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SUMMARY

This work addresses the problems associated with poor dynamic range and the quality

factor instability of a high-Q, high-frequency, continuous-time bandpass filter. Some im-

provements to the existing transconductor design and an implementation of a new, reliable,

quality tuning algorithm have been proposed to address the above mentioned problems. In

order to formulate the problem statement, which can help and serve the society, wireless

transceiver requirements has been kept in mind.

State-of-the-art superheterodyne transceiver architecture uses passive, surface acoustic

wave (SAW) filters (DR ∼70 dB) for radio frequency (RF), image reject (IR), and inter-

mediate frequency (IF) filters. The IF SAW filters are 20 dB more linear than an on-chip

continuous time filters (DR = 40∼50 dB). The on-chip continuous-time filters also suffer

from quality factor instability problem, however, they can generate gain, whereas the SAW

filters introduce a 3∼13 dB of insertion loss. The loss from SAW filters also increases with

bandwidth.

The goal of this research is to circumvent the poor dynamic range and quality factor

instability problem of the on-chip continuous times filter, and take a step further towards

the single chip solution of the wireless transceivers. In order to quantify the contribution

and the improvements in performance, a 100 MHz biquad bandpass filter is designed with

DR > 60 dB, and gain∼20 dB, using an ultra-linear transconductor in BiCMOS process.

The linearity of the stand alone transconductor is more than 80 dB and its 3 dB cut-off

frequency is close to 1.5 GHz.

The new transconductor circuit employes a local negative feedback loop, to achieve high

linearity, while maintaining its high cut-off frequency. Instability in the quality-factor(Q)

of the filter is solved using a novel quality-factor tuning scheme. It uses the phase char-

acteristics of the filter to extract the quality factor information and tunes the same by

modulating the phase characteristics inside a second-order phase locked loop system. The

xiii



accuracy and performance of this new Q-tuning loop is determined by the dead-zone of the

phase frequency detector (PFD), and the delay mismatch between the reference and the

filter output signal. An ultra-low dead-zone (± 50 pS) pre-charge based digital PFD circuit

has been developed and special attention has been given to the delay matching between the

two signal paths.

Thus, this research work presents a wide-dynamic range, high-Q, high-frequency band-

pass filter circuit with an reliable automatic tuning scheme to meet the requirements of the

present and future wireless communication devices.
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CHAPTER I

INTRODUCTION

The twenty first century is referred to as the Electronic Age in the development of the human

race, where we have the ability to perform and control everyday activities electronically.

We prefer to have a smart wireless communication device and controller. This urge has

motivated the researcher to constantly refine the architecture and the components of wireless

transceivers; and develop miniaturized, power-optimized, and cost-effective solutions. These

goals are achieved by taking the transmitter and the receiver architectures simultaneously

to the next level of system integration. Primarily, there are two architectures available for

wireless transceivers:

• Superheterodyne

• Direct-Down Conversion

Both architectures are subsequently divided based on their implementation. The su-

perheterodyne architecture has been the preferred choice for transceiver design, since its

invention by Edwin H. Armstrong in 1917 [1], because of its simplicity and insensitivity to

component and environmental variations. A block diagram of a superheterodyne receiver

is shown in Figure 1.1. In this architecture, the entire signal band is first down-converted

from radio frequency (RF) to an intermediate frequency (IF) using a fixed local oscillator

(LO) and a RF mixer. Then, the desired channel is selected from the signal band using

a mixer with a variable LO at the IF stage, which is implemented either in the analog or

the digital domain. The two-stage modularity reduces the performance requirements on the

individual components, so that they are reliable and easy to design [2].

Thus, the superheterodyne transceiver architecture is modular, reliable, and easy to

design, but it requires several off-chip components, such as duplexer/RF filter, IR filter, and

IF filter. Therefore, it is difficult to get a single-chip solution based on this architecture.
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Figure 1.1: Block diagram of the superheterodyne receiver.

The direct-down conversion receiver architecture was developed for system integration,

where the goal was to minimize the number of off-chip components. A block diagram of

a direct-down receiver is shown in Figure 1.2. It only requires the duplexer as an off-

chip component. It also circumvents the problem of the image lying at 2ωIF away from the

channel. However, direct translation of the spectrum from radio frequency to zero frequency

creates a number of other issues that did not exist in the superheterodyne receiver, such

as DC offset, even harmonic inter-modulation (IM2), flicker noise ( 1
f
), and local oscillator

leakage. It also requires a fine-pitched variable LO for the RF mixer to select the channel

at the RF stage, a linear mixer to reduce the distortion (mixers are nonlinear circuits),

and a fast sample-and-hold circuit. The stringent requirements on these blocks make them

power hungry and complex. Together, these problems make this architecture unreliable and

difficult to implement in a cost-effective manner [3]. The solutions to these problems are

beyond the scope of this work and hence will not be discussed further.
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Figure 1.2: Block diagram of the direct-down conversion receiver.

A duplexer is used right after the antenna in both receiver architectures. It is employed

to provide isolation between the transmit and the receive bands and minimize any leakage of
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the transmit signal into the receive band, as this leakage can saturate the low noise amplifier

(LNA) of the receive path. Since the duplexer comes first in the receive path, it should have

large dynamic range (e.g., GSM receive signal can range from -102 dBm to -15 dBm) with

minimal loss. Any loss from the duplexer is critical to the system performance, as its loss

directly adds to the noise figure (NF) of the system. The duplexers are implemented using

surface acoustic wave (SAW) or bulk acoustic wave (BAW) devices [2, 4, 5, 6].

The duplexer is followed by a LNA in the receive path. The LNA is the first gain block

in the receive path and its noise performance is as critical as the duplexer. The noise from

the later stages is not as critical, because its effects are mitigated by the gain from the LNA.

An active or passive mixer follows the LNA in the receive path. A mixer is a non-

linear circuit, that performs the frequency translation from radio frequency (RF) to an

intermediate frequency (IF). It adds and subtracts the input RF frequencies with a local

oscillator (ωLO = ωRF −ωIF ). The two RF frequencies, one located at ωRF (desired signal)

and the other at ωRF − 2ωIF (image frequency), produce the output signal at the same

intermediate frequency (ωIF ). Therefore, sometimes in a superheterodyne architecture, an

image-reject filter (IR Filter) precedes the mixer to suppress any undesired signal from the

image frequency [7]. At present, IR filters are implemented using SAW technologies [4, 5].

There have been some attempts to replace this filter with a monolithic solution [8, 9].

In a superheterodyne architecture, the output of the mixer is first filtered using a channel

select filter, known as an IF filter, before being amplified by a variable gain amplifier (VGA).

The IF filter selects the desired channel from the receive signal band. At present, all IF filters

are also implemented using SAW technologies. This work focuses on replacing this off-chip,

passive, SAW IF filter with an active, integrated, monolithic solution. Upon completion of

this work, the superheterodyne receiver architecture will move a step closer to a single-chip

solution.

There are several other applications for high-frequency bandpass filters, e.g., FM re-

ceivers, front-end of a high-speed analog-to-digital converter (ADC), hard-disk drive ap-

plications, etc. The underlying core component of a ‘Gm − C’ bandpass filter is a linear

transconductor circuit, which can also be used as the gain stage in a digital variable gain
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Table 1.1: Wireless standards and their IF filters.

Standard fdownlink Channel BW ωIF Q

GSM 869-894 MHz 200 kHz 10 MHz 50
925-960 MHz 200 kHz 10 MHz 50

1805-1880 MHz 200 kHz 20 MHz 100
1930-1990 MHz 200 kHz 20 MHz 100

IS-95 869-894 MHz 1.25 MHz 70 MHz 56
1930-1990 MHz 1.25 MHz 70 MHz 56
2120-2170 MHz 1.25 MHz 70 MHz 56

Bluetooth 2402 ∼2495 MHz 1MHz 70 MHz 70

HomeRF 2402∼ 2495 MHZ 1 MHz/3.5MHz 70/140 MHz 70/40

EDGE 921-960 MHz 200 kHz 10 MHz 50
1805-1880 MHz 200 kHz 20 MHz 100
1930-1990 MHz 200 kHz 20 MHz 100

W-CDMA 1805-1880 MHz 5 MHz 220 MHz 44
1930-1990 MHz 5 MHz 220 MHz 44
2110-2170 MHz 5 MHz 220 MHz 44

802.11b 2400-2483.5 MHz 25/10,30/10 MHz 300MHz 10 ∼ 30

802.11 a/g/h 5.03 ∼ 5.825 GHz g:25, a/h:20 MHz 300MHz 10 ∼ 15

amplifier (DVGA) for wireless and ultra-sound applications or as the gain stage for high-

frequency operational transconductance amplifier (OTA).

In this research work, a high-Q, high-frequency bandpass filter is developed for wireless

receiver applications. It can also be used in any of the above mentioned applications. The

receive band frequency and the bandwidth of different communication standards are listed

in Table 1.1. The spectrum allocation of these applications ranges from 869 MHz to 5483.5

MHz and the channel bandwidth of the systems ranges from 200 kHz of GSM to 30 MHz

of WLAN. In the transceiver signal-path design, a large intermediate frequency relaxes the

requirement on the IR filter and the RF mixer. Therefore, an intermediate frequency of

10 ∼ 300 MHz is desired for many of the next-generation communication systems. Some

plausible choices of center frequency of IF filters and corresponding quality factors are also

listed in Table 1.1.

Presently, wireless communication devices use off-chip ceramic or SAW filters at the

intermediate frequency stage, to select the channel from the entire signal band. The perfor-

mance specifications of some of these SAW filters are listed in Table 1.2. Their performance
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Table 1.2: Off-chip SAW filters and their specifications.

Technology ω0 BW Q Stop-band Insertion Loss Size

SAW 120 2.25 53.33 7.3MHz/40dB 6.2 dB 12.7 x 7.6 mm

SAW 140 4.1 34.15 6MHz/40dB 24.5 dB

Ceramic 220 2 110 17.2MHz/52 13 dB

SAW 110 1.15 95.49 5MHz/40dB 4.5 dB

SAW 280 20 14 30MHz/37dB 11 dB 5.0 x 5.0 mm

is stable across environmental variations but they are off-chip, expensive, and bulky. Their

physical size decreases with frequency, as it ranges from a few millimeters to a few tens of

millimeters. SAW filters provide insertion loss in lieu of desired gain to the signal path.

Their insertion loss also increase with their bandwidth, which becomes problem for large

bandwidth 3G applications. Since the signal strength at the IF stage is not large, it is de-

sirable to have gain from the IF filter, as it reduces the noise and the linearity requirements

on the RF components and the VGA.

An on-chip filter can generate gain and can be integrated along with the VGA or the

mixer. However, it suffers from instability in its quality factor with environmental and

manufacturing process variations. The advantages and disadvantages of SAW filters and

the on-chip IF filters are summarized in Table 1.3. The table also helps identify the key

areas of improvement during the implementation of an on-chip IF filter. The italicized

letters are used to show the performance advantage of one device over the other. On-chip

filters have many advantages such as gain, size, re-configurability, and system integration,

but instability in quality factor and poor dynamic range are not acceptable. Their dynamic

range has to be improved and a reliable tuning algorithm has to be implemented to present

the on-chip solution as a viable alternative to the off-chip SAW IF filters. Their variable

center frequency (ω0) and quality factor can be considered as an advantage in designing a

reconfigurable signal path, if they are controlled reliably.

The reconfigurable system architecture is becoming more popular because it allows the

service provider to use different standards in urban and rural areas, and it enables the end

user to use the same device for different applications. The fixed center frequency and the
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Table 1.3: Advantage and disadvantage of SAW and on-chip filters.

Metric SAW On-chip

Linearity Good Poor

Dynamic Range Good Poor

Center Frequency Fixed Variable

Stability Good Unstable

Quality factor Moderate to high low

Gain/Loss Loss Gain

Integration No yes

Re-configurability No Yes

Size Huge on-chip(tiny)

Cost Expensive Sand

Table 1.4: Key requirements and target filter specifications.

Parameters SAW On-chip

Center Frequency (MHz) 10 ∼ 300 100

Quality factor 30 ∼ 100 40 ∼ 50

Gain (dB) −4 ∼ −23 15 ∼ 20

Dynamic Range (dB) 70 ∼ 80 60 ∼ 70

Stop-band Attenuation (dB) -50 -50

bandwidth of the SAW filters, along with the unavailability of tunable on-chip filters, are

forcing the designer either to use the complicated direct-down converter architecture or to

have several IR and IF filters for a reconfigurable signal path. Several SAW filters make the

solution expensive and bulky [10]. An on-chip solution to the IF filter is essential to achieve

a cost-effective, single-chip miniaturized solution. Much research have been performed on

“how to tune the center frequency of an on-chip filter” [11, 12, 13]. This research focuses

on solving the poor linearity and the quality factor instability problem of on-chip filters. In

order to quantify the performance of the proposed theories, some performance metrics are

generated, which are competitive with the SAW filter and encompass the need for an FM

receiver, 802.11 b & g, Bluetooth, wide-band code division multiple-access (WCDMA) appli-

cations. The underlying requirements for an IF filter on these applications are summarized

in Table 1.4.
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A center frequency of 100 MHz has been chosen because it lies at the arithmetic mean of

the required center frequency for different applications, and a quality factor of 50 has been

chosen because it fulfills the bandwidth requirements for many next-generation applications.

The dynamic range requirement has been relaxed because the on-chip solution is going to

provide a gain of 20 dB in lieu of a loss of 3 ∼ 23 dB from the SAW filters [4, 5]. In this work

a prototype second biquad filter is implemented, which has limited stop-band attenuation.

The issue of stop-band attenuation can be addressed by using a similar high-order cascaded

filter [14].

Thus, this research will focus on the technical issues of designing a wide dynamic range

high-Q, high-frequency, IF filter with a reliable, automatic quality factor tuning scheme.

This research goal will be measured and accomplished by designing an on-chip 100 MHz

bandpass filter with dynamic range of 60 dB and quality factor of 50, along with an au-

tomatic quality factor tuning scheme in the complementary metal oxide semiconductor

(CMOS) or bipolar complementary metal oxide semiconductor (BiCMOS) process.
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CHAPTER II

FUNDAMENTALS OF ANALOG BANDPASS FILTERS

Filters have been a topic of interest to researchers for a long time. They have enabled the

communication system to filter the desired band of frequencies from the entire frequency

spectrum and condition them for further signal processing to extract useful information.

Filters are either implemented in the analog or digital domain. Analog filters are built

using a physical network of electrical components such as capacitors, inductors, and resis-

tors. They are used in either low-cost or high frequency applications. Digital filters are

synthesized using delay elements; they can virtually achieve any filtering effect that can be

expressed as a mathematical algorithm. The two primary limitations of the digital filters

are speed and cost. Therefore, they are primarily used for low-frequency and high-fidelity

audio applications. This chapter discusses filter topologies, types, and ways to realize the

analog filter. It also highlights some of the key challenges in designing high-Q, bandpass

filters.

2.1 Analog Filters

A filter is defined by its corner frequency, quality factor, pass-band ripple, stop-band ripple,

and stop-band attenuation. The frequency response of a lowpass filter is shown in Figure 2.1.

The pass-band and the stop-band ripple determine the type of filter transfer function one

can use; the stop-band attenuation and its slope determine the required order of filtering to

achieve the desired characteristics. Several different types of filter transfer function tables

have been developed over time, with varying characteristics, e.g., Butterworth filter, Bessel

filter, Elliptical filter (Cauer filter), Linkwitz-Riley filter, Chebyshev filter, etc.[14].

Once the transfer function of the filter is chosen, it can be implemented using one of the

topologies listed below. The advantages and disadvantages of these topologies in monolithic

implementation are also discussed.

In a modern IC process, monolithic active and passive components have 3σ tolerance
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Figure 2.1: Design specification of a filter.

associated with their nominal value. Therefore, in monolithic implementation, the design

parameters of the filter are made either as a ratio of like terms or they are made tunable.

A ratio of like terms can be realized with 8-10 bits of accuracy, if their value and area are

of the same order of magnitude. However, the pole frequency of the filter is determined by

the value of the resistor and capacitor. Therefore, monolithic filters need an on-chip tuning

algorithm to tune the filter parameters. The quality factor and the gain of the filter can be

made as a ratio of like terms; however, when this ratio becomes too large, their accuracy can

no longer be maintained. Thus, a high-Q, high-frequency filter needs a tuning algorithm

for both center frequency and quality factor.

2.1.1 Cascade Approach

In cascade realizations, a higher-order filter (> 2) transfer function is factorized into several

first-order and second-order transfer functions. An even-order (2n) filter is broken into n-bi-

quadratic (biquad) filters, and an odd-order(2n+1) filter is broken into one first-order filter

and n-biquads. The resulting first- and second-order transfer functions are implemented

independently using active or passive RLC networks and are connected in cascade fashion

to achieve the desired filter characteristics, as shown in Figure 2.2. This factorization

9



technique makes the design modular and easy to analyze and tune.

ansn + an−1s
n−1 + · · · + a1s + a0

bnsn + bn−1sn−1 + · · · + b1s + b0
=

m
∏

i=1

a2is
2 + a1is + a0i

b2is2 + b1is + b0i
(2.1)

Biquad1 Biquadn1st Order

Figure 2.2: Cascade approach to realize a higher-order filter.

One of the key requirements for monolithic implementation is tunability against process

and temperature variations (PVT). In the cascade design approach, each biquad controls

only a pair of poles and zeroes; therefore they can be tuned individually. Ease of tuning

makes this approach suitable for monolithic filters.

One disadvantage of the cascade design approach is its pass-band sensitivity to the

component values. This limits the maximum attainable order of the filter to 10.

2.1.2 Multiple Feedback Loop Approach

The multiple-loop feedback design technique overcomes the component sensitivity problem

of the cascade approach by connecting the individual biquads in a particular feedback

configuration to minimize the transfer function sensitivity to their component values. This

design technique retains the modularity of the cascade design approach by using biquads

as a building block for the higher-order filters.

These biquads are connected in a complex feedback structure to realize a high-order

filter, and they work together to control all poles and zeroes of the filter at once. Therefore,

it is impossible to design a tuning algorithm to tune the center frequency and the quality

factor of the filter by tuning the individual biquad.

The difficulty of tuning the filter parameters makes this design technique suitable only

for discrete filters or non-tunable on-chip filters. One popular topology of this approach is

the Leapfrog architecture [14, 15].
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2.1.3 LC Ladder Structure

In this design approach, a doubly terminated passive LC ladder filter is converted into

its active counterpart. Here, an inductor is realized using gyrators or general admittance

converting circuits. The resulting active inductor circuit is inserted into the ‘LC ladder’

filter topology to realize the filter. A small component sensitivity of the ladder topology is

retained during its active component transformation.

This topology has small component sensitivity, therefore, it is also hard to tune against

process and temperature variations. Also at 100 MHz, inductors are realized using active

gyrator circuits and they are noisy and dissipate power. These problems make this archi-

tecture unsuitable for on-chip implementation of continuous time filters, where accuracy is

required.

Hence, for a high-frequency IF filter (IF=70 200MHz, Q=30 100 ) of 3G-GSM and

WCDMA transceivers [14, 15, 16], the cascade approach looks more attractive than the

other two. These high-Q filters can be realized using innovative feedback and feed-forward

Q enhancement design techniques [17].

2.2 Biquad Filter Transfer Function

In cascade approach, a filter transfer function is broken into several first-order and second-

order polynomials. First-order and second-order biquads are rational functions of first-order

and second-order polynomials given by Equation 2.2 and Equation 2.3, respectively.

1storderH(s) = H0
a1s + a0

b1s + b0
(2.2)

2ndorderH(s) = H0
a2s

2 + a1s + a0

b2s2 + b1s + b0
(2.3)

where H0 is the gain of the system. Lowpass, bandpass, highpass, and band-stop filter

characteristics are realized by making the appropriate numerator coefficients of the above

transfer function zero, e.g., a highpass biquad is realized by choosing the numerator coeffi-

cients a0 and a1 of Equation 2.3 equal to zero.
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2.2.1 Lowpass Filter

A lowpass filter passes the low frequencies up to a cut-off frequency (fc) and attenuates

all others. A first-order and second-order filter transfer function can be realized by leaving

only the a0 term in the numerator polynomial of Equation 2.2 and Equation 2.3. Thus,

the first- and the second-order lowpass filter transfer functions are given by Equation 2.4

and Equation 2.5, respectively. A typical frequency response of a lowpass filter is shown

in Figure 2.3, where H0 is the gain, fc is the cut-off frequency, and fs is the stop-band

frequency of the filter.

The slope of the frequency response form pass-band gain at cut-off frequency to atten-

uation at the stop-band frequency determines the required order of the filters.

1storderH(s) = H0
a0

b1s + b0
(2.4)

2ndorderH(s) = H0
a0

b2s2 + b1s + b0
(2.5)
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Figure 2.3: A typical frequency response of a lowpass filter.

An ideal filter can give a brick wall response, where fc and fs are the same frequency.

However, in reality, each pole gives 20 dB per decade of attenuation, often known as ‘roll-

off’, e.g., first-order filter gives an attenuation of 20 dB/decade and second-order gives

40 dB/decade. There are several different ways to implement a lowpass filter; some give
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sharper transition from pass-band to stop-band at the expense of ripples in the pass-band

and the stop-band, e.g., Chebyshev filter, Cauer filter. A Bessel filter gives flat gain and

linear phase shift in its pass-band, but it has large component sensitivity.

A lowpass filter is used in many applications such as driving the sub-woofer of a music

systems and filtering the voice signal from data in a DSL modem. It is also used as an

integrator in proportional integrator and differentiator (PID) control systems.

2.2.2 Highpass Filter

A high-pass filter is the opposite to the lowpass filter; it allows a frequency higher than

the cut-off frequency fc with an amplification H0 and attenuates the other. Similar to the

lowpass filter, a highpass filter can be realized from the generic first-order and biquadratic

function by dropping the a0 and a0, a1 terms of the numerator polynomial of Equation 2.2

and Equation 2.3, respectively. First-order and biquad highpass transfer functions are given

below.

1storderH(s) = H0
a1s

b1s + b0
(2.6)

2ndorderH(s) = H0
a2s

2

b2s2 + b1s + b0
(2.7)
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Figure 2.4: A typical frequency response of a highpass filter.

A simple first-order implementation of a highpass filter is shown in Figure 2.4.a; it is a
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C-R circuit, often used as a differentiator in a control system. A typical frequency response

of a highpass filter is shown in Figure 2.4.b, where H0 is the pass-band gain, fc is the cut-off

frequency, and fs is the stop-band frequency of the filter. The details of the pass-band gain,

the stop-band attenuation, and the methods of implementations are similar to the lowpass

filter. A highpass filter is used to drive the ‘tweeter’ of a music system. It is also used

widely in communication systems, image processing applications, and as a differentiators in

PID control systems.

2.2.3 Bandpass Filter

A bandpass filter passes the frequencies within a certain range and attenuates the other.

A bandpass filter can be synthesized by cascading a lowpass and a highpass filter, where

the cut-off frequency of the lowpass filter is higher than the lower cut-off frequency of the

highpass filter. Thus, a bandpass filter requires at least two poles to shape its frequency

response. A generic biquad transfer functions is transformed into a bandpass filter by

leaving only the a1s term in the numerator polynomial and is given in Equation 2.8.

2ndorderH(s) = H0
a1s

b2s2 + b1s + b0
(2.8)

A simple passive structure of a second-order bandpass filter is shown in Figure 2.5.a.

It is a series RLC network. This system contains two poles, one created by the R, L and

the other created by R, C. Together, C and L determine the center frequency of the filter,

which is also known as the resonance frequency of the network.

A typical frequency response of a bandpass filter is shown in Figure 2.5.b, where H0 is

the pass-band gain, fcl and fch are the lower and higher cut-off frequencies, and, fsl and

fsh are the lower and the higher stop-band frequencies. The difference (fch − fcl) and the

geometric mean (
√

fchfcl) of the two cut-off frequencies are known as the bandwidth (∆f)

and center frequency (f0) of the filter.

The quality factor of an electrical network is defined in Equation 2.9. It is a ratio of

the reactive energy to resistive energy or a ratio of energy stored in reactive component to

energy dissipated in resistive components, which translates into the ratio of the bandwidth
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Figure 2.5: A typical frequency response of a bandpass filter.

over the center frequency for a bandpass filter.

Q =
Estored

Edissipated
=

Ereactive

Eresistive
=

∆f

f0
(2.9)

The polynomial coefficients of the bandpass filter defined by Equation 2.8 can be ex-

pressed in terms of filter parameters, and are given by Equation 2.10 and Equation 2.11.

The center frequency, quality factor, and bandwidth of the bandpass filter are ω0, Q, and

ω0

Q
, respectively. The numerator coefficients ω0 and ω0

Q
of Equation 2.10 and Equation 2.11

corresponds to a1 of the filter transfer function given by Equation 2.8. The denominator

coefficients b2, b1, and b0 of Equation 2.8 are 1, ω0

Q
, and ω2

0 , respectively. These two transfer

functions of the bandpass filter differ in terms of gain at the center frequency, which is

often referred to as mid-band gain. The mid-band gains of the bandpass filter given by

Equation 2.10 and Equation 2.11 are H ′

0 × Q and H0, respectively.

H(s) = H ′

0

ω0s

s2 + ω0

Q
s + ω2

0

(2.10)

H(s) = H0

ω0

Q
s

s2 + ω0

Q
s + ω2

0

(2.11)

A bandpass filter is used in communication systems to select the desired channel from

the entire frequency spectrum. It is also used to design tuned circuits for signal processing.
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2.2.4 Bandstop Filter

A band-stop filter is an inverse of a bandpass filter, like the highpass to a lowpass. It passes

all the frequencies except for the frequency within a certain range. A band-stop filter can

also be realized by cascading a lowpass with a highpass filter, where the higher cut-off

frequency of the lowpass filter is lower than the lower cut-off frequency of the highpass

filter. Thus, a band-stop filter also requires a minimum of two poles to shape its frequency

response. The transfer function of a biquadratic band-stop filter is given by Equation 2.12.

A typical response of a band-stop filter is shown in Figure 2.6, where H0 is the gain, fcl

and fch are the lower and the higher cut-off frequency, and fsl and fsh are the lower and

the higher stop-band frequencies, respectively.

2ndorderH(s) = H0
a2s

2 + a0

b2s2 + b1s + b0
(2.12)
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Figure 2.6: A typical frequency response of a band-stop filter.

A band-stop filter is commonly used in communication systems to block certain bands of

signals, that could saturate the LNA and act as a blocker for a weak signal. A very narrow

band-stop filter is also known as a notch filter. A notch filter is used as an image-reject

filter in superheterodyne receivers.
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Table 2.1: Monolithic filter topologies.

