
AUTOMATIC ACCOMPANIMENT OF VOCAL MELODIES

IN THE CONTEXT OF POPULAR MUSIC

A Thesis
Presented to

The Academic Faculty

by

Xiang Cao

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Music Technology in the
Music Department, College of Architecture

Georgia Institute of Technology
MAY 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4723932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTOMATIC ACCOMPANIMENT OF VOCAL MELODIES

IN THE CONTEXT OF POPULAR MUSIC

Approved by:

Dr. Parag Chordia, Advisor
Music Department, College of Architecture
Georgia Institute of Technology

Dr. Jason Freeman
Music Department, College of Architecture
Georgia Institute of Technology

Dr. Gil Weinberg
Music Department, College of Architecture
Georgia Institute of Technology

Date Approved: April 2, 2009

ACKNOWLEDGEMENTS

 First, I would like to thank my thesis advisor Dr. Parag Chordia. Without his

feedback and guidance, this thesis work is not possible to be completed. My thank also

goes to the rest of my thesis committee members for their suggestions and reminders.

Additionally, I want to thank the director of the music technology program Dr. Gil

Weinberg, the funding found by him supported me for two years through this master

program. At last, I also would like to thank all the master students of the music

technology program for their everyday help.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

SUMMARY viii

CHAPTER

1 Introduction 1

Motivation 1

Related Works 1

System Description 4

System Integration 5

2 Pitch Tracking 7

Pitch Detection 7

Post Processing 9

3 Key Estimation 11

Tonic and Scale 11

The Method 12

Evaluation 14

4 Structure Analysis 16

The Role of Structure Information in Automatic Accompaniment 16

Similarity Matrix 17

Adaptive Threshold 19

Structure Boundaries 22

 iv

Evaluation 23

5 Chord Assignment 25

The Problem of Harmonization 25

Chord Set and Transition Probabilities 27

Output Probabilities 28

HMM Decoding 29

6 Style Player 31

Automatic Accompaniment Style Files 31

Structural Sections 32

Instrumentation and Note Transposition 32

7 Application and Conclusion 35

Applications 35

Future Works 38

Conclusion 40

REFERENCES 42

 v

LIST OF TABLES

Page

Table 1: Key Estimation Accuracy 14

Table 2: Structure Analysis Test Results 24

Table 3: All Possible Sections in a Style file 32

Table 4: Style File Channel Arrangement 33

 vi

LIST OF FIGURES

Page

Figure 1: System Structure 4

Figure 2: Inter-peak Distances for the First Maximum 8

Figure 3: Pitch List 9

Figure 4: Major and Minor Scale PCDs 13

Figure 5: Similarity Matrix 18

Figure 6: Time-lag Matrix 19

Figure 7: Filtered Time-lag Matrix 21

Figure 8: High Level Repetitions 22

Figure 9: Section Change implied by Repetition 22

Figure 10: Graphical Representation of Hidden Markov Model 26

Figure 11: PCDs of Major Scale Chord Set 28

Figure 12: GUI of the Prototype Application 35

 vii

 viii

SUMMARY

A piece of popular music is usually defined as a combination of vocal melody

and instrumental accompaniment. People often start with the melody part when they are

trying to compose or reproduce a piece of popular music. However, creating appropriate

instrumental accompaniment part for a melody line can be a difficult task for non-

musicians. Automation of accompaniment generation for vocal melodies thus can be very

useful for those who are interested in singing for fun. Therefore, a computer software

system which is capable of generating harmonic accompaniment for a given vocal

melody input has been presented in this thesis. This automatic accompaniment system

uses a Hidden Markov Model to assign chord to a given part of melody based on the

knowledge learnt from a bank of vocal tracks of popular music. Comparing with other

similar systems, our system features a high resolution key estimation algorithm which is

helpful to adjust the generated accompaniment to the input vocal. Moreover, we designed

a structure analysis subsystem to extract the repetition and structure boundaries from the

melody. These boundaries are passed to the chord assignment and style player

subsystems in order to generate more dynamic and organized accompaniment. Finally,

prototype applications are discussed and the entire system is evaluated.

CHAPTER 1

INTRODUCTION

 In this chapter, the motivation and related works will be discussed. Furthermore,

the architecture of the automatic accompaniment system and the structure of this thesis

will also be illustrated.

1.1 Motivation

 A piece of popular music is usually defined as a combination of vocal melody and

instrumental accompaniment. Melody is a series of notes which forms the theme of the

music. Hence people often start with the melody part when they are trying to compose or

reproduce a piece of popular music. On the other hand, chord progression builds up the

harmony part which is the core of the accompaniment. However, creating appropriate

instrumental accompaniment part for a melody line can be a difficult task for non-

musicians. Automation of accompaniment generation for vocal melodies thus can be very

useful for those who are interested in singing for fun, because instrumental

accompaniment plays a significant part in building the tension and feeling of a piece of

popular music. Under this circumstance, an automatic accompaniment software system is

designed. In this system, music novices sing or hum a melody line along with the selected

rhythm. Then the system generates a MIDI accompaniment which contains rhythms,

chords and phrases to be played with the melody together. This generated music could be

used for entertainment purposes. Besides this off-line mode, another interactive

application is also developed at the last chapter to provide continuous music interactions

between computer and user.

1.2 Related Works

1

 Automatic accompaniment has been a standard feature on some professional

arranger keyboards [15] since 1990 [22]. This feature allows players to change the

current chord of the background music by striking and holding a chord on keyboard in

real-time. But in strict sense, this is not automatic accompaniment, because players still

have to figure out the chords to play for given melodies manually.

 The term “automatic accompaniment” is also widely used in the automatic score

following research. Typical examples of the automatic accompaniment system based on

score following can be found in Roger Dannenberg’s work [1] and Barry Vercoe’s work

[25]. In this type of systems, the computer has the ability to follow a soloist. It processes

the input from a live performer and matches this input against the expected score. The

timing information is generated to control the playback of the accompaniment.

Nevertheless, the content of the accompaniment here has to be determined beforehand.

This limitation makes the system inapplicable to improvisation.

 As mentioned before, harmony is the core of the accompaniment. To generate

accompaniment for any given melodies, the problem of automatic harmonization should

be addressed. This leads to another type of automatic accompaniment system which is

capable of harmonizing symbolic melodies. Ching-Hua Chuan and Elanie Chew [2]

presented a hybrid system for generation of style-specific accompaniment. They

constructed the chord progression list from MIDI melody using neo-Riemannian

transforms. The alternate paths are represented in a tree structure. Then a Markov chain

with learnt probabilities for these transforms generates the final chord progression.

Similar approaches can be found in commercial products such as Band-in-a-Box [23] as

well. But one major limitation of this kind of systems is that they require users to input

the melody in formal musical formats like MIDI or score. This request may result in

abandonment of amateur users who are more like to enjoy the pleasure of automatic

accompaniment.

 2

 Recently, Ian Simon, Dan Morris and Sumit Basu [3] proposed an automatic

accompaniment system for vocal melodies based on Hidden Markov Model. This work is

trying to provide a fast-prototyping system for composers to record the melodies in their

minds and represent these melodies with instrumental accompaniments. Users could

change the mood and jazzy parameters to get inspired by different chord progression

possibilities for a given melody. This idea addressed the problems of previous works but

more efforts can be made to improve the quality of the generated music. For instance, the

generated instrumental accompaniment from this software always repeats the same

pattern again and again no matter how the melody line goes. Besides this, the system

tends to generate accompaniment which is out of tune with the melody input if the user

does not sing in chromatic key.

