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SUMMARY 

 

 The objectives of this study are: 

• To study the structure, processing, and properties of dry-jet wet spun 

polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers.   

•  To study the structure, processing, and properties of gel spun PAN/CNT fibers.  

• To study the stabilization and carbonized behavior of gel spun PAN and 

PAN/CNT fibers.  

• To process small diameter PAN and PAN/CNT fibers using a combination of bi-

component spinning and gel spinning, and to study the stabilization and 

carbonization behavior of these small diameter fibers. 

   

 Thesis introduction and brief review of literature is presented in Chapter 1. In 

Chapter 2, the reinforcement efficiency of single wall carbon nanotube (SWNT), double 

wall nanotubes (DWNT), multi wall nanotubes (MWNT), and vapor grown carbon 

nanofiber (VGCNF) in dry-jet wet spun PAN/CNT fibers is compared at 5 wt% CNT 

loading. Tensile properties of all the composite fibers were enhanced as compared to 

those of the control PAN fiber. Low strain properties, such as modulus and shrinkage, 

were most improved by the incorporation of SWNT. On the other hand, high strain 

properties, such as strength and work of rupture, were most enhanced by the 

incorporation of MWNT. It was concluded that the large interfacial area between CNT 

and the polymer matrix contributed to the improvement in low strain properties, and that 

long CNT length was important for high strain properties. 
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 Gel spinning studies are presented in Chapter 3. Wide angle X-ray diffraction 

(WAXD) was used to study the structure of the gel spun fibers. Intermolecular spacing in 

gel spun PAN/CNT fiber was slightly lower than in gel spun PAN. PAN in the immediate 

vicinity of nanotube exhibited high orientation and good solvent resistance, and could be 

lattice imaged using high resolution transmission electron microscopy (HRTEM). 

Ultraviolet (UV) – visible (vis) spectra confirmed SWNT exfoliation in the highly drawn 

fiber. Mechanical and dynamic mechanical properties of the gel spun fibers are also 

reported. 

 Stabilization and carbonization studies on gel spun PAN and PAN/SWNT fibers 

are reported in Chapter 4. Differential scanning calorimetry (DSC) study shows that 

incorporation of 1 wt% SWNT affected the reactivity of about 30% PAN.  PAN/SWNT 

shows the development of graphitic structure in the vicinity of carbon nanotubes when 

carbonized at 1100 °C, while PAN carbonized at this temperature was mostly disordered 

carbon. Development of graphitic structure at a relatively low carbonization temperature 

(1100 oC) is commercially very important. Tensile strength and modulus of the 

carbonized PAN/SWNT fibers containing 1 wt% SWNTs are improved by 49% and 64% 

as compared to those of the carbonized PAN fiber, respectively.  

 In Chapter 5, PAN and PAN/CNT composite (99/1) fibers have been processed 

using core-shell and islands-in-a-sea bi-component cross-sectional geometry, and gel 

spinning. Shell and Sea component polymer are subsequently removed, and the core and 

islands component are stabilized and carbonized. Using this approach, PAN and 

PAN/CNT based carbon fibers, with an effective diameter as low as 1 µm have been 

processed. Islands PAN/CNT (99/1) based carbon fibers processed using this approach 



 xix

exhibit a tensile strength of 4.5 GPa and tensile modulus of 463 GPa, while these values 

for the control PAN based carbon fiber processed under the similar conditions are 3.2 

GPa and 337 GPa, respectively. 

Conclusions and recommendations for future work are presented in Chapter 6. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Carbon Fibers 

 In the late 19th century, Edison produced carbon filament from cotton yarn, and 

used them for electric lamp light bulb1. Following this development, carbon filaments did 

not receive much attention due to the development of tungsten filament for light bulb 

application. Since 1950s, there has been significant demand for high performance (i.e. 

high strength, high modulus, and thermally stable) composite materials, which led to 

serious effort for investigating high strength carbon fiber. There have been mainly three 

different precursor fibers for producing carbon fibers; viscose rayon, polyacrylonitirle 

(PAN), and pitch2. However, viscose rayon-based carbon fibers are currently no longer 

available commercially. 

 

1.1.1 PAN-Based Carbon Fiber 

 PAN was initially developed for producing textile fibers by DuPont in 1950s3. 

PAN turned out to be commercially important polymer due to its high carbon yield. PAN 

is generally synthesized by co-polymerization of acrylontrile (> 90%) and various co-

monomers such as methyl acrylate, methyl metharcylate, vinylacetate, itaconic acid, and 

sodium methallyl sulphonate3. The molecular weight can have a wide range, from 

~10,000 to several millions g/mol. For producing fibers, various spinning methods can be 

used such as wet spinning, dry-jet-wet spinning, gel spinning, and melt spinning. It is also 

known that dry-jet-wet and gel spinning can produce highly drawn fibers with the low 
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number of micro-voids throughout the fiber. For melt spinning, PAN polymer needs to be 

pretreated with plasticizer due to its high melting temperature, which is higher than its 

degradation temperature.  

 PAN-based carbon fibers are widely used in composites due to their high tensile 

and compressive strength. PAN-based carbon fibers are produced in the similar way as 

viscose rayon-based carbon fibers. These steps include oxidative stabilization (200 – 300 

oC), carbonization (up to 1700 oC), and graphitization (2500 – 3000 oC). 

 During stabilization controlled shrinkage is allowed to ensure that disorientation 

of molecules is minimized. Figure 1.1(a) shows the possible reaction schemes of PAN 

during the stabilization process, leading to the ladder structure polymer. The subsequent 

high temperature heat treatment (> 1000 oC) under inert environment causes 

intermolecular reaction, leading to crosslinking between the ladder polymers as shown in 

Figure 1.1(b). The overall carbon yield from PAN fiber is about 50 - 60%. Further heat 

treatment (>1500 oC) under inert environment leads to more ordered structure, resulting 

in higher modulus. As mentioned earlier, PAN-based carbon fibers have higher tensile 

strength (up to 7 GPa for 5 μm diameter carbon fiber) and relatively lower modulus as 

compared to those of the pitch-based carbon fibers. 
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                                                                   (a)                                                                               (b) 

Figure 1.1. Chemical reaction schemes during (a) stabilization and (b) carbonization of PAN fibers4. 
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1.2 Carbon Nanotube (CNT) 

 Sumio Iijima (NEC, Japan) affected by fullerene research5 decided to conduct 

transmission electron microscopy (TEM) study on this novel carbon material, and found 

highly perfect concentric tubular structure, multi wall carbon nanotube (MWNT, Figure 

1.2)6. This tubular structure ranged in length from a few tens of nanometers to several 

micrometers, and in outer diameter from ~3 to 30 nm. End caps of these MWNT consist 

of the combination of pentagonal and heptagonal rings, as well as hexagons7. Subsequent 

studies resulted in the observation of SWNT8, 9. The synthesis of SWNT appeared to be 

extremely significant development, as they can have nearly ideal 1-dimensional structure.  

 

 

Figure 1.2 Transmission electron micrographs of microtubules of graphitic carbon. 
Parellel dark lines correspond to the (002) lattice images of graphite. (a) - (c) represent 5 
wall, double wall, and 7 wall carbon nanotube, respectively6. 
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1.2.1 Physical Properties of CNT10-17 

1.2.1.1 Electronic Structure of CNT15 

 CNT can be described as a graphene sheet rolled into a cylindrical shape (Figure 

1.3) so that the structure is one-dimensional with axial symmetry, and in general 

exhibiting a spiral conformation, so called chirality. CNT can be classified into achiral 

(armchair and zigzag) and chiral tube. CNTs, whose mirror image have an identical 

structure to the original, are achiral tubes, and those whose mirror image cannot be 

superimposed onto the original structure are chiral tubes.   

 

     

Figure 1.3 Drawings of different types of SWNTs based on the different chiral vector18, 
and details of vectors defining the structure of CNTs where Ch, T, R, and θ are chiral 
vector, translational vector, symmetry vector, and chiral angle15. 
 

 In order to specify the structure of CNTs, the chiral vector (Ch) is the most 

important parameter. 

 

௛ܥ   ൌ ݊ܽଵ ൅ ݉ܽଶ ؠ ሺ݊,݉ሻ 

    

where, n and m are integers, and a is the lattice constant of graphite structure (2.49 Å).  
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The relations to obtain metallic or semiconducting CNT are as follows. For metallic 

CNT, the difference between n and m values should be multiple of 3. Therefore, armchair 

tubes are always metallic and zigzag tubes when n is multiple of 3 are also metallic. The 

zigzag tubes whose n value is not the multiple of 3 and chiral tubes with n-m ≠ 3 are 

semiconducting CNTs. 

 Since the CNTs have quantized 1D electronic structure, the most distinctive 

feature of CNT is showing discrete energy state in density of states, which is called van 

Hove singularities (vHs). Figure 1.4 show the density of states diagram for (10,0) and 

(9,0) tubes, and the density of state of graphite sheet for comparison. There is no discrete 

energy level for graphite while the density of state of CNTs show vHs. It should also be 

noted that (10,0) tube has density of state value of zero at Fermi level (E=0) while (9,0) 

tube has non-zero density of state. As discussed earlier, (10,0) tube is semiconducting 

zigzag tube and (9,0) is a metallic zigzag tube due to the continuity of density of state at 

Fermi level. In addition, the band gap energy is inversely proportional to the CNT 

diameter as expressed by the following equation. 

 

௚ܧ  ൌ
|௧|௔೎೎
ௗ೟

  

 

where |t| is overlap integral, acc is the distance between adjacent carbon atoms, and dt is 

CNT diameter.  

 



 7

  

Figure 1.4 1D electronic structure of (a) (10,0) tube and (b) (9,0) tube15. For comparison, 
the density of state of 2D graphite sheet is also presented as dotted line. 
 

 The understanding of CNT electronic structure is very important to spectroscopic 

characterization of CNT such as Raman spectroscopy, UV-vis-NIR spectroscopy, and 

Fluorescence spectroscopy. For example, Raman spectra of CNT can be used to calculate 

the orientation of CNT under external force field and assess the interaction of CNT with 

its environment. Further, CNT diameter can be calculated from radial breathing mode 

(RBM) band. The ratio of tangential band (G band) to disorder band (D band) can be 

used for qualitative assessment of CNT perfectness. From UV-vis-NIR spectroscopy, one 

can assess the exfoliation state of CNT as well as its interaction with the environment.   

 

 1.2.1.2 Mechanical Properties of CNT 

 Theoretical and experimental results also showed that SWNT and MWNT can 

have very high elastic modulus (close to that of graphite, 1060 GPa), and their tensile 

strength reaches to 90 GPa17, 19-24. The properties of CNTs are listed in Table 1.1 and 

compared with the high performance fibers. 



 

8 

 
 
 
 
Table 1.1 Typical properties of CNTs, vapor grown carbon nano fiber (VGCNF) and commercial high performance fiber. 

 SWNT10, 25-29 DWNT30 MWNT23, 31-33 VGCNF34-37 Carbon 
fiber38 

Zylon®39, 

40 
Spectra®39, 

41 
Kevlar 
49®39, 42 

Tensile 
strength 
(GPa) 

23 - 63 3 - 20 4 - 7 5.8 3.1 3.6 - 4.1 

Tensile 
modulus 

(GPa) 
640 - 1060 50 - 775 150 - 950 270 105 130 

Elongation 
at break 

(%) 
5.8 28 - - 0.5 - 2.5 2.5 2.5 2.8 

Density 
(g/cm3) 1.3 - 1.5 1.5 1.8 - 2.0 1.9 - 2.1 1.7 - 2.2 1.56 0.97 1.44 

Electrical 
conductivity 

(S/m) 
~106 5.5×104 - 

9×105 
< 10-13 

Typical 
diameter 1 nm ~5 nm ~20 nm 60-100 nm 5 - 15 μm 
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1.2.1.3 Thermal Properties of CNTs 

 Theoretical thermal conductivity of an individual SWNT has been predicted to be 

as high as 6600 W/mK at room temperature11, and an experimental value of 3000 W/mK 

has been reported for a single MWNT43. Theoretical calculations also suggest that the 

thermal conductivity of SWNT is not only related to their diameter and the temperature, 

but also related to their chirality44. High thermal conductivity materials are quite 

attractive for thermal management applications45. 

 

1.2.1.4 Electrical Properties of CNTs 

 The electrical conductivity of SWNT films and fibers has been reported46, 47 to be 

in the range of 104-105 S/m, while the conductivity of the individual nanotubes and 

nanotube ropes has been measured to be on the order of 106 S/m10. According to the 

percolation theory, Figure 1.5 exhibits the effect of SWNT bundle diameter and length on 

the electrical percolation concentration of SWNT in polymer matrix48, 49.  

 

 

Figure 1.5 The calculated percolation threshold volume fraction of CNT as a function of 
bundle diameter and length of CNTs. 
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1.2.1.5 Optical Properties of CNTs 

 Due to the unique 1D electronic structure of CNT, especially SWNT, as discussed 

earlier, the optical properties measured by UV-vis-NIR spectroscopy, fluorescence, and 

Raman spectroscopy are critical methods to characterize the interaction and orientation of 

composite materials as discussed earlier. In addition, carbon nanotubes exhibit intrinsic 

anisotropic optical properties. Orientation of single and double wall carbon nanotubes can 

be determined using the resonance enhanced Raman spectra as a function of polarization 

direction47, 50-52. The absorbance due to SWNT van Hove transitions has also been shown 

to be dependent on the polarization direction53.  

  

1.3 Dispersion and Orientation of CNT in Polymer Matrix 

 SWNT agglomerate into 5 to 100 nm diameter ropes54, and form hexagonal lattice 

within the rope with binding energy between the tubes being of the order of 900 

meV/nm55. Therefore, counterbalancing the van der Waals interaction is one of the key 

challenges for dispersing and exfoliating SWNT. In addition, SWNT ropes have highly 

entangled structure. DWNT, MWNT, and VGCNF generally exist as individuals and do 

not aggregate into bundles as SWNTs do. However, they can also be entangled, requiring 

significant effort for their dispersion. Physical and chemical approaches have been 

pursued to unentangle, disperse, and exfoliate nanotubes55-104.  

CNTs show highly anisotropic electrical, optical, mechanical, and thermal 

properties as discussed. Physical properties of CNT fibers and films, and their composites 

strongly depend upon the CNT orientation in the bulk sample. Therefore, for good 
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understanding of the properties of CNT based materials, accurate orientation 

determination is necessary. Orientation of SWNT and DWNT can be determined from 

Raman spectroscopy and the orientation of MWNT and VGCNF can be determined from 

wide angle X-ray diffraction.  Intensity of the Raman G band in the oriented systems 

depends on the polarization direction. The Raman spectra can be measured in the VV 

(polarizer and analyzer are parallel to each other). The detailed methods to calculate the 

degree of orientation are described elsewhere50, 52, 105-107. The orientation of MWNTs and 

that of the vapor grown carbon nano fibers (VGCNF) can be determined using WAXD. 

MWNTs and VGCNFs have layered graphitic structure. From the graphite (002) 

azimuthal scan, orientation of the axis perpendicular to the (002) plane (i.e. the c-axis) 

can be calculated. Based on the orthogonality condition, orientation of the MWNT can be 

obtained as described elsewhere108, 109. Due to the stacked cup geometry, the orientation 

of VGCNF needs to be calculated by different way, which is reported elsewhere37. 

 

1.4 Polymer/CNT Composite Films and Fibers 

 Significant breakthroughs have been reported in processing CNT films and 

fibers46, 51, 81, 110-120. CNTs are also incorporated in numerous polymer matrix by various 

methods60, 61, 65, 66, 81, 89, 98, 121-127 with enhanced physical and mechanical properties47, 58, 81, 

113, 117, 120, 128-161. Among them, PAN/CNT composites are of great current interest. These 

composites are processed using solvents such as N,N-dimethylacetamide (DMAc), N,N-

dimethylformamide (DMF), or dimethylsulfoxide (DMSO) using conventional solution 

spinning, gel spinning, electrospinning, or by film casting. The results reveal that PAN 
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has strong interaction with CNTs, resulting in enhanced physical and mechanical 

properties of composite films and fibers. 

 Sreekumar et al.47 prepared PAN/SWNT composite fibers containing up to 10 

wt% SWNT by conventional dry-jet-wet spinning. Dynamic mechanical analysis 

exhibited that the dynamic modulus of PAN/SWNT (10 wt% SWNT) fibers at 150 oC is 

an order of magnitude higher than that of the control PAN fibers, and the glass transition 

temperature of PAN/SWNT (10 wt% SWNT) was about 40 oC higher than the control 

PAN fiber. The remarkable thermal shrinkage reduction of PAN/SWNT fiber at 200 oC 

was also observed. Further, the composite fibers soaked in DMF were just disintegrated, 

while the control fibers dissolved readily. The subsequent TEM study showed the partial 

exfoliation of SWNT (~11 nm bundle size as compared to the neat SWNT bundle 

diameter of ~ 37 nm)162.  

 The limited oxidative stabilization study163 was also carried out and showed that 

the composite fibers required less stress than the control PAN fibers to keep the constant 

fiber length during stabilization. This indicates that in PAN/CNT one can maintain the 

molecular orientation readily in order to obtain high strength and high modulus carbon 

fiber. The improved tensile properties of the stabilized PAN/SWNT fibers were observed, 

which suggests the carbonized composite fiber would also have superior properties. 

