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 SUMMARY 

 

The purpose of this dissertation is to introduce a new class of micromachined 

devices called thin-film piezoelectric-on-substrate (TPoS) resonators and to study the 

performance of these devices in RF and sensor applications. TPoS resonators benefit 

from high electromechanical coupling of piezoelectric transduction mechanism and 

superior acoustic properties of a substrate such as single crystal silicon. Therefore, the 

motional impedance of these resonators are significantly smaller compared to typical 

capacitively-transduced counterparts while they exhibit relatively high quality factor and 

power handling, and can be operated in air. The combination of all these features 

suggests TPoS resonators as a viable alternative for current acoustic devices. 

In this thesis, design and fabrication methods to realize dispersed-frequency 

lateral-extensional TPoS resonators are discussed. TPoS devices are fabricated on both 

silicon-on-insulator and thin-film nanocrystalline diamond substrates. Resonators at 

frequencies ranging from a few tens of MHz up to a few GHz are fabricated and 

characterized. The performance of these resonators in simple and low-power oscillators is 

measured and compared.  

A unique coupling technique for implementation of high frequency filters is also 

introduced in which dual resonance modes of a single resonant structure are coupled. The 

devices operating based on this technique are named monolithic TPoS filters. The 

measured results of this work demonstrate the functionality and usage of these filters for 

single-chip implementation of multiple-frequency narrow-band filters with high out-of-

band rejection in a small footprint. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

From early days of the electronic era, system designers have always depended on 

mechanically-vibrating elements (e.g., quartz crystals) for most of their frequency 

synthesis (oscillators) [1] and frequency selection (filters) [2] need. The unprecedented 

enhancement in the performance provided by these low-loss components have given 

them enough leverage to continue and extend their presence in electronic devices for 

many years.  

Although the invention of the integrated circuits (IC) revolutionized the electronic 

industry, the need for off-chip quartz crystal and ceramic resonators has never been 

moderated. Integrated passives even though useful for some applications, are 

unacceptably lossy at higher frequencies. Therefore, demand for wireless communication 

devices operating at high frequencies promoted the application of discrete resonators 

further more. Meanwhile, piezoelectric vibrating components have evolved into new 

classes of devices such as surface acoustic wave (SAW) and bulk acoustic wave (BAW) 

resonators and filters with high operational frequencies. Novel micro-fabrication 

techniques developed for IC industry created opportunities for batch fabrication of these 

devices in smaller size and lower cost. However, they still consume far more area than 

the rest of the electronic circuit and can not be easily fabricated on the same substrate. 

During the past several decades, the IC fabrication technology has matured to an 

extent that manufacturing a hand-held wireless device capable of communicating voice, 

image, and digital information over multiple frequency bands is practically in reach. 
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However, variety of resonators and filters required in these types of devices occupy a 

large percentage of the circuit board area and the manufacturing process is not cost-

effective. Therefore, the competition has already started for launching a technology, 

which enables implementation of all the required frequency-selective components on a 

single substrate that eventually will be integrated with the electronic circuit.  

In this dissertation, we introduce a new class of devices that shows a great 

potential for replacing the existing bulky, individually-packaged resonators and filters. 

The general term defining this class of devices is thin-film piezoelectric-on-substrate 

(TPoS). The piezoelectric and the substrate materials may vary depending on the targeted 

specifications. The substrate is chosen from materials with low-loss, high energy density, 

and high acoustic velocity such as single crystal silicon [3] and nanocrystalline diamond 

(NCD) [4]. Consequently, TPoS resonators exhibit low motional impedance, relatively 

high quality factors (Q), and excellent linearity. Acoustically-coupled resonator filters 

presented in this work can be used as low-loss narrow-bandwidth (BW) filters in the 

radio-frequency (RF) band [5]. Oscillators made with these devices are applicable as 

local reference oscillators in transceiver circuits and also as very precise mass sensors to 

measure absorbed mass changes in the order of pico-grams in air [6]. 

This dissertation is prepared in 8 chapters.  Chapter 1 is an introduction to the 

work accomplished and presented in this document. Chapter 2 is a review of the progress 

and the evolution of acoustic resonant devices. Different types of micromachined 

resonators are briefly overviewed and compared. In chapter 3 the thin-film piezoelectric-

on-substrate devices are introduced as our approach to enable high-performance 

micromechanical resonators. The advantages of using a piezoelectric-on-substrate 
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structure are discussed and simple lumped element equivalent electrical models are 

developed for these devices. In chapter 4 the details of processes developed for 

fabrication of TPoS resonators on silicon-on-insulator (SOI) are presented. The focus of 

chapter 5 is on the application of variety of fabricated TPoS resonators in oscillator 

circuits. Simple sustaining circuits are employed in the oscillation loop and the output 

characteristics are measured and discussed. The focus of chapter 6 is on the concept of 

monolithic TPoS filters. The operation principle and the design guidelines for both lateral 

and thickness mode filters are studied. The measured frequency plots from fabricated 

monolithic TPoS filters are presented and discussed. Techniques to design for the filter 

BW in both lateral and thickness modes are also introduced and tested in practice.  

Chapter 7 is on TPoS resonators and filters fabricated on nanocrystalline diamond 

substrate. Diamond is used to extend the operation frequency of TPoS devices. 

Preliminary results are presented and compared with similar devices fabricated on silicon. 

Finally in chapter 8 the accomplishments in this dissertation are briefly summarized and 

some future research directions are pointed out.  
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CHAPTER 2 

BACKGROUND 

 

Despite all the technological advancements in micro-fabrication and IC 

electronics, off-chip frequency-selective piezoelectric components such as quartz crystals 

and SAW devices are widely used in wireless transceiver architectures [7,8]. These 

components gain their popularity partly from their low-impedance characteristics, which 

is a result of high electromechanical coupling of the piezoelectric transduction 

mechanism. This low impedance translates into low insertion loss (IL) in filters and low 

power consumption in oscillators. The quality factor value in quartz resonators is also 

exceptionally high which promotes their application. High resonator Q improves the 

selectivity in filters [9] and phase-noise in oscillators [10,11]. These very unique qualities 

are the reason for which finding a replacement for these devices has been unsuccessful 

for decades, even though they suffer from their large size and fail to be integrated with 

the electronics.  

