under successful completion): π̂(x),∀x ∈ X

I. Initialization

(a) Compute X ≡
⋃L
l=0X

l; |X|; |A(x)|,∀x ∈ X;

(b) Set
v̄(x) := (L− l + 1)v̄, ∀l = 0, . . . , L, ∀x ∈ X l;
ε(x) := ε/(L+ 1), ∀x ∈ X;
δ(x) := δII/|X|, ∀x ∈ X;

n(x) := d4v̄(x)2

ε(x)2 ln( |A(x)|−1
δ(x)

)e,∀x ∈ X;

σ :=
∑

x∈X |A(x)|n(x);
N := σd(1/q) ln(σ/δI)e;
p̂(x; a) := 1/|S(a)|, ∀x ∈ S(a), a ∈ A(x), x ∈ X\XL;
Q(x, a) := 0,∀x ∈ X, ∀a ∈ A(x);
O(x, a) := 0,∀x ∈ X, ∀a ∈ A(x);
Ω(a) := 0,∀a ∈ ∪x∈X\XLA(x);
W (a, x) := 0,∀a ∈ ∪x∈X\XLA(x), ∀x ∈ S(a);

AE := XL; UE :=
⋃L−1
l=0 X

l;
i := 1

Figure 19: The proposed PAC3-learning algorithm for the RL problem considered
in this work: Initialization
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II. Policy Computation
while (AE 6= ∅ ∧ i ≤ N) do

(a) Initiate a new episode by placing the agent at the initial state, x0, solve
the relaxing LP corresponding to the current ONV problem instance, and
route the agent to an actively explored state, x ∈ AE, by picking ac-
tions according to the implied randomized policy. For every exercised ac-
tion a ∈

⋃
x∈X\XL A(x), update the corresponding empirical probabilities

p̂(·; a) and the data structures Ω and W .

(b) If an actively explored state x ∈ AE is successfully reached,

i. select an action a ∈ A(x) for which O(x, a) < n(x);

ii. obtain an observation Ψ(x, a), by accumulating the total reward ob-
tained by exercising action a at state x, and subsequently following the
pre-computed policy π̂ until the termination of the current episode;

iii. Q(x, a) := Q(x, a) + Ψ(x, a); O(x, a) := O(x, a) + 1;

iv. If (O(x, a) = n(x))

• Q(x, a) := Q(x, a)/n(x);

• If (∀a′ ∈ A(x), O(x, a′) = n(x))

– π̂(x) := arg maxa∈A(x){Q(x, a)};
– remove state x from AE;

– Remove from UE every state x′ that does not have any imme-
diate successor states in AE ∪UE, and add it to AE. Initialize
the sampling process for each such state x′ according the logic
of Equations 356 and 357.

(c) i := i+ 1

endwhile

III. Exit
If (AE = ∅) return π̂(x),∀x ∈ X, else report failure

Figure 20: The proposed PAC3-learning algorithm for the RL problem considered
in this work: Main Iteration and Exit
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Figure 21: The stochastic acyclic digraph used in the presented experiments

to the original PAC-learning algorithm presented in Chapter 2 and the standard Q-

learning algorithm, and (ii) to provide some insights on the comparative advantages

of the proposed approach. These insights also suggest a set of guidelines for the

effective implementation of the proposed algorithm. The presented experiments are

based on the problem instance defined by the graph structure presented in Figure 21

and the distributions of the action immediate rewards listed in Table 2. But the

reported findings reflect our experiences with a broader set of graph structures and

parameterizations. We also notice, for further reference, that the optimal policy for

the RL problem defined by Figure 21 and Table 2, has a value equal to 1.322.

Characterizing the gains attained by the enhanced sampling process of the

PAC2 and PAC3-learning algorithms Our first experiment seeks to register

the computational gains that are attained by the enhancements for the sampling

154



 0

 2000

 4000

 6000

 8000

 10000

1000 2000 3000 4000 5000

R
eq

ui
re

d 
N

um
be

r 
of

 E
pi

so
de

s

Total Sampling Requirement K

PAC
PAC2
PAC3

Figure 22: Characterizing the gains attained by the enhanced sampling process of
the PAC2 and PAC-3 learning algorithms

process of the original PAC-learning algorithm that were introduced in Section 7.2.

To this end, we measured the number of episodes that are required by the original

PAC-learning algorithm of Chapter 2, as well as by the PAC2 and PAC3-learning

algorithms defined in Section 7.2, in order to perform a total number of K visitations

to the different nodes x ∈ X of the graph depicted in Figure 21.1 More specifically,

these K visitations were apportioned to the different graph nodes x ∈ X according

to the proportions n(x)/σ, where n(x) and σ were calculated from the formula of

Equation 355, by using ε = 0.1, δII = 0.2 and v̄ = 1.5. Figure 22 reports the obtained

results when K was set equal to 1000, 2000, 3000, 4000 and 5000. Each of the depicted

values is the average of 100 replications for the corresponding case. It is obvious from

1We remind the reader that in the context of the proposed learning algorithm, each node visitation
corresponds to the collection of a sample Ψ(x, a) for some action a ∈ A(x).
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the provided data that each of the proposed enhancements leads to a substantial

reduction of the number of episodes required for the coverage of the posed visitation

requirements, and that the PAC3-learning algorithm presents the best performance.

Finally, it is worth-noticing that for all cases presented in Figure 22, the PAC3-

learning algorithm manages to complete the requested sampling process in a number

of episodes that is substantially smaller than the requested number of samples K,

and this gain increases with the value of K. This effect results from the ability of

this algorithm to reconstruct some of the requested samples from the historical data

captured in the data structures Ω and W , and it is in agreement with the relevant

remarks made in Section 7.2.

Comparing the performance of the PAC3-learning algorithm to the per-

formance of the Q-learning algorithm The results of the previous experiment

clearly demonstrate that among the original PAC-learning algorithm of Chapter 2 and

the PAC2 and PAC3-learning algorithms proposed in this work, the PAC3-learning

algorithm results in the fastest execution of the sampling process, and therefore, to

the most expedient learning of an optimized acting policy. Hence, in this experiment

we seek to compare the performance of the PAC3-learning algorithm against the per-

formance of the more classical Q-learning algorithm, and develop some insights about

the relative merits of these two algorithms. In the considered problem setting, this

comparison can be based on the tracking of the cumulative reward that is collected

by each of these two algorithms over the execution of a certain number of episodes.

