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SUMMARY 

Animals effectively move and negotiate a variety of environments exemplifying the 

neuromuscular system’s ability to produce complex coordinated movements.  Our central 

thesis is that the nonlinear dynamical properties of muscle play a critical role in power 

production and stability during such movements.  We have developed a closed-loop 

system that couples an isolated muscle to a physical or computational load, facilitating 

the study of the interactions between intrinsic muscle properties and external forces.  We 

used this system to determine how elastic elements in the frog semimembranosus can 

improve power production during a jumping task and how the contractile element 

automatically manages energy to maintain a stable bouncing gait.  Our results reveal that, 

during ballistic movements (e.g. jumping), series elastic elements stretch and shorten to 

temporally concentrate energy transfer from the contractile element to the body, 

amplifying power production.  We measured peak instantaneous power greater than twice 

the maximum power the contractile element could produce alone.  Our results show how, 

during a bouncing gait, the contractile and elastic elements autonomously interact to 

produce, dissipate, and recycle energy and to maintain dynamic stability without sensory 

feedback.  Our data suggest that muscles can recover over 75% of the kinematic energy 

from one step and apply it to the next.  These results demonstrate the effects and 

importance of intrinsic muscle properties during movements.  Ultimately, this research 

can guide the development of biomimetic robotic and prosthetic technologies capable of 

life-like mobility. 



 1 

CHAPTER 1 

INTRODUCTION 

Overview 

The ability of animals to effectively move and negotiate different environments is typical 

of the facilities of neuromuscular systems to solve complex problems beyond the 

capabilities of any engineered system.  The inability of robotic systems to efficiently and 

autonomously move limits their contribution in medical and consumer applications.  

Investigating the emergent properties of the animal neuromuscular system  can further 

our understanding of the function and architecture of the nervous system, and in addition, 

may allow us to design and construct improved robotic systems (Caldwell and 

Tsagarakis, 2002; Herr et al., 2001; Loeb, 2001).  The neuromuscular system executes 

movements and interacts with the environment with muscles.  The mechanical properties 

of muscle may provide a capable foundation for robust animal movement that simplifies 

the control requirements of the nervous system.  However, the particular muscular 

strategies used during movement are not fully understood.  In this dissertation, we 

examine how the mechanical properties of muscle effectively produce energy and 

stabilize locomotion using a closed-loop system. 

In our first scientific study, we investigate the role of elastic elements in muscle within 

the context of frog jumping, using as an exemplar muscle the frog semimembranosus 

(SM).  Animals have evolved neuromuscular strategies that take advantage of the 

mechanical properties of muscle during movement.  The physics associated with an 
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effective isolated jump require maximizing power production making jumping a good 

system in which to examine an optimal neuromuscular strategy.  We hypothesize that 

series elastic elements (SEEs) can function to temporally concentrate energy transfer 

from the contractile element (CE) to the body and enhance power production during a 

jump.  Further, we examine the effect of different jump strategies on muscular power 

production.  Our results demonstrate that the different mechanical elements in muscle 

function together in a specific temporal pattern to produce, store, and release energy 

enhancing power production during a jump.  In addition, our results highlight the effect 

that even simple neuromuscular strategies can have on movement performance. 

In our second scientific study, we hypothesize that the intrinsic properties of muscles, 

without the aid of the nervous system, can stabilize a bouncing gait.  In natural 

environments, animals continuously withstand unexpected mechanical perturbations with 

unparalleled agility during locomotion.  We test whether the intrinsic properties of 

muscle, without sensory feedback, were sufficient to form a stable limit cycle during a 

bouncing gait.  Our results reveal how the different mechanical elements of muscle 

function to generate, dissipate, store, and release energy to maintain dynamic stability. 

We use a combination of experimental and computational techniques to exhaustively test 

our hypotheses.  We designed and employed a novel experimental apparatus that 

dynamically couples an isolated muscle to an arbitrary mechanical environment – a 

physical mechanical system, a simulated system, or a convenient combination of the two. 

This apparatus improves upon traditional methods and facilitates the study of a living 

muscle during dynamic movements.  In addition, a computational muscle model was 
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developed to allow us to extrapolate how different muscular properties, that are 

unattainable through experimental methods, may affect performance.  

We demonstrate that the mechanical properties of muscle facilitate the robust capabilities 

of animal movement and suggest that duplicating these properties in engineered systems 

will improve their performance.  In this chapter, we give a brief introduction to muscle 

physiology, energetics, stability, and potential applications. 

Mechanical Feedback Can Define Muscle Function During Movements 

Movement is the result of the coordinated interactions between the central nervous 

system, the musculoskeletal system, and the physical environment (Figure 1.1) 

(Dickinson et al., 2000).  The central nervous system, subject to time delays, uses sensory 

information about the body and environment to plan and execute movements.  Muscles, a 

primary component of the musculoskeletal system, are controlled by the central nervous 

system to apply forces to the body during movement.  In addition to activation, the forces 

produced by muscles are also subject to the mechanical feedback, the instantaneous 

interactions between musculoskeletal system and the physical environment. In this 

dissertation, we focus our study on the interactions between the mechanical properties of 

muscle and the physical environment. 

During locomotion the neuromuscular system employs global strategies to minimize 

energetic expenditure.  For example, in walking gaits, the body acts like a pendulum, 

exchanging kinetic and gravitational energy during every step which reduces the 

energetic cost (Cavagna et al., 1977).  During rapid forms of locomotion, such as 
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running, the limbs act like springs, exchanging kinetic and gravitational energy with 

elastic energy (Alexander and Bennet-Clark, 1977; McMahon and Cheng, 1990).  

Although the overall strategies are simple, the functions of individual skeletal muscles, 

which produce the movements, are more complex.  

During movements, muscles operate in three primary modes: (1) as motors, (2) as brakes, 

or (3) as struts (Dickinson et al., 2000).  Traditionally, muscles were thought of as motors 

that produce energy and accelerate the body during locomotion.  For example, during a 

jump, the hindlimb muscles in a frog produce force and shorten to generate energy (Lutz 

Central Nervous System

Musculoskeletal System

Motor Commands

Physical Environment

Muscle Forces
Mechanical
Feedback
(kinematics)

Proprioception

Sensory
Feedback

Mechanical Feedback

length velocity

force

Figure 1.1: Movement is the result of a coordinated effort by the neuromuscular 
system.  The central nervous system generates motor commands to activate the muscles, 
which belong to the musculoskeletal system.  In turn, the activated muscles generate 
forces and act on the physical environment, producing movement.  The force produced 
by muscles can be modified by both sensory and mechanical feedback to control 
movement.  In this dissertation, we demonstrate the importance and effects of 
mechanical feedback (red lines) on muscular function and performance.  Adapted from 
(Dickinson et al., 2000). 
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and Rome, 1994).  However, if muscles are stretched due to external forces, they act as 

brakes, dissipating energy.  For example, in the running cockroach, the leg extensor 

muscle 179 produces a larger force while lengthening as compared to shortening (Ahn 

and Full, 2002) – dissipating more energy than it produces.  Finally, in vivo 

measurements of hopping wallabies (Biewener et al., 1998), running turkeys (Gabaldon 

et al., 2004) and running guinea fowl (Daley and Biewener, 2003) reveal that muscle 

fibers are near isometric, while spring-like tendons stretch and shorten.  In these 

examples, the muscle acts as struts, facilitating the storage and release of energy in the 

elastic tendon during locomotion to improve efficiency. The intrinsic properties of 

muscle, the mechanical properties that depend on length, velocity, and activation, play an 

important role in energy management during locomotion. 

Mechanical feedback is sufficient to alter the function of muscle without any changes in 

the neural activation.  In this research, we determine how the fundamental properties of 

muscle dynamically interact to form a variety of emergent behaviors during movements 

with just mechanical feedback. 

A Three-Element Muscle Model Captures the Fundamental Properties of 
Muscle 

Hill’s viscoelastic muscle model effectively and accurately captures the salient 

mechanical properties of muscle (Gasser and Hill, 1924).  This three-element 

phenomenological model consists of (1) a contractile element (CE) with activation 

dependent viscous properties, (2) a parallel elastic element that acts in parallel to the 

viscous element, and (3) a series elastic element (SEE) that acts in series to the other 
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elements. 

Among other situations, the three-element model can explain the time course of muscle 

force development during isometric activation, and changes in force due to muscle 

shortening (Katz, 1939).  Upon activation, the force produced by a muscle develops 

asymptotically towards a steady-state value.  Applying the viscoelastic analysis, the rate 

of force development can be explained by the graduate internal shortening of the active 

viscous element that stretches the series elastic element.  During a quick-release, a rapid 

shortening of an initially active isometric muscle, the force rapidly drops before 

asymptotically increasing again towards its initial isometric force.  The initial drop in 

force is due the rapid shortening of the series elastic element, but not the viscous element.  

The slow redevelopment of force is due to the shortening of the active viscous element, 

stretching the series elastic element.  The viscoelastic model explains a variety of muscle 

functions. 

Although this model does not give insight into the molecular mechanisms in muscle, it 

provides a computationally efficient and resonably accurate representation of the 

mechanical properties of muscle.  Further, the viscoelastic model has greatly influenced 

our study of muscle function during movements.  A mathematical description of the 

three-element model is provided in Chapter 3. 

Contractile Mechanisms and the Fundamental Mechanical Properties of 
Muscle 

The organization and function of the anatomical components of muscle gives rise to its 

unique mechanical properties. A muscle fiber is comprised, in part, of myofibrils that are 
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further constructed of chains of sarcomeres.  Each sarcomere contains the contractile 

proteins that are responsible for force generation.  Huxley’s Sliding Filament Theory, still 

widely accepted today, explains how the different components of the sarcomeres function 

to create force and contraction (Huxley, 1957).  Muscle contraction results from the 

sliding of filaments—protein structures in sarcomeres —over each other. During 

contraction, the heads of the thick myosin filament attach to binding sites on thin actin 

filaments, to create links, apply a force, and rotate.  The rotation causes the actin filament 

to move and slide over the myosin filament allowing the muscle to shorten.  At the end of 

the rotation, the myosin heads detach from the actin filament, return to their original 

state, and bind to a new site to continue shortening.  The force generated by the muscle is 

proportional to the number of attached binding sites.   

The anatomical components of muscle can be loosely mapped to Hill’s three-element 

muscle model. 

Contractile Element 

The CE is the active force-producing component consisting of cross-bridge machinery.  

The forces produced by the CE are subject to length and velocity dependencies. 

The maximum force that a muscle can produce depends on the length of muscle (Gordon 

et al., 1966) ( active force–length relationship).  At long lengths, the actin and myosin 

filaments do not overlap.  As a result, during muscle activation at long lengths no actin-

myosin links can be created and thus no active force is developed.  At intermediate 

lengths, the overlap between actin and myosin filaments increases the number of binding 
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sites, and increases the ability of the muscle to produce active force.  At very short 

lengths, the actin filaments from one side of the muscle begin to overlap with the other 

side (double overlap), blocking potential binding sites, and reducing the muscle’s ability 

to produce active force.   

The maximum active force that a muscle can produce also depends on the velocity of 

muscle (Hill, 1938) (force–velocity relationship).  Hill’s thermodynamic experiments 

revealed a relationship between the rate at which heat was released from the muscle and 

the load applied to the muscle during shortening.  Examined differently, his experiments 

articulated that the maximum active force a muscle could produce was inversely related 

to the speed of contraction.  With increased speeds of shortening, the myosin heads spend 

more time in states where they are detaching and attaching and do not generate forces.  

When the muscle is active and legthening, however, the myosin heads are continually 

stretched past the initial length where they typically bind to the actin filament and spend 

less time in a detached state.  As a result, the maximum active force a muscle can 

produce increases with the rate of lengthening. 

Parallel Elastic Elements 

Passive elements, such as titin, act in parallel to the CE and contribute to the force a 

muscle can produce.  Increasing the muscle length, and stretching these elements, 

increases the passive force the muscle produces (passive force–length relationship).  

These parallel elastic elements act in parallel to the active CE, and therefore, the total 

force the muscle can produce is the sum of the force produced by the two elements. 
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Series Elastic Elements 

The contractile and parallel elastic elements in muscle exert their force on the body via 

SEEs such as the tendon, aponeurosis, and intramuscular elements (Roberts, 2002).  

Although SEEs are distributed throughout the muscle, the Hill’s three-element model 

lumps them into single elastic element.  SEEs stretch proportionally with force 

decoupling the kinematics of the CE from the body.  Typically, a maximal isometric 

contraction of the muscle can stretch SEEs by 10 to 20% of the entire muscle length.  As 

a result, SEEs may allow muscles to function outside the limitations of the cross-bridge 

dynamics (force–length and force–velocity relationship) and improve performance during 

movements.  SEEs also have the capability to store and release energy, which has 

important implications in muscle performance and efficiency during locomotion. 

Isotonic Power Production 

Hill’s three-element model has shaped our initial understanding of muscle function in 

behaving animals.  The force–velocity property of muscle has especially been used to 

analyze the energetic properties of muscle during locomotion.  In this research, however, 

we show that a variety of the fundamental properties of muscle work synergistically to 

enhance muscular performance. This section provides examples on how the force–

velocity property has been used to analyze muscle performance and then motivates the 

need for more complete examination of muscle function. 

In order to measure the force–velocity relationship property of muscle, isotonic (constant) 

loads are applied to a contracting muscle.  During an isotonic contraction, the muscle 

shortens at constant speed and produces a constant force.  Because the force is constant, 
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the SEEs are not changing lengths, and the force–velocity relationship of the CE can be 

measured at specific muscle length.  The force–velocity property of muscle also predicts 

the maximum rate at which a muscle can produce mechanical energy or work (Josephson, 

1993).   

Isotonic contractions have also been used to approximate the energetics of muscles 

during movements.  Power, the rate of work production, is defined as the product of the 

shortening velocity and the muscle force. Therefore a muscle can only produce power 

when it is both producing a force and shortening.  Power generation is zero at the 

maximum shortening velocity (vmax) where the muscle is unable to produce a force and at 

zero velocity where the force is maximal but no shortening is occurring.  For a range of 

velocities (approximately 0.2 vmax to 0.4 vmax), power generation is maximal.  Muscle 

power generation also depends on muscle length and muscle activation which affects the 

force the muscle is generating (Josephson, 1999).   

Several studies have suggested that, during locomotion, muscles shorten at velocities 

where it can produce a maximum amount of power.  For example, in the swimming scup 

(Rome et al., 1992) and carp (Rome and Sosnicki, 1990), the red muscles shorten at 

velocities where maximum power is generated, independent of temperature (Rome et al., 

1992).  At higher temperatures, the maximum shortening speed (Vmax) of the red muscles 

increases but the muscle still operates at velocities where maximum power is generated.  

As a result, in warmer temperatures, the scup is able to swim significantly faster.  In the 

carp, Rome showed that the red and white muscle fibers operate at velocities that produce 

maximum power (Rome et al., 1988).  At slow swim speeds only the red muscle fibers 
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are recruited.  During a startle response, where the swim speed is high, it would be 

impossible for red muscles alone to generate enough power; the muscle would have to 

shorten at velocities greater than their Vmax.  During this quick escape swim, red and 

white muscle fibers are recruited.  White fibers have a greater Vmax and both muscles 

operate at velocities that generate maximum power.  By changing gear ratios, gait, or 

using a variety of muscle the neuromuscular system may insure that muscles shorten at 

velocities where maximum power can be generated. 

Unlike the early assumptions of the isokinetic movements, muscle must accelerate and 

decelerate and therefore operate over a range of velocities during locomotion.  Lutz and 

Rome have suggested that frog SM is designed to produce peak power during jumping 

(Lutz and Rome, 1994).  Their in vivo measurements of the SM during jumping have 

shown that it shortens (1) at a constant velocity where peak power is generated (Lutz and 

Rome, 1996b), (2) over a range of sarcomere lengths where maximum force is generated 

(Lutz and Rome, 1996a), and that (3) the muscle is maximally activated during the jump 

(Hirano and Rome, 1984).  However, some of these results do not consider the dynamics 

involved in maximizing a jump.  A constant shortening velocity is achieved when the 

muscle is working against a constant antagonistic load that does not include inertia - 

which is not similar to that expected during jumping.   

The velocity of the frog body increases, and is not constant, throughout the contact phase 

of a jump (Roberts and Marsh, 2003).  Lutz and Rome calculated the velocity of 

shortening in the SM by estimating the hip and knee joint angles from film acquired from 

a high-speed camera.  Because the SM moment arm at the hip is constant and relatively 
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small at the knee (Lutz and Rome, 1996a), if the SM shortens at a constant velocity the 

frog body must also be shortening a constant velocity.  Such a movement requires a large 

initial acceleration and is inefficient.  Even if the duration of acceleration is short and the 

body can quickly reach its peak velocity, the frog’s muscles should stop producing force 

because any energy expended by the muscle after this point is wasted except to raise 

center of mass before take off.  To maximize efficiency, the frog body should reach peak 

velocity and full extension at the point of take off.  In Chapter 3, we examine how the 

elastic and contractile elements in frog SM can improve power production during 

jumping.  We employ a more realistic mechanical context for jumping, and investigate 

the SM as it accelerates an inertial load. 