Topology Dynamic Range Operating Frequency

Switched Capacitor Very high f ∼ 100 kHz

Switched Current Very High f ∼ 1 MHz

Active RC High f ∼ 1 MHz

MOSFET-C Low f ∼ 10 MHz

Gm-C Medium f ∼ 100 MHz

Log Domain High f ∼ 100 MHz

Current Mode High f ∼ 100 MHz

2.3 Monolithic Filter Implementation

Several different topologies have been developed for monolithic implementation of filters

since their introduction in the early 1980s. Some of these topologies are listed and compared

in Table 2.1 based on their dynamic range and operating frequency. Each of these topologies

is targeted towards different applications, e.g., high-resolution switched capacitor (SC) and

switched current filters are primarily used for audio applications [18, 19, 20, 21, 22]. They

are also known as sample-data filters. The active RC filter, which goes to medium frequency

range and provides high accuracy, is used in automotive and control system applications. A

Gm-C filter is not limited by the internal pole of the operation transconductance amplifier

(OTA); therefore it is used for high-frequency applications [23, 24].

Upon evaluating the frequency of operation of these filter topologies, it is evident that

only MOSFET-C, Gm-C, log-domain, and current-mode topologies can be improved to

meet the goals of this research. The simplest analog filter is an integrator. It is a single

pole lowpass filter. Characteristics of integrators are discussed and compared with different

topologies based on their low-voltage, power consumption, and noise.

2.3.1 Active RC Filters and MOSFET-C Filters

Filters were first created using passive components such as R, L, and C. They were giving

3dB insertion loss to the signal path. The active-RC filter is a variant of the classic RC

filter structure, which was originated to overcome the ‘loss’ from the passive RC filter. A

typical first-order differential, active-RC filter, often known as an integrator, is shown in
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Figure 2.7.a. It requires capacitors (C), resistors (R), and an operational amplifier (opamp).

The transfer function of an ideal integrator is given by Equation 2.13. An ideal integrator

provides an infinite gain at DC and has a single pole frequency response [25].

However, the finite gain (a0) and the finite gain-bandwidth product (GBW ) of an opamp

moves the dominant pole of the integrator from DC to ω0

a0
= ωα, assuming that the GBW of

the opamp is higher than the pole frequency (ω0) of the integrator. The modified magnitude

and phase response of a non-ideal integrator are shown in Figure 2.8.a and Figure 2.8.b,

respectively.

Hint(s) =
1

sRC
= −ω0

s
(2.13)

 - +

+ -

Vinp

Vinm

Voutp

Voutm

R

R

C

C

Figure 2.7: First-order active-RC filter.

A non-ideal integrator performs as an integrator for the frequency range between 10×ωn

and ω0, where ω0 < GBW
10 . If this inequality is not met, then the integrator response will

be limited to 10×ωα and GBW
10 . The non-zero finite pole (ωα) of the non-ideal integrator

causes a phase lead, whereas non-dominant high-frequency poles of the opamp causes an

excess phase lag. They cancel each other in the middle; however, at high frequency, the

excess phase lag dominates and can bring instability to the system. Thus, the maximum

operating frequency of this topology is limited to ω0 or GBW
10 .

Opamps are compensated for a signal pole response up to GBW to simplify their use

in different applications. However, the compensating capacitor also limits their slewrate,
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Figure 2.8: a: Frequency response of a non-deal integrator; b: Phase response of a non-
ideal integrator.

which could potentially introduce distortion to the large signals. For example: A sinusoidal

signal given by v(t) = A0 sin(ωt) will require a minimum slew rate of A0 × ω. Thus, for

a given slew-rate amplifier, the product of the maximum signal handling capacity and the

maximum operating frequency is fixed. The maximum signal handling capacity can also be

restricted by the power supply [26].

 - +

+ -

VQ-VP

VQ-VM

VQ+VC

Figure 2.9: A differential MOSFET-C integrator.

An active-RC filter implementation is primarily used for discrete or low-frequency appli-

cations. A high-frequency monolithic version of this topology is MOSFET-C filters, where
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resistors are emulated using metal oxide semiconductor field effect transistors (MOSFET)

biased in the linear region, as shown in Figure 2.9. The gate voltage of a MOSFET re-

sistor is VT higher than the common mode voltage of the signal. The VC component of

the gate voltage is the tuned control voltage; VP and VM are differential input voltages.

The voltage-current relationship of a MOSFET device biased in the linear region is given

in Equation 2.14, where, Id is the drain current, µ is the mobility of the minority carrier

in the channel, C
′

ox is the gate capacitance per unit area, W is the channel width, L is the

channel length, Vgs is the gate to source voltage, VT is the threshold voltage, and Vds is the

drain to source voltage of the device. The drain current, Id, is proportional to the Vds of

the device for Vds less than the gate overdrive voltage, Vgs − VT .

Id =
µC

′

oxW

L
×
[

(Vgs − VT ) − Vds

2

]

Vds; for Vds < (Vgs − VT )

≈ µC
′

oxW

L
× (Vgs − VT )Vds; for Vds << (Vgs − VT ) (2.14)

Gm =
µC

′

oxW

2L
× (Vgs − VT ) ; for Vds << (Vgs − VT ) (2.15)

The transconductance of a MOSFET biased in the linear region is given by Equa-

tion 2.15. The pole frequency of the MOSFET-C integrator shown in Figure 2.9 is given

by Equation 2.16, where Gm is the transconductance of the MOSFET device, and C is

the capacitance [27, 28]. A MOSFET implementation of the resistor also makes the filter

tunable by controlling the gate voltage (VC) [29, 30, 31].

ω0 =
Gm

C
(2.16)

The low device parasitic of MOSFET devices allows this topology to operate at higher

frequencyies than active-RC filters. The maximum operating frequency of both these archi-

tectures is limited to one tenth of the gain bandwidth product of the opamp. This limitation

comes from the excess phase shift caused by the higher-order non-dominant poles. The gain

of the opamp is one at the GB and remains only 10 at frequency GB
10 . This low gain from
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the opamp also gives an offset near maximum operating frequency and introduces signal-

dependent distortion to the signal.

In the MOSFET-C topology, the bias point of a MOSFET device is critical to the system

performance. A strong input signal can push the MOSFET devices out of its linear region

of operation, toward the saturation region, where it does not hold a linear voltage-current

(V-I) relationship. The V-I relationship of a MOSFET operating in the saturation region

is given by Equation 2.17, where λ is the channel length modulation parameter.

Id =
µC

′

oxW

2L
(VQ − VT )2 (1 + λVds) (2.17)

The effective resistance of a MOSFET device operating in the saturation region is 1/λ,

which is independent of the device geometry and the control voltage. This change in effective

resistance distorts the signal changes the pole frequencies of the filter. The second-order

non-linearity resulting from overdrive of the MOSFET can be cancelled by employing a

differential structure. However, higher-order non-linearity also appears if MOSFET resistors

are over-driven [?].

 

- +

+ -

VQ-VM

VQ-VP

VQ+VC1

VQ+VC2

VQ+VC2

VQ+VC1

OUTM

OUTP

Figure 2.10: A wide-swing differential MOSFET-C integrator.

The effective resistance of a MOSFET resistor biased in the triode region remains linear

for the input voltage smaller than the gate overdrive voltage (Vin << Vgs − VT ). The

linearity of the MOSFET resistor is improved by either increasing the gate overdrive voltage
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or canceling the second-order term of Equation 2.14. The gate overdrive voltage can be

increased by reducing the aspect ratio of the device; however, the small devices will increase

the 1/f noise, and the flat-band noise in the system. There are several other linearization

techniques in [32, 28], that are successfully applied to achieve even higher-order linearization

for audio-frequency application. One of these techniques is shown in Figure 2.10.

From the above research, it seemed evident that the operating frequency, and the lin-

earity of the MOSFET-C architecture could not be improved simultaneously to achieve the

goals of this research.

2.3.2 Gm − C Filter

The Gm-C architecture is widely used to implement wide dynamic range, high-frequency,

continuous-time filters. In this architecture, resistor and inductors are emulated using active

transconductors. A transconductor operates at higher frequency than an opamp for a given

current, as it does not require an internal capacitive compensation and a low-impedance

output stage. Opamps have a high impedance stage to generate gain, followed by a low-

impedance output stage, so they can drive voltage with sufficient current. In the Gm-C

architecture, active transconductors replace the passive resistors and inductors of a filter.

They are primarily used to convert an input voltage into an output current; therefore,

they have a high-impedance output stage. Since these transconductors do not require an

additional low-impedance output stage, they can use that extra current to bias their input

stage for extra linearity or to save power [33, 34].

The dominant pole of a transconductor circuit comes from the high-impedance output

node. The parasitic capacitance at the output node is lumped with the output capacitance,

which makes this architecture less sensitive to any parasitic variation. It is less noisy than

opamps, as it requires fewer active components. The value of transconductance is defined

by a function of currents, voltages, and resistors, which makes this architecture tunable and

suitable for monolithic applications.
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2.3.2.1 Gm-C integrator

An integrator is an RC filter. In the GmC implementation, resistors of the RC integrator

are emulated using an active transconductor, as shown in Figure 2.11. Owing to the open-

loop structure of the transconductor (no internal compensation), the integrator has a wide

bandwidth therefore can be used for high-frequency applications. The transfer function of

the integrator with an ideal transconductor is given by Equation 2.18. This ideal integrator

has a single pole response for the entire spectrum, with a dominant pole at zero frequency.

However, in reality, the frequency of operation is limited by parasitic poles and zeroes of

the transconductors. [28, 35, 36].

H(s) =
Gm

sC
(2.18)

C
-

+
Vin

Vout

Gm

Figure 2.11: An GmC implementation of an integrator.

A non-ideal transconductor has non-zero output conductance and finite parasitic zeroes.

The transfer function of a real integrator is given in Equation 2.19, where Gm is the value

of the transconductance, G0 is the output transconductance, ωz is the parasitic zero of the

transconductor; ωn and ω0 are defined by G0

C
, and Gm

C
, respectively. A non-zero output

conductance limits the use of an integrator at lowfrequencies and parasitic zeros limit at

highfrequencies.

H(s) =
Gm

(

1 − s
ωz

)

G0 + sC
=

ω0

s

s

s + ωn

(

1 − s

ωz

)

(2.19)

A typical phase and frequency response of a non-ideal Gm − C integrator is shown in
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Figure 2.12: (a): Frequency response of a non-ideal GmC integrator; (b): Phase response
of a non-ideal GmC integrator.

Figure 2.12.a and Figure 2.12.b. The effects of the non-zero output conductance and the

parasitic zeroes of a non-ideal transconductor are similar to the finite gain and the high-

order parasitic poles of a non-ideal opamp in the active-RC topology, except that here the

left-half plane zero flattens the frequency response in lieu of rolling it faster. The non-zero

output conductance causes a phase lead and parasitic zero causes an extra phase shift [26].

2.3.2.2 Gm-C inductor

A bandpass filter requires at least two poles to shape its frequency response. A series RLC

or a parallel RLC circuits is the simplest circuit to achieve the two-pole response. In the

Gm − C implementation of a biquad, the inductors are emulated by a Gm − C resonator

structure, as shown in Figure 2.13. The value of inductance for this Gm − C resonator is

given by Equation 2.20. In this circuit, the input voltage is converted to a current by the

transconductor (Gm1). This current flows into a capacitor (C), and the integrated voltage

appears at the inverting input of the second transconductor (Gm2). Thus, this structure

sources current proportional to the integral of an applied input voltage, which is identical

to the behavior of an inductor.

L =
C

Gm1Gm2
(2.20)

The non-idealities of the transconductor also degrades performance and quality factor

of the emulated inductor. The non-zero output conductance of a transconductor increases
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Figure 2.13: An GmC implementation of an inductor and its value.

the resistive power dissipation in the emulated inductor, and hence it reduces the quality

factor. A lumped model of the series resistance caused by the non-zero output conductance

is shown in Figure 2.14.b.

C

-

+
Vin

Gm1

-

+

Vin

L= C

Gm2

Gm1Gm2

Go1

Go2

RS=
Gm1Gm2

Go1

Rp=
1

Go2

(a) (b)

Figure 2.14: Effect of non-zero output conductance on Gm − C inductor.

A parasitic zero causes an excess phase shift to a transconductor and adds a negative

resistance to the Gm−C inductor, which increases the quality factor and can bring instability

to the system. In [37], it is shown that a parasitic pole at 4Qω0 in a transconductor, where

Q is the quality factor and ω0 is the center frequency of the resonator, causes a 6 dB increase

in the pass-band gain, and a 50% increase in Q value. A non-zero output conductance of a

transconductor leads the phase, and a parasitic zero lags it. Sometimes they are designed to

counter balance each other [28, 37]; however, together they shift the center frequency of the

filter. The effect of excess phase shift caused by zeroes is more dominant at high-frequency,
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therefore, high frequency bandpass filters are vulnerable to oscillation.
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e-jφ1

e-jφ2

Gm1Gm2(φ1+φ2)

ωC

Figure 2.15: Effect of excess phase shift on Gm − C inductor.

2.3.2.3 Gm-C Biquad Bandpass Filter

From the above discussion, it is evident that the Gm − C inductor and integrator can

only be used for frequency range between 10 × ωn to 0.1 × ωz, because of the phase

lead and lag caused by the non-zero output conductance and the parasitic pole/zero of the

transconductor. In this section, the effect of these non-idealities will be observed on the

performance of a biquad filter and a brief conclusion will be drawn on the basic design

requirements for a transconductor.

A generic bandpass filter transfer function is given by Equation 2.10 and Equation 2.11.

Once the polynomial coefficient of Equation 2.10 is replaced with the filter design parameter

such as ω0 and Q, the effective filter transfer function is given by Equation 2.21.

HBP (s) =

Gmg

C1
s

s2 +
Gmq

C1
s + (Gm1Gm2

C1C2
)

= H0

ω0

Q
s

s2 + ω0

Q
s + ω2

0

(2.21)

where H0 =
Gmg

Gmq
; ω0 =

√

Gm1Gm2

C1C2
; Q =

√

C1Gm1Gm2

C2G2
mq

(2.22)

The schematic representation of this transfer function is shown in Figure 2.16. An

equivalent lump RLC model of this filter is given by Figure 2.17. For an optimum dynamic
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Figure 2.16: A GmC implementation of a biquad bandpass filter.

range performance, Gm1 and Gm2 should be equal to Gmf , and C1 should be equal to C2

(C1 = C2 = C). Upon this optimization, the effective center frequency and the quality

factor of the filter are given by Equation 2.23 and Equation 2.24 [26].

L= C2

gm1 gm2

GmgVin C11

Gmq

Figure 2.17: An equivalent lump RLC mode of the biquad bandpass filter.

The effect of non-dominant parasitic poles can be minimized by choosing an architecture

that does not have any internal high impedance node or, if it does, it should be designed

in such a way that the signal swing at the high-impedance node is small so that, the

transconductor does not slew at the internal high-impedance node.

ω0 =
Gmf

C
(2.23)

Q =
Gm

Gmq
(2.24)

If the non-zero output transconductances of transconductors are taken into account,

the equivalent lump model of a biquad filter is given by Figure 2.18, where Gexph is the
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negative resistance caused by the excess phase shift and Gog, Goq, Go1, and Go2 are out-

put transconductance of Gmg, Gmq, Gm1and Gm2 respectively. The effective gain, center

frequency, and quality factor of the filter are given by Equation 2.25, Equation 2.26, and

Equation 2.27, respectively.

C2

Gm1Gm2
GmgVin C1

1

Gmq

Gm1Gm2

Go1
Gog+Goq+Go2

1

Figure 2.18: An equivalent lump RLC mode of a non-ideal biquad bandpass filter.

H0 =
Gmg

Gmq





1

1 +
Gog+Goq+Go1+Go2−Gexph

Gmq





√

1 +
G2

o1

C2ω2
0

, (2.25)

ω0 =
Gmf

C

√

1 +
Go1 (Gog + Goq + Go2 − Gexph + Gmq)

G2
mf

, (2.26)

Q =
Gm

Gmq





1

1 +
Gog+Goq+Go1+Go2−Gexph

Gmq



 (2.27)

where, Gexph =
Gm1Gm2

ωC
(φ1 + φ2)

From Equation 2.26 and Equation 2.27, the effect of non-zero output conductance can be

cancelled with the effect of parasitic poles and zero; however, random variation in parasitic

poles and zeroes makes this scheme unreliable. The effect of these non-idealities can also

be mitigated by imposing the following inequalities during filter synthesis:
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Gog + Goq + Go1 + Go2 << Gmq (2.28)

Gexph =
Gm1Gm2

ωC
(φ1 + φ2) << Gmq

2ω0Q << ωp,z (2.29)

Thus, a transconductor should have a large output impedance, preferably larger than

40 (4 × 10) times the transconductance of the quality factor defining the transconductor

and should have the parasitic pole and zero at frequencies higher than 2Q×ω0, as given by

Equation 2.29.

2.3.2.4 Noise in a Gm − C Biquad

Noise power in a passive LC resonator is independent of Q and ω0 and is given by kT/C,

where k is the Boltzmann’s constant. The power spectral density (PSD) of the output

current noise of a transconductor is given by Equation 2.30, where T is absolute temperature

and ξ is the excess noise factor. Thus a noise equivalent model of a transconductor is given

by Figure 2.19 [38, 26, 39].

i2n(f)

∆f
= 4kTξGm (2.30)

-

+
vinp

vinm i2n

Gm

Figure 2.19: Noise equivalent model of transconductor.

Noise in a Gm − C can be analyzed by replacing every transconductor of the biquad

shown in Figure 2.16 by its noise equivalent model. The schematic diagram of the modified

29



biquad is shown in Figure 2.20, where PSDs of Gmg, Gmq, Gmf (= Gm1 = Gm2 = Gm) are

denoted by i2ng(f)/∆F , i2nq(f)/∆F , and i2nf (f)/∆F and are given by 4kTξGmg, 4kTξGmq

and 4kTξGmf , respectively.
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-

+

Gm2
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+

-

+

Gmq

Gmg

Vout

C1

i2n2

i2n1

i2nq

i2ng

Figure 2.20: Noise equivalent model of Gm − C bandpass biquad filter.

The PSD of total noise at the output and the noise equivalent bandwidth (NBW) of the

bandpass biquad filter are given by Equation 2.31 and Equation 2.32, respectively.

vno =
1

Gmq

(

ing + inq + in2 −
Gm1

jω0C2
in1

)

v2
no(f)

∆f
= 4kTξ

(

2

Gmq
+

ω0C

G2
mq

+
G3

m

G2
mqω

2
0C

2

)

=
8kTξQ

ω0C
(1 + Q)

v2
no(f)

∆f
≈ 8kTξQ2

ω0C
(2.31)

NBW =
ω0

4Q
=

πf0

2Q
(2.32)

Thus, the total noise power at the output of a bandpass biquad filter is given by Equa-

tion 2.33. This results holds true only if the bias current of the transconductors scale with
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the value of transconductance.

v2
n0 =

2kTξQ

C
=

2kTξQω0

Gm
. (2.33)

2.3.3 Log-domain Filter

A log-domain filter exploits the exponential voltage-current relationship of a BJT device

to do large-amplitude signal processing in a low-voltage environment. This architecture

compresses the input signal with a logarithmic compressor at the input stage and expands

the processed signal at the output stage using an exponential expander. This process of

of compressing and expanding the signal is often known as companding. A transistor-level

schematic of a first-order log-domain filter is shown in Figure 2.21 [40].

C Idamp

Ib

Ib

Iin Iout

Q1

Q2 Q3

Q4

Figure 2.21: A first-order log-domain filter.

The transistors Q1 and Q4 work as a logarithmic compressor and an exponential ex-

pander, respectively. The base current of all transistors is assumed negligible or is neglected

to simplify the analysis of this circuit. With this simplification the base voltage of the tran-

sistor Q3 is given by Equation 2.34, where VT is the thermal voltage and Is is the reverse

saturation current of the bipolar transistors.
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VB3 = VT ln

(

iin
Is

)

+ VT ln

(

Ib

Is

)

= VT ln

(

iinIb

I2
s

)

(2.34)

The current in the capacitor and the output current at the collector of transistor Q4 are

given by Equation 2.35 and Equation 2.36, respectively.

iC = C
dVC

dt
= Ise

VB3−VC
VT − Idamp =

iinIb

iout
− Idamp, (2.35)

iout = Ise
VC
VT (2.36)

iout

dT
=

iout

VT

dVC

dT
(2.37)

Upon some simplifications, and using the value of differentiation of the output current,

Equation 2.35 and Equation 2.36 give the partial derivative of the input and output cur-

rents, as given in Equation 2.38. The Laplace transform of Equation 2.38 transforms the

relationship between iout and iin into the s-domain, where Iout and Iin are the Laplace

transforms of the current iout and iin, respectively. The gains of the filter and pole fre-

quency are given by H0 = Ib/Idamp and ω0 = Idamp/CVT = gm3

C
, respectively. The pole

frequency of the filter is defined by the integrating capacitor (C) and the transconductance

of the transistor Q3, which can be tuned by either trimming the value of capacitor (C) or

changing the value of the bias current Idamp.

iout

dT
+

idamp

CVT
iout =

Ib

CVT
iin (2.38)

Iout(s)

Iin(s)
=

Ib

CVT

s +
Idamp

CVT

= H0
ω0

s + ω0
(2.39)

The magnitude of the intermediate signals at internal nodes is kept small; therefore this

architecture do not introduce any large signal distortion caused by the slew-rate limitation.

However, small signal amplitude at internal nodes makes it susceptible to noise. Since the
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expansion of the processed signal takes place at the output stage, the noise of the entire

filter is amplified exponentially during this expansion process.

Despite its superior performance in large-signal environments, and high-frequency ca-

pabilities, the log-domain filter did not receive a widespread adaptation because of either

poor BJT device or the unavailability of native BJT devices in a modern CMOS process.

The integrated BJT devices in a digital CMOS processes have small current gain (β) and

low early voltage (VA), which degrade the quality factor and frequency of operation of the

filter. An exponential behavior of the sub-threshold MOSFET devices can also be used

for companding, However, their frequency of operation is limited because of low fT of the

sub-threshold devices.

2.3.4 Current Mode Filter

A current mode filter takes the good aspects from both the Gm − C filter and log-domain

filter. Here, signals are kept in the current domain without any compression. All internal

nodes of this architecture are low-impedance nodes. Therefore there is no voltage swing

or slew limitation. The poles frequency of these low-impedance nodes is also located at

high frequency. These two advantages make this architecture suitable for high frequency

application. A typical schematic diagram of a differential integrator is shown in Figure 2.22

[41]. In this architecture, only outputs are the high-impedance node. The transfer function

of this integrator is given by Equation 2.40, where ip and in are the positive and negative

differential current, respectively, and C is the integrating capacitor.

iout = K
gm3

sC
(ip − in) (2.40)

The small signal swing at all the internal node also enables this architecture to use the

high-density MOSFET gate capacitor as an integrating capacitor and makes it suitable for

integration in digital CMOS processes. However, the poor transconductance and low output

impedance of the CMOS devices in sub-micron CMOS processes limits the impedance at

the internal nodes. The low output impedance of the mirror device is often improved by

cascoding the output device.
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Figure 2.22: A first-order current mode filter.

This architecture uses current mirrors and current copies extensively; therefore, it has

large current consumption. Also, the gain in this architecture comes from the output

current mirror stage, which increases the output current noise and limits its dynamic range.

Therefore despite its low voltage of operation, the current consumption and limited dynamic

range do not make this architecture suitable for portable application.

2.4 Challenges to Realize a Bandpass Filter

Bandpass filters are commonly used as channel-select or band-select filters in communication

systems; they are also used as front-end band limiters in band-limited applications or data

converter systems (DCS). High-frequency and high-Q bandpass filters are of particular

interest, as they are used as an IF filter in superheterodyne receivers and are implemented

using off-chip SAW or BAW devices. SAW and BAW devices are passive components.

They rely on mechanical and acoustic property of the material. A SAW device is a comb-

like metal structure imprinted on a piezoelectric material, as shown in Figure 2.23. Once

excited by an electrical signal, an acoustic wave, whose wavelength ’λ’ is defined by the

comb separation, propagates at the surface of the piezoelectric material and gets collected

at the output. This piezoelectric wave travels along the surface of the material as it decays

exponentially along the depth.
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Figure 2.23: Foot prints of a typical SAW device.

The separation between the comb-fingers (λ) defines the center frequency and the band-

width of the filter. Since the separation between the fingers is precisely defined and held

constant, these SAW filters are primarily narrow-band filters and that gives high selectivity.

The upper and lower cut-off frequencies are defined by the processing of the mechanical

structure and by the material property such as loss. SAW filters have been used reliably

for high-frequency (100 MHz to 10 GHz) and high-Q (∼100) filter applications since their

discovery in 1887 by Lord Rayleigh.

For wide-band application, where the frequency of interests encompasses large band-

width, a SAW filter gives large loss, as its mechanical structure is tuned only for one or a

set of frequencies, as indicated in Table 1.2. Therefore, for a wide-band applications, such

as 3G communication or a generic ADC/DAC, on-chip bandpass filters are preferred. How-

ever, designing a high-Q, high-frequency bandpass filters has challenges of its own, some

are discussed briefly in this section

2.4.1 Design Issues

2.4.1.1 Noise

The noise power of a bandpass filter is proportional to the bandwidth of the filter. Therefore,

a good system-level analysis should be performed to determine the required bandwidth of

the filter. If the bandwidth of a filter is large, then it degrades the signal-to-noise ratio

(SNR) of the filter, and if it is small, the signal information is lost. Thus, the bandwidth of

35



a filter is critical to the system performance since it defines the selectivity and sensitivity

of the system. Passive filters such as SAW and BAW filters have less noise than an on-chip

filter; however, they introduce 6∼23 dB of loss, whereas on-chip filters can easily provide

6-20 dB of gain. Therefore, one can achieve a better system performance, even with higher

noise, from an on-chip filter, by properly choosing a low-noise on-chip architecture and

doing noise and maximum signal handling capacity analysis of the individual blocks at the

system-level design. An IF filter is mostly followed by a DVGA in a communication systems.

The coarse tuning of the DVGA can be combined with an on-chip programmable IF filter.

Noise in a bandpass filter is also proportional to the quality factor of the filter [42].

2.4.1.2 Dynamic range

Dynamic range is an important indicator of system performance. It is a ratio of the max-

imum level of the signal, such as voltage, current, power, or frequency, to the minimum

detectable signal, which is usually set by the noise, as defined in Equation 2.41. Thus,

to achieve a large dynamic range, low-noise circuits, which can handle large input-output

signals, should be used. In general these two design requirements give contradictory spec-

ifications, e.g, for a low-noise system, one will increase the transconductance of the input

stage, but it reduces the maximum signal handling capacity of the system for a given cur-

rent. Maximum signal handling capacity can be improved by increasing the supply voltage

or by increasing the power dissipation, which is again a conflict with the prime goal of

making a low-voltage and low-power circuits [26].

DR =
S2

max

s2
n

=
P

ηkTfB
(2.41)

There is fundamental relationship between power dissipation and maximum the dynamic

range achieved by an analog filters. For example, the fundamental limitation of dynamic

range of a lowpass filter is given by Equation 2.41, where k is the Boltzmann constant, T

is the absolute temperature, fB is the noise equivalent bandwidth of the filter, and η is the

dimensionless quantity, which depends on the implementation technique [26]. Noise in a

bandpass filter is proportional to Q; thus dynamic range is inversely proportional to the
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quality factor of the filter.

2.4.1.3 Sensitivity

As discussed in Section 2.1, multiple feedback loop approach has the least component sen-

sitivity. It is resilient to process and temperature variation, so it is very hard to tune.