 Our approach of automatic accompaniment differs from these related works by

focusing on the popular music style accompaniment and aiming at non-musician users

and entertainment purposes. Specifically in contrast with the system described in [3], a

pitch class distribution based key estimation algorithm is performed before chord

assignment in order to improve the relevance between chord and melody. This key

estimation also features 10 cents resolution which is helpful to overcome the singing in

non-chromatic key issue. In addition to this, a similarity matrix based structure analysis

algorithm is applied to the melody input to detect repetition and structure boundaries.

These boundary positions are used in style player and chord assignment subsystems to

reinforce the predictability of the generated accompaniment. Moreover, the statistical

models used in the chord assignment subsystem are trained on vocal audio data instead of

MIDI data. This choice of training data makes the entire system more coherent and more

relevant to the real input of the system. At last, we introduce a new interactive application

of the system which is able to provide non-stop interactions between vocal melody and

instrumental accompaniment. In this application, users sing along with the

accompaniment which is generated based on previous melody input.

 3

1.3 System Description

 This section provides the brief introduction of our automatic accompaniment

system. The system architecture and data flow are shown in Figure 1. As you can see, it is

capable of generating MIDI accompaniment for a given vocal audio track. Basically, our

system consists of five subsystems which are pitch tracking, key estimation, structure

analysis, chord assignment and style player. In the following paragraphs, the overall

designs and arrangements of these subsystems are explained.

 Just like any pattern recognition algorithm, our analysis must rely on certain

feature. The input of the system is vocal audio. It is very obvious that the most

meaningful information for us in this audio track is the pitch. Therefore, a real-time pitch

detection algorithm is applied to convert the vocal audio to a series of MIDI note number.

We call this series of MIDI note number “pitch list”. Due to the nature of vocal audio, we

Vocal Audio

Pitch Tracking

Structure Analysis Key Estimation

HMM Chord Assignment

Style Player

MIDI Accompaniment

Chord List

Boundaries

Pitch List

Tonic and Scale

Figure 1 System Structure

 4

also introduce several post processing steps to eliminate the non-pitched noise and

smooth the pitch transitions.

 When a musician is going to play along with a vocalist, the first thing he wants to

know is the key of this piece of music. In popular music, this key is usually in the mode

of either major or minor. Therefore, a pitch class distribution based key estimation

algorithm is provided to identify both the tonic and scale information of a given pitch list.

 Music Structure is also a very important factor in popular music accompaniment.

With accurate structure information, the automatic generated accompaniment can be

more dynamic and organized. We developed a structure analysis algorithm based on

melody similarity matrix. A section boundary list is obtained and passed to the chord

assignment and style player subsystems in order to improve the quality of the generated

accompaniment.

 The core of the system is a chord assignment algorithm based on Hidden Markov

Model (HMM). It is a statistical model which is capable of assigning a chord list to a

pitch list by performing a decoding process. This harmonization process benefits from a

bank of training data which are a number of vocal tracks with embedded chord labels. As

a result, both melody-chord matching and chord progression problems are taken care by

this model.

 At last, a style player is implemented to play MIDI accompaniment template

according to the chord progression list given by HMM. We found a way to render the

standard automatic accompaniment style files used by Yamaha keyboard. In this way,

users have a lot of different options to arrange the accompaniment and different melody

sections are played with different accompaniment patterns.

1.4 System Integration

 5

 The proper design and arrangement of these subsystems which make the entire

system fits best in our specific application are really what we pursue. Therefore, several

interesting points of system integration are discussed below.

 Different from other similar systems [3], the work flow we designed put the key

estimation before chord assignment. This arrangement is very helpful to improve the

chord assignment results. If there is no key information, the number of chords in the

HMM could be very big, because the model has to take care all the possibilities. But this

large number of chords makes the system easier to go wrong. To improve the accuracy of

the automatic accompaniment, the key of the melody input must be estimated first. With

a correct key, the generated chord list is less probable to be too far “away” from the

melody. This arrangement also reduces the number of chords in our statistical model, so

the HMM decoding process is faster.

 Another interesting point in system integration is the structure analysis part. By

introducing this subsystem, chord assignment and style player subsystems benefit from

the detected structure boundary information. These boundaries separate the pitch list into

sections. Then the chord assignment algorithm is applied to each section instead of the

entire pitch list. In this way, the generated chord list is more organized. Moreover, the

structure information is also helpful for the style player to change the accompaniment

patterns at the boundaries, so users won’t get bored with a static accompaniment.

 To clarify the underlying principle of these subsystems, all the detail will be

discussed in the following chapters. The key estimation and structure analysis methods

we designed are evaluated at the end of the respective chapters. Then, the prototype

application will be shown. Additionally, another tentative mode of this application will

also be discussed to demonstrate its interactive capability. Ultimately, a conclusion is

made and user feedbacks are discussed in the last chapter.

 6

CHAPTER 2

PITCH TRACKING

 A real-time pitch tracking algorithm based on Eric Larson and Ross Maddox’s

research [4] is described in this chapter. The detected pitch list is the raw feature used by

other subsystems including key estimation, structure analysis and chord assignment.

2.1 Pitch Detection

 Pitch is the fundamental repetition period of an audio signal. Regularly, pitch

detection involves Fourier Transform [5] and Autocorrelation Functions [6]. But the

method we used for this automatic accompaniment system is quite unique. By calculating

the mode distance of the peaks in audio waveform, this algorithm could find the pitch of

a monophonic audio segment quickly in the time-domain. This performance gain plays an

important role in reducing the user waiting time which is helpful to improve the user

experience on a mobile platform. Furthermore, the post processing steps as you will see

in the next section are specially designed for vocal input.

 The incoming vocal where audio is divided to N frames first,

ܰ ൌ ඄
Total Number of Samples

Window Size ඈ

 The default window size is 1024. This means a pitch value is obtained for every

1024 samples. For each frame, the following steps are performed sequentially:

 1. Low pass filtering: We know that our input will be vocal audio, so a low pass

filter with cutoff frequency of 1000Hz is used to process the audio in order to remove

noise and turbulence. This filtering is also effective to eliminate the non-pitched voice at

the beginning of each word.

 2. Searching maximums: This could be done by tracing the zero crossing of the

waveform. But not all the peaks between two zero crossings are considered to be

 7

maximums. Only the peaks which are bigger than 0.7 ൈ absolute max of the current

frame are valid. This threshold can prevent some octave errors.

 3. Calculate the mode distance: The distance between two maximums is the

difference between their sample indices. For each valid maximum, the distances between

itself and another three maximums after it are calculated and pushed into a distance set.

These inter-peak distances are illustrated in Figure 2. After this has been done for each

maximum, the distances in the distance set will be clustered to groups based on their

values. That is to say the distances in the same group should have similar values. Finally,

the mean distance of the distance group which has most number of distances is elected as

the mode distance of the current frame. If there are several groups which have the same

number of distance in it, then the group with smaller mean distance will be picked.

d3

d2

d1

Figure 2 Inter-peak Distances for the First Maximum

 4. Convert the mode distance to pitch frequency: The mode distance obtained in

previous step is considered to be the fundamental repetition period in samples. That is to

say:

pitch frequency ൌ
sample rate

mode distance

 The pitch detection result could be confirmed by repeating the step 2 to 4 using

minimums instead of maximums. If they are not identical to each other, then the pitch

 8

from the previous frame should be referred. For more information about this basic

procedure, please check out reference [4].

2.2 Post Processing

 In order to optimize the results of pitch tracking, several post processing steps are

introduced.