We begin the detailed discussion of the pursued experiment by reminding the

reader that the classical Q-learning algorithm updates the Q-factor estimate Q(x, a)

upon the t-th execution of action a ∈ A(x), x ∈ X, by setting [40]

Q(x, a) := (1− γt(x, a)) ·Q(x, a) + γt(x, a) · (rt +Q(y)) (358)

In the recursion of Equation 358, rt denotes the experienced immediate reward, drawn
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from the distribution D(µ(a), v(a)), y ∈ S(a) denotes the state that resulted from the

execution of action a, Q(y) = maxa∈A(y){Q(y, a)}, and γt(x, a) ∈ (0, 1) is the learning

rate applied during the t-th execution of this recursion. Furthermore, the works of

[42, 5] have shown that if (i) the sequence {γt(x, a), t = 1, 2, . . .} is chosen such that

∞∑
t=1

γt =∞ ∧
∞∑
t=1

γ2
t <∞ a.s. (359)

and (ii) every state-action pair (x, a), x ∈ X\XL, a ∈ A(x), is exercised an infinite

number of times, then the algorithm estimates, Q(x, a), will converge to the optimal

values, Q∗(x, a), with probability 1, irrespectively of the initial values of the Q(x, a)

estimates.

A practical way to guarantee the requirements of Condition (i) above, is by having

the learning rates γt(x, a), decrease asymptotically to zero, according to the schedule

γt(x, a) := c1/(c2 + t) (360)

where c1 and c2 are positive constants. In the considered experiment, we regulated the

learning rates involved in our Q-learning implementations by applying the schedule

of Equation 360 with c1 = c2 = 1.0.

On the other hand, Condition (ii) for the convergence of the Q-learning algo-

rithm is frequently satisfied by introducing a small positive parameter θ ∈ (0, 1), and

adopting an action selection scheme that, at every node x ∈ X, selects an action a

corresponding to a maximal Q(x, a) estimate with probability 1− θ, and an alterna-

tive random action a′ with probability θ. Clearly, larger values of the randomizing

probability θ can result in more aggressive exploration, and therefore, more expedient

learning of the correct Q-values, but at the same time, they compromise the ability

of the learning agent to benefit from this enhanced information, by forcing it to select

a suboptimal action more frequently. Hence, it is customary that the pricing of the

randomizing probability θ is reduced towards zero through a number of stages, where

the agent emphasis shifts incrementally from “exploration” to “exploitation”. In the
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presented experiment this idea is implemented by partitioning the execution of the

Q-learning algorithm into two phases, I and II: Phase I runs over a predetermined

number of episodes, K, with the parameter θ fixed on a preselected value. Phase

II runs over the remaining episodes until the termination of the algorithm, and dur-

ing this phase, the agent selects a suboptimal action at each visited node x ∈ X

with probability 1/(1 + ν(x)), where ν(x) denotes the number of times that node

x has been visited during the entire execution of the algorithm. We shall indicate

the aforementioned dependence on the parameter θ by characterizing the resulting

implementation as the Q(θ)-learning algorithm.

We perceive the PAC3-learning algorithm proposed in this paper, as an alter-

native mechanism for implementing Phase I in the Q-learning implementations on

RL problems that evolve episodically over acyclic state spaces.2 When viewed from

such an implementational standpoint, the computational results presented in the fol-

lowing essentially demonstrate that the explicit consideration and facilitation of the

informational flow that underlies the design of the PAC3-learning algorithm can lead

to a more efficient learning process and to higher reward accumulations compared

to the Q-learning implementations described in the previous paragraph, where the

control of the algorithm exploration is done only through the pricing of the random-

izing probability θ. This is especially true for problem instances where the optimal

Q-values of the different actions at any given state are quite close to each other and

the distributions / spread of the corresponding rewards present significant overlap.

At the same time, our experiments have also revealed that the sampling require-

ments expressed by Equation 355 are overly conservative, leading to an unnecessarily

long (exploration) Phase I. In order to remedy this drawback of the PAC3-learning

2Indeed, as discussed in Chapter 2, it is pertinent to complement these algorithms with a Q-
learning-based Phase II, similar to that described in the previous paragraph, since such an aug-
mentation can compensate for potential erroneous choices made by the PAC-learning algorithm and
provides robustness to non-stationarities.
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algorithm while maintaining the efficiencies that can result from the explicit con-

sideration of the underlying informational flow, we propose the discounting of the

original (cumulative) sample size σ(ε, δII), that is computed for some imposed PAC

requirements ε and δII , to some empirically selected value K,3 and the apportioning

of this cumulative sampling requirement to the different node-action pairs (x, a) ac-

cording to the proportions n(x, a; ε, δII)/σ(ε, δII). Then, according to the formulae

provided in Figure 19, the sample sizes allocated to any two nodes x and x′, that

belong respectively to the graph layers l(x) and l(x′), will satisfy:

n̂(x)

n̂(x′)
=
n(x)

n(x′)
=

(
L− l(x) + 1

L− l(x′) + 1

)2

· ln(1/δII) + ln(|X|) + ln(|A(x)| − 1)

ln(1/δII) + ln(|X|) + ln(|A(x′)| − 1)
(361)

Furthermore, when ln(1/δII) + ln(|X|) � ln(|A(x)| − 1), ∀x ∈ X, Equation 361

simplifies to

n̂(x)

n̂(x′)
≈
(
L− l(x) + 1

L− l(x′) + 1

)2

(362)

Equations 361 and 362 reveal that the PAC parameters ε and δII are fundamental

for the determination of the overall sampling effort to be pursued by the proposed

PAC-learning algorithms, but, in most cases, they do not affect the distribution of

this effort across the different nodes. In the context of the practical implementation

of the PAC3-learning algorithm outlined above, Equations 361 and 362 imply that

the pricing of the aforementioned parameter K to some arbitrarily selected value

is tantamount to the selection of certain pricing(s) for the parameters ε and δII .