The concept of micro-electro-mechanical (MEM) resonators was introduced for 

the first time in the 60’s [12] and upon advancement in the material, design, and 

processing of polysilicon micro-resonators in the 80’s [13], MEM resonators were 

proposed as candidates to substitute conventional piezoelectric vibrating components. 

The reduced size, IC compatible fabrication process, and potentially reduced 

manufacturing cost of a MEM resonator have attracted a lot of attention during the past 

few decades.  These devices inherently have a high quality factor and their performance 



 5

benefits justify additional fabrication processes, which are required to enable a resonant 

structure on an electronic chip.  

MEM resonators have grown immensely during the past decade to a state in 

which they can competitively meet the requirements imposed by the market. Many 

studies have been conducted to understand their characteristics and limitations [14,15], 

and some of the earlier efforts such as film bulk acoustic resonators (FBAR) have already 

matured enough to find their way into commercial products [16].  

Micromachined resonators can be classified into two general categories: 

capacitive and piezoelectric. The characteristics of each device type will be further 

discussed in the following sections.  

2.1 Capacitive Micro-Resonators 

In this class of MEM resonators, capacitive transduction mechanism is employed 

to excite the resonance mode of a micromechanical structure and also to detect the 

vibration amplitude. Narrow gaps are designed between the highly conductive resonator 

body and the conductive electrodes. A polarization voltage is applied between the 

electrodes and the resonator to create the required electric field for excitation and 

detection. These devices, if fabricated from low acoustic loss material, such as 

polysilicon and single crystal silicon, usually exhibit very high quality factors in the 

range of a few hundred thousands in vacuum [17,18]. These values are equivalent to what 

is achievable from quartz crystals. The motional impedance of capacitive devices is 

inversely proportional to the capacitive gap size to the fourth power [19]. Therefore, in 

order to realize reasonably small impedances at high frequencies very small gap sizes are 

required, which are challenging to fabricate. Some other techniques have been proposed 
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to increase the actuation area rather than reducing the gap size in order to increase the 

electromechanical coupling [20,21]. High frequency, high Q resonators are attained with 

relatively low motional impedances using these methods [22]. However, in spite of all the 

advancement, the main limitation with capacitive resonators will remain to be the large 

motional impedance which tends to escalate as the frequency increases. 

Another alternative capacitive transduction technique proposed recently is to fill 

the gap with a high permittivity dielectric material [23,24]. This method is very attractive 

since it simplifies the fabrication process and eliminates the need for very small 

capacitive air gaps. Moreover, the electric field is stronger in the dielectric compared to 

the air or vacuum and therefore very large electromechanical coupling values are 

expected. However, in practice the motional impedance is not  improved as expected and 

also the quality factor of the fabricated devices using this technique are lower compared 

to the devices operating with air gaps [25]. Moreover, the stray capacitance between the 

electrode and the resonant body will be significantly large as a result of the high 

permittivity of the material filing the gap. Consequently, unless the parasitic capacitance 

is de-embedded, limitations will be imposed on the termination impedances that can be 

interfaced with the device.           

2.2 Piezoelectric Micro-Resonators 

Micromachined piezoelectric resonators are descendants of discrete piezoelectric 

vibrating components which are fabricated using techniques adopted from micro-

fabrication technology. The two most important classes of these devices are bulk acoustic 

wave (BAW) [26] and surface acoustic wave (SAW) [27] devices.  The 

electromechanical coupling of piezoelectric transduction is much larger than capacitive 
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transduction.  Therefore, the motional impedance of piezoelectric resonators is inherently 

lower compared to their capacitive counterparts, especially at higher frequencies where 

the capacitive transduction loses efficiency.  

The resonant structure in thin-film piezoelectric resonators (e.g., FBAR) is not 

made of a single crystal material, and it usually consists of a stack of multiple layers 

(including metal electrodes). In addition, thin-film piezoelectric materials such as lead 

zirconium titanate (PZT) are not low-loss [28] and are usually anchored on top of a 

substrate that acts like an energy-sink increasing the acoustic energy dissipation in the 

system. Therefore, quality factors reported from these devices are not as high as the 

values obtained from capacitive devices. Despite this deficiency, piezoelectric resonators 

have outperformed capacitive resonators at high frequencies particularly in applications 

such as filters where very high Q values are not required. Since the focus of this thesis is 

on one type of thin-film piezoelectric resonators, in the following sections the operation 

principle of these devices will be reviewed in more details. 

2.2.1 Piezoelectricity: Principles and Early Application 

 Piezoelectric effect is a bidirectional electro-mechanical transduction mechanism 

discovered for the first time by Curie brothers in 1880. Almost all non-centrosymmetric 

crystal materials (unit-cell has no centre of symmetry) exhibit piezoelectricity. Electrical 

charge is developed in a piezoelectric crystal under mechanical stress. The amount of 

charge is proportional to the applied stress and this phenomenon is called direct 

piezoelectric effect. Also, an electrical field induced in a piezoelectric material causes a 

mechanical strain in the structure which is called the reverse piezoelectric effect. 
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 The first practical application of piezoelectric devices appeared a few decades 

after the discovery of the effect and dates back to 1910 when piezoelectric transducers 

were utilized in sonar submarine detectors. From that point on piezoelectric sensors and 

actuators are studied vigorously and have found numerous applications such as sensitive 

gravimetric chemical and biological sensors [29], atomic force microscopy [30], 

frequency generating components [31], etc. 

