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SUMMARY

Recently, the U.S. Department of Defense placed the technological development

of intelligence, surveillance, and reconnaissance (ISR) tools at the top of its priority

list. Area surveillance that takes place in an urban setting is an ISR tool of special

interest. Unmanned aerial vehicles (UAVs) are ideal candidates to perform area

surveillance because they are inexpensive and they do not require a human pilot to

be aboard. Multiple unmanned systems increase the rate of information flow from

the target region and maintain up to date information. The purpose of the research

described in this dissertation is to develop and test a system that coordinates multiple

UAVs on a wide-area coverage surveillance mission.

In addition to military missions, this research is applicable to a variety of civilian

tasks. For example, area coverage algorithms are useful for automating mundane

chores such as vacuuming and lawn mowing. In agriculture, these technologies can

be applied to automate the delivery of fertilizers and pesticides or to visually inspect

crops. An automated system capable of locating stray cattle would save time and

money for the ranching industry. Techniques closely related to this research are

applicable to tasks as diverse as painting and land-mine removal.

The focus of the research in this document is wide-area surveillance, which includes

tasks such as security patrols, forest-fire monitoring, aerial mapping and reconnais-

sance missions. Information gathered from surveillance is most useful when it is not

stale. For example, during security patrols the location of an intruder must be quickly

xv



delivered to capture the intruder and prevent escape. During forest-fire monitoring, it

is critical to rapidly pinpoint the location of a newly started forest fire to plan effective

strategies that minimize the fire damage. Delayed information in either case could

be catastrophic. The system presented here attempts to maximize the revisit rate to

ensure timely and accurate surveillance information. One method for increasing the

revisit rate of a surveillance task is to assign multiple UAVs to the same surveillance

task.

The research presented in this document implements a waypoint generator for

multiple aerial vehicles that is especially suited for large area surveillance. The system

chooses initial locations for the vehicles and generates a set of balanced sub-trees

which cover the region of interest (ROI) for the vehicles. The sub-trees are then

optimally combined to form a single minimal tree that spans the entire region. The

system transforms the tree path into a series of waypoints suitable for the aerial

vehicles. The output of the system is a set of waypoints for each vehicle assigned to

the coverage task.

This dissertation details the following contributions:

• A control structure that coordinates multiple aerial vehicles in real-time for an

area coverage surveillance task.

• A method for initial placement of multiple aerial vehicles for area surveillance.

• An extension of ground-based planning and control techniques to aerial vehicles.

• A fast waypoint generator for multiple unmanned aerial vehicles to perform

surveillance.

xvi



• A novel method for constructing and combining disjoint balanced spanning

trees.

These contributions are shown to be effective through computer simulation and

flight testing at a military base in 29 Palms, California.
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CHAPTER I

INTRODUCTION AND MOTIVATION

Unmanned aerial vehicles (UAVs) are well suited for intelligence, surveillance, and re-

connaissance (ISR) tasks in both military and civilian domains. Accurate and timely

information regarding conditions in a military scenario are crucial for effective plan-

ning and utilization of resources. Small UAVs have proven themselves to be valuable

in their ability to provide real-time information about the battle space during the

conflict in Iraq [37]. Appropriately equipped UAVs are able to provide information

from unique vantage points without endangering a human pilot, which makes them

particularly desirable for ISR [17, 18]. Much of today’s military equipment and orga-

nization was designed to counter a single adversary, namely the Soviet Union. Since

asymmetric warfare such as drug-trafficking, terrorism, and biological warfare is now

considered a more likely threat and the warfare battle space is rapidly shifting from a

rural setting into an urban environment, there is a great demand to transform existing

military systems to better cope with these threats [12].

One common ISR mission that could be effectively performed by multiple UAVs

is that of persistent wide-area surveillance. Suppose that it is desirable to track the

location of a target. The target is known to be within a large region of interest

(ROI), but the target’s specific location is not known. The target must be located

before it can be tracked. Small UAVs equipped with appropriate sensors may provide

persistent surveillance over the ROI until the target is located, then pass the target’s
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positional information to a central command center. In turn, the command center

relays the information to another team for tracking purposes. If the ROI is large, it

may take a significant amount of time to perform the required surveillance, thereby

reducing the usefulness and reliability of the collected information. Additional UAVs

added to the task may reduce the time required to perform surveillance over the ROI.

Unfortunately, at the moment UAVs require significant manpower at a base station

to operate. For example, the well-known Predator aircraft made by General Atomics

Aeronautical Systems requires two sensor operators in addition to the primary pilot.

A full operational team consists of four Predator UAVs and 55 ground personnel

to operate the required communication links and maintenance. Additional UAVs

require additional manpower, especially to coordinate the flight paths of the individual

UAVs. Therefore, there exists a need to develop and implement a system capable of

coordinating a surveillance task among a team of UAVs without significant human

supervision.

The broad overview of ISR mission intelligence flow is shown in Figure 1. The

top of the diagram represents the higher level information flow related to the overall

mission objectives, while the lower portions of the diagram represent more specific

tasks that combine to achieve the overall mission. The primary focus of this research

is closely tied in with the block of this diagram that is labeled “UAV placement and

coverage.”

A single small UAV offers advantages over a human-piloted vehicle. The UAV can

replace several human-piloted vehicles [17, 18] and reduce overall mission costs. A

given task can be completed more quickly when multiple UAVs are assigned to the

task. While having multiple UAVs does not guarantee improved performance results,

2



Figure 1: A hierarchical control structure for mission intelligence flow [48].

in general multiple small UAVs retain all the advantages of a single UAV while at the

same time increasing the performance and reliability of a given mission [28].

Area surveillance is not limited to military applications. In fact, there are several

other interesting real-world applications such as forest fire monitoring, border patrol,

aerial mapping, farming and private security.

Area coverage algorithms for ground-based vehicles have been developed for ap-

plications such as mine sweeping, lawn mowing and vacuum cleaning [19, 21, 23, 45].

Many of these techniques provide a base from which to build aerial coverage algo-

rithms. However, several distinct challenges exist for aerial coverage that do not

directly apply to ground based coverage. For example, a vehicle on the ground is

3



able to stop and remain stationary while planning its future trajectory. In contrast,

fixed-wing aerial vehicles must remain in motion or else they would simply fall out

of the sky. Therefore, the path planning algorithm needs to execute in real time.

Another challenge is that of vehicle dynamics. While a ground vehicle may make

90-degree turns by rotating in place, an aerial vehicle is constrained by a minimum

turning radius, which must be accounted for during path planning.

Further, the small size and light weight of some UAVs affords them the ability to

go places a full sized vehicle may not be able to go, but also limits the computational

hardware available for a planning routine. Thus, the final system must run in real-

time and on modest computational hardware.

Figure 2: If an additional UAV merely follows the first UAV, there is virtually no
improvement in performance.

The purpose of this research is to create a system that generates waypoints for

each member in a team of UAVs such that the visited area within a bounded region

4



is maximized during a fixed interval of time. Initially, the system assumes a homoge-

neous team of UAVs that have similar capabilities and vehicle dynamics. Additional

vehicles should improve the overall performance of the team. As seen in Figure 2, if

one UAV merely follows closely behind another UAV the performance increase is vir-

tually non-existent. Therefore, the system must incorporate additional team members

in a manner that maximizes the benefit of the additional UAVs.

The revisit rate is the rate at which the entire region is considered to have been

viewed by the surveillance team. In addition to the goals of operating in real-time

and low complexity algorithms, the revisit rate should also be maximized. In general,

a path with few turns requires less time to follow than does a path that includes

many turns. Therefore, the first step is to find the principal direction of the ROI to

minimize the number of turns required by the UAV to complete the surveillance task.

For example in Figure 3, it is faster to cover an ROI that is long but narrow with a

path parallel to the long axis rather than a path that crosses back and forth over the

narrow section repeatedly.

Figure 3: A path parallel to the major axis of the search area is faster than a path
that repeatedly crosses the region.

A number of approaches related to region filling have been developed for complete

coverage of a region. These techniques typically assume a ground vehicle operating
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with a tool, such as a lawn mower or a vacuum cleaner. While these techniques

are useful, they are not directly applicable to UAVs because a camera that is rigidly

mounted to a fixed-wing aircraft yields a non-linear coverage pattern when the camera

footprint is projected to the ground surface [4]. Another difference from previous

target searching tasks, region surveillance does not end after being visited only one

time but must continue indefinitely [47]. Therefore, it is useful for the UAVs to end

in the same location where they began the tour. To accomplish this, path generation

is divided into two steps. First, proven techniques are modified to generate an ideal

ground path for the centroid of the camera image to follow. Second, the resulting

ground path must be transformed into a series of aerial waypoints for the UAV that

results in the camera image following the previously calculated ground path. It may be

necessary for the camera image to deviate from the ideal path to position the UAV

appropriately, especially for turns and cornering. Separating the surveillance task

into two distinct steps is advantageous in that one may utilize multiple techniques for

coverage and more easily work with a heterogeneous fleet of vehicles when generating

the waypoints. The transformation from ground coordinates to air coordinates takes

into account vehicle dynamics and camera geometry. Special consideration is given

to turning and corners based on a side-mounted, front-mounted, or movable camera

system. The resolution requirements of the final image may also be considered in the

coverage.

1.1 System Overview

A graphical representation of the cooperative area surveillance system is provided

in Figure 4. The operator selects a ROI and assigns UAVs to survey the region.
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The system provides an estimated coverage time so that the operator may adjust the

number of UAVs assigned to the task. The area is segmented into flyable zones and

no-fly zones (NFZs) based on a priori information. Next the ROI is segmented into

cells before generating the ground paths. In one case, parameterized templates are

then selected to cover the region with appropriate paths. In the other case, a graph

is created in which each cell from the segmented ROI is represented by a vertex,

and connections between cells are represented by edges between the vertices. A tree,

consisting of a set of vertices and edges, is created for each UAV assigned to the task

and then the trees are connected together such that a single tour about the resulting

spanning tree will survey the entire region. Since this tour is currently planned at the

ground level, a waypoint generator transforms the path into an aerial path that the

UAVs will follow. Video or other sensor information is then relayed from the UAVs

to a ground control station to provide real-time information and feedback from the

ROI.

1.2 Region Segmentation

Regular and irregular segmentation methods are employed by this system. Regular

segmentation involves dividing the ROI into roughly square cells that approximate

the area of the entire region. The cell size is determined by the projection of the

camera onto the ground. Each cell will be entirely viewable when the camera’s image

is centered on the cell, as seen in Figure 5. The irregular method sections off a narrow

perimeter around the circumference of the ROI and then divides the remaining interior

area into rectangular sub-regions. The total number of sub-regions is equal to the

total number of UAVs. Restricting UAVs to separate partitions is not necessarily
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Figure 4: A graphical representation of the cooperative area surveillance system.

optimal but it does offer a convenient and efficient method for task decomposition

[3].

1.3 Generating the Ground Path

A path, consisting of a series of waypoints, is generated at ground level. The primary

goal in this step is to ensure that every portion of the ROI will be covered in the

following surveillance. The ground path represents the ideal path that the camera’s

image will follow during the coverage routine. These waypoints are calculated either

from pre-computed pattern templates or from a spanning tree-based algorithm.
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Figure 5: The approximation cells are sized such that a cell can be entirely viewed
with one pass of the UAV’s camera.

1.3.1 Pattern Templates

The ROI is divided into at least N segments, where N is the number of UAVs as-

signed to the coverage task. Provided there are at least two UAVs, one segment is

always a narrow band that covers the perimeter of the ROI. The remaining interior

of the perimeter pattern is then divided into some number of rectangular sections.

Parameterized tile patterns are then applied to the segments to create the appropri-

ate ground paths. In this mode, a UAV is assigned to a certain segment of the ROI

and UAVs do not transfer from one segment to another. If a UAV happens to fail,

then that portion of the ROI will no longer be monitored. However, this method is

exceptional at reducing the computational burden.

The primary template utilized in the tiles is a lawnmower type pattern, as picture

in Figure 6. There are several cases for this basic shape depending on the entry

and exit positions of a UAV into the pattern. Pattern templates are well suited to

coverage when the time for planning a route must be minimized.
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Figure 6: The boustrophedon, or lawnmower pattern, is an efficient path for coverage
over a rectangular region.

1.3.2 Spanning Tree Area Coverage (STAC)

A single spanning tree is generated for each vehicle assigned to the surveillance task.

Therefore, the ROI is not pre-segmented for the UAVs. Instead, the UAVs are dy-

namically assigned to smaller portions of the ROI based on a directed spanning tree

algorithm that generates the sub-trees. The starting location of each UAV is used as

the first vertex of its respective sub-tree. The set of connected vertices is examined,

and the vertex that maximizes the minimum distance to the other UAVs’ sub-tree is

selected. Euclidean distance breaks down in the presence of obstacles so the Manhat-

tan distance metric is used instead. A vertex that may be geographically close to the

UAV may be much farther away when obstacles are taken into account. Therefore,

when segmenting the ROI into sub-regions the distance metric must follow the path.

Eventually, when all flyable zones are allocated, the ROI has been subdivided per

UAV. The sub-regions are then joined together to create a single minimum spanning
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tree that covers the entire ROI.