The cascade approach is the most popular structure for the monolithic implementation of

a high-Q, high-frequency, bandpass filter. It does have the highest component sensitivity,

but it is also easy to tune. Therefore, most monolithic implementations of filters have an

auxiliary tuning circuit to tune the filter parameters. These tuning schemes can be static

or automatic.

In the static approach, filters are tuned using laser or diode trim links at the time

of manufacturing. This tuning scheme tunes against process variation, but temperature

variation remains a problem, as monolithic passive devices in CMOS processes tend to

have large temperature coefficients. Thus, for an on-chip filter in an application where

performance has to be met across temperature, an automatic tuning algorithm is required.

An automatic tuning algorithm continuously senses the filter parameters and tunes them

to the desired or the reference value [43].

2.4.1.4 Power Consumption

For portable applications, power consumption and supple voltage are a major concern, as

they ensure long battery life. Low supply voltage means a lower maximum signal handling

capacity; therefore, to achieve large dynamic range, one has to employ a lateral degenerative

circuit design technique, which consumes more current but requires less headroom. A lateral

structure also increases the number of active devices, which means more noise. Thus, for an

analog circuit, low-voltage does not necessarily always means low power. One has to make

a judicious decision based on the manufacturing process and application requirements to

make power-optimized design [44].
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2.4.2 Implementation Issues

Monolithic high-Q, high-frequency, bandpass filters are implemented using the cascade de-

sign approach, where higher-order filters are broken into first-order and second-order filter

transfer functions. The poor temperature coefficient of monolithic passives, their process

variation, change in end-user environment, and variation due to change in bias point cause

a shift in filter parameters over time. Therefore, a monolithic implementation of bandpass

filters needs a center frequency and a quality factor tuning scheme to ensure their perfor-

mance over the above mentioned variations. There has been a significant amount of work

done on center frequency tuning of a bandpass filter; however, work on quality factor tuning

scheme is scarce. In this chapter, several quality factor tuning schemes are discussed and

their limitations and possible improvements analyzed.

2.4.2.1 Monolithic Bandpass Filters

The transfer functions of a bandpass filter in terms of filter parameters are given by Equa-

tion 2.42 and Equation 2.43, where center frequency, quality factor, and bandwidth of the

bandpass filter are ω0, Q, and ω0

Q
, respectively. The two filter transfer functions differ in

terms of their mid-band gains at the center frequency. The mid-band gain of the bandpass

filter given by Equation 2.42 and Equation 2.43 are H ′

0 × Q and H0, respectively.

H(s) = H ′

0

ω0s

s2 + ω0

Q
s + ω2

0

(2.42)

H(s) = H0

ω0

Q
s

s2 + ω0

Q
s + ω2

0

(2.43)

A Gm − C representation of the above transfer function is given by Equation 2.44, and

Equation 2.45, respectively. The mid-band gains of these filters are given by
Gmg

Gmq
, and

Gmg1

Gmg2
,

respectively. The center frequency and the quality factor of these filters are given by Gm

C

and
Gmf

Gmq
, respectively. In this chapter, the transfer function given by Equation 2.44 is used

for derivations and its Gm − C implementation is shown in Figure 2.24.
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HBP1(s) =
Gmg

C
s

s2 +
Gmq

C
s + (

Gmf

C
)2

(2.44)

HBP2(s) =

Gmg1

Gmg2

Gmq

C
s

s2 +
Gmq

C
s + (

Gmf

C
)2

(2.45)
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Figure 2.24: Single ended GmC bandpass bi-quadratic filter.

In modern IC processes, poly-resistors and poly-to-poly capacitors are fabricated with

±3σ1 variations of ±15%, and ±10%, respectively. The transconductance of an OTA is made

a function of bias current, resistor value, or device size. The bias current in the monolithic

circuit is generated by having a known voltage drop across a known value of resistor. Thus,

the statistical variation of a bias current is the sum of these two independent statistical

events (voltage variation and resistor variation). For calculation, we will assume that the

bias current has a variation of ±20%.

The transconductance of a transistor is given by
√

2βID; thus, a change of ±20% in

bias current will cause a corresponing change of ±10% in transconductance value. If one

takes both capacitor and transconductance variation into account, the center frequency of

the above Gm − C filter can have an offset of ±%20 with respect to its designed value.

Therefore, a Gm − C filter is always designed with an auxiliary tuning circuits to tune its

1
±3σ is a statistical number, which includes 99.99% of Gaussian statistical event with standard deviation

of σ.

39



center frequency. This auxiliary tuning circuit detects the current center frequency and

adjusts the value of the transconductance of Gmf to tune the filter to its designed value

[45].

In modern IC processes, the individual value of the components can have a variations

of ±20%, but their ratios (of alike terms), such as gain or quality factor of a Gm − C

filter, can be manufactured accurately, if their size and value are on the same order of

magnitude. Process variation is a global event on-wafer; therefore, all like components tend

to shift together in one direction in localized space. Thus, both numerator and denominator

quantities of such ratios usually vary by a same relative amount to their original value,

and their ratio remains unaffected, assuming the devices have the same area. However,

this condition holds true only for a small to a moderate ratio (< 10) of terms. If this

ratio becomes larger, such as is the case in a high-Q (∼ 50) filter, then the area of two

transconductors cannot be kept the same, and this analogy does not hold true. Thus,

high-Q filters also need an auxiliary tuning mechanism to tune their quality factor.

The center frequency of the filter is tuned by changing the value of Gmf . Once Gmf is

fixed by the center frequency of the filter, the value of Q is tuned by changing the value

of Gmq. Hence, the center frequency of a filter needs to be tuned before the Q. The excess

phase shift resulting from the higher-order parasitic poles and zeros also increases the quality

factor of the filter, as given in Equation 2.29. This increases in quality factor can bring

instability to the system.

2.5 Transconductors

There are primarily two ways to realize a transconductor in today’s IC processes. One, the

transconductance is defined by the active devices, such as transistors. Second, it is defined

by the passive components, such as resistors.

2.5.1 Simple Differential Pair

A differential amplifier is often used as an input transconductor stage in many operational

amplifiers. A schematic diagram of a differential amplifier is shown in Figure 2.25, where

Vcm is the common mode signal to bias them, Vid is the input differential signals and IEE
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is the tail current.

Vinp Vinm

Ioutm Ioutp

+
− Vcm

Vid

IEE

Figure 2.25: A simple differential pair transconductor.

The output current and the transconductance of this differential pair are given by Equa-

tion 2.46, where αF is the device parameter given as β/(1 + β).

vid − VQ1 + VQ2 = 0

Ic1

Ic2
= e

VQ1−VQ2

VT = e
vid
VT

Ic1 − Ic2

Ic1 + Ic2
=

iout

αF IEE
=

e
vid
2VT − e

−
vid
2VT

e
vid
2VT + e

−
vid
2VT

iout = ioutp − ioutm = αF IEE tanh

(

vid

2VT

)

(2.46)

The large-signal transconductance of the differential pair and its first-order component

are given by Equation 2.47.

gm =
αF IEE

2VT
sech2

(

vid

2VT

)

= Gm0 sech2

(

Gm0vid

IIEE

)

, (2.47)

where Gm0 =
αF IEE

2VT
=

IC

VT
(2.48)
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The Taylor series expansion of sech is given by Equation 2.49. The above transcon-

ductance expression is expanded using Taylor series expansion to get an expression for the

third-order non-linearity term, given in Equation 2.50.

sech(x) = 1 − 1

2
x2 +

5

24
x4 − · · · (2.49)

α3,Gm =
1

2I2
EE

(2.50)

The -1 dB compression point of the differential pair transconductor is given by Equa-

tion 2.51. The linearity of a filter is also commonly rated for 40 dB linearity point, which

corresponds to a 1% compression point. The 40 dB linearity point for the a differential

transconductor is given by Equation 2.52.

V−1dB,Gm
=

√

0.145

|α3,Gm | ×
1

Gm0
= 0.533 × IEE

Gm0
(2.51)

V1%,Gm
=

0.1
√

|α3,Gm |
× 1

Gm0
= 0.141 × IEE

Gm0
(2.52)

Thus, a differential amplifier gives 40 dB of linearity for a voltage amplitude of ±0.282 VT .

The linearity of the differential pair transconductor can be improved by applying negative

feedback to them; however, before going into the details of the linearization technique, noise

in a differential pair is discussed here.

The output current noise of BJT and MOS transistors is given by Equation 2.53, and

Equation 2.54, respectively.

in
2

∆f
=

8kTGm0

3
(2.53)

in
2

∆f
= 2qIC (2.54)

ino
2

= inop
2
+ inom

2
= 2qIEE (2.55)
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Table 2.2: Differential pair transconductor comparison in BJT and CMOS processes.

Process Gm α3 V−1dB Noise(i2n)

BJT IEE

2VT

1
2I2

EE

0.533 IEE

Gm0

2qIEE

CMOS 1
2

√
βnISS

3
2I2

SS

0.31 ISS

Gm0

8kTξGm0

3

The total output current noise of a BJT differential pair is given by Equation 2.55. The

above derivation is also performed for a MOS differential pair and their performances are

compared in Table 2.5.1. It is obvious from this comparison that the BJT differential can

provide higher linearity for the same amount of current at lower noise value. Also, the

parasitic capacitance at the output of the transconductor is smaller in the BJT process,

which results in high frequency of operation.

2.5.2 Degenerated Differential Pair

The linearity of a transconductor is improved by applying a local or global negative feedback

loop around them. A feedback loop improves the linearity of the circuit by the 20log(Afb)

dB, where Afb is the feedback loop gain. The simplest feedback to a differential pair is

emitter degeneration, as shown in Figure 2.26. The voltage drop across the resistor increases

the minimum power supply requirement or it reduces the output signal swing. Neither is

desirable. This problem is solved using a lateral degeneration between the two emitters, as

shown in Figure 2.27 [32, 46, 27].

The output current and the transconductance of the degenerated differential pair is

given by Equation 2.56 and Equation 2.57, respectively. These equations hold true for both

lateral and vertical degenerated differential pair.
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Figure 2.26: A vertical degenerated differential pair transconductor.
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+
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Q0 Q1

Figure 2.27: A horizontal degenerated differential pair transconductor.
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iout = αF IEE tanh

(

vid − iout2RE

2VT

)

(2.56)

Gm =
G

1 + 2GRE
, (2.57)

where G =
αF IEE

2VT
sech2

(

vid − iout2RE

2VT

)

(2.58)

Once the term G in the above transconductance is expanded using Taylor series expan-

sion given by Equation 2.49 and a first-order order approximation is made, the transcon-

ductance of an emitter degenerated differential pair is given by Equation 2.59, where gm

is the transconductance of the individual transistor of the differential pair and its value is

given by Equation 2.60.

Gm0 =
gm

1 + gmRE
(2.59)

gm =
αF IEE

2VT
(2.60)

The third-order non-linearity (α3) of the emitter degenerated differential pair can be

calculated using the secant hyperbolic series expansion in Equation 2.57, and with some

approximation 2, can be simplified to

α3,eGm =
1

2I2
EE (1 + gm0RE)

(2.61)

The above equation suggests that the linearity of the circuit has improved by the feed-

back loop gain (1+gmRE). It also improves the corresponding V−1dB and V1% compression

point by the same amount.

The above analysis is independent of type of emitter degeneration used with the dif-

ferential pair. Thus, the same analysis holds true for both circuits given by Figure 2.26

2Approximate the ‘G’ in denominator with Gm0
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and Figure 2.27, with some obvious limitations such as the maximum output current being

limited by the tail current IEE. Minimum power supply requirement, and noise are other

key parameters in choosing one structure over the another.

In the vertical degenerated differential pair shown in Figure 2.26, the noise generated by

the tail current source is cancelled at the output, assuming the element of the differential

pair are matched and have the same input impedance at the emitters. However, in a lateral

degenerated differential pair, there are two independent current sources and the impedances

looking into either side of the emitter are different (1/gm and REE + 1/gm); therefore the

tail current noise is not cancelled at the output [47]. Thus, the choice of topology is a

trade-off between noise and the minimum power supply requirement 3.

2.5.3 Feedback Loop

Several different transconductor circuits with varying degree of linearity have been reported

in the literature. Some of these circuits are shown in Figure 2.29. A set of performance

metrics has been chosen to compare the performance of these circuits on the same process

(0.25 µm BiCMOS), which includes DC linearity, small-signal bandwidth, and total har-

monic distortion (THD). The performance comparison is complied in Table 2.3 for quick

reference.

The active transconductors uses several active devices in parallel to improve its linearity;

the doublet structure shown in Figure 2.29.b is a good example [32]. They are primarily

open-loop structures and therefore have low linearity, and high cut-off frequency. The

passive transconductors use operational amplifiers or differential pairs made by the active

device to generate the input voltage across the inherently linear resistors, to generate the

signal current. Sometimes, these structures also use the feedback loop to further improve

their linearity by approximately 20 ln(Av) dB, where Av is the feedback loop gain. These

feedback loops improve linearity, but they limit the frequency of operation to the loop

bandwidth [29, 31, 30, 48, 49, 29, 50].

The linearity metric for the transconductors has been chosen as a 500 mV peak-to-peak

3it could be as high as twice the regular diff-pair, depending upon the implementation of current sources
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Figure 2.28: A doublet degenerated differential pair transconductor.

Table 2.3: Transconductors and their linearity.

Description Gm Linearity fCutoff THD

Degenerated differential pair gm

1+gmR
Poor High Poor

Doublet differential pair K gm

1+gmR
Low High Poor

Lateral degen. differential pair gm
1+gmR

Low (40 dB) High (2 GHz) Medium

Lateral diff. pair with feedback ∼ 1
R

High (90 dB) Low (GBW) Good

signal at the output of the IF filters. The cut-off frequency metric comes from the fact that

the high-frequency bandpass filters suffer from instability. As discussed in Section 2.3.2.3,

the minimum bandwidth of the OTA or the transconductor should be greater than 0.2Qω0.

Thus, this research will require a transconductor circuit, whose bandwidth is at least 1.5

MHz, to implement a 100 MHz bandpass filter. Since the center frequency of the IF filter

varies from 10 MHz to 300 MHz, it is definitely desirable to have a transconductor with a

bandwidth greater than 1.5 GHz[37].

The results summarized in Table 2.3 suggests that the linearity of lateral degenerated

differential pair with feedback loop is the best. However, it is not attractive on bandwidth

metric. The lateral degenerated differential pair is the second best in terms of linearity and

also has bandwidth over 2 GHz. There is no feedback loop in the second circuit, therefore
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Figure 2.29: a: Degenerated differential pair. b: Doublet degenerated pair. c: Lateral
degenerated differential pair d: Lateral degenerated differential pair with feedback loop e:
Folded lateral degenerated differential pair.
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its linearity is moderate and bandwidth is high [32]. The Gilbert transconductor circuit

shown in Figure 2.29.e is a low-voltage derivative of the circuit shown in Figure 2.29.c.

Vinp Vinm

I1/2 I1/2
I2/2 I2/2

I2

Ioutp Ioutm

Vdd

Q0 Q1

Q2 Q3

Q4 Q5

RE

Figure 2.30: Enhanced Gilbert cell structure.

An enhanced version of this Gilbert cell structure is shown in Figure 2.30; it has a

feedback around the input differential to improve its linearity. The feedback loop consists

of high-frequency structures and it has local feedback loop around the input differential

pair; therefore, it does not hurt the frequency response of the transconductor [51].

2.5.4 Manufacturing Process

The discussion of speed or bandwidth cannot be concluded without reviewing the manufac-

turing processes. Two state-of-the-art manufacturing processes are compared in Table 2.4

on the basis of fT , transconductance, flat-band noise, and cost. The obvious choices of man-

ufacturing processes are the sub-micron (0.18µm) CMOS technology and the sub-micron

CMOS process with hetero-junction bipolar transistor (HBT). The CMOS process with

native HBT devices is known as Bipolar CMOS (BiCMOS) technology.

The fT of a CMOS process is an inverse function of 1
L2 , and flat-band-noise is pro-

portional to L, as given in Equation 2.62 and Equation 2.64. The output resistance of
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Table 2.4: State-of-the-art monolithic IC manufacturing processes.

Process fT Gm Noise Cost

CMOS(0.18µm) 1
2π

gm

Cgs+Cgd

√

2WµCOXId

L
8KTGm

3
150K

BiCMOS(0.25µm 1
2π

Gm

Cπ+Cµ

IC

φT
4KTrb 150K

a MOSFET device is given by Equation 2.66, where λ is the channel length modulation

parameter, which decreases with an increase in channel length; therefore, the rds is propor-

tional to channel length (L). Thus, a long-channel device is desirable to get good linearity

and high gain. However, it reduces the fT and increases the noise. Noise can be compen-

sated by increasing the width of the device, but this further reduces the fT . Thus, there is

a trade-off among linearity, speed, and noise.

fT =
1

2π

gm

Cgs + Cgd
∼ 1

2π

gm

Cgs
=

3

4π

µ0

L2
(VGS − VT ) (2.62)

Cgs =
2

3
CoxWL (2.63)

e2
n =

8KT (1 + η)

3gm
=

8KTL(1 + η)

3µ0CoxW (VGS − VT )
(2.64)

gm = µ0Cox
W

L
(VGS − VT ) (2.65)

rds =
1

λ
= f(L) (2.66)

The HBT devices behave and work the same way as a bipolar junction transistors

(BJTs). They are built the same way except that Germanium (Ge) is implanted in the

base of the device to reduce the base resistance(rb), and to increase the β and the fT of

the device [52]. The small base resistance makes HBT devices less noisy compared to BJT

devices. In the past few years, HBT devices have been added successfully to the standard

CMOS flow with few additional mask steps. Thus, the BiCMOS manufacturing process

is completely compatible with low-cost CMOS and provides the designer an advantage of
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using the native superior BJT-like transistor.

The HBT devices are bulk devices and therefore can carry higher current density than

their CMOS counterparts, which means smaller parasitic capacitance. The transconduc-

tance of an HBT device is higher than the MOSFET device for the same current. The base

resistance of the HBT devices is on the order of 30 ∼ 50 Ω, so their voltage noise is also

smaller than that of MOSFET devices. The transconductance and voltage noise of HBT

devices is tabulated in Table 2.4. Lower parasitic, higher transconductance, and low voltage

noise makes the BiCMOS process suitable for RF and high-frequency applications. Thus,

this research plans to use the 0.25 µm BiCMOS process.

2.6 Bandpass Filter Tuning Techniques

2.6.1 Filter Tuning Methods

A tuning scheme of a filter is used in conjunction with either the master-slave tuning

or direct tuning strategy. In the master-slave strategy, the designed filter parameters are

extracted from a prototype master filter and are used by the tuning algorithm to tune

the higher-order slave filter. In this strategy, an application filter can be tuned while it is

operational. A pictorial representation of this tuning strategy is shown in Figure 2.31.

Master
Filter

Filter
Slave

Reference
Tuning

AlgorithmVs

Ve

Vin Vout

Figure 2.31: Block diagram of the master-slave tuning strategy.

The accuracy of this tuning scheme depends on the matching between the master and
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the slave filter. The master should be an exact copy of the slave filter and should physically

be placed right next to the slave filter for matching. Even with all the layout precautions,

there will still be some difference in their performance, because the center of their layouts

is located at two different locations.

The purpose of the master filter is only to gather information on the filter parameters

of the slave filter; therefore, having a master filter of the same order as the salve filter, does

not justify its area and power consumption. In a typical cascade approach implementation,

the master filter is a biquad structure and the slave is a higher-order filter. The difference in

the order of filter implementation limits the accuracy of the system. Thus, there is a trade-

off between accuracy and power consumption. Another way to achieve higher accuracy

without dissipating extra power would be to use time multiplexing, which is done in the

direct tuning strategy.

In the direct tuning strategy, the application filter, itself is used to extract filter parame-

ters on a time multiplexed basis. Therefore, it does not require a slave filter. However, with

this approach, the filter is not available to the system, while it is being tuned. A pictorial

representation of this scheme is shown in Figure 2.32.

Filter

Reference Tuning
Algorithm

Vs

Ve

Vin Vout

Figure 2.32: Block diagram of the direct tuning strategy

Thus, the direct tuning strategy is good for applications where, the filter is not being

used all the time and high accuracy is required.
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2.6.2 Q-tuning Algorithm for Bandpass Filter

As discussed in Section 2.4.2, the center frequency and the quality factor of the filter requires

an automatic tuning scheme to ensure their performance over manufacturing process and

end-use environment variations. Primarily, there are four quality factor tuning algorithms

reported in the literature and are listed below. The quality factor locked loop is a new

tuning method and it has not been implemented before.

• Envelope detection method (ED)

• Magnitude locked loop (MLL)

• Least-mean-square method (LMS)

• Quality-factor locked loop (QLL)

There are also some variants of the envelope detection method and the magnitude locked

loop and some other relatively new unimplemented algorithms, which are discussed towards

the end of this chapter.

2.6.3 Envelope Detection

In this method, a filter is excited by a step or a pulse waveform. The step (pulse) waveform

has one (two) fast transition, which consists of the high-order harmonic components. The

filter passes the frequency within its pass-band and attenuates the others. Thus, the output

of a bandpass filter to a step waveform is a sinusoidal signal with an exponentially decaying

envelope, as shown in Figure 2.33 [12, 53, 54, 55, 56].

Before going into details about the ED method, let us first look into the spectral content

of a step function and step response of a bandpass filter. The Fourier transform (reference)

of an ideal step function, which goes from ‘0’ to ‘1’ transition in no time, is given by

Equation 2.67. This equation suggests the following:

• Step function constitutes an entire frequency spectrum (except DC).

• Signal strength of any frequency is inversely proportional to the frequency.
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Figure 2.33: Pictorial representation of the envelope detection method.

U(jω) =
1

jω
(2.67)

However, the real step signal takes a finite amount of time t0 to go from ‘0’ to ‘1’. The

Fourier analysis of a real step signal is given by Equation 2.68, where m is the slope of the

ramp, and t0 is the transit time from ‘0’ to ‘1’. As expected, the spectral signal strength of

the real step is also an inverse function of frequency.

U(jω) = m

(

e−jωt0 − 1

ω2

)

+
e−jωt0

jω
[mt0 − 1] (2.68)

For mathematical simplicity, an ideal step waveform, given by Equation 2.67, is used

to understand the limitation of this tuning method. The transient response of a bandpass

filter to an ideal step input is given by

y(t) =
H0

ω0
× e

ω0

2Q
t ×
[

e
√

1−4Q2 t + e−
√

1−4Q2 t
]

(2.69)

The first term of Equation 2.69 is the amplified input signal. The second term represents

the exponential decay of the output with a time constant of 2Q/ω0. The third term can

be expressed in the form of Equation 2.70, where Ω =
√

1 − 4Q2. It is a sinusoidal signal

component within the pass-band of the filter for Q > 1
2 .
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ejΩt + e−jΩt = 2cos(Ωt) (2.70)

The envelope detection method tunes the time constant of the decaying sinusoidal expo-

nential, which is proportional to Q, to the desired value 2Q0/ω0. It detects the envelope of

the filter output signal using an envelope detection circuit and compares it with an accurate

reference envelope using two envelope detectors followed by a comparator. The comparator

generates an error signal, which is integrated over time, and the integrated signal is used

to tune the quality factor of the filter. A pictorial view of this mechanism is shown in

Figure 2.33 and a block diagram is shown in Figure 2.34.

+

-

Fi lter

_

+ +

_

Detector

DetectorRC Filter

Reference Envelope

Envelope

K/s

Figure 2.34: Block diagram of the envelope detection method.

An accurate reference envelope can be generated using a first-order resistor-capacitor

(RC) switched capacitor (SC) or switched current (SI) circuit. SC and SI are accurate

because their time constants are ratios of like terms (capacitor or current), which can be

realized accurately in modern CMOS IC technology, even when their absolute value may

have a ±3σ variation of ±20%.

2.6.3.1 Limitation of Envelope Detection Method

Some of the problems and limitation of the envelope detection method are listed below.

• The strength of the center frequency signal component in a step waveform.
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• It has to tune the filter within four time constants (2Q/ω0 = 1µsec.).

• The offset from the comparator and envelop detector.

2.6.3.2 Possible improvements to Envelope Detection Method

One possible improvement of the envelope detection method would be to use a sinusoidal

burst input in place of the step input. This improves the output signal strength from

H0/ω0 to H0 ×A. The mathematical expression for the sinusoidal burst output is given by

Equation 2.71, where A is the applied signal strength.

h(t) = H0.A.ω0 × e
ω0

2Q
t ×
[

e
√

1−4Q2 t + e−
√

1−4Q2 t
]

+ H0 × A × Sin(ω0t) (2.71)

The duration of the sinusoidal signal should be long enough so that the output of the

filter reaches its amplitude H0 × A. Now, the strength of the output signal is large enough

to be detected by the envelope detector. However, even with this amplitude increase the

output will decay down to 2% in four time constant and ED has to the filter in this window.

The above mentioned reasons limits the use of this tuning scheme to low-frequency filters,

whose center frequency or pole frequency is less than 1 MHz. The close-loop feedback tech-

nique of the envelope detection method is also applied to the magnitude locked-loop(MLL)

technique.

2.6.4 Magnitude Locked Loop

The magnitude locked-loop (MLL) tuning scheme uses the filter transfer function given by

Equation 2.72, which has a mid-band gain (H0 × Q) proportional to the quality factor of

the filter, as shown in Figure 2.35. This scheme requires a reference amplifier, which has an

accurate gain of H0 × Q0, at the center frequency of the filter. It compares the mid-band

gain of the filter with that of the reference amplifier using a peak detector circuits, and

generates an error signal. The error signal is integrated over time to tune the quality factor

of the filter, as shown in Figure 2.36 [11, 57, 58, 59, 60, 61].

H(s) = H0
ω0s

s2 + ω0

Q
s + ω2

0

(2.72)
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Figure 2.35: Frequency response of the filter with gain proportional to Q.

+Q
+

-

+

-

Fi lter

_

+ +

_

Peak

Detector

Peak

Detector

K/s

Figure 2.36: Block diagram of the MLL tuning scheme.
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2.6.4.1 Limitations of MLL Tuning Technique

Some of the problems and limitation of the MLL method are listed below.

• It requires a peak detector circuit working at the center frequency of the filter.

• The gain-bandwidth product of the reference amplifier should be at least H0×Q×ω0,

so that it can provide a gain of H0 × Q at center frequency ω0 e.g. for a filter with

center frequency of 100 MHz, quality factor of 50, and gain of 20 dB, the reference

amplifier should have a gain-bandwidth (GBW) product of more than 2 GHz .

• Offsets of the amplifier and the comparator give a Q-error, assuming that V ref
os , V fil

os ,

and V pd
os are input-referred offsets of the reference amplifier, the filter, and the peak-

detector, respectively. Then, the error in the quality factor resulting from offsets is

given by

∆Q =
H0 × Q0

(

V ref
os + V fil

os

)

+ 2V pd
os

H0 × Q0 × vref
× Q0 (2.73)

This puts a contradictory requirement on the reference amplifier input stage. The

input differential pair of the reference amplifier should be made small to minimize the

input capacitance and to achieve high frequency of operation. However, a small input

device gives large offset and thus a large Q-error[62].