2.2.2 Piezoelectricity: Formulation  

 As described earlier, piezoelectricity is a coupled electrical and mechanical 

phenomena. The electrical behavior of materials can simply be described by: 

D Eε=  (2.1)

where D is the electrical displacement, ε is the permittivity of the material, and E is the 

electrical field strength. 

Similarly, Hook’s law is used to express the mechanical behavior of materials: 

S sT=  (2.2)

where S is the strain, s is the compliance, and T is the stress.  

 In piezoelectric crystals a new constant is defined which combines the two 

aforementioned equations and construct the coupled-field electro-mechanical equation 

set: 

T

t E

D E dT
S d E s T

ε= +

= +
 (2.3) 
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where d represents the piezoelectric constant, εT
 is the permittivity at a constant stress, 

and sE is the compliance at a constant electric field. In the most general form stress, 

strain, and electric field are Cartesian vectors and the coefficients are tensors.  

2.2.3 Piezoelectric Resonators 

 Piezoelectric resonators conventionally consist of a piezoelectric substrate 

suspended from the edge and covered with thin film metal electrodes, which are patterned 

on the two surfaces of the substrate (Fig. 2.1).  

 

                                       
Figure 2.1: A simple stack of a piezoelectric substrate and metallic electrodes  

 

 The two conductive metallic electrodes are connected to the electronic signal lines 

and when the frequency of the applied signal is equal to a natural resonance frequency of 

the structure, that resonance mode is excited. The targeted mode-shape can be designed 

by alternating the electrode patterns and the location of the suspension elements.  

 One of the most commonly employed resonance modes in piezoelectric devices is 

the thickness extensional mode in which the strain field is in the same direction as the 

applied electrical field. For example in Fig. 2.1, applying an alternative voltage to the two 

3 

1 

2 
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electrodes will establish a corresponding alternative electrical field in the direction of the 

axis number 3. Assuming that the utilized piezoelectric substrate has a non-zero d33 

piezoelectric constant following the equation set of (2.3): 

3 33 3S d E=  (2.4)

a parallel alternating strain field will develop in the structure (Fig. 2.2). 

 
Figure 2.2: The schematic representation of the electric field and the corresponding strain field in a 
thickness mode piezoelectric resonator  
 

 Since d33 is not the only non-zero piezoelectric coefficient in the material used as 

the structural body of the resonator, strain field in other directions is also likely to be 

developed. For example in Fig. 2.1, d31 is responsible for generating a strain field 

orthogonal to the electrical field and in parallel with the axis number 1: 

1 31 3S d E=  (2.5)

 Now depending on how the substrate is clamped, strain field (S1) can excite 

different resonance modes. For example, if the thin piezoelectric plate is clamped on the 

nodal points of the fundamental length-extensional resonance mode (the center of a 

block) the lateral mode can be excited while the electric field is developed across the 

thickness of the film (Fig. 2.3)     

 

E S 
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Figure 2.3: The schematic viewgraph of a lateral-extensional mode piezoelectric resonator    
  

 The displacement of each particle in the resonator is governed by a partial 

differential equation called wave equation [32]. Closed form solution for this equation is 

usually approximated after considering some simplifying assumptions such as small 

vibration amplitude to eliminate nonlinearities from the equations.  

2.3 Resonator Mechanical Modeling 

Every mechanical resonator can be approximated by an equivalent lumped mass-

spring (-damper) system (Fig.2.4).  

 

 

 

Figure 2.4: A mass-spring-damper representation of a mechanical resonator 

 The equivalent mass is equal to the total kinetic energy in the resonator divided by 

one-half the velocity (in a specified direction). Regardless of any particular resonance 

mode of the structure, if the material is isotropic (prosperities are the same in all 

directions), the natural resonance frequency will be in this format: 

E3 

S1 

Keq. 

Meq

γ 

f(t) 



 12

.

.

2
1

eq

eq

M
KE

B
Af

πρ
==  (2.6)

where A is a unitless value (may be as simple as a constant or some complex function). B 

is a function having the units of length (meter). E is the Young’s modulus, and ρ is 

density of the material. The damping coefficient (γ) is a measure of energy loss in the 

system and can be defined based on the quality factor of the resonator: 

Q
Mf eq  2π

γ =  (2.7)

For a bar with the length of L and the cross section area of A, resonating in its 

extensional mode along the length of the bar (Fig. 2.3) the resonance frequency is 

calculated from: 

ρ
E

L
nf

2
=  (2.8)

where n is the mode number, and the equivalent mass is simply in the form of: 

2.
ALM eq

ρ
=  (2.9)

Therefore, the equivalent stiffness is: 

L
AEnKeq 2

22

.
π

=  (2.10)

2.4 Resonator Equivalent Electrical Model 

The differential equation governing the motion in the equivalent mechanical 

model of Fig. 2.4 is written as: 
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This equation is analogous to the equation derived for an RLC electrical circuit (Fig. 2.5): 

)(1 tvidt
C

Ri
t
iL =++
∂
∂

∫  (2.12)

 

 

 

Fig. 2.5: An RLC equivalent circuit for a mechanical resonator 

Therefore, any mechanical resonator can be modeled with a simple RLC circuit 

where: 

 1 , ,
eq

eq K
CMLR === γ  (2.13)

However, in electromechanical resonators the effect of the transduction 

mechanism should also be included in the model. Moreover, a feedthrough capacitance 

should be added in parallel with the RLC path to account for a portion of the electrical 

signal that is not converted to acoustic energy and passes through a physical capacitance 

from input directly to the output or to the ground.   