 Guo et al.141 reported that PAN/SWNT composite films have been processed with 

unique combination of tensile properties, electrical conductivity, dimensional stability, 

low density, solvent resistance, and thermal stability. PAN molecular motion above the 

glass transition temperature (Tg) in the composite film is significantly suppressed. SEM 

studies showed that rope diameter in the SWNT powder was 26 nm, while in 60/40 
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PAN/SWNT film, the rope diameter was 40 nm, suggesting that the PAN molecules 

either cover the nanotube bundles, or intercalate them, or both.  

 Ge et al.164 prepared PAN/surface oxidized MWNT nanofiber sheets by 

electrospinning. Wide angle X-ray diffraction study showed the higher orientation of 

MWNT as compared to that of the PAN crystals. The electrical conductivity of the 

PAN/MWNT composite nanofibers containing 20 wt% nanotubes was 100 S/m.  

 Ye et al.165 studied the rupture behavior of PAN/SWNT and PAN/MWNT 

composite sheets produced by elecctrospinning. A two-stage rupture behavior of the 

composite fibers under tension, including crazing of polymer matrix and pull-out of 

carbon nanotubes, has been observed. CNTs reinforce the polymer fibers by hindering 

craze propagation, reducing stress concentration, and dissipating energy by pullout. It 

was shown that distribution of nanotubes in the polymer matrix and interfacial adhesion 

between nanotubes and the polymer are two major factors determining the reinforcement 

effect of carbon nanotubes in polymer fibers. They also carbonized PAN/SWNT 

composite to form SWNT/carbon yarns166. Atomic force microscopy (AFM) experiment 

showed significantly improved moduli of carbonized PAN/SWNT yarns as compared to 

that of the control sample (more than the rule of mixtures prediction).  

 Koganemaru et al.167 prepared composite films of PAN and MWNT by gelation 

and crystallization. They also stabilized and carbonized the drawn gel films. The 

MWNTs within the PAN matrix promote the formation of a condensed aromatic ladder 

structure during the stabilization process and play an important role in preparing PAN-

based carbon material with high carbon quality and high mechanical properties. When the 
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stabilized composites with 10 wt% MWNTs are carbonized at 1000 oC, the modulus 

reaches 37.5 GPa, and the electrical conductivity reached 104 S/m. 

 

1.5 Objectives of Thesis 

 Polyacrylonitrile (PAN) fiber is the most common precursor for producing high 

strength carbon fiber with high compressive strength. Carbon nanotubes (CNTs), one of 

the novel carbon allotropes, are often heralded as the ultimate reinforcement due to their 

exceptional mechanical properties. The objectives of this study are: 

• To study the structure, processing, and properties of dry-jet wet spun 

polyacrylonitrile (PAN)/carbon nanotube (CNT) composite fibers.   

•  To study the structure, processing, and properties of gel spun PAN/CNT fibers.  

• To study the stabilization and carbonized behavior of gel spun PAN and 

PAN/CNT fibers.  

• To process small diameter PAN and PAN/CNT fibers using a combination of bi-

component spinning and gel spinning, and to study the stabilization and 

carbonization behavior of these small diameter fibers.   
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CHAPTER 2 

REINFORCEMENT EFFICIENCY OF VARIOUS TYPES OF CNTS 

IN PAN FIBERS SPUN BY CONVENTIONAL SOLUTION 

SPINNING 

 

2.1 Introduction 

 Which type of carbon nanotube will have the best reinforcement efficiency? This 

question has received little attention to date168. Also there are few reported fiber 

studies169, comparing the reinforcement efficiencies of different types of nanotubes. Here, 

the reinforcement efficiency of SWNTs, DWNTs, MWNTs, and VGCNFs has been 

compared in polyacrylonitrile fiber at 5 wt% nanotube content. 

 

2.2 Experimental 

2.2.1 Materials 

 PAN (molecular weight 100,000 g/mol) obtained from Japan Exlan Co. Ltd. was 

dried in vacuo at 90 oC. SWNTs were obtained from Carbon Nanotechnologies, Inc. 

(Houston, TX), DWNTs from Nanocyl, Co. (Belgium), MWNTs from Iljin Nanotech, 

Co. (Korea), and VGCNFs (PR-24-HT, heat treated at 2850 oC) from Applied Sciences, 

Inc. (Cedarville, OH). The amount of catalytic impurity in each type of nanotube was 

estimated from the thermogravimetric analysis (TGA) under air based on the residual 

weight170. Based on this analysis, the impurity was 2.4, 5.4, 2.5, and 0.3 wt% in SWNT, 

DWNT, MWNT, and VGCNF, respectively. N,N-dimethylacetamide (DMAc) was 

obtained from Sigma-Aldrich, Co. and was used as received.  
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2.2.2 Solution Preparation 

 CNTs (1.5 g) were dispersed in 300 mL DMAc using simultaneous sonication 

(Cole-Parmer 8891R-DTH, 80 W, 43 kHz) and stirring, until dispersion reached optical 

homogeneity. SWNTs, MWNTs, and VGCNFs formed optically homogeneous 

dispersion in less than 10 hours of sonication, while highly entangled DWNTs required 

continuous sonication for 2 weeks before optically homogenous dispersion could be 

obtained. 28.5 g PAN was separately dissolved in 150 mL DMAc at 70 oC, and 

PAN/DMAc solution was added to the CNT/DMAc dispersion and homogenized while 

stirring. Excess solvent was evaporated to obtain the desired solution concentration of 30 

g solids (PAN+CNT) in 150 mL DMAc. Accounting for impurity, CNT content, in each 

case was 5±0.03 wt% with respect to the weight of the polymer.  

 

2.2.3 Electrical Conductivity Measurement of PAN/SWNT/DMAc Solution 

 The PAN/SWNT/DMAc solution prepared by above method was stirred by high 

shear mixing impeller for 2 weeks. Leica DMRX Optical Microscope manufactured by 

Leica Microsystems equipped with a Sony digital photo camera DKC-5000 was used to 

assess the optical homogeneity of the composite solution. For solution electrical 

conductivity measurement, a cell shown in Figure 2.1 was used. The applied DC (direct 

current) and current step through the electrode were in the range of 0.01 to 0.45 μA with 

the step of 110 nA, respectively. Delay time between each measurement was set to be 

180 s. Based on the collected voltage and geometrical consideration of the cell, one can 

calculate electrical conductivity of the solution. UV-vis-NIR spectra were recorded on a 
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Cary 5G (Varian) spectrometer using a 10 mm quartz cell. For sample preparation, 1 g of 

composite solution was collected and 20 mL of DMAc was added to the solution 

followed by stirring with magnetic bar for 10 min. The same concentration of 

PAN/DMAc solution was prepared and used for baseline subtraction. 

 

 

Figure 2.1 The schematic diagram for electrical conductivity measurement. The spacer 
and substrate for electrodes were made by glass slides. The nickel plate was cut to be 
used as electrodes. The glass parts were assembled by silicon adhesives. 
 

2.2.4 Fiber Spinning 

 The PAN/CNT/DMAc solutions were spun at room temperature by dry-jet-wet 

spinning using the small scale spinning system manufactured by Bradford University 

Research Ltd. The air gap between spinneret (single hole, 500 μm diameter) and the 

coagulation media was about 2 cm. The schematic of the spinning set up is shown in 

Figure 2.2. A 635 mesh (20 μm) stainless steel filter pack (TWP, Inc.) was used in the 

spinning line. DMAc/water volumetric ratios in the coagulation baths (baths 1 and 2) and 

drawing bath (bath 3) were 60/40, 10/90, and 0/100, respectively, while the two 

coagulation baths were maintained at 30 oC and the drawing bath at 100 oC. An in-line 

heater was used for fiber drying and was maintained at 130 oC. There was no fiber 
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drawing in the two coagulation baths. Fiber was drawn between 1st and 2nd rollers, and 

fibers were allowed to relax and dried in the heating block. Take-up roller speed was set 

to be a little lower (19.4 m/min) than the 2nd roller speed (20 m/min). The final draw ratio 

of the control PAN and for each composite fiber was 10. The fibers were further dried in 

a convection oven at 50 oC for 1 week at constant length. 

 

2.2.5 Mechanical Properties   

 Fiber mechanical properties were determined using RSA III solids analyzer 

(Rheometric Scientific, Co.). The gauge length and crosshead speed for the tensile tests 

were 25 mm and 0.1 mm/s, respectively. For tensile tests, at least 10 filaments were 

tested in each case.  

 

2.2.6 Dynamic Mechanical and Thermo-Mechanical Properties 

 Dynamic mechanical tests were conducted at 10 Hz at a heating rate of 2o C/min, 

and on bundles of 10 filaments at 25 mm gauge length. Thermal shrinkage was 

determined using thermo-mechanical analyzer (TMA 2940, TA Instruments) at 15 MPa 

pre-stress and at a heating rate of 10 oC /min.  
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Figure 2.2. The schematic diagram of the dry-jet-wet fiber spinning set up. 
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2.2.7 Raman Spectroscopy 

 Raman spectra were collected in the back scattering geometry using a Holoprobe 

Research 785 Raman Microscope made by Kaiser Optical System using 785 nm 

excitation laser with polarizer and the analyzer parallel to each other. Spectra were 

collected when the fiber axis was at 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, and 90° from 

the polarization direction52. The SWNTs and DWNTs orientation in the composite fiber 

was determined from the peak intensity of tangential band (ca. 1590 cm-1) assuming 

Gaussian intensity distribution with respect to the polarization direction.  

 

2.2.8 WAXD Analysis of PAN/CNT Composite Fibers 

 Wide angle X-ray diffraction (WAXD) patterns were obtained on multifilament 

bundles by Rigaku Micromax-007 (operated at 45 kV, 0.66 mA, λ=1.5418 Å) using 

Rigaku R-axis IV++ detection system. The diffraction patterns were analyzed using 

AreaMax V. 1.00 and MDI Jade 6.1. PAN orientation was determined from the (200,110) 

azimuthal scans (2θ=16.7°) using the previously described procedure47. PAN crystallinity 

was determined by area-calculation of deconvoluted integrated diffraction patterns. In 

PAN/MWNTs and PAN/VGCNFs composite fibers, the graphite peak was also present 

and was excluded from the PAN crystallinity calculation. The PAN crystal size was 

determined from the peak at 2θ=16.7° using the Scherrer equation with K=0.9.The 

orientation of MWNTs in the composite fiber was determined from the graphite (002) 

azimuthal scan obtained from X-ray diffraction. From the orientation factor of the 

graphite plane normal, -0.455, orientation factor of the graphite plane was determined to 

be 0.91 on the assumption of the symmetry of orientation along the a and b axes. The 

orientation of the VGCNF was also determined from the graphite (002) azimuthal scan. 

The graphene layers in VGCNFs make an angle of 15° to the fiber axis. Therefore, to 

determine the orientation of VGCNFs, the azimuthal scan profile was fitted by two 
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Gaussian peaks, with peak positions located at ±15° around the equator as described 

elsewhere37. 

 

2.2.9 Morphology of Composite Fibers 

  Fiber tensile fractured surfaces were observed on the gold coated samples by 

scanning electron microscopy (LEO 1530 SEM operated at 15 kV). Transmission 

electron microscopy (TEM) specimens for the composite fibers were prepared by 

detachment method using parlodian171. Bright field TEM images were recorded on 

Mitsubishi Microscope Film using JEM 2000EX (operated at 200 kV). 

 

2.3 Results and Discussion 

2.3.1 Properties of Pristine CNTs 

 Figure 2.3 shows the bright field TEM and SEM images of various nanotubes 

used in this study. As expected, SWNTs show 5 - 50 nm diameter bundles or ropes, with 

an average diameter of about 30 nm. Diameters of DWNTs were about 5 nm, and they 

mostly existed as individual tubes, however these were highly entangled. The average 

diameter of MWNTs was about 20 nm, and these also existed as mostly individuals, 

however these were highly entangled. Diameter of VGCNF was about 60 nm and they 

appeared to be relatively free of entanglements. As mentioned in the experimental 

section, DWNTs, due to high degree of entanglement, were the most difficult to disperse. 

By comparison SWNTs and MWNTs were readily dispersed by sonication, suggesting a 

relatively less entangled structure in these two types of nanotubes. 
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Figure 2.3. Bright field TEM and SEM images of carbon nanotubes used in this study: (a) SWNT, (b) DWNT, (c) MWNT, and (d) 
VGCNF. 
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TGA plots indicate that SWNT, DWNT, MWNT, and VGCNF degradation peaks 

in air at about 440, 500, 600, and 700 oC, respectively (Figure 2.4(A)). Degradation in 

MWNT and VGCNF is delayed due to the existence of the layered graphitic structure in 

these. For comparison, TGA analysis results in nitrogen (Figure 2.4(B)) show that all 

nanotubes do exhibit degradation in the 800-1000 oC range. SWNT exhibit the most 

degradation followed by SWNT, MWNT, and VGCNF. 

 

    

Figure 2.4. Thermogravimetric plots for pristine (a) SWNT, (b) DWNT, (c) MWNT, and 
(d) VGCNF powder at a heating rate of 10 ºC/min in (A) air and (B) nitrogen. 
 

Raman spectra (Figure 2.5) show that the intensity of the disorder band (ca. 1300 

cm-1) in MWNTs and in VGCNF is quite high, suggesting highly defective graphitic 

structure in these two cases. Among the four types of tubes, SWNTs appear to have the 

highest perfection followed by DWNTs. 
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Figure 2.5. Raman spectra for pristine (a) SWNT, (b) DWNT, (c) MWNT, and (d) 
VGCNF powder. 
 

2.3.2 Optical Homogeneity of PAN/CNT/DMAc Composite Solution 

 During spinning solution preparation, the optical homogeneity has been checked 

by optical microscopy. As mentioned in the experimental section, all the nanotube/PAN 

solution showed optical homogeneity by simultaneous sonication and high shear stirring 

for 10 hr except DWNT. Figure 2.6 shows optical micrographs of SWNT and DWNT 

solutions as a function of stirring and sonication time. While the SWNT solution 

exhibited homogeneous dispersion, DWNT solution even after 7 days of sonication and 

stirring contained small DWNT aggregates visible under the optical microscopy. By 

extensive sonication and stirring for about 2 weeks, nearly homogeneous solution could 

be obtained and the spinning solution was prepared. Therefore, one can expect the highly 

entangled DWNT structure and significant reduction in DWNT length due to the long 

exposure time of DWNT to sonication. 
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2.3.3 Effect of High Shear Mixing on the Electrical Conductivity and UV-vis-NIR 

Spectra of PAN/SWNT/DMAc Solution 

 The resolution of optical microscope (OM) is limited to about 350 nm. Even 

though optical homogenenity of the solution is necessary to obtain well dispersed CNTs 

composite solution, there is no way to assess the degree of dispersion or exfoliation with 

OM once we have particle size less than the optical resolution. As shown in Figure 2.6, 

the SWNT/DMAc solution after 1 hr sonication exhibited very poor dispersion, while the 

addition of PAN into the SWNT/DMAc solution after 10hr sonication facilitated the 

SWNT dispersion. It is also observed that, after 5 day high shear mixing, there is little 

change in optical homogeneity of the solution. PAN is also known to be one of the 

polymers that have good interaction with CNTs. Several studies have shown that PAN 

molecules can wrap around the CNTs. Therefore, one can expect the SWNT exfoliation 

via intercalation of PAN molecules into the inter-tube spacing of SWNT bundle by 

applying high shear mixing, whereas the optical homogeneity does not change 

significantly. As mentioned in Chapter 1, electrical conductivity of SWNT composite 

materials is strongly dependent on the exfoliation as well as aspect ratio. To date, most of 

the electrical conductivity measurement has been carried out for the solid state composite 

films and fibers. The only way to verify the exfoliation effect was changing CNT 

concentration during processing. Measurement of electrical conductivity of solution 

during high shear mixing can be used to assess the degree of exfoliation in solution. The 

electrical conductivity increased monotonically as a function of shearing time, suggesting 

enhanced SWNT dispersion and exfoliation (Figure 2.7). It is noteworthy that for low 

current level (0.01 and 0.1 μA), the electrical conductivity increases abruptly after 7 days 
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of high shear mixing. Figure 2.8 shows UV-vis-NIR spectra of the composite solution. In 

the beginning of high shear mixing, one could observe van Hove transitions, which are 

finger-prints for SWNT exfoliation. However, as mixing time goes by, the absolute 

optical absorbance increases. This indicates increase of individual SWNT population in 

the solution. Especially, there is abrupt increase in absorbance between 9th and 13th day 

stirring, which is almost consistent with the electrical conductivity result. It is clearly 

shown that the combination of electrical conductivity and UV-vis-NIR spectra can be 

used to monitor SWNT dispersion and exfoliation.  

 Besides assessing the exfoliation, one can also notice that the electrical 

conductivity at high current level (0.34 and 0.45 μA) exhibits relatively high value at 

shorter mixing time and less sensitivity to mixing time. This indicates that at low current, 

the mobility of suspended SWNT in solution is prohibited by the high viscosity of 

solution, which results in the preservation of percolation network. Therefore, the 

conductivity at low current is relatively higher or comparable to that of high current 

measurement, once SWNT exfoliation occurs. However, the breakage of percolation in 

solution could be expedited by applying high current, i.e. stronger electric field strength. 

The schematics in Figure 2.7 represent the SWNTs in solution at different current and 

degree of exfoliation, showing the effect of SWNT alignment with the electric field 

strength and exfoliation.
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Figure 2.6 Optical micrographs of (a)-(c) SWNT/DMAc and PAN/SWNT/DMAc solution, and (d)-(f) DWNT/DMAc and 
PAN/DWNT/DMAc solution as a function of sonication and stirring time. 
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Figure 2.7 Electrical conductivity of PAN/SWNT/DMAc solution as a function of high 
shear mixing time and schematics describing the status of SWNT in solution. 
 