Muscle Energetics During Cyclical Movements 

In order to more accurately replicate the function of muscles during locomotion, muscle 

energetics are typically studied in cyclical movements called work loops (Josephson, 

1985).  During most types of locomotion the joints in the limb undergo cyclic changes in 

angle causing the muscles that span the joints to continuously lengthen and shorten.  If 

the muscle is active and producing a force during shortening it is performing work and 

facilitating the movement.  If the muscle is producing a force during lengthening, it is 

resisting the movement, and absorbing work.  During a cycle, the work generated or 

absorbed by the muscle can be calculated by measuring the area enclosed when plotting 

muscle force against muscle length (positive is shortening) forming a work loop.  

Parameterized in time, if the loop is traversed clockwise the work is negative and 

mechanical energy is dissipated.  Traveling counter clockwise indicates that work is 

generated.  
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Although the work loop method facilitates the study of muscle under specific 

circumstances, the muscle cannot be examined under natural conditions where it interacts 

with other mechanical structures in the environment.  Traditionally work loops prescribe 

the length trajectory of the muscle (usually a sinusoid) regardless of the force the muscle 

is producing.  As a result, the interactions between the mechanical properties of muscle 

and external forces cannot be investigated.  Recently closed-loop experimental 

techniques have been developed that couple an isolated muscle with a computational load 

(Farahat and Herr, 2005; Lin and Rymer, 1998).  These systems enable the study of real 

muscle tissue during dynamic tasks where previous studies were constrained to using 

muscle models for such investigations.  In this dissertation, we examine the mechanical 

properties of muscle using a closed-loop system.  In addition, we extend current closed-

loop methods, enabling an isolated muscle to interact with physical loads.  Physical loads, 

as apposed to computational ones, can be more complex and better represent the natural 

loads muscles work against in vivo.  

Stability 

Animals have the remarkable ability to maintain balance and easily traverse a variety of 

uneven terrains.  During locomotion, animals use their muscles to interact with complex 

environments and work against a variety of loads (Marsh, 1999).  The interactions 

between the musculoskeletal plant and environment are dynamic and change with the 

speed of locomotion, the type of locomotion, and physical disturbances in the 

environment.  As a result, the neuromuscular system must continually stabilize the 

animal.   
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During rapid movements, the mechanical properties of muscle may play important roles 

in maintaining stability.  Unlike sensory feedback, which is subject to time delays, the 

intrinsic properties of muscle react instantly to mechanical feedback and can immediately 

mitigate mechanical perturbations.  In Chapter 4, we investigate the ability of the 

mechanical properties of muscle to maintain a dynamic stable bouncing gait.  

Dynamic stability is a measure of the ability of the system’s state variables (position, 

velocity, etc.) to maintain to a steady-state periodic gait (Full et al., 2002).  During a 

periodic gait, the state variables temporally oscillate from step to step.  Parameterizing 

the state variables as function of time and plotting the relationships between the states 

(i.e. position vs. velocity) provides a limit cycle.  A periodic motion results in a closed-

loop limit cycle.  The limit cycle is considered to be stable if other paths, which may arise 

from perturbations, converge back to the limit cycle.  The study of dynamical systems has 

provided several tools to determine if limit cycles are stable and how fast the other paths 

converge on to the limit cycle.  In this dissertation, we employ a return map analysis to 

quantify dynamic stability.  The return map examines the dependency of one state 

variable (i.e. velocity), at particular moment in the gait (i.e. position = 0), on the same 

variable at the same moment in the gait during the previous period or step (Seyfarth et al., 

2003).  More details about the return map analysis can be found in Chapter 4. 

Computational and experimental methods are used, often separately, to study how 

muscles can stabilize a limb.  Computational models allow measurements of the 

neuromuscular system, during complicated but controlled conditions, which are not 

accessible with experimental methods.  However, computational models are limited by 
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our current understanding of each of the components that comprise the model.  While 

experimental methods allow the actual neuromuscular system to be examined, obtaining 

accurate data during controlled conditions is difficult.  In this research, we combine 

computational approaches with isolate muscle experiments and yield novel information 

about the function of and the mechanical properties of muscle. 

Frog Model 

Due to a wealth of previously published data, we use the isolated frog hindlimb muscle to 

test our hypotheses throughout this dissertation.  Historically the frog has been used to 

study the basic physical properties of muscle, the role of spinal pathways, and locomotion 

strategies—spanning the entire hierarchy of the neuromuscular system.  Early force–

velocity and force–length experiments were conducted with frog muscle tissue (Close, 

1972; Hill, 1938; Julian et al., 1986).  Frog extensor muscles are also used to study the 

energy generating capabilities of muscle (Ahn et al., 2003; Lutz and Rome, 1996b).  The 

energy protocols typically involve activating the muscle while forcing it through a 

specific length trajectory.  Frog muscle models have been developed to study particular 

muscles as they interact with simulated mechanical systems (Kargo and Rome, 2002; 

Roberts and Marsh, 2003; Shadmehr and Arbib, 1992).  The kinematics and activity of 

the hindlimb have been thoroughly studied in swimming and jumping in a variety of frog 

and toad species (Rana pipiens - (Hirano and Rome, 1984; Johansson and Lauder, 2004; 

Kamel et al., 1996; Lutz and Rome, 1994; Peters et al., 1996), Rana catesbeiana  - (Olson 

and Marsh, 1998; Roberts and Marsh, 2003), Rana esculenta - (Nauwelaerts and Aerts, 

2003; Nauwelaerts and Aerts, 2006; Nauwelaerts et al., 2005), Bufo marinus - (Gillis, 

2007; Gillis and Biewener, 2000)) .  Kinematic markers have been used to identify and 
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compare joint angles and muscle lengths during in vivo jumping and swimming.  

Electromyograph recordings are also obtained to determine the activity of different 

muscles and illuminate the strategies that the frog neuromuscular system uses to 

efficiently generate power and locomote.  A large body of literature on the frog 

neuromuscular system exists to build our studies upon. 

Potential Applications 

The development of biologically inspired neural prosthetics relies on a suitable 

mechanical actuator to produce life-like movements.  Investigating muscle tissue may 

give rise to a design for an efficient mechanical actuator that exhibits the required 

dynamics.  Current biomimetic actuator technology (Caldwell et al., 1995) has not been 

able to replicate the energetics, and robustness of muscles (Caldwell and Tsagarakis, 

2002).  Muscle tissue is considered to be 40-75% efficient and has the ability to repair 

itself.  The viscoelastic properties of muscles help give rise to natural movement (Pratt, 

2000) and actuator efficiency (Meijer et al., 2003).  In contrast to artificial actuators, 

muscles consume a renewable resource while producing environmentally friendly waste 

(Caldwell and Tsagarakis, 2002; Herr et al., 2001).  Some researchers argue that using 

real muscles or developing true artificial muscle actuators will propel prosthesis design 

(Meijer et al., 2003). 

Robotic systems are severely limited in their ability to negotiate unknown terrains.  While 

most current robots are used in manufacturing environments, where the entire physical 

environment is meticulously specified, the long-term goal of robotics is to build 

autonomous systems that can interact with humans and negotiate unknown environments.  
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Trajectory controlled robotic systems rigidly specify the position of each joint.  Unlike 

biological systems, trajectory controlled robots are energetically inefficient and struggle 

to locomote in unspecified environments.  Recently, robotic systems that are inspired by 

the biological systems have begun to consider the role of the neuromuscular system.  For 

example, RHex, a hexapod robot that mimics some the mechanical properties of the 

cockroach leg, is able travel over a variety of unknown terrains at speeds greater than one 

body length per second (Altendorfer et al., 2001).  RHex’s unparalleled performance 

emerges from its biologically inspired sprawled posture, passive compliance, and gait.  

Still, substantial research on the basic properties of the neuromuscular system needs to be 

completed to develop more complex robotic systems that can serve a variety of purposes. 

For patients with certain neurological disorders including spinal cord injury and stroke, 

delivering electrical current pulses to the nerves that innervate the paralyzed muscles can 

elicit contractions (Peckham and Knutson, 2005).  Currently, most clinically available 

functional electrical stimulation (FES) systems are open-loop (for review see (Peckham 

and Knutson, 2005) , (Loeb and Davoodi, 2005) and (Popovic et al., 2001)) and thus 

cannot stabilize mechanical perturbations well.  FES works by depolarizing the motor 

neuron, triggering an action potential that crosses the neuromuscular junction and evokes 

contraction (Peckham and Knutson, 2005).   Though FES systems hope to one day help 

patients walk (Johnston et al., 2003), the most common uses today for FES as neural 

prostheses, include drop foot (where the foot drags along the ground during the swing 

phase of walking) (Lyons et al., 2002) and hand grasping (Popovic, 2003).  Freehand®, 

the first FDA approved FES system for hand grasping (Popovic et al., 2001), uses the 

patient’s contralateral shoulder position to determine the hand-grasp position (Peckham 
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and Knutson, 2005).  The recently developed BIONic WalkAide, using an injectable 

stimulator called the BION (Cameron et al., 1997) to stimulate the deep peroneal nerve, 

uses a simple tilt sensor to correct drop foot (Weber et al., 2005; Wieler et al., 1999).  

Improving current FES tecniques and prostheses requires the use of closed-loop 

paradigms that can react to the environment using strategies similar to those used by an 

intact neuromuscular system. 

Using closed-loop paradigms, which make use of feedback to modulate the electrical 

stimulation patterns, it is possible to effectively control the force generated in paralyzed 

muscle (Chizeck et al., 1988; Chizeck et al., 1991; Crago et al., 1980a).  These 

paradigms, however, do not infer what force the neuromuscular system would normally 

produce.  For example, a feedback controller that maintains a constant stiffness was 

recently developed (Crago et al., 1991; Lan et al., 1991; Lemay et al., 1993).  A 

controller that maintains constant stiffness may not allow the patient to utilize the 

intrinsic stabilizing properties of muscle.  As such, the resulting motions may be 

unnecessarily stiff and the controller may needlessly fatigue the muscle.  Investigating 

the dynamics of the neuromuscular system may help us design efficient controllers for 

prosthetic systems. 

Summary 

Muscles interact with the physical environment and function in a variety of ways to 

manage mechanical energy.  During locomotion muscles produce, absorb, and dissipate 

energy to successfully propel and stabilize the body.  In this thesis, we examine how 

series elastic and contractile elements in muscle function together to maximize power 
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production and stabilize perturbations during locomotion using a closed-loop system. 

In Chapter 3, we hypothesize that SEEs can function to temporally concentrate energy 

transfer from the CE to the body and enhance power production during a jump.  SEEs, 

which are not limited by crossbridge dynamics, can stretch and shorten to store and 

release energy respectively.  We analyze the kinematics and energetics of a single muscle 

working to accelerate an interial load using three different strategies to transfer energy to 

and from the SEEs.   

In Chapter 4, we hypothesize that the intrinsic properties of muscles, without sensory 

feedback, can stabilize a bouncing gait.  Perturbation responses based on sensory 

information are subject to time delays restricting their stabilizing abilities.  The intrinsic 

properties of muscle, however, can respond to perturbations instantly, changing the force 

produced when muscle length is altered.  We examine the kinematics and energetics of a 

single muscle in the stance phase of a simple bouncing gait model. 

To test our hypotheses, we first (Chapter 2) developed a closed-loop system that enabled 

us to examine the kinematics and energetics of an isolated muscle while working against 

complex loads.  In addition, we compared our results to those produced Hill-style muscle 

model performing the same tasks.  By combining experimental and computational 

techniques we can comprehensively test our hypotheses and separate the function of the 

CE and SEEs.
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CHAPTER 2 

CLOSED-LOOP COUPLING OF A MUSCLE TO A ROBOTIC 

DEVICE FOR DYNAMIC ASSESSMENT OF MUSCLE FUNCTION 

Introduction 

Animal locomotion arises from complex nonlinear interactions between the 

neuromuscular system and its natural environment.  Quantifying the mechanical 

properties of a muscle as it interacts with the environment is essential to understanding 

the strategies that underlie movement.  Muscle function is difficult to quantify in 

behaving animals because experimental manipulation and measurements of quantities 

such as force and length are challenging to achieve.  In contrast, detached or isolated 

muscle preparations facilitate controllability and high-resolution data collection but do 

not replicate the interactions between the muscle and the natural environment.  By 

virtually connecting an isolated muscle to a physical robotic device, we introduce a 

closed-loop neuromechanical system to study muscle properties during functional 

dynamic conditions where muscular and environmental forces interact to produce motion.  

In vivo, muscles act against a variety of complicated and changing loads that are rarely 

accounted for in isolated muscle experiments (Marsh, 1999; Roberts and Marsh, 2003).  

Typically, isolated or detached muscle protocols explicitly specify at least one muscle 

state (length (Gordon et al., 1966; Trinh and Syme, 2007), velocity (Houk et al., 1981; 

Julian et al., 1986), force (Cavagna and Citterio, 1974; Hill, 1938)) such that it is 

independent of the other states.  For example, single muscle energetics have been 
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measured using the classical work-loop method in which the muscle length is prescribed 

to move along a sinusoidal path that is independent of muscle force (Josephson, 1985; 

Rome and Swank, 1992; Stevens, 1996).  Typically, the muscle is stimulated at different 

phases or for varying duration and the resulting energetics are measured.  Such protocols 

allow muscle properties to be studied under a variety of conditions where particular 

variables such as muscle length, velocity, or force are controlled well.  In such clamped 

conditions, however, the dynamic interactions between the muscle and its environment 

are interrupted, so the derived muscle properties may differ from those that might be 

observed under behavioral conditions.   

An alternative approach is to develop closed-loop methods that do not require any muscle 

states to be explicitly specified, but to arise from realistic dynamic interactions.  Recently 

developed isolated muscle systems use real-time feedback to allow a muscle’s force to 

move a simulated mechanical load (Farahat and Herr, 2005; Lin and Rymer, 2000; Lin 

and Rymer, 2001).  In these systems, the interactions between the muscle and the 

simulated environment are defined by physical laws of motion such that none of the 

muscle states have to be predetermined.  These approaches are limited, however, by the 

fact that the complexity of the natural environment is often too difficult to model 

computationally, especially under real-time constraints. 

In cases of complex mechanical dynamics, a physical or robotic model of a system can 

more realistically simulate the salient dynamics of a system than a computational model. 

Robots or other mechanical models are often used to create and study the complex 

interactions that occur during locomotion such as fluid dynamics or ground contact 
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(Altendorfer et al., 2001; Birch and Dickinson, 2001). For example, during frog 

swimming, the load on the muscular system is a function of the viscous resistance of the 

water on the foot and is complicated by the biomechanics of the frog leg.  During the 

power stroke, the webbed toes open to increase resistance and create forward thrust.  

During recoil, the webbing closes allowing the leg to move through the water without 

substantially propelling the frog backwards.  A physical model of these interactions 

would provide a realism that a computational model could not.  

The purpose of this study was to develop a closed-loop neuromechanical system that 

applies real-time control to couple an isolated muscle to a physical environment using a 

robotic device.  To illustrate the benefits of the neuromechanical system we implemented 

a simple example of frog swimming.  We coupled an isolated frog muscle to a single-

degree-of-freedom robotic limb immersed in a tub of water with a real frog foot attached 

on the end.  In addition, we conducted three illustrative experiments to demonstrate how 

our system enables the precise study of the function of a single muscle during a variety of 

tasks that would be difficult to reproduce using in vivo or isolated muscle techniques.  

Unlike in vivo techniques, we can independently control muscle parameters (i.e. muscle 

moment arm) and specifically attribute them to changes in muscle function.  Such explicit 

control is prohibitive in vivo because of the integrated nature of intact systems, limiting 

the ability to perform sensitivity and other analyses.  The complex interactions between 

our robotic limb, which includes a biological element, and the environment are difficult 

to computationally describe preventing current closed-loop isolate muscle systems to 

accurately replicate them.  Further, traditional isolated muscle methods cannot even 

consider these interactions and would simple force the muscle along a specific trajectory.  
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Our approach may facilitate better predictions about neuromuscular strategies and muscle 

function during complex movements. 

System Architecture 

The closed-loop neuromechanical system uses real-time feedback to couple an isolated 

muscle and a robotic device (Figure 2.1). The architecture, implemented on a real-time 

processor manages a variety of actuators and sensors in a closed-loop paradigm:  

1) Electrical stimulation activates the muscle producing a force. 

2) The force produced by the muscle is measured and used to specify the torque 

applied to the robotic device via a torque motor.  The robotic device moves and 

external environmental forces also act on it 

3) The resulting position of the robotic device is measured and specifies the desired 

length of the muscle-tendon unit (MTU) thus closing the loop.  A muscle length 

controller minimizes the difference between the actual and desired muscle length. 

Design Criteria 

This implementation of the closed-loop neuromechanical system was built to work with 

frog (Rana pipiens) muscle.  To accurately investigate energetics and mechanics of frog 

muscle, the actuators, and sensors used by the closed-loop system exceeded the required 

specifications. 
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Muscle Apparatus 

1) A steady-state stiffness greater than 80 kN/m, which corresponds to a strain of no 

greater than 1% at maximum isometric muscle force for frog muscles (Kargo and 

Rome, 2002), was required of the muscle length controller. 

2) Although most physical systems of interest would have low bandwidths (0-10 

Hz), to match the force twitch response of frog muscle a bandwidth of 120 Hz (-3 

dB point) is required of the muscle length controller (Farahat and Herr, 2005).  