1.3.3 Joining the Sub-trees

The individual spanning trees are created in such a way that the overall length is

approximately equal for each UAV. Surveillance can begin as soon as the individual

trees are complete. In this case, each UAV is assigned to a sub-region within the ROI.

The problem with this method is that if a single UAV fails, then the portion of the

ROI assigned to that UAV will no longer be monitored. One method to increase the

robustness of the system is to bridge the sub-trees together, thus creating a single tour

which all the UAVs follow. In the ideal case, the UAVs are spaced exactly equally

along this tour which maximizes the revisit rate. To achieve the single continuous

tour, the sub-trees are joined together to create a spanning tree that covers the entire

ROI. The tour around this tree is then followed by each of the UAVs. For this system,

provided at least one UAV remains in operation, the entire region will continue to be

monitored.

1.4 Waypoint Transformation

The previously described methods generate a ground tour for the UAVs. The goal

is for the centroid of the camera’s image to closely follow this ground path. To

achieve this goal, the ground waypoints must be transformed into aerial waypoints.

The geometry of the camera is taken into account to locate the appropriate aerial

waypoint from which to view a given ground waypoint. In addition, the vehicle

dynamics are taken into account when making turns. For the case when a vehicle

is not able to make a turn with an adequately small radius, it becomes necessary to

route the UAV on a longer tour to ensure complete coverage. The transformation
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from ground to aerial waypoints must have at least one aerial waypoint per ground

waypoint and often needs more than one to account for the wider turns. Therefore the

number of waypoints will increase in all cases except for the trivial case of a straight

line path.

1.5 Organization of this Dissertation

A description of some useful and applicable background technologies is described in

Chapter 2. Then, Chapter 3 describes the methods that generate a ground path

as used in this system. Chapter 4 provides a description of the method used to

automatically transform the ground path into aerial waypoints for the UAV. Chapter 5

is an analysis of the computational complexity of this particular algorithm. Test flight

results from a case study program are presented in Chapter 6. Finally, a presentation

of simulation results appears in Chapter 7.
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CHAPTER II

BACKGROUND

Several background technologies are leveraged to complete an ISR mission. Consider

a typical mission scenario in which there are multiple potential targets and multiple

mobile sensor agents in the form of UAVs. Figure 7 depicts an example military

operations in urban terrain (MOUT) site. In this scenario, the evading targets are at

unknown locations within the ROI (the MOUT site). The mission is to locate and

track the locations of the targets. Therefore, several UAVs are assigned to surveillance

until the targets are found.

Figure 7: An example of pursuer UAVs and evading targets at a military operations
in urban terrain (MOUT) site.

In this example scenario, the UAVs first detect the location of the targets and

then transition into a classification and tracking mode to ensure that the targets’

locations are not lost. For example, the weighted cooperative multi-robot observation

of multiple moving targets (W-CMOMMT) as described in [31] and [30] could take
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over in the tracking duties. If the targets are assumed to be intelligent and are aware

of the pursuing UAVs, they will likely perform evasive maneuvers in an attempt to

escape. Adversarial reasoning and pursuit and evasion games are utilized when the

target attempts to avoid surveillance.

The overview of this ISR system is depicted in Figure 8. The upper portion of the

graphic describes the higher level reasoning and mission objectives, while the lower

portion of the graph is related to the low-level vehicle controls. The middle portion is

related to situational awareness and decision making processes necessary to complete

the overall objective. The research presented here is motivated by situation awareness,

specifically area coverage and sensor placement.

Figure 8: An overview for an ISR system architecture.
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This research stems from previous research in the single and multi-vehicle coverage

problem. The building blocks and previous research upon which this coverage planner

is built are reviewed in the following sections.

2.1 Single Vehicle Complete Coverage

As research in mobile robotics developed, several practical tasks ranging from lawn

mowing and vacuuming to mine sweeping were considered. This class of problem

can be solved with a coverage planner. The early research in developing coverage

algorithms focused on individual ground-based mobile robots. For example, Huang

et al. developed a graph-theoretic approach to generate a best path for region filling

[35]. In this work, best was defined as the shortest path distance with the least energy

consumption. Further refinements on the single mobile robot approach concentrated

primarily on achieving completeness of coverage and expending minimal energy.

For minimal energy, Huang divides the total energy cost into straight line opera-

tion and turning operations. The total energy is represented by

E = EL + ET (1)

where E is the total energy consumed, EL is the energy consumed in straight-line

operation, and ET is the energy consumed in turning operation. Examining only the

straight-line portion of Equation 1, it is found that

EL = FL

A

W
(2)

where FL is the force expended to move along the straight line path, A is the area of a

region, and W is the width of one strip. The energy consumed by turning operations
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is represented by

ET = D ·
EoT

W
(3)

where D is the span of a region in a direction and EoT is the energy consumed at

each turn. Combining these equations yields the total energy for operation:

E = FL

A

W
+D ·

EoT

W
(4)

Since A, W , FL, and EoT may be considered constants, the span, D, must be mini-

mized in order to minimize the total energy consumed. The minimum span direction is

perpendicular to the principal direction axis. Therefore, utilizing the principal direc-

tion reduces the energy and time consumed in the surveillance mission by minimizing

the number of turns required in the coverage path.

Focusing on complete coverage, Gabriely developed three planning algorithms that

utilize spanning trees [21]. The three versions of the spanning tree coverage (STC)

algorithm are the on-line STC, the off-line STC, and the ant-like STC. The on-line

version allows for lack of knowledge of the work area and the spanning tree is con-

structed as the mobile robot moves about the work area. The off-line version assumes

that the mobile robot has a priori knowledge of the work area. Unfortunately, this al-

gorithm “lacks the means to affect the shape of the spanning tree being constructed”

[21]. One key feature of the research presented in this document is that the trees are

dynamically shaped. The ant-like STC utilizes a marking device (such as a chemical

residue, or physical marker) to indicate that a location has been previously visited.

The marking technique is employed by ants in nature but is still not practical for
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mobile robots and clearly not well suited for UAVs. The basic STC algorithm at-

tempts to embed a Hamiltonian cycle, which is a path that visits every vertex exactly

once [42], having the largest number of cells in the given work area. All three of the

proposed algorithms provide complete coverage of the work area and the coverage is

considered optimal in that there is no repetitive coverage.

Arkin and Refeal suggest that the coverage path problem is related to the covering

salesman problem, which is itself a variant of the traveling salesman problem [6].

Instead of visiting each city, the agent must visit a neighborhood within each city

that minimizes the travel length for that agent. In [7], the Arkin et al. provide

algorithms for the basic forms of the lawn mowing and milling problems. Arkin also

demonstrates that these problems require nondeterministic polynomial time to solve

(NP-hard) in general.

Choset and Pignon address the traveling salesman nature of the problem and

describe an off-line planning algorithm that acts on a polygonal world. The robot’s

free space is broken down, or decomposed, into cells in their boustrophedon (ox-like)

cellular decomposition. The algorithm is an exact decomposition approach in which

each sub-cell is covered by a simple line sweep [13]. Therefore, complete coverage

reduces to treating each sub-cell as a node in a graph and finding the path through

the adjacency graph that visits each node at least one time. Hert describes a similar

system in [32]. Hert’s system also uses a line sweep algorithm on sub-regions and

a traveling salesman heuristic to connect the sub-regions. However, Hert’s system

operates on non-polygonal worlds.

Choset later provides a survey of coverage algorithms in [14]. The existing ap-

proaches are divided into three major categories based on how the entire work area is

17



divided into cells. The three approaches are labeled approximate, semi-approximate,

and exact cellular decompositions. These types of decompositions are illustrated in

Figure 9, Figure 10, and Figure 11, respectively. For approximate decompositions,

Figure 9: An approximate decomposition of the ROI.

the cells are all the same size and shape; thus the work area is approximated by

the cells. Any cells that partially cover an obstacle or lie partially outside the work

area boundary are discarded. In semi-approximate decomposition, cells are fixed in

Figure 10: A semi-approximate decomposition of the ROI.

one dimension (width, for example) but can have any shape in the other dimension

(height, for example). The semi-approximate decomposition reduces the amount of

inaccessible space while maintaining low memory requirements. For exact cellular de-
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Figure 11: An exact decomposition of the ROI.

composition, the environment is divided into a set of non-intersecting regions whose

union fills the entire target environment. One popular technique that falls into this

category is the trapezoidal decomposition (also known as the slab method). The

boustrophedon decomposition described by Choset is a generalization of the trape-

zoidal decomposition. Choset also proposes that “path planning is the bottleneck for

applications such as mine sweeping, oceanographic mapping, and painting” [14].

Huang [35] adapts the boustrophedon approach to achieve optimal coverage by

optimizing the total number of turns required to cover all the sub-regions. Huang

shows that the optimal line sweep must be parallel to an edge of the boundary and

the obstacles. Later research in [34] describes a method of sub-dividing the region of

interest into subregions and then applying a planar sweep to each subregion. Again, it

is noted that reducing the number of turns improves the coverage time. Unfortunately,

the algorithm presented by Huang has exponential complexity and therefore is not

suited to small UAVs.

Another concept for complete coverage involves critical points. Garcia [23] de-

scribes an enhancement to Choset’s coverage method that utilizes exact cellular de-

composition and critical points. In this work, the vehicle is assumed to occupy a

19



finite area rather than being modeled as a point and assumes that the robot is able

to determine its own position within the environment. The approach presented ad-

dresses the inability of previous algorithms to handle unstructured environments and

results in a single vehicle coverage algorithm that is more complete while retaining a

performance metric that is as good as the previous methods.

2.2 Multi-Vehicle Improvements

As the algorithms for complete coverage utilizing a single vehicle improved, this re-

search was extended to work with multiple ground vehicles. Intuitively, more agents

lead to improved efficiency and robustness in completing a sweeping task [39] or a

coverage task. Efficiency is improved because more agents can complete the task in

less time, and the system is more robust in that the task may yet be completed in

the event of a single failure. However, it was quickly shown that “adding covering

agents does not necessarily improve coverage time” [16]. Since the goal is to create a

Hamiltonian cycle, let the path be represented a simple circle. Examine the result of

two agents traveling around the circle and initially spaced apart by one empty cell,

as shown in Figure 12. If both agents travel the same direction, then the worst-case

coverage time does not appreciably change compared to the single robot case.

Casbeer et al. applied this same concept to the task of forest fire monitoring in

[11]. Frequent status updates about a forest fire are crucial for effective fire-fighting

techniques and for the safety of those involved in the task. Casbeer presents a multi-

UAV approach to monitor a fire’s perimeter and retrieve updates on the fire’s progress.

It is assumed that the fire’s area is much larger than the communication range of the

UAVs, so the base station will only be periodically updated with the new information.
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Figure 12: Two UAVs that are slightly spaced apart and travel the same direction
have a worst-case coverage time nearly equal to the single vehicle case.

For this task it is important to minimize the worst-case delay of information flow

from a checkpoint to the base station. The UAVs fly in opposite directions around

the fire’s perimeter until a rendezvous with another UAV is achieved. Then, the

UAVs exchange data locally and turn around to fly back in the opposite direction,

as depicted in Figure 13. When a UAV is within communication range of the base

Figure 13: The UAVs exchange data and change directions at each rendezvous, thus
achieving a lower worst-case time of getting information about a certain checkpoint
back to the base station.

station it transmits all of the collected data to the base. This technique reduces the

maximum time delay for information from the fire’s perimeter. However, there is a
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real amount of time required for a UAV to change directions in flight which is not

modeled in Casbeer’s system. As the number of UAVs is increased the portion of the

time spent turning around after a rendezvous becomes significant. In this document

it is assumed that the UAVs remain within communication range of a central base

station and therefore the simpler method of all the UAVs flying the same direction

may be used without incurring a time penalty. Additionally, the system described

in this document creates a complete loop, so vehicles going the same direction helps

with deconfliction.

Hazon et al. extended the STC algorithm to incorporate multiple agents in the

coverage task [28]. Hazon et al. analytically show that the multiple vehicle spanning

tree-based coverage algorithms (MSTC) are robust in that as long as at least one

single vehicle is able to move, the coverage task will be completed. However, this relies

on the assumption that any failed vehicle will not block the path of the functional

vehicles. A failed UAV tends to fall to the ground so the non-blocking assumption

remains valid. It is also shown that worst-case coverage times for multi-robots without

backtracking are nearly identical to those of a single robot [28]. Hazon et al. go on

to show that allowing backtracking improves the overall performance of multi-vehicle

planning when compared to not allowing backtracking by any vehicle. In fact, if

backtracking is not allowed, the coverage has a worst-case time nearly identical to

that of a single robot. However, when backtracking is allowed the work time for

coverage is guaranteed to be at least half that of the single robot case. Further,

Hazon’s algorithm takes into account the starting positions of the agents and shows

that for a given spanning tree-based algorithm, this new spanning tree construction

method will match or beat the performance of others.
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Even et al. present a rooted tree cover algorithm such that the maximum length

of k tours over a graph is minimized [20]. Their motivation was for the nurse station

location problem in which k nurses are assigned a set of patients to visit during their

rounds. The objective is to assign patients to nurses and locate the nurse stations

such that the latest completion time is minimized [20]. Of course, this problem is

closely related to the multi-vehicle coverage problem as well. The multi-robot forest

coverage (MFC) algorithm is based on this work and additionally “tends to return the

robots close to their initial cells” [49]. MFC performs closer to optimal for most cases

compared to MSTC, but it does not allow backtracking, which reduces its performance

in specific environments such as a hallway. Arkin et al. develop the min-max vehicle

routing even further in [8]. They present algorithms for a min-max tree cover and

min-max star cover, which are useful for the multi-UAV surveillance task.