• The feedback loop tunes the value of H0 × Q; therefore any error in H0 will appear

in Q.

• The gain and the noise of the filter put a minimum limit on the start-up quality

factor. For a high-Q filter, this can cause instability in the filter because of the

process variation.

2.6.4.2 Possible Improvements to MLL tuning scheme

The GBW requirement from the reference amplifier can be reduced by having another peak

detector circuit before it. The output of the peak detector circuit is a DC voltage. Thus

the reference amplifier has to only amplify the DC signal. However, it introduces another
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offset parameter into the Q-error equation and the matching between the two peak detector

circuits becomes important.

The MLL scheme is the most commonly used technique to tune high-frequency filters.

However, the above mentioned limitations of the reference amplifier and peak detector limit

the use of this scheme to 10 ∼ 20 MHz applications. There are some improvements to the

MLL tuning scheme, such as least-mean-square method, which have been reported to tune

a 100 MHz filter [62]. The LMS tuning scheme is discussed in details in the next section.

2.6.5 Least-Mean-Square Method

The least-mean-square method also uses the bandpass filter transfer function given by Equa-

tion 2.72. It also extracts the quality factor information of the filter from its gain. The

operating principle of this tuning scheme can be understood from the following analysis.

1

Q0

Master

Filter

Slave

Filter

Σ

Σ

1/s
Ve

+
-

+

-

Vin Vout

VQ

Asin(ωt)

Bcos(φ)sin(ωt+φ)

c(t)

d(t)

e(t)

Figure 2.37: Block diagram of the least-mean-square tuning scheme.

The quality factor tuning signal (VQ) is first attenuated by a value equals to the desired

quality factor (Q0) of the filter. Assuming that the current quality factor of the filter is Qc,

the output signal strength (B) of the filter is AQc

Q0
. The output of the first summer (c(t)),

which sums the input signal with the output of the filter, is given by Equation 2.74. The

second summer circuit is used as a dummy block to equate the group delay (φg) through the

two paths of the system. The analog mixer is used as a multiplier that gives an error signal

along with high-frequency noise given by Equation 2.76. The noise in the error signal e(t)

59



is filtered using an integrator. The integrator accumulates the error signal and generates a

tuning voltage, ve, given by Equation 2.77.

c(t) = A sin(ωt) − B sin(ωt + φg) (2.74)

d(t) = B cos(φg) sin(ωt + φg) (2.75)

e(t) = [A sin(ωt) − B sin(ωt + φg)] × B cos(φg) sin(ωt + φg) (2.76)

Now, if filter is tuned to its correct Q value, then Qc will be equal to Q0, which means

the error signal, ve, will be zero. Since, this tuning algorithm looks for a minimum error of

the squared output signal, it is known as least-mean-square (LMS) tuning algorithm.

ve = AB cos

(

φg

2

)

− B2 cos2(φg)

≈ AB − B2 = A2 Qc

Q0

(

1 − Qc

Q0

)

(2.77)

The LMS tuning algorithm requires two summers and an analog mixer operating at the

center frequency of the filter, which should not be difficult to design. Thus, this tuning

scheme can be used to tune a high-Q high-frequency bandpass filter.

2.6.5.1 Problems associated with LMS tuning scheme

Some of the problems associated with this tuning scheme are listed below.

• The input offset of the attenuator and the summer block causes an error in the final

quality factor value. The effect of this error can be derived similar to the MLL tuning

scheme [62]. The input offset of the attenuator has a severe effect, as it is amplified

by the gain of the filter. This again incurs a similar trade-off in speed or power

consumption of the summer and the attenuator block with their offsets.

• This scheme requires several analog blocks such as attenuator, summer, mixer, and

integrator. Therefore, the power consumption of this scheme is large.
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• Any error (δ) in the attenuator will be amplified by the gain of the filter. The amplified

error will appear as the final Q value error (H0×Q0×δ). Thus, the design and layout

of the attenuator are critical to the performance of this scheme.

2.6.5.2 Possible Improvements to LMS Tuning Scheme

The offset problem resulting from the summer and multiplier blocks of the LMS tuning

scheme is solved by swapping the place of the multiplier and the summer block [62]. How-

ever, the offset problem of the attenuator still persists.

2.6.6 Q-Locked Loop

The Q-locked loop (QLL) tuning scheme uses the phase characteristics of the filter to ex-

tract the quality factor information and modulates the transconductance of the Q-tuning

transconductor to tune the quality factor of the filter. The magnitude and phase charac-

teristics of a filter for any applications are known prior to its implementation. This scheme

uses the phase information of the filter to tune the phase shift at the output at a known

reference frequency to a known reference value, e.g., a biquad filter gives a phase shift of

45o at its 3 dB cut-off frequencies with respect to the center frequency. If the phase shift is

more than the desired value, it implies that the quality factor of the filter is more than the

desired value Q0 and vice-versa. The above argument can be seen graphically in Figure 2.38

[63, 64, 65, 66].

2.6.6.1 Problems associated with QLL tuning scheme

Some of the problems associated with QLL tuning scheme are listed below.

• Any delay mismatch between φfil and φref will appear as a tuning error in quality

factor. For example, a delay mismatch of τ/360 will generate a phase error of 1o,

which will appear as Q-error. Since, it is a difference between two similar quantities,

it can be matched and realized with good agreement in modern IC processes.

• The accuracy of the QLL scheme depends on the deadzone of the PFD. Thus, it

requires a very fast and no-deadzone PFD circuit.
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Figure 2.38: A pictorial representation of the QLL tuning algorithm.

Low Pass
Filter

Fi lter

_

+ +

_

ω3dB

PFD Loop Filter

Biquad

Φ0=45o

φeφfil

φref

Figure 2.39: Block diagram of the Q-lock-loop tuning scheme.
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2.6.7 Other Reported Techniques and their Limitations

A few other tuning techniques, which have been reported in the literature that are capable

of tuning small to moderate quality factor value filters at lower frequencies.

• Cosine peak comparison with the non-zero DC reference

This tuning scheme encodes the quality factor information of the filter into the pulse

width of a pulse-width modulated (PWM) wave by comparing the cosine wave output

to a non-zero DC reference. It tunes the quality factor of the filter by comparing the

duty cycle of the PWM signal with a reference signal. It is also a variant of the MLL

tuning technique. It uses the filter gain (H0 ×Q) property to tune the Q. If the Q of

the filter is less, i.e., the gain is small and resulting output cosine signal strength will

be small as well [67].

• Programmable capacitor array implementation

This is another variant of the MLL tuning scheme. It extracts the filter Q information

from the filter mid-band gain and, then tunes the filter by appropriately choosing the

correct combination in programmable capacitor array (PCA) [68].

• Bandpass filter output phase extraction from inherent lowpass filter

This tuning algorithm is different from the traditional ED and MLL methods. It uses

a filter topology where lowpass and bandpass can be realized in the same circuit. The

center frequency of the bandpass filter and the 3 dB roll-off frequency of the lowpass

filter are the same. Thus, when the bandpass filter reaches its peak, the lowpass filter

reaches the 3 dB roll-off point where the lowpass output gets a 90o phase change. This

tuning scheme uses lowpass filter phase slope information to tune the bandpass filter

Q [69, 70, 71].

• Derivatives of MLL and ED

There are few schemes that use a fast analog-to-digital converter to sample the filter

response and then process the digital words using a DSP processor. The DSP processor

generates an an error control signal based on tuning algorithm to tune the quality
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factor. These schemes are expensive in terms of area and power dissipation; therefore,

they have very little practical use. Another tuning scheme uses sigma-delta (Σ∆)

circuit inside the loop to tune the quality factor, so its speed and power consumption

are defined by the sample-and-hold circuit [55, 72, 73, 74, 75, 76, 77, 78, 79].

2.7 Summary

The monolithic solution of a high-Q high-frequency bandpass filter tends to have poor noise

performance in comparison to SAW or BAW filters. However, an on-chip filter provides

gain that can still improve the overall system performance with an appropriate architec-

tural redesign. The on-chip filters are implemented using the cascode approach and have

large component sensitivity. Therefore, they are accompanied by an auxiliary tuning cir-

cuit, which ensures their performance over all environmental variations. For a low-voltage

application, the Gm−C filters are implemented using folding and lateral degenerated struc-

tures.

The resistive degenerated transconductor is more linear because the transconductance

is defined by inherently linear passive components. Its linearity is further improved by

employing the feedback loop around the degenerating resistor; however, the linearity comes

at the expense of poor bandwidth and inferior noise performance.

The finite bandwidth of the individual transconductors causes the Q enhancement effect

in the bandpass filter, which may eventually lead to instability. The MLL and LMS tuning

schemes look promising for tuning a high-Q, high-frequency bandpass filters. However the

offsets in the individual components makes them susceptible to large error for a high-Q

filters.

The quality factor locked loop tuning is promising candidate but it has not been imple-

mented before and its mathematics needs to be driven and behaviour needs to be under-

stood. Hence, the QLL tuning scheme needs to be further developed to be useful for this

work.
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CHAPTER III

AUTO-Q TUNED HIGH-Q BANDPASS FILTER

High-frequency continuous time filters are used as front-ends for high-speed analog to digital

converters (ADC), reconstruction filters in DACs, front-ends of disk drive applications,

intermediate frequency stages in superheterodyne transceivers, and front-ends of FM and

HD audio receivers. At present, many of these applications use passive, off-chip SAW or

BAW filters (DR ∼70 dB). A SAW filter is 20 dB more linear than an on-chip continuous

time filters of the same frequency (DR = 40∼50 dB). However, an on-chip filter generates

gain, whereas a SAW filter introduces 3∼20 dB of loss to the signal path Table 1.2. The

loss from the SAW filter also increases with bandwidth, and makes it unsuitable for 3G

applications. A superheterodyne receiver can achieve better signal-to-noise ratio with a

redesign using an on-chip continuous-time filter in large bandwidth applications. However,

an on-chip continuous-time filters are vulnerable to oscillation because of the excess phase

shift from the transconductor. Therefore, an on-chip filter is always built with an automatic

tuning scheme. A high-frequency bandpass filters also filters the out of band noise for high-

performance, high-speed ADC.

3.1 Outline of the Proposed Research

The goal of this research is to address the poor dynamic range and the quality factor

instability problem of an on-chip continuous-times filter, and take a step further toward a

single-chip solution. To quantify the contribution and the improvements in performance,

a 100 MHz biquad bandpass filter has been designed with DR > 60 dB and gain ∼20 dB,

using an ultra-linear transconductor circuit in the BiCMOS process. To achieve this DR

from filter, the linearity of the transconductor should be more than 80 dB and the 3 dB

cut-off frequency close to 1.5 GHz.

The proposed transconductor circuit employ a local negative feedback loop to achieve

high linearity while maintaining high cut-off frequency. It has achieved a linearity of 80
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dB by optimizing the design to reduce systematic and random process mismatch. The

biquad bandpass filter is designed using a noise-optimized structure, where large gain and

quality factor are achieved by defining them as a ratio of transconductance to a difference

in transconductances. This has enabled the filter to achieve a quality factor of 50 without

using a large conductance ratio (∼50) in design. The design of the filter is optimized

for overall dynamic range performance where noise is limited by the first stage and the

maximum signal handling capacity limitation comes from the output stage.

The instability in quality factor (Q) of a filter is solved by employing the QLL tuning

loop. This new tuning scheme overcomes the limitations of the ED, MLL, and LMS methods

and reliably tunes the high-Q, high-frequency continuous-time filter. It extracts the Q

information from the phase response of the filter, which makes it immune to the offset

and gain-mismatch problem of monolithic solutions. It tunes the quality factor of the

filter by modulating its phase characteristics inside a phase-locked-loop system. The loop

stability analysis is performed using an approximated phase response of a filter, as the

Laplace transform of the phase of the filter is a non-integrable function. Therefore, it is

approximated to an exponential function using series expansion within the band of interest.

The loop stability condition loop performance parameters (ωn, ζ) are derived and its

response is analyzed for expected input signal. The proposed Q-tuning scheme is a unique

case of a generic PLL system designed only to tune the quality factor of the filter. Therefore,

its input is confined to a limited sub-space. The circuit performance metrics such as power

consumption, stability, and steady-state error are optimized for the problems at hand. The

input to the QLL tuning scheme is always a step change in phase; it represents a finite

error in the quality factor of the filter. Hence, a stable second QLL system is necessary and

sufficient to reach zero steady-state error.

The finite mid-band gain and left half plane poles of the phase response of the filter

makes the proposed second-order Q-tuning scheme unconditionally stable under all extreme

corners. The loop bandwidth of the QLL tuning scheme controls the settling time and

deadzone of the DPFD determines the hysteresis in the final Q-value. The loop bandwidth

is reduced by reducing the loop gain or cutting the integrator gain. The gain from the
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integrator is reduced by decimating its clock frequency. A large loop gain gives fast settling

time, but it increases the hysteresis in Q. If a fast loop transient response is required, then

a third-order loop can be employed.

The delay mismatch between the reference and the filter output signal determines the

static Q-error. Therefore, a similar delay network is used for both signal paths of the loop

to minimize mismatch and static Q-error [80, 64].

Upon completion, this research work will provide a wide dynamic range, high-Q, high-

frequency bandpass filter circuit with a reliable automatic Q-tuning scheme.

3.2 Excess Phase Shift Effect

A high-Q, high-frequency filter suffers from an excess phase shift effect, as described in

Section 2.3.2. This effect can also be explained using a delay model of an integrator and

some simple mathematics using a series expansion and approximations. A bandpass filter

is described by a transfer function given by Equation 3.1, where ω0 is the center frequency,

and Q is the quality factor, and H0 is the gain of the filter.

H(s) =
Vout(s)

Vin(s)
= H0

ω0

Q
s

s2 + ω0

Q
s + ω2

0

=

H0ω0

Qs

1 + ω0

Q
1
s

+
ω2

0

s2

(3.1)

The Laplace transform 1 of a normalized ideal integrator is 1/s. A block-level imple-

mentation of a second-order bandpass filter using ideal integrators is shown in Figure 3.1.

An ideal integrator has infinite gain at DC and has its pole at zero frequency. Hence, it

does not introduce delay to the signal. However, a real integrator has finite gain at DC

and a non-zero dominant pole, which provides non-zero delay to the integrated signal. The

effect of the integrator non-zero dominant pole and its higher-order parasitic poles can be

modelled using a delay model, where together they introduce a delay ‘τ ’ to the signal. The

Laplace transform of this integrator model is given by Equation 3.2.

1Appendix A.1
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Figure 3.1: Integrator equivalent block diagram of bandpass filter.

U(s) =
e−sτp

s
≈ Gm

sC
(

1 + s
ωp

) (3.2)

In other words, the above model approximates the integrator with a single high-order

non-dominant pole/zero response (e−sτ is approximated to ≈ 1− sτ using the Taylor series

expansion2. This approximation is valid only when the ω0 ≪ 1/τp = ωp; which is true in

case of parasitic poles of the integrator.

Upon substituting the real integrator transfer function into the bandpass filter shown

in Figure 3.1, the effective transfer function of the bandpass filter is given in Equation 3.4,

where the quality factor of the filter is given by Equation 3.5.

Heff (s) =
Vout(s)

Vin(s)
=

Hω0e−sτp

s

1 + ω0

Q0

e−sτp

s
+

ω2

0
e−2sτp

s2

(3.3)

≈
H0ω0

Q0s
− H0ω0τp

Q0
(

1 − ω0τp

Q
+ ω2

0τ
2
p

)

+ ω0

s

(

1−2ω0τpQ0

Q0

)

+
ω2

0

s2

(3.4)

Qeff =
Q0

1 − 2ω0Q0τp
(3.5)

The denominator of the effective quality factor (Qeff ) of the filter is always less than

one. Thus, the effective quality factor of the filter is always greater than the designed value

2Appendix A.2
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Q0. This phenomenon of increase in quality factor of the bandpass filter is also known as the

Q-enhancement effect [37]. The Q-enhancement effect is minimized by reducing the delay

(ωp = 1
τp

>> 2Q0ω0) through the integrator, in other words by increasing the DC-gain

and minimizing the parasitic capacitance. The quality factor of an IF filter is already large,

therefore any further unaccounted for increase in Q can bring instability to the system. The

Q-enhancement effect becomes critical for Gm-C filters because of the additional variation

from temperature and manufacturing processes.

3.3 Continuous-time Bandpass Filter

As discussed in Section 2.2, the biquad bandpass filters are defined by Equation 3.6 and

Equation 3.7. The filters defined by these two transfer functions differs in their mid-band

gain at the center frequency (ω0) of the filter. In this research work, a bandpass filter

described by the transfer functions of Equation 3.6 is implemented using a fully differential

Gm − C biquad structure, where the inductor is emulated using a Gyrator structure as

described in Section 2.3.2.2. Filter parameters such as gain, center frequency, and quality

factor are given in Equation 3.8. The center frequency and the quality factor of the biquad

are chosen to be 100 MHz and 16∼48 for this research work, as per the conclusion drawn

in Table 1.4 of Chapter 1.

H(s) = H ′

0

ω0s

s2 + ω0

Q
s + ω2

0

=
Gmg

C
s

s2 +
Gmq

C
s + (

Gmf

C
)2

(3.6)

H(s) = H0

ω0

Q
s

s2 + ω0

Q
s + ω2

0

=
Gmq

C
s

s2 +
Gmq

C
s + (

Gmf

C
)2

(3.7)

where H ′

0 =
Gmg

Gmf

; H0 =
Gmg

Gmq
; ω0 =

Gmf

C
; Q =

Gmf

Gmq
(3.8)

The gain and the quality factor of the filter are a ratio of two transconductances. A large

gain and quality factor requires a large transconductances ratio (16 ∼ 48). The transcon-

ductance of a transconductor is mostly defined by the current in the active components or

by the size of the passive resistors. A large transconductance ratios requires either large

area or large current ratio, which is not a low-power solution. Large resistors gives large

thermal noise and large current generates large shot noise [81].
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In this work, a noise-optimized biquad structure, given in Equation 3.9, is used, where

a large quality factor and gain are achieved by taking ratios of transconductance to the

difference in transconductances, as given in Equation 3.10. This keeps the value of individual

transconductances on the same order of magnitude and still allows a large ratio. This

method gives an optimal noise and area for a given high-Q filter. The transconductance

of the transconductors is defined by the passive resistor but its noise is dominated by the

active components.

H(s) =
Gmg

C
s

s2 +
Gmh−Gmq

C
s + (

Gmf

C
)2

(3.9)

where H0 =
Gmg

Gmh − Gmq
; ω0 =

Gmf

C
; Q =

Gmf

Gmh − Gmq
(3.10)

The center frequency of the filter defines the value of the transconductor Gmf . The

quality factor of the filter is tuned by changing the value of Gmq inside an automatic Q-

tuning scheme, where the transconductance Gmf and Gmh are held constant. The gain of

the filter increases with the quality factor of the filter, which is not desirable. The gain is

held constant during the tuning process by tuning the value of Gmg in opposite direction

to Gmq while holding the Gmf and Gmh constant.
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Figure 3.2: The block level representation of the biquad filter.

The block-level schematic diagram of the above transfer function is shown in Figure 3.15.

It is a differential architecture, where the value of capacitors is chosen to be equal for area

optimization and layout simplicity. The linearity of the Gmh, Gmq, andGmf is kept higher, as
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they have an amplified output signal as their input. Thus, the maximum handling capacity

is determined by these transconductors.

There is an overall gain of 20 dB from the filter; therefore the noise from gmg becomes

critical, as the input-referred noise from Gmq, Gmf , andGmh is divided by the gain from

the system. Also, from Section 2.4.1.1, the noise in a filter is inversely proportional to the

value of capacitor. Thus, for a given center frequency (ω0), Gmf should be kept large to

have the large dynamic range. Now, a large Gmf means either smaller IIP3 or large power

consumption. Hence, the value of Gmf is designed from P−1dB and the supply current

specification. The integrating capacitor ‘C ’ is chosen based on the center frequency of the

filter. The distortion introduced by Gmh and Gmq is minimized by designing them 12 dB

more linear than Gmf . Thus, the transconductor Gmg determines the input-referred noise

and the transconductor Gmf determines the linearity parameter such as P−1dB and IIP3.

3.4 High-Frequency Linear Transconductor

A transconductor generates an output current proportional to an applied input voltage. A

voltage input stage requires a large input impedance and the current output stage requires a

large output impedance. From the discussion on integrators, inductors and bandpass filters

in Section 2.3.2, it is evident that the transconductors should have a large output resistance

to minimize the phase lead. They should also have small parasitic capacitance to push out

the parasitic poles and zeroes (at least fives times the center frequency of the filter) and

minimize the excess phase shift effect [6, 37]. For a high-Q, high-frequency bandpass filter,

excess phase shift is of greater concern because it can push the filter into instability. Noise,

maximum signal strength, the power consumption are also areas of concern in designing a

bandpass filter [6, 33, 82, 83]. Thus, a desired transconductor should have the following:

• Large output impedance

• Parasitic poles and zeroes pushed out to high frequency (∼1.5 GHz)

• Large dynamic range or high linearity

• Low voltage capability and low power consumption
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A differential transconductor circuit is commonly used to eliminate the even-order non-

linearity and to gain common mode noise immunity.

The proposed transconductor circuit is an improved version of the folded Gilbert struc-

ture with a local feedback loop around the input stage. The feedback loop consists of a

high-speed common base stage, and an emitter follower stage. The loop bandwidth is de-

termined by the common emitter amplifier stage. A schematic diagram of the proposed

circuit is shown in Figure 3.3.

Vinp Vinm

Ioutm Ioutp

pbiasc

pbias
pb_cm

Q0 Q1

Q2 Q3Q4 Q5

Q6 Q7

M0 M1

M2 M3

M4 M5

M6 M7

M8 M9

RE RE

RD RD RD RD

CMFB

VCM

RL RL

Figure 3.3: An enhanced Gilbert cell transconductor circuit.

The operating principle of the proposed circuit is as follows: The input differential

amplifier transistors Q0 and Q1 produce the input voltage across the resistor (2RE), which

generates a signal current (isig). The common base amplifier Q0, level shifter transistor M0,

and a common emitter amplifier Q2 form the negative feedback loop around the input stage.

An error signal current (ie) flows into the emitter of the input differential pair transistors,

Q0 and Q1. The common base amplifier formed by the input differential pair amplifies

the error signal (ie), at the collector, and converts the error current signal into a voltage.

Transistors M0 and M1 are level shifters. The amplified error voltage signal appears and
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modulates the base of transistors Q2, and Q3, such that the signal current (isig) could be

absorbed at the collectors. The transistor pairs Q2-Q4 and Q3-Q5 form current mirrors,

as their bases are tied together and the emitters are held at the same potential. Thus, the

differential signal current, (isig), is reproduced at the collector of transistors Q4 and Q5,

respectively. The linearity of the proposed circuit depends on the matching between the

transistor pairs Q2-Q4 and Q3-Q5. Transistors Q6 and Q7 are driven by the same input

signal as differential pair Q0 and Q1. The purpose of transistors Q6 and Q7 is to cancel the

early voltage effect on the mirror transistors Q4 and Q5 by modulating the collector of these

transistors with the same voltage as the input mirror transistors Q2 and Q3. Transistors Q6

and Q7 also act as common base amplifiers, which reproduce the input current from their

emitters to their collectors. Hence, the differential output current of the transconductor

is collected at the collectors of transistors Q6 and Q7. The MOS transistor pairs M2-M4,

M3-M5, M6-M8, and M7-M9 are current sources. The gates of transistors M6 and M7 are

driven by the common mode feedback circuit to regulate the DC output common mode

voltage at the output of the transconductor.

3.4.1 Small-Signal Model

The above transconductor circuit is broken into two symmetrical halves to analyze the

small-signal circuit model. A half-circuit is shown in Figure 3.4 and its small-signal model

is given in Figure 3.5. The transconductance of the above transconductor circuit is derived

and given in Equation 3.11, where gmx is the transconductance of the transistor Qx, gπx is

the π model parameter of the transistor Qx, ginx is the input impedance of the transistor Qx,

gout is the conductance at the internal high impedance node, and gD is inverse of resistance

RD . The impedance (Rout) at the internal high-impedance node is the output resistance(ro)

of transistor Q0-Q1 in parallel with the output impedance of the current source (M2-M4),

which is (gmM4
rdsM4

rdsM2
). Since the output impedance of the current source is much

higher than the output resistance of the transistor Q0 and Q1, the impudence Rout can be

approximated to ro, as given in Equation 3.12. The source follower amplifier M0 and M1

act only as a DC level shifter. Therefore, they do not affect the AC performance and are
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neglected in this small signal analysis for simplicity. A small-signal analysis that includes

M0 and M1 is given in Appendix B.

Vinp

Ioutm

pb_cm

Q0

Q2Q4

Q6

M0

M2

M4

M6

M8

RE

RD RD

Figure 3.4: One half of the transconductor circuit.

Gm =
gm6

gm6 + gπ6
× gm4gD

gD + gπ4 + gm4
×

× gEgm0

(gout + gin2 + gin4) (gE + gπ0 + gm0) + gin2gm2rπ2gm0
; (3.11)

where gin2 =
gDgπ2

gD + gπ2 + gm2

gin4 =
gDgπ4

gD + gπ4 + gm4

Rout = ro||(gmM4
rdsM4

rdsM2
) ≈ ro (3.12)

The above transconductance equation is simplified and approximated by Equation 3.13.

The value of the transconductance of the above circuit can be approximated to 1/RE , as

long as the inequality gm0REAv ≫ 1 holds true, where Av is the feedback loop gain and rout

is the AC-impedance at the internal high impedance node. The term Av in this inequality,

comes from the local feedback loop, which improves the linearity by 20log Av dB. The
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Figure 3.5: The small signal model of one half of the transconductor circuit.

magnitude of loop gain is given by Equation 3.17.

The output resistance of an HBT transistor is given by VA/ICC , where VA is the early

voltage of the device (Q0-Q8) and ICC is the collector current of the particular device.

The VA and ICC are 100 V and 0.8 mA in this design, which gives an output resistance

of 125 Kohms. In this 0.25 µm BiCMOS process, the β of the device is 150, which gives

an approximates input impedance rin of 23 Kohms for 0.8 mA of bias current and 120

Ω of degeneration. Thus, the AC impedance (rout) of the loop can be approximated to

rin/2. Hence, the theoretical improvement in linearity from the local feedback loop is 20

× log
(

β+1
2

)

= 37.5 dB at direct current (DC), as given in Equation 3.17.

Gm =
β6

β6 + 1
×

gEgm0
β4

rin4
Rout

gE + gπ0 + gm0 + gm0
β2

rin2
rout

≈
gm0 × rout

RD

1 + gm0RE
rout

RD

=
gm0Av

1 + gm0REAv
; (3.13)

≈ 1

RE
; for gm0REAv >> 1 (3.14)

where rout =
1

g0 + gin2 + gin4
≈ 2

gin
(3.15)

rinx = rπx + (βx + 1)RD (3.16)

β

rin
=

β

rπ + (β + 1)RD
≈ β

(β + 1) RD
≈ 1

RD

Av =
rout

RD
=

β + 1

2
(3.17)
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The emitter degeneration resistors RD of transistors Q2-Q5 reduce the loop gain; how-

ever, their presence is necessary to counter the processing mismatch effect on mirror devices

Q2-Q4 and Q3-Q5. The process mismatch analysis of the above transconductor is done later

in this chapter.
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Figure 3.6: Value of transconductor verses input signal.