 

Figure 2.8 UV-vis-NIR spectra for PAN/SWNT/DMAc solution as a function of high 
shear mixing time. 
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2.3.4 Mechanical Properties and Dimensional Stability of PAN/CNT Composite 

Fibers 

Mechanical properties and various structural parameters for the control PAN and 

the composite fibers are listed in Table 2.1. All composite fibers exhibit improved 

mechanical properties over the control PAN. Increase in modulus and decrease in 

shrinkage is the highest in SWNT containing fibers, while increase in tensile strength, 

strain to failure, and toughness was the highest in MWNTs containing fibers. 

Improvement in all the properties in PAN/DWNTs and PAN/VGCNFs composite fibers 

was intermediate to that of PAN/SWNTs and PAN/MWNTs. While conventional fillers 

and reinforcements improve modulus and strength at the expense of strain to failure and 

toughness, all nano carbon reinforcements used in this study improved all mechanical 

properties, including up to 230% improvement in fiber toughness (with just 5 wt.% 

MWNTs) as measured from the area under the stress-strain curve. 

Storage modulus at 140 oC is enhanced by almost a factor of 6 (for SWNT 

containing fibers), while the tan δ peak temperature increased from 100 oC for the control 

PAN to 109 oC for the PAN/SWNTs composite, and the magnitude of the tan δ peak 

decreased from >0.3 for the control PAN to below 0.2 for the composite fibers (Figure 

2.9). Storage moduli in the entire temperature range for the MWNT and VGCNF 

containing composite fibers were quite comparable to each other. On the other hand, the 

storage modulus of the composite containing DWNT was substantially higher than that of 

the control fiber, above the glass transition temperature, while it only exhibited a 

moderate increase at room temperature. Width of the tan δ vs. temperature plot for the 

composite fibers (except SWNT containing fibers) is significantly reduced as compared 
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to that of the control PAN. This suggests a narrower spectrum of relaxation times in the 

composites than in PAN, a result of polymer interaction with the nanotubes. In the case 

of SWNT containing fibers, tan δ peak is broadened towards high temperature. We 

conjecture that PAN interactions with SWNT are stronger than with other larger diameter 

nanotubes, and that PAN segments closer to the SWNT exhibit tan δ loss at higher 

temperature than the segments farther from it, leading to the broadening in the high 

temperature region. Intercalation of PAN in the SWNT bundle may also be partially 

responsible for the tan δ broadening behavior.  

SWNT containing fibers exhibited most improvement in the thermal shrinkage 

behavior, followed by MWNTs, VGCNF, and DWNT, respectively (Figure 2.10). In the 

control PAN fiber, as there are no nanotubes, amorphous chains are free to relax, unless 

constrained by the crystalline regions. In the PAN-CNT composite, due to polymer 

nanotube interaction, an additional constraint is imposed on the PAN molecules, resulting 

in improved thermal shrinkage performance. DWNT containing samples exhibit poor 

performance due to high degree of entanglement and agglomeration. Under comparable 

spinning conditions, PAN orientation factors in the composite fibers were 0.62, 0.60, 

0.57, and 0.53 for SWNT, MWNT, VGCNF, and DWNT containing fibers, while the 

orientation of the control PAN fiber was 0.52. All types of CNTs, including VGCNF, 

resulted in enhanced polymer orientation, with SWNT resulting in most enhancements. 

Normally fibers with high degree of orientation results in large thermal shrinkage, and 

unoriented fiber would exhibit no entropic shrinkage. Considering that the nanotube 

containing fibers exhibit higher orientation than the control PAN, the reduction in their 
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thermal shrinkage conveys stronger PAN-CNT interaction than if the PAN orientation in 

the composite was the same as in the control PAN. 

 

2.3.5 Structural Analysis of PAN/CNT Composite Fibers 

Integrated radial WAXD scans, including the deconvoluted scans and the flat 

plate photographs for various fibers are given in Figure 2.11. The crystallinity of the 

control PAN fiber was only marginally higher than that of the composite fibers. 

However, PAN crystal size obtained from (200,110) peak, was larger in all composite 

fibers, and 35% larger in SWNT and MWNT containing fibers than the control PAN. As 

was the case with orientation, composite fiber containing DWNTs exhibited the smallest 

increase in crystal size. PAN is currently the predominant precursor for carbon fibers. 

Stabilization and carbonization studies on PAN/carbon nanotubes composites point to the 

potential of this composite system as a precursor for next generation carbon fiber163, 167. 

Fibers with larger PAN crystals and higher polymer molecular orientation are expected to 

lead to a more perfect and higher orientation carbon fiber with improved mechanical 

properties. 
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Table 2.1 Structural parameters and properties of control PAN and PAN/CNT composite fibers. 

 Control PAN PAN/SWNT PAN/DWNT PAN/MWNT PAN/VGCNF 

Tensile modulus (GPa) 7.8 ± 0.3 13.6 ± 0.5 9.7 ± 0.5 10.8 ± 0.4 10.6 ± 0.2 

Tensile strength (MPa) 244 ± 12 335 ± 9 316 ± 15 412 ± 23 335 ± 13 

Strain to failure (%) 5.5 ± 0.5 9.4 ± 0.3 9.1 ± 0.7 11.4 ± 1.2 6.7 ± 0.3 

Work of rupture (MPa) 8.5 ± 1.3 20.4 ± 0.8 17.8 ± 1.7 28.3 ± 3.3 14.0 ± 1.0 

Shrinkage at 160 oC (%) 13.5 6.5 11.5 8.0 11.0 

Tg 
a (oC) 100 109 105 103 103 

fPAN  0.52 0.62 0.53 0.60 0.57 

fCNT  - 0.98 0.88 0.91 0.91 

Crystal size (nm) 3.7 5.0 4.1 5.0 4.4 

Crystallinity (%) 58 54 57 55 55 
a. Tan δ peak temperature 
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Figure 2.9 (A) Storage modulus and (B) Tan δ versus temperature plots of various 
composite fibers.  
 

   

Figure 2.10 (A) Thermal shrinkage in various fibers as a function of temperature. Figure 
legend same as in Figure 2.10(A). (B) Thermal shrinkage in various fibers at 160 °C as a 
function of CNT surface area. 
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Figure 2.11 2D WAXD patterns of various PAN and PAN/CNT fibers. The bottoms 
figures show the integrated radial scans of each WAXD pattern and peak deconvolution 
for crystallinity calculation. 
 

2.3.6 Morphological Studies of PAN/CNT Composite Fibers 

 Tensile fractured surfaces reveal fibrillar structure in both the control PAN and 

the PAN/CNTs composite fibers (Figure 2.12). Many more fibril ends are observed in 

PAN/SWNT fiber than in PAN/MWNT fiber. SWNT bundles are known to be 

surrounded by PAN molecules141, 144, and we suggest that the fibril ends observed in 

PAN/SWNT composite are PAN wrapped SWNTs bundles (Figure 2.12b). The fact that 

numerous fibril ends are visible in PAN/SWNT than in PAN/MWNT, suggests that 

SWNT or SWNT bundles are much shorter than MWNTs.  

Higher tensile strength and higher toughness of the PAN/MWNT fiber, over that of the 

PAN/SWNT fiber is attributed to longer MWNTs than SWNTs. This behavior is 

analogous to the increased tensile strength with increasing molecular weight in 

polymers172-175.  

 Bright field TEM images of thin peeled composite fibers as well as the schematics 

showing the presence of carbon nanotubes are shown in Figure 2.13. SWNTs, MWNTs, 

as well as VGCNFs are mostly oriented along the fiber axis. However these are not quite 
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straight, as kinked, bent, and curved nanotubes were generally observed. SWNT bundle 

diameter in the composite fiber is about 10 nm162. This represents partial exfoliation of 

the SWNT bundles, as the diameter of the SWNT ropes in the powder used in this study 

was about 30 nm. SWNT, MWNT, and VGCNF agglomeration was not observed in these 

composite fibers. Occasionally MWNTs with orientation perpendicular to the fiber axis 

were also observed. SWNT bundles were typically 100 to 300 nm long (Figure 2.13a), 

while MWNTs longer than 1 μm were often observed (Figure 2.13c). VGCNFs also 

survived the sonication and fiber processing conditions, and were also typically longer 

than 1 μm. However due to the stacked cup geometry168, 176, the strength of the VGCNF 

is lower than that for the MWNTs, resulting in lower tensile strength improvement in 

PAN/VGCNF than in PAN/MWNT. In PAN/DWNT composite fiber, the dispersed 

nanotubes were mostly individuals and well oriented. However, TEM images also reveal 

the presence of entangled and unoriented DWNTs globules (Figure 2.13b). The limited 

property improvements in PAN/DWNT composite fibers are a result of the presence of 

these unoriented and entangled DWNT globules. The size of these DWNT globules is in 

the range of 50 to 200 nm, which is below the resolution limit of the optical microscope 

and explains why solutions containing such globules appeared to be mostly optically 

homogeneous. 
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Figure 2.12 SEM images of the tensile fractured surfaces; (a) control PAN, (b) 
PAN/SWNTs, and (c) PAN/MWNTs fibers. 
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Figure 2.13 Bright field TEM images and the schematics showing the presence of carbon 
nanotubes in various composite fibers; (a) PAN/SWNTs, (b) PAN/DWNTs, (c) 
PAN/MWNTs, and (d) PAN/VGCNFs. 
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 2.3.7 Effect of Interfacial Area between PAN and CNT on the Physical Properties of 

Composite Fibers 

  The enhancements in tensile and dynamic mechanical properties as well as 

reduced thermal shrinkage, all point to interaction between carbon nanotubes and the 

PAN matrix. The question is what factors are responsible for different levels of property 

improvements with different nanotubes. Low strain properties (modulus and thermal 

shrinkage) were most improved in PAN/SWNT, while high strain properties (tensile 

strength, strain to failure, and toughness) were most improved in PAN/MWNT. As 

addressed above, the improvements in high strain properties are a result of longer MWNT 

than SWNTs. The improvements in low strain properties are dominated by the 

polymer/CNT interaction which will depend on the interfacial area. Strength of the 

interaction may also depend on the nanotube curvature, as due to higher non planar 

strains arising from pyramidalization of the conjugated carbon atoms and π-orbital 

misalignment between adjacent pairs of conjugated carbon atoms177, 178, smaller diameter 

tubes would provide stronger interaction than the larger diameter tubes. This would favor 

SWNTs over DWNTs and MWNTs. At 5 wt% nanotube loading, the calculated 

polymer/CNT interfacial area for various types of nanotubes along with their diameters 

and densities are listed in Table 2.2. The trend of the interfacial area for SWNTs (10 nm 

diameter bundle) > MWNTs > VGCNFs is in qualitative agreement with the reduction in 

thermal shrinkage (Figure 2.10B). The interfacial area for the DWNTs is higher than that 

of the SWNT bundles (10 and 20 nm diameter) however, as mentioned earlier, the 

PAN/DWNT composite fiber contained DWNT globules, which limited the property 

improvements in this system. Based on the TEM observations, the length of the dispersed 
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DWNTs in the composite fiber was comparable to the length of the SWNT bundles. 

Considering the fact that DWNTs were sonicated for nearly two weeks as opposed to 10 

hours of sonication for SWNTs, suggests that DWNTs were originally much longer than 

SWNTs, leading to greater degree of entanglement for the former. The interfacial area 

calculations further suggest that well dispersed DWNTs (surface area 26.6 m2/g at 5 wt% 

DWNTs) and well dispersed and fully exfoliated SWNTs (surface area 154 m2/g at 5 

wt% SWNTs) would lead to further enhancement in modulus and other low strain 

properties such as thermal shrinkage, glass transition temperature, as well as modulus 

improvement above the glass transition temperature. Retention of the SWNT and DWNT 

length would also lead to further improvements in the high strain properties (strength, 

strain to failure, and toughness). 

Modulus of the composite films and fibers depends significantly on the nanotube 

orientation and exfoliation179. Modulus of the composite fiber was estimated using the 

following equation: 

 

CNTIICNTPANcompPANcomposite VEVEE )()( +=                                                        

 

where, (EPAN)comp, (ECNT)II are the moduli of the two components along the fiber axis and 

VPAN, and VCNT are their volume fractions. (EPAN)comp for each composite fiber was 

estimated based on the modulus of the control PAN as well as the PAN orientation in the 

control PAN and in the respective composite fiber. Effective (ECNT)II for SWNT, and 

MWNT along the composite fiber axis was calculated using the following continuum 

mechanics equation180, as described elsewhere47, 179: 
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Table 2.2. Physical carbon nanotube parameters, as well as theoretical and experimental moduli of the various composite fibers.  

 Diameter 
(nm) 

CNT 
Density 
(g/cm3) 

CNT 
wt.% 

CNT 
vol.% 

PAN/CNT interface area  
in the composite fiber 

at 5 wt.% loading (m2/g) 

PAN/CNT Composite Fiber 
Tensile modulus (GPa) 

Theoretical Experimental 

VGCNF 60 1.95181 

5.0 

3.1 1.3 9.7 10.6 

MWNT 20 1.8181 3.3 5.6 10.7 10.8 

SWNT 
Bundle 

20 

1.326 4.6 

7.7 11.9 - 

10 15.4 - 13.6 

4.5 34.2 21.4 - 

DWNT 5 1.5182 4.0 26.6 - 10.8 

Exfoliated 
SWNT 1 1.326 4.6 154 29.7 - 
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where E1, E2, and G12 are the longitudinal, transverse, and in-plane shear moduli, 

respectively, and v12 is the Poisson’s ratio. Elastic constants and Poisson’s ratios for 

various nanotubes used in this study were obtained from the literatures25-27, 29, 181, 183 and 

are listed in Table 2.3. Due to variation in diameter and chirality, the shear modulus of 

SWNT bundle dependence on its diameter28. Shear modulus of the 20 nm diameter 

bundle was reported to be 1 GPa, while that for the 4.5 nm diameter bundle it was about 6 

GPa. Based on the shear modulus of graphite (4.5 GPa) and the geometric packing factor, 

it was estimated that the shear modulus of nanotubes with homogeneous diameters should 

approach 19.5 GPa. Values of axial modulus and shear modulus between the planes for 

MWNTs are based on the reported values for graphite31. Calculations184 of axial and 

shear moduli for various diameter tubes suggest that for 20 nm diameter MWNT tubes, 

values of E1 and G12 listed in Table 2.3 based on graphite elastic constants are quite 

reasonable. Poisson’s ratio of 0.14 was also extrapolated based on the calculations 

reported in reference184.  Graphite planes in VGCNFs make an angle of 15° to the nano 

fiber axis37. Modulus of VGCNF calculated using equation 2 and the misorientation angle 

of 15°, represents the modulus along the VGCNF axis, which we term as ECNT. Thus axial 

modulus of VGCNF (ECNT) was determined to be 50 GPa37. The effective VGCNF 
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modulus along the composite fiber axis, (ECNT,)II was estimated to be 44.3 GPa based on 

the axial VGCNF modulus of 50 GPa and the VGCNF orientation in the composite fiber. 

 

Table 2.3 The elastic constants of SWNTs and MWNTs. 

 SWNTs MWNTs 
1 nm 4.5 nm 20 nm 

E1 (GPa) 64025-27, 29 106031 

E2 (GPa) 1527 50183 

G12 (GPa) 19.528 628 128 431 

v12 0.1727 0.14184 

 

 Calculated composite fiber moduli as a function of Herman’s orientation factor 

for various nanotubes are plotted in Figure 2.15. Due to the graphite plane misorientation 

in the VGCNFs, the modulus of the composite fiber is relatively insensitive to the 

VGCNF orientation, and even at the ideal VGCNF orientation, the modulus of the 

composite fiber is relatively low. MWNT and SWNT containing fibers exhibit significant 

modulus dependence on orientation and on SWNT exfoliation. For example, the modulus 

of the fiber containing 5 wt% MWNT is predicted to be 15 GPa at MWNT orientation of 

0.98, while for the ideal MWNT orientation (orientation factor 1), it is predicted to be 34 

GPa. This is assuming that the PAN orientation is the same as observed in PAN/MWNT 

fiber reported in Table 2.1. However, PAN orientation is also likely to increase with 

increase in CNT orientation. Therefore, the calculated modulus values in Figure 10 

represent a lower limit. By comparison, calculated modulus of SWNT containing fibers is 

predicted to be higher, even at lower orientation, provided SWNT bundles are at least 

partially exfoliated. For example, at SWNT orientation of 0.98, the modulus of the 
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PAN/SWNT composite fiber is predicted to be 21, and 29 GPa for the SWNT bundle 

diameter values of 4.5, and 1 nm diameters. 

 The experimentally observed moduli for SWNT and MWNT containing 

composite fibers are in excellent agreement with the theoretical values (Table 2.2). The 

experimental value of 13.6 GPa for the PAN/SWNT composite is in between the 

predicted value of 11.9 GPa for 20 nm diameter rope and 21.4 GPa for the 4.5 nm 

diameter rope. From TEM studies, the rope diameter in the PAN/SWNT composite fiber 

was estimated to be about 10 nm. The experimental modulus for VGCNF containing 

composite fiber is somewhat higher than the theoretical values. VGCNF exhibit two 

types of morphologies, where a second outer layer is composed of highly oriented 

graphite. The presence of such VGCNF will result in higher observed modulus than the 

value calculated based on the morphology where all graphite layers are oriented at 15° to 

the nano fiber axis37. 