On the other hand, once the pricing of the parameter K has been determined, the

parameters ε and δII become inconsequential for the subsequent execution of the

algorithm. Hence, it can be concluded from the above remarks that the algorithmic

variation that results from the introduction of the parameter K and the suggested

apportioning of the overall sampling effort to the different decision nodes, is coherent

3Notice that the role of K in this implementation of the PAC3-learning algorithm is similar to its
role in the Q-learning implementation described in the previous paragraphs; i.e., the determination
of the length of the exploration Phase I.
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and consistent with the informational flow that is sought be the original PAC-learning

algorithms.

Finally, we notice, for completeness, that as manifested in the first experiment

reported in this section, it is quite possible that the proposed implementation of the

PAC3-learning algorithm will collect the requested K samples in a number of episodes

substantially smaller than K. In order to cover this possibility, we stipulate that the

algorithm will switch to Phase II either upon the execution of K episodes, or as soon

as it completes the selection of the required K samples, whichever event occurs first.

Figures 23 and 24 present the results of a computational experiment that compares

the performance of the practical, two-phased implementation of the PAC3-learning

algorithm that was described in the previous paragraphs, with that of the Q(θ)-

learning algorithm. This experiment was based on the learning task defined by the

graph of Figure 21 and the reward distributions of Table 2. Each of the six pairs of

plots presented in Figures 23 and 24 depict the evolution of the rewards accumulated

by the PAC3 and the Q(θ)-learning algorithms when the length of the exploration

phase, K, was respectively set to 1000, 2000, 3000, 4000, 5000 and 6000. Furthermore,

in each of these six cases, the reported performance of the Q(θ)-learning algorithm is

the best observed when θ was varied over the interval (0, 1) with an increment of 0.05.

Finally, each curve presented in these plots averages the results of 300 replications

for the corresponding case.

A first observation that can be made on the provided results is that, in all of the

presented cases, the PAC3-learning algorithm has a long-term performance that is

better than or comparable to the corresponding optimized performance of the Q(θ)-

learning algorithm. A closer study of the provided plots reveals that the enhanced

performance of the PAC3-learning algorithm results indeed from its ability to pro-

vide a more balanced solution to the “exploration vs. exploitation” dilemma. More

specifically, the provided plots indicate that low values of K – i.e., a short exploration

160



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  500  1000  1500  2000  2500  3000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Number of Episodes

End of Phase I

Q(0.85)
PAC3

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 14000  14500  15000  15500  16000  16500  17000  17500  18000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Number of Episodes

Q(0.85)
PAC3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  500  1000  1500  2000  2500  3000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Number of Episodes

End of Phase I

Q(0.7)
PAC3

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 14000  14500  15000  15500  16000  16500  17000  17500  18000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Number of Episodes

Q(0.7)
PAC3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  1000  2000  3000  4000  5000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Number of Episodes

End of Phase I

Q(0.45)
PAC3

 17000

 18000

 19000

 20000

 21000

 22000

 23000

 14000  14500  15000  15500  16000  16500  17000  17500  18000

C
u
m

u
la

ti
v
e
 R

e
w

a
rd

Number of Episodes

Q(0.45)
PAC3

Figure 23: Relative performance of the Q(θ) and PAC3-learning algorithms for
different selections of K and an optimized selection of the parameter θ
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Figure 24: Relative performance of the Q(θ) and PAC3-learning algorithms for
different selections of K and an optimized selection of the parameter θ (cont.)
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Phase I – force the Q(θ)-learning algorithm to adopt an over-agressive exploration

attitude, manifested by the high optimized values for the randomizing probability θ.

Such an approach seems to result in a correct identification of the optimal policy by

the Q(θ)-learning algorithm in Phase I, but at the same time, it incurs substantial

reward losses in that phase, due to over-exploration, from which the algorithm is un-

able to recover in the subsequent phase. On the other hand, higher values of K allow

the Q(θ)-learning algorithm to be more conservative with respect to the applied ex-

ploration scheme during Phase I, as manifested by the lower optimized values for the

parameter θ. Such a conservative selection of θ enables the Q(θ)-learning algorithm

to even out-perform the PAC3-learning algorithm in the earlier stages, since it places

an early emphasis on exploitation. But the PAC3-learning algorithm is eventually

able to catch up and even dominate the Q(θ)-learning algorithm in the long run,

apparently due to the better quality of the learned policy.

The above remarks are supported by our broader experimentation with addi-

tional learning tasks defined by different graph structures and distributions for the

immediate rewards. In all the performed experiments the proposed PAC3-learning

algorithm demonstrated a long-run performance that was comparable to or better

than the performance of the Q(θ)-learning algorithm. Even more importantly, this

enhanced performance was attained in a robust and straightforward manner, since

the proposed implementation of the PAC3-learning algorithm does not necessitate the

empirical tuning of any unspecified parameters, like the parameter θ of the Q-learning

algorithm. Finally, as already mentioned, the identified dominance of the PAC3 over

the Q(θ)-learning algorithm seems to increase with the difficulty of the underlying

learning task, where the latter is determined by the proximity of the value of the

optimal action at each problem state to the values of the suboptimal actions at that

state.
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7.4 Discussion

The work presented in this chapter provided a practical, customized learning al-

gorithm for reinforcement learning tasks that evolve episodically over acyclic state

spaces. The presented results essentially complement the earlier developments on the

considered problem, that were presented in Chapter 2. Extensive computational ex-

perimentation established that the proposed algorithm is a substantial improvement

of the original algorithm developed in Chapter 2, in terms of, both, the involved com-

putational effort, and the attained performance, where the latter is measured by the

accumulated rewards. The presented algorithm also leads to a robust performance

gain over the typical Q-learning algorithm.

We should mention at this point that the proposed PAC3-learning algorithm is

easily extensible to episodic tasks that involve multi-threaded traversals of the un-

derlying acyclic state space. Such a multi-threading effect results, for instance, in the

context of the ODP problem that was presented in the introductory section, by the

disassembly operations involved in it. The necessary modifications for applying the

PAC3-learning algorithm in this new operational context pertain to the specification

of the reward accumulation process and the employment of the ONV-I and ONV-II

problem variations of Chapter 5.