The simulation results of the transconductance with respect to input signal strength, and

the frequency response are shown in Figure 3.6 and Figure 3.7, respectively. The simulated

linearity of the above transconductance is 90.3 dB for an 800 mV peak peak signal and the

-3 dB cut-off frequency is 1.7 GHz.

3.4.2 Noise

Noise in a high-frequency bandpass filter is dominated by the flat band thermal noise and

the shot noise of the active devices. The flicker noise of the transistors is rolled off or

blocked by the filter frequency response. A small-signal model of the transconductor is

shown in Figure 3.8. Now upon solving the KCL and KVL nodal equations and using the

super-position theorem for output noise current, a simplified total output noise current of

the transconductor is given by Equation 3.18, where inx is the shot noise of device Qx. The
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Figure 3.7: Unity gain frequency response of the transconductor.

detailed derivation of this results is shown in Appendix B.
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Figure 3.8: Noise equivalent small-signal model of the transconductor.

in
2
out = 2

[

4KT

RE

(

1 +
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RE

)

+
in0

2

gm0
2R2

E

+ in2
2
+

in6
2

β2
6

+

(

β6

β6 + 1

)2

in4
2

]
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[

4KT

RE

(

1 +
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)

+ in2
2
+ in4

2
]

≈ in2
2
+ in4

2
+ in3

2
+ in5

2
= 8qIC (3.18)
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As can be seen from the above equation, the major noise contributors of the transcon-

ductor shown in Figure 3.3 are RE and transistors Q2-Q5. Since the noise contributed by

active devices is larger than that of the degeneration resistor RE, its noise contribution

along with Q0, Q1, Q6, and Q7 is neglected, as it has little contribution. In this design,

all transistors Q0-Q8 carry the same amount of current (IC = 800 µA); therefore, the total

output current noise power can be approximated to 8qIC , as given in Equation 3.18.

3.4.3 ICMR

The input common mode range of this transconductor circuit is from VBE + V sat
CE to

V DD − VBE + V sat
ce + 2V sat

ds , which approximates to 1.2 V and 3 V, respectively, as shown

in Figure 3.9. Thus, the above transconductor can take a differential input of ±1.8 V in a

3.3 V supply. The minimum supply requirement for this circuit to be functional is close to

1.2 V, but at this point the circuit does not have any input common mode range.
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Figure 3.9: Input common mode range of the transconductor.

3.4.4 Common Mode Feedback

An inherent advantage of differential signaling is its immunity to the common mode per-

turbation; however, it requires a common mode feedback (CMFB) circuit to stabilize the

common mode voltage at the output. A CMFB circuit has a large gain at DC to minimize
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any common mode drift along the signal path and its dominant pole is higher than the pole

frequencies of the system so that it can suppress the common mode signal from the band

of interest. For example, in this case, it is the center frequency of the filter. The schematic

diagram of the CMFB circuit used in this research is shown in Figure 3.10. It is a simple

degenerated differential amplifier, as the expected signal swing at the inputs is small and

it gives the largest bandwidth for a given current. The vertical emitter degeneration also

helps minimize any process mismatch effect on the differential pair of the CMFB amplifier.

The CMFB circuit is a Miller-compensated, single-stage amplifier, where input voltage

is converted into current using the differential input transconductance stage; the current

is mirrored at the output using MOS current mirrors (M0-M6) and is finally amplified at

the high-impedance output. The dominant pole of this amplifier comes from the Miller

multiplication of the capacitor ‘C0 ’ at node ‘pb cm’ and is given by Equation 3.19. The

Miller multiplication factor is the gain from the output leg of the current mirror (M5-

M6) and is given by Equation 3.20. The overall gain of the CMFB amplifier is given

by Equation 3.21, where gmc is the transconductance of transistors Q0-Q4, Rcm is the

degeneration resistor of the differential pairs Q0-Q4, gmMx
is the transconductance of the

MOS transistor Mx, and rdsx is the output resistance of the MOS transistor Mx. C0 is the

Miller-compensation capacitor.

ωpCM =
gm1

gm6rds6rds8gm8C0
(3.19)

AM = gm6rds6rds8gm8 (3.20)

AvCM =
gmc

1 + gmcRcm
× gmM6

gm1
× gm6rds6rds8 (3.21)

Inputs to the CMFB circuit are taken from the mid-point of a resistive divider connected

across the output of the respective transconductor, as shown in Figure 3.3. This diminishes

any differential swing from being fed into the CMFB circuit and minimizes any capacitive

coupling through the parasitic capacitance from the input to the output of the CMFB

amplifier. Only a common mode signal appears at the gate of the input differential pair

and it is small in amplitude. This eases the design, linearity, and power requirements from
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Figure 3.10: A schematic diagram of the common mode feedback circuit.

the CMFB amplifier. A CMFB amplifier is always connected in a unity gain feedback

configuration to the differential circuit. Thus, the unity gain bandwidth product (GBW)

of the CMFB amplifier should be kept larger than the center frequency of the filter. In

simulation, the GBW of the CMFB amplifier is ≈ 180MHz, as shown in Figure 3.11. Some

margin is kept into the design to account for the parasitic capacitance and the manufacturing

process variations.

Any mismatch between the dividing resistor will generate a common mode output signal

from the differential signal and HD2, which could limit the THD of the system. Therefore,

the dividing resistor is laid out in 4x4 matrix common centroid structure, to achieve a

matching of in excess 10 bit (62 dB) of accuracy.

3.4.5 Common Mode Rejection Ratio

The common mode gain of the proposed transconductor circuit is found by applying a

common input signal to both the inputs of the transconductor. A simplified small-signal

equivalent circuit diagram of a transconductor with a common input signal is shown in

Figure 3.12. From the symmetry of the small circuit model, one half of the gm0 vπ0 current
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Figure 3.11: Frequency response of the CMFB amplifier.

comes from Q2 and the other half comes from Q4. With this assumption and some sim-

plification to the KCL and KVL nodal equations, the common mode gain of the circuit is

simplified to Equation 3.22, where ro is the output of the BJT transistor. Since all transis-

tors of the transconductor carry the same current, their output resistances are the same. A

detailed derivation of the following result is given in Appendix B.
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Figure 3.12: A small-signal circuit equivalent of the transconductor.
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icm =

β2gm0

2
vin

r0
(

1 + β2

2

)

gm0 + gπ0 + gm0RD

2r0

icm =
β2gm0vin

β2gm0r0 + 2gπ0r0 + gm0RD

gcm =
icm
vin

=
β6

β6 + 1

1

r0 + 2r0

β2β0
+ RD

β2

≈ 1

ro
(3.22)

The CMRR of a differential circuit is given by Equation 3.23, where Ad is the differential

gain, ACM is the common mode gain, and AvCM is the CMFB loop gain. From simulation,

the CMRR at the DC is -146 dB, but has its pole at 10 KHz. Thus, the CMRR at the

center frequency of the filter is about -76 dB, which is more than the target linearity.

CMRR =
AdAvCM

ACM
=

gm6rds6rds8ro

RCMRE
(3.23)
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Figure 3.13: Common mode rejection ratio of the proposed transconductor.
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3.4.6 Tunable Transconductor

The value of the transconductance is tuned by changing the value of the lateral degeneration

resistor. In this implementation, it is tuned using a 5-bit control word; C0 is the least

significant bit and C4 is the most significant bit. The control bit either shorts the resistors

or plugs them into the transconductance element. The value of an individual resistor of the

Q-tuning transconductor is chosen such that it gives an uniform unity steps to the quality

factor of the filter. Since the value of the quality factor is a ratio of transconductance to

the difference in transconductance, therefore an uniform steps in the quality factor does not

results in an uniform steps in transconductance.

Q0

Q2

C4 C3 C2 C1 C0

Q1

Q3

C4C3C2C1

RE5 RE4 RE3 RE2 RE1 RE0 RE5RE4RE3RE2RE1

Figure 3.14: A schematic diagram of the tunable transconductor.

With an increase in the quality factor of the filter, the gain of the filter is held constant

by reducing the value of the gain controlling transconductor simultaneously. The value

of the gain controlling transconductor is also chosen such that with an increment increase

in quality factor, the gain of the filter is held between 20-24 dB. Thus, the stand-alone

transconductance steps are also non-uniform but maintains a constant gain.

3.4.7 Process Mismatch Analysis to Signal Distortion

The performance of the continuous-time filters have already been pushed beyond a moder-

ate level; for any further increase in performance, in terms of linearity, distortion or center

frequency depends on the subtle aspects of circuit design, in which device mismatch and

parasitic become important. In SPICE simulation, which does not account for process mis-

match, one can be deceived by the simulation result, as it shows 90+ dB of linearity without

emitter degeneration [51, 4]. Since the emitter degeneration resistor reduces the loop gain,
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as given in Equation 3.17, it is counter-intuitive to degenerate the mirrors. However, the

above analysis holds true of the mirror, and diff-pair devices have an exact match.

The VBE mismatch of the HBT device degrades the linearity of the transconductor, e.g.,

a VBE mismatch of 1 mV gives 4% error in the current or gm of a transistor, which limits

the performance of the work published by Koyoma. But for the transconductor shown in

Figure 3.3, the emitters of all mirror devices are degenerated with ηVT where η = 3. This

degrades the loop gain but improves the DC linearity with mismatch in the transconductor

by 20 × log(1+η) dB. In simulation, this degeneration improves the overall linearity of the

circuit from 65 dB to 80+ dB, as shown in Figure 3.6. Thus, the effect of mismatch is

mitigated by emitter degeneration in the design and by using a common centroid structure

in the layout. The HBT is a bulk device and it has smaller process mismatch than MOS

transistors.

3.5 Design of Biquad Bandpass Filter

3.5.1 Biquad Bandpass Filter

A prototype biquad filter is implemented using the above transconductor with dynamic

range of 62 dB. This filter is also used to verify the proposed quality factor tuning scheme.

The transfer function of the filter is given by Equation 3.24. The quality factor of the

filter is made from the ratio of Gmf to the difference of two transconductance, a large

quality factor(∼50) is achieved without having a large transconductance ratio. A small

transconductance means large resistance, and large voltage noise. The gain of the filter is

held constant with Q by reducing the value of Gmg while increasing the Gmq and vice-versa.

A block-level implementation of the biquad circuit, is shown in Figure 3.15.

H(s) =
Vout(s)

Vin(s)
=

Gmg

sC

1 +
Gmh−Gmq

sC
+
(

Gmf

sC

)2 ; (3.24)

where ω0 =
Gmf

sC
(3.25)

Q =
Gmf

Gmh − Gmq
(3.26)

Gain =
Gmg

Gmh − Gmq
(3.27)
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Table 3.1: Component values of the biquad filter.

Components Value (Q=16 ⇒ Q=48)

Gmf 760 µS

Gmh 138 µS

Gmg 629 ⇒ 385µS

Gmq 209 ⇒ 243µS

2C 1.56 pF

The values of the transconductors are tuned using a 5-bit controller, which switches

the resistors in and out from the resistors (REs). The REs are implemented using a low-

temperature coefficient poly resistor that has a sheet resistance of 35 Ω and process variation

of ±10%. The smallest value used for the tuning resistors is 20 Ω, which is laid out 3 square

long to minimize any etching effect. The size of the switches is chosen judicially so that their

on-resistances are small compared to the REs, and they do not add parasitic capacitance

to cause an excess phase shift.
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Figure 3.15: The block-level representation of the biquad filter.

The values of the transconductances and the capacitance of the biquad filter are listed

in Table 3.1. The quality factor of the filter can be tuned from 16 to 48 with an incremental

step of 1, while the gain and the center frequency are held constant at 20 dB and 100 MHz,

respectively. The frequency and phase response of the biquad filter are shown in Figure 3.16.

The second and third harmonic distortion numbers for different signal levels are listed in

Table 3.2. The magnitude and phase response of the filter with all 32 values of the quality
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Figure 3.16: The magnitude and the phase response of the biquad filter.

factor from 16 to 48 is shown in Figure 3.17 and Figure 3.18, respecitvely. The phase lags

with frequency which confirms that the biquad filter is stable and is a causal system.

3.5.2 Noise

The noise equivalent model of the proposed biquad filter is shown in Figure 3.19. From

Section 2.3.2.4, the noise power spectral density of the filter is given by Equation 3.28. At

the output of the filter, the Q-defining transconductor is connected in a diode configuration

and it converts the total output current into voltage. Here, the noise in the biquad is

dominated by the active devices.

vno(f) =
1

Gmh − Gmq

(

ing + inq + inh + inf2 −
Gmf1

jω0C2
inf1

)

v2
no(f)

∆f
=

1

G2
mq1

(

i2ng + i2nq + i2nh + i2nf2 + i2nf1

)

≈ 40qIC

G2
mq1

(3.28)

where Gmq1
= Gmh − Gmq
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Figure 3.17: The magnitude response of the biquad filter at few quality factor values.

Figure 3.18: The phase response of the biquad filter at few quality factor values.
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Figure 3.19: The noise model of the proposed biquad filter.

3.5.3 Dynamic Range

The amplified output signal of the filter is fed as input to transconductors gmh, Gmq, and Gmf .

All of them have equal contribution in the output signal distortion. In order to keep the

step size of transconductor Gmq within practical limits, the values of Gmh and Gmq have to

be kept five to six times smaller than the value of Gmf . Thus, the maximum signal handling

capacity and distortion are limited by transconductor Gmf . Hence, the peak-to-peak signal

handling capacity of the filter is 4 × ICC/Gmf .

The noise power spectral density of the filter is given by Equation 3.28 and the noise

equivalent bandwidth of a bandpass filter is given by Equation 2.32. Hence, the total output

noise power of the filter is given in Equation 3.29, which is a multiplication of the two. The

dynamic range (DR) of the biquad is given in Equation 3.30. For this 100 MHz filter, the

dynamic range of the filter is 65 dB.

v2
no(f) =

40qIC

G2
mq1

× πf0

2Q
(3.29)

DR =
V 2
−1dB
∑

vno
2 ≈ Ic

πqf0Q
= 65.2dB (3.30)

The total harmonic distortion of the biquad filter for various output signal amplitudes
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Table 3.2: Harmonic distortion of the biquad filter.

Vinpp Voutpp HD2 (dB) HD3 (dB) THD (dB)

14 mV 0.1 V 79 85 77.8

36 mV 0.5 V 75.1 78.2 72.7

71 mV 1 V 68.3 79.4 67

111 mV 1.6 V 66 66.5 63

is listed in Table 3.2. These simulation results suggest that the proposed biquad filter has

a total harmonic distortion of 67 dB for a 1V peak-to-peak signal and 63 dB for 1.6 V

peak-to-peak signal. At a 1.6 Vpp output signal, the HD2 and and HD3 of the signal are

well above the noise floor of the filter.

3.6 Q-Locked-Loop Tuning Scheme

As discussed in Section 2.6, an on-chip continuous-time filter requires an automatic cen-

ter frequency and quality factor tuning scheme to counter the process variation (±20%) of

monolithic active and passive components, and end-user enveromental temperature varia-

tion. The inability of the existing tuning schemes to tune a high-Q, high-frequency filter

has provided the motivation for this work.

The Q-locked-loop (QLL) tuning scheme uses the phase characteristics of the filter to

extract the quality factor information and it uses the filter as a VCO inside a PLL system

where it modulates the transconductance of the Q-tuning transconductor using loop control

voltage to tune the quality factor of the filter. The magnitude and phase characteristics

of the filter are known prior to its implementation. This prior knowledge of frequency

response is used to tunes the output phase shift at a known reference frequency to a known

reference value. For example, a biquad filter gives a phase shift of 45o at its 3 dB cut-off

frequencies with respect to its center frequency. If the phase shift at 3 dB frequency is

more than the desired value (45o), it implies that the quality factor of the filter is also more

than the desired value (Q0) and vice-versa. The above argument can be seen graphically in

Figure 3.20.

This scheme compares the output phase shift (φfil) of the filter at a reference frequency
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Figure 3.20: A pictorial representation of the Q lock loop tuning algorithm.

ωref to a desired reference value (φref ) using a phase frequency detector (PFD). This PFD

generates an error signal (φe) based on the phase difference between the φref and φfil. The

phase error signal φe of the PFD is filtered and integrated using a lowpass loop filter. The

integrated voltage, Ve, is used to tune the quality factor of the filter. The block diagram

of this scheme is shown in Figure 3.21, where it tunes the biquad filter using one of its 3

dB cut-off frequencies. The concept and the operation of the QLL is similar to a phase-

locked-loop (PLL) system, except it uses the phase characteristics of the filter in lieu of

voltage controlled oscillator (VCO) to convert the loop control a voltage into the phase

information [84]. Therefore, it has been referred to as a quality factor locked-loop (QLL)

scheme. This scheme uses elicited knowledge of the PLL system; therefore, even though

it is a new scheme, it benefits from the work and research published on DPFD and PLL

systems [63, 64].

90



Low Pass
Filter

Fi lter

_

+ +

_

ω3dB

PFD Loop Filter

Biquad

Φ0=45o

φeφfil

φref

Figure 3.21: Block diagram of Q-lock-loop tuning scheme.

3.6.1 Loop Dynamics

The loop behavior of a control system is easily understood in the s-domain using a Laplace

transform. Therefore, the phase characteristics of the filter are transformed into the s-

domain to understand the loop dynamics of the proposed QLL system. The transformed

expression of the filter phase response is used along with the phase frequency detector,

charge-pump, and loop filter transfer function to solve for the loop parameters (ωnand ζ)

and draw an analogy to a PLL system [85, 86, 87].

3.6.1.1 Filter Phase Characteristics

The phase characteristics of a bandpass filter defined by Equation 3.6 are given in Equa-

tion 3.31, where ω0 = Gmf/C is the center frequency, Q = Gmf/Gmq is the quality factor

of the filter, and ω is an arbitrary input frequency.

φ (H(s)) =
π

2
− tan−1

(

ω.ω0

Q.(ω2
0 − ω2)

)

(3.31)

The Laplace transform of the phase characteristics of the filter is given by Equation 3.32

[88]. This transformation equation is a non-integrable function. Therefore, the arctan(t) is
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approximated to an exponential function to understand the loop behavior within the band

of interest [88].

Φ(s) =

∫

∞

0

(π

2
− tan−1(v) e−sv

)

dv; where v =
ω0ω1

Q
(

ω2
0 − ω2

1

) (3.32)

The band of interest is defined by evaluating the output phase shift from the biquad

filter at extreme values of Q. The two extreme values of Q are 1/2 and ∞. Let us assume

that the ω1 and ω2 are the lower and upper 3dB cut-off frequencies of the filter. We also

know that the ω2 − ω1 = ∆ω is the bandwidth of the filter and
√

ω1ω2 = ω0 gives center

frequency of the filter.

Upon using the above formulas and some simplification of Equation 3.31, it is found

that a biquad bandpass filter with a quality factor of 1/2, Q0, and ∞ gives a phase change

of 0o, 45o, and 90o, respectively, at its one of the cut-off frequencies. In the QLL tuning

scheme, the output phase shift of the filter is compared with a reference (φref ), which is

45o. Thus, the maximum phase error in the QLL scheme is 45o. Hence, the the value of

‘v ’ is bounded to ±1. Hence, without looking at any generality, the function tan−1(v) is

approximated to Equation 3.33 within the band of this band of interest.

tan−1(v) ≈











π
2 (1 − e−nv) ; where 0 ≤ v ≤ 1 and n = 0.7

−π
2 (1 + e−nv) ; where − 1 ≤ v < 0 and n = 0.7

(3.33)

The numerical simulation of the above approximation is shown in Figure 3.22. The

Laplace transform of the approximated filter phase transfer characteristic is given by Equa-

tion 3.34.

L
(π

2
− π

2
(1 − e−nv)

)

=
π

2

1

s + n
∼ K.

1

s + 0.7
(3.34)

The s-domain representation of the filter phase characteristics is very similar to an ideal

voltage controlled oscillator, which is 1
s
. A normalized VCO has its pole at ω = 0 and

provides infinite gain at zero frequency, whereas the phase characteristics of the filter have
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Figure 3.22: Comparison of tan−1(t) to π
2 (1 − e−0.7t).

their pole on the negative real axis of the s-plane and have only a finite gain at DC. This

difference in gain and pole location determines the stability of the second-order PLL and

QLL system.

3.6.1.2 Digital Phase Frequency Detector and Charge-pump

A digital phase frequency detector (DPFD) in a PLL system detects phase and frequency

differences between a reference and a clock signal. In the proposed QLL system, it detects

the phase difference between the reference signal (φref ) and the filter output signal (φfil). It

generates an up or down signal, depending up on whether the phase error (φerr) is positive

or negative. These outputs of the DPFD drive a charge-pump circuit like any PLL system;

together they perform the function of analog mixer and loop filter of an analog PLL system.

An analog mixer can only detect phase error between the two input signals whereas a DPFD

can detect both phase and frequency error; this gives a large lock range, and an infinite pull-

in range to a PLL system [64]. A typical digital PFD circuit is made from flip-flops therefore

it does not consumes any quiescent current. It is smaller in area compared to an analog

mixer. Therefore, in the QLL system, even though it does not require a frequency-error

detector, a DPFD is used as a phase detector.
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Figure 3.23: Basic principle of a charge-pump circuit.

A charge-pump circuits receives the up and down signals as input from the DPFD. It

sources or sinks a current proportional to the difference in pulse width of the input signals,

as shown in Figure 3.23. A charge-pump sources (sinks) a difference current, given by

Equation 3.35, to (from) the loop filter for φe

2π
× T time, where 1/T is the tuning frequency

(in this case it is ω−3dB frequency) and φe is the phase error between the two inputs. The

combined transfer function of the DPFD and the loop filter (KD) is given by Equation 3.36.

[64, 80].

Id = I0 ×
φe

2π
(3.35)

Vc(s) =
I0(s)ZF (s)φe(s)

2π
; where ZF (s) = Loop filter transfer function. (3.36)

where I0 is the the charge-pump current. The loop filter (ZF ) integrates the difference

current (Id) and generates a loop control voltage (Vc). Thus, the over all transfer function

of the loop control voltage (Vc) is given by Equation 3.36.
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3.6.1.3 QLL Close-Loop Transfer Function

A block diagram of the second-order quality factor locked-loop system is shown in Fig-

ure 3.24. Upon substituting the transfer function of the individual blocks of the QLL

system, the closed loop transfer function of the proposed tuning scheme is given by Equa-

tion 3.37 [64].

Fil

Ref

DN

UP

DPFD

Charge Pump

Fi lter

_

+ +

_

ω3dB

PFD

Biquad

Φ0=45o

φe

φfil

φref

Figure 3.24: A second-order quality factor locked-loop system.

φo

φref
=

K0KDI0ZF (s)

2π(s + n) + IP K0KDZF (s)
(3.37)

ZF (s) =
1

sC
(3.38)

where K0 is the VCO gain, KD is gain of the DPFD, ZF is the loop filter transfer function,

and I0 is the charge-pump current. For a second-order QLL tuning scheme, the loop filter

is a first-order capacitive filter, and its transfer function is given by Equation 3.38. Upon

substituting the value of ZF in Equation 3.37, and with some simplifications, the phase
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transfer function (H(s)) and phase-error transfer function(He(s)) of the loop are given by

Equation 3.39 and Equation 3.40, respectively.

H(s) =
φo

φref
=

I0K0KD

2πC

s2 + ns + I0K0KD

2πC

(3.39)

He(s) = 1 − H(s) =
φe

φref
=

s2 + ns

s2 + ns + I0K0KD

2πC

(3.40)

From the above equation, it is evident that a second-order implementation of the pro-

posed QLL tuning scheme has both its poles in the left half of the s-plane. Hence it is

unconditionally stable. The QLL tuning scheme benefits from the fact that a bandpass

filter has gentle phase roll-off in its pass-band and has finite gain at its center frequency.

The natural frequency (ωn) and the damping factor (ζ) of the closed loop QLL tuning

scheme are given in Equation 3.41 and Equation 3.42, respectively. These equations are

used to design the value of the current (I0) of the charge pump and the capacitance of the

loop filter. For the second-order QLL system to be critically damped, the ζ of the loop

should be greater than 0.707.

ωn =

√

I0K0KD

2πC
(3.41)

ζ =
n

2

√

I0K0KD

2πC
(3.42)

τs =
4.5 × ζ

ωn
; for ζ > 0.69 (3.43)

The settling time for such a second-order control system is given by Equation 3.43, which

is inversely proportional to the natural frequency of the loop. Therefore, a fast settling time

is achieved by choosing a large natural frequency and large loop bandwidth. However, the

loop bandwidth for a phase-locked-loop system is limited by one tenth of the input frequency

of the DPFD. The DPFD inside a PLL system performs a sample-and-hold function in the

phase domain. Therefore, from sampling theorem, the signal frequency has to be less than

half the sampling frequency. For better and accurate performance, it is recommended to

keep the loop bandwidth (LBW) below one eighth of the DPFD frequency (fdpfd) in a PLL

system.
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In the above derivation of natural frequency and damping factor, the sampling effect of

the DPFD is not taken into consideration. The sampling effect decreases the phase margin

of the filter by LBW/fDPFD ×π degrees. If the loop bandwidth is kept more than half the

sampling frequency, the loop goes into oscillation [64]. Thus, the gain from the first-order

capacitive filter is chosen such that the loop bandwidth remains on the order of one tenth

the sampling frequency.

The above result of the second-order QLL system is contrary to the stability of a con-

ventional second order PLL system. The transfer function of a second-order PLL system is

given by Equation 3.44. Both its poles are on the jω axis; given by Equation 3.45, therefore

it is only conditionally stable.

φf

φref

=
I0K0KD

2πC

s2 + I0K0KD

2πC

(3.44)

s = ±j

√

I0K0KD

2πC
(3.45)

A typical VCO has its pole at the origin and a first-order capacitive filter also has its

pole at the origin. Thus, when they are connected in a closed-loop system, they give a pair

of complex conjugate poles on the jω axis, making the system only conditionally stable.

However, in the proposed QLL tuning loop, the approximated s-domain transfer function

of the filter phase response has its pole on the negative real axis. This negative real axis

pole, when combined with the pole at the origin of the loop filter in a closed-loop system,

gives a pair of complex conjugate poles in the left half of the s-plane. Hence, the proposed

second-order QLL tuning loop is unconditionally stable even with a first-order capacitive

loop filter.

3.6.2 Loop Dynamics to Q-error Input

The input to the tuning scheme is the error in quality factor of the filter, which is equiv-

alent to a step phase change input to a QLL system. As discussed in Section 3.6, the

largest Q-error (45o) occurs when quality factor of the filter is either 0.5 or ∞. This phase

error is equivalent to a step phase input of magnitude ∆φ to the QLL system, as given in
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Equation 3.46, where u(t) is a unit step function.
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∆φ
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)
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Figure 3.25: ∆Q-error equivalent step input phase change.

The error in the final Q-value of the filter (after tuning) can be found by looking at the

steady state-error of the QLL to a step input. A Laplace of the step phase change is given

by Equation 3.47.