Within this bandwidth a relatively flat amplitude response is required such that 

the controller does not add or remove energy from the system.  Changes in 

Figure 2.1: Architecture of the closed-loop neuromechanical system.  An isolated 
muscle (A) is stimulated and a load cell measures the force.  The force is transformed by 
a virtual mechanical model (in this example, a moment arm transformation) running on 
the real-time processor (B).  The resultant torque is generated by a motor in the robotic 
device (C).  The position of the robotic limb (θ) is transformed into a muscle-tendon 
length (xm).  A closed-loop length controller ensures that difference between the actual 
muscle length and desired muscle length (xd) is minimal. 
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amplitude less than 2 dB were considered appropriate. 

3) In vivo, the length of muscles in the frog hindlimb can change on the order or 

millimeters during swimming or jumping (Gillis and Biewener, 2000; Peters et 

al., 1996).  Therefore, a resolution of 10 µm (1% of 1 mm) was required of the 

muscle position sensor. 

4) Typically, forces in the frog hindlimb range from 1 to 15 N (Kargo and Rome, 

2002).  The muscle force sensor should be able to discern changes in muscle force 

of as small as 1 mN or less.   

 

Robotic Device 

5) The inertia and friction of the torque motor that drives the robotic device were 

considered to be part of the load.  Therefore, we did not require the closed-loop 

system to account for the dynamics of the torque motor.  The electrical time 

constant associated with the motor and its amplifier are significantly faster than 

that of the robotic device and not accounted for. 

6) Muscle moment arms in the frog hindlimb are on the order of millimeters.  

Assuming moment arms no greater than 1 cm, the robot position sensor should 

have a minimum resolution of 1000 ticks per radian.  This maps to resolution of 

10 µm for the muscle. 

Muscle Apparatus 

We used the isolated frog plantaris longus (PL) to demonstrate the abilities of the 

neuromechanical system.  The mechanical and energetic properties of frog hindlimb 
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muscles in traditional behavioral and single-muscle preparations are well-known and 

serve as a good point of comparison (Hill, 1938; Lutz and Rome, 1996b; Peplowski and 

Marsh, 1997).  All surgeries were performed according to procedures approved by the 

Institutional Animal Care and Use Committee at the Georgia Institute of Technology 

(Protocol #A04010).  Prior to surgery, frogs (Rana pipiens) are anestheized with tricaine 

methanesulfonate (MS-222, 1 g L-1).  The frogs were then double pithed.  The PL, still 

innervated by its nerve, was removed along with a portion of the sciatic nerve.  A bone 

chip was left at the proximal end and a large piece of tendon is left at the distal end.  

Small plastic clamps were used to attach the distal tendon to a load cell (Strain 

Measurement Devices S251) and the proximal bone chip end to a linear actuator (H2W 

Technologies).  The entire muscle was submerged in a bath (22 °C) of oxygenated Ringer 

solution (NaCl, KCl, CaCl2, NaHC03).  

A suction electrode was used to activate the sciatic nerve and to elicit a force from the 

muscle.  Muscle force (Fm) was measured using the load cell.  The muscle-tendon length 

(xm) was controlled using the linear actuator, and the actual muscle-tendon length was 

measured using a 1 µm resolution optical encoder (Renishaw RGH41X30D05A), 

exceeding the 10 µm requirement.   

Robotic Device 

To replicate the salient features of frog swimming, we used a single-degree-of-freedom 

robotic device consisting of a 0.4 cm diameter, 10 cm length aluminium rod with a frog 

foot attached on the end (Figure 2.2, Table 2.1).  The frog foot was cut at the elongated 

tarsals and rigidly clamped to the device at the tarsometatarsal joint, leaving the webbed 
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toes intact.  The robotic device was then driven by a DC torque motor (Faulhaber 2342-

024CR) and moved through a tub of tap water.  The limb was designed so that the 

morphology of the frog foot played the largest role in creating viscous resistance during 

movement.  Torques applied via the DC motor cause the device to rotate, and the position 

(θ) was measured using an optical encoder (US Digital E3 2500 CPR) which had a 

resolution of more than 1500 ticks per radian (1000 required).  To accelerate the device, 

the muscle was required to produce enough force to overcome the viscous resistance of 

the frog foot moving through the water, the inertial forces of the robotic device, gravity, 

and other nonlinear forces such as friction.   

Figure 2.2: Functional schematic of the closed-loop neuromechanical system.  
When the system is assembled it functions as a single joint actuated by a one muscle 
with a constant moment arm.  In this configuration muscle force (Fm) causes an increase 
in joint angle (θ).  Gravitational and other environmental forces can act to decrease the 
joint angle.  The force produced by the muscle (Fm) is amplified by a gain (G) that is not 
shown in this schematic. 
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Real-Time Processing 

A real-time processor (dSPACE Inc. DS1104) converted the muscle force (Fm) to a 

torque (τ) that was applied to the robotic device using the DC motor.   The torque applied 

to the robotic device was determined by the following equation: 

     

where r is the virtual moment arm, G is a gain term used to amplify the muscle force.  

Forces produced by the living muscle were referenced to an initial background force (Fi).  

This allowed the muscle to apply positive and negative changes in force requiring only 

one muscle to actuate the robotic device in either direction.   

Sampled at 10 kHz, the position of the robotic device (θ) was used to determine the 

muscle-tendon length (xm).  The device was connected to the frog muscle via a constant 

virtual moment arm (r).    The desired muscle length is computed by the following 

rFFG
im
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Table 2.1: Mechanical Quantities of the 
Neuromechanical System 

Symbol Quantity Value 

 θ  angle, robotic limb Output 
L length, robotic limb 15 cm 
M mass, robotic limb 10 g 
r length,  moment arm Varied 
Fm force, muscle Output 
Fi force, initial muscle-tendon ~0 N 
G gain, force 3 
xm length, actual muscle-tendon Output 
xd length, desired muscle-tendon Output 
xi length, initial muscle-tendon Lo*   

* Lo is defined as the length where the muscle-tendon unit can 
produce the maximum isometric force 
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equation: 

       

where xi is the initial muscle-tendon length.  A muscle length controller, running on the 

processor, minimized the difference between the desired length (xd) and the actual length 

(xm).  

System Validation 

The closed-loop architecture ensured that the virtual connection between the muscle and 

robotic limb closely resembled a real physical connection.  Specifications of the actuators 

and sensors used by the neuromechanical system exceeded the requirements previously 

described and are listed in Table 2.2.   

id
xrx +!"= #

Table 2.2: Muscle Control Specifications 

Measurement Quantity Value 

Length Range 50 mm 
 Resolution 1µm 

 Bandwidth 148 Hz 
 Closed-Loop Steady 

State Stiffness 
 100 kN/m 

 Gain Margin > 20 dB 
 Phase Margin > 100° 
 Controller Type Lead-Lag 
Force Range ±20N 
 Resolution Analog, 16 bit 

ADC 
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The muscle length controller was implemented using a second order lead-lag cascade.  

First, a computational model of the linear actuator was developed and an initial lead-lag 

controller that met the design criteria was constructed.  By trial and error, the initial 

controller design was tested and modified with the linear actuator in the loop.  In 

Figure 2.3: Closed-loop frequency response of the muscle length controller.   The 
magnitude (A) and phase (B) response of the transfer function was experimentally 
obtained by sweeping the frequency of the desired muscle length (xd) and measuring the 
actual muscle length (xm).  The reference desired muscle length signals (xd) had an 
amplitude of 0.02 mm.  The -3 dB bandwidth was measured to be 148 Hz and within the 
majority of the bandwidth (0-120 Hz) changes in the magnitude response were less than 
±2 dB. 
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addition, the controller was tested with muscles and springs of various compliances to 

ensure that controller remained stable.  The muscle length controller had a steady-state 

stiffness of approximately 100 kN/m, surpassing the requirement of 80 kN/m.  The 

frequency response of the controller, without a muscle attached, was experimentally 

determined by sweeping frequencies with a small amplitude of 0.02 mm (Figure 2.3).  

The controller was band-limited at approximately 148 Hz (120 Hz required), which was 

much greater than the natural frequency of our robotic limb.  Larger amplitudes saturated 

the current limit for the muscle length actuator and decreased the bandwidth.  During all 

experiments, the actuator current was monitored to confirm that it was not saturated and 

that muscle control was not compromised.  The muscle length response was relatively flat 

(within 2 dB) over the entire bandwidth (0 – 120 Hz). 

To validate the entire closed-loop system, we compared the torques applied to the robotic 

device (τ) and the actual muscle length (xm) to their respective desired values during a 

typical experiment (Figure 2.4).  The torques applied to the robotic device (normalized 

for comparison) accurately matched the forces produced by muscle.  The maximum error 

was 3.3 x 10-5 N and therefore, the performance of the entire system is constrained by the 

dynamics of the muscle length controller.  The actual muscle length also accurately 

matched the desired muscle length (xd) (which is equivalent to the position of the robotic 

device (θ)).  Because forces produced by the muscle acted to displace the linear actuator, 

the actual muscle length led the desired muscle length when the muscle was producing a 

force.  Due primarily to load applied to actuator by the muscle, and not the dynamics of 

the lead-lag controller, the maximum error during a typical experiment was 0.12 mm.  

The virtual connection between the isolated muscle and the robotic device closely 
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matched a real physical connection. 

 

 

Figure 2.4: Closed-loop performance of the system during a typical experiment.  (A) 
The force produced by the muscle (Fm) and the normalized torque applied to the robotic 
device were measured and compared.  As desired, the two data sets are indistinguishable 
validating our ability to accurately apply the forces produced by an isolated muscle to a 
robotic device. (B) The actual muscle length (xm) closely tracked the desired muscle 
length (xd).  Because of the forces imposed on the linear actuator by the muscle, we found 
that the actual muscle length (xm) led the desired muscle length (xd).  Overall, our closed-
loop system performed within the limits of the desired criteria. 
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Experimental Design and Results 

In order to demonstrate the utility and benefits of the closed-loop neuromechanical 

system, we conducted three example experiments that varied (1) muscle moment arm, (2) 

environment viscosity, and (3) muscle fatigue.  We show how these variations alter the 

interactions between the muscle and the environment to affect muscle kinematics and 

energetics (Figure 2.5, Table 2.3).  These examples illustrate how our approach combines 

the benefits of current in vitro and in vivo methods. 

At the start of each experiment trial, the robotic limb was aligned vertically, and the 

initial muscle-tendon length (xi) was set to the optimal muscle length Lo (the length 

where the muscle is able to produce maximum active isometric force), which was 

determined experimentally from twitch contractions at various lengths.  The muscle was 

maximally activated for 100 ms (approximately equal to the period of muscle activity 

measured in Rana pipiens swimming (Kamel et al., 1996)), and the resultant kinematics 

were measured.  The activation was achieved using a stimulus frequency of 200 Hz and a 

pulse-width of 100 µs.  The stimulus current was adjusted until maximum activation was 

achieved (1 A).  Between each trial the muscle was allowed to rest for two minutes.  

Isometric contractions were periodically used to check the viability of the muscle.  

Muscle fatigue was quantified by the percentage drop in isometric force.  During the 

experiments, the muscle was visually inspected, and muscle force recordings were 

checked to ensure that the muscle did not slip.  After data collection was completed, the 

PL was removed from the bath, all non-muscular tissue was cut away, and the resultant 

muscle tissue was weighed. 
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Figure 2.5: Muscle length and force trajectories.  Each column shows the muscle-
tendon length, force, and work-loop trajectories for a variation in one system parameter:  
(A) muscle moment arm, (B) environmental viscosity, and (C) muscle fatigue.   Rows 1 
and 2 show the muscle force and length time responses respectively.  The duration of 
muscle stimulation is indicated by the shaded rectangle.  The third row plots muscle force 
versus length to demonstrate the work loop for each experiment.  The progression around 
the work loop is shown in the lower left panel with the following four stages:  (a) Upon 
muscle activation, the muscle force rises without substantial shortening.   (b) The power 
stroke is produced when the muscle shortens while producing a large constant force.   (c) 
After the stimulation is stopped, muscle force declines while inertia causes the muscle to 
continue to shorten.  (d) The muscle passively lengthens due to gravity acting on the 
robotic device. 
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The example experiments demonstrate how the neuromechanical system enables the 

study of muscle kinematics and energetics during tasks that are difficult to study using 

other methods. For each example, the work-loop technique (Josephson, 1985) was used 

to measure the work generated by the muscle and to quantify muscular performance.  The 

term work loop typically refers to a particular set of classical experiments where the 

muscle length is continually oscillated in a predetermined trajectory that is independent 

of muscle force.  While this procedure can replicate the particular trajectory and force 

combinations measured in vivo, it cannot provide information about conditions that 

deviate from particular situation.  Because the causal interactions between force and 

movement are not considered, the inverse approach of the traditional work look does not 

allow researchers to study how changes in muscle or environmental properties affect 

movement and energetics.  In our neuromechanical system, the muscle trajectory is not 

prescribed, but is determined by the dynamic interactions between muscular and 

environmental forces.  Therefore, the forward approach enabled by the closed-loop 

neuromechanical system allows the causal relationships between a muscle and its 

environment to vary, thus producing a range of different movement conditions. Although 

new in vivo techniques allow researchers to measure work loops in naturally behaving 

animals, they are difficult to interpret, as the environmental and muscular forces cannot 

be independently controlled.  While, the interesting dynamic interactions between muscle 

force, complex environmental loads, and muscle length are maintained (Biewener and 

Gillis, 1999; Biewener et al., 1998) in vivo, change in movement cannot be independently 

attributed to particular muscular properties as the environment is uncontrolled.  Here, by 

virtually coupling an isolated muscle to a complex load, our system enables the study of 
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muscle energetics in a manner where the effect of changing different muscular and 

environmental parameters, such as muscle moment arm, or fluid viscosity, can be 

assessed in a controlled fashion during causal, dynamic interactions. 

Closed-loop “Swimming” Experiments 

In order to provide a baseline for other experiments, we selected a nominal set of 

parameters (G = 3, r = 2 mm, water, less than 10% fatigue) that best replicated the in vivo 

kinematics of the PL during frog swimming (Peters et al., 1996).  The PL muscle was 

maximally activated for 100 ms and the force produced was sufficient to drive the robotic 

limb through the water.  The frog foot at the end of the robotic limb opened during limb 

protraction and closed during limb retraction.  During the power stroke the muscle 

produced a peak force of approximately 9 N (Figure 2.5 A1, black line).  This resulted in 

a peak torque of 0.054 N-m at the robot motor to accelerate the limb.  During muscle 

force production, the muscle shortened at a relatively constant rate (Figure 2.5 A2).  

Force production ceased at 0.25 s at which point the muscle began to lengthen due to the 

force of gravity acting on the limb.  Because of friction in the motor, the robotic limb did 

not completely return to its initial position.  In the nominal condition, the muscle 

produced 19 J of work per kilogram of muscle mass, as measured by the area enclosed by 

the work loop (Figure 2.5 A3).  The average power during the shortening phase was 77 

W/Kg of muscle mass.   

Varying Moment Arm 

To examine the role that biomechanical configuration can have on muscle work 

production, we compared two moment arm lengths (r):  2 mm (nominal condition) and 1 
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mm.   Reducing the moment arm by one-half resulted in, one third of the work production 

compared to the nominal condition (Figure 2.5 A, Table 2.3 Biomechanics).  Although 

the peak force produced by the muscle was greater using the shorter moment arm (1 mm), 

the torque applied to the robotic limb was approximately half of that applied during the 

nominal condition (2 mm).  As a consequence, the robotic limb did not rotate as much 

through the water using the shorter moment arm.  Due to combination of the shorter 

moment arm and the reduced rotation of the robotic limb, the muscle shortened at slower 

speed during the power stroke compared to the nominal condition.  The decrease in work 

production using the shorter moment arm was primarily due to the 67% decrease in 

muscle length excursion. 

Varying Environment Viscosity 

To illustrate how environmental viscosity can affect muscle work production, we allowed 

the robotic limb to rotate through air instead of water.  A 1 mm moment arm was used 

because the nominal moment arm (2 mm) caused the robotic limb to rotate 360°.   The 

work and average power generated by the muscle doubled when the limb rotated through 

air (Figure 2.5 B, Table 2.3 Environment) when compared to water.  Although peak 

muscle force was similar in both conditions, total limb excursion was 3 times greater 

because of the decreased viscous resistance of air.  In contrast to the other conditions, the 

muscle continued to shorten even after the muscle stopped producing a force.  During 

protraction, the robotic device bounced off the mechanical stopper (indicated by the 

discontinuity in muscle length trajectory, Figure 2,5 B2).  The area enclosed by the work 

loop was 2.5 times greater when the viscosity of the environment was reduced. 
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Effects of Fatigue 

To study the effects of fatigue, we examined the force and work produced by fatigued 

muscles under the dynamic loading conditions; here our methods differ significantly from 

traditional work-loop approaches where the muscle length  may be constrained to a 

nominal trajectory as muscle force decreases.  We measure fatigue as the drop in muscle 

isometric force.  With increasing muscle fatigue, the peak force produced and total length 

shortened during the power stroke declined (Figure 2.5 C, Table 2.3 Fatigue).  As peak 

force declined, less torque was applied to the robotic limb, causing both the total muscle 

excursion and the speed of shortening to decline (Figure 2.5 C2).  While decreased torque 

contributed to the decline in work production, the reduced speed of shortening further 

reduced work production, as evidenced by work loops that were triangular rather than 

rectangular in shape.  For example at 48% fatigue (the isometric force generating 

capabilities of the muscle have dropped 48%), the work (force x length) produced 

declined by 71% and average power was reduced by 75% 

Discussion 

We developed a closed-loop neuromechanical system that facilitates he study of 

interactions between an isolated muscle and environmental loads via a robotic device.  