On the other hand, an issue that remains an open challenge with respect to the

developments presented in this manuscript, is the “optimum” pricing of the parameter

K that is involved in the practical implementation of the PAC3-learning algorithm

proposed in Section 7.3. Given the apparent intractability of this problem, a possible

way to deal with it is through the substitution of the sampling scheme presented in

Figure 19, by an on-line, adaptive sampling scheme, that determines the required

sample sizes incrementally, on the basis of the already accumulated information on

the values of the assessed actions and their variance. The development of such an

incremental sampling process can be based on the adaptation and extension of a
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similar set of results that have been developed in the area of R&S and involve single-

stage decision making and normally distributed rewards.4 The investigation of this

possibility and the potential gains that can result from it defines an interesting line

for future research work on this problem.

4e.g., cf. [28]; also, another set of results that can provide a base for such a development are
those presented in [16]
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CHAPTER VIII

CONCLUDING REMARKS AND FUTURE WORK

In this work we presented an efficient PAC-learning algorithm for episodic tasks over

acyclic state spaces. The defining characteristic of our algorithm is that it takes

explicitly into consideration the structure of the underlying state space thus rendering

it easy to implement. Furthermore, we move one step further from characterizing the

sampling requirements by expediting the sampling process through the introduction of

efficient routing policies that will help the algorithm complete its exploration program.

This last requirement gave rise to a family of novel stochastic control problems that

are characterized as the Optimal Node Visitation problems. A large part of this

work concerns the systematic modelling and analysis of the ONV problem variations.

The last part of this research program explores the computational merits obtained

by heuristical implementations that result from the integration of the ONV problem

developments into the PAC-algorithms developed in the first part of this work. The

work presented in this last part reinforces and confirms the driving assumption of this

research, i.e., that one can design customized RL algorithms of enhanced performance

if the underlying problem structure is taken into account.

A first line of future research would seek to identify a tighter bound for the episode

budget, N , of the PAC-learning algorithm presented in Chapter 2. The presented

developments sought to explicitly establish the ability of the proposed algorithm to

guarantee the PAC requirement, within a number of episodes that is polynomially

related to the parameters of interest, rather than provide the tightest possible bound

for such an episode budget. We shall consider the possibility of replacing the R&S cri-

terion of Theorem 1 with other R&S criteria that will employ sampling techniques of
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more sequential nature, e.g., similar to those discussed in [16, 28]. Regarding the ONV

problem, a future line of research would seek to extend the analysis of the ONV and

ONV-I problems to the ONV-II problem variation. In particular, the remaining open

issues that present further research opportunities are (i) the existence of tractable fluid

relaxations that capture more thoroughly the ONV-II problem dynamics implied by

the introduction of the internal visitation requirements with precedence constraints,

and, (ii) whether those relaxations can become the basis for the design of suboptimal

control schemes with guaranteed performance bounds. Along this line, future work

will seek capitalize upon further insights and results from stochastic scheduling the-

ory, in order to identify additional structure and suboptimal policies for the ONV

problem variations. Finally, another line of future work will seek the integration of

the results on the ONV-I,II problem variations with the multi-threading property, in

the application context that motivated this work at the first place.
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APPENDIX A

A STOPPING TIME RESULT FOR RANDOM

VARIABLES WITH A PERMUTATION DISTRIBUTION

The result provided in this appendix is useful for the analysis provided in Chapter 4.

We define a sequence of random variables that resemble a sampling without replace-

ment process, and prove a result for an appropriately defined, associated stopping

time. This result is relevant to the analysis of Chapter 4, because a part of the re-

quirement reduction process under πadrel resembles a sampling without replacement

process.

A.1 Random variables with a permutation distribution

Given a vector N ∈ ZL
+, assume a sequence of random vectors Zλ ∈ ZL, λ =

1, . . . , |N |, that take values on the set of the L-dimensional unit vectors r1, . . . , rL. If

Zλ
j denotes the jth component of Zλ, j = 1, . . . , L the distribution of Zλ’s is given

by

P (Z1 = rj) =
Nj
|N |

, (363)

and

P (Zλ+1 = rj) =
Nj −

∑λ
k=1 Z

k
j

|N | − λ
, (364)

j = 1, . . . , L, λ = 1, . . . , |N |. Notice that the random sequence Z1, . . . , Z |N | can be

viewed as a sequencial sampling procedure without replacement from a population of

|N | objects. The population consists of L different types of objects, with Nj objects

of each type. Then, the random vector Zλ indicates the object type of the λth draw.
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Now for any vector d ∈ RL, consider the random variables

Gλ =
L∑
j=1

dj · Zλ
j , λ = 1, . . . , |N |. (365)

Then, in the light of the above interpretation for the random vectors Zλ, the random

variables Gλ have the following interpretation: Suppose a finite population D consists

of |N | values that belong to {d1, . . . , dL} with Nj values equal to dj. Then, the

sequence G1, . . . , G|N | represents the sample values obtained by randomly sampling

the population D without replacement. Consider the vector N when it is scaled by a

factor n ∈ Z+ and the corresponding sampling without replacement expressed by the

sequence G1, . . . , Gn·|N |. If d̄ =
∑L

j=1 dj
Nj
|N | , then we have the following proposition:

Proposition 7 Let T n = min{k ≤ n|N | :
∑k

λ=1G
λ > n · |N | · d̄}. If d̄ > 0, then

lim
n→∞

E[n · |N | − T n] <∞. (366)

The proof of this proposition, is provided at the end of this appendix. In order to

derive the proof, we need to take a closer look at the random sequence G1, . . . , Gn·|N |.

First, let us consider more closely the case of the unscaled requirement vector N .

Since the Gi’s represent the sample values obtained by randomly sampling the pop-

ulation D without replacement, the sequence G1, . . . , G|N |, possess a permutation

distribution [24]. That is, if g = (g1, . . . , gk) is a set of real numbers, then the joint

distribution of (G1, . . . , Gk) takes as values all the k! permutations of g with equal

probabilities. Some basic properties of random variables with a permutation distri-

bution are summarized below.

Property P1 [34] The r.v’s Gλ, λ = 1, . . . , L, are equidistributed as P (Gλ = dj) =

Nj
|N | , j = 1, . . . , L.