θin(t) = ∆Φu(t) (3.46)

Θin(s) =
∆Φ

s
(3.47)

The steady state error from the proposed second-order system to a step phase change

in the s-domain is given by Equation 3.48. From the final value theorem of the Laplace

transform, the steady-state error in Q is zero [88] and is given in Equation 3.49. Thus, a

second-order Q-tuning loop is necessary and sufficient to achieve zero Q-tuning error.

Θe(s) = Θin(s)He(s) =
∆Φ

s

s2

s2 + 2ζωns + ω2
n

(3.48)

θe(∞) = lim
s→0

sΘe(s) = 0 (3.49)

This time-domain step response of a critically damped second-order QLL system is also

shown in Figure 3.26. A second-order control system gives a constant error to a ramp input

but, no such input appears to the proposed QLL scheme [89].
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Figure 3.26: Second order QLL response to step change in input.

3.6.3 Non-idealities and Mismatch Analysis

The proposed tuning scheme extracts the quality factor information of the filter from its

phase response; therefore is immune to any magnitude and offset variations. However, it

is susceptible to any phase/delay mismatch, as it relies on the phase shift through the

system. From Laplace theorem, a constant delay in the time domain in an electrical system

is equivalent to the linear phase shift in the frequency domain, as given in Equation 3.50

[88].

L (u(t − τ)) = e−sτ (3.50)

The proposed QLL tuning scheme requires a constant phase shift of φref signal to fref

signal, which can be generated either by using a multi-phase oscillator of frequency f3dB or

by delaying the input signal by a constant time τref = T/8, where ’T’ is the time period of

the f3db signal. In this implementation, the latter scheme is used because it has less circuit

complexity. It does have a sensitivity to process variation, but it is low enough to prove
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the concept. For higher accuracy, a multi-phase oscillator should be used to generate an

accurate phase shift.

The above theorem also suggests that any delay mismatch τmis between the filter output

signal and the reference signal will also appear as a phase mismatch error φmis at the output

of the DPFD and it will result in an error to the final quality factor of the filter. The effect

of delay mismatch on loop dynamics is better understood by incorporating the mismatch

as a non-ideality to the φfil signal.

Assuming that there is an extra delay of τmis in the φfil signal compare to φref signal.

Since the phase response of the filter is a phase information, the delay mismatch is first

converted into the phase domain by using the Laplace transform given in Equation 3.50.

From the convolution theorem of the Laplace transform, a convolution in the time domain

is equivalent to a multiplication in the frequency domain [88]. Thus, the equivalent delayed

phase response of the filter is a multiplication of the phase response of the filter given by

Equation 3.34 with the s-domain transform of the delay as given in Equation 3.51.

Φdelayf il(s) = L
(

e−nve−sτmis
)

=
1

s + n + τmis
=

1

s + n′
(3.51)

Now upon using the above delayed phase response of the filter in the closed-loop transfer

function of the proposed QLL tuning scheme, the new modified phase transfer function of

the loop is given by Equation 3.52. The new natural frequency and the damping factor of

the loop are given by Equation 3.53 and Equation 3.54.

H(s) =
φo

φref

=
I0K0KD

2πC

s2 + n′s + I0K0KD

2πC

(3.52)

ωn =

√

I0K0KD

2πC
(3.53)

ζ =
n′

2

√

I0K0KD

2πC
(3.54)

From the above results, it is evident that the natural frequency of the loop is independent

of the delay mismatch between the φref and φfil. The damping factor of the loop is function

of delay mismatch and its sensitivity to delay is given by Equation 3.55. The quantity in the
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square root of Equation 3.55 is the total loop gain of the system. Thus, the zeta sensitivity

to delay mismatch can be reduced by choosing a small loop gain and large integrating

capacitor.

Sζ =
∂ζ

∂n
=

1

2

√

I0K0KD

2πC
(3.55)

This mismatch is between two similar quantities; therefore they can be matched to a

great extent in the modern IC process using good layout techniques [90]. Since mismatch

in a system is a relatively small quantity, it will not alter system performance, but it does

change the settling time and the peaking in the loop.

3.6.4 Effect of Deadzone on Accuracy

The deadzone of the DPFD desensitizes the phase-locked loop. If a phase error is small

enough to fall within the deadzone of the DPFD, the loop will not be able to resolve that

error, as if the loop has reached its numerical limitation. This means that a small change

in quality factor or phase of the filter will not change the control voltage of the loop. Thus

the loop sensitivity to the deadzone of the DPFD is found by taking a partial derivative of

the phase error (φe) to phase, as given in Equation 3.56. Hence, for the QLL tuning loop,

sensitivity to deadzone is directly proportional to the error in the quality factor.

∂Φe

∂φ
=

∂Φfil − Φref

∂φ
=

∂Φfil

∂φ

≈
∂ tan−1

(

1
Q

)

∂φ
=

1

1 + 1
Q2

× ∂Q

∂φ
(3.56)

∂Φe

∂φ
≈ ∂Q

∂φ
; for Q >> 1 (3.57)

Thus, from Equation 3.57, the error in the final Q-tuning value is also proportional to

the phase error caused by the deadzone of the DPFD. This phase-error resolving limitation

defines the minimum Q-error of the QLL tuning scheme.
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3.7 Implementation of the QLL Tuning Scheme

The final implementation of the proposed QLL tuning scheme is shown in Figure 3.27. In

this implementation, a second-order biquad is used as a prototype filter, and a constant

phase shift of 45o is achieved using a delay network. The propagation delay of the filter

output signal (φfil) and reference signal (φref ) are matched by using a similar delay network

to both signal paths. It is an RC delay network, where R is the on resistance of an inverter

and C is the sum of the gate capacitor and poly-poly capacitor. The phase frequency

detector is a precharge based dynamic DPFD, and first-order loop filter is implemented as

a 5-bit digital integrator. The digital integrator allows the loop to digitally store the final

control voltage in a 5-bit digital word. The gain of the digital integrator is reduced by

reducing the clock frequency of the integrator.

Fi lter
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+ +

_

+

-

Fil
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DPFD
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+
Counter

5 Bit
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Opamp
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~45o

Figure 3.27: Block diagram of the implemented second-order QLL tuning scheme.
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3.7.1 Digital Phase Frequency Detector

In a PLL systems, tracking range, acquisition range, loop gain, and transient response

depend on the performance of the phase frequency detector. A Gilbert cell is often used as

a phase detector in a PLL systems. It is an analog multiplier circuit. For ωref 6= ωfil, the

average output of this circuit is zero; therefore it cannot be used as a frequency detector

[64]. An EXOR gate gives a similar response with digital input and output. An analog

mixer or EXOR gate has periodic constant gain for 0 < |∆φ| < π.

A phase detector using two DFFs is commonly used in modern PLL or frequency syn-

thesizer systems, as it has constant gain for phase error between ±2π. Therefore, it can also

be used as the frequency detector. A schematic diagram of a PFD using a DFF is shown in

Figure 3.28. It is referred to as a digital phase frequency detector, and can be implemented

using either static logic or dynamic logic [85, 86, 87, 91, 92, 93, 94].

D
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DFF
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Q
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DFF

Up

Down

Fref

Ffil

VDD

VDD

Figure 3.28: A DFF based digital phase frequency detector.

As discussed in Section 3.6, the Q-error of the proposed tuning scheme is directly propor-

tional to the deadzone of the DPFD. Hence, the QLL tuning scheme requires a low-deadzone

or no-deadzone DPFD circuit that can operate at f3dB frequency [95].
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3.7.1.1 Dynamic DPFD

The precharge-based no-deadzone DPFD circuit commonly is used for high-frequency PLL

systems. A typical-latch based DPFD circuit is shown in Figure 3.29. There are three

limitations to this DPFD circuit [96, 97, 98].

First, it is a latch based, level-sensitive architecture (not an edge-sensitive circuit);

therefore input phase range depends on the duty cycle of the signal. Second, the transistors

M4 and M11 of the second stage are driven directly from input, which causes redistribution

of the precharge at the high-impedance itm to shr node. This redistribution can result in

an incorrect output from the DPFD. This effect can be quantified as follows:

During the pre-charge event, the itm node is precharged to the VDD and holds charge

Q = CitmV DD, where Citm is the total capacitance at the itm node. The total capacitance

at the itm and shr nodes is given by Equation 3.58 and Equation 3.59. The transistors M4

(M11) is driven directly from the input, that comes before the signal driving the gate of the

transistors M1 and M6. Therefore, the precharge (Qitm) at the itm node gets shared with

node shr and the final voltage at the itm node is given by Equation 3.60.

Citm = CGI4 + Cgd1 + Cgd4 (3.58)

Cshr = Cgd6 + Cgs4 (3.59)

Vitm =
CGI4 + Cgd1 + Cgd4

CGI4 + Cgd1 + Cgd4 + Cgd6 + Cgs4
× V DD (3.60)

VI =
V DD − |VTP | +

√

βn

βp
VTN

1 +
√

βn

βp

(3.61)

Now, if the gate capacitance of the following inverter I4 is small, the final voltage

(Vitem) at node itm can fall below the the threshold voltage of the inverter VI , is given in

Equation 3.61, and the DPFD will give a false result. This problem can become severe if

the threshold voltage of the inverter moves higher as a result of process and temperature

variation. This problem holds true for both internal high impedance nodes of the DPFD,

given by Figure 3.29.

The proposed new DPFD circuit, shown in Figure 3.30, alleviates these limitations of the
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Figure 3.29: A digital phase frequency detector based on dynamic DFF.
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above DPFD circuit. First, it divides the clock frequency of the input signal by half,making

both input signal, have a 50% duty cycle. The phase information of the signal is kept only

in the zero crossing.

Second, the transistors M4, and M11 are driven by two inverter-delay delayed input

signal. The delayed input ref(fil) signal reaches the gate of transistor M4 (M11), at the

same time or after the signal that drives the gates of transistors M1 (M8) and M6 (M13).

This synchronization in signal timing helps preserve the precharged charge at the gates of

the output inverters, I4 and I5, and increases the sensitivity of the DPFD by fourfold.

The sensitivity plot of the DPFD circuit is shown in Figure 3.31. The proposed circuit

has a deadzone of only ±0.3o ≈ ±10 pS in simulation and ±1o ≈ ±40 pS in post-layout

simulation. From Equation 3.57. This will give rise to an error of ±1 in the final Q-value

of the filter.

3.7.2 Digital Integrator

The output of the charge-pump circuit controls the counting direction of the digital inte-

grator. The output of the charge-pump (Vc) goes to the positive (negative) rail for negative

(positive) phase error. This flip in sign of the phase error to the output of the charge-pump

circuit creates the negative feedback in the loop. The digital integrator is a 5-bit up-down

counter. It counts forward if the control signal is high ot backward otherwise. A block

diagram of the digital integrator is shown in Figure 3.27.

A schematic diagram of the digital integrator and the signal bit charge-pump circuit is

given in Appendix C. A digital integrator allows the loop to store the final control voltage

in registers. In this implementation, the digital integrator limits the accuracy of the loop.

The LSB of the the integrator corresponds to a ± 1 change in quality factor of the filter.

Thus, a bit digital integrator can tune the quality factor of the filter by ±16.

A higher-order digital integrator or an analog integrator can be used to achieve higher

accuracy. An analog integrator uses the capacitor to store the tuned controlled voltage

of the loop. An integrated capacitor in modern IC processes has a large leakage current

beacuse of oxide imperfection and impurities. Therefore, in the case of the analog integrator,
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Figure 3.30: An improved DPFD based on dynamic DFF.
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Figure 3.31: The deadzone simulation results of the improved DPFD.

the filter needs to be tuned continuously or periodically to avoid any large quality factor

drift. Another solution could be to use a high-Q external components.

3.7.3 Delay Network

The prototype biquad filter is implemented using a differential architecture to gain common

mode noise immunity, to improve its linearity, and to achieve a large dynamic range, whereas

the rest of the QLL tuning scheme is implemented single-endedly to reduce the power

consumption. Therefore, the first-stage delay network is a differential to a single ended

amplifier shown in Figure 3.32.

As given in Section 3.6.3, delay mismatch between the reference and the filter output

signal causes a constant Q-error in the quality factor of the filter. Therefore, a similar delay

network, shown by Figure 3.32, is added to both the reference signal and filter output. From

Section 3.6, the reference signal (φref ) requires an extra delay of 45o; therefore the delay

network has twice the capacitors shown in Figure 3.32.b. These capacitors are placed in

close proximity in a common centroid structure.

The first stage of the delay network amplifies the differential output signal and converts
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Figure 3.32: a: Delay network for the φfil signal; b: Delay network for φref signal.

it into a single-ended signal. The amplification also helps convert the sinusoidal output

signal to a digital signal, so that a digital DPFD can be used. The amplified signal feds

through several inverters and capacitors, which act as an RC delay. The on resistor of the

inverter acts as R of this delay network. The first-stage amplification is critical for low

power consumption, as a slow moving input will keep both device of the inverter on for

longer period of time. Another advantage of using a differential amplifier as the first stage

is that it makes the delay network insensitive to the common mode voltage of the filter.

A schematic of the first-stage amplifier is shown in Figure 3.33. It is a single-stage

differential amplifier with an HBT input stage and MOS output stage. An HBT differential

pair gives large input transconductance and a MOS output stage gives wider swing and large

output resistance; together they result in a large gain-bandwidth product. The necessary

delay is achieved by feeding the signal through several inverters loaded with poly-poly

capacitors. The on resistance of the inverter defines the R of the delay cells. Poly-poly

capacitors are added at the intermediate stage to minimize the effect of parasitic capacitance

on the total delay.

3.7.4 Tuning Response

As discussed in Section 3.2, an on-chip continuous-time high-Q bandpass filter is vulnerable

to oscillation. Therefore, in this implementation the biquad filter is powered on at low
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Figure 3.33: Differential input to single-ended output delay-amplifier.

quality factor, so that even with process and environmental variation, it never behaves

like an oscillator. The biquad starts at a quality factor of 16, which is represented by

the counting sequence ‘00000’ of the digital integrator. The tunable part of the Gmq

transconductance of the biquad filter is designed such that an increment in counter sequence

causes an equal increment in the quality factor of the filter. Thus, the sequence ‘11111’

represents a quality factor of 48 for the biquad filter.

Once the QLL scheme changes the value of Gmq, it has to give the biquad filter sufficient

time to respond to its new Gmq value. The 16:1 divider in the QLL system divides the

amplified 3 dB frequency by 16 times and generates the clock signal for an up-down counter.

The divided clock signal gives ∼160 nS to the filter to respond to its new Q value. It seems

to work well in simulation. A faster counter clock does not give enough time for the filter

to respond to the changes and increases hysteresis in Q. In other words, it increases the

the gain from integrator, so in turn the loop bandwidth gives small lock time and large

hysteresis.

The overall response of the QLL tuning scheme is shown in Figure 3.34. The figure
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Figure 3.34: Transient response of the QLL tuning scheme.

shows the value of Q and the output transient response. The output envelope of the filter

is varing because the gain of the filter varies between 19dB to 23dB for different quality

factor values of the filter. The quality factor of the filter has a hysteresis of ± 1 around the

desired Q value, which is 37 in this simulation.

3.8 Design for Testability

The prototype biquad filter, shown in Figure 3.15, has an integrating capacitor at its output

node. Therefore, an on-chip driver amplifier is used to isolate the bond wire inductance and

load capacitor from the integrating capacitors. Also, the prototype filter is constructed using

OTA stages, which cannot drive a voltage output to a low resistive load. This strengthens

the need for an on-chip driver. It is difficult to make a differential driver with low output

impedance in CMOS processes; therefore two single-ended drivers are used to drive the

differential signal.

In order to measure the linearity performance of the prototype filter, the linearity and

the gain-bandwidth product of the driver amplifier are kept larger than the filter ( DR =
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66dB, ω0 = 100MHz) for a given fixed-light differential load (RL= 300 Ω and CL = 2 pF). It

is easier to achieve a higher linearity from an amplifier with a light load and smaller signal.

The on-chip driver has a linearity of 80 dB for 0.5 Vpp signal, which is a differential 2 Vpp

signal. A schematic diagram of the on-chip driver is shown in Figure 3.35.
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M0
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R0

Q0

R0
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R1

Vout

bias

i=2mA i=5mA

Figure 3.35: On-chip resistive driver.

The maximum differential output signal from the filter is 3.6 Vpp, therefore an on-chip

resistive divider with a total resistance of 5K Ω is used to cut the signal strength in half.

This on-chip load resistance also emulates an input impedance of a typical ADC in a receiver

signal path. A differential load resistance of driver 300 Ω means a single-enged load of 150

Ω, which is 100 Ω in series with a measurement instruments. Hence, there is a total loss of

6 dB of signal from the filter output to the output pin of the prototype chip.

The driver amplifier consumes 5m A each. To quantify the performance of the filter, a

separate power supply pin is used to drive the driver amplifiers.

3.9 Floor Plan and Layout of Biquad Filter

3.9.1 Identification of Matched devices

From the schematic of the improved transconductor circuit shown in Figure 3.3, the tran-

sistor pairs Q0-Q1, Q2-Q3, Q4-Q5 and Q6-Q7 needs critical matching; therefore these pairs

112



are laid out in a cross-coupled common centroid structure, as shown in Figure 3.36. All

these devices are laid out in close proximity, as devices Q2-Q5 and Q0-Q1 with Q6-Q7 also

need to match to a good extent.

Figure 3.36: Common centroid layout for the input differential pair.

The current sources M2-M4, M3-M5, M4-M6, and M7-M9 are only laid out in close

proximity using an inter-digitated structure, as they are big and inter-digitated gives a

first-order of matching. Two large device laid out in close proximity match better in a

modern IC process [99]. Devices M0 and M1 are small; therefore cross-coupling will only

make the device further smaller, so they are also laid out using an inter-digitated structure.

3.9.2 Parasitic Sensitive Nodes

The connections to the high-impedance node inside the transconductor are made with care

to minimize any parasitic capacitance at that node. Further, the any parasitic at the output

of the transconductors, at nodes itmp and itmm, and at the outputs of the filter will move

the pole frequency of the filter and will cause a shift in filter parameters. Therefore, these

connections are made with top metal lines (metal 5) and there are no metal lines or devices

beneath them or on either side of them. These output lines are placed in the center of the
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chip, as shown in Figure 3.38. The metal line running parallel to these lines are power buses

and bias signal, as they are the quietest signal of the circuit.

Figure 3.37: Layout of the outputs of filter.

3.9.3 Transconductor and Biquad Layout

The layout of an individual transconductor is shown in Figure 3.38. Here, the PMOS current

sources isplaced on the top and no metal is routed over the gate devices. The cascode devices

sit in the center of the layout. Since mismatch in cascode devices does affect the amount of

the current in the current sources, few DC signals are routed over these devices to reduce

the size of the layout.

The layout of the biquad filter is shown in Figure 3.39. The parasitic sensitive node, such

as the output of the filter, is laid out in M5 with 8 µm clearance on either side and no metal

beneath them. They are also in the middle of the chip for symmetry. The transconductors

of the biquad are placed such that their interconnect lengths are small.

The integrating capacitors C0 and C1 and the 5K of the load resistance are laid out in

a matrix structure for matching. The capacitors are laid out with six fingers each, in a 4x3

matrix, and resistors are laid out in a 4x4 matrix, as shown in Figure 3.40 and Figure 3.41,

respectively.
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Figure 3.38: Layout of the individual transconductor.

Figure 3.39: Layout of the biquad filter.
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Figure 3.40: Layout of the integrating capacitors of the biquad filter.

Figure 3.41: Layout of the load resistor of the biquad filter.
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This test-chip has two on-chip drivers to isolate the filter output from pin capacitance

and to drive an external load (150 Ohms). The maximum output signal signal ended is ∼ 500

mV, which corresponds to a maximum output current of 33 mA for 150 Ohms of load. The

device placement and metal connections of the driver output are done in diamond shaped

structure as to minimize capacitance and at the same time have a large drive capability, as

shown in Figure 3.35. These output nets contains metal-3, metal-4, and metal-5 in parallel.

Figure 3.42: Layout of the on-chip driver.

The layout of the overall filter is shown in Figure 3.43. It includes the biquad filter,

on-chip drivers, and ESD structure. The ESD structures are embedded in the perimeter as

a ring with pads.

3.9.4 QLL tuning scheme and Tunable Transconductor

The layout of the tunable resistors is shown in Figure 3.44. A switch is connected in parallel

to each tunable part of the resistor. These switches are controlled by the digital integrator

output and are placed beneath the gm block of an inverter driving their gates.

Since the DPFD and digital integrator are digital blocks running at a clock speed 100

MHz, which is well below the ft of the devices in this process, a standard CMOS cells are
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Figure 3.43: Layout of the test-chip.
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Figure 3.44: Layout of switches of the tunable transconductor.

used. The overall layout of the test-chip and die photograph are shown in Figure 3.45 and

Figure 3.46.

There is a 120 pF of decoupling added on the die in the open space around the circuit.

The decoupling capacitors are also sprinkled on the die at any empty space so that the

transient current of an individual current can be supplied.

3.9.5 Pin Diagram

The pin diagram of both test-chips, biquad filter, and QLL-tuning scheme, are kept the

same to reuse the PCB, and it is shown in Table 3.3. The inputs are kept on the left and

quiet power supply signal is placed next to them. The outputs are kept on the right and

the remaining pins are distributed for the control bits of the QLL tuning scheme.
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Figure 3.45: Layout of the QLL tuning scheme.

Table 3.3: Pin names and numbers for the test chips.

Pin Number Pin Name Pin Number Pin Name

1 C2 9 Iref

2 C3 10 VSS

3 C4 11 VSS

4 AVDD 12 OUTM

5 VINM 13 OUTP

6 VCM 14 DVDD

7 VINP 15 C0

8 VSS 16 C1
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Figure 3.46: Micro-photograph of the die
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CHAPTER IV

TEST SETUP AND MEASUREMENT RESULTS

4.1 PCB Design

A schematic diagram of the PCB is shown in Figure 4.1. All power supply lines and the

common mode signal have a DC decoupling capacitor to ground to provide a low-resistance

path to the disturbance. These decoupling capacitors are built using 0.1µF and 0.01µF

in parallel. The 0.1µF capacitor provides a low-resistance path for low frequency signal,

and the 0.01 µF provides a low-resistance path a decade higher-frequency. Frequencies

above these are decoupled using 400 pF on-chip decoupling capacitor. All external passive

components are 0402 surface mount devices.

The input traces are terminated with 50-Ohm impedance for matching. This matching

is achieved by terminating the differential signal with a 100-Ohm resistor. The differen-

tial signals are generated using a center-tapped external transformer (balun). It is a 1:2

transformer. Hence, it provides 6 dB gain to the signal.

There is need for two transformers. The first one converts the single-ended input signal

to the differential and the second converts the differential output signal to single-ended sig-

nal, so the output signal can be measured using a single ended 50-Ohm matched instrument,

as shown in Figure 4.1. Hence, the balun at the input amplifies the input signal by 6 dB,

whereas the balun at output attenuates the output signal by the equal amount.

The on-chip driver can only drive a differential load of 300 Ohms. This differential

load is emulated by terminating the the output balun with a 150-Ohm single-ended load.

The measurement instrument input impedance is 50 Ohms. Thus this load is emulated

such that the impedance looking from the device under test (DUT) is 150 Ohms, but the

impedance looking from the load is 50 Ohms. This is achieve by implementing this load as

a series resistance of 118 Ohms and a parallel resistor of 86 with the instrument, as shown

in Figure 4.1. This ensures impedance matching from the source as well as load and gives
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Figure 4.1: Schematic diagram of the PCB to measure the filter.

minimum reflection.

The control bit has a series resistance of 100 Ohms to avoid any accidental damage to

the DUT from short . There is separate power supply for the filter and the driver inside

the DUT, their individual power consumption can be measured. The input and the output

signals are interfaced using SMA connectors for better signal integrity.

4.1.1 Test Board Layout

The layout of the PCB is shown in Figure 4.2. A two-layer PCB is used for cost reasons. The

bottom layer of the PCB is used as a ground plane for noise immunity and strong ground

connection. The traces between SMA connectors and pins of the test-chip are micro-strip

lines with 50 Ohms of characteristics impedance. They are terminated with a 50-Ohm

resistor right next to the pin to minimize any refection. The differential input traces are

symmetrical and are of equal length.

The common mode signal is connected to the center tap of the balun. Its decoupling
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cap is placed right next to the supply hook to minimize the signal disturbance coupling to

the PCB. The common mode signal trace is placed such that it has minimum coupling with

the input balun and its signals.

Figure 4.2: The top and bottom plate layout of the PCB.

The output traces from the pin of the test-chip to balun are also micro-striplines with

50 Ohms of characteristics impedance. The center tap of the output balun is left floating as

the common voltage of the output is determined by the CMFB circuit. The traces between

the output balun to the SMA connector is 50 Ohms of impedance and is kept small to

minimize the capacitance.

The control-bit traces are kept at the perimeter with minimum trace width to reduce the

coupling capacitor from the control bit to the signal. The power supply traces are kept wide

and their decoupling capacitor is placed right next to the hook to minimize any disturbance

coupling to the ground plane. All 0402 surface mount passive devices (SMD) are used for

self-resonant frequency small parasitic capacitance. The PCB dimension is 1.8” x 2.2”.

4.2 Measurement Results

The measurements are made at room temperature in a single-ended environment, where,

wire loss and instrument-artifacts are calibrated to cancel their effects.

4.2.1 Balun Response

The frequency response of the balun is measured by replacing the DUT with a pair of

parallel metal wires, thus by creating a short between the input and output of the DUT, as
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shown in Figure 4.3. The resistive divider at the output (118+86——50) introduces a loss

of 13.55 dB. The loss from the balun is measured at various signal amplitude is shown in

Figure 4.4. The average loss from the balun because of its non-ideality is 0.64 dB.

Figure 4.3: The modified PCB to measure the response of the balun.
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Figure 4.4: Measured loss from the balun.

At input, the balun introduces a total gain of 5.36 dB (= 6 - 0.64) and at output it

introduces a total loss of 6.64 dB. Hence, there is total loss of 20.83 dB (= +6-0.64-6-6.64-

13.55) in the measurement setup.

Since these external resistors are built only with ± 1% precision, the attenuating pad

of 14.55 dB loss and 50-Ohm characteristics impedance are used at the input and output
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of the PCB to achieve better impedance matching and minimize the signal refection. This

increases the accuracy of the measurements.

4.2.2 DC Setup and Power Dissipation

The power supply voltage is 3.3 V and common mode voltage is set to 2 V. The DC current

source is set to 200 µA as design in simulation. As simulated, the approximated total supply

current is 20 mA. The supply current is close to very close to simulation because input is a

bias current, which is mirrored using a cascoded structure to generate the necessary internal

current. Since a cascoded current mirror (with ratio of no more than 1:5) can mirror the

current with high accuracy, the total current consumption came close to the simulation.

4.2.3 Frequency and Phase Response

The PCB setup for this measurement is shown in Figure 4.5. The input signal is applied

through the SMA connector, and the power supply and common mode voltage are held

constant using a DC source.

Figure 4.5: The PCB measurement setup for phase and frequency response.