Improving upon previous methods, which were limited to simple computational loads 

(Farahat and Herr, 2005; Lin and Rymer, 2000), our system enables muscle kinematics 

and energetics to be studied under a variety of complex physical loads in a controlled 

manner that better mimics natural behavioral conditions.  We were able to study a muscle 

interacting with the complex fluid dynamics of a frog foot in water, which could not have 
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been accurately simulated computationally.  The closed-loop neuromechanical system 

has the potential to improve our understanding of the dynamic interactions between a 

muscle and its environment that underlie natural movements, and could serve as a 

platform to test functional electrical stimulation (FES) methods for rehabilitation of 

movement. 

We used our system to study muscle function in a simplified swimming task.  Frog 

swimming is a complicated locomotor behavior that requires the coordination of multiple 

extensor and flexor muscles that interact with the environment via the frog foot (Gillis, 

2007; Gillis and Biewener, 2000; Johansson and Lauder, 2004; Kamel et al., 1996; Peters 

et al., 1996).  The flexibility, multiple degrees of freedom, and asymmetrical movement 

of the frog foot create nonlinear hydrodynamics that are difficult to simulate in real-time.  

By allowing a muscle to interact with a physical environment through a robotic device 

that includes biological tissue, we can better emulate its natural loading conditions.   

Although we have just provided example data, our results suggest that the 

neuromechanical system can be used investigate muscles and their function under 

behaviorally-relevant dynamic conditions.  The muscle trajectories generated by our 

system produced features that are comparable to those found during natural frog 

swimming.  In our nominal experimental condition, the change in muscle length was 

within 10% of that measured in in vivo during swimming in frogs; the duration of 

shortening was also within 20% of that measured in vivo (Peters et al., 1996).  During 

synchronous swimming when both hindlimbs move together, the plantaris longus muscle 

is not typically active during lengthening by antagonistic muscles (Kamel et al., 1996).  
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Similarly, in all the conditions we tested, the muscle was not active and did not produce 

any force during the lengthening phase. 

Traditional muscle physiology methods were specifically designed to isolate and measure 

the individual fundamental properties of muscle.  These properties are the basis of 

numerous mathematical models, which are used to predict the function of muscle during 

complex tasks.  However, the emergent behavior of muscle that arises from the 

interactions of all its mechanical properties cannot be verified experimentally using 

classical methods.  

Our closed-loop system facilitates the systematic, accurate, and behaviorally relevant 

study of isolated muscle tissue during a variety of situations. Unlike traditional isolated 

muscle protocols, which predetermine the length trajectory of muscle, our system 

dynamically couples an isolated muscle to physical load. Using our approach, the muscle 

length trajectory is not predetermined, but results from the interactions between the 

forces generated by the muscle, robotic device, and the environment.  Recently developed 

closed-loop isolated muscle systems (Farahat and Herr, 2005; Lin and Rymer, 2000) are 

also capable producing dynamic force-length relationships that are not prescribed.  

However, these systems use computational and not robotic devices, limiting their ability 

to reproduce the complex loads that occur in the natural environment.  New in vivo 

techniques enable the study of muscle properties during natural conditions providing 

dynamic muscle movements and complex environmental loads (Biewener and Gillis, 

1999; Biewener et al., 1998).  However, like all in vivo experiments, accurate control or 

manipulation of specific system parameters is difficult or impossible to achieve.  
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In this research, we examined muscle during a power stroke where it starts from rest and 

then rapidly shortens.  We showed how muscle kinematics and energetics were affected 

by changes in moment arm, environment viscosity, and fatigue.  We used these three 

example experiments to illustrate how our technique builds upon current in vivo and in 

vitro approaches:  

Moment Arm - Varying the biomechanical configuration of muscles may help us better 

understand the functional limits of muscles during movement.  Changing the anatomy of 

muscles in vivo is prohibitive.  Our method provides researchers with a tool to investigate 

the effects of musculoskeletal morphology on movement. 

Environmental Viscosity – Current closed-loop techniques, which do maintain system 

dynamics, are still unable to reproduce the complex environmental loads that occur in 

vivo.  The neuromechanical system, using a robotic and not a computational device, 

allows the systematic study of muscle under a variety of complex loads. 

Muscle Fatigue - Studying the mechanical properties of fatigued or injured muscle may 

help develop alternate strategies to improve function of atypical muscle. We illustrated 

how the hybrid neuromuscular system allows the capabilities and contributions of 

fatigued muscle to movement to be accurately quantified.  These results could not have 

been obtained using in vivo or traditional in vitro methods. The controlled and repeatable 

study of atypical muscle using in vivo techniques would be challenging because the 

quantification of muscle fatigue or injury is difficult. Traditional work loop methods 

would require a feedforward prediction on how muscle fatigue or injury affects the 

movement.  
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Our approach could be extended to more complex experimental motor-control paradigms 

and robotic systems including those used to examine terrestrial locomotion (Altendorfer 

et al., 2001) and balance (Scrivens et al., 2008), swimming (Herr and Dennis, 2004), or 

flying (Birch and Dickinson, 2001).  Additionally, the robotic device does not need to be 

in the same physical location as the muscle apparatus.  Through a remote connection it 

would be possible for the robotic device to be examined in different environments while 

leaving the muscle apparatus in the lab.  The system can also be integrated with a diverse 

set of experimental test equipment that include different muscles and intact parts of 

nervous systems.  Further, the architecture could be duplicated to include multiple 

muscles and robotic devices with multiple degrees of freedom.   

Our closed-loop neuromechanical approach ultimately has the potential for application in 

clinical rehabilitation.  Current FES research, which is largely concerned with 

minimizing muscle fatigue and increasing contraction force (Lau et al., 2007; McDonnall 

et al., 2004; Peckham and Knutson, 2005), may benefit from an improved understanding 

of fatigued muscle mechanics.  Our system could be used to evaluate stimulation 

techniques (Crago et al., 1980a; Crago et al., 1980b) on muscle—modified  by physical 

injury, neural trauma, or fatigue—during interactions with complex environments.  This 

technology may help advance our understanding of the neuromuscular system and help 

improve rehabilitation technologies. 
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CHAPTER 3 

POWER AMPLIFICATION STRATEGIES IN THE FROG 

HINDLIMB MUSCLE 

Introduction 

Evolutionary pressures have developed extremely effective forms of locomotion, but the 

optimizations that emerge from the interactions among neural, muscular, and skeletal 

systems are still poorly understood.  The kinematics and physics associated with an 

isolated jump are relatively simple and make jumping a good system in which to examine 

these interactions.  Frogs, one of nature's best vertebrate jumpers, are believed to exploit 

elastic elements in muscle to maximize power production during a jump (Marsh and 

Johnalder, 1994; Peplowski and Marsh, 1997; Roberts and Marsh, 2003).  In this study, 

we demonstrate using both in vitro and computational methods how energy producing 

and storing elements in skeletal muscle can function together to enhance power 

production. 

Maximizing jump performance requires maximizing power transfer, not just energy 

transfer, from skeletal muscles to the body.  During an isolated jump, forces produced by 

skeletal muscles accelerate the body from rest to a maximum velocity at takeoff.  To 

maximize the velocity at takeoff, and therefore maximize jump distance, skeletal muscles 

must transfer large amounts of energy to the body.  The acceleration phase, however, is 

subject to the kinematic limitation of leg length and to the kinetic coupling of length, 

velocity and acceleration.  Therefore, maximizing takeoff velocity, subject to the leg 
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length limitation, requires maximizing acceleration.  As a result, skeletal muscles must 

maximize power production to maximize jump performance. 

The source of power for jumping is the body musculature.  Force and power production 

by those muscles is most often described by a three element, or Hill style, model 

consisting of passive, elastic elements in series (SEEs) and in parallel (PEE) with an 

active, contractile element (CE).  This description captures both steady state and dynamic 

performance of musculotendinous actuators under a wide range of conditions (Bobbert, et 

al., 1986 J Biomech 19:887; Sandercock & Heckman, 1997; Siebert, et al., 2008).  Power 

is generated by the CE and transferred to the skeletal structure via the passive SEEs, 

which may also absorb power from the external world, but all muscle power production 

CE power production is fundamentally limited by cross-bridge kinetic and is inversely 

related to the speed of shortening (Hill, 1938).  As a result, the CE power (the product of 

force and the speed of shortening) is maximized only over a small range of velocities.  

Estimates of muscle velocity derived from whole body kinematics suggest that the 

muscles in frog hindlimb operate at these optimal velocities to maximize CE power 

production during a jump (Lutz and Rome, 1994; Lutz and Rome, 1996a; Lutz and 

Rome, 1996b).  Energetic analysis of frog jumping suggests that the peak power 

generated by frogs during a jump is 2 to 8 times the maximum power the CE can produce 

(Marsh and Johnalder, 1994; Peplowski and Marsh, 1997).  To exceed the maximum CE 

power production either requires another power source within the muscle-tendon unit 

(MTU) or reveals a failure of the three-element model. 

SEEs, which are not limited by cross-bridge dynamics, can act to store and rapidly 
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release energy (Alexander and Bennet-Clark, 1977).  SEEs stretch proportionally with 

CE force and decouple the CE length from MTU length, allowing the CE to operate at 

velocities and lengths that differ from that of the MTU.  As a result, the SEE facilitates 

dynamic force production by the MTU to exceed the force-velocity constraint of the 

isotonic MTU and enhances MTU power production.  The interaction between CE and 

SEE theoretically results in complex transfer of energy between the elements during an 

isolated jump.  Energy is initially stored within the SEEs due to mismatch between force 

produced by the CE and forces opposing the CE.  The opposing force can come from the 

body inertia, from an antagonist muscle, or from some other external source.  During 

forward movement, the energy stored SEEs is released in addition to the power produced 

by CE.  This allows the agonist MTU to shorten at high velocities where the CE produces 

little power and force.  The extent to which energy stored in the SEE can be released 

from the MTU during the jump depends on the coordination among CE contracile 

performance, SEE elasticity. 

In this study, we investigate the dynamic interactions between the CE and SEEs during 

three jump strategies often used by animals.  First, we consider a baseline condition 

where the agonist extensor muscles simply accelerate the body (solo strategy).  We then 

examine the co-contraction strategy where extensors are activated prior to the jump, 

while antagonistic forces prevent extension.  Several small animals use this strategy to 

store and release energy from SEEs like a catapult (Gronenberg, 1996).  Further, in vivo 

measurements suggest that frogs may also use a co-contraction strategy because the 

extensor muscles in the hindlimb are activated for a substantial amount of time before 

any extension occurs (Lutz and Rome, 1996b) (Gillis and Biewener, 2000; Kamel et al., 
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1996).  Finally, we investigate a countermovement strategy where antagonistic forces 

first lengthen extensor muscles before they shorten and extend the body.  The 

countermovement strategy, used by humans and other larger animals (Anderson and 

Pandy, 1993) (Alexander and Bennet-Clark, 1977), may help increase the energy 

transferred from the CE to the SEEs. 

We hypothesize that SEEs can function to temporally concentrate energy transfer from 

the CE to the body and enhance power production during a jump.  We employ parallel 

mathematical simulations and experiments with isolated muscle to examine power flow 

within the muscle during the three jump strategies.  The computational model enabled us 

to separate the function of the CE and SEEs, which are distributed throughout the muscle 

and difficult to discern experimentally. 

Methods 

We measured the power produced by the (Rana pipiens) semimembranosus (SM) as it 

accelerated an inertial load, simulating its in vivo function during a jump.  To test our 

hypothesis, we combined computational and experimental methods to examine the 

energetics of the frog during the three different jump strategies: (1) Solo, (2) Co-

contraction, and (3) Countermovement.  Using novel in vitro experimental techniques, we 

first measured the power produced by an isolated SM accelerating an inertial load, 

simulating its in vivo function during a jump. We then used a computational three-

element model of the SM performing the same task to estimate energy storage in the 

SEE. 



 48 

Computational Load 

To reflect the role of the SM in vivo, we developed a simple computational model of the 

frog’s effective body mass at its hip (Figure 3.1).  The frog SM is a biarticular muscle 

crossing the hip and knee.  However, the muscle functions primarily as a hip extensor 

because the moment arm at the hip is approximately 3-4 mm whereas the moment arm at 

the knee is about 0.08 mm (Kargo and Rome, 2002; Lutz and Rome, 1996a).  The 

effective load that the SM works against was mathematically represented by the 

following equations: 

      

        (3.1) 

The load was described as a point mass 30 mm (l) away from the center of rotation.  This 

distance is approximately 40% of the snout−vent length in the frogs used.  The reflected 

body mass (M) was approximated by scaling the entire mass of the frog by the relative 

strength (maximum isometric force) of SM compared to other hip extensors (Kargo and 

Rome, 2002).  Therefore, we approximated that one SM carries a load of 14.2% of the 

entire frog weight.  The mass provides the inertial and gravitational load to the SM.  For 

simplicity, we modeled gravity as antagonistic force that always acts perpendicular to the 

joint and independent of the joint angle (Roberts and Marsh, 2003). 
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The force the SM produces (Fm) acted on the load with a moment arm (r) of 3.5 mm.  

The muscle force gain term (G) is used to normalize the force in the isolated muscle such 

that it matched the force in the model. The muscle−tendon length (xm) was determined 

from the joint position (θ) and was offset by the initial muscle−tendon length (xi) using 

(Equation 3.1). In experimental trials, muscle force (Fm) was measured from an isolated 

muscle and applied to the computational load to regulate the length of the isolated 

Figure 3.1: Mechanical representation of the in vivo function of the frog 
semimembranosus.  The SM (red), which has a large moment arm at the hip (r) and 
a negligible one at the knee, produces forces (Fm) to extended the hip and accelerate 
the body during a jump.  To replicate its in vivo function, we estimated that the SM 
rotates a portion of the body mass (M), represented as a point mass 30 mm (l) away 
from the center of rotation, with a moment arm (r).  Because of the small moment 
arm at the knee, we estimated that the distal end of the SM is effectively connected to 
a mechanical ground.  For simplicity, the gravitational weight of the body mass (M) 
always acts perpendicular to the joint angle.  Adapted from (Kamel et al., 1996). 
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muscle.  In simulation trials, muscle force (Fm) was estimated from a three-element 

model, applied to the computational load, and used to regulate the length of the simulated 

muscle.  

Closed-Loop Experiments  

To determine the energetics of the SM during a jumping task, we used a previously 

developed closed-loop system that couples an isolated muscle with a variety of complex 

computational and physical loads.  Classic isolated muscle experiments, which simplify 

the loads applied to the muscle, are not suitable to investigate the role of muscles under 

natural loading conditions (Marsh, 1999).  However, current closed-loop techniques 

allow an isolated muscle to interact with complex loads (Farahat and Herr, 2005; Lin and 

Rymer, 2000). This method facilitates the direct measurement of energetics from isolated 

muscles performing the different jump strategies. 

We coupled the isolated frog SM to a computational model of the frog hip, an inertial 

load.  In real-time, the virtual connection between the isolated muscle and computational 

load was accomplished using the following closed-loop approach: 

1) Electrical stimulation activates the muscle producing a force. 

2) The force produced by the muscle is measured and used to accelerate the load. 

Other antagonistic forces can also act on the load. 

3) The resulting position of the load is computed and specifies the desired length of 

the MTU thus closing the loop.   
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Experimental Protocol 

All surgeries were performed according to procedures approved by the Institutional 

Animal Care and Use Committee at the Georgia Institute of Technology (Protocol 

#A07033).  Prior to the surgery, frogs (Rana Pipiens) were anestheized with tricaine 

methanesulfonate (MS-222, 1 g L-1) and then double pithed.  The SM, still innervated by 

its nerve and attached to bone chips, was removed along with a portion of the sciatic 

nerve.  Small metal clamps were used to attach the proximal bone chip to a load cell and 

the distal bone chip to a linear actuator.  The load cell measured the force the muscle 

produced and the linear actuator controlled and measured its length.  The entire muscle 

was submerged in a bath (~21 °C) of oxygenated (95% oxygen, 5% carbon dioxide) 

Ringer’s solution (pH 7.1).  A suction electrode was used to activate the muscle via the 

sciatic nerve.  For all conditions the muscle was maximally activated (1 mA, 60 Hz, 100 

µs).  

At the beginning of every experiment the isometric force was determined.  The force gain 

term (G) was used to normalize the isometric force across animals.  No other 

normalizations were applied.  Between every trial the isometric force was measured and 

the gain term (G) was increased to account for fatigue.  Between each experimental trial 

the muscle was allowed to rest for approximately ninety seconds.  Isometric contractions 

were periodically elicited to check the viability of the muscle.  Unless otherwise stated, 

data collection was stopped after the muscle isometric force dropped 10%.  

Jump Strategies 

We examined the function the SM using three different jump strategies (Figure 3.2).  For 
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each jump strategy, the SM is maximally activated, overcame antagonist forces, 

accelerated the load, and shortened.  The jump was considered complete after the muscle-

tendon (MT) length reached a maximal velocity.  Any data after this point were 

disregarded. 

Solo Strategy – Only gravitational and inertial loads acted on the muscle.  To match the 

SM’s in vivo function, we initially stretched the muscle to an initial length (xi) where it is 

capable of producing 90% of its maximum isometric force (Lutz and Rome, 1994).  The 

muscle is maximally activated for the duration of the jump. 