 First, we want to remove the pitches where the corresponding audio level is very

low, because these parts of audio are usually background noise. To achieve this, an

amplitude threshold is determined as the global peak amplitude – 25dB for a given

recording. That is to say, any frame which has average amplitude lower than this

threshold will be ignored by pitch tracking algorithm. Instead, an invalid pitch symbol

will be pushed into the pitch list. This threshold is also adaptive because it ensures pitch

tracking’s performance on different microphone level settings or for different users.

 Second, in the interest of revealing the musical meaning of the pitch list, pitch

values are converted to MIDI note number with formula:

݁ݐ݋݊݅݀݅݉ ൌ 69 ൅ 12 ൈ logଶሺ
݂

440ሻ

 Where f is the detected pitch frequency for a given audio frame. Please note that

this midinote could be non-integer due to the nature of vocal.

Figure 3 Pitch List

 9

 Figure 2 shows the pitch tracking result of a vocal audio track. All invalid pitches

are not plotted. As you can see, unlike certain musical instruments, the pitch list of

human vocal is very bumpy and rough. This is caused by singing techniques such as the

pitch bend and vibrato. Instantaneous noises could also be introduced from inharmonic

parts of the lyrics. These inharmonic parts are usually the beginnings of the lyric words.

 To eliminate the attack noise and smooth the pitch list, third post processing is

applied. For any detected pitch, if its value varies more than one midi note number to its

left and right neighbors, then this pitch is considered as a noise point and its value is

changed to its left neighbor. In this way, only stable pitches are maintained.

 10

CHAPTER 3

KEY ESTIMATION

 A key detection method based on pitch class distribution for monophonic vocal is

developed in this chapter. About forty-five vocal tracks of popular music are collected to

train the scale pitch class distributions and eighty-nine vocal tracks are used to evaluate

the performance of this key estimation algorithm. With the correct key information of the

input, the number of chords in the chord assignment statistical model is reduced and the

overall accuracy of the automatic accompaniment can be improved.

3.1 Tonic and Scale

 In western music theory, the term “key” is an abstract concept which can be

challenge to describe thoroughly here. However, in our case, key defines the basic pitches

for a piece of music. The music does not have to use the notes in this key exclusively, but

the majority of the notes will come from this key [18]. A key can be further determined

by two elements: tonic and scale. Tonic is the harmonic center of the pitch set and scale

describes the intervals between these pitches. In the context of popular music, there are

usually twelve possible tonics, they are C, C#, D, D#, E, F, F#, G, G#, A, A# and B. The

scale is either major or minor for most of the time.

 Thus, our task of key estimation is to find the most probable tonic- scale

combination for a given pitch list. Our assumptions of the incoming pitch list are: 1) the

key is constant in a given pitch list; 2) the scale is either major or minor. Given the

assumption that the key should be constant, any accidentals in the pitch list of input

melody should be considered as a potential key change in that part of music. Therefore,

they are rounded to the nearest key note in the chord assignment subsystem.

 However, before we start, there is one thing need to mention. Since our system

allows users to sing or hum freely without asking them to align to the chromatic scale.

 11

It’s quite possible that the tonic of melody could actually lie in between chromatic notes,

for example C and C#. In order to address this issue, our key estimation should be able to

produce the tonic result in a higher resolution. Thereby, we increase the number of

possible tonic pitches from twelve to one hundred and twenty. That is to say, the key

output is going to be in the form like “C Major +50 cents”.

3.2 The Method

 First and foremost, major and minor scale pitch class distributions (PCD) [24] are

constructed from training data. Forty-five vocal tracks of Chinese popular music are

collected and processed by the pitch tracking algorithm. Each track is about one minute

long. They are not sung by professional singers, so pitch inaccuracy of amateur users is

taken into account in these distributions. The reason why we choose these vocal tracks of

Chinese popular music instead of western popular music is that a recording studio in

China provided these tracks to help this project. Although these tracks are singed in the

language of Chinese, the melodies of the music we selected are totally in western style.

That is to say, there is no significant difference in music theory between these Chinese

popular music and western popular music. But the actual minor differences between them

should be taken care by extending the training set or creating genre specific models in the

future.

 A scale PCD can be represented in a 120-bin histogram, the value in each bin

indicates the percentage of the pitches which fall into that corresponding 10-cent range.

The PCD of each vocal track from the training set is shifted to the tonic of C. This

transformation could be done in the PCD by performing circular shift on all the bins.

Because we do not care about octave information of pitches in key estimation, all the

MIDI note numbers in the pitch list are folded into an octave. Similarly, histogram based

methods for music key identification have been used widely in content-based music as

well [7].

 12

Figure 4 Major and Minor Scale PCDs

 Figure 3 shows the major and minor scale pitch class distributions learnt from the

training data. The X axis means how far this bin is from the tonic. Actually, each bin is

10 cents in range. As you can see, peaks in these scale PCDs reveal the interval patterns

between notes. For major scale, the interval patterns are whole, whole, half, whole, whole,

whole and half. For minor scale, they are whole, half, whole, whole, half, whole and

whole. Some of the notes in scale are frequently used and some of them are rarely used.

 When we want to identify the key information of a new pitch list, a similar pitch

class distribution is constructed for this target pitch list. Then a cross correlation function

݂ܿܿሺtሻ is derived for t = 0, 1, 2, 3 …… 119:

݂ܿܿሺtሻ ൌ ෍ ሺiሻ݀ܿ݌݈݁ܽܿݏ כ ሺሺi݀ܿ݌ ൅ tሻ mod 120ሻ
ଵଶ଴

୧ୀଵ

 Where pcd is the pitch class distribution of the target pitch list and scalepcd is

either the major or minor pitch class distribution we learnt from training data.

 Finally, the offset which makes the largest value in the cross correlation function

is considered to be the most probab pitch list. Written formally, it is: le tonic of the target

ܶ ൌ argmax
௧

݂ܿܿሺݐሻ

 13

 T is the tonic detection result in the dimension of 10-cent. That means the

estimated tonic is ௧
ଵ଴

 semitones away from C. To identify the scale of the target pitch list,

we just need to calculate two ccf(t) with both major and minor scalepcd and pick the

tonic which makes a bigger ccf value.

3.3 Evaluation

 In order to evaluate the performance of our key estimation method, another

eighty-nine vocal tracks are collected. Similarly, they are also amateur vocal tracks of

Chinese popular music and each of them is about one minute in length. They are

manually labeled with key information in a text file and a program is developed to

perform this evaluation automatically. Tonic precision tolerance is 50 cents which means

a tonic will be treat as correct if it is 50 cents less from the ground truth. The reason why

we set this relatively large tolerance is that test data set is not labeled with 10 cents

precision. They are only labeled with the chromatic tonic according to the original music

scores. But singers might deviate from this original tonic a little bit, so this evaluation is

done with 50-cent tolerance. All results are shown in Table 1.

Table 1 Key Estimation Accuracy

Key Tonic Scale Relative Key

84.3% 85.4% 88.8% 91.0%

 As you can see, four different judging criteria have been set to evaluate the

performance. For “key” accuracy, it means both tonic and scale have to be correct, while

“tonic” accuracy only requires the tonic to be in the tolerant range. Similarly, “scale”

accuracy only asks for major or minor correctness. Specially, “relative key” accuracy

forgives the error cases like a major key is recognized as its relative minor or minor key

is identified as its relative major. The reason why it’s hard to tell this kind of error is that

relative major and minor keys share the same key signature. That is to say, the pitch class

 14

distributions of relative keys show similar peaks. The relative key error could be reduced

by introducing Pitch Class Dyad Distribution (PCDD) which is a bi-gram distribution that

measures the transition intervals between notes [19]. However, this improvement requires

knowing the onsets of each musical note which are not available in our pitch list.