The measured phase and frequency responses of the filter are shown in Figure 4.6. The

center frequency of the filter is at 80 MHz. The above plot includes the above loss (20.83 dB)

in the measurements. It was designed for 100 MHz but because of unaccounted parasitic of

the devices, the center frequency has moved to 80 MHz. The quality factor of the filter is

tuned from 20 to 40. It was designed for 16 to 48.

The center frequency of the filter is independent of any variation in the bias current of
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Figure 4.6: Frequency and phase response of the test-chip.

the filter, but it does have sensitivity to the common mode voltage. It has the largest signal

handling capacity for common mode voltage between 1.9 V-2.1 V.

4.2.4 Common Mode Rejection

The PCB setup for the CMRR measurement is shown in Figure 4.8. Because of unavailabil-

ity of a DC-RF coupler, the AC-input signal is added to the common mode voltage using

1 mH series inductor with the DC source and 10 µF series coupling cap in the AC path, as

shown in the Figure 4.7.

The coupling cap blocks the DC and provides a low-resistance path for AC signal. The

series inductor is a short for DC, but it provides large impedance (open) for the AC signal.

Thus, together they ensure that the AC source and DC source do not load each other while

still seeing a very low resistance path to the DUT.

The coupled common mode signal is used to drive both input of the filter. The power

supply and DC common mode voltage are held constant using a DC source.

127



+
−

10 µF

DUT
6.8 µH

Figure 4.7: A discrete coupler used to add an AC signal over a constant DC voltage.

Figure 4.8: The PCB measurement setup for phase and frequency response.
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The common mode rejection ratio (CMRR) of the biquad filter is given in Figure 4.9.

It is measured with -15 dBm common mode input signal level. At the center frequency of

the filter, the CMRR of the filter is -60dB. The above plot is generated by dividing the

common mode rejection plot by the magnitude response of the filter.

Figure 4.9: Common mode rejection ratio frequency response of the biquad filter.

There is a dip in the CMR plot near the center frequency of the filter, which is due to

CMFB circuit having maximum gain near the center frequency.

4.2.5 Power Supply Rejection Ratio

The PCB setup for the PSRR measurement is shown in Figure 4.10. The same coupling

method (0.01 mF series capacitor + 6.8 µH series inductor) is used to add the AC signal

with the DC power supply. Here, both inputs and the common mode input of the DUT are

held constant or connected to the AC ground. The power supply has a DC-common mode

and an overriding coupled AC signal.

The power supply rejection ratio (PSR) of the filter is shown in Figure 4.11. This
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Figure 4.10: The PCB measurement setup for phase and frequency response.

measurement is also made using a -15 dBm sinusoidal signal coupled to the DC power

supply voltage. The PSRR of the filter at the center frequency is -42dB. Again, this plot is

generated by dividing the power supply rejection plot with the magnitude response of the

filter.

The PSRR plot has a peak at the center frequency of the filter. As the power supply

signal gets coupled through different gate-to-source capacitance of the MOS current mirrors

and they get shaped by the frequency response of the filter, a peaking at the center frequency

results.

4.2.6 P-1dB Compression Point

The P−1dB plot of the filter is shown in Figure 4.12. The P−1dB compression point and

average gain of the filter are -9 dBm and 19.55 dB. Thus, the total dynamic range of the

filter is 65dB. The simulation of P-1dB compression could not be performed because the

design filter is a narrow-band system and the simulation crashed because of lack of sufficient

memory on the computer.

4.2.7 Intermodulation Distortion

The intermodulation product of the filter is measured with -29 dBm input signal strength.

Since intermodulation is a small-signal measurement, therefore the input signal amplitude
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Figure 4.11: Power supply rejection ratio frequency response of the filter.

Figure 4.12: The P-1dB compression point of the filter.
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is chosen to be 20 dB below the P-1dB point. The measured IMD of the filter is -52.8 dB.

Thus, the IIP3 of the filter is -27dB + (-52.8)/2= -2.8 dBm.

Figure 4.13: Inter modulation production of the filter.

The shown view-graph is generated after a 16-point moving average in the instrument.

4.2.8 QLL Tuning Scheme

Figure 4.14 shows the same filter tuned at two quality factor values. The first quality

factor is 20 and the second one is 32. It is tuned by using a combination ‘00000’ to ‘10100’

in the control word. The filter was designed for a tunable quality factor of 16 to 48. The

measured quality factor of the filter varies from 20 to 40. The difference from the simulation

to the measured values are due to the process variations in the small-step of the Q-tuning

transconductor.

4.3 Conclusion

From the two test-chips, this work has verified the linearity performance of the proposed

transconductor circuit, an stable 80 MHz filter with 62 dB dynamic range and first time
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Figure 4.14: Inter-modulation production of the filter.

successful implementation of the new QLL- tuning scheme.

The first test-chip had an 80 MHz bandpass filter with an external tunable quality

factor of 16∼44 using an ultra-linear transconductor circuit is developed. The proposed

transconductor achieves this high linearity by using local high-feedback loops around the

matched diff-pair and current mirrors. The noise optimized biquad structure using the

proposed transconductor gives SNR of 45 dB and a DR of 65 dB, which meet the linearity

requirements from next generation communication and data converter systems. This filter

is designed in a 0.25µm BiCMOS process, and it takes only 0.3 mm2 of die area.

The second test-chip has an on-chip automatic QLL tuning scheme to tune the quality

factor of the filter anywhere from 16 to 44. The power consumption of the QLL tuning

is very small as it is all digital block. The die are of the QLL is about 0.04 mm2 which

is close to 15% of the biquad filter area. This meets bothe our objective as to have no-

quisceient current and area much smaller than the filter itself. The filter performance of

the second test-chip is same as the the first-silicon and filter was tuned automatically from
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20 to 32. The measurement results of both test-chips are summarized and given to full fill

the objectives of this research.
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CHAPTER V

CONTRIBUTION

The prime contributions of this research is to propose, analyze, and implement a reliable

quality factor tuning scheme for high-Q, high-frequency, continuous time bandpass filters,

while analyzing the limitation of other existing techniques. The mathematical loop analysis

of the Q-locked-loop tuning scheme is derived and the loop-behaviour for a typical step

input is analyzed. It is proved that a second-order loop is required to tune the quality

factor of the filter with zero steady-state error.

The effect of process mismatch on the performance of the QLL tuning-loop is performed,

and few preventive steps are proposed to mitigate the affect. It is found that the proposed

QLL tuning scheme is nor affected by gain and offset mismatch however a delay-mismatch

results in a finite Q-error. The proposed QLL tuning scheme prototype is designed to tune

a biquad bandpass filter, and the same operating principal of QLL-algorithm can be applied

to tune any kind of monolithic filters.

The accuracy of the QLL scheme is dependent on the dead-zone of the DPFD circuit.

Therefore, this research has made a valuable contribution by developing an ultra-low dead-

zone, pre -charge based DPFD circuit, which could also be used to design a PLL, delay

locked loop (DLL) or frequency synthesizer.

This research has also made a significant contribution by developing a stable, wide

dynamic range, high-Q, high frequency bandpass filter to meet the requirements of the

several next generation wireless applications. For which, it has further extend the operating-

frequency and linearity of the on-chip transconductor circuit. The proposed improved linear

transconductor circuit can also be used to design a front-end for FM receiver, high-frequency

variable gain amplifier, lowpass and highpass filters.

The summary of all the contributions are listed below.

• Analyzed and developed an ultra wide dynamic range, high-frequency transconductor
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circuit.

• Developed and implement a noise optimized, stable, high-Q, high-frequency continu-

ous time bandpass filter circuit using the above transconductor.

• Analyzed and develop an ultra-low dead-zone, pre-charge based digital phase fre-

quency circuit.

• Analyzed the loop-dynamics and accuracy of the QLL tuning scheme. Derive the

sensitivity of the over all loop with all the controlling parameters.

• Proposed a mathematical derivation to quantify the effect of process-match on the

steady state Q-error.

• Implemented the new and reliable QLL tuning scheme to tune a high-Q high-frequency

bandpass filter.

Together, these contributions will provide the integrated on-chip solution to replace the

bulky, expensive, and off-chip SAW IF filters of the superheterodyne transceiver or FM

receivers.
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APPENDIX A

SERIES APPROXIMATION AND EXPANSION

A.1 Laplace transform

The Laplace transform is an integral transform perhaps second only to the Fourier transform

in its utility in solving physical problems. The Laplace transform is particularly useful in

solving linear ordinary differential equations such as those arising in the analysis of electronic

circuits.

The (unilateral) Laplace transform L (not to be confused with the Lie derivative, also

commonly denoted L) is defined by

L [f(t)] (s) =

∫

∞

0
f(t)e−stdt

where f(t) is defined for t≥0 (Abramowitz and Stegun 1972). The unilateral Laplace

transform is almost always what is meant by ”the” Laplace transform, although a bilateral

Laplace transform is sometimes also defined as

L(2) [f(t)] (s) ==

∫

∞

−∞

f(t)e−stdt

A.2 Taylor series expansion

A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor

series is an expansion of a real function f(x) about a point x=a is given by

f(x) = f(a) + f
′

(a)(x − a) +
f

′′

(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 +

· · · + f (n)(a)

n!
(x − a)n + · · ·

ex = ea
[

1 + (x − a) + 1/2(x − a)2 + 1/6(x − a)3 + · · ·
]
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APPENDIX B

SMALL SIGNAL ANALYSIS

Small Signal Analysis with RV

RE Rd

rπ0 rπ2 rπ4

rπ6

iout

gm0vπ0

gm2vπ2 gm4vπ4

gm6vπ6

Rd

vin

rv

Figure 2.1: Small signal circuit equivalent of transconducto

Node equation at veo

(Vin − Ve0)(gπ0 + gm0) − Ve0ge + gm2(vd − vt) = 0 (2.1)

Node equation at vd

−(vd − vt)(gm2 + gπ2) − vdgd = 0 (2.2)

vd(gm2 + gπ2 + gd) = vt(gm2 + gπ2) (2.3)

vd =
gm2 + gπ2

G
vt; whereG = gm2 + gπ2 + gd (2.4)

Node equation at vt

(vd − vt)(gπ2 + gπ4) − (vt − vc0)gv = 0 (2.5)

(vd − vt)(gπ2 + gπ4) = gm0(vin − ve0) (2.6)

ve0 =
gm0vin − (vd − vt)(gπ2 + gπ4)

gm0
(2.7)
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From Equation 2.1, Equation 2.6 and Equation 2.7

gπ0(gπ2 + gπ4)

gm0
(vd − vt) −

ge0 {gm0vin − (vd − vt)(gπ2 + gπ4)}
gm0

+(vd − vt)(gπ2 + gπ4) + gm2(vd − vt) = 0 (2.8)

(vd − vt)

[

(gπ0 + ge)(gπ2 + gπ4)

gm0
+ gπ2 + gπ4 + gm2

]

= geVin (2.9)

Node equation at vc4

(gm6 + gπ6)(vin − vc4) = −gm4(vd − vt) (2.10)

from Equation 2.9 and Equation 2.10

Gm =
iout

vin
=

gm6

gm6 + gπ6

gm4ge0

(gπ0+ge)(gπ2+gπ4)
gm0

+ gπ2 + gπ4 + gm2

(2.11)

=
β6

β6 + 1

β0β4

(rπ4gπ2 + 1)(β0 + 1 + gerπ0) + β0gm2rπ4
(2.12)

(2.13)

Assuming that rπ2 ≈ rπ4, above equation becomes:

Gm =
β6

β6 + 1

β0β4

2
(

β0 + 1 + β0

gm0RE

)

+ β0β4

1

RE
(2.14)

Hence, the on resistance rv of the source follower sircuit does not affect the transcon-

ductance value.

Simaple Small signal Model

Node equation atVe0

(vin−veo)gπ0
−ve0ge +gm0(vin−ve0)+gm2(vd−vt)+(vd−ve0)g0− (ve0−vc0)g0 = 0 (2.15)

Node equation at vc0

(vt − vc0)gv + (ve0 − vc0)g0 − (vin − ve0)gm0 = 0 (2.16)

vc0(gv + g0) = vtgv + Ve0(g0 + gm0) − vingm0 (2.17)

vc0 =
vtgv + Ve0(g0 + gm0) − vingm0

gv + g0
(2.18)

Node equation at vt

2(vd − vt)gπ2 − (vt − vc0)gv = 0 (2.19)
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RE
Rd

rπ0

rπ2 rπ4 rπ6

iout

gm0vπ0

gm2vπ2 gm4vπ4

gm6vπ6

Rd

vin

rο rο
cπ0

cµ0

c µ2

rv

+

-

vπ0

rο rο

cµ4

cµ6

-

vπ2

+

-

vπ4

+

-

vπ6

+

Veo

Vco Vt

Vd

Figure 2.2: Small signal circuit equivalent of transconducto

Node equation at vd

−(vd − vt)gm2 − (vd − ve0)g0 − (vd − vt)gπ2 − vdgd = 0 (2.20)

(vd − ve0)g0 = −(vd − vt)(gm2 + gπ2) − vdgd (2.21)

vd(g0 + gm2 + gπ2 + gd) = vt(gm2 + gπ2) + ve0g0 (2.22)

vd =
vt(gm2 + gπ2) + ve0g0

g0 + gm2 + gπ2 + gd

(2.23)

vd − vt =
−vt(g0 + gd) + ve0g0

g0 + gm2 + gπ2 + gd

(2.24)

vd − Ve0 =
vt(gm2 + gπ2) − ve0(gm2 + gπ2 + gd)

g0 + gm2 + gπ2 + gd

(2.25)

Now Substituting the value of vd in Equation 2.19:

2
−vt(g0 + gd) + ve0g0

g0 + gm2 + gπ2 + gd
gπ2 − (vt − vc0)gv = 0 (2.26)

vt

(

2gπ2(g0 + gd)

g0 + gm2 + gπ2 + gd
− gv

)

+ ve0
g0gπ2

g0 + gm2 + gπ2 + gd
+ vc0gv = 0 (2.27)

v (2.28)

from Nodal Equation 2.16 and Equation 2.19

2(vd − vt)gπ2 + (ve0 − vc0)g0 − (vin − ve0)gm0 = 0 (2.29)

(ve0 − vc0)g0 = (vin − ve0)gm0 − 2(vd − vt)gπ2 (2.30)
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from Equation 2.15, Equation 2.25 and Equation 2.30

(vin − ve0)(gπ0 + gm0 − gm0) + (vd − vt)(gm2 − gm2 − gπ2 + 2gπ2) − ve0ge − vdgd = 0(2.31)

(vin − ve0)gπ0 + (vd − vt)gπ2 − ve0ge − vDgd = 0(2.32)
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Small Signal Analysis for CMRR From Symmetry of the cicuit, one half

Rd

rπ0 rπ2 rπ4

rπ6

iout

gm0vπ0

gm2vπ2 gm4vπ4

gm6vπ6

Rd

vin

Figure 2.3: Small signal circuit equivalent of transconducto

of the gm0 vπ0 current will come from Q2 and other half will come from Q4. With this

assumption the analysis is as follows

VD =
gm0vπ0

2
× RD (2.33)

vπ0(gm0 + gπ0) +
gm2gm0vπ0rπ2

2
=

vin − vπ0 − VD

r0
(2.34)

vπ0(gm0 + gπ0) +
gm2gm0vπ0rπ2

2
=

vin

r0
− 1

r0
(1 +

gm0RD

2
)vπ0 (2.35)

vin

r0
= vπ0

[

gm0 + gπ0 +
β2gm0

2
+

1

r0

(

1 +
gm0RD

2

)]

vin

r0
≈ vπ0

[(

1 +
β2

2

)

gm0 + gπ0 +
gm0RD

2r0

]

(2.36)

icm =
gm2gm0rπ2vπ0

2
=

β2gm0

2
vπ0

icm =

β2gm0

2
vin

r0
(

1 + β2

2

)

gm0 + gπ0 + gm0RD

2r0

icm =
β2gm0vin

β2gm0r0 + 2gπ0r0 + gm0RD
icm =

β6

β6 + 1

1

r0 + 2r0

β2β0
+ RD

β2

(2.37)
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Noise Analysis

RE Rdrπ0

rπ2
rπ4

rπ6

iout

gm0vπ0

gm2vπ2 gm4vπ4

gm6vπ6

Rdvne Vπ0

+

_

+

_
Vπ2

+

_
Vπ4

in0

in2 in4 in6

Vπ6

+

_

Figure 2.4: Noise small signal circuit equivalent of transconducto

Noise due to input transistor Q0,(in0 = 2qIC)

iout =
β4

2
(gm0vπ0 − in0) =

β2

2
(gm0vπ0 − in0)

vπ0 =
1

gm0

(

in0 +
2iout

β2

)

(2.38)

KCL at the Emitter of Q0

(gm0vπ0 − in0) + gm2

(

gm0vπ0 − in0

2

)

rπ2 = −vπ0 (gπ0 + gE)

iout = in0 − vπ0 (gm0 + gπ0 + gE)

iout = in0 −
(

in0 +
2iout

β2

)[

gm0 + gπ0 + gE

gm0

]

iout =
in0

(

1 − gm0+gπ0+gE

gm0

)

1 + 2
β2

(

gm0+gπ0+gE

gm0

)

iout ≈ in0

(

1 − gm0 + gπ0 + gE

gm0

)

= in0

(

gπ0 + gE

gm0

)

iout ≈
gE

gm0
in0 (2.39)
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Noise due to input transistor Q2(in2 = 2qIC)

iout =
β4

2
(gm0vπ0) =

β2

2
(gm0vπ0)

vπ0 =
1

gm0

(

2iout

β2

)

(2.40)

KCL at the Emitter of Q0

gm0vπ0 +
gm2gm0vπ0rπ2

2
+ in2 = −vπ0 (gπ0 + gE)

iout = −in2 − vπ0 (gm0 + gπ0 + gE)

iout = −in2 −
(

2iout

β2

)[

gm0 + gπ0 + gE

gm0

]

iout =
−in2

1 + 2
β2

(

gm0+gπ0+gE

gm0

)

iout ≈ in2 (2.41)

Noise due to input transistor Q6(in6 = 2qIC)

KCL equation at the emitter of Q0

gm0vπ0 +
gm2rπ2gm0rπ0

2
= −vπ0 (gπ0 + gE)

vπ0 (...) = 0

thusVπ0 = 0

KCL nodal equation at the emitter of Q6

in6 − gm6vπ6 = vπ6gπ6

vπ6 =
in6

gπ6 + gm6
(2.42)

iout = in6 − gm6vπ6 = in6 − gm6
in6

gπ6 + gm6

iout =
in6

β6
(2.43)

Noise due to input transistor Q4(in4 = 2qIC)

vπ6 (gπ6 + gm6) = in4

iout = gm6vπ6 =
β6

β6 + 1
in4 (2.44)
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Thus from Equation 2.39,Equation ??,Equation 2.44,and Equation 2.43, total noise at

the output is

iout = 2

(

gE

gm0
in0 + in2 +

in6

β6
+

β6

β6 + 1
in4

)

≈ in2 + in4 + in3 + in5 = 8qIC (2.45)

Thus total noise in noise optimized biquad filter will be

v2
nO =

1

G2
mq

(

8qIc|gmf + 8qIc|gmg +

(

gmh

gmf

)2

× 8qIc|gmh +

(

gmq

gmf

)2

× 8qIc|gmq + 8qIc|gmf

)

(2.46)
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CellName:
LibName: GTEU04

g m g
ajay

Jun 15 15:30:00 2006

CHECKED DWG NO.SIZE

UPDATED

SHEET

B
CAGE NO.

1SCALE

ISSUED

D R A W N

OF

REV

1

CHECKED

REVCAGE NO. S HDWG NO.

1
REVISIONS

ZONE DESCRIPTIONREV DATE APPROVED

NPNHV

NPNHV

NPNHV

NPNHV

NPNHV NPNHV

NPNHV

NPNHV

VSS VSS

VSS

V
S
S

c
<
4
>

c
<
2
>

c
<
4
>

c
<
1
>

VSS VSSVSS

VSS

c
<
3
>

c
<
3
>

VSS

V
S
S

V
S
S

V
S
S

s
q
m

VSS

V
S
S

VSSs
q
p

VSSVSS

VSS

hizm

V
S
S

V
S
S

hizp

VSS
VSS

VSS

c
<
0
>

VDDVDD VDDVDD

VSS

V
S
S

V
S
S

VSS

VSS

c
<
1
>

vinmvinp V
S
S

VSS

VSS

VSS

VSS

c
<
2
>

V
S
S

VSS

s
i
g
p

LVS C:

Sim C:

LVS C:

Sim C:

RPP

x

RPP

x

R
P
P

x

R
P
P

x

R
P
P

x

RPP

x

RPP

x
R
P
P

x

R
P
P

x

R
P
P

x

RPP

x

R
P
P

x

R
P
P

x

R
P
P

x

RPP

x

RPP

x

R
P
P

x

R
P
P

x

RPP

x

ioutm

VSS

nbiasc

pbias

pb_cm

pbiasc

nbias

VDD

c<0:4>

vinm
ioutp

vinp

CPP_COXHVRF

w=6.85u
l=13u

309.7f

309.7fCPP_COXHVRF

w=6.85u
l=13u

309.7f

309.7f

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
7
6
3
1
1
9

t
w
e
a
k
:
0

r
=
1
1
9
.
9
4
9

l
=
2
.
5
1
u

w
=
6
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
2
5
4
0
4
0

t
w
e
a
k
:
0

r
=
4
5
.
1
0
9
4

l
=
7
9
0
.
0
n

w
=
8
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
0
7
3
1
2

t
w
e
a
k
:
0

r
=
7
4
9
.
7
8
6

l
=
1
3
.
3
7
u

w
=
4
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
6
5
1
2
3

t
w
e
a
k
:
0

r
=
2
8
9
.
0
4
9

l
=
7
.
3
9
u

w
=
6
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
6
5
1
2
3

t
w
e
a
k
:
0

r
=
2
8
9
.
0
4
9

l
=
7
.
3
9
u

w
=
6
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
7
6
3
1
1
9

t
w
e
a
k
:
0

r
=
1
1
9
.
9
4
9

l
=
2
.
5
1
u

w
=
6
u

m
:
1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
3
.
0
0
2
6
0
3

t
w
e
a
k
:
0

r
=
5
9
.
8
7
0
6

l
=
1
.
3
6
u

w
=
8
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
2
5
4
0
4
0

t
w
e
a
k
:
0

r
=
4
5
.
1
0
9
4

l
=
7
9
0
.
0
n

w
=
8
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
0
0
2
6
0
3

t
w
e
a
k
:
0

r
=
5
9
.
8
7
0
6

l
=
1
.
3
6
u

w
=
8
u

m
:
1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
3
.
1
5
3
6
4
0

t
w
e
a
k
:
0

r
=
5
0
.
0
2
9
8

l
=
9
8
0
.
0
n

w
=
8
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
0
7
3
1
2

t
w
e
a
k
:
0

r
=
7
4
9
.
7
8
6

l
=
1
3
.
3
7
u

w
=
4
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=60u

m = 2

DL=300n
f=2

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=15u

m = 2

DL=2.5u
f:1

TDW=120u

m = 4

DL=1u
f=2

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=120u

m = 4

DL=1u
f=2

TDW=15u

m = 2

DL=2.5u
f:1

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=60u

m = 2

DL=300n
f=2

C MC P

Q 7

Q 5

Q 6

Q1

Q 2 Q 3

Q 0

Q 4

M 7 M 8

M 9 M10

M11M12 M13M 4

R9.2R6.1

R
3
.
1

R
1
.
1

R
5
.
2

R7.1 R9.1

R
4
.
1

R
4
.
2

R
3
.
2

R8.1

R
2
.
1

R
1
.
2

R
2
.
2

R6.2R8.2

R
0

R
5
.
1

R7.2

S
1
.
2

S
2
.
2

S
3
.
2

S
4
.
1

S
2
.
1

S
3
.
1

M 5

S
1
.
1

M1

M 2

S
0

M 6

M 0

S
4
.
2

M 3

pb_cm

ioutm

pb_cm

ioutp

VSS

s q m

a106

a178

VSS

vinm

ioutm

a106

VSS

sqp

a114

a0204

VSS

vinm

hizm

a156

VSS

sqp

sigp

a169

VSS

s q m

a156

a0174

VSS

vinp

hizp

sigp

VSS

vinp

ioutp

a114

VDD

pb_cm

a144

VDD

VDD

pb_cm

a140

VDD

VDD

pbias

a136

VDD

VDD

pbias

a129

VDD

a129

pbiasc

hizm

VDD

a136

pbiasc

hizp

VDD

a140

pbiasc

ioutm

VDD

a144

pbiasc

ioutp

VDD

VSS

a178

VSS

VSS

a169

VSS

a
1
5
3

a
1
6
5

V
S
S

a
1
5
0

a
1
6
2

V
S
S

a
1
5
6

a
1
7
4

V
S
S

VSS

a0174

VSS

VSS

a178

VSS
a
1
6
5

a
1
7
7

V
S
S

a
0
1
5
9

a
1
7
4

V
S
S

a
0
1
8
5

a
0
1
5
9

V
S
S

VSS

a0204

VSS

a
1
6
2

a
1
5
3

V
S
S

a
0
1
5
3

a
0
1
6
2

V
S
S

a
0
1
6
2

a
0
1
8
5

V
S
S

VSS

a169

VSS

VSS

a0204

VSS

a
0
1
5
3

a
1
5
0

V
S
S

a
1
7
7

s
i
g
p

V
S
S

VSS

a0174

VSS

a
0
1
5
3

V
S
S

c
<
1
>

a
0
1
6
2

a
0
1
6
2

V
S
S

c
<
2
>

a
0
1
8
5

a
0
1
8
5

V
S
S

c
<
3
>

a
0
1
5
9

a
1
6
5

V
S
S

c
<
4
>

a
1
7
7

a
1
6
2

V
S
S

c
<
2
>

a
1
5
3

a
1
5
3

V
S
S

c
<
3
>

a
1
6
5

sqp

VSS
nbiasc

a214

a
1
5
0

V
S
S

c
<
1
>

a
1
6
2

VDD

VSS
hizp

sqp

a206

VSS
nbias

VSS

a
0
1
5
3

V
S
S

c
<
0
>

a
1
5
0

a214

VSS
nbias

VSS

VDD

VSS
hizm

s q m

a
0
1
5
9

V
S
S

c
<
4
>

a
1
7
4

s q m

VSS
nbiasc

a206

F
ig

u
r
e

3
.7

:
T

h
e

ca
d
en

ce
sc

h
em

at
ic

d
ia

gr
am

of
th

e
ga

in
tu

n
in

g
tr

an
sc

on
d
u
ct

or
.

14
8



X
8

X
8

X
8

X
8

X
8

NSC

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m = 2

0
.
4
m
A

0
.
8
m
A

0
.
8
m
A

0
.
8
m
A

Lofic --> LOW: High Q

0
.
4
m
A

0
.
8
m
A

Lofic --> LOW: High Q

CellName:
LibName: GTEU04

g m q
ajay

Jun 15 15:29:59 2006

CHECKED DWG NO.SIZE

UPDATED

SHEET

B
CAGE NO.

SCALE

ISSUED

DRAWN

OF

REV

CHECKED

REVCAGE NO. S HDWG NO.