Agarwal formulates the aerial surveillance task well: Given a planar workpiece

R, the objective of region coverage is to find an ordered list of waypoints and the

geometry of paths between consecutive waypoints along which the centroid of a sensor

footprint can be moved to efficiently trace a minimal superset of R [1]. He points

out that while low altitude flight by the UAV helps to avoid occlusions potentially

caused by cloud cover, it also restricts the field of view (FOV) since the FOV is

directly proportional to the square of the sensor height above the desired surveillance

area. He considers n UAVs for coverage over a contiguous holed rectilinear workspace.

The workspace is assumed to be rectilinear and the flight controls are simplified by

allowing only 90 or 180 degree turns. These assumptions are useful to make the search

problem more tractable.
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Agarwal assumes that each UAV is equipped with the same type of sensor (ho-

mogeneous), but allows for differences in the aircraft frame and dynamics (i.e., the

UAVs could vary in speed capabilities). Additionally, it is assumed that the mission

altitude is sufficient such that the UAVs fly at a constant altitude, the ground vari-

ations do not cause occlusions, and no ground obstacles pose an immediate danger

to the aircraft. One drawback is that this method does not include the possibility

that the aircraft may not be able to turn in the desired radius necessary to follow the

generated waypoints. Agarwal mentions a “lowered potential for collision” between

UAVs but does not rigorously address this proposition. In Agarwal’s work, the areas

of the parts assigned to the UAVs are in the ratio of the rates at which the UAVs can

perform coverage [1].

Several authors point out that the starting positions of the vehicles and the par-

ticular minimal spanning tree both have significant effects on the final coverage time.

In fact, it seems there exist several places for improvement: initial placement of the

UAVs, construction of the initial spanning tree, and route planning based on a given

spanning tree.

A consistent problem with much of this research is that it assumes rigid grid-

based movement of the vehicles. This assumption may be reasonable for ground-

based vehicles but vehicle dynamics and camera geometries must be accounted for

with unmanned aerial vehicles. Additionally, it is generally assumed that the vehi-

cles are homogeneous. When planning for heterogeneous aerial vehicles, the velocity

capabilities and turning rates of the individual platforms must be accounted for. The

technique for coverage presented in [27] models the instantaneous coverage region of

a robot as a circle. Then the region of interest is filled in with the minimum number
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of circles required for complete coverage and finally, a path is generated to connect

all of the circles. This approach is not well suite to aerial vehicle coverage because of

the dynamics of a side-mounted camera image when the UAV turns.

It is pointed out in [4] that much of the research devoted to multi-UAV planning

does not address the coverage problem. Instead, challenges such as formation flight

are more frequently addressed [9]. Another issue that is infrequently visited is the

projection of a rigidly fixed camera when the UAV is turning. The area viewed by

the camera obviously changes as the UAV proceeds through a turn, and this change

in the viewed area must be accounted for in the path planning stage [4].

In [40], Maza and Ollero present an algorithm that plans for a small team of

heterogeneous UAVs in near real time. The system sub-divides the region based on

the capabilities of each UAV, taking into account features such as fuel consumption,

maximum flight time, flight speed, sensitivity to wind, and sensing width. For N

UAVs, the ROI is partitioned into N polygons using N − 1 lines. The system uses a

lawn-mower type path within each sub-division of the original ROI. They show that

it is only necessary to check orientations of the pattern that are perpendicular to the

edges of the perimeter of the polygon to minimize the final number of turns. They

propose that the system could quickly adapt if one UAV were to fail based on the effi-

ciency of the algorithm. However, the simple replanning method leads to overlap once

the replanning occurs. One advantage of their proposed method is that the turning

cost of the UAVs is reduced since each UAV determines its orientation independently

of the rest of the team. The simple scenario depicted only accounts for convex polyg-

onal ROIs without obstacles. The spanning tree method handles obstacles and many

arbitrary shapes by utilizing techniques developed for graph theory.
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Completeness of coverage is desirable, but another aspect of multiple vehicles is

that the robustness is also increased. In [29], Hazon et al. present a system for

multi-robot on-line coverage. The problem is that many of the multi-robot planning

algorithms do not achieve complete coverage if a single robot fails unless the task

is replanned with the remaining functional robots. Instead, their technique uses an

on-line spanning tree coverage algorithm to create a set of paths such that the union

of the paths is “guaranteed to be complete, non-redundant, and robust” [29]. The

idea is that the coverage path is cyclic so even if one robot fails, the entire region

will still be covered by the remaining members of the team. Again, the algorithm is

not directly applicable because the robots are assumed to make only 90 degree turns.

However the concept of a single cyclic path for the UAV team is especially useful

since communications may be even more constrained in aerial vehicles.

Successful cleaning robots have been demonstrated using heuristics and template

patterns to achieve complete coverage [33]. The advantage of using templates is

that the required computation is reduced. There are several methods to partition a

region of interest for multiple vehicle coverage. One of these is a dynamic polygonal

partitioning scheme that is presented in [36].

2.3 Heterogeneous Vehicle Teams

The previously described work focused on homogeneous teams, but an interesting

challenge is to leverage the strengths of a heterogeneous team of UAVs.

UAVs have desirable features such as high speed of coverage and a wide-area view

of the region, while certain tasks such as precise localization may be better suited to

ground-based vehicles. One way to combine the best features of both ground- and
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aerial-based vehicles is to examine a heterogeneous team. The aerial vehicles may

quickly overfly a region to find the general location of an object of interest and then

pass the location of that object to a team member on the ground. The ground vehicle

then performs a search space over a much smaller area dictated by the uncertainty of

the localization of the UAV. The ground vehicle is then able to report back a precise

location when the object is found. In [25] and [26], such a framework is described

that allows a heterogeneous team of air and ground vehicles to work cooperatively

to improve the localization of ground targets. In their test, the air vehicles achieve

broad area coverage quickly, but without high resolution on localizing the ground

targets. The ground-based vehicles complement those abilities in that they achieve

higher resolution in localization of the targets. Their system leverages the abilities of

a single UAV to aid a single ground-based vehicle to discover and locate targets on the

ground. The research proposed in this document adds to this system by generating

paths for multiple aerial vehicles over the initial search space.
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CHAPTER III

GENERATING THE GROUND PATH

The multi vehicle coverage planner is similar to work by Choset [15, 13, 14], Gabriely

[21, 22], Hazon [28, 29], and Zheng [49]. The research presented here extends this

previous work. The primary purpose of the ground path is to provide an ordered list

of waypoints which the centroid of the camera’s image is to follow. Two techniques

are presented to segment the ROI and generate a ground path. The first method

makes use of tiles that are parameterized to be adjusted to fit in a given segment.

The method is able to incorporate a wide variety of tiles, however a small subset of

patterns is the most efficient. The second method makes use of spanning trees to

generate the ground path. The tile based method is computationally efficient since

many of the parameters are pre-computed. Therefore it is most useful in situations

where computation time incurs a higher penalty. The spanning tree area coverage

method is more robust since it creates a single tour for the ROI that each of the UAVs

follow.

3.1 Parameterized Tiles

A tile refers to a unit shape in the parameterized tile system. The system consists of

a set of interlocking tiles whose union covers the entire ROI. It is conceptually similar

to the tiles or bricks covering a floor or walkway in a solid interlocking pattern.

The parameterized tile method divides the coverage into two distinct and separate

problems (divide and conquer approach). Each tile shape is known to offer a path that
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provides complete coverage of its own shape. Therefore, a collection of tiles whose

union covers the entire ROI also ensures complete coverage along the resultant path.

The primary advantage of the tile-method is that much of the required calculations

are pre-computed or are inherent to the shape of the tiles. Therefore, the path

calculations can be performed quickly on the fly.

3.1.1 Problem Description

Given a bounded ROI and N UAVs with which to perform coverage of the region,

the ROI is divided into N sub-regions with one UAV tasked to each sub-region. The

segmentation process takes into account the tile sets that are available to make path

planning more readily computed. The goal is also to divide the regions as equally as

is conceivable among the set of UAVs.

3.1.2 Tile Set

The One pass tile is the simplest of the tiles. A UAV traverses in one direction only

across a small region that is only as wide as the footprint of its onboard sensor. That

is, the entire tile region is adequately covered by one simple pass.

Figure 14: The simplest tile form is just a line through a given region.
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The Two pass tile is used when the ROI is wider than the attached camera’s

footprint but still less than three times its width. At three times the width, the

region can be covered with a one pass and a perimeter tile. It is a simple form of

the lawnmower pattern but merits a separate category for reduced complexity in

calculating this specific case.

Figure 15: The two pass tile with geometric marking indicating the path construc-
tion.

The Perimeter tile is a path that follows the inner circumference of the ROI. Side

mounted cameras on a fixed wing vehicle are useful to perform a perimeter pattern.

Additionally, if it is desired that a target is contained within a known region then the

perimeter tile is more heavily weighted to prevent the target from escaping from the

region.

The Lawnmower tile is the familiar back and forth pattern that one might uti-

lize when mowing a lawn. It is the most frequently used tile while employing the
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Figure 16: The perimeter tile with two possible turn configurations and geometric
markings indicating the path construction.

parameterized tile method.

The Spiral pattern is useful for scanning the vicinity of the center of a ROI [46].

Spirals patterns are useful for tasks that involve search from an initial starting point,

such as finding victims of water accidents [44]. However, weakness of spiral patterns is

in creating a full cycle for the path. A vehicle that begins at the periphery and finishes

in the middle must return back to the periphery to begin the spiral again. Coupled

with the non-linear dynamics of the camera’s relative ground footprint while the

vehicle flies a continuous turn, this tile is less practical than the previously described

tiles when applied to wide area surveillance.
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3.2 Spanning Trees

The minimum spanning tree problem is well known in the area of computer science. It

has been used extensively in communication networks and a variety of other computer

networks [24]. It is often utilized for routing physical cables to minimize the total cable

length, thereby reducing the costs of a project. Solutions to the minimal spanning

tree problem have been invented and re-invented numerous times in the last half-

century. More recently it has been formalized on graph theory with a few well-

defined algorithms. Prim’s algorithm [43] and Kruskal’s algorithm [38] are the most

commonly recognized of the structured algorithms.

Use of a spanning tree for area coverage has also proved useful and computationally

efficient. Carmi et al demonstrate in [10] that the minimum spanning tree of a set

of points is a constant-factor approximation for the minimum-area spanning tree

(MAST) problem.

3.2.1 Problem Description

Given a bounded ROI and some number of UAVs with which to survey the region,

generate a single continuous ground tour that completely traverses every cell in the

ROI.

3.2.2 Computational Complexity

In general, finding the minimum spanning tree on a graph with V vertices and E

edges has been shown to be O(V 2) or O(Elog(E)), depending on the method used.

The method presented in this document is as fast as comparable implementations.

Due to the segmentation of the ROI, every vertex has a maximum of four-connected

neighbors (edges). In Chapter 5 this implementation is shown to run in second order
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polynomial time.

3.2.3 Spanning Tree Approach to Coverage

The spanning tree area coverage (STAC) algorithm is developed in this document to

generate a single, continuous non-overlapping tour over the ROI. As shown in Figure

17 (a), the STAC algorithm works by dividing the ROI into two overlapping grids,

one with each cell in the grid being a square of size D, and the other with each cell

in the grid being a square of size 2D, where D represents the camera footprint’s size.

Figure 17 (b) shows a minimum spanning tree generated over the ROI whose edges

connect the centers of the 2D-sized grid. Finally, Figure 18 shows the path that is

generated by connecting the centers of the D-sized grid.

Figure 17: (a) The ROI is divided into a grid with cells of size D and a grid with
cells of size 2D. (b) A minimum spanning tree connects the centers of the 2D-sized
grid.

The path is generated as a clockwise loop that circumnavigates the spanning tree.

For a region described by a single cell, the path would follow in a clockwise loop like

the one shown in Figure 19. However, if the transition from one sub-cell to the next is
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Figure 18: The path connects the centers of the D-sized grid as it follows along one
edge of the spanning tree.

blocked by the spanning tree itself, then the path is altered. The same figure displays

the modified path through the cell when the spanning tree is taken into account.

Figure 19: The generated path follows a clockwise pattern around the cells. The
right image displays the path through a cell when the spanning tree is taken into
account.

The STAC algorithm is closely related to the STC algorithm developed by Gabriely

[21]. Several versions of the STC algorithm were developed, including an off-line STC

and an on-line STC. The off-line version assumes that the vehicle has a priori knowl-

edge of the ROI, while the on-line version allows for lack of knowledge about the ROI
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and the spanning tree is constructed in real time as the vehicle traverses the ROI [21].

Both of these algorithms are optimal in that they provide complete coverage without

repetitive coverage.

