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Introduction 
 

Flight control systems for aerospace vehicles present significant challeng-

es for nonlinear flight regimes such as high-angle-of-attack flight. In such flight 

regimes linear controllers may not execute a desired performance. Therefore, 

nonlinearities of the vehicle dynamics must be taken into account by a control 

algorithm. 

State-dependent Riccati equation (SDRE) methodis a heuristic technique 

that was originally proposed by Pearson [1] and independently studied by Clout-

ier et al [2]-[6]. In SDRE control a nonlinear system is parameterized to have a 

linear-like structure. The optimal control is obtained by solving a SDRE at every 

point on the trajectory.SDRE algorithm captures the nonlinearities of the system 

by converting it to a quasi-linear structure using state-dependent coefficient 

(SDC) matrices. This enables the re-computing of the controller gains in real 

time by minimizing a quasi-quadratic cost function. An algebraic Riccati equa-

tion (ARE) using SDC matrices is solved on-line to obtain the feedback gain. 

The non-uniqueness of the parameterization creates additional degrees of free-

dom, which may be used to enhance controller performance. It is important to 

note that methods using the SDRE can be applied to minimum as well as a non-

minimum phase nonlinear system. Furthermore, the weight may be adaptively 

changed to avoid actuator saturation problems.  

SDRE approach is applied to a number of control problems in aerospace 

applications, such as missile control [6], [7], control for VTOL vehicles [8], [9], 

and quadrotors [10]. Another wide area of SDRE application is a spacecraft atti-

tude control [11]–[14]. However, the utilization of SDRE control to fixed-wing 

aircraft that operate in nonlinear flight regimes is not explored. 

This paper focuses on the application of SDRE method for the flight con-

trol of a fixed-wing unmanned aerial vehicle. The control algorithm represents a 

tracking controller and consists of two cascaded control loops.  The outer loop 

addresses control of the attitude and altitude of the aircraft, and the inner loop is 

used to control rotational and translational velocities. In addition, a nonlinear 

compensator is implemented to account for the mismatch between the full vehi-

cle dynamics and its SDC parameterization, that occurs the inner loop. Perfor-

mance of the SDRE controller is demonstrated using a nonlinear simulation 

model of the aircraft for a high angle of attack maneuver.  
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Problem Formulation 
 

The task of this paper is to develop a nonlinear flight control system for a 

fixed-wing aircraft based on SDRE method. The controller dual-loop structure 

involves development of the SDC models of the aircraft dynamics for each loop, 

and also a nonlinear compensator that cancels miss-match between the actual 

and modeled dynamics.  
 

SDRE Control and SDC Parameterization 
 

SDRE control method involves factorization of the nonlinear dynamics 

0( ) ( ( ), ( )), (0) ,x t f x t u t x x   (1) 

where nxR is the state vector, muR  is the input vector, function

: .n nf R R  SDC parameterization yields the linear-like structure with SDC 

matrices given by 

0( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ), (0) ,x t A x t u t x t B x t u t u t x x    (2) 

where : n n nA R R  and : n n mB R R . It should be notes that SDC dynamics 

matrixA in (2) is not unique when 1n  , [15].  

The performance cost function to be minimized is defined as 

 T T

0 1 2

0

1
( , ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) d ,

2
J x u x t R x t x t u t R x t u t t



   (3) 

where 1( ( )) n nR x t R  is positive semidefinite, and 2( ( )) n nR x t R  is positive 

definite. SDRE method requires that the pair ( ( ), ( )), ( ( ), ( ))A x t u t B x t u t must be 

pointwise stabilizable, and full state vector measurements must be available for 

feedback.  

Let ( ) ( ( ), ( )), ( ) ( ( ), ( ))A x A x t u t B x B x t u t . The state feedback control 

law is given by 
1 T

2( ) ( ) ( ) ( ) ( ) ( ) ( ),u t K x x t R x B x P x x t     (4) 

where ( ) ( ( ))P x P x t  is a solution of the state-dependent algebraic Riccati equa-

tion, [16] 
T 1 T

2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.A x P x P x A x P x B x R x B x P x R x     (5) 

It is important to emphasize that SDRE method is heuristic since the con-

trol law is suboptimal with respect to the performance index (3) and may not be 

stabilizing. Some conditions for stability of SDRE method for high-order sys-

tems are given in Ref. [4]. 
 

Tracking Controller and Compensator 
 

In tracking (trajectory following) systems, it is required that the outputs 

precisely follow desired trajectories in some optimal sense. Optimality is 
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reached by minimization of a given cost function. Naidu [17] and Anderson [18] 

show a linear quadratic tracking (LQT) controller that aims to maintain the out-

put as close as possible to the desired reference input with minimum control en-

ergy for an observable linear time-varying system. 