2.4.1 One-Port Piezoelectric Resonator Electrical Model 

The piezoelectric resonator of Fig 2.2 is identified as a one-port device since there 

is a single pair of input/output connections to the device. In this configuration the static 

capacitance (C0) presented between the two metal electrodes is in parallel with the 
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motional branch in the electrical model (Fig. 2.6). The piezoelectric transduction is 

represented by a transformer with the turn ratio of 1: η.    

 

  

 

Figure 2.6: A simple electrical model for a piezoelectric resonator  

(η) is the electromechanical coupling coefficient and is defined as the ratio of the 

current passing through the resonator to the maximum velocity or alternatively, the ratio 

of total charge stored on an electrode to maximum displacement: 

  
maxmax v
i

u
Qtotal ==η  (2.14)

 It should be noted that there always exists some parasitic capacitance between the 

two connections to the device that is included in the parallel capacitance of C0. However, 

this portion of the capacitance can not be predicted practically.  

 The resonator model of Fig. 2.6 can be further simplified to the lumped-element 

representation of Fig. 2.7. This is the same as the model known as Butterworth Van Dyke 

(BVD) in literature [33]. 

 

 

 

Figure 2.7: The BVD electrical representation for a one-port piezoelectric resonator 
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2.4.2 Two-Port Piezoelectric Resonator Electrical Model 

 In a two-port device there are two pairs of connection to the device (Fig. 2.8). The 

signal applied to the input port is converted to acoustic vibration in the structure and the 

output port converts the vibration back to an electrical signal.    

 

   

 

 

 

 

Figure 2.8: The schematic viewgraph of a two-port piezoelectric resonator 

 Consequently, the equivalent electrical model of the resonator should contain the 

transduction components for both input and output ports (Fig. 2.9) 

 

 

 

 

 

 

 

Figure 2.9: The electrical equivalent model of a two-port piezoelectric resonator 

 

 In its most general form, the input and output coupling coefficients (η1,η2) as well 

as the static shunt capacitors can be of different values. Here, Cf represents the parasitic 

feedthrough capacitance that always exist between the input and output electrodes. This 
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feedthrough capacitance is usually small (fF range) and can only be practically measured 

after the fabrication of the device. Even though small, feedthrough capacitance plays a 

role in the frequency response of the device especially at higher frequencies.  

 Once again the equivalent circuit of Fig. 2.9 can be further simplified to the model 

shown in Fig. 2.10. 

 

 

 

  

 

 

 

Figure 2.10: The simplified electrical model of a two-port piezoelectric resonator  

 It should be noted that, the above simplification is only valid if the transduction 

mechanism does not invert the phase of the signal or in the other word the winding 

direction in transformers of Fig. 2.9 are both identical.  

2.5 MEM Coupled-Resonator Filters 

Mechanically-coupled quartz crystal filters are amongst the earliest mechanical 

filters demonstrated. These filters ruled the IF to UHF filter market for decades and 

continue to have a large market-share [34,35]. The next generation of commercially 

available mechanical filters was based on application of surface acoustic waves (SAW). 

SAW filters are currently employed in communication devices. These relatively large 

devices are usually fabricated on a piezoelectric substrate (e.g. lithium niobate) and still 
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suffer from similar problems as quartz crystal filters;--they cannot be integrated with 

electronics [27]. 

FBAR filters are the latest generation of filters from the piezoelectric device 

family, and they are commercially available for application in wireless transceiver 

architectures [16]. These devices can potentially be integrated with CMOS which gives 

them an edge over other technologies at very high frequencies, where very small 

interconnects are essential [36].  The important shortcoming of these filters is that the 

center frequency is defined by the thickness of a thin-film piezoelectric layer, which is 

uniformly deposited across a single substrate. As a result, these devices fail to offer a 

compact and cost effective solution for emerging wireless applications where data 

communication may be performed on several channels at different frequencies.  

Micromachined capacitive coupled-resonator filters, when proposed a decade ago, 

attracted a lot of attention since they promised a compact solution for implementation of 

arrays of filters with dispersed center frequencies on a silicon substrate [37]. They could 

also meet the integration requirements where most available technologies fall short.  

Although, many filters based on capacitive resonators have been demonstrated, none of 

those satisfy the frequency, insertion loss, isolation, and dynamic range requirements 

simultaneously [38], [39], [40]. In particular, the insertion loss of these filters is 

excessively large and tends to grow even larger with the increase in the center frequency.  

Recently, filters based on contour-mode AlN resonators have been demonstrated 

at UHF frequencies [41]. These electrically-coupled (ladder) filters show reduced 

insertion loss values compared to the earlier reported micromachined filters for the same 
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frequency range. However, their ability to maintain the same level of insertion loss and 

isolation at higher frequencies is arguable.  

 The challenge is that at higher frequencies in order for the lateral piezoelectric 

device to offer low enough motional impedance and reasonably high absolute frequency 

accuracy, high-order modes of large suspended structures should be utilized [42]. These 

large and thin structures anchored with small support beams are prone to fracture when 

fabricated from a single piezoelectric layer. Moreover, filters comprising of a few number 

of electrically-coupled resonators in a ladder or lattice configuration can not meet the 

isolation requirement at high frequencies. Therefore, a low insertion-loss acoustically-

coupled micromachined filter operating in RF band is an immediate need that will be 

investigated in this work.  

A resonator technology that combines the high electromechanical coupling of 

piezoelectric resonators with high energy density and low-loss in substrate materials such 

as single crystal silicon can be a solution for the problem. The lithographically-defined 

operational frequency of a lateral bulk acoustic resonator design (LBAR) is also a 

valuable feature enabling single-chip implementation of multiple-frequency resonant 

devices for applications in next generation communication equipment. 
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CHAPTER 3 

THIN FILM PIEZOELECTRIC-ON-SUBSTRATE TECHNOLOGY 

 

 In this chapter thin film piezoelectric-on-substrate (TPoS) technology is 

introduced as a platform for fabrication of resonators with operating frequencies spanning 

from few tens of MHz to a few GHz. These devices can be utilized in analog signal 

processor and gravimetric sensor applications.  