 

2.4 Conclusions 

 This study shows that polymer/CNT composite fibers can be solution processed 

using SWNT, DWNT, MWNT, as well as VGCNF. All nanotubes exhibit improvements 

in tensile, dynamic mechanical, and thermal shrinkage properties and result in higher 

polymer orientation and crystallite size. The increased polymer orientation and crystal 

size point to the potential of PAN/CNT composite as the precursor for next generation 

carbon fiber. Highly entangled DWNTs were most difficult to disperse. All well 

dispersed nanotubes exhibit high orientation in the drawn composite fiber, while the 

entangled DWNT globules were unoriented. In the case of PAN/DWNT, poor nanotube 
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dispersion resulted in limited property improvements. While, even the relatively cheaper 

VGCNF result in useful property gains, the most improvements in properties come from 

highly dispersed small diameter tubes of long lengths. While the synthesis control can 

lead to longer nanotubes, they have to be preserved in unentangled state to achieve good 

dispersion with minimum or no sonication. Achieving ultrahigh nanotube orientation 

(orientation factor above 0.98) is critical for obtaining high modulus composite fibers 

containing MWNTs or large diameter SWNT bundles. 

 

 

Figure 2.14 The calculated tensile modulus of composite fibers containing 5 wt% carbon 
nanotubes, as a function of carbon nanotube orientation factor, assuming that PAN 
orientation in the composite fiber is the same as given in the representative composite 
fibers in Table 2.1. Points are calculated values, and lines are interpolations. 
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CHAPTER 3 

GEL SPINNING OF PAN/SWNT COMPOSITE FIBERS 

 

3.1 Introduction 

 Numerous polymer/CNT composite systems have been processed with 

significantly improved properties, but SWNT exfoliation and orientation in polymer 

matrices remains a challenge. The orientation requirement for achieving high modulus in 

CNT based fibers is similar to that for achieving high modulus in polymeric and carbon 

fibers as discussed in Chapter 2. Ultra high orientation and hence high modulus in 

polymeric fibers such as Kevlar™, Zylon™, and pitch based carbon fibers185 is achieved 

by spinning from liquid crystalline media. Modulus value as high as 931 GPa (>88% of 

the theoretical value for graphite) has been achieved in commercial pitch based carbon 

fiber (K1100). Ultra high orientation in polymers can also be achieved by gel spinning. 

Gel spun polyethylene fiber was commercialized in 1980s186, 187. Gel spinning has also 

been demonstrated on poly(vinyl alcohol) (PVA)188, 189 and PAN190-195. Figure 3.1 shows 

the structural schematics of various types of fibers196. With decreasing disorder and 

defect density, the fiber strength and modulus increases. The typical commodity textile 

fibers contain amorphous and crystalline regions, as well as voids, chain ends, foreign 

particle, and chain entanglement, whose tensile strength is in the range of 0.5 GPa. Upon 

gel spinning of PE and PVA, and spinning of liquid crystalline polymer, one can produce 

high performance fiber whose tensile strength is about 5 GPa. The ideal fiber structure 

will be similar to the right panel in Figure 3.1. The theoretical calculation shows the 

tensile strength of these fibers will be about 70 GPa, assuming the density of 1 g/cm3. In 
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this study, PAN/SWNT composite fiber was gel spun, demonstrating good SWNT 

orientation and exfoliation. Structure and properties of the fiber have been studied and 

compared to the properties of the control gel spun PAN fiber.  

 

 

Figure 3.1 The schematic structures of various fibers196. 

 

3.2 Experimental 

3.2.1 Materials 

 PAN (viscosity average molecular weight = 2.5×105 g/mol) was obtained from 

Exlan, Co. (Japan). PAN polymer was also containing methylacrylate co-monomer (~6.7 

mol%) characterized by 1H and 13C NMR (Varian Co., Palo Alto, CA). Purified SWNTs 

were obtained from Carbon Nanotechnologies, Inc. (Houston, TX). Based on 

thermogravimetric analysis (TGA) in air, SWNTs used in this study contain less than 1 

wt% metallic impurity. The bright field transmission electron micrograph (Figure 3.2) 

shows SWNT bundle diameter as large as 100 nm.  
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Figure 3.2 Bright field TEM image of SWNT used in this study. 
 

3.2.2 Solution Preparation 

 Dimethyl formamide (DMF) from Sigma-Aldrich, Co. was used as received. 

SWNTs were dispersed in DMF at a concentration of 40 mg/L using 24 hr bath 

sonication (Branson 3510R-MT, 100 W, 42 kHz) at room temperature. PAN (15 g) was 

dried in vacuum at 100 °C and dissolved in DMF (100 mL) at 80 °C. Optically 

homogeneous SWNT/DMF dispersion was added to the PAN/DMF solution. The excess 

amount of solvent was evaporated by vacuum distillation at 80 °C, while stirring, to 

obtain the desired solution concentration (15 g solids (PAN+SWNT)/100 mL solvent). 

Similarly other solutions were prepared to yield SWNT concentration with respect to the 

polymer of 0, 0.5, and 1 wt%. The PAN/DMF. 

 Sonication is the most common method to disperse and exfoliate CNTs in 

dispersion medium such as organic solvent. However, the prolonged sonication would 

cause the shortening of CNT length as well. Therefore, one needs to find the optimum 

sonication time for processing. UV-vis-NIR spectroscopy can trace the CNT exfoliation. 

For CNT bundles, van Hove transitions would not be observed or would be merged 
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together due to the similarity of electronic structure to graphite sheet. Figure 3.3 exhibits 

the UV-vis-NIR spectra of SWNT/DMAc solution as a function of sonication time. As 

can be seen, van Hove transitions are getting resolved with increasing sonication time. It 

should also be noticed that the overall absorbance increases with increasing sonication 

time. The more resolved peaks (van Hove transitions) and increase in overall absorbance 

imply that SWNTs are debundling and the population of exfoliated SWNT increases with 

increasing sonication time, respectively. In addition, the spectra of 19hr and 36 hr 

sonication samples are very comparable each other, suggesting that the exfoliation is 

saturated and the more sonication will reduce the SWNT length, rather than having more 

exfoliation. Therefore, the sonication time was set to be about 24 hr to fully utilize 

SWNT exfoliation for this batch of nanotube. It should be noted that the concentration of 

SWNT studied in Figure 3.3 was about 5 mg/L. Since the solubility of CNT is different in 

different solvent, the optimum sonication will depend on the CNT concentration, type of 

solvent, and a particular CNT batch. 

 

 

Figure 3.3 UV-vis-NIR spectra of SWNT/DMAc solution as a function of sonication 
time. 
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3.2.3 Fiber Spinning 

PAN/SWNT/DMF solutions were spun at 31.4 m/min using 500 μm diameter 

single hole spinneret at 110 °C into a methanol bath maintained at -50 °C. The air gap 

between spinneret and the methanol bath was about 2 cm. The as-spun fibers were taken 

up at 100 m/min and were kept immersed in methanol bath (maintained between -20 to -

40 °C) for 1 week, to ensure gelation. As a result, the as spun fiber draw ratio was 3.2. 

The gel fiber was further drawn (draw ratio in the range of 7 to 16) at 160 °C in glycerol 

bath followed by washing in ethanol and vacuum drying at 40 °C for 3 days. The total 

draw ratio, determined by multiplying spin draw ratio with post draw ratio, was as high 

as 51. Figure 3.4 shows the schematics of solution preparation, gel fiber spinning, and 

drawing procedure. 

 

3.2.3 Fiber Characterization 

 Optical microscopy was carried out using a Leitz polarizing microscope. UV-vis 

spectra on solution and various fibers were obtained using SEE 1100 microspectrometer. 

Single filament tensile properties were determined using RSA III solids analyzer 

(Rheometric Scientific, Co.) at a gauge length of 25 mm and the crosshead speed of 0.25 

mm/s. For each sample, 15 filaments were tested. Dynamic mechanical tests were also 

conducted using RSA III at 0.1, 1, and 10 Hz at a heating rate of 1 °C/min on a bundle of 

10 filaments, also using a gauge length of 25 mm. Raman spectra were collected in the 

back scattering geometry using Holoprobe Research 785 Raman Microscope made by 

Kaiser Optical System using 785 nm excitation laser with polarizer and analyzer parallel 

to each other (vv mode). Spectra were obtained with the fiber axis at 0, 5, 10, 20, 30, 40, 
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50, 60, 70, 80, 85, and 90° from the polarization direction. The SWNT orientation in the 

composite fiber was determined from the peak intensity of the tangential band (ca. 1590 

cm-1) at various polarization angles. WAXD patterns were obtained on multifilament 

bundles on Rigaku Micromax-007 (operated at 50 kV, 100 mA, λ=1.5418 Å) using 

Rigaku R-axis IV++ detection system. The diffraction patterns were analyzed using 

AreaMax V. 1.00 and MDI Jade 6.1. From the azimuthal scans of the diffraction peak at 

2θ~17°, PAN molecular orientation was determined. The crystallinity was determined 

using the integrated scans and the areas of the deconvoluted peaks. For baseline 

subtraction, linear line was drawn between 2θ = 10 and 50°. The PAN crystal size was 

also determined from the equatorial peak at 2θ~17° using Scherrer equation (K = 0.9). 

Fiber tensile fracture surfaces were observed on the gold coated samples by scanning 

electron microscopy (LEO 1530 SEM operated at 18 kV). Transmission electron 

microscopy study was conducted using Hitachi HF-2000 (operated at 200 kV). For TEM 

specimen preparation, the PAN/SWNT composite fiber (draw ratio 51) containing 1 wt% 

SWNT was heated in DMF at 150 °C for 30 min. The disintegrated fibrils were collected 

on lacey carbon TEM grids. TEM beam alignment and stigmation corrections were 

performed using evaporated aluminum standard (cat# 80044, EMS, Co.). 
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Figure 3.4. The schematics of solution preparation, gel spinning, and gel fiber drawing. 

 

Gelation up to 7 days
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3.3. Results and Discussion 

3.3.1 Structural Analysis of Gel Spun PAN/SWNT Composite Fibers 

 Crystal structure of PAN is reported to be either hexagonal or pseudo-hexagonal 

with two dimensional order197, 198, or orthorhombic with three dimensional order199, 200. In 

a review of PAN crystal structure, Bashir201 reported that the orthorhombic crystal form 

is due to the co-crystallization of PAN with polar solvents such as propylene carbonate 

and ethylene carbonate, and that hexagonal crystal can be formed upon removing these 

solvent molecules. WAXD photographs, as well as integrated and equatorial 2θ scans for 

PAN and PAN/SWNT (1 wt%) fibers are given in Figure 3.5. Various structural 

parameters determined from the X-ray study for the control PAN fiber at several draw 

ratios and for the fully drawn composite fibers are listed in Table 3.1.  

The equatorial peaks at 2θ~17 and 30° shift to higher angles with increasing draw 

ratio (Figure 3.6a), resulting in closer packing as the transverse dimension of the PAN 

molecules decreases with stretching. The equatorial d-spacing of the fully drawn fiber 

further decreased with the incorporation of SWNT (Figure 3.6b). The ratio of these two 

equatorial d-spacings (Figure 3.6a) for the as spun PAN sample (1.705) is significantly 

less than the value for hexagonal packing, which is 732.13 = . On drawing, this ratio 

approaches the hexagonal packing value of 1.732, both in the control PAN as well as in 

PAN/SWNT composite. The decrease in d-spacing for the control gel spun PAN as a 

function of draw ratio is consistent with the literature reports193, 201, 202. 
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Figure 3.5 WAXD photographs and deconvoluted integrated and equatorial scans. (a) 
PAN draw ratio 3.2, (b) PAN draw ratio 51, and (c) PAN/SWNT (1 wt%) draw ratio 51.  
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Table 3.1 WAXD results for gel-spun PAN and PAN/SWNT composite fibers. 

 
Control PAN (draw ratio) PAN/SWNT 

(0.5 wt%, DR=51) 
PAN/SWNT 

(1 wt%, DR=51) 3.2 22 32 51 

Crystallinity (%) 47 59 64 65 68 69 

f * 0.13 0.82 0.84 0.87 0.87 0.87 

Crystallite size (2θ~17°) 
(nm) 3.2 10.4 11.3 11.7 11.2 11.5 

Meridional peak position  
(2θ, degrees)‡ 40.2 39.9 39.9 39.7 39.5 39.4 

* f = Herman’s orientation factor, DR = draw ratio 
‡Chain axis order is the crystal formation from the planar zigzag or helical sequences along the fiber axis. 
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Figure 3.6 Change in equatorial PAN d-spacings (for 2θ~17 and 30° diffraction peaks). 
(a) PAN as a function of draw ratio and (b) PAN/ SWNT composite as a function of 
SWNT content. The values in parenthesis are the ratios of the two d-spacings.  
  

With increasing draw ratio, planar zigzag sequences are likely to increase while 

the helical sequences in the crystal will be decreased. This conformational difference can 

be seen from the meridional peak. Generally PAN meridional peak can be deconvoluted 

into two peaks at 2θ~36 and 40° resulting from the planar zigzag and helical sequences, 

respectively193. The control PAN and the PAN/SWNT composite in this study do not 

reveal two peaks (Figure 3.7). However, the peak position is shifted to lower angle with 

increasing draw ratio as well as with the incorporation of SWNT (Table 3.1), suggesting 

tendency for increasing planar zigzag sequences. Crystallinity, orientation, and crystal 

size increase with increasing draw ratio. Composite fibers exhibited slightly higher 

crystallinity, polymer orientation, and somewhat lower crystal size when compared to the 

control fiber of the same draw ratio (draw ratio 51). 
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Figure 3.7 WAXD meridional scans. (a) PAN draw ratio 3.2, (b) PAN draw ratio 51, and 
(c) PAN/SWNT (1 wt% SWNT) darw ratio 51. 
 

3.3.2 Morphological Studies of Gel Spun PAN/SWNT Composite Fibers 

 Scanning electron micrographs of the tensile fractured fiber surfaces show that 

both the control and composite fibers exhibit fibrillar structure. Pulled out nanotubes can 

also be seen in the composite fiber (Figure 3.8). Bright field high resolution transmission 

electron micrographs of PAN/SWNT (1 wt%) fiber show aligned and exfoliated SWNTs 

(Figure 3.9a and b). PAN crystal lattice (0.52 nm spacing) can also be observed in the 

SWNT vicinity (Figure 3.9c). Pulled out SWNTs observed in Figure 3.8b are in fact 

thought to be PAN covered SWNTs as seen in HRTEM image in Figure 3.9b. It is noted 

that the PAN/SWNT composites are highly resistant to the electron beam providing 

ample opportunity for high resolution TEM imaging. By comparison, control PAN fiber 

was significantly more radiation sensitive and could not be lattice imaged under the 

comparable imaging conditions. During TEM imaging, PVA/SWNT was also observed to 
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exhibit much higher electron beam resistance than the control PVA203. These 

observations suggest that polymer/SWNT crystals may in general be easier to image in 

the electron beam than the polymer alone. 

 

 

 

Figure 3.8 SEM micrographs for the fracture surface of (a) PAN fiber and (b) 
PAN/SWNT (1 wt%) fiber. Draw ratio of both fibers is 51. 
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Figure 3.9 (a) and (b) HRTEM images and their schematics of PAN/SWNT (1 wt%) fiber of draw ratio 51 (c) and (d) HRTEM lattice 
images of the same fiber. 
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3.3.3 Effect of Drawing on UV-vis Specta of PAN/SWNT Composite Fibers 

 Exfoliated SWNTs exhibit van Hove transitions, while these transitions are 

suppressed in SWNT bundles. The transitions are also not observed in SWNTs doped 

with electron donor or acceptor. The dilute PAN/SWNT/DMF solution before DMF 

evaporation showed van Hove transitions, suggesting SWNT exfoliation in solution 

(Figure 3.10). However, the as spun gel fiber did not exhibit van Hove transitions (Figure 

3.11a), suggesting SWNT re-aggregation during processing. The composite fiber with the 

intermediate draw ratio of 32 also did not exhibit these transitions. However, the fully 

drawn composite fiber (draw ratio 51) exhibited van Hove transitions, suggesting that 

SWNT exfoliation occurred during drawing (Figure 3.11c). The schematic of the SWNT 

exfoliation process is also shown in Figure 3.11. 

 

 

Figure 3.10 UV-vis spectrum for PAN/SWNTs/DMF solution (SWNT content is 1 wt% 
with respect to the polymer). 
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Figure 3.11 UV-vis spectra and the schematics of carbon nanotubes in PAN/SWNT (1 wt%) fiber at various draw ratios as follows: (a) 
3.2, (b) 32, and (c) 51. 
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3.3.4 Effect of Gel Drawing on SWNT Orientation 

The G-band intensity ratio, with polarization parallel and perpendicular to the 

fiber axis, at about 1592 cm-1 is taken as a measure of SWNT orientation in composite204, 

205 and in SWNT fibers46. The full width at half maximum intensity (FWHM) from 

WAXD azimuthal scan of SWNT (1,0) plane has also been used to measure the SWNT 

orientation in fibers46, 110, 206-209. Figure 3.12a shows the G-band Raman spectra when the 

angle between polarizer and fiber axis are 0 and 90°, and gives the Raman G-band ratio 

for the PAN/SWNTs composite fiber (1 wt% SWNT, draw ratio 51) of 42. For 

comparison, the Raman G-band ratio for the SWNT fiber processed from liquid 

crystalline SWNT/H2SO4 solution was 2046. 