 In our automatic accompaniment system, the key information plays an important

part in the HMM chord assignment subsystem. Tonic value will be used to shift the pitch

list back to a standard tonic in order to match a chord. The choice of scale is also critical

because two independent statistical models are built to simulate different chord

progressions in major and minor music. However, a small portion of popular music is

ambiguous in major and minor scales. For example, a piece of music could start in a

minor scale and end in major scale to express different feelings. In this case, relative key

errors are acceptable.

 15

CHAPTER 4

STRUCTURE ANALYSIS

 In this chapter, a melody structure analysis method is discussed. The structure

boundaries of a melody are passed to style player subsystem to improve the dynamics of

the generated accompaniment. In addition, structure information is also helpful for the

chord assignment subsystem to produce more organized chord sequence.

4.1 The Role of Structure Information in Automatic Accompaniment

 One major problem of the previous automatic accompaniment systems is that the

generated accompaniment always has the same pattern or arrangement no matter how

melody line varies. By listening to modern popular music, a piece is usually divided into

different sections such as intro, verse, bridge, chorus and ending. For different sections,

different instrumentations, styles or rhythms are used. Moreover, from one section to

another, there is a transition effect applied. Fortunately, as you will see, the

accompaniment style files which are used in style player subsystem contain different

variations, intros, endings and transition effects. They can be applied to a certain part of

the chord list.

 Furthermore, another problem of the previous automatic accompaniment systems

is that the generated chord list does not reflect the melody structure. For example,

composers have a tendency to use similar chord progressions for similar melody sections.

Besides this, a chord progression for a section usually starts from tonic chord and ends on

tonic chord or fifth chord. This chord progression similarity and regularity lead to a

listening pleasure. That is to say, popular music listeners are happy to see these

underlying rules of accompaniments. However, the chord progressions generated by

previous systems do not have a sense of these rules. You will notice that these systems

still keep developing a chord progression instead of going to a conclusion when the

 16

melody is repeated. In order to make the automatic accompaniment sounds more

organized, we need to figure out a way to analyze the melody structure and then apply

our chord assignment algorithm on each section of the melody separately.

 From the perspective of music psychology, it has been shown that predictability

evokes pleasure and predictable stimuli lead to positively valenced responses [20]. As

one of the most important predictable elements in popular music, we need to put

emphasis on the repetitions of the input melody. Therefore, based on the structure

boundaries, transition effects are added between repetitions and chord list is reorganized.

 Unfortunately, unlike other methods such as content based structure analysis [8]

or symbol based structure analysis [9], we face a unique problem of detecting structure

boundaries of a vocal audio track. A vocal audio track does not produce a note list as

accurate as symbolic data such as MIDI. It also does not provide a timbre diversity as

rich as music content data such as CD audio.

 To find the boundaries between sections of vocal melodies, we start with a

measure to measure pair wise similarity matrix. Then, an adaptive threshold is applied to

the matrix and boundaries of repeated measures are found. Multiple restrictions are also

developed to refine the repetitions. Finally, structure boundaries are implied from these

repetitions.

4.2 Similarity Matrix

 Because our automatic accompaniment system requires user to record vocal in a

fixed tempo, we assume that section changes in melodies only happen between measures.

Under this circumstance, a ܰ ൈ ܰself similarity matrix D is computed based on the pitch

list of the target melody.

 To compute this similarity matrix, a distance function has to be defined. For

content based structure analysis, cosine distance of MFCC is usually used [21]. But it’s

not very reasonable extract MFCC from vocal audio, because there are no major timbre

 17

differences between our vocal segments. Another cosine distance function between pitch

class distributions has also been considered. But it does not work very well in separating

different melodies, because similar PCDs may come from very different melodies. In our

case, each element in the matrix is a distance between measures. This distance is defined

as:

݀௜,௝ ൌ
1
ܰ ෍|݌ሺ݅, ݊ሻ െ ,ሺ݆݌ ݊ሻ|

ே

௡ୀ଴

 Where di,j is the distance between measure i and measure j, p(i,n) is the nth pitch

value in measure i, and N is the number of pitches in a measure of this melody. Specially,

if an invalid pitch is compared with a valid pitch, a constant distance of 1 is added for

that element. Figure 4 shows a similarity matrix plotted as a gray scale image.

Figure 5 Similarity Matrix

 In Figure 4, a pixel is darker if the two corresponding measures are more similar

with each other. As you can see, the diagonal of this symmetric matrix is black because

 18

the distance between a measure and itself is always zero. To make repetitions easier to

see, a time-lag matrix [8] D’ is introduced:

݀Ԣ௜,௝ ൌ ݀௜,௜ା௝

 Basically, this equation transposes the possible repetition measures from diagonal

lines in similarity matrix to horizontal lines in time-lag matrix. Since there is no meaning

if the sum of time and lag exceeds the number of measures, only the bottom-left half of

the time-lag matrix is calculated. This is shown in Figure 5.

Figure 6 Time-lag Matrix

 The next task is to find out all significant horizontal lines in the time-lag matrix.

In other words, if an element in the matrix is small enough, it should be considered as a

significant similarity. To achieve this goal, an adaptive threshold is calculated to filter the

matrix.

4.3 Adaptive Threshold

 19

 Although, there are some existing algorithms of threshold selections [10] in the

field of image processing, our case is different from them in terms of picture dimensions.

We need to figure out a way to emphasize the horizontal lines which represent melody

repetitions. Our adaptive threshold algorithm is described as the following steps:

 First, we assume that any repetition must be at least four measures long. That is to

say the first four rows in the time-lag matrix can be removed. If we allowed repetitions

that are less than four measures long to be detected, the music generated by our style

player would keep jumping from one pattern to another. This is quite disturbing.

 Second, the remaining elements are treated as potential thresholds, because only

these thresholds could produce a different filtered matrix. Then each of these thresholds

is applied to the matrix, the mean of the remaining elements are calculated. Only

threshold values which are able to produce means lower than 0.7 are reserved. This

empirical mean range in obtained by looking at the distances between identical melody

measures. It means the average deviation between two pitch lists must be less than 0.7

MIDI note number to be considered as a threshold candidate.

 Finally, for each threshold found in the last step, a searching algorithm is

performed to find all the horizontal lines on the matrix filtered by a certain threshold.

Then, the threshold which produces the longest horizontal line is picked as the global

optimal threshold.

 20

Figure 7 Filtered Time-lag Matrix

 Figure 6 shows the time-lag matrix of Figure 5 filtered by the adaptive threshold.

Please note that all pure black pixels are emptied by the threshold.

 To emphasize the high level repetitions, several rules are applied to the filtered

time-lag matrix: First, horizontal lines in the filtered matrix whose length is less than

three are ignored. Second, if there are multiple horizontally overlapped lines, only the

longest is reserved. The final time-lag matrix looks like Figure 7.

 21

Figure 8 High Level Repetitions

4.4 Structure Boundaries

 Because popular music often intends to vary its melody at the end of a repetition,

only the beginning measure of a repetition line in time-lag matrix can be recognized as a

boundary.

 Besides repetition boundaries, boundaries between different sections can be

implied from the repetitions inside a section. For example, in Figure 8, the beginning of

chorus 2 implied the position of section change from verse to chorus.

Chorus 2Chorus 1Verse 2Verse 1

 Figure 9 Section Change implied by Repetition

 Mathematically speaking, given coordinate set of the starting points of each

horizontal line in the filtered time-lag matrix:

 22

C = {(xi, yj)} i, j = 1, 2, 3, … , N

 Where N is the number of horizontal lines found in the matrix. For each

coordinate, measure indices i and i+j are pushed into the structure boundaries. At last,

duplicated boundaries and boundaries which are too close (less than four measure away)

are removed.