Co-Contraction Strategy – To represent an antagonistic muscle, an idealized antagonistic 

muscle held the joint in place for 100 ms while the agonist was maximally activated.  A 

virtual ground prevented the antagonist force from flexing the hip further and stretching 

the SM.  The SM was initially stretched to a length (xi) where it is capable of producing 

90% of its maximum isometric force. 100 ms after the beginning of the jump the 

antagonistic force was removed (square edge) and the SM (the agonist) was free to 

accelerate the load. 

Countermovement Strategy – In this strategy, the primary difference was that the 

antagonistic force was allowed to stretch the SM.  The hip started a more flexed position 

and the virtual ground that prevented the SM from stretching in the co-contraction study 

was removed.  To model the more extended initial position of the hip (which allowed for 

flexion and a countermovement), initial MT length was set to Lo (the length at which the 

muscle can produce a maximum isometric force (Fo)).  Similar to previous conditions the 

SM was maximally activated at the start of the jump.  Typically, the SM took about 8.5 
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ms to reach the active state and start to produce a force (see Results).  As a result, we 

modeled the same delay for the antagonistic force.  During the first 8.5 ms, the 

antagonistic force held the SM isometric. 8.5 ms after the beginning of the jump, the 

antagonistic force was applied.  The magnitude and duration of the antagonistic force was 

determined using an optimization process with the muscle model (see next section).  

Muscle Characterization 

To construct the computational muscle model, several traditional muscle experiments 

Figure 3.2: Mechanical model of the effective load for each jump strategy.   For all 
the strategies, the SM muscle, a hip extensor, acts to rotate a point mass (M) with a 
moment arm (r).  An idealized antagonistic force (Fa) is used for the co-contraction and 
countermovement jump strategies.   For all conditions, the gravitational force always acts 
perpendicular to the joint.  During the solo and co-contraction conditions, the joint rests 
against a mechanical ground that prevents the muscle from lengthening. 
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were conducted. 

Force–Length – The active and passive force−length (F−L) relationship (Gordon et al., 

1966), which describes CE’s ability to produce force at different lengths, was determined 

using 150 ms isometric contractions at pseudo randomly selected lengths spanning 70-

115% of optimal length (Lo) .   

Force–Velocity – The force−velocity (F−V) relationship (Hill, 1938) was measured using 

a combination of afterloaded (Fm < 0.7 Fo) and isokinetic (Fm > 0.7 Fo) protocols.  For all 

activations, the MTU was stretched beyond Lo such that the time to shorten to Lo was 

greater than the isometric time to peak tension.  For isotonic trials, the muscle was 

maximally activated and allowed to shorten under force control.  The isotonic velocity 

was determined as the muscle passed through Lo.  For isokinetic trials, the muscle was 

maximally activated, and tension allowed to develop isometrically.  After the muscle 

reached a steady-state force the MTU was shortened or stretched using a constant 

velocity ramp, and force was measured as the MTU length crossed Lo.  For stretches, the 

initial MT length was set shorter than Lo.  Activation duration varied with anticipated 

velocity but was greater than 150 ms. 

Series Elasticity – The series elasticity was measured by rapidly shortening the MTU, 

which effectively isolates the SEEs.  The initial MT length was set at Lo and the muscle 

was maximally activated.  After a steady-state isometric force was achieved, the muscle 

was subjected to 3 ms shortening at the maximum velocity of the linear actuator.  These 

experiments were completed after the muscle isometric force had dropped between 10% 
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and 20%. 

Activation – The activation kinetics were estimated by measuring the time course of 

force development during isometric contractions at MT length Lo.  A least squares 

optimization process that minimized the differences between the isometric force time 

course in the model and the averaged muscle response was used to determine the kinetics.  

During the force development time course, three points of comparison were used: 10%, 

50%, and 90% of peak isometric force.  For all experimental conditions, the muscle was 

activated at the beginning of the simulation. 

Computational Muscle Model 

To predict the function of the CE and SEEs, we developed a Hill-type model of the SM.  

We examined the performance of the model during the three jump strategies.  This three-

element model, unlike the isolated muscle, has a discrete CE, parallel elastic element 

(PEE), SEE, which facilitates the study of their individual function. 

Muscle force (Fm) results from the summation of active and passive components and is 

transferred to the load via a SEE. 
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The PEE force (

€ 

fpl ), which is summed along with the CE force to determine muscle 

force, is a function of its length (

€ 

xce ).  The forces produced by the SEE are always equal 

to the sum of the forces produced by the CE and PEE.  The forces produced by the PEE, 

however, are small and, for the purpose of analysis, considered to be part of the CE force.  

The total MT length is the sum of the lengths of the CE and SEE ( sexcexmx += ).   

To determine the duration and magnitude of the antagonistic force during the 

countermovement strategy, we used a gradient descent optimization process that 

minimizes a cost function: 

        

The cost function, a measure of jump performance, acted to maximize the square of the 

takeoff velocity and minimized the takeoff time (toff).  Minimizing the cost function 

maximized the average power produced during the jump.  The cost function has the same 

units as power normalized by mass (kg).  The magnitude and duration of the antagonistic 

force was first swept to find initial conditions near the global minimum.  The magnitude 

of the antagonistic force was set to have a limit at Fo.  The flexors in the frog hindlimb 

have relatively smaller force producing capabilities as compared to the extensors.  Flexor 

moment arms, however, are larger; therefore, we assumed that flexors and extensors have 

equal torque generating capabilities.   

! 

Cost = "
˙ x m (toff )

2

toff



 57 

Results 

In the context of the three jumping strategies described previously, we measured the 

kinematics and energetics of the frog SM.  We combined experimental and computational 

techniques to examine the power generating capabilities.  Our results determine how 

SEEs function to temporally concentrate energy transfer from the CE to the body and 

enhance power production during a jump.  

Computational Model 

To determine the function of the CE and SEEs, which are not experimentally accessible, 

we first constructed a Hill-type computational muscle model. 

Force−Length 

The active (fal) and passive (fpl) F−L relationships were represented using a third-order 

polynomial and exponential function respectively (n = 3)  (Figure 3.3 A). The mean MT 

length at Lo was 32.2±1.8 mm (mean±S.D., n = 16) and the SM produced a maximum 

isometric force (Fo) of 4.57±1.8 N (n = 16).  

Force−Velocity 

The Hill equation (Hill, 1938) was fitted to the F−V data values (n = 3) between 0.1 and 

0.7 Fo and was not constrained to pass through Fo (Figure 3.3 B).  The extrapolated 

maximum shortening velocity (Vmax) was 8.11 muscle lengths per second (ML/s).  The 

extrapolated isometric force was 1.22 Fo (denoted as Fo*) and the Hill constant (a/Fo*) 

was 0.28.  
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For forces between 0.7Fo and Fo a linear fit was used (Figure 3.3 B).  Although the data 

were not linear, more accurate fits were not monotonic and resulted in a poor match for 

the isometric contraction force time course.  For lengthening velocities, for which the 

muscle produces forces greater than Fo, the F−V data was fit to an asymptotic function.  

For velocities greater than 1.5 ML/s the force the muscle produced was relatively 

constant.  A linear approximation with a small slope was used for numerical 

Figure 3.3: Data and fits used to construct the Hill-style muscle model. (A) Active 
and passive muscle force-length properties. Individual data points and the 
corresponding model estimations are shown.  The vertical grey line indicates initial 
MT length for the solo and co-contraction strategies. The cubic polynomial was scaled 
such that it passed through a normalized force of 1 at Lo.  (B) The force-velocity 
relationship of lengthening and shortening muscle.  Individual data points and the 
continuous fit are shown.  The dashed line indicates the normalized power-velocity 
relationship for shortening muscle.  (C) Example series elasticity measurements.  
Here, the muscle was activated and shortened at different speeds.  (D) Comparison of 
model and an example real muscle force response during an isometric contraction.   
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implementation reasons. 

The following piece-wise, continuous function comprised of the equations described 

previously represented the F−V relationship over a wide range of operating velocities: 

€ 

fv ( ˙ x ce ) =

(2.28Fo
* - a˙ x ce )/(2.28 + ˙ x ce ) ˙ x ce ≥ fv

−1(0.7Fo)

1- 0.3 ˙ x ce

fv
−1(0.7Fo)

0 ≤ ˙ x ce < fv
−1(0.7Fo)

(1.48 -1)( ˙ x ce (-357 +1)) +1)
-357* -0.24

+1 −1.5 ≤ ˙ x ce < 0

-0.01( ˙ x ce +1.5) + fv (−1.5) ˙ x ce <1.5

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 

  

The power−velocity relationship for shortening muscle was determined from the F−V 

data (Figure 3.3 B).  The muscle is able to produce a maximum power of 1 W/Fo/ML or 

305 W/Kg at 2.6 ML/s. 

Series Elasticity 

The series elastic stiffness (Kse) was measured to be 13.5±2.7 Fo/ML (n = 8).  The change 

in muscle force and length, when subjected to rapid shortening, was fitted to a third order 

differential equation and the elastic term was extracted (Kse).  The velocity of shortening 

had a small effect on the elastic term in the differential equation (Figure 3.3 C).   

Activation 

The activation kinematics were described using a sigmoid function: 

       

! 

A(t,"
1
,"
2
) =

e
( t#"1)" 2

1+ e
( t#"1)" 2



 60 

The temporal response of the model force during an isometric contraction closely 

matched the response of the isolated muscle (Figure 3.3 D).  The isometric force time 

courses in 16 different frogs were characterized at three force time points: 0.1Fo, 0.5Fo, 

and 0.9Fo.  At these forces, the time elapsed was measured: 14.6±1.3 ms, 27.5±2.5 ms, 

59±9 ms.  Using these force−time pairs, the activation sigmoid time constant (τ2) and 

activation offset (τ1) were calculated to be 570 and 0.017 respectively. 

Experimental Kinematic and Energetic Data 

In all three jump strategies, the isolated muscle produced instantaneous powers that were 

between 35% and 270% greater than its maximum CE power (Figure 3.4).  For each 

strategy, we measured the muscle force and kinematics from the SM in seven frogs (n = 

7).  For all strategies, the muscle was maximally activated and the resulting acceleration 

of the load was measured.  Only the mechanical context, or loading condition, was varied 

between each jump strategy. 

During the solo jump strategy, the isolated SM produced a peak instantaneous power that 

was 35% greater than maximum CE power.  Upon maximal activation, the force 

produced by muscle increased but the MT length remained constant (Figure 3.4 A).  After 

the muscle force was sufficiently large enough to overcome gravity and inertia, the MTU 

began to shorten. During the early shortening phase, the isolated muscle produced a peak 

instantaneous power of 1.35±0.11 W/Fo/ML, 35% greater than the maximum CE power 

(Figure 3.4, Table 3.1). The MTU velocity increased throughout the jump until a 

maximum was reached, denoting the point at which the frog would have left the ground.  

The MTU reached a peak velocity of 5.56±0.16 ML/s at 84.3±6.5 ms after the onset of 
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activation.  During the contraction, the MTU shortened 8.25±1.04 mm.  

For the co-contraction strategy, the addition of the antagonistic force enabled the muscle 

to produce a peak instantaneous power that was more than twice its maximum CE power  

(Figure 3.3 B).  During the co-contraction period, when the MT length was unable to 

change, muscle force increased due to activation.  After 100 ms, the muscle force 

approached a steady state level of 0.9Fo (as expected based on the prescribed initial 

length of the MTU).  When the antagonistic force was released, the MTU rapidly 

shortened and produced a peak instantaneous power of 2.37±0.23 W/Fo/ML.  The MT 

shortening velocity increased throughout the jump until it reached a peak velocity of 

5.78±0.22 ML/s at 153±5.5 ms.  If the initial co-contraction time is excluded, the MTU 

reached a peak velocity in 53 ms.  During the contraction the MTU shortened 7.56±0.87 

mm. 

For the countermovement strategy, the MTU first lengthened before shortening and 

producing a peak instantaneous power that was greater than the peak power produced 

using the other two strategies (Figure 3.4 C).  The optimal antagonistic force magnitude 

was limited by the constraints, which clipped the force magnitude at Fo.  The optimal 

antagonisitic force duration was calculated to be 17.9 ms after the initial 8.5 ms onset 

delay.  Upon activation, the MTU began to produce force but lengthened due to the 

antagonistic force.  When the antagonistic force was removed, the MTU still continued to 

lengthen due to inertia.  After overcoming inertia, the MTU shortened and produced a 

peak instantaneous power of 2.71±0.11 W/Fo/ML. The MTU reached a peak velocity of 

5.98±0.17 ML/s  at 91±5 ms.  During the contraction the MTU shortened 4.68±0.9 mm. 
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Figure 3.4: Model and experimentally measured muscle kinematics and energetics 
for each jump strategy.  Each column shows the muscle force, length, velocity and 
power for a jump strategy: (A) Solo, (B) Co-contraction, (C) Countermovement.  In all 
panels, the trajectories end when the velocity has peaked and the frog would have taken 
off.  The model MT trajectories are shown with a dashed black line and the CE 
trajectories shown with a dashed red line.  The mean experimental MT results are 
illustrated with a thick black line.  The thin black lines indicate the experimental 
trajectories one standard deviation above and below the mean.  Rows 1 and 2 show the 
muscle force and length time responses respectively.  The CE and SEE always produce 
the same force (assuming that the force produced by the PEE is small).  For the co-
contraction and countermovement strategies the antagonistic force is shown in green.  
The length of the SEEs, which is proportional to muscle force, is the difference between 
the MT (black) and CE (red) length. The horizontal line designates the maximum isotonic 
power.  The vertical dashed line indicates where the antagonistic force stops in the co-
contraction and countermovement conditions.  Row 3 shows the velocity of the MT and 
CE.  Shortening velocities are positive and lengthening velocities negative.  The last row 
plots the instantaneous power produced by the muscle.  For all conditions the 
instantaneous peak power is greater than the maximum isotonic power. 

 

 

 

Figure 3.5: Summary of results for each jump strategy.  (A) Average and peak power 
produced during the jump.  The average power (black lines) is never greater than the 
maximum isotonic power (indicated by the horizontal grey line).  The peak power for all 
strategies is significantly different that the maximum isotonic strategy (p  < 1.4x10-4)  (B) 
Takeoff velocities for each jump strategy.  (C) Takeoff time for each jump strategy.  
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Model Validation 

We compared the muscle force and kinematics measured from the SM in seven frogs (n = 

7) with those generated by our muscle model (Figure 3.4).   We use this comparison to 

validate the model, which will facilitate the separation of the individual contributions of 

the CE and SEEs.   To quantify the similarity between the model and experimental data, 

we used statistical comparison (student t-test) of three primary performance metrics:  

peak instantaneous power, takeoff velocity, and takeoff time (Figure 3.5).  Table 3.1 

provides a comparison of several additional kinematic and energetic parameters.   

For the solo and co-contraction strategies, the model and isolated muscle data were 

similar as quantified by their p values and relative error, demonstrating that the model 

accurately predicted the function of the isolated muscle  (Figure 3.4 A and B).  As shown 

in Figure 3.5, the three performance metrics for the solo and co-contraction strategy were 

not significantly different (p > 0.05) from the model prediction except for the takeoff 

time measured during the solo strategy.  The relative errors, however, for all the 

parameters measured was less than 20% (Table 3.1). 

For the countermovement strategy, our three-element muscle model was unable to 

accurately predict the kinematics and energetics of the isolated muscle. The measured 

peak power, takeoff velocity, and takeoff time were all significantly different (p values 

less 0.05) than that predicted by the muscle model.  However, during the initial MT 

lengthening phase of the jump, the isolated and model muscle data are qualitatively 

similar (Figure 3.4 C).  As the MTU continued to lengthen and during the following 

shortening phase, however, the force predicted by the model was greater than that 
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measured in the isolated muscle.  As a result the kinematics predicted by the model did 

not match that produced by the isolated muscle. Therefore, we cannot use the model to 

accurately extract the function of the CE and SEEs in the countermovement strategy. 

Contractile and Series Elastic Element Function 

In all three strategies, the SEEs stored and released energy facilitating the muscle to 

produce instantaneous powers that were between 35% and 270% greater than its 

maximum CE power.  Combining our experimental and computational results, we 

showed how energy is stored and released from the SEEs. 

For the solo strategy, our data showed that the weight and inertia of the load was 

sufficient to store energy in the SEEs and to enhance power production.  The maximum 

length of the SEE was 1.03 mm and the length at takeoff was 0.14 mm.  This represents a 

release of 17% of the total work done by the CE.  The peak shortening velocity of the 

SEE was 0.94 ML/s and equates to power release of 0.33 W/Fo/ML or 33% of the 

maximum power the CE can produce.  Initially, when the force produced by the muscle 

was less than the load, the CE began to shorten while the MT length remained constant 

(Figure 3.4 A).  As a result, the power produced by the CE was stored in the stretched 

SEEs.  This energy transfer from the CE to the SEEs occurred when the power produced 

by the CE was greater than that power produced by the MTU (Figure 3.4 A, last row).  

During the shortening phase, the load due to inertia decreased and muscle force declined, 

shortening the SEEs and facilitating the release of energy previously stored in them.  

During shortening, the MT velocity was greater than the CE velocity indicating that SEEs 

were shortening and releasing energy.  The transfer of energy from SEEs to the body was 
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evident when the MT power was greater than the CE power.  Both the SEEs and CE 

shortened and applied power to the body during the shortening phase.  As the CE 

continued to shorten, muscle force declined due to the F−L and F−V properties.   