The relationship between Raman intensity and SWNT orientation are given 

elsewhere52, 210.  The second order orientation parameter, )(cos2 θP , is the Herman’s 

orientation factor, f. From the experimental Raman intensity data plotted in Figure 12(b), 

SWNT Herman’s orientation factor, f, was calculated to be 0.915, while the fourth order 

orientation parameter, )(cos4 θP , was calculated to be 0.96 for the fully drawn 

PAN/SWNT (1 wt%) fiber using the least square fit of the above equation. These 

orientation values were determined without assuming any particular peak shape for the 

Raman intensity distribution as a function of polarization angle. For comparison it should 

be noted that PAN/SWNT fibers spun by conventional solution spinning reported in 

Chapter 2, SWNT Herman’s orientation factor was calculated to be 0.98 assuming 

Gaussian Raman intensity distribution. Re-examination of the raw data from this study 

showed that, when no particular peak shape was assumed (a method used in the current 

study), an orientation factor of 0.90 was obtained for the conventional spun PAN/SWNT 
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fiber. Raman intensity ratio for the beam polarized parallel and perpendicular to the fiber 

axis was 38 for this conventional spun sample as compared to 42 for the gel spun sample. 

Thus the SWNT orientation (0.915) in the gel spun fiber is only slightly higher (Figure 

3.12b) than in the conventional spun fiber (0.90). However, the SWNT orientation in the 

PAN/SWNT gel spun fiber is less than polymer orientation achieved in fibers such as 

Kevlar™, Zylon™, and Spectra™, where typical orientation factor value is ~0.99. 

 

       

Figure 3.12 (a) G-band Raman spectra for PAN/SWNT (1 wt%) fiber of draw ratio 
51.The angle between polarizer and the fiber axis are 0 and 90o. (b) The normalized 
Raman G-band intensity distribution as a function of angle between polarizer and the 
fiber axis. Circles represent the experimental data for PAN/SWNT (1wt%) fiber of draw 
ratio 51. 
 

3.3.5 Solubility of PAN/SWNT Composite Fibers 

It was previously reported that the PAN fiber processed by conventional solution 

spinning was soluble in DMF at room temperature, while PAN/SWNT fiber containing 

10% SWNTs was not soluble47. In the current study, we observed that fully drawn gel 

spun PAN fiber as well as PAN/SWNT (1 wt%) are both insoluble in DMF at room 

temperature. Drawn gel spun PAN did dissolve when boiled in DMF, while the drawn 
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PAN/SWNT (1 wt%) only broke into fragments after boiling in DMF for 30 minutes. 

These fragments when observed in HRTEM, showed highly crystalline PAN well 

adhered to SWNTs (Figure 3.9c). To show the solubility difference, PAN and 

PAN/SWNT fibers were heated in DMF at 60 °C for 6 hrs. Under these conditions, 

control gel spun PAN fiber begins to disintegrate into fibrils, while the 1 wt% SWNT 

containing composite fiber did not (Figure 3.13). TEM observation that PAN crystals are 

well adhered to SWNTs, and X-ray result showing that in the composite fiber PAN lattice 

spacings are slightly smaller than their value in the control gel spun PAN, may explain 

the reduced PAN/SWNT solubility. 

 

 

Figure 3.13 Optical micrographs of (a) PAN fiber (draw ratio 51) and (c) PAN/SWNT (1 
wt%, draw ratio 51), (b) and (d) are the respective fibers after treatment in DMF at 60 oC 
for 6 hr. 
 



64 
 

3.3.6 Mechanical Properties of Gel Spun PAN/SWNT Composite Fibers 

 The stress-strain curve of the highly drawn control PAN fiber shows a yield point 

at about 25% of the ultimate stress and frequent sudden stress reduction at various strain 

levels (Figure 3.14). These sudden stress reductions were a result of fibril breakage in the 

highly drawn control PAN fiber and not due to fiber slippage from the grips. The stress-

strain curves in Figure 3.14 also show that such stress reduction and hence fibril breakage 

did not occur in the composite fibers. The tensile modulus and strength of the gel spun 

PAN fiber increased almost linearly up to a draw ratio of about 40, and above this value, 

draw ratio only had moderate effect on tensile properties (Table 3.2, Figure 3.15a). Draw 

ratio of 51, as well as tensile strength and tensile modulus (Figure 3.15b) of fully drawn 

fiber obtained in this study, are consistent with the literature report194. 

 

  

Figure 3.14 Typical stress-strain curves for PAN and PAN/SWNT composite fibers. 
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Table 3.2 Mechanical properties of gel-spun PAN fiber at various draw ratios. 

 
Draw ratio* 

22 32 38 45 51 

Diameter 
(μm) 32.4±0.4 27.2±0.4 23.6±0.2 22.1±0.3 20.8±0.2 

Tensile Modulus 
(GPa) 14.5±1.3 17.8±1.2 21.0±2.2 21.2±2.5 22.1±1.2 

Tensile Strength 
(GPa) 0.58±0.05 0.76±0.08 0.85±0.14 0.88±0.10 0.90±0.18 

Strain to failure 
(%) 8.4±0.9 8.1±1.0 7.9±1.2 7.8±0.8 7.4±0.8 

Work of rupture 
(MPa) 26±5 32±6 35±9 35±7 35±9 

 

Composite fiber tensile properties are listed in Table 3.3. With the addition of 1 wt% 

SWNT, room temperature modulus increased by 6.6 GPa (from 22.1 to 28.7 GPa). 

Assuming that the PAN modulus in the composite fiber is the same as in the control gel 

spun PAN, the modulus of the PAN/SWNT composite with fully exfoliated SWNT with 

an orientation factor of 0.915 calculated using previously published method is plotted in 

Figure 3.16. The composite fiber modulus calculated assuming ideal SWNT orientation, 

and the observed moduli values are also plotted in this Figure. Observed composite fiber 

modulus is same as predicted assuming ideal SWNT orientation. However, when the 

observed SWNT orientation is taken into consideration, then one can see that 

experimental modulus is higher than the predicted value. This suggests a change in the 

PAN matrix modulus with the incorporation of SWNTs. This is consistent with the 

slightly higher PAN crystallinity and orientation in the composite fiber. 
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Figure 3.15 (a) The tensile modulus and strength of gel-spun PAN fibers as a function of 
draw ratio, and (b) Tensile modulus and strength of fully drawn atactic-PAN fiber or film 
as a function of molecular weight. The circles represent the data from reference194 and the 
triangles are the experimental data from the current study. 

   

Table 3.3 Mechanical properties of the gel-spun PAN and PAN/SWNT composite fibers 
(draw ratio = 51). 

 Diameter 
(μm) 

Tensile 
Modulus 

(GPa) 

Tensile 
Strength  
(GPa) 

Strain to 
failure 

(%) 

Work of 
rupture 
(MPa) 

PAN 20.8 ± 0.2 22.1 ± 1.2 0.90 ± 0.18 7.4 ± 0.8 35 ± 9 

PAN/SWNT  
(0.5 wt%) 19.6 ± 0.3 25.5 ± 0.8 1.06 ± 0.14 7.2 ± 0.6 41 ± 8 

PAN/SWNT  
(1 wt%) 18.7 ± 0.2 28.7 ± 2.7 1.07 ± 0.14 6.8 ± 0.8 39 ± 8 
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Figure 3.16. Tensile modulus of PAN/SWNT fibers (draw ratio 51) as a function of 
SWNT content. Solid line is the calculated value based on rule of mixtures assuming 
PAN modulus in the composite is the same as for the control PAN fiber and that the 
SWNT modulus is 640 GPa. Circles represent the experimental data. 

  

Tan δ as a function of temperature at a frequency of 10 Hz shows relaxations at 

~140, 75, and 25 oC (Figure 3.17a). These transitions are generally termed as α (and αc), 

βc, and γ, respectively. Despite higher frequency (10 Hz), these transition temperature 

values are lower than the literature reported values192 of 150, 100, and 25 oC at 3.5 Hz, 

respectively. However, it is noted that the molecular weight in this literature reported 

study is an order of magnitude higher (2.3×106 g/mol) than the molecular weight used in 

the current study (2.5×105 g/mol). The α relaxation was attributed to the micro-Brownian 

motion in the amorphous phase, which can vanish upon annealing or drawing, and αc 

relaxation is likely associated with the molecular motion in syndiotactic or short isotactic 

sequences. βc relaxation was reported to exist in both iso- and atactic-PAN, and was 
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attributed to the molecular motion from helical sequences in the paracrystalline regions. 

The γ relaxation was attributed to the local motion in the syndiotactic or short isotactic 

sequences (the planar zigzag conformation), and the long tail of γ relaxation down to -

150 oC is ascribed to the various local motions for conformationally disordered regions. 

βc transition in the composite fiber were of reduced magnitude, broader, and shifted to 

higher temperature as compared to the control PAN fiber. Since βc relaxation is strongly 

dependent on the helical sequences in PAN crystal, this suggests increased planar zigzag 

sequences in the composite fiber, consistent with the WAXD data, as discussed earlier. 

The γ transition and its tail down to -100 °C for the composite fiber was nearly identical 

to the transition for the control PAN fiber, while the magnitude for the α or αc transition 

increased with the incorporation of SWNT and slightly shifted to higher temperature. Tan 

δ magnitude of PAN/SWNTs (1 wt%) composite βc peak decreased and all three 

transition temperatures increased with increasing frequency (Figure 3.17b). The 

activation energy calculated using Arrhenius equation and the βc peak temperatures at 

various frequencies (Table 3.4) show significantly higher energy for the composite fiber 

as compared to that of the control PAN fiber. This suggests that the presence of SWNTs 

act as a barrier for this motion. 

 The storage moduli of composite fibers are higher than that of the control PAN 

fiber in the entire temperature range (Figure 3.18a). The difference between the storage 

moduli of fully drawn PAN/SWNT (1 wt%) and PAN fibers at various frequencies 

plotted in Figure 3.18b show that nanotube contribution to the storage modulus is 

decreasing with increasing temperature and increasing with increasing frequency. At -75 

°C (198 K), 1 wt% nanotubes contribute ~13.9 GPa to the storage modulus, while this 
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contribution is reduced to 6.6 GPa at 25 °C (298 K), and ~0.2 GPa at 150 °C (423 K) at 1 

Hz. Theoretical calculations show that SWNT modulus at 423 K (150 °C) is more than 

96% of its value at 0 K211, 212. Thus, in this temperature range, SWNT modulus is not 

very sensitive to temperature. Therefore, the strong temperature dependence of the 

storage modulus contribution arising from SWNT in the gel spun PAN/SWNT composite 

fiber is unusual and may suggest that load transfer ability and hence interfacial strength is 

increasing almost monotonically with decreasing temperature, even below the γ transition 

temperature (~25 °C). Part of the modulus increase may be attributed to the changes in 

PAN structure and morphology resulting from the presence of SWNT. 

 

      

Figure 3.17 Tan δ behavior of (a) PAN and PAN/SWNT fibers as a function of 
temperature at 10 Hz, and (b)PAN/SWNT (1 wt%) fiber at various frequencies. All the 
specimens were drawn to a draw ratio of 51. 
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Table 3.4 Dynamic mechanical analysis results for gel spun PAN and PAN/SWNT 
composite fibers. 

 
βc transition temperature (°C) at various frequencies 

0.1 Hz 1 Hz 10 Hz EA
* 

(kJ/mole) 
Control PAN 66.7 71.1 75 544 

PAN/SWNT (0.5 wt%) 71.7 75.1 78 717 

PAN/SWNT (1 wt%) 74.6 77.2 80.4 809 
- The transition temperatures are the tan δ peak temperatures. 

* EA is activation energy calculated using Arrhenius equation ( ⎟
⎠
⎞

⎜
⎝
⎛ −=

RT
EAf Aexp ), where f, R, and T 

are frequency, gas constant, and absolute temperature, respectively. 
 

   

      

Figure 3.18 (a) Storage modulus of PAN and PAN/SWNT fibers as a function of 
temperature at 10 Hz, and (b) storage modulus difference between control PAN and 
PAN/SWNT fibers (1 wt% SWNT) as a function of temperature at various frequencies. 
All the specimens were drawn to a draw ratio of 51. 
 

3.4 Conclusions 

 PAN/SWNT fibers were gel spun at 0, 0.5, and 1 wt% SWNT content to a draw 

ratio of 51. Structure, morphology, and mechanical and dynamic mechanical properties of 

these fibers have been studied. Raman spectroscopy showed high SWNT orientation, 

with a Herman’s orientation factor of 0.91. PAN/SWNT composite exhibited much 
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higher electron beam radiation resistance than PAN. As a result, PAN lattice images 

could be easily observed in the composite fiber. The PAN/SWNT composite fiber also 

exhibited higher solvent resistance than the control PAN fiber. UV-vis spectroscopy of 

highly drawn fiber exhibited van Hove transitions, suggesting SWNT exfoliation upon 

drawing. SWNT exfoliation was also confirmed by high resolution transmission electron 

microscopy (HRTEM). At 1 wt% SWNT, fiber modulus increased by 6.6 GPa at room 

temperature, suggesting ideal reinforcement efficiency. However, at 1 wt% SWNT 

loading, storage modulus of the PAN fiber (at 1 Hz) increased by 13.9, 6.6, and 0.2 GPa 

at -75, 25, and 150 °C, respectively. This suggests that the load transfer ability and hence 

interfacial strength is increasing with decreasing temperature, even below the γ transition 

temperature.  
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CHAPTER 4 

STABILIZATION AND CARBONIZATION STUDIES OF GEL SPUN 

PAN/SWNT COMPOSITE FIBERS 

 

4.1 Introduction 

 Among various types of polymers, PAN has been shown to have strong 

interaction with CNT. In the previous Chapters, it was shown that CNT incorporation 

into PAN fiber leads to higher PAN molecular orientation and closer chain packing 

crystal structure, resulting in improved mechanical properties, electron beam radiation 

resistance, reduction in thermal shrinkage, and enhanced solvent resistance. The overall 

quality of the precursor fiber ultimately translates into enhanced property the carbon 

fiber. Since PAN/CNT fibers have shown significantly improved properties as compared 

to PAN fibers, there is great potential to obtain novel grade of carbon fiber from 

PAN/CNT composite fibers. It has been shown that the stabilization and carbonization of 

PAN/ VGCNF and PAN/MWNT composite films processed by gel drawing can produce 

carbon films with the improved mechanical properties and electrical conductivity167, 213, 

214. However, these studies were not able to produce mechanically meaningful carbon 

films (about 30 GPa of modulus). In this Chapter, the structure and property development 

of the stabilized and carbonized PAN and PAN/SWNT fibers are presented and analyzed. 

 

4.2 Experimental 

4.2.1 Preparation of Precursor Fibers 
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 Control PAN and PAN/SWNT composite fibers were prepared by gel spinning as 

described in Chapter 3. PAN used in this study was poly(acrylonitrile-co-methylacrylate) 

containing 6.7 mol% methylacrylate characterized by 1H NMR (Varian Co., Palo Alto, 

CA). Polymer was supplied by Japan Exlan, Co. and the average molecular weight was 

250,000 g/mol. SWNT (lot number XO1PPP) were obtained from Carbon 

Nanotechnologies, Inc. (Houston, TX) and the catalytic impurity was determined to be 

about 1 wt% by thermogravimetric analysis (TGA). Control PAN and PAN/SWNT fibers 

were processed using spinnerets of 500 and 250 µm diameters. All the fibers used in this 

study were drawn by 38 times. 

 

4.2.2 Oxidative Stabilization and Carbonization  

 

 

Figure 4.1 The schematic description of the experimental setup for stabilization and 
carbonization. 
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 For stabilization, fibers were clamped between two carbon steel blocks and hung 

over a quartz rod (Figure 4.1), and stabilization was carried out in a box furnace 

(Lindberg, 51668-HR Box Furnace 1200C, Blue M Electric) in air at various stress levels 

(0.025, 0.017, 0.009, and 0.006 N/tex, stress is based on the linear density of the 

precursor fiber). Fibers were heated from room temperature to 285 oC in air at a heating 

rate of 1 oC/min and held at 285 oC for 10 hr followed by heating up to 330 oC at a 

heating rate of 1 oC/min and held at 330 oC for 3 hr. The stabilized fibers were cooled 

down to room temperature over a period of several hours. The stabilized PAN and 

PAN/SWNT fibers were subsequently carbonized in argon by heating from room 

temperature at a heating rate of 5 oC/min, and by holding a 1100 oC for 5 min at various 

stress levels (0.025, 0.017, 0.009, and 0.006 N/tex, stress is based on the linear density of 

the precursor fiber). In the initial study, the precursor fiber diameter was 20 - 23 µm, 

resulting in 12 - 13 µm diameter carbon fibers (also referred to as large diameter fibers). 

Since higher tensile strength can be obtained in smaller diameter fibers, PAN and 

PAN/SWNT (99/1) fibers were also gel spun with a diameter of about 12 µm (with a 

draw ratio of 38). These fibers resulted in about 6 µm diameter carbon fibers (also 

referred to as small diameter fibers). For stabilization of the small diameter fibers, fibers 

were heated from room temperature to 285 oC in at a heating rate of 1 oC/min and held at 

285 oC for 2 hr followed by heating up to 330 oC at a heating rate of 1 oC/min and held at 

330 oC for 1 hr. After being cooled down to room temperature, the carbonization was 

carried out using the same conditions as used for the large diameter fibers. 