The application of the STC algorithm for multi-vehicle area surveillance is a recent

research area. The generalization of the single robot STC algorithm to multi-robot

systems was first introduced by Hazon and Kaminka in 2005 [28]. If the time required

for coverage by one agent is T , then it seems intuitive that ideally N agents could

complete the task in T/N time. Of course, in practice it may not be possible to

achieve the ideal improvement. In fact, it has been shown that “adding covering

agents does not necessarily improve coverage time” [16]. Therefore, the additional

vehicles must be included with a focus on maximizing the utility of each UAV or else

there is no guarantee of an improvement in the coverage task.

One specific method to improve performance in the multi-vehicle case, when com-

pared to the single vehicle STC algorithm, is to take into account the starting position

of each of the vehicles when constructing the spanning tree. The starting positions

of the vehicles have a significant impact on the coverage time of the terrain [2]. If

the spanning tree is fixed, but the starting positions of the UAVs are varied, then

the time to completion of coverage can vary greatly. The spanning tree that realizes

the shortest time to complete coverage is generated by taking into account the UAVs’

starting positions.

The minimal spanning tree for a set of vertices is a minimum set of edges that

connects all of the vertices without creating any loops. There is not one unique

set of edges that is the singular minimum spanning tree for any ROI. Rather, there

exists a very large number of combinations of sets of edges that are minimal spanning
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trees. The STAC algorithm uses a min-max distance metric to generate one of the

spanning trees that realizes a quicker completion time for the coverage task. To create

a minimum spanning tree, one must first set up a graph, G. The distance between

the vertices of G is 2 ∗ D, where D is the width of the camera footprint projected

onto the coverage area. The spanning tree is then created with an algorithm that is

closely related to Kruskal’s algorithm [38].

When applied to path planning, the vertices are created by overlaying a grid on

the region of interest. Figure 20 shows a grid region with the minimum spanning tree

in red. The grid spacing is determined by the projected footprint area of a downward

looking surveillance camera. The path followed by a vehicle circumnavigates the

spanning tree and is also shown in the figure.

Figure 20: Example simulation of single UAV path planning based on a minimum
spanning tree

For the task of aerial surveillance, the path constructed by this technique repre-

sents the path that the centroid of the camera footprint will follow. A transformation
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based on the camera mounting angle results in waypoints for the vehicle.

3.2.4 Generating Spanning Trees for N Vehicles

Given N UAVs and a ROI, a sub-tree is constructed for each UAV. The union of all

the sub-trees includes every vertex in the graph, but the N sub-trees themselves are

not connected. Optionally, one can create N − 1 bridges between the sub-trees in

such a way to create a single minimal spanning tree of the entire graph. The prob-

lem formulation, solutions, and performance metrics are presented in the following

paragraphs.

The process for generating the N trees assumes that the initial position of each ve-

hicle is already set. Another algorithm may be used to optimize the initial placements

of the UAVs before generating the set of spanning trees. The initial placements and

the particular minimum spanning tree both have a significant impact on the overall

performance of the team of UAVs on the coverage task. Therefore, special emphasis

is placed on the generation of the spanning tree.

The problem definition can be more formally stated as follows: Let G = (V,E)

represent an undirected graph with vertices, V , edges, E, and uniform positive edge

weights. The edge weights are positive and equal because they represent the grid

of uniform cells on the ROI. Let T = {T1, T2, ..., TN} be a set of trees on the graph

where a single tree, Ti, is a set of vertices and edges that form a subset of G. Given

N UAVs, create a set of N trees such that the union of all the sub-trees incorporates

every vertex in the graph, i.e., V = ∪N
i=1V (Ti), and such that the length of each tree

is equal. Since it is not always possible for the lengths of the trees to be exactly equal,

the goal becomes one of minimizing the maximal length of the trees instead. For this
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problem the individual sub-trees do not share any vertices or edges.

Let P ∈ V represent the set of vertices that are nearest to the starting positions of

the N UAVs. For every Pi in P a single edge and vertex are added to the spanning tree

at each iteration of the algorithm. The objective is to add the vertex and respective

edge to tree Ti that maximizes the minimum distance from that vertex to all other

sub-trees Tj, where i 6= j. The set of vertices to choose from is the set of vertices that

are immediately adjacent to the current tree, Ti, provided the vertex is not already a

part of another tree, Tj. In an effort to improve the execution of the algorithm, several

data structures are used. There is a list of vertices in Ti that can be attachment points

for added vertices. Vertices are added to this list when the vertex is added to the tree

and removed from this list when the vertex has no more connected edges. This occurs

when all of it’s connected edges are already incorporated into Ti or some other tree.

The Manhattan distance [41] is measured from each neighbor of Ti to each spanning

tree Tj. Then, the neighbor that maximizes the minimal Manhattan distance and the

corresponding edge are added to the tree Ti. The Manhattan distance is appropriate

because of the four-connected nature of the grid. Continue this process until all the

vertices in G belong to some tree T , V (G) = ∪V (TN
i=1). The algorithm is guaranteed

to converge provided that all vertices in the ROI are initially reachable.

Figure 21 depicts a rectangular ROI with the starting locations of four UAVs

represented by triangles. Figure 22 depicts the state of the sub-trees after several

iterations of the algorithm have run. Finally, a set of balanced sub-trees is achieved.

In this case, there are 15 vertices and 4 UAVs so the sub-trees are necessarily not

exactly equal in length.
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Figure 21: Example of balanced sub-tree generation with four UAVs and their
respective starting locations

After the algorithm is run to completion, it is possible to utilize this set of sub-

trees to survey the entire ROI. If no further modifications are made, each UAV is

assigned to a smaller region of the ROI. These segmented regions are shown in Figure

22. The drawback to using a segmented region is that if a UAV fails, then a gap in

the surveillance region needs to be covered by the rest of the team. Two strategies

to deal with UAV failure are replanning and creating a single tour.

The replanning strategy to deal with failure is simply to re-apply the STAC algo-

rithm with the remaining N − 1 UAVs. This option is less than ideal because it can

lead to significant portions of the ROI being surveyed multiple times while another

region remains unvisited. Therefore one improvement to the replanning method is to

track which cells have been visited as they are seen by the UAVs. If a failure occurs,

all the previously visited nodes are marked as obstacles and then the replanned paths
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are more efficient at covering new territory first rather than already visited territory.

While effective, this approach requires more memory and maintained communication

with the UAVs.

Creating a single tour that covers the ROI is accomplished by joining all the sub-

trees into a single minimal spanning tree. In this case replanning is not necessary if

a vehicle fails. Instead, the remaining vehicles continue around the cycle until the

lost portion is covered. The time to completion is longer for this method than for

the original plan, but the single tour plan completes the first cycle of coverage in

equal or less time than the complete replan and reduces the amount of maintained

communication that is necessary.

Figure 22: A representation of the ROI segmented into smaller regions, one per
UAV.

The choice of joining the sub-trees or not is largely application dependent. Distinct

sub-trees may yield better performance for a heterogeneous team of UAVs while
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joining the sub-trees is safer if there is an elevated risk of losing a UAV. If the sub-trees

should be joined, the problem now becomes how to connect the set of spanning trees,

T ∈ {T1, T2, ..., TN}, into a single minimal spanning tree while maintaining equal

spacing along the cycle formed by the complete spanning tree. A poorly selected

bridge between sub-trees could position two UAVs adjacent to one another on the

cycle. With one UAV following directly behind the other, the time to complete

coverage is approximately the same as if there were only one UAV. The brute force

method of examining every possible combination of connections between the trees is

too computationally expensive. Therefore, a more efficient method is needed to select

the bridge connections.

3.2.5 Joining the Spanning Trees

The work described in the previous section creates a set of balanced sub-trees, with

one sub-tree per vehicle. One method to improve the robustness of the coverage

algorithm is to join the disparate sub-trees into a single minimal spanning tree. By

joining the trees together, a single tour of the entire ROI is created. Since every UAV

in the team is following the same tour, complete coverage is maintained even in the

event that one UAV fails. Furthermore, no additional communication is necessary in

the event of a failure.

As the number of UAVs and vertices increases, so too does the number of potential

bridges increase. Examining every possible combination of bridges that join the sub-

trees is clearly not an acceptable solution because it is too computationally expensive.

Instead, the following paragraphs show that it is only necessary to examine pairings

of sub-trees and choose the best bridge for each pair. Given that there are N UAVs,
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equation 5 shows the number of comparisons that must be made. Of these, the best

N − 1 are selected to tie all of the sub-trees together.

N−1
∑

i=1

i = Number of Comparisons (5)

The best bridge for a given pair of sub-trees is the bridge that minimizes the

maximum distance between the two UAVs. Let Di,j represent the distance circum-

navigating the spanning tree from UAVi to UAVj. The time to complete coverage is

directly related to the maximal Di,j. Therefore, for every pair of UAVs, it is necessary

to minimize the maximum distance or, equivalently, minimize the difference between

Di,j and Dj,i. In the simple example shown in Figure 23, there are two possible loca-

tions for bridge B1,2 labeled A and B. It is clear that if the bridge is located at position

A, distance D1,2 will be large compared to distance D2,1. In fact, UAV1 and UAV2

would be nearly adjacent to one another on the resultant tour of the ROI. However, if

the bridge at position B is selected then the difference between D1,2 and D2,1 is much

less. In the ideal case, the bridge selection makes D1,2 and D2,1 equal. By minimizing

the maximum Di,j, the minimum time to complete coverage is achieved.

Let Dtotal represent the total distance of a path that circumnavigates all of the

sub-trees, and let D(Ti) represent the distance of a path that circumnavigates the

spanning tree associated with UAVi. Then it is known that the summation of the

distance around each sub-tree is equal to the total distance:

k
∑

i=1

D(Ti) = Dtotal (6)

In the ideal case for k UAVs, the distance circumnavigating each sub-tree would be

exactly Dtotal

k
. However, in practice the spanning trees will not be perfectly balanced,
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Figure 23: Bridge A makes UAV1 and UAV2 nearly adjacent to one another while
Bridge B distributes the UAVs more equally along the resultant path.

but instead will have an error αi associated with UAVi. Equation 7 shows the distance

of a single sub-tree including the error term.

D(Ti) =
Dtotal

k
+ αi (7)

Since the summation of the individual distances around the sub-trees is equal to

Dtotal, then all of the error terms must sum to zero.

k
∑

i=1

αi = 0 (8)

As Figure 23 shows, the best bridge connection between two sub-trees might be

some error distance away from the ideal case. It can be shown that the general

distance, Di,j, between any two adjacent UAVs is given by

Di,j =
Dtotal

k
+

(

αi + αj

2
+ ǫi,j

)

(9)
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where ǫi,j is the error introduced by a bridge joining sub-trees i and j. It is

useful to note that the error terms are only dependent on sub-trees i and j, even

if the resulting path runs adjacent to an intermediate sub-tree. Since the goal is to

minimize the maximum Di,j, and the tree error terms αi and αj are already dictated

by the current set of spanning trees, ǫi,j must be minimized by selecting the best

bridge between the two sub-trees.

Joining the sub-trees can be viewed on a higher level as another minimum spanning

tree problem on a weighted graph. As depicted in Figure 24, multiple edges indicate

that more than one potential bridge exists between those vertices. Let every sub-tree

Figure 24: Each sub-tree is reduced to a single vertex and all potential bridges are
shown as edges in the graph.

be reduced to a single vertex, and let every potential bridges between the sub-trees

be represented by edges connecting the vertices. The edge weights of this graph are

represented by the error term associated with that bridge, ǫi,j. Figure 25 represents

the reduced graph with only the minimum edge connections visible.

In fact, joining the sub-trees can be formulated as Kruskal’s algorithm [38], which

then achieves the minimal spanning tree over the reduced set of nodes. Then, expand

the nodes and the result is a single minimal spanning tree with the UAVs spaced as
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Figure 25: Each sub-tree is collapsed to a single node with edge weights based on
ǫi,J .

equally apart as possible for the given set of sub-trees and starting positions. There

is no set of bridges that results in a lower maximum distance between UAVs for the

given starting locations and sub-trees. Therefore, the set of bridges selected by the

technique described in this chapter provides the minimum time to complete coverage.
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CHAPTER IV

WAYPOINT TRANSFORMATION

The previous chapter described methods for generating a continuous ground path

targeted at area coverage for an autonomous vehicle. This ground path provides

complete coverage for an unmanned ground vehicle (UGV) by visiting every cell in

the ROI. The path is not directly usable by UAVs, but can be used as a basis from

which to generate an aerial path. The module to transform ground waypoints to

aerial waypoints is described in this chapter. It is developed in a generic way so that

it is not directly tied to any particular method of ground path generation.

4.1 Justification

The existing ground path is assumed to lie within a 2D plane at ground level. Instead

of representing the route followed by the vehicle, let the path represent the route for

the centroid of the camera’s image over the ROI. That is, the vehicle should fly in

such a pattern as to keep the center point of the camera’s image along the line of the

ground path.