REVISIONS

ZONE DESCRIPTIONREV DATE APPROVED

NPNHV

NPNHV

NPNHVNPNHV

NPNHV

NPNHV

NPNHV

NPNHV

VSS

VSS

V
S
S

c
3

VSS

c
1

V
S
S

VSS

VDDVDD

V
S
S

V
S
S

VDD

c
<
3
>

VDD

V
S
S

V
S
S

c
<
2
>

s
i
g
m

V
S
S

V
S
S

V
S
S

V
S
S

VSS

VSS
c
<
4
>

V
S
S

s
q
m

sigm

VSS

c
4

VSS

VSS

V
S
S

s
q
p

VSS VSSVSS

VSS

hizm

VDD

V
S
S

hizp

VSS

VSS

V
S
S

V
S
S VSSVSS

VDDVDD VDDVDD

VSS

c
1

VSS

c
2

vinmvinp

V
S
SVSS

VSS

VSS

V
S
S

c
<
0
>

VSS

V
S
S

c
2

c
4

c
<
1
>

c
3

VSS

sigp

LVS C:

Sim C:

LVS C:

Sim C:

RPP

x

RPP

x

R
P
P

x

R
P
P

x

R
P
P

x

R
P
P

x

R
P
P

x

R
P
P

x

RPP

x

R
P
P

x

RPP

x

R
P
P

x

RPP

x

RPP

x

R
P
P

x

R
P
P

x

R
P
P

x

R
P
P

x

RPP

x

R
P
P

x

RPP

x

c<0:4>

ioutm

VSS

nbiasc

pbias

pb_cm

pbiasc

nbias

VDD

vinmioutp vinp
VDD

VBULK

A
Y

VSSVDD

VBULK

A
Y

VSS VDD

VBULK

A
Y

VSSVDD

VBULK

A
Y

VSSVDD

VBULK

A
Y

VSS

CPP_COXHVRF

w=6.85u
l=13u

309.7f

309.7fCPP_COXHVRF

w=6.85u
l=13u

309.7f

309.7f

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
2
3
1
5
3

t
w
e
a
k
:
0

r
=
1
.
0
0
0
1
4
K

l
=
1
4
.
2
5
u

w
=
3
.
2
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
5
3
5
4
9
4

t
w
e
a
k
:
0

r
=
1
7
9
.
9
9
1

l
=
5
.
1
2
u

w
=
7
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
2
3
1
5
3

t
w
e
a
k
:
0

r
=
1
.
0
0
0
1
4
K

l
=
1
4
.
2
5
u

w
=
3
.
2
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
9
0
2
3
2
7

t
w
e
a
k
:
0

r
=
2
1
.
9
5
7
3

l
=
7
3
0
.
0
n

w
=
1
0
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
9
0
2
3
2
7

t
w
e
a
k
:
0

r
=
2
1
.
9
5
7
3

l
=
7
3
0
.
0
n

w
=
1
0
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
7
4
6
7
5
4

t
w
e
a
k
:
0

r
=
8
9
.
9
1
1

l
=
2
.
5
2
u

w
=
8
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
5
3
5
4
9
4

t
w
e
a
k
:
0

r
=
1
7
9
.
9
9
1

l
=
5
.
1
2
u

w
=
7
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
2
3
1
5
3

t
w
e
a
k
:
0

r
=
1
.
0
0
0
1
4
K

l
=
1
4
.
2
5
u

w
=
3
.
2
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
7
4
6
7
5
4

t
w
e
a
k
:
0

r
=
8
9
.
9
1
1

l
=
2
.
5
2
u

w
=
8
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
2
7
5
4
0
2

t
w
e
a
k
:
0

r
=
3
4
.
9
8
1
7

l
=
1
.
3
6
u

w
=
1
0
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
2
7
5
4
0
2

t
w
e
a
k
:
0

r
=
3
4
.
9
8
1
7

l
=
1
.
3
6
u

w
=
1
0
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
3
.
3
7
9
5
2
6

t
w
e
a
k
:
0

r
=
2
6
.
3
4
9
7

l
=
1
.
2
u

w
=
1
2
.
0
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
2
3
1
5
3

t
w
e
a
k
:
0

r
=
1
.
0
0
0
1
4
K

l
=
1
4
.
2
5
u

w
=
3
.
2
u

m
:
1

tolerance=12.605903

tweak:0 r=216.092

l=4.23u

w = 5 u

m:1

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=60u

m = 2

DL=300n
f=2

TDW=15u

m = 2

DL=2.5u
f:1

TDW=120u

m = 2

DL=1u
f=4

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=120u

m = 2

DL=1u
f=4

TDW=15u

m = 2

DL=2.5u
f:1

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

T
D
W
=
1
2
0
u

m
:
1

D
L
:
2
4
0
n

f
=
8

TDW=60u

m = 2

DL=300n
f=2

IN
V

X
8

_
L

I_
Q

Q
D

0

IN
V

X
8

_
L

I_
Q

Q
D

0

IN
V

X
8

_
L

I_
Q

Q
D

0

IN
V

X
8

_
L

I_
Q

Q
D

0

IN
V

X
8

_
L

I_
Q

Q
D

0

I
2
.
1

I
3
.
1

I
0

I
1
.
1

I
4
.
1

C MC P

Q 2

Q 6

Q 5Q 4

Q1

Q 3

Q 7

Q 0

M 7 M 8

M 9 M10

M11M12 M13M 4

R8.1 R7.2

R
5
.
4

R
4
.
2

R
5
.
3

R
1
.
1

R
1
.
2

R
3
.
2

R9.2

R
4
.
1

R6.1

R
5
.
2

R8.2 R9.1

R
3
.
1

R
2
.
2

R
2
.
1

R
0

R6.2

R
5
.
1

R7.1

S
1
.
2

S
4
.
2

S
3
.
2

S
3
.
1

S
1
.
1

S
2
.
2

M 5

M1

M 2

S
2
.
1

M 6

M 0

S
4
.
1

S
0

M 3

pb_cm

ioutm

pb_cm

ioutp

VSS

sqp

sigp

a0129

VSS

sqp

a0137

a0121

VSS

vinm

ioutm

a087

VSS

vinp

ioutp

a0137

VSS

vinm

hizm

sigm

VSS

s q m

sigm

a0238

VSS

s q m

a087

a073

VSS

vinp

hizp

sigp

VDD

pb_cm

a95

VDD

VDD

pb_cm

a047

VDD

VDD

pbias

a91

VDD

VDD

pbias

a115

VDD

a115

pbiasc

hizm

VDD

a91

pbiasc

hizp

VDD

a047

pbiasc

ioutm

VDD

a95

pbiasc

ioutp

VDD

VSS

a0121

VSS

VSS

a0238

VSS

a
0
1
8
6

a
0
2
3
5

V
S
S

a
0
1
8
6

a
0
2
1
1

V
S
S

a
0
7
4

a
0
1
3
4

V
S
S

a
0
1
3
1

a
0
5
0

V
S
S

a
0
2
3
3

a
0
1
9
0

V
S
S

a
0
2
1
1

a
0
1
8
7

V
S
S

VSS

a073

VSS

a
0
1
3
4

a
0
5
1

V
S
S

VSS

a0129

VSS

a
0
2
3
5

s
i
g
m

V
S
S

VSS

a0121

VSS

VSS

a073

VSS

a
0
5
1

a
0
1
2
8

V
S
S

a
0
1
9
0

a
0
1
8
7

V
S
S

a
0
1
2
8

a
0
1
3
1

V
S
S

a
0
5
0

a
0
2
3
3

V
S
S

VSS

a0129

VSS

s
i
g
p

a
0
7
4

V
S
S

VSS

a0238

VSS

a
0
2
3
3

V
S
S
c
1

a
0
1
9
0

a
0
2
1
1

V
S
S
c
4

a
0
1
8
6

a
0
1
8
7

V
S
S
c
3

a
0
2
1
1

a
0
1
2
8

V
S
S
c
3

a
0
5
1

a
0
5
0

V
S
S
c
1

a
0
1
3
1

a
0
1
9
0

V
S
S
c
2

a
0
1
8
7

sqp

VSS
nbiasc

a0139

VDD

VSS
hizp

sqp

a0143

VSS
nbias

VSS

a
0
1
3
1

V
S
S
c
2

a
0
1
2
8

a0139

VSS
nbias

VSS

VDD

VSS
hizm

s q m

a
0
5
1

V
S
S
c
4

a
0
1
3
4

a
0
2
3
3

V
S
S
a
0
2
3
0

a
0
5
0

s q m

VSS
nbiasc

a0143

F
ig

u
r
e

3
.8

:
T

h
e

ca
d
en

ce
sc

h
em

at
ic

d
ia

gr
am

of
th

e
Q

-t
u
n
in

g
tr

an
sc

on
d
u
ct

or
.

14
9



1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

1 emit/isl

width: 0.25
length: 10.00

1 base/isl

1 islands

1C

1E

1B

m  =  2

NSC

NPNHV

NPNHV NPNHV

NPNHV

NPNHV

NPNHV
NPNHV

NPNHV

CellName:

LibName:

gmf

GTEU04ajay

Jun 15 15:30:00 2006

REVCAGE NO. S HDWG NO.

1

CHECKED DWG NO.SIZE

UPDATED

SHEET

A
CAGE NO.

1SCALE

ISSUED

D R A W N

OF

REV

1

CHECKED

REVISIONS

ZONE DESCRIPTIONREV DATE APPROVED

VSS VSS

V
S
S

VSS

VSS

VSS

s
q
m

s
i
g
m

VSS

V
S
S

VSSs
q
p

VSSVSS VSS

VSS

hizm

VSS

hizp

VSS

VSSVSS

VSS

VSS

V
S
S

VDDVDD VDDVDD

VSS

VSS

vinmvinp

VSS

VSS

VSS

VSS

V
S
S

VSS

s
i
g
p

LVS C:

Sim C:

LVS C:

Sim C:

RPP

x

RPP

x

RPP

x

RPP

x

R
P
P

x

RPP

x

RPP

x

R
P
P

x

R
P
P

x

RPP

x

R
P
P

x

RPP

x

ioutm

VSS

nbiasc

pbias

pb_cm

pbiasc

nbias

VDD

vinm

ioutp

vinp

CPP_COXHVRF

w=6.85u
l=13u

309.7f

309.7fCPP_COXHVRF

w=6.85u
l=13u

309.7f

309.7f

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=1u

m = 2 0
f=2

TDW=600u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

DL=300n

m = 2
f=2

TDW=120u

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
1
2
8
6
8

t
w
e
a
k
:
0

r
=
3
1
1
.
8
9
5

l
=
9
.
5
7
u

w
=
7
u

m
:
1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
1
2
8
6
8

t
w
e
a
k
:
0

r
=
3
1
1
.
8
9
5

l
=
9
.
5
7
u

w
=
7
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
1
2
8
6
8

t
w
e
a
k
:
0

r
=
3
1
1
.
8
9
5

l
=
9
.
5
7
u

w
=
7
u

m
:
1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

t
o
l
e
r
a
n
c
e
=
1
2
.
4
1
2
8
6
8

t
w
e
a
k
:
0

r
=
3
1
1
.
8
9
5

l
=
9
.
5
7
u

w
=
7
u

m
:
1

tolerance=12.605903

tweak:0r=216.092

l=4.23u

w = 5 u

m:1

TDW=60u

m = 2

DL=300n
f=2

TDW=15u

m = 2

DL=2.5u
f:1

TDW=120u

m = 4

DL=1u
f=2

TDW=120u

m = 4

DL=1u
f=2

TDW=15u

m = 2

DL=2.5u
f:1

TDW=60u

m = 2

DL=300n
f=2

C MC P

Q0.2

Q6.2 Q7.2

Q4.2

Q2.2

Q1.1
Q5.2

Q3.1

M 7 M 8

M 9 M10

M11M12 M13M 4

R4.2 R2.2 R5.2R3.2

R
1
.
2

R5.1R4.1

R
1
.
1

R
0
.
2

R3.1

R
0
.
1

R2.1

M 5

M1

M 2M 6

M 0

M 3

pb_cm

ioutm

pb_cm

ioutp

VSS

vinp

hizp

sigp

VSS

sqp

a095

a0154

VSS

s q m

a087

a0163

VSS

vinp

ioutp

a095

VSS

sqp

sigp

a0169

VSS

vinm

hizm

sigm

VSS

vinm

ioutm

a087

VSS

s q m

sigm

a049

VDD

pb_cm

a0123

VDD

VDD

pb_cm

a119

VDD

VDD

pbias

a91

VDD

VDD

pbias

a115

VDD

a115

pbiasc

hizm

VDD

a91

pbiasc

hizp

VDD

a119

pbiasc

ioutm

VDD

a0123

pbiasc

ioutp

VDD

VSS

a0154

VSS

VSS

a0169

VSS

VSS

a0163

VSS

VSS

a049

VSS

a
0
1
3
0

a
0
1
2
2

V
S
S

VSS

a0163

VSS

VSS

a0154

VSS

a
0
1
2
2

s
i
g
m

V
S
S

a
0
1
5
7

a
0
1
3
0

V
S
S

VSS

a049

VSS

s
i
g
p

a
0
1
5
7

V
S
S

VSS

a0169

VSS

sqp

VSS
nbiasc

a0139

VDD

VSS
hizp

sqp

a0143

VSS
nbias

VSS

a0139

VSS
nbias

VSS

VDD

VSS
hizm

s q m

s q m

VSS
nbiasc

a0143

F
ig

u
r
e

3
.9

:
T

h
e

ca
d
en

ce
sc

h
em

at
ic

d
ia

gr
am

of
th

e
re

so
n
an

t
tr

an
sc

on
d
u
ct

or
.

15
0



X4

X4

X 4

X 4

X 4

X2

X2 X2X2

X2 X2 X2

NSC

CellName:

LibName:

delay

GTEU04ajay

Jun 15 15:30:02 2006

REVCAGE NO. S HDWG NO.

1

CHECKED DWG NO.SIZE

UPDATED

SHEET

A
CAGE NO.

1SCALE

ISSUED

DRAWN

OF

REV

1

CHECKED

REVISIONS

ZONE DESCRIPTIONREV DATE APPROVED

V
S
S

V
S
S

V
S
S

V
D
D

V
S
S

V
S
S

V
S
S

V
D
D

VSS

V
D
D

V
D
D

VSS VSS

V
D
D

V
D
D

V
D
D

VSS

n
c

V
S
S

ir

if

V
S
S

n
c

V
S
S

V
S
S

VSS

V
S
S

V
S
S

V
S
S

V
D
D

V
S
S

V
D
D

V
D
D

V
D
D

V
D
D

VSS VSS

ir

VSS

V
S
S

V
S
S

VSS

V
S
S

V
S
S

n
c

V
S
S

R
P
P

x

R
P
P

x

LVS C:

Sim C:
LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:
LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

LVS C:

Sim C:

rinm

if

finp

ir

nc

finm

fout

VSS

VDD

rinm

rinp

rout

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

nc

inp

out

V
S
S

inm

if

V
D
D

nc

inp

out

V
S
S

inm

if

V
D
D

nc

inp

out

V
S
S

inm

if

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

t
o
l
e
r
a
n
c
e
=
1
2
.
4
5
8
1
3
9

t
w
e
a
k
:
0

r
=
2
.
0
0
0
4
9
K

l
=
1
8
.
7
2
u

w
=
2
.
1
u

m
:
1

t
o
l
e
r
a
n
c
e
=
1
2
.
6
5
3
2
7
0

t
w
e
a
k
:
0

r
=
2
4
9
.
8
5

l
=
3
.
8
2
u

w
=
4
u

m
:
1

CPP_COXHVRF

w = 2 u
l=4u

29.29f

29.29f

CPP_COXHVRF

w=2.77u
l=4u

40.03f

40.03f

CPP_COXHVRF

w=2.77u
l=4u

40.03f

40.03f

CPP_COXHVRF

w=3.5u
l=4u

50.22f

50.22f

CPP_COXHVRF

w = 2 u
l=4u

29.29f

29.29f CPP_COXHVRF

w = 2 u
l=4u

29.29f

29.29fCPP_COXHVRF

w = 2 u
l=4u

29.29f

29.29f

CPP_COXHVRF

w=5.58u
l=8u

156.5f

156.5f

CPP_COXHVRF

w=5.5u
l=4u

78.11f

78.11f

CPP_COXHVRF

w=2.77u
l=4u

40.03f

40.03fCPP_COXHVRF

w=4.4u
l=4u

62.77f

62.77fCPP_COXHVRF

w=4.4u
l=4u

62.77f

62.77fCPP_COXHVRF

w=4.4u
l=4u

62.77f

62.77fCPP_COXHVRF

w=4.4u
l=4u

62.77f

62.77f

INVX4_LI_QQD0

INVX4_LI_QQD0
d a m p

d a m p

d a m p

INVX2_LI_QQD0

INVX2_LI_QQD0 INVX2_LI_QQD0INVX2_LI_QQD0

INVX2_LI_QQD0 INVX2_LI_QQD0 INVX2_LI_QQD0

R
1

R
0

I2

I6

I12

famp

ramp I11

I1 I7I8

I3 I9 I5

C13

C14

C11

C10

C6 C8C0

C7<0:1>

C2

C12C3<0:1> C4<0:1> C5<0:1> C9<0:1>

a
0
5
6

a
0
5
0

V
S
S

a
0
5
0

r
i
n
m

V
S
S

VSS

VSS

VSS

VSS

fout

VSS

a042

VSS

a0105

VSS

a0110

VSS

a0115

VSS

a056

VSS

a6

VSS

rout

VSS

a20

VSS

a34

VSS

a39

VSS

a44

VSS

F
ig

u
r
e

3
.1

0
:

T
h
e

ca
d
en

ce
sc

h
em

at
ic

d
ia

gr
am

of
th

e
d
el

ay
n
et

w
or

k
.

15
1



X2

X2 X2

X2

X4

X4

X1

X1

X1

X1

X4

X4

NSC

Dead Zone = 100ps
When Tuned no UP or DN

CLK

CLK

CLK
Data

CellName:

LibName:

pfd

GTEU04 ajay

Nov 26 13:40:15 2006

REV CAGE NO.S H DWG NO.

1

CHECKEDDWG NO. SIZE

UPDATED

SHEET

A
CAGE NO.

1 SCALE

ISSUED

D R A W N

OF

REV

1

CHECKED

REVISIONS

ZONEDESCRIPTION REVDATEAPPROVED

V
S
S

V
S
S

V
D
D

VSS

VSS

bref

VDD

VSS

VSS

rdyn

fdyn

V
D
D

VSS

VSS

VDD

uitm

VDD

VDD

VDD

VDD

VSS

VSS

VSS
VDD

VDD

ditm

VSS

VSS

VDD

VSS

VSS

VSS

aref

VSS

VSS

bfil

VDD

VSS

bref

afil

VDD

VSS

VDD

bfil

upz

dnz

TEN

fil

re f

VSS

VDD

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

CLR

V
S
S

C P

QD

V
B
U
L
K

Q Z

V
D
D

CLR

V
S
S

C P

QD

V
B
U
L
K

Q Z

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

DL:400n

m = 4
f=2

TDW=48u

DL:400n

m = 2
f=2

TDW=24u
DL:400n

m = 4
f=2

TDW=48u

DL:400n

m = 2
f=2

TDW=24u

TDW=24u

m = 2

DL:400n
f=2

TDW=48u

m = 4

DL:400n
f=2

TDW=48u

m = 4

DL:400n
f=2

TDW=40u

m = 4

DL:400n
f=2

TDW=40u

m = 4

DL:400n
f=2

TDW=24u

m = 2

DL:400n
f=2

TDW=24u

m = 2

DL:400n
f=2

TDW=48u

m = 4

DL:400n
f=2

TDW=48u

m = 4

DL:400n
f=2TDW=24u

m = 2

DL:400n
f=2

INVX2_LI_QQD0

INVX2_LI_QQD0 INVX2_LI_QQD0

INVX2_LI_QQD0

DFFCX4_LI_QQD0

DFFCX4_LI_QQD0

INVX1_LI_QQD0

INVX1_LI_QQD0

INVX1_LI_QQD0

INVX1_LI_QQD0

INVX4_LI_QQD0

INVX4_LI_QQD0

dr3

df2 df3

dr2

rdff

fdff

M1

M 5
M 3

M 4

M11

M 8

M 6

M 2

M 0

M13

M12

M 7

M10

M 9

dr1

I10

I11

df1

udrv

fdrv

VDD

uitm

rdyn

VDD

VDD

afil

ditm

VDD

VDD

ditm

fdyn

VDD

VDD

aref

uitm

VDD

a180

VSS
afil

VSS

a147

VSS
uitm

VSS

a151

VSS
ditm

VSS

ditm

VSS
rdyn

a180

uitm

VSS
fdyn

a168

a168

VSS
aref

VSS

uitm

VSS
afil

a168

rdyn

VSS
bfil

a147

fdyn

VSS
bref

a151
ditm

VSS
aref

a180

F
ig

u
r
e

3
.1

1
:

T
h
e

ca
d
en

ce
sc

h
em

at
ic

d
ia

gr
am

of
th

e
p
h
as

e
fr

eq
u
en

cy
d
et

ec
to

r.

15
2



X4 X4X4 X4X4

X4X2 X2X2 X2

X2

X8 X8 X8

X8

X8X8

X8

NSC

log4
log2log1

log3

CellName:

LibName:

udcntr

GTEU04ajay

Jun 19 07:44:33 2006

REVCAGE NO. S HDWG NO.

1

CHECKED DWG NO.SIZE

UPDATED

SHEET

A
CAGE NO.

1SCALE

ISSUED

D R A W N

OF

REV

1

CHECKED

REVISIONS

ZONE DESCRIPTIONREV DATE APPROVED

c0

c0

c3

V
D
D

V
S
S

N012

c4

A0123

C4n

c1

V
D
D

up

N0123

VSS VSS

N012

V
D
D

b_clk

c1

VSS

N0123

VSS

c2

V
D
D

VSS

V
D
D

VSS

c0

V
D
D

VSS

V
D
D

VSS

c3

V
D
D

N01

V
D
D

CLR

trig

c2

trigtrig

c1

V
D
D

V
D
D

VSS

C2n

trig

c2

C1n C3n

V
D
D

c3

V
S
S

c2

VSS

VSS

V
D
D

c4

V
D
D

trig

C2n

VSS

C4n

A01

c4

V
D
D

VSS

V
D
D

VSS
C3n

up

VSS

V
D
D

A01

VSS

V
D
D

VSS

VSS

trig

VSS

V
S
S

b_clk

V
D
D

N01

V
S
S

V
D
D

VDD

CLR

c3

V
D
D

c1

C1n

A012

V
D
D

up

A012

up
A0123

up

cntrlogic
cntrlogiccntrlogic

cntrlogic

c0z c1z c4zc2z c3z

en

VDD

VSS

upz

clk

CLR

QD

C P

V
D
D

V
B
U
L
K

V
S
S

CLR

QD

C P

V
D
D

V
B
U
L
K

V
S
S

CLR

QD

C P

V
D
D

V
B
U
L
K

V
S
S

CLR

QD

C P

V
D
D

V
B
U
L
K

V
S
S

V
D
D

CLR

V
S
S

C P

QD

V
B
U
L
K

Q Z

QD

C P Q Z

V
B
U
L
K

V
D
D

V
S
S

QD

C P Q Z

V
B
U
L
K

V
D
D

V
S
S

QD

C P Q Z

V
B
U
L
K

V
D
D

V
S
S

QD

C P Q Z

V
B
U
L
K

V
D
D

V
S
S

QD

C P Q Z

V
B
U
L
K

V
D
D

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

V
D
D

V
B
U
L
K

A Y

V
S
S

IN0

iNOR
oAND

OUTNIN1
oNOR

iAND

U D

V
D
D

V
S
S

IN0

iNOR
oAND

OUTNIN1
oNOR

iAND

U D

V
D
D

V
S
S

IN0

iNOR
oAND

OUTNIN1
oNOR

iAND

U D

V
D
D

V
S
S

IN0

iNOR
oAND

OUTNIN1
oNOR

iAND

U D

V
D
D

V
S
S

DFFCQX4_LI_QQD0 DFFCQX4_LI_QQD0DFFCQX4_LI_QQD0 DFFCQX4_LI_QQD0DFFCX4_LI_QQD0

DFFX4_LI_QQD0DFFX2_LI_QQD0 DFFX2_LI_QQD0DFFX2_LI_QQD0 DFFX2_LI_QQD0

INVX2_LI_QQD0

INVX8_LI_QQD0 INVX8_LI_QQD0 INVX8_LI_QQD0

INVX8_LI_QQD0

INVX8_LI_QQD0INVX8_LI_QQD0

INVX8_LI_QQD0

dff2 dff3dff1 dff4dff0

div4div2 div3div0 div1

bc

ic0 ic1 ic3

ben

ic4ic2

ud

F
ig

u
r
e

3
.1

2
:

T
h
e

ca
d
en

ce
sc

h
em

at
ic

d
ia

gr
am

of
th

e
5-

b
it

co
u
n
te

r.

15
3



REFERENCES

[1] E.H. ARMSTRONG. WAVE SIGNALING SYSTEM, July 3 1928. US Patent
1,675,323.

[2] R. G. Meyer P. R. Gray. Future directions in silicon ics for rf personal communications.
Coustom Intergrated Circuit Conference, pages 83–90, May 1995.

[3] A. A. Abidi. Direct-conversion radio transceivers for digital communications. JSSC,
30(12):1399–1410, December 1995.

[4] K. M. Lakin, G. R. Kline, K. T. McCarron, Tfrt Inc, and O. R. Redmond. Develop-
ment of miniature filters for wireless applications. Microwave Theory and Techniques,
IEEE Transactions on, 43(12):2933–2939, 1995.

[5] T. Sato, Ssybg Han, and Hyljh Park. Small sized low loss if saw filters for w-cdma
based on rspudtutilizing high saw reflectivity on lithium tetraborate. Ultrasonics
Symposium, 2001 IEEE, 1, 2001.

[6] R. Alini, A. Baschirotto, and R. Castello. Tunable bicmos continuous-time filter for
high-frequencyapplications. Solid-State Circuits, IEEE Journal of, 27(12):1905–1915,
1992.

[7] H. Meier, T. Baier, G. Riha, S.A.W.C. Div, and M. EPCOS. Miniaturization and
advanced functionalities of SAW devices. Microwave Theory and Techniques, IEEE
Transactions on, 49(4):743–748, 2001.

[8] MH Koroglu and PE Allen. A 1.9 GHz image-reject front-end with automatic tuning
in a 0.15/spl mu/m CMOS technology. Solid-State Circuits Conference, 2003. Digest
of Technical Papers. ISSCC. 2003 IEEE International, pages 264–492, 2003.

[9] J. Macedo, M. Copeland, and P. Schvan. A 2.5 GHz monolithic silicon image reject
filter. Custom Integrated Circuits Conference, 1996., Proceedings of the IEEE 1996,
pages 193–196, 1996.

[10] S.S. Toncich. Tunable bandpass filter and method thereof, October 3 2006. US Patent
7,116,954.

[11] Aydin I. Karsliayan Hengsheng Liu. An accurate automatic tuning scheme for high-q
continuous-time bandpass filters based on amplitude comparison. ICnSII, 50(8):415–
423, August 2003.
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