 All the detected boundaries including repetition boundaries and structure

boundaries are treated as section changes by the style player. In this way, different

sections are played with different MIDI patterns which are available in the

accompaniment style files.

4.5 Evaluation

 Just like what we did in the key estimation, an evaluation is conducted in order to

test the performance of this algorithm. The test data is twenty vocal tracks taken from

training data of the key estimation subsystem. Similarly, they are Chinese popular music

singed by amateur singers. We manually trimmed these tracks and estimated the tempo in

beats per minute, so they are aligned with the dimension of measures. Then both structure

boundaries (not including start and end) and repetition boundaries are labeled manually

as the ground truth for each track. In this test set, there are altogether fifty-four

boundaries. Recall that the fundamental element of our structure analysis is measure.

Therefore the boundary result is just an array of measure numbers.

 The raw pitch list with the tempo information is passed into the structure analysis

subsystem. Because the algorithm only wants to know the shape of the pitch list, no key

rounding and octave folding are performed on this pitch list. Next, the detected

boundaries are compared with ground truth automatically.

 In this evaluation, F-measure is used to reflect both false positive and false

negative errors. It is defined as the following:

 23

ܨ ൌ
2 · precision · recall
precision ൅ recall

 In our case, precision and recall are:

pr ൌ ୲୦ୣ ୬୳୫ୠୣ୰ ୭୤ ୡ୭୰୰ୣୡ୲ ୠ୭୳୬ୢୟ୰୧ୣୱ ୢୣ୲ୣୡ୲ୣୢecision
୲୦ୣ ୬୳୫ୠୣ୰ ୭୤ ୟ୪୪ ୠ୭୳୬ୢୟ୰୧ୣୱ ୢୣ୲ୣୡ୲ୣୢ

recall ൌ ୲୦ୣ ୬୳୫ୠୣ୰ ୭୤ ୡ୭୰୰ୣୡ୲ ୠ୭୳୬ୢୟ୰୧ୣୱ ୢୣ୲ୣୡ୲ୣୢ
୲୦ୣ ୬୳୫ୠୣ୰ ୭୤ ୠ୭୳୬ୢୟ୰୧ୣୱ ୧୬ ୥୰୭୳୬ୢ ୲୰୳୲୦

.

 The test results are shown in Table 2.

Table 2 Structure Analysis Test Results

Precision Recall F-measure

85.7% 55.6% 67.3%

 Obviously, the limitation of this structure analysis method is that it is unable to

find the point of section change if there are no melody repetitions in these sections. Since

incomplete structure boundaries won’t cause troubles in the chord assignment subsystem,

we can accept a low recall rate. However, we do want to avoid the situation that many

false positives are detected because these false boundaries break the melody into small

chunks. If this happened, the structure information would ruin the user experience by

asking style player to change accompaniment patterns at wrong time. This explains why

we have a high precision rate but a low recall rate in Table 2.

 24

CHAPTER 5

CHORD ASSIGNMENT

 In our automatic accompaniment system, appropriate chords need to be assigned

to each section of the melody. That is to say, for a given pitch list from pitch tracking

subsystem, a chord list should be provided. Through this chapter, a Hidden Markov

Model is developed to do this job. Two independent models are trained for major and

minor scales based on the knowledge from a set of training data. With the information of

structure boundaries and melody key, a HMM decoding process is performed on each

melody section. As a result, the optimal chord sequence is obtained under chord

progression constrains for the given melody observations.

5.1 The Problem of Harmonization

 Given a measure of melody, there are usually several appropriate chord options

for harmonization. For example, a measure of melody contains only note C, what are the

possible chords for it? The answer could be C Major, F Major, A minor, etc. There is no

best answer for this question. Exaggeratedly speaking, all chords are possible for this

measure of melody, because different chord-melody combination provides different

tension and feeling. Hence it’s very hard to decide which chord is the best option without

considering the context. In fact, there are some typical chord progressions widely used in

popular music [11] which build up a common sequence of tensions and feelings.

However, these progressions won’t work as expected without considering the

corresponding melody, because the harmonic feeling of a measure relies on the

combination of the chord and the melody. This leads to the conclusion that chord

assignments should take both melody-chord relationship and chord progression into

consideration.

 25

 Mathematically speaking, melody harmonization problem is a two dimensional

stochastic process. That is, for single measure of melody, the choice of chord is

constrained by melody and progression preferences. Fortunately, there is a statistical

model which is designed to describe this kind of process. It is the Hidden Markov Model

(HMM). HMM can be formally defined as a quintuple:

ሺߗ௤, ,௢ߗ ܣ

 In this definition, ߗ௤ ൌ ሼݍଵ, ,ଶݍ … , ௢ߗ ,ேሽ is a finite set of all the statesݍ ൌ

ሼ݋ଵ, ,ଶ݋ … , ܣ .ሽ is a finite set of all the observations்݋ ൌ ሼܽ௜,௝ሽ is the transition probability

matrix of the N states, that is to say ܽ௜,௝ ൌ pሺݍ௝|ݍ௜ሻ. ܤ ൌ ሼ ௝ܾ,௞ሽ is the output or emission

probability matrix of an observation k given a current state j, that is ௝ܾ,௞ ൌ pሺ݋௞|ݍ௝ሻ.

Finally, ߎ ൌ ሼߨ௜ሽ are the initial probabilities of all the states. For more information about

HMM, please refer to [12].

, ,ܤ ሻߎ

 In the context of our chord assignment algorithm, the HMM states are all the

chords that could be used for accompaniment, the observations are all the measures of the

input melody, the transition probability matrix stands for the chord progression

probabilities and the output probability is the conditional probability of a measure of

melody given a certain chord accompaniment.

measure 1 measure 2

I

IV

V

 End
0.50.4

0.90.1

0.30.7

measure 1 measure 2

measure 1 measure 2

1.0

1.0
0.3

0.2

0.5

1.0
 Start

 Figure 10 Graphical Representation of Hidden Markov Model

 Figure 9 is an informal example of our chord assignment HMM. As you can see,

this HMM can be represented in a directional graph, where each node is a chord state and

 26

each solid arc is a probability that chord sequence could move from one to another. On

each chord node, the dash arcs stand for output probabilities which indicate how probable

this chord matches with every melody measures.

 However, before trying to solve this statistical model, we have to determine its

parameters. These parameters including state set, observation set, transition probabilities

5.2 Chord Set and Transition Probabilities

 Before chord assignment, we have already got the tonic and scale information

about the input m describe different

 and in

nd

pular songs are manually written into a text

le. So

g

,

ord progressions are just as sequences of numbers into a text file. The chord

and output probabilities will be discussed in the following sections.

elody from the key estimation subsystem. In order to

characteristic of major and minor music accompaniment and simplify the chord

transitions, two independent chord assignment HMMs are built. With the help of the

tonic information, each model has a chord set of all the triads relative to the tonic

the scale. Written in degree scale [11], they are “I-ii-iii-IV-V-vi-viio” for major scale a

“i iio III iv v VI VII” for minor scale. Taking start state and end state into account, there

are altogether nine states for each HMM.

 To train the transition probability matrix of these states for both major and minor

scale, the chord progressions of seventy po

fi me of them are in major scale and some of them are in minor scale. All chords are

annotated in degree scale, so the progressions become tonic independent. Then, a trainin

program will calculate out two 9 ൈ 9 transition probability matrices by parsing this text

file.

 Please note we do not need the audio of seventy popular songs to start the training

all ch written

progressions can be easily obtained by referring to their performance scores. Thus, this

training set does not only include Chinese popular music, but also some western popular

music.

 27

5.3 Output Probabilities

 Next, the output probabilities are obtained by comparing the average melody pitch

class distribution of a given chord with th class distribution.