Property P2 [34] The r.v’s Gλ, λ = 1, . . . , L are exchangeable. That is, the joint

distribution of any k of the r.v. Gλ is the same as that of the first k of them.

It is evident that the variables G1, . . . , G|N | are dependent and someone would expect

169



that given the first k sample values G1, . . . , Gk, the sample Gk+1 would be negatively

correlated with the first k samples. This idea is formalized in [24], where it is proved

that:

Property P3 [24]. Random variables with a permutation distribution are Negatively

Associated (NA).

In general, the random variables X1, . . . , Xn are said to be NA if for every pair of

disjoint subsets A1, A2 of {1, . . . , n},

Cov{f1(Xi, i ∈ A1), f2(Xj, j ∈ A2)} ≤ 0 (367)

whenever f1 and f2 are increasing.

The NA property of a sequence of random variables is stronger than that of

negative correlation. In the following, we present an interesting result that concerns

a sequence of NA random variables, and will be useful in the sequel:

Property P4 [39] For a sequence of NA random variables X1, . . . , Xn and a sequence

of independent random variables X∗1 , . . . , X
∗
n such that Xi =st X∗i , i = 1, . . . , n, (“=st”

denotes equality in distribution) we have that

E[f( max
1≤k≤n

{
k∑
i=1

Xi)}] ≤ E[f( max
1≤k≤n

{
k∑
i=1

X∗i })] (368)

for any increasing convex function f such that the above expectations exist.

Next, we assume that the vector N is scaled by a factor n ∈ Z+. In the following

lemma we prove a property of the random sequence G1, . . . , Gn·|N | that will be useful

in the proof of Proposition 7.

Lemma 11 For any a > 0, we have

lim
n→∞

E[max{k ≤ n|N | :
k∑

λ=1

(−Gλ + d̄) > α · k}] <∞ (369)

Proof Let

tn = max{k ≤ n|N | :
k∑

λ=1

(−Gλ + d̄) > α · k} (370)
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From the above equation we have that
∑tn

λ=1(−Gλ + d̄) − α · tn ≥ 0. Hence, we can

write

α

2
tn ≤

tn∑
λ=1

(−Gλ + d̄)− α · tn +
α

2
tn (371)

=
tn∑
λ=1

(−Gλ + d̄)− α

2
tn (372)

≤ max
k≤n|N |

{
k∑

λ=1

(−Gλ + d̄)− α

2
k} (373)

= max
k≤n|N |

{
k∑

λ=1

(−Gλ + d̄− α

2
)} (374)

Hence from Equation 374 we get that

α

2
E[tn] ≤ E[ max

k≤n|N |
{

k∑
λ=1

(−Gλ + d̄− α

2
)}] (375)

We already know that the variables Gλ have a permutation distribution and hence

are NA. It is trivial to see that the variables −Gλ + d̄− α
2
, λ = 1, . . . , n|N |, also have

a permutation distribution and, hence, are equi-distributed and NA. Assume the i.i.d.

random variables Gλ∗ such that

P (Gλ∗ = dj) =
Nj
|N |

, j = 1, . . . , L. (376)

λ = 1, . . . , n|N |. From Property 1, we know that Gλ =st Gλ∗ , λ = 1, . . . , n · |N |.

Furthermore, from Property 4 we can claim that

E[ max
k≤n|N |

{
k∑

λ=1

(−Gλ + d̄− α

2
)}] ≤ E[( max

k≤n|N |
{

k∑
λ=1

(−Gλ∗ + d̄− α

2
)}] (377)

Notice that the random variables −Gλ∗ + d̄ − α
2

are a.s. bounded random variable

with a negative expectation, i.e., E[−Gλ∗ + d̄− α
2
)] = −α

2
< 0. Hence, from Theorem

1 of [23], we get

E[max
k
{

k∑
λ=1

(−Gλ∗ + d̄− α

2
)}] < ∞ (378)
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and therefore,

lim
n→∞

E[ max
k≤n·|N |

{
k∑

λ=1

(−Gλ∗ + d̄− α

2
)}] ≤ E[max

k
{

k∑
λ=1

(−Gλ∗ + d̄− α

2
)}] (379)

< ∞. (380)

Finally, Lemma 11 follows from Equations 370, 375, 377, and 380

Proof of Proposition 7. We have that

E[n · |N | − T n] (381)

= E[(n · |N | −min{k ≤ n|N | :
k∑

λ=1

Gλ > n · |N | · d̄}] (382)

= E[ max
k≤n|N |

{n · |N | − k :
k∑

λ=1

Gλ > n · |N | · d̄}] (383)

= E[ max
k≤n|N |

{n · |N | − k :
k∑

λ=1

(Gλ − d̄) > d̄ · (n · |N | − k)}] (384)

From the definition of Gλ, Zλ and d̄, we notice that:

n|N |∑
λ=1

(Gλ − d̄) =

n|N |∑
λ=1

Gλ −
n|N |∑
λ=1

d̄ (385)

=

n|N |∑
λ=1

L∑
j=1

dj · Zλ
j − n ·

L∑
j=1

dj · Nj (386)

=
L∑
j=1

dj

n|N |∑
λ=1

·Zλ
j − n ·

L∑
j=1

dj · Nj (387)

=
L∑
j=1

dj · n · Nj − n ·
L∑
j=1

dj · Nj (388)

= 0. (389)

Hence,
k∑

λ=1

(Gλ − d̄) = 0−
n|N |∑
λ=k+1

(Gλ − d̄) (390)

Recall that, according to Property 2, the random variables Gλ are exchangeable.