For the co-contraction strategy, the addition of the antagonistic force further facilitated 

the storage and release of energy in the SEEs (Figure 3.4 B). The maximum length of the 

SEE was 2.06 mm and the length at takeoff was 0.14 mm.  This represents a release of 

75% of the total work done by the CE.  The peak shortening velocity of the SEE was 2.67 

ML/s and equates to power release of 1.4 W/Fo/ML or 140% of the maximum power the 

CE can produce.   During the preparatory co-contraction period, the CE shortened settling 

to a new steady-state length, stretching and storing energy in the SEEs (CE power is 

greater than MTU power).  When the antagonistic force was released, the MTU rapidly 

shortened, largely due to the shortening of the SEEs (MT velocity is greater than CE 

velocity) that released their stored energy in addition to that produced by the CE (MT 

power is greater than CE power).  As the MTU and CE continued to shorten the force 

declined due to its F−L and F−V properties and the power produced began to decline.   

For the countermovement strategy, we could not accurately separate the function of the 

CE and SEEs.  The Hill-type model predicted that CE remained approximately isometric 

while the SEE stretched and shortened due to the application and removal of antagonistic 

force respectively. 

Work Loop and Dynamic Force−Velocity Relationship  

We examined the work loops and dynamic force-velocity relationship of the muscle 
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during the jump (Figure 3.6).  Unlike the traditional work loop definition (Josephson, 

1985), the MT trajectory in our study was not prescribed but resulted from the 

interactions between the muscle and the computational load.  

Using the solo and co-contraction strategy the muscle initially develops force while the 

MT length is constant. The CE, however, began to shorten by stretching the SEEs 

(storing energy).  When the muscle force became greater than the load (solo strategy) or 

the antagonist force was removed (co-contraction strategy), the MTU shortened and the 

force produced by the muscle declined.  The decreased muscle force shortened the SEEs 

and released the energy previously stored in them.  The joint reached a maximal velocity 

when the muscle force is equal to the load. 

For the countermovement strategy, the model predicts a spring-like action for the MTU 

where the SEEs stretch and shorten like a spring and the muscle dissipates very little 

energy (Figure 3.6 C).  The experimental data, however, did not suggest the same 

function and a significant amount of work was dissipated.  During the lengthening phase, 

stiffness of the model initially matched the isolated muscle.  However, as the muscle is 

lengthened further its stiffness was not maintained as the slope of the work path 

decreases. After the antagonistic force was removed and the muscle overcame inertia the 

MTU began to shorten.  Unlike the model, the force produced by the isolated muscle is 

significantly smaller during the shortening period than the lengthening period.  As a 

result, a significant amount of energy is dissipated (clockwise encirclement of the work 

loop).  Therefore, the CE in the isolated muscle was likely stretched significantly more 

than predicted by the model. 
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For all the strategies the shape of the dynamic force-velocity curve, which is significantly 

different than that measured using isotonic contractions, explains the power amplification 

(Figure 3.6).  When the MTU began to shorten, the force produced is greater than that 

predicted by isotonic contractions thus improving power production.  However, the CE, 

which was defined by isotonic experiments, did not exceed the isotonic F−V 

Figure 3.6: Work loop and force–velocity relationships of the frog 
semimembranosus during a jumping task.   Each column describes the dynamic F–L 
and F–V relationship properties of the muscle for a different jump strategy: (A) Solo, (B) 
Co-contraction, (C) Countermovement. The model MT trajectories are shown with a 
dashed black line and the CE trajectories shown with a dashed red line.  The mean 
experimental MT results are illustrated with a thick black line.  The green line depicts the 
force–velocity relationship used in the muscle model. 
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relationship.  The dynamic F−V relationship was exaggerateby the co-contraction 

strategy (Figure 3.6 B).  During co-contraction the muscle produced a force while the 

MTU length remained constant.  The CE shortened during this time period approaching a 

steady-state length (velocity approaches 0).  After the antagonistic force was removed, 

CE remained approximately isometric while the SEEs rapidly shortened.  As a result, the 

muscle force is near its isometric level even though the MTU is shortening rapidly, thus 

amplifying the power produced. 

Discussion 

We have shown that SEEs can temporally redistribute energy produced by the CE and 

amplify the power applied to the body during a jump. The energy stored in SEEs can be 

rapidly released and is not limited by cross-bridge dynamics resulting in substantially 

greater power transfer.  Similar to in vivo power estimations, we measured, in an isolated 

muscle, peak powers that were considerably greater than the maximum isotonic power.  

Even during the solo strategy, which did not use any antagonistic forces, the SM 

produced peak powers significantly greater than its maximum isotonic power.  Due to 

gravity and inertia, some energy was stored in the in SEEs before the MTU began to 

shorten.  Some of the stored energy was later released when the muscle shortened 

amplifying power production. 

The kinematics produced by the solo and co-contraction jump strategies are similar to 

that measured in vivo (Table 3.2).  Our experimental results show that the MTU 

shortened approximately 25% and 23% during the solo and co-contraction strategies 

respectively.   Previously published in vivo studies measure approximately the same 
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change in MT length in Rana pipiens (Lutz and Rome, 1996a) and Bufo marinus (Gillis 

and Biewener, 2000).  Additionally, the duration of shortening in the solo strategy (84 

ms) is similar to the shortest durations measured in vivo (~ 80 ms) (Lutz and Rome, 

1996a).  Further, the duration of shortening in our co-contraction strategy (153 ms) is 

comparable to the longer durations measured in vivo (141 ms) (Peters et al., 1996).    

During the solo and co-contraction strategies, when the muscle only shortened, the Hill-

type model accurately predicted the function of the isolated muscle.  During the 

countermovement strategy, however, the peak power produced by the isolated muscle 

was significantly smaller than the model prediction. During the first 25 ms of the 

movement the MTU stretches approximately 0.8 mm and the model results match the 

experimental data well.   Stretching the MTU further resulted in a reduction in muscle 

stiffness that was not predicted by the model (Figure 3.6 C).  As a result, the MTU 

stretched significantly more than expected and produced less force.  The peak power, 

however, was still significantly greater than that produced using the other strategies.  

Nonlinearities which are not included in our Hill-type model (Sandercock and Heckman, 

1997) may explain the differences measured between the model prediction and the 

Table 3.2: Comparison with in vivo measurements of frogs jumping. 

Source Species Length Shortened 
(% ML) 

Shortening 
Duration (ms) 

EMG Duration 
(ms) 

Peters/Kamel 1996 Rana Pipiens 9 141 84.8 
Lutz and Rome 
1996 

Rana Pipiens 25.4 80 65 

Gillis 2000 Bufo marinus ~25 127 91 
     

Strategy     
Solo  25 84  
Co-contraction  23 153  
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isolated muscle data.  Still, Hill-type muscle models can predict the function of isolated 

muscle during simple, but behaviorally relevant models. 

Our model predicted that the muscle behaves like a spring in the countermovement jump.  

The CE remains approximately isometric while the SEEs stretched and shortened to 

absorb and release work (Figure 3.6 C).  The average power produced by the agonist 

(SM) is close to zero as the countermovement action was very elastic.  This muscle 

function is similar to that measured during locomotion in several other animals.  During 

the stance phase of level running in turkeys, the fibers in the lateral gastrocnemius 

isometrically produce force to support body weight while the aponeurosis, the major 

source of compliance, absorbs and releases kinetic energy from step to step (Gabaldon et 

al., 2004; Roberts and Scales, 2002).  This passive recovery of mechanical work 

accounted for more than 60% of the total work produced by the MTU.  Similarly, in the 

plantaris and lateral gasctrocnemius of the hopping tammar wallaby, elastic recovery of 

work stored in the tendon accounts for more than 90% of the work produced by the MTU 

(Biewener et al., 1998). 

Our measurements indicated that the frog SM, which does not have a long tendon, is 

capable of storing significant amount of energy.  Although the Hill muscle model lumps 

series elasticity into a single element, there are several sources of series elasticity in 

skeletal muscles including the thick (Huxley et al., 1994) and thin (Higuchi et al., 1995) 

filaments, the crossbridges (Ford et al., 1977), as well as tendinous structures. The 

aponeurosis in the frog semitendinosis has shown to be the main source of series 

compliance (Kawakami and Lieber, 2000; Lieber et al., 1991).  Fixed-end contractions in 
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the semitendenosus (Kawakami and Lieber, 2000) and SM (Ahn et al., 2003)  reveal that 

the sarcomeres can shorten approximately 10% even though the MT length is held 

constant while the muscle is maximally activated.  This compliance is larger than that we 

measured (7.1%).  Further, other non-muscular sources, like bones, can be sources of 

series compliance and help increase the energy that the frog can store prior to forward 

movement.  

Closed-loop isolated muscle protocols (Farahat and Herr, 2005; Lin and Rymer, 2000) 

have tremendous potential for improving our understanding of motor control principles.  

These novel techniques allow us to re-create the complicated interactions that occur 

between skeletal muscles and the environment during movements.  Using real-time 

feedback we examined the mechanical properties of muscle as it worked against a 

dynamic load that included an inertial and gravitational component as well as prescribed 

antagonistic forces.  Our results could not have been acquired using traditional muscle 

physiology techniques. 
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CHAPTER 4 

INTRINSIC MUSCLE CONTRIBUTIONS TO DYNAMIC 

STABILITY DURING A BOUNCING GAIT 

Introduction 

Engineered systems are unable to match the animal neuromuscular system’s ability to 

maintain dynamic stability during locomotion over complex terrains.  The ability to 

withstand unexpected perturbations arises from the integration of sensory mechanisms 

and the intrinsic mechanical properties of muscle.  But, perturbation responses based on 

sensory feedback are subject to time delays limiting their contribution during rapid 

movements.  Muscles, however, can respond instantaneously to perturbations, altering the 

force they produce without any change in their neural activation pattern (Loeb et al., 

1999).  In this study, we evaluate the ability of muscle, without the aid of sensory 

feedback, to stabilize locomotion. 

During rapid locomotion, animals often exploit an efficient bouncing gait that exchanges 

kinetic and gravitational energy with elastic potential energy during each step (Cavagna 

et al., 1964).  During the first half of stance phase, kinetic and gravitational energy is 

stored as elastic energy in the limb.  During the second half, this elastic energy is 

recovered to accelerate the body.  In analyzing locomotion, many researchers adopt a 

spring-mass model, where a point mass represents the body and the massless spring 

represents the compliance of the limbs, that theoretically explains the energy exchange of 

a bouncing gait (Blickhan, 1989; McMahon and Cheng, 1990).  Although spring-mass 
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systems can maintain stable periodic gaits (Seyfarth et al., 2002; Seyfarth et al., 2003), 

they are unable to maintain the total system energy (see Discussion) 

To facilitate the bouncing gait, muscles can function to store and release energy like 

springs (Alexander and Bennet-Clark, 1977; Roberts, 2002).  Skeletal muscles are 

comprised of two primary types of mechanical elements: the contractile element (CE), 

which is comprised of the cross-bridge filaments, and series elastic elements (SEEs), 

which include the tendon, aponeurosis, and intramuscular elements (Roberts, 2002). 

Muscle forces, which are generated by the CE, are transferred to the skeletal structure via 

SEEs.  These spring-like elements stretch proportionally with muscle force and are 

capable of storing energy. During a bouncing gait, the CE remains approximately 

isometric while SEEs initially stretch to store energy and then shorten to release energy 

(Alexander and Bennet-Clark, 1977; Dickinson et al., 2000).   As a result, muscles 

function to recycle a substantial amount of energy from step to step (Biewener et al., 

1998; Roberts et al., 1997).  

To stabilize perturbations during a bouncing gait muscles must also produce and dissipate 

energy.  The ability of the muscle to produce and dissipate energy is facilitated by the 

inversely proportional relationship between force produced by the CE and its velocity 

(Hill, 1938).  When stretched, the CE dissipates energy and when shortened, the CE 

produces energy.  Perturbations that add energy to the body and increase the landing 

velocity during a bouncing gait may stretch the CE, which would dissipate energy and 

begin to return the body to its original steady-state trajectory.  Perturbations that remove 

energy from the body and decrease the landing velocity would allow the CE to shorten 
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and restore the lost energy.  

We hypothesize that the intrinsic properties of muscle, without sensory feedback, can 

stabilize a bouncing gait. To evaluate the stabilizing properties of muscle, we extend the 

spring-mass system by replacing the spring with a muscle to more accurately replicate the 

mechanics of a bouncing gait.   We investigate the energetics of the bouncing gait and 

assess the muscle’s ability to recycle, produce, and dissipate energy.  Using novel 

experimental techniques we test our hypothesis experimentally.  To identify the function 

of the CE and SEEs, which are distributed throughout the muscle, we also use a 

computational muscle model with discrete contractile and elastic elements.   

Methods 

We evaluated the ability of intrinsic muscle properties to stabilize a bouncing gait using 

mathematical and in vitro muscle models of the frog (Rana pipiens) semimembranosus 

(SM).  Extending previous studies (Wagner and Blickhan, 1999), that were limited by 

mathematical models, we examined isolated muscles during the ground contact phase of 

a bouncing gait.  In addition, we developed a three-element muscle model to determine 

the function on the CE and SEEs.   By combining computational and experimental 

methods we exhaustively tested our hypothesis and leveraged the benefits of both 

techniques.  This section provides details of the models used, experiments conducted, and 

analysis techniques applied. 

Bouncing Gait Mechanics 

In a manner similar to the one-dimensional spring-mass model, we examined the function 
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of one muscle working against an inertial load under a gravitational field (Figure 4.1).  

Only the stance phase, when the muscle can exert forces on the mass, is considered. 

€ 

GFm − Fg = M˙ ̇ x d      (4.1) 

The force the muscle produces (Fm) acts on an inertial load (M) and gravitational (Fg) 

Figure 4.1:  Mechanical context for a single muscle during a bouncing gait. (A) 
An initial stretching velocity was applied to the load to simulate landing.  The muscle 
stretched while absorbing and dissipating energy.  (B) The muscle reached a 
maximum length and began to shorten. (C) The muscle shortened and accelerated the 
load.  The load leaves the ground with a takeoff velocity when the muscle returned to 
its original length. (D) The flight phase of the bouncing gait was not included in the 
model.  We assumed that velocity at which the mass left the ground was equivalent in 
magnitude to the landing velocity of the next step.  The equivalent spring-mass 
system is shown at the respective phase of the gait. 
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load. The gravitational force and mass were chosen to approximate the load the frog SM 

works against in vivo (see previous chapter).  The muscle force gain term (G) is a 

constant scalar used to normalize the forces in the isolated muscle such that it matched 

the force in the model.  The desired muscle-tendon (MT) length (xd) is determined by 

(Equation 4.1).  For all conditions, the initial muscle length (xo) was set to Lo. 

For the in vitro experiments, a closed-loop controller functioned to minimize the 

difference between the actual (xm) and desired (xd) MT lengths.  The linear actuator that 

stretched and shortened the muscle has an associated inertia and therefore cannot 

perfectly track the desired MT length (xd).  To better match the in vitro experiments, the 

dynamics of the muscle length controller and actuator were considered when using the 

computational muscle model: 

€ 

xm = H (xd − xm )       

where  H is a transfer function that includes the controller transfer function, motor inertia, 

motor constant, and current saturations. 

Computational Muscle Model and Closed-Loop Experiments 

To separate the function of the contractile and series elastic elements we conducted 

parallel isolated muscle experiments and simulations.  The isolated muscle experiments 

provided real data and were used to determine the accuracy of the computational muscle 

model.  The muscle model provided access to the kinematics of the CE and SEEs, 

allowing us examine their function. 
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Muscle Model 

We developed a Hill-style mathematical muscle model (Zajac, 1989) of the frog 

semimembranosus (SM).  Using the muscle model we estimated the energetics and 

kinematics of the SM during the ground contact phase of a bouncing gait.  The details of 

the muscle model can be found in Chapter 3. 

Closed-Loop Experiments 

In order to validate our computational model and energetic predictions, we examined the 

overall performance of living muscles during a bouncing gait.  Using closed-loop 

techniques we coupled the isolated frog SM to the load described in the previous section. 

This technique is similar to that used in previously published studies (Farahat and Herr, 

2005; Lin and Rymer, 1998) and in Chapter 2.  The virtual connection between the 

muscle and computational load was accomplished using the following closed-loop 

approach: 

1) Electrical stimulation activates the muscle producing a force. 

2) The force produced by the muscle is measured and used to accelerate the load.  

Gravity and antagonistic forces can also act on the load. 

3) The resulting position of the load is computed and specifies the desired length 

of the muscle-tendon unit (MTU), thus closing the loop.   

 

All surgeries were performed according to procedures approved by the Institutional 

Animal Care and Use Committee at the Georgia Institute of Technology (Protocol 
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#A07033).  Prior to the surgery, frogs (Rana pipiens) were anestheized with tricaine 

methanesulfonate (MS-222, 1 g L-1).  The frogs were then double pithed.  The SM, still 

innervated by its nerve and attached to bone chips, was removed along with a portion of 

the sciatic nerve.  Small metal clamps were used to attach the proximal bone chip to a 

load cell and the distal bone chip to a linear actuator.  The load cell measured the force 

the muscle produced and the linear actuator controlled and measured its length.  The 

entire muscle was submerged in a bath (~21 °C) of oxygenated (95% oxygen, 5% carbon 

dioxide) Ringer’s solution (pH 7.1). A suction electrode was used to activate the muscle 

via the sciatic nerve.  For all conditions the muscle was maximally activated (1 mA, 60 

Hz, 100 µs).  