 In detail, fifty vocal tracks of Chinese popular songs are labeled with chord names

to corresponding segments. For each chord, the average melody PCD is computed to

show how melody pitches are usually distributed given the fact that a certain chord is

used by musicians to harmonize them. We call these average melody distributions “chord

PCDs” because they reflect the original melody-chord relationship of the training data.

Additionally, in order to make this average PCD tonic independent, the pitch list of every

training vocal track is shifted back to tonic of C according to its labeled key information.

Figure 11 PCDs of Major Scale Chord Set

 Figure 10 is the histogram representations of most of the major chord PCDs. You

may notice that the X axis ead of chromatic scale.

e target melody pitch

is the note number in major scale inst

 28

This is because the pitch list is rounded to the key before processing. This approximation

݀ ൌ cosሺߠሻ ൌ
ܣ · ܤ

is helpful to eliminate the inaccurate components in vocal pitches and enhance the PCD

distance measure performance.

 Then, the output probability of a melody measure given a chord state is estimated

by measuring the cosine distance between the chord PCD A and target measure PCD B:

ԡܣԡԡܤԡ

product of the vector magnitude easurement is that the cosine

distance is nor d into [0, 1] bility. Do not forget that PCD

5.4 HMM Decoding

odels ready, it’s the time to ask the

question: What is the most probable chord progression given a series of melody

observations? Fortunately, the HMM decoding problem

்ሽ, what

rbi al i i

௧ሺ݆ሻߜ ൌ maxൣδ௧ିଵሺ݅ሻ ܽ௜,௝൧ ௝ܾ,௧

 Where ܣ · ԡ is theܤԡԡܣis the dot product of these two PCD vectors and ԡ ܤ

s. The advantage of this m

, so it’s more like a probamalize

B is also shifted to the tonic of C before comparison.

 After the training stage, all parameters of the m

 this question is exactly same as

[12] which can be described formally as the following:

 For a given HMM ߣ ൌ ሺܣ, ,ܤ ௢ߗ ሻ and a observation listߎ ൌ ሼ݋ଵ, ,ଶ݋ … , ݋

is the state sequence ߗ௤ ൌ ሼݍଵ, ,ଶݍ … , .(௢| λߗ)ሽ that could maximize the probability p்ݍ

 The standard soluti n blem is the Viteo for this pro gor thm [13]. The Viterb

algorithm chooses the best state sequence that maximizes the likelihood of the state

sequence for the given observation sequence.

 Basically, the Viterbi algorithm constructs δ௧ሺ݅ሻ, which is the maximum

probability of state sequence that ends up on state i for the first t observations. It is

defined recursively as:

 29

 At the same time, another matrix ߰௧ሺ݆ሻ ൌ argmax௜ൣߜ௧ିଵሺ݅ሻ ܽ௜,௝൧ is constr

remember the decisions made along the path. Finally, the optimal path is back traced

 :௧ݍ

ucted to

 into

 thing need to mention about t the Viterbi algorithm is that

tead of using probabilit i logarithm probability. The

logarithm probability conv into (െ∞,

nd

௢. This special observation has an output probability of one on the end state but it

y

the

elody in, the corresponding HMM

்ݍ ൌ argmax
௜

ሾ்ߜሺ݅ሻሿ

௧ݍ ൌ ߰௧ାଵሺݍ௧ାଵሻ , t = T-1, T-2, … , 1

 And the total probability of the optimal path or called Viterbi path is maxሾδ்ሺ݅ሻሿ.

One

ins

he implementation of

co uta ion, we used y n the mp t

ert the range of probability from [0, 1] 0] to avoid

the denormal situation [14] of floating numbers. Furthermore, logarithm probability also

turns the multiplication operation between probabilities into addition, which is much

faster.

 As shown in Figure 9, the Hidden Markov Model we designed involves an end

state. That is to say, any path found by Viterbi algorithm must end at the end state. To

make sure the chord progression ends properly, a pseudo observation is added to the e

of the ߗ

has an output probability of zero on the other states. Additionally, the transition probabl

matrix also described how probable a chord could be the ending. In this way, we force

Viterbi path to be ended with the end state.

 As a summary, let’s review the process of chord assignment. First, the incoming

pitch list is divided into measures. Each measure is an observation. Second, with the help

of structure boundaries obtained in the last chapter, this observation list is further divided

into groups. Third, depending on which scale is the m

is used to find out the most probable chord list for each observation group. Finally, these

chord lists are connected together as the chord assignment result.

 30

CHAPTER 6

STYLE PLAYER

 Up to now, the chord list has already been generated for a given pitch list.

However, a sequence of chord is still not the music accompaniment. The next problem is

how to realize or play this chord list, so the actual sound can be heard. In this chapter, a

style player is developed to play standard MIDI accompaniment style files. This player

follows the generated chord list and applies transition effects during section changes.

6.1 Automatic Accompaniment Style Files

 For a long time, automatic accompaniment has already become a standard feature

of some professional arranger workstations [15].This feature is favored by a lot of live

performers, because one man is able to play the role of an entire band with the help of

this feature. But this automatic accompaniment feature requires users to play the current

chord on the keyboard and then the background music will change its harmonic

components to this chord. Although the way of chord input is different from our

automatic accompaniment system, the music realization part is highly valuable for

reference.

 The automatic accompaniment feature in keyboards relies on style files. A style

files is actually a format 0 MIDI file [16] with special markers inside. The most popular

automatic accompaniment style file format is designed by Yamaha Corporation for their

professional keyboard products. Although this file format is not officially published,

there are some third party documentations [17] on the basic architecture of the Yamaha

style files. Based on these documents, we implemented a style player which is capable of

playing these files in the specific section and chord. Although it’s feasible to meet this

style file standard, we still need to design our own file content if this system is going to

be published.

 31

6.2 ions

 One of the advantages to u paniment style files is that they

provide rich accompaniment variations insid the same pattern over

ns are

 Structural Sect

se these standard accom

e. Instead of playing

and over again, several different sections are available in the style file. These sectio

separated by MIDI markers, so our style player can jump to any sections and start a loop

playback in a certain section. Table 3 shows all possible sections in a style file.

Table 3 All Possible Sections in a Style file

Intro Main Fill In Ending

Intro A Main A Fill In AA Ending A

Intro B Main B Fill In BB Ending B

Intro C Main C Fill In CC Ending C

 Main D Fill In DD

 Fill In BA

 In the context of our automatic accompaniment system, an intro section will be

played first to give the user a clue to start singing, then it is followed by section m

Once a structure boundary is detected, style player will jump to the next main section,

which is m

ain A.

ain B for the first time. If more than four structure boundaries are detected, the

l

will be added to smooth the transitions before the main section change. At the end, an

s

style p ayer will loop back to section main A. Specially, a corresponding fill in section

ending section will be played with last measure of input melody.

6.3 Instrumentation and Note Transposition

 As we mentioned before, automatic accompaniment style is essentially a MIDI

file. In this MIDI file, channels from 9 to 16 are used for accompaniment output. Detail

are shown in Table 4.

 32

Table 4 Style File Channel Arrangement

Channel Usage Instrument

9 Sub Rhythm Secondary percussions

10 Main Rhythm Standard Drum Set

11 Bass All kinds of bass instruments

12 Chord 1 Rhythm guitar

13 Chord 2 Piano

14 Pad Strings organs

15 rase Mon instrum

16 se Mon rum

or

Ph 1 ophonic ent

Phra 2 ophonic inst ent

 Note messages in all t nels thm are written in the

CMaj7 chord as de ult. Whe sired iffe ent than this default one,

transpositions need be don transposition rules available

for different accompaniment parts. For melodic parts such as Phrase 1 and Phrase 2, root

transposition is usually used. This rule requires pitch relationship between notes to be

maintained during transpositions. For chord parts, root fixed rule is often applied. This

means the original CMaj7 notes should be moved to the nearest slots of the desired key,

that is to say different inversion of the chord may be used. Other complicated note

transposition rules are defined as a matrix at the end of the MIDI file. These note

transposition matrices are usually used for special instruments like guitar.