Then, the joint distribution of (G1, . . . , Gn|N |−k) is the same as the joint distribution
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of (Gk+1, . . . , Gn|N |) for all k = 0, . . . , n|N |. Hence, we have that

n|N |−k∑
λ=1

Gλ =st

n|N |∑
λ=k+1

Gλ, (391)

k = 0, . . . , n|N |. From Equations 390 and 391 we get that

k∑
λ=1

(Gλ − d̄) =st −
n|N |−k∑
λ=1

(Gλ − d̄), k = 0, . . . , n|N |. (392)

Then, from Equation 392, Equation 384 becomes

E[ max
k≤n·|N |

{n · |N | − k :
k∑

λ=1

(Gλ − d̄) > d̄ · (n · |N | − k)} (393)

= E[ max
k≤n·|N |

{n · |N | − k : −
n|N |−k∑
λ=1

(Gλ − d̄) > d̄ · (n · |N | − k)}] (394)

= E[max{k ≤ n · |N | : −
k∑

λ=1

(Gλ − d̄) > d̄ · k}] (395)

Now, from Lemma 11, we have that

lim
n→∞

E[max{k ≤ n · |N | : −
k∑

λ=1

(Gλ − d̄) > d̄ · k}] <∞ (396)

From Equations 384, 395 and 396 the proposition follows.
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APPENDIX B

A FLUID RELAXATION FOR THE ONV-II PROBLEM

In this appendix we provide with a fluid-based relaxation of the ONV-II problem of

Chapter 5. Remember that the ONV-II version is an extension of the ONV problem

that is obtained by the introduction of visitation requirements for the internal nodes

of the stochastic digraph. The fluid relaxation must take into account the ONV-

II problem property that the visitation requirements of a node x ∈ X will start

to be satisfied only after the complete satisfaction of the visitation requirements of

the successor nodes. In order to accommodate this requirement, the fluid relaxation

constitutes a continuous-time flow control problem and it is described in the next

section.

B.1 The fluid relaxation for the ONV-II problem as a con-
tinuous time flow control problem

The flow control problem that will serve as a fluid based relaxation for the ONV-II

problem concerns the transferring of some required amounts of fluid to different nodes

of an acyclic graph, while minimizing the potential losses that are incurred by (i) the

presence of nodes with uncontrollable routing, and (ii) the imposition of precedence

constraints on the satisfaction of the fluid requirements at these nodes. This problem

can be described as follows: We are given a network, modeled by an acyclic, connected

digraph G = (V,E), where V and E denote respectively the sets of the graph nodes

and edges. Furthermore, V is partitioned to two node classes, V c and V u. The sets

of source and leaf nodes of graph G are respectively denoted by •V and V •, and it
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is further assumed that •V = {v0}.1 To facilitate the subsequent discussion, we also

use the following notation: E•(v) will denote the set of edges emanating from node v,

•E(v) will denote the set of edges leading to node v, and •E•(v) will denote the entire

set of edges incident on v. Finally, v• will denote the set of the immediate successors

of node v, i.e., v• collects all the terminating nodes of the edges e ∈ E•(v). A fluid is

pumped into this network through its source node v0, at a constant rate of one unit

of fluid per unit of time. Flow reaching a node v ∈ V u is distributed to its outgoing

edges according to an uncontrollable and time invariant distribution dv =< dv(e), e ∈

E•(v) >. On the other hand, the distribution of the flow reaching a node v ∈ V c to

its emanating edges is controllable and it can be varied over time. Finally, each node

v ∈ V has a fluid requirement F̄ (v) associated with it, and it is also stipulated that

node v can begin accumulating the incoming flow in order to fulfill its requirement

F̄ (v) only after all of its successor nodes in graph G, v′ ∈ V , have fulfilled their

own requirements, F̄ (v′). A node v that can proceed to the accumulation of its fluid

requirement, F̄ (v), will be characterized as activated . It will be further characterized

as completed , when the accumulated amount of fluid reaches the designated level

F̄ (v). The control problem considered in this work is the determination of a (time-

dependent) routing policy for nodes v ∈ V c that will enable the completion of all the

nodal requirements F̄ (v), v ∈ V , in minimal time (or equivalently, while pumping the

minimal amount of fluid into the network). An example problem instance is presented

in Figure 25. In the depicted digraph, uncontrollable nodes are represented by black

circles. The nodal fluid requirements are reported by the numbers in bold, on the

right side of each node, and the distributions characterizing the routing pattern at the

uncontrollable nodes are reported by the numbers on the left of the edges emanating

from these nodes.

1It should be obvious from the subsequent discussion that the assumption |•V | = 1 is not restric-
tive at all, since any problem instance with |•V | > 1 can be easily reduced to a problem instance
with |•V | = 1 through the addition of a new dummy node; the details are left to the reader.
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Figure 25: An example problem instance

B.2 A succinct representation of the flow control problem

The problem introduced in the previous section can now be naturally formulated

as continuous-time optimal control problem. In this modeling framework, the key

“decision variables” are the functionals fe(t), t ∈ [0,∞), defining a flow profile for

each edge e ∈ E. We shall also use the functionals Fv(t), t ∈ [0,∞), to denote the

evolution of the fluid accumulation at node v ∈ V . Then, the considered problem can

be succinctly expressed as follows:

min

∫ ∞
0

I{Fv0 (t)≤F̄ (v0)}dt (397)

s.t. ∑
e∈E•(v0)

fe(t) = 1.0 (398)

∀v ∈ V c\(V • ∪• V ), ∀t ∈ [0,∞),∑
e∈E•(v)

fe(t) =
∑

e′∈•E(v)

fe′(t) (399)

∀v ∈ V u\V •, ∀e ∈ E•(v), ∀t ∈ [0,∞),

fe(t) = dv(e) ·
∑

e′∈•E(v)

fe′(t) (400)

∀v ∈ V, ∀t ∈ [0,∞), Fv(t) =∫ t

0

(
∑

e∈•E(v)

fe(τ)) · I{∀v′∈v•, Fv′ (t)≥F̄ (v′)}dτ (401)
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∀e ∈ E, ∀t ∈ [0,∞), fe(t) ≥ 0 (402)

Constraint 398 in the above formulation expresses the finiteness of the ingress ca-

pacity of the considered network and establishes the equivalence between the cumu-

lative amount of fluid entering this network and the passage of time. Constraints 399

and 400 impose a flow balance requirement for the set of nodes V \(•V ∪ V •), with

Constraint 400 further communicating the uncontrollable nature of the flow routing

that takes place at nodes in V u. Constraint 401 expresses the accumulation of the

fluid required by the different nodes v ∈ V , and it ensures that it is in agreement with

the precedence constraint defined in the introductory section. Finally, the problem

objective function seeks the completion of all the nodal fluid requirements in minimal

time (or in the light of Constraint 398, with a minimal loss of fluid).