The flight dynamics of a fixed wing UAV result in a non-linear coverage pattern

while the vehicle is turning. Therefore, it is necessary to transform the ground path

into a set of aerial waypoints that guides the UAV. Merely raising the existing path

to flight elevation is not adequate. However, maintaining the new route within a 2D

plane is appropriate for aerial vehicles provided that the aerial vehicle operates within

a limited range of altitudes that do not follow the terrain’s geographic features [5].
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4.2 Single Waypoint Transformation

The method to find an aerial waypoint from which to view a particular ground location

is detailed in this section. Figure 26 offers a visualization of the angle terms as they

are used in this section. Beginning with the upper left image and continuing clockwise,

the UAV’s pitch angle is represented by θ, the roll angle is φ, and the yaw or heading

angle is ψ.

Figure 26: Pitch, Roll, and Yaw angles depicted for a Predator UAV.

The yaw, pitch, and roll rotation matrices for the camera are shown in the following

equations:

Yc =













cosψc sinψc 0

− sinψc cosψc 0

0 0 1













(10)

Pc =













cos θc 0 − sin θc

0 1 0

sin θc 0 cos θc













(11)
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Rc =













1 0 0

0 cosφc sinφc

0 − sinφc cosφc













(12)

where θc is the mounting angle of the camera with respect to the vehicles frame.

θc = −90◦ indicates that the camera is facing left, θc = 0◦indicates forward facing, and

θc = +90◦ indicates that the camera is right facing relative to the forward direction

of the UAV. ψc is the camera’s yaw angle with ψc = 0◦ pointing directly down and

ψc + 90◦ pointing in the direction of travel of the UAV. Finally, the camera’s roll

angle, φc, is assumed to be 0◦ for this application. The roll angle is important for

interpreting the resultant images and for tasks such as geo-registration. However, the

camera’s roll angle does not affect waypoint positioning.

For the UAV,

Yuav =













cosψuav sinψuav 0

− sinψuav cosψuav 0

0 0 1













(13)

Puav =













cos θuav 0 − sin θuav

0 1 0

sin θuav 0 cos θuav













(14)

Ruav =













1 0 0

0 cosφuav sinφuav

0 − sinφuav cosφuav













(15)

where ψuav is the yaw or heading angle, θuav is the pitch angle, and φuav is the roll

angle.
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To find the transformed waypoint, let V represent a unit vector pointing straight

out of the camera’s lens. Vector V is, necessarily, pointing directly at the center pixel

of the camera’s image. The location of the camera needs to be translated and rotated

such that the center pixel falls on the desired line path on the ground. Let W ′

j be

an aerial waypoint from which the camera views the single waypoint, Wi. Equation

16 transforms V relative to the vehicle’s frame, and then transforms the vehicles

frame with respect to the global ground frame, such that V points toward the ground

location specified by Wi.

V ′ = [Yuav × Puav ×Ruav]× [Yc × Pc ×Rc]× V (16)

The final step in finding the new waypoint is to scale and translate V as shown

in Equation 17. Now W ′

j represents the location where the UAV needs to be for the

ground point to be in the center of the camera image.

W ′

j =
V ′

h
−Wi (17)

4.3 Whole Path Transformation

Individual waypoints can now be re-positioned, but more planning is required to

transform the entire path. The mapping from ground waypoints to aerial waypoints

is a one-to-one mapping only in the case of a straight line. For turns, additional

waypoints need to be inserted to ensure a smooth resultant path. Therefore, turns in

the underlying ground path need to be identified and located.

Let W be the set of ground waypoints representing the current ground path and

let Wi represent the ith waypoint in the set. At least three waypoints need to be
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examined to determine the type of turn described by the waypoints. Utilizing four

waypoints allows further path optimizations to be implemented. The turns in the

ground path are identified and classified by considering a local subset of only four

waypoints, (Wi,Wi+1,Wi+2,Wi+3).

4.3.1 Types of Paths

The set of four waypoints is divided into two overlapping sets of three waypoints.

Each set of three waypoints is labeled as one of three classifications: straight line,

simple left, or simple right. Figure 27 shows an arbitrary set of three waypoints in a

2D plane. Arrows in the figure depict direction of travel and relevant angles are also

labeled.

Figure 27: Three arbitrary waypoints in 2D space.

For any three arbitrary waypoints, the following equations find the angles α1, α2,

and α3 (where X and Y indicate components of the ground coordinate grid).

α1 = tan−1

(

Y (Wi+1)− Y (Wi)

X(Wi+1)−X(Wi)

)

(18)

α2 = tan−1

(

Y (Wi+2)− Y (Wi+1)

X(Wi+2)−X(Wi+1)

)

(19)

α3 = π + α1 − α2 (20)
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Assuming that all the angles are wrapped to the interval 0 ≤ α ≤ 2π, then α3

is used to classify the type of turn indicated by this set of waypoints. A left turn is

indicated by 0 < α3 < π and π < α3 < 2π indicates a right turn in the ground path.

If α3 = π then the three waypoints are on a line.

If the distance between Wi+1 and Wi+2 is greater than the turning radius, R,

then this is classified as a simple turn with α3 indicating the direction of the turn.

However, if the distance is less than R, the next set of waypoints, (Wi+1,Wi+2,Wi+3),

is also considered. If α3 for the second set of waypoints falls within the same range as

the first set then it is classified as a compound turn. The following sections describe

how the waypoints are modified for each type of turn.

4.3.2 Straight Lines and Simple Turns

The new aerial waypoints must be calculated based on their previous classification.

The most simple classification is that of a straight line containing several waypoints.

The transformation to aerial waypoints consists of repeated applications of the single

waypoint transformation with the UAV’s heading set equal to α1.

The distance, Dxy in the x-y plane betweenWi andW ′

j is important in determining

the number of additional waypoints necessary to accommodate turns. As noted in

Equations 16 and 17, this linear distance is dependent on the flight altitude of the

UAV as well as on the specific geometries of the associated camera.

The simpler case occurs when the turning radius of the UAV is less than the linear

distance, as depicted in Figure 28. In this case, Wi is transformed with ψuav = α1

and Wi+2 is transformed with ψuav = α2. A temporary waypoint, W0, is useful in

constructing the remaining points for the simple turn. If one were to imagine two
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lines, one passing through W ′

j with angle α1 and the other passing through W ′

j+3

with angle α2, then W0 is the point where these two lines intersect. W ′

j+1 and W ′

j+2

represent the waypoints where a circle of radius R is tangent to each of the lines.

Figure 28: If the turn radius of the UAV, R, is small enough a simple left turn is
applicable.

Equations 21 and 22 are used to calculate the locations of the intermediate two

waypoints.

X(W ′

j+1) = X(W0) + T ∗
R ∗ cos (α1)

tan (α3/2)

Y (W ′

j+1) = Y (W0) + T ∗
R ∗ sin (α1)

tan (α3/2)
(21)

X(W ′

j+2) = X(W0)− T ∗
R ∗ cos (α2)

tan (α3/2)

Y (W ′

j+2) = Y (W0)− T ∗
R ∗ sin (α2)

tan (α3/2)
(22)

T is −1 for a left turn and +1 for a right turn. The center for the circle that describes
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the turn radius of the UAV follows.

Xcc = X(W ′

i+1) + T ∗R ∗ sin (α2)

Ycc = Y (W ′

i+1)− T ∗R ∗ cos (α2) (23)

Figure 29 shows the case when the UAV’s turning radius is larger than Dxy.

Figure 29: If the turn radius of the UAV, R, is large then additional waypoints are
necessary to ensure that the camera’s image follows the ground path accurately.

In this case the UAV must make a wider turn in the opposite direction to ensure

that the camera’s footprint lines up correctly with the ground path. This is also

necessary, for example, when a UAV outfitted with a rightward facing camera makes a

left turn. Obviously, these turning maneuvers add cost to the overall completion time.
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Therefore, minimizing the number of turns increases performance, but completeness

of coverage should not be compromised.

The previously defined equations are again employed to locate the new waypoints

in this example, with the only difference being that the sign of T is inverted.

4.3.3 Compound Turns

What happens if there are two turns in close proximity? If the turns are left then

right, or right then left they are treated just like individual 90 degree turns. On the

other hand, if there are two right-hand turns or two left-hand turns adjacent to one

another, then a special u-turn case is needed.

For the u-turn case, the UAV can fly the circumference of a circle if it is within

the flight envelope of that UAV. If not, it must fly along the circumference of a circle

that is positioned outside the immediate ROI, as shown in Figure 30. This ensures

Figure 30: A compound turn has a shorter path than if the two turns were connected
by a cloverleaf.
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coming back into line with ground path after temporarily leaving it. Figure 31 shows

the simulated trajectory of a UAV using all of the previously described methods.

Figure 31: Simulation of the path of a UAV showing straight lines, simple turns,
and compound turns.
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CHAPTER V

COMPLEXITY ANALYSIS

The previous chapters describe a useful algorithm to generate a ground path for

several vehicles and to transform that path into a set of suitable aerial waypoints for

UAVs. For this algorithm to be practical, it needs to be efficiently scalable in terms

of the size of the region to be examined as well as in the number of UAVs assigned to

the surveillance task. The algorithm must scale for an increasing number of vertices

as the size of the ROI increases as well as for an increasing number of UAVs for

improvements in performance.

Computational complexity theory in computer science describes the scalability

of an algorithm. The results obtained from a careful analysis are relevant to how

well a given algorithm scales in a practical application. The target application for

the algorithms described in this document is surveillance by small-sized UAVs. Due

to the limited amount of on-board computational power typically found on small

UAVs, it is especially important to keep the algorithm’s complexity low, or to utilize

heuristics to ensure that the execution time remains reasonable.

5.1 Assumptions and Reasoning

The following paragraphs describe the computational complexity analysis of the al-

gorithm presented in this document. The basic assumptions are that a generic one-

processor random-access machine (RAM) model is used. No concurrent operations

are allowed in this analysis. Let G(e, v) represent a graph, G, with vertices, v, that
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are connected by edges, e. Let E represent the total number of edges, e, and let V

represent the total number of vertices, v. The primary inputs for this analysis are

the total number of UAVs, K, and the total number of vertices, V , in the graph used

to generate the spanning tree. Since the size of the ROI and the camera’s geometry

both are used to determine the total number of vertices, they are indirectly inputs as

well.

The upper bound of the running time of the algorithm is the most pertinent metric

of this analysis, thus it is expressed in the common O-notation. For a given function

f(n), the O-notation of that function, O (f(n)) = g(n), indicates that there exists

positive constants c and n0 such that 0 ≤ g(n) ≤ c · f(n) for all n ≥ n0. For example,

Figure 32 displays this relationship graphically for the function g(n) when f(n) = n2.

n0

c · n2

g(n)

Figure 32: An example of O-notation: Let g(n) = O(n2), then g(n) has an upper
bound defined by c · f(n) for all n ≥ n0
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5.2 Parameterized Tile Approach

A benefit of the parameterized tile approach is that much of the computation is

inherent in the tiles themselves.

The parameterized tile approach uses heuristics to divide the surveillance region

into cells and then assign one cell per UAV. This approach does not guarantee an

optimal path solution, but it requires little computational overhead compared to other

methods.

5.2.1 Segmentation and Tile Selection

The shape of the available tiles plays a role in the segmentation process. The heuristics

that affect the tile selection are mainly related to the camera’s geometry and mounting

angles. The first tile is always a perimeter tile if there are multiple UAVs. The ratio

of the perimeter distance to the interior area determines how many perimeter rings

are selected before dividing the remaining interior into other tile shapes. Since one

tile is assigned to each UAV, the segmentation process is linear in the number of

UAVs, O(K).

With the runtime for the segmentation process known, the run-time for each tile

should be analyzed. The perimeter tile runs in constant time, O(1), for ROIs that

have a regular shape. If the ROI has jagged edges or an irregular shape, in the

maximum-time case it could be linear in the number of vertices in the graph, O(V ).

The lawnmower tile also generates a regular pattern. Its run-time in the maximum-

case would cover the entire ROI. Therefore, its run-time is also linear in the number

of vertices, O(V ). Using a similar approach, the spiral tile also could run in linear

time, O(V ), if required to span the entire ROI. Since one tile is assigned to each UAV,
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the maximum overall run time for parameterized tiles is O(V K).

5.3 Spanning Tree Approach

The spanning tree approach utilizes multiple steps that will be analyzed indepen-

dently. Then, the results are combined for the completed analysis. First, the region

is segmented into uniformly sized cells. Then, a directed spanning tree is generated

for each UAV over the resultant graph. From these disjoint spanning trees, ground

waypoints that circumnavigate the trees are collected to achieve an effective ground

path. After this step, the disjoint trees are connected via bridges such that the UAVs

are equally spaced out along the resultant path. With the new bridge connections

in place, the order of the ground waypoints is once again collected. Finally, aerial

waypoints are generated from the ground path. The following sections analyze each

major portion of the algorithm.

5.3.1 Segmentation of the Region of Interest

The ROI is segmented into regular rectangular cells whose sizes are determined by

the footprint of the UAV’s camera projected onto the ground. Each cell is represented

by a single vertex in a graph, G. During the segmentation process, the vertex for

every cell is visited one time to establish the initial edge connections in the graph.

Assuming a rectangular arrangement, every vertex is connected to its neighbor to the

right and its downward neighbor, as shown by Algorithm 5.1. This generates a graph

with at most four connections per vertex. This is also true for ROIs with irregular

shapes, that no vertex has more than four edges.