 Another advantage of these MIDI style files is that all the notes in the

accompaniment can be bent to the key of vocal. Recall that the key estimation subsystem

is able to provide key infor sending pitch

end m

ome other points of interest in orchestrating the chord list are not

dealt with here. For example, issues like voice leading and chord transition are also

he chan except rhy channels

fa n the de chord is d r

 to e. There are two different note

mation in the resolution of 10 cents. Thus, by

b essages to the MIDI accompaniment channels, the accompaniment could adjust

itself to the input melody.

 Nevertheless, s

 33

important factors of an acco nstrains could be taken

care in the ig module in the future.

mpaniment. These inter-measure co

 chord ass nment

 34

CHAPTER 7

APPLICATION AND CONCLUSION

tem have been covered in

previous chapters. To demonstrate the usage of this system, a Windows application is

built as a system prototype. It allows users to record vocal input in a customizable tempo

and then listen to the generated accompaniment in different styles. Ultimately, the future

and tentative works about this system is discussed and a conclusion is made for the entire

thesis.

7.1 Applications

 The automatic accompaniment system including its all components is

implemented as a Windows prototype application written in C++ with Microsoft

Foundation Class library.

Figure 12 GUI of the Prototype Application

 Figure 11 shows the graphical user interface of the prototype application. As

illustrated in this screen shot, user can tap the tempo button four times to start the

recording at a desired tempo. After the intro part, the user is supposed sing or hum with

 All components of the automatic accompaniment sys

 35

the rhythm track of the style file unt s pressed. During this process, a

level meter on the rig dio is recorded as a

ono WAV file at sample rate of 44.1 kHz. Once the stop is pressed, the recorded vocal

 is

he

animent playing along with vocal melody. The melody and accompaniment can

lso be saved as a WAV file for later recall.

 Another more interactive application is also developed to provide continuous

experience. In this application, users choose the desired key and tempo first. Then the

 will play an in

ght measures, chord assignment algorithm will

ed on the previous recorded vocal. For the next eight measures, full

accompaniment music will be played with the chord list generated for the first eight

measures. At this time, users can sing any melody lines that fit in the same chord

progression. In this way, interactions between human and machines are repeated until the

stop button is pressed. This idea is inspired by the fact that some popular music shares

chord progressions between different parts of the melody. Hence, with the knowledge of

the accompaniment of a melody section, people can sing or improvise on it with different

melodies. The user experie automatic

paniment is working in real-time. Furthermore, the role of computer here has

il the stop button i

ht will display microphone input level and the au

m

audio is then passed to the pitch track subsystem for feature extraction. This feature list

used by key estimation, structure analysis and chord assignment subsystems. Usually, t

entire analysis and generating process only takes about one second for an input vocal

audio of one minute. Finally, the estimated key information and the generated chord list

are displayed in the result box. Users can hit the play button to listen to the

accomp

a

system tro part with tonic chords inside to give users a sense of the key.

Next eight measures, only percussion part is played and users are supposed to sing any

melody in mind. At the last beat of these ei

be perform

nce is boosted by the illusion that the

accom

changed a little bit. Instead of following the order of user input, the generated

accompaniment asks users to follow the computer now.

 36

7.2 Evaluation

 Unfortunately, unlike the key estimation and structure analysis, chord assignment

has no ground truth. In other words, the generated accompaniment cannot be evaluated

objectively. In real life, different musicians may assign different chord progressions to a

same melody line due to variety of esthetic, practical and technical considerations. But

the goal of this automatic accompaniment system is to provide an experience of the

popular music accompaniment which most of the non-musicians are familiar with. That’s

also the reason why statistical models are used here to reflect the harmoniza

techniques of vast majority.

 In this situation, an informal subjectiv

tion

e user study is conducted. The prototype

nts.

eir

t of

ystem

ch as always

eneral

rticipants showed that they are

unable to follow the rhythm track properly when recording. As a result, the generated

application is distributed to ten college students who do not play any musical instrume

The reason why we choose non-musicians is that we want to avoid their professional

background knowledge push the evaluations deep into music theory. Instead, we just

want to find out what are the obstacles are strength of this system for its overall music

entertainment proposes. They are asked to try this software and answer several questions

we designed. For the overall appeal of this system, all the participants showed th

surprise to the intelligent responses of a computer. For the question about the best par

this system, most of the people said they are satisfied with the capability that the s

allows singing in arbitrary keys. This demonstrated the strength of our key estimation

subsystem. The problem that the people could sing in a key between chromatic notes is

solved successfully by the 10-cent resolution in key estimation and pitch bend in style

player. For the question about the weakness of this system, two major points are

highlighted. One is the generated chord progression could fall into a loop su

“I V I V …”. After some investigations, we found this issue is caused by the biased

transition probability. That is to say, more training data is needed to show the g

trends of chord transitions. Another issue is that some pa

 37

accompaniment does not sound synch elody. This is a limitation of the

rsion

 beats

stem A with the built-in microphone of a laptop computer.

 vi

r

e

e.

 There are a few limitations of this automatic accompaniment system we would

like to discuss here and tentative solutions for these problems are suggested as well.

 First, the key estimation subsystem assumes that the key of the melody is constant.

However, some of the popular music involves key changes. This is called “modulation”

in music theory. One of the situations is that these key changes happen on the section

boundaries, for example, when chorus section is repeated for another time. Therefore, a

ronized with the m

current work which does not involve any tempo or beat detection. This is a good

reminder for us to pay more attention to the difference between experienced and novice

users.

 Furthermore, a case study is done on a specific melody input to compare the

accompaniment results of our system and “songsmith” which is a commercialized ve

of the system mentioned in [3]. This melody is a thirty three seconds recording of a male

vocal humming a Chinese popular music in the tempo of one hundred and twenty

per minute. It is recorded in sy

Then, the vocal audio is exported from system A to our system. The original recording

and generated results from both systems can be found in the following URL:

http://www.maizesoft.cn/casestudy.zip

 The chord sequence generated by our system is “I vi IV V | I vi IV V I vi IV V

IV V I” in a key of “G# major 40 cents”, where “|” is a repetition boundary. On the othe

hand, the chord progression generated by “songsmith” is “D#m G#m C# F# D# G#m C#

F# B C# F# G#m C# F# B F#”. By listening to the generated accompaniment with th

melody, one can easily find that the later one is out of tune. Although the sound quality of

our accompaniment is worse than songsmith’s, the appropriate pattern transition during

the section change made by our style player is really helpful to evoke listener’s pleasur

7.3 Future Works

 38

possible solution is that we should apply key estimations on all melody sections

respectively. Then key changes could be detected and the corresponding accompa

can be adjusted to the new key. Another situation is that user changes the key randomly

during

niment

a melody singing, this phenomenon is typical for amateur singers. To deal with

rithm for

vocal input. If the detecti ent can be added to the

utoma

key.

 Forth, the sound quality of the generated accompaniment is not as good as other

ilar system

this problem, a dynamic key estimation algorithm has to be developed. This dynamic

algorithm must be capable of detecting possible key changes by analyzing the average

pitch deviation from the assumed key.