B.3 A structural property of the considered optimal control
problem

While the formulation of Equations 397-402 offers a succinct characterization of the

considered problem, it is very cumbersome from a computational standpoint. How-

ever, next we present a structural property that will enable its transformation to a

mixed integer program, which is readily solvable through canned optimization soft-

ware [43]. The main essence of this property is that the restriction of the original

problem to flows < fe(t), e ∈ E, t ∈ [0,∞) > that maintain a constant distribution

at all nodes v ∈ V between two consecutive completions of some fluid requirements,

does not compromise the optimality of the derived solution. This result can be stated

and proven as follows:

Proposition 8 Let < fe(t), e ∈ E; Fv(t), v ∈ V ; t ∈ [0,∞) > denote a feasible

solution for the formulation of Equations 397-402, and consider a time interval [t1, t2]

such that

∀v ∈ V, I{Fv(t1)<F̄ (v)} = I{Fv(t2)<F̄ (v)} (403)
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Then, there exists a solution < f ′e(t), e ∈ E; F ′v(t), v ∈ V ; t ∈ [0,∞) > such that

∀e ∈ E, ∀t ∈ [t1, t2], f ′e(t) = ce (404)

and ∫ ∞
0

I{F ′v0 (t)≤F̄ (v0)}dt =

∫ ∞
0

I{Fv0 (t)≤F̄ (v0)}dt (405)

Proof Consider the flow < f ′e(t), e ∈ E; t ∈ [0,∞) > that is defined by flow f as

follows:

∀e ∈ E, f ′e(t) =


1

t2−t1

∫ t2
t1
fe(τ)dτ , if t ∈ [t1, t2]

fe(t), otherwise
(406)

Clearly, the flow f ′ defined by Equation 406 satisfies the condition of Equation 404

and it also satisfies Constraint 402 of the problem formulation provided in Section B.2.

Furthermore, the definition of f ′, together with the linearity of the integral, imply

that f ′ is also feasible with respect to Constraints 398-400 of that formulation. Next

we consider the fluid accumulations < F ′v(t), v ∈ V, t ∈ [t,∞) >, that are induced

by f ′ through the integral of Equation 401, and we establish that

∀t ∈ {t1, t2}, ∀v ∈ V, F ′v(t) = Fv(t) (407)

The validity of Equation 407 for t = t1 follows immediately from the definitions of f ′

and F ′ (c.f., Equations 406 and 401). The validity of Equation 407 for t = t2 can be

established inductively as follows: First consider the set of leaf nodes and notice that
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for any such node v ∈ V •, I{∀v′∈v•, Fv′ (t)≥F̄ (v′)} = 1, ∀t ∈ [0,∞). Hence,

∀v ∈ V •, F ′v(t2) =

F ′v(t1) +

∫ t2

t1

∑
e∈•E(v)

f ′e(τ)dτ =

Fv(t1) +

∫ t2

t1

[
∑

e∈•E(v)

1

t2 − t1

∫ t2

t1

fe(s)ds]dτ =

Fv(t1) +
1

t2 − t1

∫ t2

t1

dτ

∫ t2

t1

∑
e∈•E(v)

fe(s)ds =

Fv(t1) +

∫ t2

t1

∑
e∈•E(v)

fe(s)ds =

Fv(t2) (408)

For the inductive step, consider a node v ∈ V \V •, and suppose that

∀v′ ∈ v•, F ′v′(t2) = Fv′(t2) (409)

Then, if there exists a node v′ ∈ v• with F ′v′(t2) = Fv′(t2) < F̄ (v′), Constraint 401

implies that

F ′v(t2) = Fv(t2) = 0 (410)

In the opposite case, F ′v′(t2) = Fv′(t2) ≥ F̄ (v′), ∀v′ ∈ v•, which combined with

Equation 403 and the established validity of Equation 407 for t = t1, further implies

that

∀t ∈ [t1, t2], I{∀v′∈v•, F ′
v′ (t)≥F̄ (v′)} =

I{∀v′∈v•, Fv′ (t)≥F̄ (v′)} = 1 (411)

But then, the equality of F ′v(t2) and Fv(t2) can be established through a computation

similar to that presented in Equation 408. Finally, Equation 405 follows from the

definition of f ′ (c.f. Equation 406) and the application of Equations 403 and 407 to

node v0.
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As already explained, Proposition 8 implies that we can restrict the search for

an optimal control law into the class of control laws that allow for a switch of the

applied routing scheme only at the time points corresponding to the completion of

some fluid requirement. In the light of the above discussion, it is possible to provide

a MIP-based formulation of the considered optimal control problem as described in

the next section.

B.4 The MIP formulation

The flow dynamics generated by this restricted class of control laws can be modelled

using the set of “control modes”, V , that is defined by all the possible partitions of the

node set V , that (i) split it into two subsets, one containing the nodes that have their

flow requirements completed, and its complement, and (ii) they are in agreement with

the precedence constraints expressed by Equation 401. In order to characterize for

each mode ν ∈ V , all the possible evolution patterns, towards the fulfillment of the

corresponding fluid requirements, we proceed as follows:

First, we introduce the set of auxiliary variables {Xν
e }, which denote the total

amount of fluid conveyed through the edges e ∈ E during the network sojourn in the

considered control mode. Clearly, {Xν
e , e ∈ E} must satisfy the following balance

constraints:

∀v ∈ V c\(V • ∪• V ),
∑

e∈E•(v)

Xν
e =

∑
e′∈•E(v)

Xν
e′ (412)

∀v ∈ V u\V •, ∀e ∈ E•, Xν
e = dv(e) ·

∑
e′∈•E(v)

Xν
e′ (413)

∀e ∈ E, Xν
e ≥ 0 (414)

Second, we introduce the variables {∆F ν
v } that denote the total amount of fluid

accumulated at some activated node v during the network sojourn in the considered

control mode. Then, {∆F ν
v , v ∈ V ; ν ∈ V } should satisfy the following constraints:

∀ non-activated or completed node v in ν,∆F ν
v = 0
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Figure 26: The control modes and interconnecting transitions of the graph G cor-
responding to the example problem instance of Figure 25

and

∀ activated but uncompleted node v in ν,

∆F ν
v =


∑

e′∈•E(v)X
ν
e′ , if v 6= v0∑

e′∈E(v)• X
ν
e′ , otherwise

(415)

At this point we provide with some remarks that concern the computation of the

mode set implied by the underlying problem instance. As indicated by the example

graph of Figure 26, the enumeration of the viable control modes and the intercon-

necting transitions can be performed systematically through a search process that

starts from the initializing control mode ν0, where all nodes have their fluid require-

ments uncovered. Subsequently, the search process reaches out to the subsequent

control modes by flagging one node as completed, at a time, while observing the

precedence constraints that are imposed by the structure of graph G. The resulting

graph G = (V , E) has an acyclic structure, in which the different modes are layered
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according to their number of completed nodes. For further reference, we shall charac-

terize these layers of G by L0, L1, . . . , L|V |−1, where the layer index i corresponds to

the metric defining the layer, as discussed above. It is also interesting to notice that

the last layer L|V |−1 is a singleton, i.e., graph G has a unique sink node, corresponding

to the control mode that activates node v0.

Any solution of the MIP formulation belonging to the restricted space of con-

trol laws characterized in the previous section, can be effectively represented by the

following two elements: (i) a directed path from the source to the sink node of the

aforementioned graph G, and, (ii) the nodal fluid accumulations that take place at

each visited mode. In order to characterize the aforementioned paths of G, we: in-

troduce the binary variables δν , ν ∈ V , and we stipulate that δν = 1 iff mode ν

belongs on the path followed by the considered solution. Obviously, the pricing of

the variables δν , ν ∈ V , must be restricted by an additional set of constraints, which

will ensure that they express meaningful paths from the source to the sink node of

graph G. Letting •ν denote the immediate predecessors of any mode ν ∈ V , such a

constraint set can be structured as follows:

∀i ∈ {0, 1, . . . , |V | − 1},
∑
ν∈Li

δν = 1 (416)

∀ν ∈ V\{ν0}, δν ≤
∑
ν′∈•ν

δν′ (417)

∀ν ∈ V , δν ∈ {0, 1} (418)

Indeed, the combination of Constraints 416 and 418 expresses the fact that any path

from the source to the sink mode of G has exactly one node belonging to each of

the layers of G. On the other hand, Constraint 417 enforces the path feasibility with

respect to the connectivity of G.

In order to complete the characterization of the space of the control laws con-

sidered by the proposed formulation, we must also link the pricing of the variables
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δν , ν ∈ V , to the pricing of the variables Xν
e , e ∈ E, ν ∈ V , that define the fluid accu-

mulations at the different control modes. For this, consider a pricing of the variables

δν , ν ∈ V , according to any pattern that satisfies Constraints 416–418. Then, it

should be clear from the above discussion, that any control law which is in agreement

with this pricing, will engage only control modes ν with δν = 1. Control modes ν

with δν = 0 will not contribute anything to the required fluid accumulations. In the

light of Equations 412–414, this effect is communicated in the proposed formulation

by setting

∀ν ∈ V ,
∑

e∈E•(v0)

Xν
e ≤ δν ·Mν (419)

The parameter Mν appearing in the above equation is of the, so called, “big-

M” type, and it must be adequately large to avoid any unintentional / artificial

constraining of the left hand side of Equation 419, in the case that δν = 1. In the

considered problem context, a pertinent value for Mν is provided by the combined

fluid requirement of all the nodes that are activated but not completed in mode ν.

Equations 416–418 combined with Equations 412–415 and Equation 419 provide

a complete characterization of the entire set of flows presenting the structure that

was identified by Proposition 8. It remains to express the constraints arising by the

nodal fluid requirements and the objective function that measures the performance

of any such satisficing flow. The constraints imposing the nodal fluid requirements

can be succinctly expressed as follows:2

∀v ∈ V,
∑
ν∈V

∆F ν
v = F̄ (v) (420)

Similarly, the stated objective of minimizing the overall fluid losses can be expressed

2Constraint 420 can be relaxed to a “≥”-type, with some potential gains in computational time.
The resulting values for the Xν

e variables will still define an optimal flow for the original continuous-
time optimal control problem of Eqs 397–402, but the order in which the nodal fluid requirements
will be completed under this solution, might differ from that suggested by the pricing of the variables
δν .
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by

min
∑
ν∈V

∑
e∈E•(v0)

Xν
e (421)

The following theorem recapitulates all the above discussion and provides a formal

expression to the presented developments. The notation •e used in its statement

implies the starting node for edge e.

Theorem 21 Consider the MIP formulation defined by Equations 412–421 and let

Xν∗
e , e ∈ E, ν ∈ V, denote the modal flows established by its optimal solution.

Furthermore, define the flow functionals fe(t), e ∈ E, t ∈ [0,∞), by setting ∀e ∈ E,

fe(t) =

∑
ν∈Li X

ν∗
e∑

e′∈E•(•e)
∑

ν∈Li X
ν∗
e′

(422)

if there exists an i ∈ {0, 1, . . . , |V | − 1} such that
∑i−1

j=0

∑
ν∈Lj

∑
e′∈E•(v0) X

ν∗

e′ ≤ t <∑i
j=0

∑
ν∈Lj

∑
e′∈E•(v0) X

ν∗

e′ , and

fe(t) = 0 (423)

otherwise. Then, < fe(t), e ∈ E, t ∈ [0,∞) > is an optimal flow for the original

formulation of Equations 397–402, and∫ ∞
0

I{Fv0 (t)≤F̄ (v0)}dt =
∑
ν∈V

∑
e∈E•(v0)

Xν∗

e (424)

2

We must notice that MIP formulations can be computationally expensive, and,

in the considered case, things are further complicated by the fact that the derived

MIP formulation involves a number of variables and constrains that is exponentially

large with respect to the size of elements that are involved in the original problem

statement. As a result, in Chapter 5 we constrain the ONV-II problem over a class

of randomized policies which are simpler and accept a fluid relaxation that can be

easily addressed through standard optimization techniques.
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