For a regular region, out of bounds vertices are those that lie past the last row or

column. For an irregular ROI, out of bounds is any portion not contained entirely
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Algorithm 5.1 Make Edge Connections

r ← number of rows
c← number of columns
for n = 1 to length(vertices) do

add edge from vertex[n] to vertex[n+ r] unless vertex[n+ r] is out of bounds
add edge from vertex[n] to vertex[n+ 1] unless vertex[n+ 1] is out of bounds

end for

within the desired ROI. Vertices at the perimeter of the region or adjacent to an

obstacle will have fewer than four-connected edges. Additional labels are added to

the vertices and edges which aid in computation later in the algorithm.

Since each vertex, v, is visited exactly one time to create the edge connections,

the computational complexity is linear in V , O(V ). Adding labels is also a linear

function of vertices, V , and edges E. The edge connections and labeling functions

are combined to run in O(V + E).

5.3.2 Building the Directed Spanning Trees

The directed spanning tree is built upon two sub-functions, GatherSeedV ertices()

and AddV ertexToTree(). These two sub-functions must be analyzed independently

to understand their contribution to the complexity of the more general algorithm.

The purpose of the first sub-function, GatherSeedV ertices() is to generate a list of

vertices that are one-connected to a UAV’s spanning tree but are not connected to

any other UAV’s spanning tree. The pseudo-code for GatherSeedV ertices() is shown

in Algorithm 5.2.

At most there can be four vertices connected to any vertex. Therefore, the running

time for this portion is linearly bounded by the number of vertices in the UAV’s

spanning tree. On the first iteration, there is only one vertex in the tree. One
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Algorithm 5.2 Gather Seed Vertices

for n = 1 to length(Tree) do
if out degree(vertex[n]) > 0) then

for each vertex, v connected to vertex[n] do
if v /∈ anyTree then
seed vertices← v

else
remove edge, e, from vertex[n]

end if
end for

end if
end for

additional vertex is added to the tree on each successive iteration. Therefore, the

number of vertices is dynamically variable through the running of the algorithm. On

average, the maximum number of vertices is V
K

, where V is the total number of vertices

and K is the number of UAVs. Therefore, a conservative estimate is that it has a

running time of O( V
K

), but in the maximum case the running time could be O(V ).

Upon completion, Algorithm 5.2 produces a list of vertices that are one-connected to

the UAV’s tree. The next vertex added to the UAV’s spanning tree must come from

this list of choices.

Algorithm 5.3 Add vertex to Tree

if length(seed vertices) > 0 then
for n = 1 to length(seed vertices) do

find min distance from vertex to every other UAV’s tree
end for
for n = 1 to length(seed vertices) do

find max of the min distances
end for

end if
Tree←MinMaxV ertex
remove edges to this vertex
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The next sub-function is listed in Algorithm 5.3. The purpose of this portion is

to find the best vertex to add to the UAV’s tree from the list of candidate vertices

produced by GatherSeedV ertices(). The minimum distance from this vertex to every

other UAV’s tree is calculated. From these distances, the maximum value is chosen.

Therefore, at least K ∗ length{seed vertices} steps are necessary. The number of

seed vertices is at most four times the number of vertices in the tree. This is expected

to run in less than O(V − V
K

) but in the maximum case could be O(V K − V ). The

higher level function built from these two sub-functions is displayed as Algorithm 5.4.

Algorithm 5.4 Build Directed Spanning Tree
n← 1
while nAssigned < (nV ertices− nUAV s) do
seed vertices← gather potential vertices for UAV [n]
result← add vertex from seed vertices to tree[n]
if result > 0 then
nAssigned← nAssigned+ 1

end if
n← n+ 1
if n ≥ nUAV s then
n← 1

end if
end while

This algorithm is not complete until every vertex in the ROI is assigned to the

spanning tree of one of the UAVs. At which time, the number of vertices assigned

to every UAV is approximately equal. Therefore, at a minimum it must run V −K

times since each UAV begins with a single vertex in its tree. For each iteration of

the loop, it attempts to add a vertex to a UAV’s spanning tree, cycling through the

UAV’s each iteration. In the maximum-time case, all but one UAV could be boxed

in such that the algorithm must loop through K times for each additional vertex
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Table 1: Analysis of the Directed Spanning Tree algorithm and its sub-functions

Function Name Nominal-Time Maximum-Time

GatherSeedV ertices() V
K

V
AddV ertexToTree() V − V

K
V ·K − V

BuildDirectedSpanningTree() V +K V ·K
Combined V 2 +K · V V 2 ·K2

to be added, which results in V ∗ K iterations. However, precautions are taken in

the positioning of the UAVs to prevent such a situation. Therefore, in practice, the

expected number of iterations is (V +K).

Table 1 summarizes the analytical results for nominal and maximum-time sce-

narios. The number of vertices, V , dramatically outpaces the number of UAVs, K.

Therefore, it is clear that the runtime is bounded by a second order polynomial func-

tion for all cases.

5.3.3 Generating the Ground Waypoints

The ground path is a set of waypoints that circumnavigates the UAV’s spanning tree.

The function GetNextWaypoint() shown in Algorithm 5.5 is called repeatedly in the

formation of this path. Since at most four edges are connected to any given vertex,

this has a constant running time, O(1).

Algorithm 5.5 Get Next Waypoint

for i = 1 to out edges(v) do
label blocked transitions

end for
if transition 6= blocked then
nextwaypoint← default

else
nextwaypoint← alternate

end if
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The function to generate the ground waypoints, depicted in Algorithm 5.6, loops

through all the waypoints in the UAV’s tree. Since there are typically V
K

vertices, it

is expected to run in O( V
K

). However, it could be as much as O(V ) in the maximum

case.

Combining the constant run-time of getNextWaypoint() with the nominal or

maximum runtime for Algorithm 5.6 results in the same run times.

Algorithm 5.6 Generate Ground Waypoints

for i = 1 to K do
p1← startposition
while p2 6= p1 do
wpt← getNextWaypoint()
p2← wpt

end while
end for

The previous functions created K sub-trees, one for each UAV, and determined

a Hamiltonian path circumnavigating each of the K sub-trees. The goal of the

BuildBridges() routine is to interconnect the K sub-trees with (K − 1) edges to

create a single Hamiltonian path that traverses the entire ROI. The K UAVs should

be equidistant along this resultant path. That is, Di,j along the path for all i 6= j

should be equal, where Di,j represents the distance from UAVi to UAVj along the

path. Since perfect equality is not likely, instead the goal is to minimize the error.

5.3.4 Connecting the Bridges

The BuildBridges() function adds a test bridge to the tree and then calculates

the error between D1,2 and D2,1. The number of tests could be up to 4 ∗ V iterations

of up to V tests. In practice, it is more likely to be O(V 2

K
) since the nominal number

of vertices in each tree is V
K

.
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Algorithm 5.7 Build Bridges

for i = 1 to length(UAV s) do
for j = i+ 1 to length(UAV s) do
distance[k]← test bridges()
bridge[k]← edge(i, j)
k ← k + 1

end for
end for
sort distance from min to max
for i = 1 to length(UAV s) do

add bridge[i] to tree
end for

5.3.5 Generating the Aerial Waypoints

After completion of the ground path, the final step is to transform the waypoint to

aerial waypoints. This requires a constant computation for each vertex, v. Therefore,

it runs in O(V ).

5.3.6 Complexity Conclusions

The parameterized tiles were shown to run in O(V ·K) time. Table 2 summarizes the

major contributions of complexity to the spanning tree method. The nominal-time

case assumes that the final disjoint spanning trees are approximately equal. If this

assumption holds true, then the conclusion is that this algorithm runs in second order

polynomial time with respect to V and linear time with respect to K. The measured

results confirm this expectation and are displayed in Chapter 7. The maximum-time

could occur instead if the initial positions of the UAVs are unfavorable. However, the

algorithm specifically prevents this situation by removing unfavorable initial starting

positions.
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Algorithm 5.8 Test Bridges

for i = 1 to length(vertices) do
for each out edge of vertex[i] do

if edge is connected to target UAV’s tree then
test[k]← edge
k ← k + 1

end if
end for

end for
for i = 1 to length(test) do

add test[i] to the tree
D1,2 ← distance from UAV1toUAV2 along circuit
D2,1 ← distance from UAV2toUAV1 along circuit
diff ← abs(D1,2 −D2,1)
if diff < min then
min← diff

end if
remove test[i] from the tree

end for
return min(diff)

Table 2: Summary of the complexity contributed by various subfunctions of the
spanning tree algorithm

Function Name Nominal-Time Maximum-Time

GatherSeedV ertices() V
K

V
AddV ertexToTree() V − V

K
V ·K − V

BuildDirectedSpanningTree() V +K V ·K
Combined V 2 +K · V V 2 ·K2

GroundWaypoints() V
K

V 2

BuildBridges() V 2

K
V 2

AerialWaypoints() V V

Total Combined O(V 2 +K · V ) O(V 2 ·K2)
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CHAPTER VI

A CASE STUDY

A portion of the flight testing was performed in conjunction with the Defense Ad-

vanced Research Project Agency’s (DARPA) Heterogeneous Urban Reconnaissance,

Surveillance, and Target Acquisition (RSTA) Team (HURT) program. The path plan-

ning component that generates waypoints for this case study is closely tied to the one

Path Planner (TOPP) which is responsible for assigning sectors to the individual

UAVs. Both modules are described in this chapter.

6.1 Problem Description

The system developed for the case study was designed to accommodate the follow-

ing problem description. The operations involve teams of up to 20 UAVs in some

combination of real-world and simulated agents. The UAVs are required to perform

missions over a relatively small airspace of 0.5 to 3.5 square miles with an altitude

ceiling of 1,000 feet. The ROI may contain numerous no-fly-zones (NFZs) which are

to be avoided by the UAVs. The altitude of an individual UAV might be changed

during the mission in response to a reconnaissance request. Altitude is the primary

deconfliction mechanism among the UAVs.

During the mission, each UAV must be able to operate safely, even if it loses

communication with the ground station. The vehicles are capable of flying to and

loitering at a rally point when the communication signal is lost. Therefore, the rally

point must be placed in a location such that the vehicle can fly to the rally point
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without conflicting with any other vehicle or NFZ. The path planner is responsible

for determining the proper location of the rally points during the mission.

6.2 Path Planning Approach

The approach for path planning is decomposed into two phases, sector generation and

path generation. In the sector generation phase, assigned reconnaissance, surveillance,

and target acquisition (RSTA) service requests (RSRs) are sent to TOPP from the

planning and execution (PLEX) module incrementally. Each time a new RSR is

input into TOPP, an attempt is made to generate a set of sectors to fulfill all the

RSRs. This phase must be performed very rapidly (in 10-50 ms) to allow PLEX to

assign a different vehicle to the RSR in the cases when a feasible set of sectors is not

found. If a set of feasible sectors is generated, the path planner can move into the

path generation phase at the request of PLEX. In this phase, a set of waypoints is

generated that will allow the vehicle to move in the airspace while staying within its

assigned sector.

6.3 Sector Generation

The sector generation approach is summarized in Figure 33. A set of assigned surveil-

lance requests is first input into the coarse RSR route generator. Here, a set of anchor

points is generated that will allow the air space to be allocated for the execution of

the requested surveillance task. For example, if a request for broad area surveillance

is input, a set of anchor points is generated that forms the vertices of a polygon de-

scribing the coverage area. These anchor points are intended to form the waypoints

of a rough path, which will then drive sector generation.

The anchor points are then sent to the path manager. The path manager is a state
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Figure 33: Overview of the sector generator

holding system which keeps track of the current path knowledge. It also manages the

assignment of paths to aircraft.

Each time the airspace constraints change, either through a new RSR or NFZ,

the path manager sends all the paths for each aircraft to the fill path gaps module.

In this module, path segments are inserted to ensure each aircraft has a continuous

path. These inserted paths are parameterized by two anchor points, a starting point

and an ending point.

After a temporally continuous path is generated for each vehicle, the path is sent

through a feasibility check. Here, each path segment is checked to ensure that the

ending point of one path is the same as the starting point of the next. After this

check, the path segments are checked to ensure that flying from the starting point to

the ending point will not require the aircraft to go faster than its specified maximum

speed. If a violation is detected, the time alloted for the path segment will be increased

if possible. If it is not possible, the RSR that caused the creation of the path will be

canceled.
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After a continuous, feasible path is generated for each aircraft, sectors are gener-

ated for each portion of the path. The sectors are generated by placing a rectangle

around the path and then adding a safety margin to the rectangles. These sectors

are then sent to the sector manager which is similar to the path manager. However,

unlike the path manager the sector manager also keeps track of NFZs.

After all of the sectors are generated, they are checked for conflicts. If a conflict

is found, the two conflicting sectors are sent to the deconflict sectors module. The

deconfliction is performed by designating one of the sectors as the mover, while the

other sector is designated as the pusher. First, the mover is examined to determine

if its anchor points are on opposite sides of the pusher. If they are, then the sector

is resized and moved in the orthogonal direction. For example, if the mover sector is

created to move an aircraft from the east side of the pusher sector to the west side of

the pusher sector then the mover is resized and moved in the north or south dimension

depending on which side is closest. If this resolution results in a conflict with another

sector, then the mover is moved in altitude. If this resolution also results in a conflict,

then the sector is moved in the opposite direction of the original movement. If this

resolution still results in a conflict, the newest RSR is canceled within TOPP and

PLEX is notified. Once a sector is moved, its corresponding path is moved through

the path manager, and the new, total path is checked for gaps, and continuity.