 3.1 TPoS Resonator Structure 

 A TPoS resonator is comprised of a thin (<1µm) piezoelectric layer sandwiched 

between two metallic electrodes stacked on top of a relatively thick (>2µm) layer of low-

acoustic-loss material (such as single crystal silicon or nanocrystalline diamond). The 

resonant structure is released from the rest of the substrate and it is suspended by anchors 

placed around the resonator edge (Fig. 3.1). 

 

Figure 3.1: The schematic view graph of a one-port TPoS resonant structure 

 The typical resonator shown in Fig. 3.1 is an example of a one-port TPoS block 

resonator, which in principal can be represented by the same one-port electrical model 

introduced in Fig. 2.7.   
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 Metal electrodes in a TPoS resonator can also be split into electrically isolated 

pairs to form two-port resonators. The resonator geometry and the metal electrode 

patterns identify the main excited resonance mode as well as the resonance frequency.   

3.1.1 Why Piezoelectric on Substrate?  

 In conventional piezoelectric resonators such as quartz crystal, ceramic, and saw 

devices the device is fabricated on a piezoelectric substrate which is either made of a 

single crystal material (quartz) or poled polycrystalline material (ceramic). The 

micromachining techniques developed for IC industry provide the means for scaling 

down the size and the cost, and increasing the operation frequency of modern 

piezoelectric devices. In these devices the starting substrate is usually a silicon wafer 

which guarantees compatibility with processing tools developed for silicon 

microelectronics. Since silicon is not a piezoelectric material, the piezoelectric film will 

be deposited on the silicon substrate and comprises the active acoustic media.  

 There are many different techniques developed for depositing a piezoelectric 

material on a substrate. The deposited piezoelectric layer in most of these techniques 

consists of many small crystalline grains that their axis of symmetry is aligned to a single 

direction. In this way the polycrystalline layer demonstrates a non-zero average 

piezoelectric effect. Plasma sputtering (both RF and DC) is among the most useful and 

frequently used methods for depositing piezoelectric layers such as ZnO and AlN [43,44]. 

 The problem with depositing a polycrystalline piezoelectric film is two-fold. One 

is the thickness of the film which can not be usually more that a few microns because the 

deposition rate is usually small for sputtered films (e.g. AlN and ZnO) and also 

anisotropic etching of a thick piezoelectric film is not trivial. Second is the internal stress 
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in the polycrystalline film. The stress developed in the film after deposition will be 

specifically problematic for the relatively thin piezoelectric devices that have to be 

released from the substrate. The stress will cause the suspended devices to curve up or 

down and occasionally may cause the larger devices to fracture. A thin piezoelectric film 

will also limit the power handling and the linearity of the device fabricated from the film. 

We will study linearity in resonators in more detail in the next section.   

3.1.2 Power Handling in Piezoelectric Resonators 

The smaller size of the micromechanical resonators, despite all its advantages has 

an inevitable drawback when it comes to the maximum allowable stored energy or in 

other word power handling. Power handling is a measure of the amount of power that can 

be applied to or delivered by the resonator. The power handling is mostly limited by the 

nonlinearity mechanisms in the resonator. Since nonlinear vibration of the resonator will 

introduce noise and distortion in the output signal of the system the applied power to the 

resonator should be kept less than the nonlinear limits at all time.  In order to study the 

power handling limits in a TPoS resonator we consider the equation of motion for a 

forced oscillatory system: 

)( tFkxxxm =++ &&& γ  (3.1)

where m is the lumped mass, γ is the damping coefficient, and k is the spring coefficient. 

In a linear system the spring coefficient is a constant where as in a nonlinear system the 

coefficient can be written as: 

...)1( 2
210 +++= xkxkkk  (3.2)



 22

where k1, k2, … are nonlinear spring constants. A nonlinear spring coefficient will cause 

higher harmonics of the natural resonance frequency to appear in the output: 

...2coscos)( 210 +++= tAtAAtx nn ωω  (3.3)

 Consequently, the resonance frequency (frequency at which the largest vibration 

amplitude occurs) is dependent on the vibration amplitude [45]: 
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 From the above expression it is identified that a non-zero first-order nonlinear 

spring coefficient (k1) will shift down the resonance frequency and the second-order 

nonlinear coefficient (k2) will shift the frequency either up or down depending on its sign. 

It is usually assumed that the limit for largest allowable vibration amplitude is the 

bifurcation point (the critical point after which the amplitude versus frequency plot will 

demonstrate hysteresis) (Fig. 3.2). Depending on which one of the two nonlinear spring 

coefficients are dominant, the maximum vibration amplitude can be calculated from [45]: 
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Figure 3.2: A frequency response plot of a resonator operating at bifurcation  

Freq. 

Vibration amplitude 
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 By incorporating the maximum allowable vibration amplitude, the maximum 

stored energy in the resonator can be calculated from: 

2
0max 2

1
cxkE =  (3.6)

 It is clear from the above analysis that the maximum stored energy or in other 

word, the power handling is directly proportional to the stiffness of the resonance mode 

which in turn is proportional to the thickness of the device for a lateral-mode resonator 

(Eqn. 2.10). It is also inversely proportional to the square root of quality factor which 

implies that resonators with higher Q are more susceptible to nonlinearity. Needless to 

say, smaller nonlinear spring coefficients increase the power handling. Nonlinear spring 

coefficients are dictated by material properties and vary for each material of choice. 

 To compare the nonlinearity limitations for different material a normalized 

parameter called energy density is defined as the maximum allowable energy divided by 

the volume of the resonant structure. Silicon and Diamond exhibit orders of magnitude 

larger energy density than piezoelectric material such as quartz and AlN [46,47,48].  