Consider a nonlinear system in the SDC form 

0( ) ( ) ( ) ( ) ( ) ( ), (0) ,

( ) ( ) ( ),

x t A x x t B x u t f x x x

y t C x x t

   


 (6) 

where ( )f x  represents a mismatch that appears as a result of the SDC factoriza-

tion of the nonlinear system, provided that ( )f x is slowly varying and bounded. 

It is desired to control system (6) such that the desired output ( )y t  tracks the 

reference input ( )z t . 

Reference [19] provides derivations of the infinite horizon tracking con-

troller and a compensator, minimizing a performance index 

 
f f

T T

0

0

1
lim ( , ) lim ( ) ( ) ( ) ( ) ( ) ( ) d ,

2t t
J x u e t Q t e t u t R t u t t



 
   (7) 

where ( ) ( ) ( )e t z t y t   is the tracking error. 

The control law for system (6) can be written in the form 

z f( ) ( ) ( ) ( ) ( ) ( ) ( ).u t K x x t K x z t K x f t    (8) 

Corresponding controller gains are defined as 
1 T

1 T T 1

z

1 T T 1

f

( ) ( ) ( ) ( ),

( ) ( ) ( )[ ( ) ( ) ( )] ( ),

( ) ( ) ( )[ ( ) ( ) ( )] ( ),

K x R x B x P x

K x R x B x P x E x A x W x

K x R x B x P x E x A x P x



 

 

 

  

  

 (9) 

where ( )P x  is a solution of the state-dependent algebraic Riccati equation 
T 1 T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,A x P x P x A x P x B x R x B x P x C x Q x C x     (10) 

and 
1 T

T

( ) ( ) ( ) ( ),

( ) ( ) ( ).

E x B x R x B x

W x C x Q x




 (11) 

The gain 
f ( )K x represents a compensator and is used to cancel the mis-

match term ( )f x  in the SDC model (6). 

 

Controller Structure and Extended Parameterization 
 

The proposed flight control system consists of two concentric loops and 

its block diagram is shown in Fig. 1. For each control loop a separate SDRE 

tracking controller is implemented. The main advantage of this two-loop archi-

tecture is the reduction in the dimensions of state vectors, and computational 

cost associated with the calculation of the feedback gains. 
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The outer loop is used to control the angular position of an aircraft and its 

altitude. Inner loop controls the translational and rotational velocities of the ve-

hicle. Control inputs include using of the elevator, ailerons, rudder and throttle. 

A reference input computing block contains a simple navigation algorithm that 

generates consistent commands to the outer loop. 

 
Fig. 1. Control System Block Diagram 
 

The 6 degrees-of-freedom equations of motion of an aircraft written in the 

body-fixed coordinate system are used to obtain the SDC models for the inner 

loop, [20]. Kinematic equations are utilized to relate the body fixed measure-

ments to the altitude and attitude.  

The outer loop state and control vectors are defined as follows: 

   
T T

out out, , , , , , , , , ,x h u u v w p q r       

where , ,    are the Euler angles, h  is the altitude; , ,u v w  are the components 

of the translational velocity, written in body axis; , ,p q r  are the components of 

the rotational velocity, written in body axis. A possible set of SDC matrices for 

the outer loop dynamics can be written as 
 

out out( ) [0],A x   

out out

0 0 0 1 tan sin tan cos

( ) 0 0 0 0 cos sin ,

sin cos sin cos 0 0 0

B x

    
 

   
 
      

out out( ) [0].f x   

 

 

The outer loop state and control vectors are defined as follows: 

   
TT

in in a e r T, , , , , , , , , ,x u v w p q r u       

where 
a e r T, , ,     present aileron, elevator, rudder and throttle inputs, respec-

tively. 
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A possible choice of the state-dependent dynamics and input matrices for 

the inner loop dynamics model can be obtained in thefollowing form 
 

11 in 12 in

in in

21 in 22 in

( ) ( )
( ) ,

( ) ( )

A x A x
A x

A x A x

 
  
 

 
 

 

where 
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 in in 1 in 2 in 2 in( ) ( ) ( ) ( ) ,B x B x B x B x   
 

where 



164 

І н ф о р м а ц і й н і  с и с т е м и ,  м е х а н і к а  т а  к е р у в а н н я  

L D

L D1 in 2 in
3 l 4 n

6 m
4 l 5 n

( )
0

0 0

0
( )( ) , ( ) ,

( )

00

( )

0

e e

e e

a a

e
a a

qS
C C

m

qS
C CB x B x

mqSb c C c C

qScc CqSb c C c C

 

 

 