If the mover sector did not cross the pusher entirely, then a different set of de-

confliction rules is used. First, a local grid is generated around the pusher sector as

shown in Figure 34 to form candidate regions for possible movements of the mover

sector. Then, the angle between the pusher and mover sectors is computed. This an-

gle is used to determine the order in which the candidate regions are searched for any
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additional conflicts. For example, if the mover region is to the north of the pusher

region then the north candidate region will be searched first, followed the region

overhead or below, then the south. After the order is determined, the mover sector

is tested in each candidate region following the previously determined search order.

As soon as a region is identified where no other conflicts exist, the mover sector is

moved to the open region. If no open regions are found, the newest RSR is canceled

within TOPP and PLEX is notified. Once a sector is moved, its corresponding path

is moved through the path manager, and the new, total path is checked for gaps, and

continuity.

Figure 34: Local grid generated for deconfliction

After sector generation, TOPP returns whether the RSR was inserted or not.

TOPP can then provide further path information to PLEX such as, how long will it

take for an aircraft to travel to a specific RSR.
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6.4 Broad Area Surveillance Assignment

When PLEX sends an assigned broad area surveillance RSR, the sector generator of

TOPP also returns an estimate of the coverage rate that would result if the assigned

vehicles were used to accomplish the RSR. The estimate is based on the aircraft’s

speed and sensor footprint. Since, the entire coverage path is not yet generated, the

estimate will be some fraction of the nominal, level flight coverage rate. PLEX can

use this information to decide if more vehicles need to be assigned to the RSR, or if

the user’s requirements have been met.

When assigning vehicles to an altitude for broad area surveillance, TOPP will try

to keep vehicles at their current altitude. If the current altitude will not meet the

RSRs resolution requirements, or if the portion of the altitude layer is occupied by

NFZs, TOPP will search for the nearest available altitudes. If the portion of the

current altitude layer is occupied by another vehicle servicing the same broad area

surveillance RSR and all of the other altitude layers are occupied, TOPP will place

multiple vehicles in the same altitude layer.

6.5 Path Generation

After a set of sectors has been assigned for each aircraft, waypoints must be generated

to form the path an aircraft is to fly. For these operations it is assumed that three

types of paths are required, loiter, point-to-point, and broad area surveillance. Each

of these path-types are constrained by their entry point, their exit point, and the

sector specified for the aircraft.

The loiter path is anticipated to be used when observing a stationary ground

target from a rotary-winged vehicle and as a holding pattern when a vehicle is not
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tasked. The path is specified by the sector generator using the same entry and exit

points, and a sector that is spatially small. For rotary-winged vehicles, the path will

consist of a single waypoint where the vehicle is to hover. For fixed-winged vehicles,

the path will consist of a single, loiter type waypoint.

The point-to-point path is anticipated to be used to get a vehicle from one point

to another. The sector generator will specify the entry point and the exit point, which

will become the first and last waypoint of the path. The location middle points of the

path are based on the aircraft capabilities. However, in most cases it is anticipated

that the path will simply consist of the two waypoints.

6.6 Waypoint Patterns

It is desired to utilize template patterns in the case study for their predictability and

calculation efficiency. The templates include single pass, double pass, lawnmower,

spiral, and circumference patterns.

6.7 Multi-Vehicle Coverage Planner

One goal of the case study is for a UAV or a team of UAVs equipped with video

cameras to perform visual surveillance over a region of interest. It is assumed that

the PLEX or TOPP modules will process the Broad Area Surveillance RSR and assign

vehicles to a given altitude and sector in which the vehicles may operate. Then, the

Multi-Vehicle Coverage Planner (MVCP) generates a series of waypoints for each

vehicle to efficiently view the entire region of interest. The generated waypoints

should ensure complete coverage of the region. If a single UAV is assigned to the

task then the resulting path will cover the entire region. If multiple vehicles are

assigned then the resulting paths should demonstrate co-operative behavior among
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the vehicles. An additional goal is to minimize turning in the path generation so that

the resulting images can be more easily incorporated into an image montage.

6.7.1 Pattern-Based Approach

The approach used for generating vehicle trajectories leverages template patterns

to reduce the computational overhead of the MVCP. These patterns correspond to

the desired path of the camera footprint along the ground terrain. The system is

extensible to accommodate many pattern templates, however a few patterns proved to

be practical. As shown in Figure 35, the lawnmower pattern is simply a repeated out-

and-back configuration easily associated with mowing one’s lawn and the perimeter

pattern follows the edge of the region of interest. The pattern templates are designed

to scale with the dimensions of the assigned sector as well as the camera parameters

of the UAV.

Figure 35: A typical lawnmower pattern and a perimeter pattern.

The path generated for a given vehicle is dependent on the capabilities of all the

vehicles that are assigned to the task. UAVs with side-mounted video cameras are

preferably assigned a perimeter pattern. The MVCP maintains a snapshot of which
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areas have or have not been assigned to coverage. If a perimeter pattern is assigned

to a vehicle then the area which will be covered by this pattern is subtracted from the

ROI. The last vehicle to be assigned a pattern will always fly a lawnmower pattern

to ensure complete coverage.

The previously mentioned patterns are not suitable for small area coverage, how-

ever. For small regions (where small is relative to the size of the camera footprint)

a straight line or a two-pass pattern is used to view the area with a UAV equipped

with a forward facing camera. These patterns assure that a vehicle travels far enough

away to guarantee viewing the desired region on the return pass.

After the ground pattern is established for each vehicle, a reverse transformation

is performed to generate the waypoints that the UAV must follow to maintain the

camera footprint in the desired ground location. On occasion, the ideal flight path is

blocked by a no-fly zone (NFZ) or is outside of the vehicle’s assigned sector. Therefore,

a final check ensures that all of the waypoints are located within the allowed flight

space.

Results from the flight tests are reviewed in Chapter 7.
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CHAPTER VII

RESULTS

The system described in the previous chapters was flight tested in a case study.

Results of that case study led to recommendations for improvement in the overall

system design. These improvements led to a new system based on minimum spanning

trees. Results from the case study and simulation results of the spanning tree system

are presented in the following paragraphs.

7.1 Case Study Results

Flight testing was conducted using Aerovironment Pointer, Raven and Wasp UAV

platforms, two of which are shown in Figure 36. A total of four UAVs were flown

(a) (b)

Figure 36: (a) Aerovironment Pointer UAV platform. (b) Aerovironment Raven
UAV platform.

simultaneously on coverage missions. Up to 16 additional simulated UAVs were added

to the mix of real vehicles. Figure 37 displays an early flight test in which a single
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Figure 37: A single UAV is commanded to perform surveillance over a small region
during the case study flight tests.

UAV was commanded to perform coverage of a single building within a small region.

The zig-zag lines indicate the boundaries of the desired coverage area. The waypoints

are displayed as the large octagon and the camera’s view is projected onto the ground

in the center of the image. The UAV performed its coverage function in the mission

scenario well.

Figure 38 displays another flight test with three UAVs in the air performing cover-

age while a fourth UAV is preparing to launch. Again, the coverage region is bounded

by the zig-zag line. Since this region was small compared to the size of the camera’s

projection, only a circumference pattern was assigned to the UAVs. A ground vehicle

is also displayed that was used for tracking purposes.
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Figure 38: Image from the ground station of live flight tests during the case study.

7.2 MVCP Analysis / Evaluation

During the case study, the MVCP successfully planned routes for multiple vehicles

for the broad area surveillance RSRs. In test flights, up to four UAVs were flown

simultaneously. The strength of the tile-based system is its low complexity and low

computational overhead.

For small regions of interest the system generated appropriate trajectories for the

UAVs. For larger areas the generated paths ensured complete coverage of the desired

area. The orientation of the generated paths was chosen along the longer axis of the

region which resulted in fewer number of turns.
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7.3 Simulation Results

After successful flight testing with the template based system, numerous simulations

were performed to test the effectiveness of the spanning tree-based system. The ROI

was simulated at various sizes roughly equivalent to 1km2, 3km2, and 10km2. The

remainder of this section refers to these dimensions simply as a small, medium, or

large ROI. The UAVs flew at a simulated velocity of 15m/s. The region segmentation

process results in a graph structure that is abstracted away from dimension units.

Therefore, the number of nodes in the graph is also utilized as a metric relating to

system performance.

7.4 Coverage Time

The amount of time needed for complete coverage is governed by the maximum dis-

tance between UAVs along the flight path. Figure 39 displays the average maximum

distance as the number of UAVs increases for a large ROI. As the number of UAVs

increases, the likelihood that one or more of the UAVs will become boxed in as the

planning routine runs also increases. There are twenty-five simulations for every value

of K, where K represents the number of UAVs and K ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25}.

The graph on the left displays the variation in average distance between UAVs for

randomized initial positions of the UAVs. On the right, the graph shows the re-

sults of an initially randomized start position with the protective positioning routine

activated. It is clear that the variation of the distance is reduced by this procedure.

Achieving equal spacing between the UAVs minimizes the amount of time that a

given location in the ROI is not actively viewed. Figure 40 shows the average path

length between UAVs for a large ROI as the number of UAVs is swept from 1 to 25.
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Figure 39: The left graph displays the additional variation in the max distance
between UAVs when one of the UAVs is cornered during planning. The right graph
displays the distances after initial placement correction is applied.

The green markings indicate a perfect path that include no additional turns. The

variation in path length is larger for a single UAV than for more UAVs. The error

bars indicate plus or minus one standard deviation. Figure 41 displays the same

information for a medium sized ROI.

Perhaps more important than the average value is the maximum value of the UAV

to UAV distance for a given test run. For the multi-UAV case, the total coverage time

is governed by the vehicle that must travel the farthest distance. The entire region is

not completely viewed until the longest distance between UAVs has been traversed.

Therefore, the curve is shown again with the maximum values instead of the average

values. It can be seen that there is greater variation in the maximum values, which

is expected.
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Figure 40: Results of individual path length for various numbers of UAVs over a
1600 node graph.
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Figure 41: Results of individual path length for various numbers of UAVs over a
500 node graph.
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Figure 42: Results of individual path length for various numbers of UAVs over a
200 node graph.

Figure 42 displays the mean distance along the path from UAVi to UAVj for ad-

jacent UAVs. The ROI is represented by a 1km2 rectangle without any obstacles

present. There are about 200 graph nodes for this simulation. There is greater varia-

tion for the case of a single UAV than when there are more UAVs in the simulation.

The curve displayed in the graph clearly shows the performance benefit of adding

additional UAVs. However, it also highlights a point of diminishing returns where

the additional UAVs do not significantly improve performance.

The simulation engine shown in Figure 43 was used to set up a surveillance sce-

nario. Two tanks were stationed around an artificial urban setting. One tank was

set in motion following the roads, while the other tank remained at rest. All of the

simulated UAVs operated at a height of 70 meters from the ground. The user se-

lects the number of UAVs to operate over the region and several time quantities were

measured. The time to first contact of either tank and the time required to complete

surveillance of the entire region was measured for a varying number of UAVs.

The results of the time to capture simulation are displayed in Figure 44. The time

82



Figure 43: Depiction of a UAV and a tank in an urban environment as seen during
visualization of the simulation.

required to locate a target within the region is a random distribution with an upper

bound equal to the maximum time required to achieve complete surveillance.

A different visualization is displayed in Figure 45 that displays more detailed

information about the spanning trees, paths, and camera projections. The UAV, its

camera projection, and its respective sub-tree share the same color.

7.4.1 Computation Time

Chapter 5 details the complexity analysis of this algorithm. Figure 46 and 47 display

measured values of computation time. For these graphs the number of nodes was

held constant while the number of UAVs was increased. With the exception of the

single UAV case, it can be seen that the computation time increases approximately

linearly with the number of UAVs. These results agree with the complexity analysis

from Chapter 5. For the largest test cases, with 25 UAVs and a 1600 node graph, the

83



0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180
Time until capture for UAVs on a surveillance mission

Number of UAVs

T
im

e
 u

n
ti
l 
c
a
p
tu

re
 (

s
)

Figure 44: The time to capture a target is a random distribution bounded by the
maximum time to complete coverage.

Figure 45: Simulation of five UAVs over a small area showing the color coded
spanning trees, bridge connections, and camera projections.
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algorithm ran in about 10 seconds. For a test cases on medium or small ROIs, the

planning portion required one second or less to compute all of the waypoints.
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Figure 46: Average UAV to UAV distance along the path for varying numbers of
UAVs over a 200 node graph.

Figure 47 displays the number of function calls as the size of the ROI is increased

for a fixed number of UAVs. The result is a second order polynomial, which also

agrees with the complexity analysis from Chapter 5.

Figure 47: The graph on the left shows the measured execution time with increasing
number of vertices and the graph on the right is a second order polynomial approxi-
mation of the data on the left.
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CHAPTER VIII

CONCLUSIONS AND FUTURE RESEARCH

There is a need to increase the functionality of UAVs so as to reduce the operational

burden of controlling UAVs for both military and civilian organizations. The research

described here provides tools which facilitate operating a large number of UAVs. The

system described in this document efficiently generates waypoints to be followed by

UAVs performing surveillance over a large ROI.