3.1.3 Quality Factor in Piezoelectric Resonators 

The quality factor of a resonator, defined as the ratio of energy stored to the 

energy lost per cycle, is limited by various dissipation mechanisms and can be expressed 

as: 
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where (1/Qmaterial), (1/Qanchor), and (1/Qair) are material damping, anchor loss and air 

damping respectively. The loss due to air damping (1/Qair) can be prevented by operating 
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the resonator in vacuum. The piezoelectric resonators are in general less susceptible to air 

damping compared to capacitively-transduced resonators since the required narrow 

capacitive gap is not present in piezoelectric resonators [49]. The narrow capacitive gap 

is the source of a strong damping mechanism called squeeze film damping that can 

considerably reduce the quality factor of capacitive resonators especially at low 

frequencies.  The other two sources of energy loss (1/Qanchor and 1/Qmaterial) are common 

between all types of resonators.   

 Anchor loss is attributed to the radiation of acoustic energy from the resonant 

body through the anchors, which keep the resonator in place. These anchors depending 

on the design of the resonator can be seen in many different forms but they contribute 

nevertheless to the final quality factor of the resonator in the same way. The acoustic 

waves are not completely confined in the resonator and rather radiate through the anchors 

and leak into the surroundings. The acoustic energy carried by these waves is considered 

lost since this energy is not conserved in the resonator. In order to reduce the anchor loss, 

some design guidelines are devised [50] but these rules usually lose applicability as the 

dimension of the resonator is reduced for high frequency devices.  

 The two sources of energy loss discussed so far were imposed by the environment 

outside of the resonator. The third loss mechanism, however, is not of the same nature. 

Material damping (Qmaterial) includes all the energy loss mechanisms that are intrinsic to 

the resonant structure.  Material loss relates to the irreversible transformation of acoustic 

energy to thermal energy. There are two well-known mechanisms for this energy 

transformation. One is called thermoelastic damping which was studied by Zener for the 

first time [51]. Thermoelastic loss occurs because there is a slight temperature difference 



 25

between the regions of the resonator under compression and tension and therefore heat 

flows between the hot and cold regions. This source of material damping is only 

dominant in the close vicinity of frequencies that corresponds to the thermal relaxation 

time constants of the resonator [52].  At other operational frequencies a different thermal-

loss mechanism proposed by Akheiser is effective [53]. In the Akheiser effect a sudden 

applied strain disturbs the equilibrium distribution of the phonons and thermal phonons 

are excited in the relaxation process.   

The Akheiser loss mechanism limits the absolute maximum quality factor of a 

resonator made of a certain material. The contribution of this loss mechanism can be 

quantified by a coefficient called acoustic attenuation (α). The larger this coefficient for a 

material is the lower the absolute maximum achievable quality factor of the resonator 

made of that material will be. The acoustic attenuation in diamond and silicon is lower 

than the attenuation in common piezoelectric materials such as PZT, AlN and ZnO used 

in thin-film resonators [54,55,56]. Therefore, in a TPoS resonator where a large portion 

of the resonant structure is made of single crystal silicon or diamond, the acoustic energy 

is mostly contained in a low loss material that can potentially improve the quality factor 

of the resonator compared to a device made of thin-film piezoelectric material only. 

Some experimental data supporting this claim will be presented in the next chapters.          

3.2 Lateral versus Thickness Resonance Modes 

 Electric field in TPoS resonators is orthogonal to the substrate plane. If the 

acoustic wave propagation direction is parallel with the electric field the resonance mode 

is called a thickness mode and the resonance frequency is defined primarily by the 

thickness of the structure. If the elastic-wave motion is transverse to the electric field, by 
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definition a lateral mode is excited and the resonance frequency is mostly dependent on 

the in-plane dimensions of the resonant structure. 

 The focus of this work is on lateral mode resonators. The advantage of utilizing 

these modes is that since the lateral dimension of the resonator is defined 

lithographically, the operation frequency of the devices fabricated on a single substrate 

can span a wide range (from few MHz to a few GHz). Where as, thickness mode 

resonators fabricated on a substrate, are bound to have almost the same center frequency 

since the device thickness is the same all over the substrate. On the other hand, the 

piezoelectric materials used to make TPoS resonators are sputtered polycrystalline 

materials which are mostly transversely isotropic. In other word, the z axis (orthogonal to 

the plane) has an infinite order of symmetry and it has the largest piezoelectric coefficient 

(d33). Therefore, compared to lateral mode resonators where (d31) is utilized to excite the 

resonance mode the electromechanical coupling is larger for thickness mode resonators 

[57]. Consequently, the motional impedance of a thickness-mode resonator is lower 

considering the same-size actuation (electrode) area. 

3.3 Lumped Element Electrical Model of Lateral-Extensional TPoS Resonators 

To calculate the values of the components in the equivalent electrical model of Fig. 2.7 

for the TPoS resonator of Fig. 3.1, the resonance frequency and mode-shape of the 

resonator are required. Mathematical expressions defining these parameters are often not 

readily available for complex geometries such as the composite structure of a TPoS 

resonator. Assuming a one-dimensional model for the TPoS block resonator shown in 

Fig. 3.1 resonating in its length-extensional mode (strain field in parallel with L) the 

mode-shape and the resonance frequency can be approximated by: 
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where n is the mode number, Eeff
  is the effective unidirectional stiffness modulus and ρeff  

is the effective mass density.  By using the equations above the component values in the 

lumped element electrical model are calculated to be:  
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where Af  is the cross section area of the piezoelectric film and  A is the total cross section 

area of the piezoelectric film plus the substrate, normal to the direction of the acoustic 

propagation (x). Using the above parameters the equivalent motional inductance, 

capacitance, and resistance of the electrical model can be calculated from the equation set 

(2.13). 