At the beginning of every experiment the length (Lo) at which the muscle can produce a 

maximal isometric force was experimentally determined.  The force gain term (G) was 

set in (Eq, 1) such that the isometric force matched that of the model.  No other 

normalizations were applied.  Between every other trial the isometric force was measured 

and the gain term (G) was increased to account for fatigue.  Once the isometric force 

dropped 15% data collection was stopped. 

Experiment Protocol 

To simulate different landing velocities and examine the stance phase of a bouncing gait, 

the initial velocity (

€ 

˙ x o ) was varied in both, the isolated and computational muscle.  The 

system was considered to be in stance phase as long as the MT length (xm) is greater than 

the initial length (Lo).  The initial length was considered to be “full extension” and 

lengthening the MTU flexed the ‘body’.  After the MTU returned to its initial length (Lo), 
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data collection was stopped as the system was considered to be off the ground.  The 

magnitude of the takeoff velocity in one step was equal to the magnitude of the landing 

velocity in next step.  A periodic gait was achieved when the landing and takeoff 

velocities are equal in magnitude. 

The isolated and computational muscles were activated 10 ms before the initial landing 

velocity was applied.  The muscle takes approximately 10 ms to reached an active state 

and start producing force.   During the aerial phase of a bouncing gait the extensor 

muscles are likely activated before making contact with the ground.  In a multi-segment 

model, extensor muscles can work against the load provided by different limb segments 

and produce a force.  In our simplified model, the muscle is unable to do so and pre-

activation by 10 ms insures that activation kinetics do not play a major role during the 

ground contact phase.  

Dynamic Stability Analysis 

The kinematics of a bouncing gait can be explained by three output metrics: ground 

contact duration, takeoff velocity or jump height, and frequency.  Knowledge about any 

two of these states is sufficient to determine the third.  In our system, however, because 

the muscle properties are constant, examining just the takeoff velocity is sufficient. 

Dynamic stability can be analyzed using a return map.  A return map plots a specific 

variable at specific point in space from one step (yi) to the next step (yi+1).  We examined 

the landing velocity at the MT length (Lo).  A fixed point, therefore, occurs when the 

variable of interest is constant from step to step (

€ 

yi+1 = yi ).  Further, the fixed point is 
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stable if the return map passes the fixed point with a slope whose magnitude is less than 1 

(Seyfarth et al., 2002).  Of course, the magnitude of the landing velocity at step yi+1 is 

equal to take magnitude of the takeoff velocity at step yi. 

Results 

In the context of the one-dimensional bouncing gait described previously, we measured 

the kinematics and energetics of the frog SM.  We used both, experimental and 

computational methods, to determine how the CE and SEEs function together to form a 

stable gait.  By examining the work produced by the muscle and performing a return-map 

analysis for different landing velocities, we showed that the intrinsic properties of 

muscle, without any sensory feedback, form a dynamically stable bouncing gait. 

Kinematics 

We compared kinematics produced by the isolated and computational muscle and 

determined the function the CE and SEEs during the bouncing gait.  In particular, we 

examined the muscle when it functioned to accelerate, maintain in steady state, and 

decelerate the bouncing gait. 

Accelerating 

For a small landing velocities the muscle-mass system left the ground at a greater 

velocity magnitude, indicating the bouncing gait is accelerated (Figure 4.2 A).  During 

the first half of the stance phase, muscle force increased due to activation (activations 

starts at t = 0 s) but the MTU lengthened (solid and dashed black traces) due to the initial 

velocity (applied at 10 ms).  The force produced by the muscle initially decelerated the 
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mass and then accelerated it (in the opposite direction) for the following flight phase.  

During the second half of stance phase, the MTU shortened and the muscle force 

declined. At takeoff, the model and isolated muscle were both still accelerating 

suggesting that the takeoff velocity would be even greater if the muscles had more room 

to extend (we define takeoff as the time when the muscle length has returned to its 

original length, Lo) (Figure 4.2 A, third row). 

Although the MTU is initially lengthened, the model predicted that the CE shortened 

during the entire stance phase (dashed red trace).  This suggests that the negative power 

produced by the MTU was not dissipated but was stored in SEEs (Figure 4.2 A, last row). 

However, because muscle force was near maximal at takeoff, only a small amount of 

energy was released by the SEEs to power the next flight phase. The release of energy 

from SEEs is evident when MT power is greater than CE power. 

Due to the dynamics of the muscle length actuator, the initial velocity (applied at 10 ms) 

was not instantaneous for both the model and the isolated muscle.  Further, the peak 

negative velocity has a greater magnitude than the prescribed landing velocity.  As 

described previously, during the experiments the response of the muscle length actuator 

was limited and could not achieve infinite accelerations.  The dynamics of the actuator 

were also considered in the muscle model so that both methods could be compared.  
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Steady-State 

The steady-state landing (or takeoff) velocity differed greatly for the isolated and model 

muscle.  Similar to the accelerating condition, the force produced by the muscle first 

acted to overcome the landing velocity and then accelerated the muscle for the next flight 

phase.  The model kinematics matched that of the isolated muscle during the first half of 

stance phase when the muscle lengthened.  However, when the MTU was shortening, the 

model over predicted the force produced by the isolated muscle (Figure 4.2 B).  As a 

result, the model muscle over predicted the takeoff velocity of the isolated muscle. 

During the model steady-state hopping gait, the CE remained approximately isometric 

during the entire stance phase (Figure 4.2 C, second row).  The CE initially lengthened 

slightly and then shortened (evident in the velocity trajectory, third row), and therefore 

dissipated and produced energy (last row).   Of course, to maintain the steady-state gait, 

the energy produced and dissipated by the CE must be equal.  At this landing velocity, 

Figure 4.2: Model and experimentally measured muscle forces, kinematics, and 
energetics.  Each column shows the muscle force, length, velocity and power for 
different landing velocities.  Each landing velocity provides an example of the bouncing 
gait during an accelerating, steady-state, and decelerating stance phase for the isolated 
and model muscle.  In all panels, the trajectories end when the muscle length has returned 
to its original length and the mass is assumed to have left the ground.  The model MTU 
trajectories are shown with a dashed black line and the CE trajectories shown with a 
dashed red line.  The mean experimental MTU results are illustrated with a thick black 
line.  The shaded regions indicate one standard deviation above and below the mean.  The 
data for each column was measured from seven frogs, except for column D, which was 
measured from six frogs.  Rows 1 and 2 show the muscle force and length time responses 
respectively.  The CE and MTU always produce the same force.  The length of the SEEs, 
which is proportional to muscle force, is the difference between the MT (black) and CE 
(red) length.  Row 3 shows the velocity of the MTU and CE.  Shortening velocities are 
positive and lengthening velocities negative.  The last row plots the instantaneous power 
produced by the muscle. 
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the isolated muscle decelerated the gait.  Again, the model matches the force and 

kinematics produced by the isolated muscle while it lengthened.  However, the predicted 

force and power production during muscle shortening was greater than that measured in 

the isolated muscle. 

Decelerating 

For large landing velocities, the muscle-mass system left the ground at slower velocity 

magnitudes, indicating that the bouncing gait decelerated (Figure 4.2 D).  In response to 

the initial velocity, the muscle force reached values greater than its maximum isometric 

force (first row).  However, the muscle force was not sufficient to accelerate the load to a 

takeoff velocity that matched the landing velocity (in magnitude).  Once more, the 

computational model over predicted, to smaller degree, the forces experimentally 

measured when the muscle was shortening. At takeoff, the MT velocity had reached a 

maximum and the acceleration was almost zero (third row).  As a result, further extension 

of the body, or shortening of the muscle, would not have increased the takeoff velocity. 

Unlike the previous conditions, the initial landing velocity significantly lengthened the 

CE, facilitating energy to be dissipated.  Although the CE approximately returned to its 

initial length at takeoff (second row), it dissipated more energy than it produced (last 

row).  

Energetics and the Return Map 

In order to accelerate and decelerate the bouncing gait, the muscle must produce and 

dissipate energy respectively.  We examined the total work produced by the isolated and 
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model muscle for different landing velocities (Figure 4.3).  For slower landing velocities, 

the muscle produced work facilitating the acceleration of the bouncing gait.  For quicker 

landing velocities, the muscle dissipated work enabling the system to decelerate.  At the 

landing velocity where the muscle produced zero work a steady-state bouncing gait 

existed.  Here, the muscle produced as much work as it dissipated and the system left the 

ground at a velocity that is equal in magnitude to the landing velocity.  The stead-state 

landing velocity for the model muscle is greater than that measured in the isolated 

muscle. 

To assess the function the muscle during stance phase and determine how energy is 

produced, dissipated, and stored, we also examined the work loops and dynamic force–

velocity relationships (Figure 4.4).  The work loop plots muscle force as a function of 

Figure 4.3:  The work produced or dissipated by the muscle for different landing 
velocities.  The black line indicates the mathematical model prediction and the dots 
represent the data collected from isolated muscles.  For most landing velocities, the 
model muscle produced more work than measured by the isolated muscle.  An 
average of five experiment trials (each from a different frog) were conducted for each 
landing velocity.  The vertical grey bars indicate one standard deviation above and 
below the mean. 
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muscle length (first row) and allowed us to visually examine muscle energetics 

(Josephson, 1985).   In all conditions, SEEs facilitated the MTU to act beyond the force–

velocity constraint (see Chapter 3). 

Accelerating - During the accelerating conditions (Figure 4.4 A), the CE shortened and 

produced energy, automatically accelerating the gait.  Although the initial velocity 

initially lengthened the MTU, the CE shortened and produced energy during entire stance 

phase.  The counter clockwise encirclement of the work loop indicates the muscle has 

produced energy.  To complete the work loop, imagine a vertical line connecting the final 

force with the initial force (the lengths are the same) on the MT trajectory.  At the end of 

the stance phase, the MT length is significantly longer than CE length, indicating that the 

SEEs were stretched and energy stored in them was wasted. 

Steady State - During the steady-state trajectories (Figure 4.4 B, C), the muscle dissipated 

and produced energy and therefore did not act like a perfect spring.  Although the length 

of CE did not change significantly, its velocity did.  Initially, the CE lengthened and 

dissipated energy (Figure 4.4 C).  The CE velocity approached but did not enter the 

plateau region of the lengthening force–velocity relationship.  Eventually, the CE 

shortened and produced energy, offsetting the energy dissipated earlier.  The energy 

dissipation and production can be visualized in the work loop and the clockwise and 

counter clockwise encirclements respectively.
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Figure 4.4: Model and experimentally measured work loops and force–velocity 
relationships.  Each landing velocity (column) provides an example of the bouncing gait 
during an accelerating, steady-state, and decelerating stance phase for the isolated and 
model muscle.  The first row plots the work loop and visually shows the energy produced 
(counter-clockwise encirclements) and dissipated (clockwise encirclements).  The second 
row compares the force–velocity relationship of the muscle during bouncing gait with a 
typical isotonic force–velocity curve (green).  In all panels, the trajectories end when the 
muscle length has returned to its original length and the mass is assumed to have left the 
ground.  The model MTU trajectories are shown with a dashed black line and the CE 
trajectories shown with a dashed red line.  The mean experimental MTU results are 
illustrated with a thick black line.  The shaded regions indicate one standard deviation 
above and below the mean.  The data for each column was measured from seven frogs, 
except for column D, which was measured from six.   
 



 90 

Decelerating - During decelerating stance phases, the plateau region of the lengthening 

force−velocity relationship facilitates the dissipation of energy (Figure 4.4 D).  In 

response to the initial (landing) velocity, the CE stretched at large velocities and entered 

the plateau region of the of the force−velocity.  In this region, the muscle reached its 

force-producing limit; stretching the CE faster would not have increase muscle force.  

Therefore, the SEEs had also reached their limit for energy storage.  As a result, the 

muscle effectively dissipated energy and decelerated the gait.  The energy dissipation is 

shown by the large clockwise encirclement of the work loop. 

We performed a return map analysis on the takeoff velocity to assess the stability of the 

bouncing gait (Figure 4.5).  Assuming a ballistic motion when the system is ‘in the air’, a 

periodic gait occurs when the takeoff velocity (or the landing velocity of the next step) is 

equal to the landing velocity (diagonal line).  In the return-map this velocity is referred to 

as a fixed-point and corresponds to the velocity where the muscle has produced no work.  

The location and the behavior at the fixed point were different for the model and isolated 

muscle.  The model and isolated muscle both have a slope with magnitude less than 1 as 

they pass the fixed-point, indicating that the gait is stable.  The behavior of the 

computational and isolated muscle, however, was different at the fixed point.  The 

isolated muscle had a positive slope, whereas the model has a negative slope.  The 

negative slope indicates that a perturbed system will overshoot its return to the steady-

state trajectory.  For example, if the system is perturbed such that it lands at a velocity 

slightly greater than its fixed-point velocity, it will first decelerate below the fixed-point 

velocity and then accelerate back towards the fixed-point.  The closer the slope is to -1, 

the more over/undershoot oscillations will occur before the system settles to its steady-
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state trajectory.  This behavior is analogous to an underdamped system.  A positive slope 

indicates that the system returns to the steady-state trajectory without overshoot, 

analogous to an overdamped system.  

Recovery 

For different landing velocities, we calculated the amount of energy stored and released 

by the SEE in our computational model (Figure 4.6 A).  Generally, as the landing 

velocity increased, the SEE recovered more energy.  For landing velocities greater than 

8.5 ML/s, the amount of energy recovered initially decreased before increasing again.  

The initial decrease occurred when the CE velocity entered the plateau region of the 

force–velocity relationship.  In the plateau region, muscle force remained constant and 

Figure 4.5:  The return map analysis for the model and isolated muscle.  The return map 
examines the relationship between the takeoff and landing velocity.  Because the takeoff 
velocity for the current step is the landing velocity for the next step, a fixed point occurs 
when the takeoff velocity is equal to the landing velocity (in magnitude).  The model muscle 
(solid line) over predicts the fixed-point takeoff velocity measured in the isolated muscle 
(dots).  The model and isolated muscle have stable fixed points as their return maps cross the 
diagonal with a slope of magnitude less than 1. An average of five experiment trials (each 
from a different frog) were conducted for each landing velocity.   
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thus no more energy could be stored in the SEEs.  In addition, less energy was recovered 

from the SEE because the CE did not achieve a fast shortening velocity and the muscle 

force at takeoff was large.  The energy recycled by the SEE increased again for even 

greater landing velocities where the CE was stretched to such great lengths that the 

parallel elastic element helped increase muscle force.  The increased muscle force 

resulted in an increase in the storage of energy in the SEEs and improved the total energy 

recovered by the SEEs.  The energetic recovery due of the elasticity in the parallel elastic 

element, the passive force–length property, was not considered. 

We also examined the elastic recovery of the muscle by measuring the fraction of energy 

recycled by the SEEs normalized to the kinetic energy of the system at the beginning of 

the stance phase (Figure 4.6 B).  At the fixed point (vertical bar), our model predicts that 

the muscle recovers over 75% of the system’s initial kinetic energy and therefore only 

had to produce a small amount of energy to maintain the steady-state gait.  For velocities 

beyond the fixed point, the muscle dissipated a substantial amount of energy and 

therefore a smaller percentage of energy was recovered.  In addition, we noticed in the 

isolated muscle that the peak muscle force and the muscle force at takeoff were 

approximately equal to that predicted by the model.  Because SEEs stretch and shorten 

proportionally with muscle force, a significant amount of energy was likely also 

recovered in the isolated muscle. 
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Discussion 

The initial response to a perturbation is influenced entirely by the intrinsic properties of 

muscle.  In this study, we examined how the contractile and elastic elements in muscle 

function to maintain dynamic stability, without the aid of sensory feedback, during a 

bouncing gait.  Our results show that muscles can automatically manage mechanical 

energy to maintain a stable bouncing gait.  In addition, our simulations suggest that SEEs 

in muscle help produce an efficient gait by recycling a significant amount of energy from 

one step to the next. 

Our results reveal that the mechanical properties of muscle can react to different loading 

conditions and alter the muscle’s function without a change in its activation pattern.  The 

use of such ‘intelligent’ mechanics may reduce the effort (Blickhan et al., 2007) and 

Figure 4.6:  Predicted elastic recovery by the series elastic element during the 
bouncing gait.  Panel A shows the energy applied to the load by the SEE which stored 
some of the systems kinetic energy at the beginning of the stance phase.  Panel B shows 
the elastic recovery, the energy recycled by the SEE normalized to systems initial kinetic 
energy.  The vertical grey line marks the steady-state landing velocity.  During the 
steady-state gait, approximately 80% of the kinetic energy is recycled every step. 
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architecture of neural control mechanisms.  Our results suggest that animals may not have 

to employ active control to decrease or increase the speed of their gait, instead they may 

be able to simply set a new muscle activation level and mechanical properties of muscle 

would naturally entrain to the new speed.  Similar control simplifications are evident 

during locomotion in other species.  The guinea fowl, for example, does not significantly 

change the activation (EMG) duration, intensity or phase of its lateral gastrocnemius 

when walking on an incline compared to level ground (Daley and Biewener, 2003).  The 

muscle’s average force, net strain and work production, however, are automatically 

modified to manage load requirement of incline locomotion.  Humans instantaneously 

change the stiffness of their legs when running across different viscoelastic substrates 

such that the combination of leg and surface stiffness remains unchanged (Ferris et al., 

1999; Ferris et al., 1998).  Although the control of leg stiffness likely arises from several 

mechanisms, the immediate response suggests that intrinsic muscle properties play a 

substantial role.  The intrinsic properties of muscle may facilitate robust control of 

locomotion without the need for precise neural control. 