This system is based around a minimal spanning tree algorithm, which has been

proven useful in a wide variety of applications. The work here builds from a simple

ground path planning tool and achieves a multi-vehicle path planner that is effi-

cient, robust, and complete. The algorithm presented maintains a polynomial degree

running time in practice despite the problem being NP-hard in general. The path

planning portion is general in that it operates entirely on graph structures. Therefore,

it may stand alone as an independent tool to work in conjunction with other region

segmentation systems.

The simulation results show that UAVs were consistently evenly spaced out along

the tour of the ROI. This ensures maximal revisit rate and minimum time between vis-

its for any given point of the ROI. In simulation, the system demonstrated robustness

in that if a vehicle failed, the other vehicles would continue to perform surveillance of

the ROI, even in the absence of communication. The initial placement of the UAVs

ensures that none of the UAVs are blocked into a corner during the planning stage.
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The running time of the algorithm presented in this document was in the worst

case approximately 10 seconds. This run time compares favorably to other methods

in the literature, many of which require hours of computation time.

The parameterized templates were proven in flight testing during the case study.

The paths generated by the templates are not as robust against failure, but they are

efficient to calculate. Templates are well suited to very small aircraft with limited

computational power.

8.1 Contributions

This dissertation contributed to the field by providing the following:

• A control structure that coordinates multiple aerial vehicles in real-time for an

area coverage surveillance task.

• A method for initial placement of multiple aerial vehicles for area surveillance.

• An extension of ground-based planning and control techniques to aerial vehicles.

• A fast waypoint generator for multiple unmanned aerial vehicles to perform

surveillance.

• A novel method for constructing and combining disjoint balanced spanning

trees.

8.2 Future Research

As is frequently encountered, there are areas of this work that could be expanded

upon. Occlusion, deconfliction, and refueling are all issues that could improve the

overall system with further research.
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8.2.1 Wind

Wind has the potential to cause an offset between the desired coverage region versus

the region actually viewed by the UAV’s camera, as shown in Figure 48. The first

UAV depicts the desired result while the second UAV demonstrates the potential

camera offset due to wind. The research presented in this document is modular such

that the planning up to generating the ground path would remain valid even in high

wind conditions. Only the final ground to aerial waypoint transformation would need

modification to close the loop to account for wind variations.

Figure 48: The UAVs may need to adjust for wind conditions during the surveillance
mission.

8.2.2 Occlusion

Tall obstacles, such as buildings, and terrain irregularities have the potential to create

blind spots during coverage. An urban environment especially creates surveillance

challenges. It is apparent that a small UAV is not able to view through a large

building in an urban setting. If the terrain data is already known, then the spanning
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tree can be modified to account for likely occlusions. In the urban environment,

effective techniques need to be examined such as re-using the same ground path but

reversing the direction of flight. This would allow the UAVs to view each location

from a different viewpoint and significantly reduce the number of occlusions. Other

cases of occlusion can be addressed by generating the spanning tree over a finer grid,

or offsetting the same sized grid by one-half of the grid spacing.

8.2.3 Deconfliction

Placing a large number of UAVs within a tightly confined region increases the chances

that UAVs will crash into each other. This research assumes that the UAVs will be

deconflicted by flying at different altitudes. However, a method that allows UAVs

to fly at the same altitude level while continuing to avoid collisions would allow a

higher concentration of vehicles in the ROI. Further, such a deconfliction system has

far reaching implications into improving the safety of airspace management around

commercial airports.

8.2.4 Refueling

One major advantage for using multiple UAVs is that they are able to remain aloft for

extended periods of time. A human pilot eventually gets tired, whereas a computer

does not. However, the aircraft, human piloted or not, will eventually run out of

fuel, and it is necessary to address this issue. Ideally, the refueling process can be

accommodated without interrupting the surveillance mission, or at least with only

minimal interruption. In one technique, the search area has at least one long straight

section, preferably at a border of the ROI. The straight section can be utilized by the

vehicles as a refueling region in which surveillance is not broken.

89



Alternatively, there can be a designated refueling area outside the ROI. When

a UAV is low on fuel it leaves the ROI and proceeds to the refueling area. After

refueling, the UAV proceeds back to its location along the coverage path. In this

case, surveillance is only minimally impacted because the remaining vehicles will

continue to cover the ROI.
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APPENDIX A

DETERMINATION OF LINE SEGMENT INTERSECTION

Generating a path that circumnavigates a spanning tree requires repeatedly testing

for the intersection of two lines. The following section details an efficient calculation

that determines if two line segments are parallel, intersect within the bounds of the

line segments, or intersect outside of the line segments.

Let Pa represent a point on line segment P1P2, and let Pb represent a point on

line segment P3P4, as pictured in Figure 49. The equations for Pa and Pb are shown

Figure 49: Two intersecting line segments with endpoints labeled.

in Equation 24 and Equation 25.

Pa = P1 + A · (P2 − P1) (24)

Pb = P3 +B · (P4 − P3) (25)

A and B are normalized such that 0 ≤ A ≤ 1 and 0 ≤ B ≤ 1. If the two line segments

intersect, then the point of intersection occurs where Pa and Pb are equal. Equating

these parameters yields Equation 26.
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P1 + A · (P2 − P1) = P3 +B · (P4 − P3) (26)

Since any point Pi has both x and y co-ordinates, this leads to two equations in x

and y.

x1 + A · (x2 − x1) = x3 +B · (x4 − x3) (27)

y1 + A · (y2 − y1) = y3 +B · (y4 − y3) (28)

Rearranging these terms leaves A and B as follows:

A =
(x3 − x1) +B · (x4 − x2)

(x2 − x1)
(29)

B =
(x1 − x3) + A · (x2 − x1)

(x4 − x3)
(30)

Finally, A and B can be solved strictly in terms of the x and y components of the

original set of points (P1, P2, P3, P4).

A =
(x1 − x3) (y4 − y3)− (y1 − y3) (x4 − x3)

(y2 − y1) (x4 − x3)− (x2 − x1) (y4 − y3)
(31)

B =
(y2 − y1) (x1 − x3)− (x2 − x1) (y1 − y3)

(y2 − y1) (x4 − x3)− (x2 − x1) (y4 − y3)
(32)

Several common term can be collected to reduce the number of calculations needed

to find A and B. The denominator is identical for both variables. The values of A

and B are then tested to determine the orientation of the two lines with respect to

each other. For a given two line segments, if 0 ≤ A ≤ 1 and 0 ≤ B ≤ 1 then the line

segments do intersect. If the denominator in the above equations is equal to zero,
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then the line segments are parallel and do not intersect. If A > 1 or B > 1 then the

extended lines intersect at a location exterior to the line segments.
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APPENDIX B

DISTANCE BETWEEN UAVS ALONG A PATH THAT

CIRCUMNAVIGATES MULTIPLE SPANNING TREES

Let K represent the number of individual spanning trees. Let D(Ti) represent the

linear distance of a path, Pi, that circumnavigates the ith tree. Every spanning tree,

Ti, has an associated UAV, UAVi, whose position is known at some point along the

path circumnavigating Ti. The goal is to find a set of K − 1 edges that connects

all the trees together such that the UAVs are evenly dispersed along the path that

circumnavigates the resultant single spanning tree. The sum of the distances around

each sub-section of the tree is equal to the total distance around the combined trees.

K
∑

i=1

D(Ti) = Dtotal (33)

To find the general form, examine the set of K ∈ (2, 3, ..., N). The directed

spanning tree method described earlier in this document generates a set of trees that

are nearly equal in their number of vertices and edges. Equation 34 shows the ideal

case for K = 2.

D(T1) = D(T2) =
Dtotal

2
(34)

In practice, the length of the distance around each sub-tree is different, that is,

94



D(T1) 6= D(T2). Let αi represent the error distance in sub-tree i such that

D(T1) =
Dtotal

2
+ α1 (35)

D(T2) =
Dtotal

2
+ α2 (36)

there exists an error, ǫ, such that . Instead, Equation 37 represents the distance of

the path around a single tree including the likely error, ǫ

D(Ti) =
Dtotal

K
+ ǫi (37)

For K = 2 there are two potential cases: the distance from UAV 1 to UAV 2 is greater

than the distance from UAV 2 to UAV 1, or the opposite.

It is known from Equation 33 that the α terms must sum to zero.

K
∑

i=1

αi = 0 (38)

Therefore, for this case the two α terms are equal in magnitude with opposite

sign.

α1 = −α2 (39)

There exists one UAV per sub-tree. Nominally the distance along the path from

UAV1 to UAV2 is equal to the distance along the path from UAV2 to UAV1. However,

in practice there exists some error, ǫi,j, between the equi-distant path and the actual
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path from UAVi to UAVj.

D1,2 =

(

D(T1) +D(T2)

2

)

+ ǫ1,2 (40)

=
Dtotal

K
+

(

α1 + α2

2

)

+ ǫ1,2 (41)

=
Dtotal

K
+ ǫ1,2 (42)

D2,1 =

(

D(T2) +D(T1)

2

)

+ ǫ2,1 (43)

=
Dtotal

K
+

(

α2 + α1

2

)

+ ǫ2,1 (44)

=
Dtotal

K
+ ǫ2,1 (45)

This is written more generally as:

Di,j =
Dtotal

K
+ ǫi,j (46)

For K = 3 there exist only one mathematically distinct case for the way in which

the bridges connect the individual sub-trees. Once again, the total distance is given

by the summation of distances.

K
∑

i=1

D(Ti) = Dtotal (47)

The length of each sub-tree is given by the average distance plus an error term,

α.

D(Ti) =
Dtotal

K
+ αi (48)
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D1,2 =

(

D(T1) +D(T2)

2

)

+ ǫ1,2 (49)

=
Dtotal

K
+

(

α1 + α2

2
+ ǫ1,2

)

(50)

D2,3 =

(

D(T2) +D(T3)

2

)

+ ǫ2,3 (51)

=
Dtotal

K
+

(

α2 + α3

2
+ ǫ2,3

)

(52)

D3,1 = Dtotal − (D1,2 +D2,3) (53)

=
Dtotal

K
+

(

α3 + α1

2
− (ǫ1,2 + ǫ2,3)

)

(54)

More general, the distance from UAVi to UAVj along the path can be written as

follows.

Di,j =
Dtotal

K
+

(

αi + αj

2
+ ǫi,j

)

(55)

In fact, Equation 46 is also of the same form as Equation 55. However, for K = 2

αi + αj = 0.

Table 3 lists the possible orders of the UAVs along a tour that encompasses the

spanning tree with four UAVs.

Table 3: Possible order of UAVs along a path with K = 4

Case 1: UAV1 → UAV2 → UAV3 → UAV4

Case 2: UAV1 → UAV3 → UAV4 → UAV2

Case 3: UAV1 → UAV4 → UAV3 → UAV2

Case 4: UAV1 → UAV2 → UAV4 → UAV3

Although there exist four possible orders, only two are mathematically distinct

methods of connecting the sub-trees. The first of these is as follows:
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D1,2 =

(

D(T1) +D(T2)

2

)

+ ǫ1,2 (56)

=
Dtotal

K
+

(

α1 + α2

2
+ ǫ1,2

)

(57)

D2,3 =

(

D(T2) +D(T3)

2

)

+ ǫ2,3 (58)

=
Dtotal

K
+

(

α2 + α3

2
+ ǫ2,3

)

(59)

D3,4 =

(

D(T3) +D(T4)

2

)

+ ǫ3,4 (60)

=
Dtotal

K
+

(

α3 + α4

2
+ ǫ3,4

)

(61)

D4,1 = Dtotal − (D1,2 +D2,3 +D3,4) (62)

=
Dtotal

K
−

(

α2 + α3

2
+ ǫ1,2 + ǫ2,3 + ǫ3,4

)

(63)

=
Dtotal

K
+

(

α3 + α1

2
− (ǫ1,2 + ǫ2,3)

)

(64)

In the second mathematically distinct possibility, D1,3 is that path that lies adja-

cent to tree 1, tree 2, and tree 3 but UAV2 happens to lie on the other side of the

path. To examine this possibility, look at the sub-set of 3 trees, temporarily leaving

off the fourth.

Let

D3 = D(T1) +D(T2) +D(T3) (65)

=
3 ∗Dtotal

K
+ (α1 + α2 + α3) (66)
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From the K = 3 analysis it is known that

D3,2 =
Dtotal

K
+

(

α3 + α2

2
+ ǫ3,2

)

(67)

D2,1 =
Dtotal

K
+

(

α2 + α1

2
+ ǫ2,1

)

(68)

D1,3 = D3 − (D3,2 +D2,1) (69)

=
Dtotal

K
+ (α1 + α2 + α3)−

(

α1 + α3

2

)

− α2 − (ǫ3,2 + ǫ2,1) (70)

=
Dtotal

K
+

(

α1 + α3

2
+ ǫ1,3

)

(71)

The equations for K = 4 and higher can be reduced to forms already analyzed.

Therefore, the general form is shown in Equation 72

Di,j =
Dtotal

K
+

(

αi + αj

2
+ ǫi,j

)

(72)
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