 Finally, we introduce a new parameter called effective coupling coefficient which 

is defined the same way as effective coupling coefficient in conventional bulk acoustic 

wave piezoelectric resonators [32]: 
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where C0 is the static capacitance and Cm is the motional capacitance of the resonator at 

resonance (Fig. 3.3). The product of Q and the effective coupling coefficient is a very 
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useful figure of merit that quantifies the ratio of the current passing through the motional 

(mechanical) branch of the electrical model to the current passing through the static 

capacitance at resonance (Fig. 3.3). We will see later on that this ratio can significantly 

affect the IL and the passband ripple of the filters comprised of these devices.     
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Figure 3.3: The representation of the current divided between the two motional and feedthrough branches 
in the resonator model 
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CHAPTER 4 

FABRICATION PROCESS 

 In this chapter the developed process flow for fabrication of TPoS resonators on 

SOI is discussed. Each fabrication step is explained in detail, practical issues are pointed 

out and a solution for problems are proposed and applied. 

4.1 Process Flow on SOI 
 

The process flow for TPoS resonators fabricated on SOI is presented in Fig. 4.1. 

This is a five-mask low-temperature process starting with a high resistivity SOI wafer 

comprising a 2-10µm thick silicon device layer. The resistivity of the silicon layer is 

chosen to be as high as possible in order to minimize the parasitic capacitance associated 

with metallic pads used for landing a probe tip or connecting a wire-bond. 

 
 
 

 

 
 
 

 

 
 

 
Figure 4.1: The schematic process flow for fabrication of TPoS devices on SOI 
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In case the resistivity of the silicon layer is not high enough a very thin insulator 

layer such as silicon dioxide or silicon nitride can be deposited on the substrate before 

starting the process. In the next few sections each processing step will be discussed. 

4.1.1 Bottom Metal Layer Deposition 

The first processing step is the bottom metal layer deposition and patterning (Fig. 

4.1a). Lift-off process is used to pattern the metal layer and Shipley 1813 positive 

photoresist is used to create the bottom electrode openings on the wafer. The choice of 

material for this layer is delicate and depends on many parameters. Since the bottom 

electrode is the seed layer for the piezoelectric film, careful attention should be devoted 

to the crystallographic structure of the metal and the deposition condition. The two 

piezoelectric materials used in this thesis are ZnO and AlN. Different metallic seed layers 

have been studied in the literature for both AlN and ZnO films with mixed reported 

results which makes a conclusive decision on the advantage of one over the other hard to 

reach. The materials of interest in our work are gold (Au), platinum (Pt), Aluminum (Al), 

and Molybdenum (Mo). We will discuss the advantages and disadvantages of each metal 

in the following paragraphs.    

Gold is a very attractive choice of metal for our application and especially for 

devices based on ZnO. The conductivity of gold is one of the best available which is an 

important parameter since the bottom layer is the ground plane in TPoS devices discussed 

in this dissertation. Gold is a chemically stable material which imposes minimum 

constraint for selecting chemical etchants used in the following process steps. However, 

gold is a malleable metal with large acoustic attenuation coefficient. Also, gold atoms 

start to diffuse into other material such as silicon and form eutectic alloys at relatively 
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low temperatures (300°C) [58]. To achieve a low-stress piezoelectric film, deposition 

temperatures higher than 300°C are usually required for ZnO [59]. Therefore, gold, even 

though chosen as the metal of choice in most of the devices fabricated in this work, may 

not be considered as the ultimate selection for TPoS devices. 

Platinum (Pt) on the other hand is a very stable metal that can withstand high 

annealing temperatures up to 800°C. However, the conductivity of platinum is not as 

good as gold and the ZnO film sputtered on Pt was not observed to have the same high 

quality (grains are not highly c-plane oriented). Also, patterning platinum is rather 

problematic. Platinum etchant (aqua regia) is a very strong acid and very hard to work 

with [60]. Lift-off process is not a very good option for patterning platinum either, since 

the sample temperature is elevated during the evaporation process which causes the 

photoresist layer on the wafer to severely harden. Consequently, the burnt photoresist 

layer is very hard to remove and residues of the process are commonly left behind.  

Aluminum (Al) is an attractive choice since it has a relatively low acoustic 

attenuation coefficient and is very easy to pattern. The only problem with Al is the 

reactivity with wide range of acids and bases. For example most solution used for 

patterning ZnO and AlN attack Al as well. 

Molybdenum (Mo) is one of the best choices if the low acoustic loss and high 

acoustic velocity is of high concern [61]. It is also a suitable seed layer for deposition of 

AlN [62] and therefore, is used for all the AlN devices fabricated in this dissertation. The 

only disadvantage of using molybdenum is that it can get oxidized at relatively low 

temperature [63] and careful consideration should be devoted to the design of process 
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steps involving oxygen (e.g. oxygen plasma clean) after exposing the bottom 

molybdenum layer.   

4.1.2 ZnO Sputtering 

Next step is piezoelectric film sputtering (Fig. 4.1b). The piezoelectric thin-film 

used for most of the devices in this work is ZnO. Although AlN devices are also 

fabricated in this work, the deposition of the AlN film was carried out by an outside 

supplier and no characterization on the deposition condition was performed. The ease of 

access to the deposition tool in Georgia Tech cleanroom was the main reason for using 

ZnO as primary piezoelectric film deposited. 

 In this work ZnO is sputtered in a PVD 75 RF magnetron sputtering tool. The 

sample is mounted on a heated plate which is hanging from the top of the chamber. A 

99.99% pure ZnO target is used and sputtered material travels from the target located 

underneath the sample to hit the sample. Argon and Oxygen are used with approximately 

equal flow rate in the chamber and the chamber is pumped down to <5µTorr before 

opening the gas valves. Sputtering parameters which are kept constant throughout our 

experiments are listed in Table 4.1. 