Our computational model predicts, during a steady-state gait, that the SEEs in the frog 

SM can recover over 75% of the kinetic energy from the previous aerial phase and apply 

it to accelerate the load for the next aerial phase.  As a result, the CE only has to generate 

a small amount of energy every step to maintain locomotion.  During accelerating stance 

phases, SEEs are less effective and recover less energy.  However, our results indicate 

that if there was more kinematic room for the MTU to shorten, it could further accelerate 

the load and the SEEs would recover more energy.  Therefore, during accelerating stance 

phases, landing in a slightly flexed position would give the extensors more room to 
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shorten and increase the takeoff velocity.   During the stance phase of level running in 

turkeys, the fibers in the lateral gastrocnemius isometrically produce force to support 

body weight while the aponeurosis, the major source of compliance, absorbs and releases 

kinetic energy from step to step (Roberts et al., 1997).  This passive recovery of 

mechanical work accounted for more than 60% of the total work produced by the MTU.  

Similarly, in the plantaris and lateral gasctrocnemius of the hopping tammar wallaby, 

elastic recovery of work stored in the tendon accounts for more than 90% of the work 

produced by the MTU (Biewener et al., 1998). 

SEEs in muscle function to store and release energy and help improve the efficiency of 

locomotion (Cavagna et al., 1977; Cavagna and Kaneko, 1977; Cavagna et al., 1964) 

(Alexander and Bennet-Clark, 1977).  Our energetic recovery estimates do not translate 

to efficiency because there is a metabolic cost associated with activating muscles even if 

they do not produce any force.  Our computational model, however, suggests that the CE 

is approximately isometric during the stance phase of a bouncing gait.  Therefore, fewer 

muscle fibers have to be recruited to produce the same force, as compared to conditions 

when the CE is shortening.  This economic force generation likely results in less 

chemical energy consumption by the muscle (Biewener et al., 1998).  A lengthening CE 

produces even more force, suggesting that the efficiency is even greater.  During 

conditions when the CE lengthens significantly, the system is dissipating energy and 

decreasing the speed of the gait. 

The self-stabilizing properties of muscle may work synergistically with neural control 

strategies.  In two-dimensional spring-mass bouncing gaits, recent studies have shown 
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that a feedforward strategy that automatically changes the angle of attack can stabilize the 

maximum height of the gait (Geyer et al., 2005; Seyfarth et al., 2002; Seyfarth et al., 

2003).  Since springs are unable to produce or dissipate energy, changing the angle of 

attack only serves to redistribute the system energy in the vertical and horizontal 

directions.  Therefore, even though the maximum height of the gait can be maintained, 

other parameters, such as step length, have to change.  However, combining this 

feedforward strategy with the mechanical properties of muscle may improve stability and 

facilitate a quicker return to the steady-state trajectory after a perturbation. 

Small errors in the predicted kinematics of the CE may explain the difference in function 

between the model and isolated muscle.  During the muscle-shortening phase of the gait, 

the model over predicted the force produced by the isolated muscle.  If the CE in the 

isolated muscle shortened at a slightly faster velocity or was at a shorter length compared 

to the model prediction, force produced by the isolated muscle would be smaller than that 

predicted.  Nonlinear properties, which are not considered in the three-element, such as 

shortening deactivation (Edman et al., 1993; Josephson and Stokes, 1999), likely do not 

explain the differences between the isolated and model muscle.  The effect of shortening 

deactivation is proportional to CE shortening distance and inversely proportional to CE 

velocity.  Our results, however, suggest that the difference in force, between the model 

and isolated muscle, is greatest when the CE shortening is minimal and shortening 

velocity is maximal. 

This work is an important step towards advancing our understanding of muscle 

mechanics, leading towards improved actuators with realistic mechanics that have the 
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potential to progress robotic and other engineered systems.  Mimicking the mechanical 

properties of muscle in robot actuators may yield improved maneuverability, stability, 

and speed during locomotion (Blickhan et al., 2007; Herr et al., 2001; Pratt, 2000; Pratt, 

2002).   Although the elastic properties of muscle have inspired a variety of new robot 

actuators (Migliore et al., 2007; Pratt, 2002), the velocity dependent properties of muscle 

are rarely considered.  Using actuators that imitate the force–velocity relationship of 

muscle may help maintain steady-state system energetics and further improve stability.   
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CHAPTER 5 

CONCLUSIONS 

Animals have evolved robust neuromuscular strategies that underlie their impressive 

agility and speed during locomotion over a variety of natural environments.  Muscles, the 

most peripheral layer of the neuromuscular system, produce forces that give rise to 

movement and interact with the environment with unique mechanical characteristics.  

Understanding the principles of animal movement and taking inspiration from the 

function of muscles will serve as a foundation to advance engineered systems.  In this 

dissertation, we applied experimental and computational techniques to understand how 

the mechanical elements in muscle can facilitate two important tasks during locomotion: 

power production and dynamic stability.  To investigate the mechanical properties of 

muscle, we initially developed a closed-loop system that virtually couples an isolated 

muscle with a computational or physical mechanical load.  We used this system to 

demonstrate the effects and importance of intrinsic muscle properties during movements. 

Throughout this dissertation we showed that, given the same neural activation pattern and 

no sensory feedback, a muscle is still able to advantageously function in a variety of 

different manners: producing, dissipating, and absorbing energy.  Movement is the result 

of coordinated feedback and feedforward interactions between the central nervous 

system, the musculoskeletal system, and the physical environment.  Although sensory 

feedback is an important mechanism that affects movement, this research is focused on 

only the mechanical interactions between muscles and the external environment.  In 
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particular, we examined how intrinsic muscle properties can function to manage muscle 

energetics during movements.  In all our studies, we maximally activated a muscle while 

providing different mechanical frameworks.  Due to only the different loading conditions, 

the resulting muscle energetics were substantially different as the muscle acted as motor, 

brake, or spring.  Therefore, we demonstrate that the function of muscle cannot be 

discerned from examining exclusively its electrical activation, but also requires an 

understanding of the mechanical context in which the neural control is applied.  Neural 

control strategies acting in concert with musculoskeletal strategies facilitate the wide 

range of movements produced by animals.  In this chapter, we provide a summary of our 

results, and draw implications about the mechanical properties of muscle and their effect 

on neural control. 

Technical Innovation 

Although, classical open-loop experimental control is highly effective for isolating 

mechanical components of the three-element muscle model, it has limited ability to probe 

emergent properties of the complete model during dynamic movements.  The three-

element muscle model is deeply ingrained in our understanding of muscle mechanics and 

has defined the context in which muscle mechanics are measured.  Traditional open-loop 

muscle physiology experiments were cleverly designed to isolate and evaluate particular 

mechanical properties of that model.  For example, under isotonic loads (Hill, 1938), the 

muscle produces a constant force and shortens at a constant velocity, thus isolating the 

force–velocity relationship of the just the contractile element.  The validity of the model 

and of these fundamental properties derives from their ability to predict muscle function 

during a variety of dynamic movements.  Mathematical muscle models reveal complex 
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emergent behaviors that arise from the integrative action of simple mechanical properties. 

Mathematical predictions, however, have not been validated using living muscle tissue 

because of the limited open-loop nature of classical experimental methods. 

Closed-loop systems (Farahat and Herr, 2005; Lin and Rymer, 1998) enable investigation 

of muscle as it works against complex loads, and thereby reveal interactions between the 

components of the three-element model. Under open loop control, an isolated muscle 

behaves as a first-order system, driven by elasticity and viscosity, very different from 

actual biological function.  In vivo, muscle acts primarily against inertial loads as a 

second-order system, and it is only through the interaction between muscle and an inertial 

load that those second-order effects become manifest.   

We applied closed-loop methods to facilitate a better understanding of muscle 

performance during dynamic movements that more accurately represent natural 

conditions.  Specifically, we built a system that allows an isolated frog muscle to be 

connected to a variety of complex loads.  Extending previously developed closed-loop 

systems, which are limited to computational loads, our system also facilitates the virtual 

embedding of the muscle directly into physical loads, allowing the muscle mechanics to 

control the movement of a robotic system.  As a result, loads that are too complex to 

computationally estimate but can be reproduced with a physical system can also be 

applied to an isolated muscle. 

Scientific Contributions 

We applied our closed-loop approach to investigate the function of living muscle during 
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dynamic locomotion-like tasks; previously these tasks have been typically examined with 

computational muscle models without knowing their validity under such dynamic 

conditions. Specifically, we identified the function of the contractile element (CE) and 

series elastic elements (SEEs) during power production in a jumping task, and 

determined their ability to produce a dynamically stable bouncing gait.  To separate the 

functions of the CE and SEEs, we combined our experimental methods for isolated 

muscle with a mathematical three-element model.  The integration of experimental data 

and model predictions provided insight into the integrative function of the 

musculoskeletal system. 

The mechanical properties of muscle can be exploited to improve muscular performance 

during locomotion and other movements.  In Chapter 3, we showed that SEEs can 

function to temporally concentrate energy transfer from the CE to the body and enhance 

power production during an inertial task like jumping.  Applying different neuromuscular 

strategies that involved antagonistic forces, we measured instantaneous whole muscle 

power levels that were 2.5 times greater than the maximum power the CE could have 

produced alone.  In Chapter 4, our simulations suggest that SEEs enable the muscle to 

behave like a spring, recovering over 75% of the kinematic energy from one step and 

applying it to the next during a steady-state bouncing gait.  During locomotion, the 

neuromuscular system can thus employ control strategies that take advantage of the 

mechanical properties of muscle to improve energetic efficiency and simplify neural 

control. 

We demonstrated that the CE and SEEs can interact with an external inertia to produce a 
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dynamically stable bouncing gait, in which energy flows between the inertia and the SEE, 

and the viscosity of the CE prevents instability.  The mathematical three-element model, 

which was derived from isometric and isokinetic experiments, predicted a stable, 

resonant system with substantially higher energy conservation than was observed in the 

closed-loop muscle experiments.  The differences between the model predictions and 

experimental data exemplify the effects of additional properties, apparent only through 

closed-loop experimental techniques, and not considered in the three-element model.  

However, the underlying behavior of the model and isolated muscle were qualitatively 

similar and revealed the autonomous and integrated energy management function of the 

CE and SEEs.   

Our results imply that the optimal neural control strategy requires estimates for muscle 

mechanical performance and external inertia to coordinate antagonist and agonist 

muscles.  Typical robotic and prosthetic systems often use simplified control methods 

where one inelastic actuator is used to produce movement in a particular direction.  Our 

results, however, suggest that during inertial tasks like jumping or throwing, antagonist 

forces play a crucial role in exploiting elastic properties in the agonist muscle and 

improving performance.  To achieve a specific movement, simply activating agonist 

muscles may not maximize muscular performance.  Improving actuator technology to 

include elastic components and utilizing bioinspired control strategies may improve the 

performance of engineered systems. 

The ‘intelligent’ mechanical properties of muscle may simplify the control effort required 

of the central nervous system.  In Chapter 4, our results showed that a stable bouncing 
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gait can be produced by an unvarying motor command, without any sensory feedback, as 

intrinsic muscle properties automatically produce and dissipate energy to maintain pace.  

Therefore, the mechanical properties of muscle alone can withstand unexpected 

mechanical perturbations to the body and maintain dynamic stability.  Due to neural time 

delays, sensory feedback cannot instantaneously respond to mechanical perturbations.  

During the time delay, however, intrinsic muscular properties can alter the forces 

produced by the muscle, mitigating the perturbation.  Further, the stability provided by 

the intrinsic properties of muscle implies that the central nervous system may not have to 

actively control changes in locomotion such as speed.  Instead, a single change in muscle 

activation may be sufficient, as the mechanical properties of muscle may guide the 

locomotion gait from state to another.   

Building actuators with mechanical properties that are similar to that of skeletal muscle 

may enable robotic systems to match the movement capabilities of animals.  We have 

shown how the dynamic viscous and elastic properties of muscle enable a variety of 

robust and autonomous functions.  Mimicking these properties in artificial actuators may 

enable robotic systems to better negotiate natural environments.  For example, 

duplicating the viscous and elastic properties of muscle may help robotic systems better 

respond to high forces that occur during ground contact. 

Model Constraints and Limitations 

Our simulation results accurately predicted the kinematics and energetics of isolated 

muscles during conditions where it only shortened.  Previous studies have criticized Hill-

type models because they do not explain a variety of nonlinear muscle properties 



 104 

(Sandercock and Heckman, 1997; Sandercock and Heckman, 2001).  During simple 

shortening movements, however, our model predicted the function of the living muscle 

with great accuracy.  This suggests that nonlinear properties, such as shortening 

deactivation (Edman et al., 1993; Josephson and Stokes, 1999), may play a small role in 

some movements and that Hill-type models can accurately predict muscle function during 

behaviorally relevant tasks. 

Mathematical models based on cross-bridge kinetics (Zahalak and Ma, 1990) may be able 

to better predict the function of living muscle. During movements when the muscle first 

lengthened before shortening, our results showed that the Hill-type model over predicted 

the performance of the isolated muscle.  During the initial lengthening phase, the model 

response closely matched the performance of isolated muscle.  Throughout the following 

shortening phase, however, the model force was greater than that produced by the 

isolated muscle.   The source of the hysteretic affect, and other nonlinear muscle 

properties, cannot be identified using phenomenological Hill-type models.  However, 

cross-bridge muscle models, which mathematically estimate muscle contraction 

mechanisms, may be able better to identify and predict the effects of muscle 

nonlinearities on performance.  Based on new experimental data, these models can be 

updated to reflect our improved understanding of muscle contraction mechanisms (Harry 

et al., 1990).  Our closed-loop experimental approach can aid this approach, enabling the 

study of unknown muscle properties that may arise from dynamic movements and help 

improve the accuracy of computational muscle models.  

The three-element model represents muscle elasticity and viscosity as discrete, series 
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elements, and has led to the wrong interpretation that series elasticity exists primarily in 

the tendon or aponeurosis.  There are several sites of elasticity throughout the muscle.  

Intramuscular connective tissue, such as the endomysium, epimysium, and perimysium, 

has viscoelastic properties.  Sarcomereic filaments of actin and myosin also have elastic 

properties that contribute to the total muscle series elasticity. Thus, muscle viscosity and 

elasticity are distributed in multiple structural elements, and the three-element model 

approximates as unitary, independent elements.  The semimembranosus was chosen for 

these experiments because of the lack of external tendon in order to minimize the series 

compliance.  We found over 7% strain associated with elasticity internal to the muscular 

structure.  In contrast, elasticity associated with external tendon and aponeurosis is 

around 5%/Po, suggesting that non-tendinous elasticity must not be dismissed.  SEEs 

have viscous properties that produce hysteretic effects during stretching and shortening 

cycles (Lieber et al., 1991).  In addition, the stiffness is not constant, but tends to increase 

with monotonically with increasing length.  These nonlinearities likely serve an important 

functional purpose and may explain the part of the differences we measured between 

isolated and model muscle. 

Future Directions 

Our closed-loop approach has the potential to test hypotheses with real muscles that 

could previously only be tested with mathematical models.  While we demonstrated the 

benefits of coupling muscle with physical mechanical systems, we did not require this 

capability to test our scientific hypotheses.  There are, however, several forms of 

locomotion where the interface between the body and the environment is complex and 

prohibitive to emulate computationally.  For example, the function of muscle during 
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realistic ground contact situations is too complex to mathematically represent and is 

better simulated with physical models (Altendorfer et al., 2001).  As demonstrated in 

Chapter 2, robotics systems can also include biological elements and better reproduce the 

interactions that occur during naturally behaving animals.  The closed-loop coupling of 

muscles to robotic systems has an immense potential to improve our understanding of the 

neuromuscular system and aid in the development of biologically inspired robotic and 

prosthetic systems. 

The effect of sensory mechanisms on muscular mechanics and energetics would be a 

logical future direction to build upon this thesis.  Our closed-loop techniques can be 

adapted to work with in vitro preparations that include intact neural structures.  The 

nonlinear effects of sensory feedback can alter the mechanical properties of muscle.  

Spinal reflexes, for example, can change the stiffness of lengthening muscles and may 

play a significant role in maintaining stability during postural balance or locomotion 

(Nichols and Houk, 1976). During rhythmic movements, neural structures called half 

centered oscillators have been hypothesized to drive muscles (Williams and DeWeerth, 

2007a; Williams and DeWeerth, 2007b).  These neural controllers have a variety of 

feedback mechanisms that enable them to entrain the mechanics of the load and may help 

improve the stability of the movement.  Investigating the role of sensory feedback during 

locomotion provides a more complete picture of the neuromuscular system’s capabilities.  

Our closed-loop techniques can be extended so that several antagonistic and agonist 

muscles can act on a common load.  Understanding the synergistic actions of muscles 

will improve our knowledge on how the neuromuscular system coordinates muscles to 
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produce a variety of different movements.  For example, replacing the idealized 

antagonistic muscle in Chapter 3 with a real muscle will provide a more accurate 

estimation of the power generating capabilities of the frog semimembranosus during a co-

contraction strategy.   

In this research, we investigated the function of the intrinsic properties of a single muscle 

during a simple, single degree-of-freedom form of locomotion.  Ultimately, these 

methods can be expanded to include neural mechanisms, multiple muscles, and complex 

mechanics, thereby improving our understanding of the neuromuscular principles that 

underlie movement. 
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