 

4.2.3 Characterization 
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 Differential scanning calorimetry (DSC) was conducted to assess the degree of 

stabilization of the fibers. 1 – 1.5 mg of neat specimens was heated from 40 – 400 oC at a 

heating rate of 1 oC/min. After the 1st heating scan, the sample pan in the DSC furnace 

was quenched to 40 oC at a rate of 100 oC/min and the identical heating scan was 

conducted for 2nd and 3rd run. Fourier transformed-infrared (FT-IR) spectroscopy on the 

specimens stabilized in furnace was carried out. The fibers were placed under FT-IR 

equipped with optical microscope and the spectra were collected by 2048 accumulation at 

a resolution of 4 cm-1 against air background. PeakFit (v4.11) was used to analyze the –

C≡N stretching region in the FT-IR spectra. The peak positions for conjugated (~2210 

cm-1) and β-amino (~2190 cm-1) nitrile groups have been discussed and established in 

literature215-220, while neat nitrile band is around 2240 cm-1. For the carbonized fibers, 

Raman spectra were collected in the back scattering geometry using Holoprobe Research 

785 Raman Microscope made by Kaiser Optical System using 785 nm excitation laser 

with polarizer and analyzer parallel to each other (VV mode), and the fibers were placed 

parallel to the polarizer and analyzer. Wide angle X-ray diffraction (WAXD) patterns 

were obtained on multifilament bundles by Rigaku Micromax-002 (λ=1.5418 Å) using 

Rigaku R-axis IV++ detection system. The diffraction patterns were analyzed using 

AreaMax V. 1.00 and MDI Jade 6.1. Fiber tensile fracture surfaces were observed on the 

gold coated samples by scanning electron microscopy (LEO 1530 SEM operated at 10 

kV). High resolution transmission electron microscopy (HRTEM) study was conducted 

using Hitachi HF-2000 (operated at 200 kV). For TEM specimen preparation, the 

stabilized and carbonized fibers were ground using pestle and mortar into very fine 

powder. The ground powder was collected on lacey carbon coated copper grid. All beam 
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alignment and stigmation corrections were first performed using evaporated aluminum 

standard on TEM grid (cat# 80044, EMS, Co.) before the sample was inserted and 

imaged in the bright field mode. Single filament tensile properties were determined using 

RSA III solids analyzer (Rheometric Scientific, Co.) at a gauge length of 25 mm and the 

crosshead speed of 0.25 mm/s. For each sample, a least 15 filaments were tested. For 

determining fiber diameter, the weight of the constant length of the stabilized and the 

carbonized fibers (about 3 – 4 m) was measured, and the diameter was calculated by 

assuming density of fibers as 1.5 and 1.8 g/cm3, respectively. The neat fiber diameter was 

calculated by the same weighing method using 1.18 and 1.3 g/cm3 as the density for PAN 

and SWNT, respectively (rule of mixtures for composite fiber was used for density 

calculation). The electrical conductivity of carbon fibers was measured using 4 probe 

method (Keithly 2400). For electrical conductivity measurement, fibers were placed on a 

glass slide and 4 different lead frame from fiber was made using silver paste (DuPont 

Co.) as shown in Figure 4.2. The applied current was in the range from 10 µA to 1 mA. 

 

 

Figure 4.2 The schematics of electrical conductivity measurement for carbon fibers. 
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4.3 Results and Discussion 

4.3.1 Properties of Precursor Fibers 

 The mechanical and structural properties of gel spun PAN and PAN/SWNT (1 

wt%) fibers are listed in Table 4.1. From WAXD analysis, it is shown that the 

PAN/SWNT fibers exhibit higher crystal orientation and crystallinity with slightly 

smaller crystal size. SWNT orientation in composite fibers were determined to be 0.904 

by Raman G-band intensity as described in Chapter 3. Stabilization is known to be a 

governing step to obtain highly graphitic carbon fiber, which results in high modulus. 

During stabilization, cyclization, dehydrogenation, and oxidation reactions occur. 

Stabilization reactions of PAN are exothermic. DSC thermograms of PAN and 

PAN/SWNT fibers under air environment (Figure 4.3) show that the composite fiber has 

almost 30% less heat evolution. As we mentioned previously, SWNT has strong 

interaction with PAN molecules therefore, the PAN/SWNT composite fibers and films 

show enhanced mechanical properties, solvent resistance and electron beam radiation 

resistance as well. In addition, this interaction may also lead to the improved thermal 

stability of polymer matrix. Based on DSC thermogram of PAN/SWNT fiber, one can 

interpret that 30% of PAN molecules in composite fiber are interacting with SWNT, 

which can only be stabilized with extensive heat treatment. Furthermore, the resultant 

fibers were heat treated repeatedly in DSC for 2nd and 3rd run. Control PAN fiber shows 

no more heat evolution during 3rd run while PAN/SWNT fibers still show about 30 J/g of 

heat of stabilization reaction, indicating the unreacted PAN molecules during 1st and 2nd 

run remain intact. The calculated heat of stabilization is also listed in Table 4.2. 
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Tables 4.1 Various properties of neat gel spun PAN and PAN/SWNT (1 wt%) fibers used 
for preparing carbon fiber. 

 Control PAN PAN/SWNT 

Draw ratio 38 

Diameter (μm) 23.6 ± 0.2 21.8 ± 0.1 

Tensile modulus (GPa) 21.0 ± 2.2 26.6 ± 2.2 

Tensile strength (GPa) 0.85 ± 0.14 1.05 ± 0.10 

Strain to failure (%) 7.9 ± 1.2 8.2 ± 0.6 

Crystallinity (%)1 65 68 

Crystallite size2θ~17° (nm)2 11.3 10.8 

fc,2θ~17° 0.916 0.927 

fSWNT
3 - 0.904 

1 Calculated by deconvolution of integrated WAXD patterns 
2 Calculated by Sherrer’s equation with constant K=0.9 
3 Calculated by fitting Raman G-band intensity variation 
 

 

Figure 4.3 DSC thermograms of gel spun PAN and PAN/SWNT fibers: (a) 1st, (b) 2nd, 
and (c) 3rd run. 
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Table 4.2 Heat of stabilization for PAN and PAN/SWNT fibers. 

 
ΔHstabilization  (kJ/g) 

1st run 2nd run 3rd run 

Control PAN 3.4 0.02 - 

PAN/SWNT 2.5 0.04 0.03 

 

4.3.2 FT-IR Spectra Analysis of Stabilized Fibers 

 Infrared spectra of fibers stabilized with and without stress are shown in Figure 

4.4. Stabilization without stress was carried out in air in a thermogravimetric analyzer 

(TGA) for 30 min. The chemical structures of various nitrile groups are shown in Figure 

4.5. The conjugated nitrile group can be generated upon dehydrogenation of PAN and b-

amino nitrile groups221 can be formed due to the termination of cyclization reaction. The 

termination of cyclization is thought to take place every 4 - 5 PAN repeat units, as a 

result of its helical conformation215, 222. Therefore more planar zigzag conformation in the 

fiber is expected to increase the gap between cyclization terminations. Chain scission 

may occur during cyclization termination. Therefore, the fiber containing more planar 

zigzag conformations would result in less frequent chain scission, and hence result in 

lesser defects, thus ultimately affecting the tensile strength of the resulting carbon fiber. 

The PAN/SWNT gel fiber has more planar zigzag sequences than the PAN fiber as 

shown in Chapter 3. This difference may affect stabilization. Since the peak positions of 

different types of nitrile groups are known, the nitrile spectra was fitted without varying 

the peak position, and by allowing the peak width and intensity to vary (Figure 4.6), and 

the data is compared in Table 4.3. There are more unreacted nitrile groups in 

PAN/SWNT stabilized under stress than in the control PAN stabilized under the same 

conditions, and the quantity of unreacted groups increased with increasing stress as 
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judged by the relative areas of the FT-IR peaks. This confirms that the presence of 

SWNT as well as stress hinders stabilization reaction. AN/SWNT samples stabilized in 

furnace under stress, exhibited significantly higher conjugated nitrile and significantly 

lower b-amino nitrile than the control PAN stabilized under the same conditions. The 

stabilized structure in PAN/SWNT predominantly contains conjugated nitrile, while in 

PAN it is predominantly b-amino nitrile. This further suggests that SWNTs constrains 

PAN molecules and hence results in the higher degree of cyclization as discussed earlier. 

When stabilized in TGA, both PAN and PAN/SWNT fibers have very comparable 

amounts of different nitrile groups after 30 min of heat-treatment in air at 285 oC. We 

think that during this short stabilization time, core of the fiber is mostly un-stabilized and 

hence the effect of the presence of SWNTs is not obvious. 

 

       

Figure 4.4 FT-IR spectra for PAN and PAN/SWNT fibers: (a) neat fibers, (b) stabilized 
under TGA for 30 min, (c) stabilized in furnace under 0.006 N/tex (7 MPa) stress, and (d) 
stabilized in furnace under 0.025 N/tex (30 MPa) stress. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5 Chemical structure of three possible nitrile group during stabilization: (a) 
unreacted nitrile, (b) conjugated nitirle, and (c) β-amino nitrile groups. 
 

 

Figure 4.6 Nitirle band fitting results for PAN and PAN/SWNT fibers: (a) stabilized 
under TGA for 30 min, (b) stabilized in furnace under 0.006 N/tex stress, and (c) 
stabilized in furnace under 0.025 N/tex stress. 
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Table 4.3 Peak fitting results for FT-IR spectra of PAN and PAN/SWNT fiber stabilized in various conditions. 

 
Precursor fiber HT-30 min at 285 oC (TGA) HT-furnace2 (0.006 N/tex) HT-furnace2 (0.025 N/tex) 

PAN PAN/SWNT PAN PAN/SWNT PAN PAN/SWNT PAN PAN/SWNT 

Unreacted nitrile (%)1 100 100 38.9 42.4 5.7 15.5 14.7 23.7 

Conjugated nitrile (%)1 - - 46.5 43.3 33.9 64.0 26.1 57.7 

β-amino nitrile (%)1 - - 14.6 15.3 60.4 20.5 59.2 18.6 

1 Area fraction by peak deconvolution 
2 Specimen for HT-furnace was stabilized fibers in furnace 
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4.3.3 Morphological Studies of Stabilized and Carbonized Fibers 

 PAN molecules in the interphase region have higher orientation than in the matrix 

as shown in Chapter 3. PAN/SWNT composite fibers show fibrillar structure even after 

stabilization and carbonization (Figure 4.7).  

 

  

  

Figure 4.7. SEM micrographs for the stabilized (a) PAN and (b) PAN/SWNT fibers. 
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 Figure 4.8 is the schematic model of the carbonized PAN/SWNT fiber combined 

with SEM and HR-TEM micrographs. The carbonized composite contains nanofibrils 

embedded in the brittle carbon matrix. Nanofibrils consists of SWNT surrounded by well 

developed graphitic structure (Figure 4.8d). PAN molecules in the interphase region 

when carbonized form well ordered graphite. Figure 4.8d shows HR-TEM image of the 

nanofibril, exhibiting that SWNTs are densely packed however, they do not exist as 

bundles instead they are separated by carbonized PAN. SWNTs are also aligned well 

along the carbon fiber axis. SAED pattern for this specimen shows well defined arcs 

associated with the graphite (002) plane. While the PAN molecules in the vicinity of 

SWNT form well-defined graphite, the carbonized PAN matrix shows relatively less 

ordered structure, which is mostly disordered or amorphous carbon (Figure 4.8e). In the 

absence of SWNT, it is generally reported that the turbostratic graphite structure would 

be obtained when the stabilized PAN fibers are carbonized under 1700 oC. In order to 

increase the degree of graphitization, one must subsequently heat treat the carbonized 

fiber up to 3000 oC under inert environment. Therefore, carbonization temperature, 1100 

oC, used in the current study is relatively low to obtain the graphitic structure as 

compared to the conventional carbon fiber processing.
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Figure 4.8 Schematic description of the structure development of the carbonized PAN/SWNT fiber: (a) low resolution TEM images 
showing nanofibrillar structure, (b) schematics, (c) HRTEM micrograph of nanofibril suggesting well-defined graphite structure 
development (inset represents selected area electron diffraction (SAED) pattern exhibiting highly graphitic (002) plane oriented along 
the nanofibril axis), and (d)-(f) HRTEM micrograph of carbonized PAN/SWNT fiber. (g) HRTEM micrograph of carbonized PAN 
fiber showing disordered carbon structure. 
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4.3.4 Raman Spectroscopy of Carbonized Fibers  

The Raman spectra of carbonized PAN fibers show strong disorder band (at ~ 

1300 cm-1) and begins to show a shoulder for the graphitic G-band (at ~ 1580 cm-1) 

when stress is increased during stabilization and carbonization (Figure 4.9A). On the 

other hand, carbonized PAN/SWNT fiber exhibits a distinct G-band even when stabilized 

and carbonized at a low stress (Figure 4.9B). The G-band intensity increases with 

increasing stress, confirming stress induced graphitization. The Raman observation is in 

agreement with high resolution transmission electron microscopy, showing less ordered 

carbon for carbonized PAN and well ordered carbon for carbonized PAN/SWNT. It also 

should be noted that the G-band in carbonized PAN/SWNT fibers in Figure 4.9B is not 

due to SWNT. Due to resonance, SWNT results in a very strong intensity G-band as can 

be seen in the PAN/SWNT precursor fiber (Figure 4.10). In the stabilized and carbonized 

fibers, laser is absorbed by the stabilized and carbonized products of PAN, quenching 

SWNT spectra. 

 

       

Figure 4.9. Raman spectra for the carbonized PAN and PAN/SWNT fibers as a function 
of initial stress. 
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Figure 4.10 Raman spectrum of the precursor gel spun PAN/SWNT (99/1) fiber. 
 

 

4.3.5 Structural Analysis of Stabilized and Carbonized Fibers  

Figure 4.11 shows the 2D WAXD patterns and integrated scans for the neat, 

stabilized, and carbonized fibers. Upon stabilization, the crystalline structure of PAN is 

vanished for both PAN and PAN/SWNT fibers and new diffraction peaks are developed. 

These two peaks are expected to originate from the inter-spacing and axial order of the 

cyclized structure. The analysis on integrated scans exhibits that the higher crystalline 

phase orientation (f(002)=0.432) and larger crystal size (1.19 nm) were observed for the 

stabilized PAN/SWNT fibers as compared to those (0.421 and 1.15 nm, respectively) of 

the stabilized PAN fibers. The crystal size along the fiber axis ((10) plane) of the cyclized 

structure in the stabilized PAN/SWNT fiber was also relatively larger (2.30 nm) than that 

of the stabilized PAN fiber (1.76 nm). This suggests that the SWNT incorporation 

facilitate the crystal growth of cyclized structure not only along the lateral direction but to 

the stabilized fiber axis direction as well. In addition, all the structural factors are 



88 
 

enhanced with increasing the applied stress during stabilization (Table 4.4), confirming 

stress induced cyclization as discussed in FT-IR analysis. WAXD data exhibit similar 

results for both the carbonized PAN and PAN/SWNT fibers. Unlike Raman 

spectroscopy, which is almost inactive to the turbostratic graphitic structure as well as 

HR-TEM which can only observe more localized area of the specimen, WAXD analysis 

takes an average throughout the specimens. WAXD from both the turbostratic as well as 

the more perfect graphitic structure are equally detectable. Therefore, WAXD data is 

more representative of the overall structure of the fibers. However, the graphitic structure 

of the carbonized PAN/SWNT fibers in the vicinity of SWNT compromise the overall 

structural similarity, thus results in significantly improved mechanical properties. As 

listed in Table 4.4 and Table 4.5, the orientation factor and crystal size along both fiber 

axis and lateral direction of the stabilized and carbonized PAN/SWNT fibers are slightly 

larger than those of the stabilized and carbonized PAN fibers. 

 

 

Figure 4.11 WAXD patterns and integrated scans of PAN and PAN/SWNT fibers. 
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Table 4.4 Structural parameters of large diameter stabilized PAN and PAN/SWNT fibers. 

Precursor                          Applied 
stress(N/tex) fladder L(2θ~26°) (nm) L(2θ~43°) (nm) 

Large diameter PAN 0.025 0.421 1.2 1.8 
0.006 0.405 1.1 1.5 

Large diameter PAN/SWNT 
(99/1) 

0.025 0.432 1.2 2.3 
0.006 0.412 1.1 1.8 

 

 

Table 4.5 Structural parameters of carbonized PAN and PAN/SWNT fibers. 
                
Precursor 

 

Applied stress 
(N/tex) fc 

Z1 
(degree) 

d-spacing(002) 
(nm) 

L(002) 
(nm) 

L(10) 
(nm) 

Large diameter PAN 0.025 0.763 33.9 0.349 1.2 1.7 
0.006 0.742 35.8 0.351 1.1 1.6 

Large diameter PAN/SWNT 
(99/1) 

0.025 0.798 31.2 0.344 1.3 1.8 
0.006 0.750 34.4 0.350 1.2 1.7 

Small diameter PAN/SWNT 
(99/1) 0.025 0.795 31.4 0.345 1.3 2.1 

Commercial carbon 
fibers 

P-25  - 31.9 0.344 2.6 6 
T-300  - 35.1 0.342 1.5 4 
IM8  - - 0.343 1.9 5 

1 Full width at half maximum (FWHM) from azimuthal scans of (002) plane 

 



90 
 

4.3.6 Mechanical Properties of Stabilized and Carbonized Fibers 

 Tensile modulus of the stabilized PAN/SWNT fibers is about 26% higher than the 

stabilized PAN fibers while tensile strength and strain to failure of the two fibers were 

quite comparable (Table 4.6). Increased stress during stabilization resulted in higher 

modulus and tensile strength. Fiber Shrinkage decreases with increasing applied stress 

during stabilization (Figure 4.12). Also at a given stress, less shrinkage is observed in 

PAN/SWNT than in PAN. The shrinkage data is based on the fiber length measurement 

before and after stabilization.  

 

 

Figure 4.12 Fiber shrinkage behavior after stabilization as a function of applied stress. 