 Second, the current prototype application has to ask for a tempo before recording

because the structure analysis and chord assignment need this temporal information. But

this extra step is not very user friendly as users usually do not know the tempo before

start singing. One tentative solution is to design a tempo or beat detection algo

on result is acceptable, this new compon

a tic accompaniment system after pitch tracking.

 Third, the chord set used in chord assignment subsystem is limited for model

simplification. Obviously, only triads are not enough for some popular music

accompaniment. Modern popular music also would like to use a lot of other chords such

7th chord and 9th chord. In the future, this chord set should be expanded to provide richer

emotion and tension. To do this, the dimension of the chord PCDs may need to be

expanded to chromatic scales in order to reflect the pitch components which are not in

sim s. This is caused by the use of system default MIDI synthesizer. In the

future, a sample based synthesizer should be implemented. This synthesizer will be in

charge of rendering audio samples in an appropriate form so the system output sounds

more natural and expressive.

 At last, the training set should be expanded. In the current system, the number of

songs used to train the HMM is limited. This leads to a problem that the generated chord

 39

progression may fall into a loop. To avoid the situation, more training corpus is n

smooth the biased transition probability matrix. In addition to this, we should also

involve western popular music. Although the Chinese songs may be totally in western

style, but the unique cultural and stylistic differences may tilt the results to an unintende

direction. One solution could be building style specific models for different kinds of

popular music.

eeded to

d

7.4 Conclusion

g

elody. Two Hidden Markov

lp

pular music accompaniment, structure boundaries are highlighted in style player

ent, the key estimation is done before the

 An automatic accompaniment system for vocal melodies is presented in this thesis.

The pitch information of the input vocal audio is extracted by a real-time pitch trackin

algorithm. Then a pitch class distribution based key estimation method is used to obtain

the tonic and scale of the input melody. Moreover, a structure analysis algorithm is

developed to get the structure boundaries on the vocal m

Models are trained with real life popular music in major and minor scales. With the he

of the key and structure, the most probable chord sequence is calculated out for a given

melody line by performing a decode operation on the HMMs. At the end, this chord list is

realized by a MIDI style player.

 Comparing to other similar systems designed for accompanying vocal melodies

[3], our automatic accompaniment system is better in the following aspects. With a focus

on po

and chord assignment to reflect the structural characteristic of popular music.

Additionally, the statistical models and key estimation algorithm are also trained by pure

vocal tracks from real life popular music instead of MIDI data. This could make the

entire system more coherent, because the expected system input is vocal audio not MIDI

data. To enhance the accuracy of chord assignm

HMM decoding. In this way, only the chords that are relevant to the key are considered in

the statistical models. As a result, the number of states in the HMMs is dramatically

 40

reduced, and the generated chord list is more unlikely to be too far from the harmonic

center of the melody.

 41

REFERENCES

g, R., “An On-line Algorithm for Real-Time Accompaniment”, in
Proceedings of the International Computer Music Conference, 1984

[2] Chuan, C.-H., Chew, E. “A Hybrid System for Automatic Generation of Style-
Specific Accompaniment”. 4th Intl Joint Workshop on Computational Creativity,
June 2007.

[3] Morris, D., Simon, I., and Basu, S. “MySong: Automatic Accompaniment
Generation for Vocal Melodies”, in Proceedings of Computer-Human Interaction,
Florence, 2008.

[4] Larson, E., Maddox, R., "Real-Time Time Domain Pitch Tracking Using Wavelets",
http://people.bu.edu/edlarson/KZOO_05_Wavelets.pdf (Accessed August 25, 2008)

[5] Patricio de la Cuadra, Aaron Master, and Craig Sapp. “Efficient Pitch Detection
Techniques for Interactive Music”, in Proceedings of the International Computer
Music Conference, 2001.

[6] Alain de Cheveign´e and Hideki Kawahara. “Yin, a Fundamental Frequency
Estimator for Speech and Music”. Journal of the Acoustical Society of America,
111(4), 2002.

[7] S. Pauws. “Musical Key Extraction from Audio”, in Proceedings of the 5th ISMIR,
Barcelona, Spain, 2004.

[8] L. Lu, M.Wang, and H. Zhang. “Repeating Pattern Discovery and Structure Analysis
from Acoustic Music Data”, in Proceedings of 6th ACM SIGMM International
Workshop on Multimedia Information Retrieval, October 2004.

[9] J. L. Hsu, C. C. Liu, and L. P. Chen, “Discovering Non-Trivial Repeating Patterns in
Music Data,” IEEE Trans. On Multimedia, vol. 3, No. 3, pp. 311-325, 2001

[10] A. K. C. Wong and P. K. Sahoo, “A Gray-level Threshold Selection Method Based
on Maximum Entropy Principle”, IEEE Trans. Syst.Man Cybern. SMC-19, 866–
871 ~1989.

[1] Dannenber

 42

[11] Benward, B., Saker, M. “Music in Theory and Practice”, 8th ed., McGraw-Hill,
Boston. 2008, ISBN: 0011254

ce,

lly

69, April 1967

ons of
r

ington, DC, 2003.

[17] Wierzba, P., Bedesem, M. “Style Files - Introduction and Details”,
 4,

[18] Schonbrun, M. “The Everything Music Theory Book”, Adams Media, Massachusetts,

[19] Chordia, P., Rae, A. “Raag Recognition Using Pitch-class and Pitch-class Dyad

[20] Huron, D. “Sweet Anticipation”, The MIT Press, Massachusetts, 2006, ISBN:

[21] Cooper, M., Foote, J. “Summarizing Popular Music via Structural Similarity

945

[12] Duda, R., Hart P., Stork D. “Pattern Classification”, 2nd ed. Wiley-Interscien
New York, 2001, ISBN: 0471056693

[13] Andrew J. Viterbi. “Error Bounds for Convolutional Codes and an Asymptotica
Optimum Decoding Algorithm”, IEEE Transactions on Information Theory
13(2):260–2

[14] E. M. Schwarz, M. Schmookler, and S. D. Trong. “Hardware Implementati
Denormalized Numbers”, in Proceedings of the 16th IEEE Symposium on Compute
Arithmetic,Wash

[15] Yamaha Corporation, “Arranger Workstations”, www.yamaha.com, (Accessed
March 21, 2009)

[16] MIDI Manufacturers Association, “Standard MIDI Files (SMF) Specification”,
www.midi.org/techspecs/smf.php, (Accessed March 21, 2009)

www.wierzba.homepage.t-online.de/stylefiles_v100.pdf, (Accessed Feburary
2009)

2006, ISBN: 1593376529

Distributions”, in Proceedings of International Conference on Music Information
Retrieval, 2007.

0262083450

Analysis,” in Proceedings of IEEE Workshop Applications of Signal Processing to
Audio and Acoustics, 2003.

 43

 44

[23] PG Music Inc, “Band-in-a-Box”, http://www.pgmusic.com, (Accessed April 1, 2009)

[24] Fujishim ition of Musical Sound”, in Proceedings of
the International Computer Music Conference, 1999.

[25] B. Vercoe, “The Synthetic Performer in the Context of Live Performance,” in
l Computer Music Conference, 1984.

[22] Ishida, T., Abe, Y. US Patent 4,939,974. July 10, 1990.

a, T., “Real-time Chord Recogn

Proceedings of the Internationa

	CHAPTER 1
	INTRODUCTION
	CHAPTER 2
	PITCH TRACKING
	CHAPTER 3
	KEY ESTIMATION
	CHAPTER 4
	STRUCTURE ANALYSIS
	CHAPTER 5
	CHORD ASSIGNMENT
	CHAPTER 6
	STYLE PLAYER
	CHAPTER 7
	APPLICATION AND CONCLUSION
	REFERENCES