 

 
   

  
  
  
     

   
  
  
   
 
 

 

 

 

T

Y

3 in 4 in

3 l 4 n

4 l 5 n

0

0

0 0( ) , ( ) ,

( ) 0

0 0

( ) 0

r

r r

r r

C

qS m
C

m

B x B x

qSb c C c C

qSb c C c C



 

 

   
   
   
   
       

   
   
   
     

 

 

and 
2

yy zz zz x xx yy zz xz zz
1 2 32 2 2

xx zz x xx zz x xx zz x

xz xx
4 5 62 2

xx zz x xx zz x yy

( ) ( )
; ; ;

1
; .

z

z z z

z z

I I I I I I I I I
c c c

I I I I I I I I I

I I
c c c

I I I I I I I

   
  

  

  
 

 

 

 

The mismatch between the original dynamics and the SDC parameteriza-

tion includes terms that appeardue to the gravitational acceleration is modeled as 

a slowly varying external input 

in

sin

cos sin

cos cos
( ) .

0

0

0

g

g

g
f x

  
 

 
 
  

  
 
 
 
 

 

 

 

Simulation Results 
 

A nonlinear simulation model of a fixed-wing unmanned aircraft is used 

to verify the performance of the designed SDRE controller. The aircraft has a 

mass of 105 kg, wing span 4.3 m, and chord length 0.53 m. The aerodynamic 
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coefficients are in the form of look-up tables and include the nonlinearities such 

as drop in the aerodynamic lift coefficient and increase in aerodynamic drag co-

efficient at high values of the angle of attack. The actuators are modeled as first-

order servos. 

Selection of the weighting matrices Q  and R  is a crucial step in design-

ing a SDRE controller. For the purposes of this work, matrices Q and R are cho-

sen to be constant diagonal matrices with the following diagonal entries 
 

2 2 2

out

out

3 3 3 4 5 4

in

3

in

diag[10 ,10 ,10 , 0.6],

diag[1,1, 3,1,1,1],

diag[10 ,10 ,10 ,10 , 2 10 ,10 ],

diag[1,1,1,10 ].

Q

R

Q

R 





 



 

 

 

To demonstrate effectiveness of the designed flight control system in 

flight regime that covers the nonlinear regions of the aerodynamic lift coeffi-

cient curve, a level flight at a high angle of attack is simulated. Commanding a 

high pitch angle and holding the altitude constant allows achieving this flight re-

gime. The reference pitch attitude is set to 18 deg and a required altitude is 1000 

m. Roll and yaw angles are commands are zero. The update frequency for the 

controllers’ gains is 2 Hz. 

The aerodynamic lift coefficient versus angle of attack plot is shown in 

Fig. 2, from which it may be observed that the stall value is around 10 deg. 

 
Fig. 2. Lift Coefficient vs Angle of Attack 

 

The angle of attack response is given in Fig. 3, from which it can be ob-

served that the aircraft operates at the high angle of attack flight regime, which 

corresponds to the nonlinear region in the aerodynamic lift curve. Pitch angle 
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and altitude responses in Fig. 4 show that a level flight condition is achieved de-

spite of a small steady state altitude error. 

 
 

Fig. 3. Angle of Attack 
 

Fig. 4. Pitch Angle and Altitude 

Responses of the inner loop states that include linear and rotational veloci-

ty components are shown in Fig. 5. Thrust and elevator responses are presented 

in Fig. 6.  

Time histories of inner and outer loop controller gains are given in 

Fig. 7 - 11, and show that controller’s gains are re-adjusted according to the 

flight regime, ensuring sufficient tracking performance of the controller. 
 

 

 
Fig. 5. Linear and Angular Velocities 

Components  
 

Fig. 6. Elevator Position and Thrust 
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Fig. 7. Inner Loop Controller Gain K  Fig. 8. Inner Loop Controller Gain 

zK  
 

 

  
Fig. 9. Inner Loop Controller Gain 

fK  Fig. 10. Outer Loop Controller Gain K  
 

 

 
Fig. 11. Outer Loop Controller Gain 

zK  
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Conclusions 
 

In this paper, design of SDRE flight control system for a fixed-wing air-

craft that operates in a nonlinear flight regime is presented. We introduce a dual-

loop structure of the controller that allows decreasing dimensions of the state 

vectors and therefore reducing the order of SDC parameterization models. Flight 

control system utilizes a tracking algorithm and includes a nonlinear compensa-

tor for the gravity terms that are not taken into account by the parameterized 

models. The simulation results illustrate effectiveness of the proposed approach 

that utilized a single model the vehicle for the entire flight envelope, thus, elimi-

nating need for linearization and gain scheduling. 
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