 

 Carbonized PAN/SWNT fiber exhibits higher tensile strength and modulus than 

the control PAN fiber processed under the same conditions (Table 4.7). The addition of 1 

wt% SWNT resulted in 64% increase in tensile strength and 49% increase in modulus for 
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the small diameter carbon fiber. The substantially higher modulus in carbonized 

PAN/SWNT as compared to carbonized PAN is attributed to higher orientation and 

higher graphitic order. On the other hand tensile strength is a defect dependent property 

and is not as sensitive to orientation and graphitic order. The presence of nanotubes and 

the development of graphitic carbon in the vicinity (about 10 - 30 nm thick layer), most 

likely is a less defective structure than the surrounding glassy carbon. We think than 

these graphitic fibrils act as reinforcement, resulting in higher tensile strength fiber. For 

comparison, the tensile properties of the commercial carbon fibers are also listed in Table 

4.7. As can be seen, the tensile modulus of the carbonized small diameter PAN/SWNT 

(99/1) fibers is higher than the PAN based T300 and IM9 fibers. Tensile strength and 

modulus of the experimental PAN/SWNT fibers can be further improved by process 

optimization.  

Figure 4.13 shows the comparison of effective modulus of 1 wt% CNT in various 

polymer matrices by normalizing the CNT concentration in each composite. The 

theoretical and experimental modulus of CNTs is in the range from 640 GPa to 1060 

GPa. Considering the SWNT modulus used in this study is 640 GPa, the reinforcement 

efficiency (~6.6 GPa) is outstanding for gel spun PAN/SWNT fiber, suggesting that the 

gel spinning of PAN/SWNT system is effective way to utilize the CNT property. 

Furthermore, 148 GPa enhancement in modulus of carbonized PAN/SWNT fiber indeed 

indicates that the SWNT incorporation facilitates the formation of well ordered graphite 

in the vicinity of SWNT. 
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Figure 4.13 Effective modulus of CNTs in various polymer matrices. A. PAN/SWNT (5 
wt% - Chapter 2), B. PVA/SWNT (3 wt%)120, C. PAN/SWNT (1 wt% - Chapter 3), D. 
Carbonized PAN/SWNT (1 wt% - this chapter), E. PP/SWNT (1 wt%)223, F. 
PMMA/SWNT (8 wt%)224, G. PP/SWNT (1 wt%)225, H. Nylon 6/SWNT (1.5 wt%)69, I. 
PANI/SWNT (2 wt%)226, J. PBO/SWNT (10 wt%)81, K. Carbonized pitch/SWNT (5 
wt%)227. 
 

4.3.7 Electrical conductivity of carbonized fibers 

 The electrical conductivity of carbonized PAN/SWNT (99/1) was about 3.7×104 

S/m, while that of carbonized PAN was 2.3×104 S/m. By incorporating 1 wt% SWNT, 

the electrical conductivity of resulting carbon fiber can be enhanced by at least 50%. This 

indicates that not only the addition of SWNT can increase the conductivity by itself but 

also the more graphitic region in the vicinity of SWNT can attribute to the improvement 

of electrical conductivity. 
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Table 4.6 Mechanical properties of stabilized large diameter PAN and PAN/SWNT fibers. 

Precursor                          Applied 
stress(N/tex) 

Linear density 
(tex) 

Tensile modulus 
(N/tex) 

Tensile strength 
(N/tex) 

Strain to failure 
(%) 

Large diameter PAN 
0.025 0.58 12.7 ± 1.3 0.26 ± 0.05 4.7 ± 0.5 
0.006 0.77 8.7 ± 0.7 0.19 ± 0.03 5.2 ± 0.3 

Large diameter PAN/SWNT 
(99/1) 

0.025 0.41 16.0 ± 0.7 0.29 ± 0.02 4.5 ± 0.6 
0.006 0.64 11.3 ± 1.3 0.22 ± 0.03 4.6 ± 0.9 

 

Table 4.7 Mechanical properties of carbonized PAN and PAN/SWNT fibers. 
                
Precursor 

 

Applied stress 
(N/tex) 

Linear density 
(tex) 

Tensile modulus 
(N/tex) 

Tensile strength 
(N/tex) 

Strain to failure 
(%) 

Large diameter PAN 0.025 0.27 147 ± 13 1.1 ± 0.1 0.63 ± 0.08 

Large diameter PAN/SWNT (99.5/0.5) 0.025 0.25 184 ± 8 1.2 ± 0.2 0.65 ± 0.02 

Large diameter PAN/SWNT (99/1) 0.025 0.22 190 ± 9 1.4 ± 0.1 0.75 ± 0.04 

Small diameter PAN 0.025 0.064 168 ± 18 1.1 ± 0.2 0.68 ± 0.04 

Small diameter PAN/SWNT (99/1) 0.025 0.044 250 ± 27 1.8 ± 0.2 0.72 ± 0.05 

Commercial carbon 
fibers 

P-25  0.179 84 0.7 0.9 
T-300  0.067 129 1.8 1.5 
IM8  0.037 179 2.9 1.9 
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4.4 Conclusions 

 Gel spun PAN and PAN/SWNT composite fibers were stabilizaed and carbonized 

with varying stress. DSC showed significantly lower heat evolution in PAN/SWNT fibers 

under oxidative stabilization than in PAN, suggesting that the presence of SWNT hinders 

PAN reactivity. Infrared spectroscopy showed that even after prolonged stabilization 

under stress, PAN/SWNT fiber contained more unreacted nitrile than comparably 

stabilized PAN. The structure in stabilized PAN/SWNT appeared to be predominantly 

composed of conjugated nitrile, while in stabilized PAN it appeared to be composed of 

predominantly β-amino nitriel. Fibrillar structure was observed in the stabilized and 

carbonized PAN/SWNT, while the corresponding PAN fibers exhibited brittle fracture. 

Carbonized PAN/SWNT fibers exhibit higher orientation, smaller graphite d-spacing and 

larger crystal size, than PAN carbonized under similar conditions. PAN/SWNT 

carbonized at 1100 oC under stress shows the development of graphitic structure (as 

evidenced by Raman and high resolution transmission electron microscopy), while 

carbonized PAN showed only the presence of disordered carbon. Small diameter 

carbonized PAN/SWNT fibers containing 1 wt% SWNT exhibited 64% higher tensile 

strength and 49% higher tensile modulus than the corresponding carbonized PAN. In 

addition, the electrical conductivity of carbonized PAN/SWNT is 50% higher than that of 

carbonized PAN.  
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CHAPTER 5 

SMALL DIAMETER CARBON FIBER FROM PAN/CNT 

COMPOSITE FIBERS SPUN BY BI-COMPONENT GEL SPINNING  

 

5.1 Introduction 

Development of high strength carbon fibers began in 1960s, and after nearly half 

a century of development, technology now seems mature. Carbon fiber market is now 

growing at the annual rate of approximately 15%. High strength carbon fibers are 

increasingly being used in significant quantity in civilian applications. For example, 

approximately 50% weight of the Boeing 787 is composed of composites utilizing carbon 

fibers. While commercial continuous carbon fibers are now available with nearly 90% of 

the theoretical modulus, tensile strength achieved in today’s commercial carbon fiber is 

only a small fraction of the theoretical value.  Efforts are underway to narrow the gap 

between the theory and practice. However the problem is not trivial. Since their discovery 

in 1991, carbon nanotubes have been expected to result in improved tensile strength 

materials. After more than 15 years of development, significant breakthroughs are now 

being reported in developing high strength wholly carbon nanotube fibers46, 110, 111, 228-230, 

as well as carbon nanotube reinforced materials47, 81, 118, 206, 208.    

 While there are several precursor materials for carbon fiber production such as 

polyacrylonitrile (PAN), pitch, and cellulose231-233, PAN fiber is most widely used 

precursor due to its high carbon yield, as well as high tensile and compressive strength of 

the resulting carbon fiber38. There is significant research activity for reinforcing PAN 

with carbon nanotube 47, 141, 144, 163-167, 234-237. Chapter 4 shows that the addition of 1 wt% 
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carbon nanotubes can increase the tensile strength and tensile modulus of PAN based 

carbon fibers by 64%, and 49%, respectively. Currently commercial carbon fibers are 

processed using conventional solution spinning, where polymer solution is extruded 

directly into a coagulation bath. However, by using gel spinning, higher modulus and 

strength PAN precursor fiber can be prepared than can be obtained by conventional 

solution spinning. The higher mechanical properties of the gel spun fiber results in higher 

mechanical property carbon fibers than can be obtained by solution spun fibers. Gel 

spinning invented at DSM (Netherlands) around 1980 is currently commercially practiced 

only for polyethylene to process high performance fibers such as Spectra™ and 

Dyneema™. There is significant research and patent literature on gel spinning of 

polymers such as poly(vinyl alcohol) (PVA) and PAN. The third component of the 

technology for producing high strength carbon fiber is to process a small diameter carbon 

fiber. Diameter of current commercial carbon fibers is in the range of 5 to 10 µm. Smaller 

diameter fibers exhibit higher tensile strength.  It is difficult to spin continuous fiber with 

diameters below 10 µm, resulting in a carbon fiber of about 5 µm diameter. Smaller 

diameter PAN fibers (10 nm to 1 µm diameter) can be processed by electrospinning165, 

238-243. However, two problems are encountered in this approach for making high strength 

carbon fibers. First, the molecular orientation and hence tensile modulus achieved in 

electrospinning is rather low.  Secondly, processing continuous fiber by electrospinning 

has been challenging.  

 Bi-component spinning has been used since 1960s to make small diameter fibers 

for fine textiles, and is typically practiced for melt processing244-250.  In this chapter, core-

shell and islands-in-a-sea bi-component geometry along with gel spinning is used to 
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process effectively small diameter PAN and PAN/CNT fibers to make carbon fibers with 

diameters less than one micrometer. Small diameter fiber results in high strength, gel 

spinning leads to high draw ratio and hence high orientation and modulus. Fibers are 

further reinforced by carbon nanotubes. 

            

5.2 Experimental 

5.2.1 Materials and Solution Preparation 

 Poly(acrylonitrile-co-methylacrylate) containing 6.7 mol% methylacrylate, with 

average molecular weight of about 250,000 g/mol, was obtained from Japan Exlan, Co.  

Carbon nanotubes (lot number XO021UA) were obtained from Unidym, Inc. (Houston, 

TX) and the catalytic impurity was determined to be about 1.6 wt% by thermogravimetric 

analysis (TGA). TEM and Raman spectra of the nanotubes are given in Figure 5.1 and 

Figure 5.2, respectively.  In Figure 5.1, most of the nanotubes are large diameter (2 - 

5nm) DWNT and triple wall nanotube (TWNT) can be found frequently. Since there are 

no SWNT observed by TEM, it can be expected that Raman spectra of this CNT will not 

show any RBM peaks as shown in Figure 5.2. Poly(methyl metharcrylate) (PMMA), 

molecular weight in the 85,000 – 150,000 g/mol, obtained from Cyro Industries (Orange, 

CT)  was used as the sacrificial "shell" and "sea" component. Dimethyl formamide 

(DMF) was obtained from Sigma-Aldrich, Co. CNTs were dispersed in DMF at a 

concentration of 40 mg/L using 24 hr bath sonication (Branson 3510R-MT, 100 W, 42 

kHz) at room temperature, and PAN (14.85 g) was dissolved in DMF (100 mL) at 80 oC. 

Optically homogeneous CNT/DMF dispersion was added to the PAN/DMF solution. The 

excess amount of solvent was evaporated by vacuum distillation at 80 °C, while stirring, 
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to obtain the desired solution concentration (15 g solid/100 mL solvent). The solution for 

shell or sea component was prepared by dissolving 55 g  PMMA in 100 mL DMF at 150 

oC.  

 

 

Figure 5.1 HRTEM micrographs of pristine CNT used in this study showing that majority 
of CNTs are DWNT and some of them are TWNT. 
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Figure 5.2 Raman spectrum of pristine CNT. 

 

5.2.2 Bi-Component Fiber Spinning 

 Both the core-shell and the islands-in-a-sea fibers were processed using spinneret 

of 250 µm diameter. The schematic of the bi-component spinning set up and of the core-

shell and islands-in-a-sea geometries are given in Figure 5.3. The temperature of both the 

solution reservoirs (core and islands – PAN or PAN/CNT; shell and sea – PMMA) was 

maintained at 120 oC, while the spinneret was maintained at  140 oC. For core-shell fiber 

spinning, the volumetric flow rate of core and shell component were set to be 0.5 

cm3/min and 1.5 cm3/min, respectively. The linear jet speed of core-shell as-spun fiber 

was about 40 m/min. In islands-in-a-sea geometry, the volumetric flow rates of both the 

sea and island components were 1.5 cm3/min, which is equivalent to the linear jet speed 

of 61 m/min based on the spinneret diameter. The solution was spun into a methanol bath 
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maintained at -50 oC. The air gap between the spinneret and the methanol bath was kept 

at about 5 cm. The as-spun fibers were taken up at 200 m/min and kept immersed in 

methanol bath at about -50 oC for several days. The gel bi-component fiber was drawn in 

several stages at 110, 150, and 170 °C, using in line heater. The total draw ratio of the 

PAN and PAN/CNT gel fiber with the PMMA "shell" component was about 16 (this does 

not include the 3.3 draw ratio in the methanol bath during spinning while the draw ratio 

of islands-in-a-sea fibers was about 10. The drawn fibers were subsequently vacuum 

dried at 70 oC for 3 days. Figure 5.4 show the SEM micrographs of core-shell with shell 

component and islands-in-a-sea bicomponent fibers with/without  sea component. 

Sacrificial component, PMMA, was removed by dissolution in nitromethane. 

 

 

(a) 

 

(b) 

 

(c) 

 
Figure 5.3 The schematics of (a) bi-component spinning apparatus, (b) core-shell, and (c) 
islands-in-a-sea geometry bi-component fiber. 
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Figure 5.4 SEM micrographs of gel spun bi-component fiber. (a) and (b) cross sectional 
view of core-shell fiber, (c) low magnification image showing separation of islands fibers 
(PAN/CNT) from islands-in-a-sea fiber after removing sea component (PMMA), and (d) 
high magnification image of circled region from left image showing clear separation of 
individual islands fiber. 
 

5.2.3 Stabilization and Carbonization of Bi-Component Fibers 

The dried core-shell and islands-in-a-sea precursor fibers (without removing the 

sea component PMMA) were stabilized in a box furnace (Lindberg, 51668-HR Box 

Furnace 1200C, Blue M Electric) in air by hanging over a quartz rod using two clamping 

steel blocks as illustrated in Chapter 4. Based on the precursor fiber cross-sectional area 

(PAN or PAN/CNT), 20 MPa (0.017 N/tex) and 10 MPa (0.009 N/tex) of initial stress 

was applied to core-shell and islands-in-a-sea fibers, respectively. Fibers were heated 

from room temperature to 285 oC in air at a heating rate of 1 oC/min and held at 285 oC 
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for 4 hr followed by heating up to 330 oC at a heating rate of 1 oC/min and held at 330 oC 

for 2 hr. The stabilized fibers were cooled down to room temperature over a period of 

several hours. During stabilization, sea component (PMMA) was completely burned out, 

which is confirmed by TGA (Figure 5.5). The stabilized island PAN and PAN/CNT 

fibers were subsequently carbonized in argon by heating from room temperature at a rate 

of 5 oC/min, and by holding at 1200 oC for 5 minutes. 

 

 

Figure 5.5 TGA curve of PMMA in air. Heating profile is the same as used in stabilizing 
the islands-in-a-sea fiber.  
 

5.2.4 Characterization of Carbonized Bi-Component Fibers 

 For islands fibers, tensile test was conducted on multi-filament specimen due to 

the difficulty in preparing single filament sample, while single filament test was 

conducted on core fibers. In multifilament test, specimens typically containing 4 – 6 

filaments were prepared and tested using RSA III solids analyzer (Rheometric Scientific, 

Co.) at a gauge length of 6 mm and the cross head speed of 0.006 mm/s (0.1%/s). The 
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tensile fractured specimen were sputtered coated with gold and examined by scanning 

electron microscopy (SEM, LEO 1530 operated at 10 kV) to determine the effective 

cross-sectional area. Care was taken to ensure that imaging was done perpendicular to the 

fiber axis. To further ensure accurate cross-sectional area determination, SEM was 

calibrated by standard sample (301BE, EMS, Co., Hatfield, PA). The cross-sectional area 

of the fiber was determined using image analysis software (UTHSCSA Image Tool 

version 3.0, University of Texas Health Science Center, San Antonio, TX). The obtained 

cross-sectional area was used to calculate the tensile properties of each specimen. Wide 

angle X-ray diffraction (WAXD) patterns were obtained on multifilament bundles on 

Rigaku Micromax-002 (X-ray wavelength, λ = 0.15418 nm) using Rigaku R-axis IV++ 

detection system. The diffraction patterns were analyzed using AreaMax V. 1.00 and 

MDI Jade 6.1. Orientation (f002) and crystal size (L002 and L10) of the carbonized graphitic 

structure were determined. Raman spectra of the carbonized fibers were collected in the 

back scattering geometry using Holoprobe Research 785 Raman Microscope made by 

Kaiser Optical System using 785 nm excitation laser with polarizer and analyzer parallel 

to each other (vv mode), and the fibers were placed parallel to the polarizer and analyzer. 

 

5.3 Results and Discussion 

5.3.1 Mechanical Properties of Carbonized Bi-Component Fibers 

Tensile properties of the carbonized core and island fibers are listed in Table 5.1. 

For comparison, the tensile properties of the larger diameter carbon fibers processed from 

gel spun PAN and PAN/CNT based fibers reported previously are also listed in Table 5.1. 

Figure 5.6 shows the typical and best stress-strain curves for the carbonized PAN and 
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PAN/CNT island fibers. Tensile strength of different cross-sectional area PAN and 

PAN/CNT based carbon fibers show a definite increase in strength with reduction in 

cross-sectional area (Figure 5.7a). This data confirms two points: (a) At a given cross-

sectional area, tensile strength of PAN/CNT based carbon fibers containing 1wt% CNT 

in the precursor can be 30 to 60% higher than the corresponding PAN based carbon fiber. 

(b) Tensile strength, as expected, increases with decreasing cross-sectional area. Limited 

data presented in Figure 5.7a also suggests that carbon nanotube reinforcement efficiency 

is higher at lower cross-sectional area. When analysis similar to the analysis of Peijs et 

al251 is conducted on our samples, it results in effective stress on carbon nanotube of 67, 

95, 61, and 28 GPa. These numbers are well within the range of  theoretical19, 20 tensile 

strength of the individual carbon nanotubes. They can also be compared to the effective 

carbon nanotube stress of 88 GPa, achieved in PVA/CNT film251. However the structure 

of the PAN/CNT based carbon fibers is not simply carbon nanotubes added in the 

carbonized PAN. Rather, the presence of carbon nanotubes effects the carbonization of 

PAN. Polyacrylonitrile in the immediate vicinity of carbon nanotubes stabilizes and 

carbonizes differently than the PAN farther away from nanotubes.  
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Figure 5.6 (a) Typical stress-strain curves for carbonized islands PAN and PAN/CNT 
(99/1), and (b) stress-strain curves for the best carbon fibers to date. 
 

     

Figure 5.7 (a) Tensile strength and (b) tensile modulus of carbonized PAN and PAN/CNT 
fibers as a function of cross-sectional area. Data for two large diameter cross-sectional 
area fibers are from Chapter 4. 
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Table 5.1 Mechanical properties of carbonized islands, core, and large diameter PAN and PAN/CNT (99/1) fibers. 

 
Carbonized islands fibers Carbonized core fibers Carbonized gel drawn 

fibers(Chapter 4) 

PAN PAN/CNT 
(99/1) PAN PAN/CNT 

(99/1) PAN PAN/CNT 
(99/1) 

Linear density (tex) 8.3 × 10-4 1.7 × 10-3 1.5 × 10-2 1.4 × 10-2 6.4 × 10-2 4.4 × 10-2 

Cross-sectional area (µm2) 0.46 0.94 8.04 7.55 35.6 24.4 

Tensile strength    
(GPa) 3.2 ± 0.7 

1.78 ± 0.39 
4.5 ± 0.9 
2.5 ± 0.5 

2.4 ± 0.8 
1.33 ± 0.44 

4.3 ± 0.7 
2.39 ± 0.39 

2.0 ± 0.4 
1.1 ± 0.2  

3.2 ± 0.4 
1.8 ± 0.2 (N/tex) 

Tensile modulus   (GPa) 337 ± 38 
187 ± 21 

463 ± 41 
257 ± 23 

283 ± 30 
157 ± 17 

457 ± 51 
254 ± 28 

302 ± 32 
168 ± 18 

450 ± 49 
250 ± 27 (N/tex) 

Strain to failure (%) 0.85 ± 0.13 0.96 ± 0.23 0.83 ± 0.18 0.93 ± 0.07 0.68 ± 0.04 0.72 ± 0.05 
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Tensile modulus of PAN based carbon fibers increases monotonically with 

carbonization temperature while tensile strength reaches a maximum value at about 1500 

°C. Modulus of the small diameter carbonized gel spun PAN is higher than that for the 

commercial fiber carbonized at the same temperature, and that for the corresponding 

PAN/CNT based carbon fiber it is substantially higher (Figure 5.8a). This represents 

contributions coming from gel spinning, carbon nanotubes, as well as from small cross-

sectional area. Tensile strength of the small diameter PAN based carbon fiber is lower 

than the commercial fiber carbonized at the same temperature. On the other hand, 

PAN/CNT based carbon fiber exhibit average tensile strength comparable to the 

commercial carbon fiber carbonized at the same temperature, while the best data obtained 

to date (6.14 GPa) is significantly higher than the commercial value (Figure 5.8b). It is 

noted that commercial fiber has gone through many years of material and process 

optimization. The fact that PAN/CNT based carbon fiber without optimization shows 

substantially higher properties over the commercial fiber produced with many years of 

optimization, suggests the commercialization potential of small diameter PAN/CNT 

based carbon fiber. 

The advantage of PAN based carbon fibers over pitch based carbon fiber or over 

wholly carbon nanotube carbon fibers is in compressive strength. PAN based carbon 

fibers are strong in tension as well as in compression and therefore, these are the only 

carbon fibers used in those structural composites where compressive strength is also a 

requirement. What is the compressive strength of the small diameter gel spun PAN/CNT 

based carbon fiber? Compressive strength is measured on the composites, which requires 

significantly larger quantity of samples, than have been made so far. However, the recoil 



108 
 

test can give an indirect measure of the compressive strength of the elastic fibers252, 253. 

When an elastic fiber fails in tension, it will also fail in compression if its tensile strength 

is higher than its compressive strength. The tensile stress wave propagates through the 

fiber to the clamp and recoils as a compressive stress wave. If there are no energy losses 

in the fiber, then the magnitude of the compressive stress wave is the same as that of the 

tensile stress. About 50% of the small diameter carbon fiber processed from gel spun 

PAN/CNT fibers did not fail in compression when failed in tension. An examples of such 

a fiber is shown in Figure 5.9. The fiber length on fiber template was more than 3 mm (It 

should be noted that the initial length for tensile testing was 6 mm). High magnification 

image also reveal there is no buckling behavior throughout the fiber. These observations 

suggest that the carbon fiber made from the small diameter gel spun PAN/CNT has a 

compressive strength comparable to or higher than its tensile strength. 

 

   

Figure 5.8 (a) Tensile strength and (b) tensile modulus of carbonized PAN and PAN/CNT 
fibers. Black square points represent the data from commercial carbon fibers for 
comparison. 
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Figure 5.9 SEM micrographs of residual carbon fiber (from PAN/CNT (99/1)) on tensile 
test template. 
 

5.3.2 Raman Spectroscopy of Carbonized Bi-Component Fibers 

When carbonized at 1200 oC, gel spun PAN does not develop a graphitic 

structure. However, when carbonized at this temperature and at the same stress, gel spun 

PAN/CNT containing 1 wt% CNTs show significant graphitic peak in the Raman spectra 

(Figure 5.10). It has previously been discussed that this graphitic peak is not due to the 

presence of CNT, but a result of PAN conversion to a graphitic structure in the presence 

of CNT. Therefore, we conclude that the increase in tensile strength of the PAN/CNT 

based carbon fiber over PAN based carbon fiber is a combined effect of reinforcement 

from CNT as well as due to the presence of graphitic layer surrounding CNT. The 

graphitic layer in PAN/CNT fiber at 1200 oC is a result of carbon nanotubes ability to 

template polymer orientation and crystallization. Highly oriented PAN in the vicinity of 

carbon nanotube graphitizes at a relatively low temperature of 1200 oC, where PAN is not 

normally know to develop a graphitic structure.   
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Figure 5.10 Raman spectra of carbonized islands PAN and PAN/CNT (99/1) fibers. 

 

5.3.3 Structural and Morphological Studies of Carbonized Bi-Component Fibers 

CNT containing carbon fiber has marginally higher orientation, smaller d-spacing, 

and larger crystal size along the fiber axis (Table 5.2 and Figure 5.11). Fracture surfaces 

of the PAN/CNT based carbon fiber show fibrils with 20 to 50 nm diameter (Figure 

5.12). These fibrils represent PAN that has been graphitized around carbon nanotube. The 

fracture behavior of the small diameter gel spun PAN is typical of the PAN based carbon 

fibers (Figure 5.13). Additional SEM micrographs of carbonized bi-component fibers are 

also given in Appendix E. 
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Figure 5.11 WAXD 2D patterns of carbonized islands PAN and PAN/CNT (99/1) fibers. 

 

Table 5.2 Structural papameters of carbonized islands fibers. 

 Carbonized islands PAN Carbonized islands PAN/SWNT 
(99/1) 

f002 0.73 0.74 
Za (degree) 37.3 37.2 
d-spacing(002) (nm) 0.357 0.356 
L(002)

b (nm) 1.3 1.3 
L(10)

c (nm) 1.8 2.1 
a Full width at half maximum from azimuthal scans of (002) plane 
b Crystal size from equatorial scan  
c Crystal size from meridional scan 
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Figure 5.12 The schematics of fracture behavior of carbonized PAN/CNT, and SEM and TEM micrographs of carbonized islands 
PAN/CNT fibers. 
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Figure 5.13 The schematics of fracture behavior of carbonized PAN, and SEM and TEM micrographs of carbonized islands PAN 
fibers.
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5.4 Conclusions 

 Small diameter continuous PAN/CNT precursor fibers are processed by bi-

component and gel spinning. The subsequent stabilization and carbonization result in 

carbon fibers whose diameters were about 1 µm. CNT containing precursor fiber 

produced the carbon fiber with the tensile strength of 2.5 N/tex (4.5 GPa) and tensile 

modulus of 257 N/tex (463 GPa). The best tensile strength obtained to date was 3.4 N/tex 

(6.14 GPa) for CNT containing carbon fiber. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS  

 

6.1 Conclusions 

 The reinforcement efficiencies of various types of CNTs was investigated by 

correlating the physical properties with interfacial area between PAN matrix and CNT, 

and CNT length. Due to the larger interfacial area, the effect of SWNT was the most in 

improving the low strain properties such as modulus and shrinkage. The enhancement in 

high strain properties such as tensile strength and work of rupture by MWNT was 

attributed to the longer length of MWNT. The increased polymer orientation and crystal 

size point to the potential of PAN/CNT composite as the precursor for next generation 

carbon fiber. Achieving ultrahigh nanotube orientation (orientation factor above 0.98) is 

critical for obtaining high modulus composite fibers containing MWNTs or large 

diameter SWNT bundles. 

 In order to obtain high orientation of both PAN matrix and CNT, gel spinning was 

conducted on PAN/SWNT solution. Although the orientation factor of PAN and SWNT 

was 0.93 and 0.92, which is not as high to obtain ultimate reinforcement based on the 

simple rule of mixtures, the mechanical properties exhibited that the composite fiber 

behaved like almost ideally reinforced fiber. The structural and morphological analysis 

revealed the well ordered PAN crystal in the vicinity of SWNT, while the farther region 

from SWNT showed relatively less ordered structure. Therefore, one can conclude that 

the incorporation of SWNT not only reinforce the PAN matrix but also modify the PAN 

matrix order such as crystallinity, crystal size, and orientation. 
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 The gel spun fibers were stabilized and carbonized to obtain carbon fiber. DSC 

and FT-IR results showed that the SWNT incorporation affects the PAN reactivity, 

resulting in different chemical structure as compared to the control PAN fiber. The 

HRTEM and Raman spectroscopy evidenced the graphitic structure formation in the 

vicinity of SWNT, which was shown as the highly ordered region in gel spinning results. 

The tensile properties of the carbonized PAN/SWNT are at least 50% higher than those 

of the carbonized control PAN fiber. In addition, the analysis of SWNT reinforcement in 

carbon fiber showed that the modulus from just 1 wt% SWNT was almost 150 GPa. This 

indicates indeed the change of PAN matrix and resulting graphitic structure formation by 

addition of SWNT. 

 Bi-component spinning reduced the effective precursor fiber diameter by 5-10 

times. The resulting carbon fiber exhibited higher tensile strength than that of general gel 

spun fibers, which is strongly dependent on the defect of fiber such as micro-voids, 

foreign particles, and entanglement. The analysis showed that the further reduction in 

fiber diameter will enhance the tensile strength as high as 7 GPa at about 100 nm fiber 

diameter. However, this can be obtained without any processing optimization such as 

spinning condition, co-polymer content, the type of co-monomer, stabilization 

temperature, time, tension during stabilization and carbonization, and carbonization 

temperature. Therefore, further optimization of bi-component gel spun PAN fibers 

combined with the addition of CNT will lead to the next generation carbon fiber. 

 

6.3 Recommendations 
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 1. For fiber spinning, rheological properties of poymer/CNT solution play an 

important role. The preliminary experimental data on the rheological properties of 

PAN/CNT (5 wt%)/DMAc solutions prepared in Chapter 2 are given in Appendix A. The 

viscosity values of composite solution containing 5 wt% SWNT and MWNT at low shear 

rate are higher than that for the control PAN solution. PAN/MWNT and PAN/SWNT 

solution behaves similar to Bingham body at low shear rate region, suggesting that there 

is strong network structure. On the other hand, the viscosity values at high shear rate are 

slightly lower than that of the control PAN solution. This indicates that the shear induces 

alignment of PAN molecules along with CNT alignment. We expect that further 

investigation of the rheological properties of PAN/CNT solution will lead to a better 

understanding of PAN-CNT molecular interaction and aid in developing better 

processing conditions for fiber spinning. 

 2. Gelation and crystallization conditions are important to produce a fiber with 

optimum structure and minimum defects. Although the gel drawn fiber has good 

properties (Chapter 3), the processing conditions have not been optimized. Fiber 

properties as a function of gelation time are shown in Appendix B. These results are 

limited to a particular solid concentration and gelation temperature. Property optimization 

will include effect of polymer concentration, spinning temperature, gelation temperature 

and time, and drawing temperature.  

 3. In Chapter 3, dynamic mechanical analysis showed that the difference between 

storage moduli of PAN and PAN/SWNT fibers exhibit significant temperature 

dependence. The detailed dynamic mechanical property data for the experiments reported 

in Chapter 3, are given in Appendix C. Further analysis of these results is needed. 
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 4. Appendix D shows some of the DSC results for indentifying the stabilization 

conditions of PAN and PAN/CNT composite fibers. The stabilization process is very 

important for determining the resulting carbon fiber properties. Over-stabilization or 

under-stabilization should be strictly avoided. Determination of optimum stabilization 

conditions will be critical for producing the next generation carbon fiber.  

 5. Small diameter fibers obtained in Chapter 5 exhibited large fiber diameter 

distribution (1 - 3 µm). For practical applications, this diameter distribution must be 

narrowed to a much smaller range. For this purpose, spinning conditions need further 

investigation. 
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APPENDIX A 

RHEOLOGICAL PROPERTIES OF PAN/CNT SOLUTIONS 

 

 PAN/CNT/DMAc solutions containing 5 wt% SWNT and MWNT were prepared 

as described in Chapter 2. For viscosity measurement, ARES (advanced rheometric 

expansion system, TA Instruments Co.) was used with parallel plate geometry (25 mm 

diameter). The gap between plates was set to be 1 mm. 

 

 

Figure A.1 Steady shear viscosity of PAN, PAN/SWNT, and PAN/MWNT solutions as a 
function of shear rate. Viscosity was determined at room temperature. 
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APPENDIX B 

MECHANICAL PROPERTIES OF GEL SPUN PAN/SWNT FIBERS 

AS A FUNCTION OF GELATION TIME 

 

 

 

Figure B.1 Tensile strength and modulus of PAN/SWNT (1 wt%) fibers as a function of 
gelation time and draw ratio. 
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APPENDIX C 

DYNAMIC MECHANICAL PROPERTIES OF GEL SPUN PAN AND PAN/SWNT FIBERS - 

TEMPERATURE DEPENDENCE OF INTERPHASE INTERACTION 

 

 

Figure C.1 Storage modulus of gel spun PAN and PAN/SWNT (1 wt%) fibers as a function of frequency at various temperatures. 
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Figure C.2 Storage modulus of gel spun PAN and PAN/SWNT (0.5 wt% and 1 wt%) fibers as a function of temperature (upper 
column). Storage modulus difference between control PAN and composite fibers as a function of temperature, showing frequency 
dependence (lower column). 
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Figure C.3 Relative storage modulus of PAN/SWNT (0.5 wt%) fiber to control PAN fiber (left). The similar plots of PAN/SWNT (1 
wt%) fiber to control PAN fiber (right). Both figures present the strong reinforcement around the glass transition temperature of PAN. 
The magnitude of reinforcement increases with increasing SWNT content. 
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APPENDIX D 

DSC STUDIES OF PAN AND PAN/CNT FIBERS FOR 

STABILIZATION 

 

 

Figure D.1 DSC thermograms of PAN and PAN/MWNT (5 wt%) fibers spun by 
conventional solution spinning. 
 

Table D.1 Analytical results of DSC thermograms in Figure D.1. 
 Tpeak (oC) ΔHpeak (kJ/g) 
PAN 264 2.7 
PAN/MWNT (5 wt%) 262 1.4 
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Figure D.2 Isothermal DSC thermograms of gel spun PAN and PAN/SWNT (1 wt%) 
fibers. 
 

Table D.2 Analytical results of DSC thermograms in Figure D.2. 
 Tpeak (hr) ΔHpeak (kJ/g) 
PAN 3.9 3.4 
PAN/SWNT (1 wt%) 3.9 2.5 
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APPENDIX E 

SEM MICROGRAPHS OF CARBONIZED BI-COMPONENT FIBERS 

 

 

 

Figure E.1 SEM micrographs of carbonized core (a) - (e) PAN and (f) - (j) PAN/CNT (1 wt%) fibers. 
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Figure E.2 SEM micrographs of carbonized islands (a) - (d) PAN and (e) - (i) PAN/CNT (1 wt%) fibers. 
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