TABLE 4.1: LIST OF PARAMETERS THAT ARE KEPT CONSTANT FOR ALL EXPERIMENTS REGARDING 
CHARACTERIZATION OF ZNO SPUTTERING  

 
Sputtering 
parameter Pressure Ar/O2 flow RF power Target to sample 

distance 
Value 6mTorr 52/58 sccm 120Watts 7-10cm 

 

The bottom seed layer and the deposition temperature are varied in order to find 

the suitable bottom metal electrode that will eventually be utilized in the resonator 

structure. The first experiments are performed to compare the quality of ZnO sputtered on 
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gold, aluminum, molybdenum and platinum. The thickness of the metal film is 

approximately 1000Å and is deposited on a silicon wafer using e-beam evaporation. X-

ray differentiation (XRD) measurement is performed on the samples after depositing ZnO 

to study the crystallographic structure of the thin film.   

The Bragg diffraction intensity peak (2θ scan) is monitored to determine the 

orientation of crystalline structure. The full width half maximum (FWHM) of the 2θ peak 

is a measure of grain size for a polycrystalline film. The difference in angular position of 

the XRD peak measured for the thin film and the powder sample is a measure of lattice 

stress. The x-ray rocking curve (Omega scan) is used to identify the uniformity of 

orientation of crystallites within a particular angular distribution. The FWHM angle 

measured from rocking curve is the measure of how closely the grains of a certain 

orientation are aligned to the substrate normal [64]. 

ZnO and AlN belong to the 6mm (wurtzite crystal structure) symmetry class and 

they both tend to grow with a c-axis normal orientation. Therefore, (002) Bragg 

diffraction peak is dominant in the 2theta scan. The (002) Bragg angle for ZnO is ~34.4° 

(Cu Kα1 wavelength) [65].  

2theta XRD scans measured from samples with sputtered ZnO on different 

bottom seed layer are overlapped in Fig. 4.2. The deposition temperature is kept constant 

at 250°C during the sputtering process and the parameters shown in Table 4.1 are 

employed. Results indicate that normal c-axis is the predominant orientation of the grains 

for the samples and the ZnO film on gold has the highest uniformity.  
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Figure 4.2: XRD 2θ curves measured from ZnO samples sputtered on different metal layers   
 

According to the results presented in Fig. 4.2 it was concluded that gold is the 

preferred bottom electrode layer. However, we also found out that ZnO grows on 

amorphous silicon dioxide with c-axis grain orientation uniformly aligned to the substrate 

normal [66]. Therefore, for applications where a specific bottom electrode layer is 

preferred while that layer is not necessarily a suitable seed layer, depositing a very thin 

oxide layer (<100nm) on top of the electrode could be a practical solution. This technique 

was tried on Pt and the XRD measurement was repeated (Fig. 4.3). The sample 

temperature was increased to 350°C as it was also noticed that increasing the temperature 

will improve the uniformity of the (002) ZnO grains sputtered on oxide. The same trend 

was not observed while Pt was used as the seed layer with no buffer oxide layer. 
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Figure 4.3: XRD 2θ curve measured from ZnO sample sputtered on oxide-covered Pt. 

The peak intensity is significantly improved compared to the peak measured for 

the ZnO film deposited directly on Pt layer. The rocking curve measured from the ZnO 

film sputtered on oxide-covered Pt bottom layer is presented in Fig. 4.4. The FWHM 

angle is approximately 4 degrees which indicates a relatively small angular distribution of 

c-axis grains around the normal to the surface.  
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Figure 4.4: XRD rocking curve measured from ZnO samples sputtered on oxide-covered Pt 

FWHM~4° 
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The best quality ZnO film obtained in our experiments was sputtered on a Ti-

coated Gold seed layer. A very thin layer of Ti (75nm) was evaporated on gold in order to 

take advantage of the similarity of crystal structures in Ti and ZnO. Measured rocking 

curves from ZnO sputtered on gold and Ti-coated gold are shown in Fig. 4.5.   
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Figure 4.5: XRD rocking curves measured from ZnO samples sputtered on gold and Ti-covered gold layers 
 

As seen, the FWHM is smaller for the sample with Ti coating and the peak 

intensity is higher. Ti can not be used as the bottom electrode since it has a very poor 

conductivity. 

4.1.3 Top Electrode Layer Deposition 

The top metal electrode is also e-beam evaporated on the wafer and patterned 

using lift-off process (Fig. 4.1b). Aluminum is used for all the devices fabricated in this 

dissertation as the top electrode. Since ZnO chemically reacts with many acidic and basic 

solutions extra care should be taken for the lift-off procedure. Acetone can be safely used 

in the ultrasonic agitator bath to perform the lift-off whereas, common photoresist 

FWHM~2.6° 

FWHM~3.2° 
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removers such as Shipley 1112A attack ZnO layer and are not recommended for the 

process. It should be noted that after the deposition of ZnO in all the lithography steps, 

utilized solutions including photoresist developers and removers should be chosen 

carefully.     

4.1.4 Bottom Electrode Access Etching  

In this step openings are chemically etched in the piezoelectric layer to access the 

bottom electrode pads designed for connection to the high frequency probes or wire-

bonds (Fig. 4.1c). The wet etching solution is chosen based on the piezoelectric material 

and the bottom electrode metal. In case of ZnO sputtered on gold any of numerous ZnO 

acidic etchants would work fine. Diluted acetic acid solution (1:150) was usually used in 

our experiments. For devices in which AlN was used as the piezoelectric thin-film and 

Mo was used as the bottom electrode heated 1112A remover could be used to remove the 

AlN layer. In this case a thin oxide hard mask should be deposited and patterned before 

wet etching the etch pits. The oxide mask can be removed in BOE later on since BOE 

does not attack either AlN or Mo.  

4.1.5 Device Structure Etching 

Next step is to etch the stack of piezoelectric on silicon to define the resonator 

structure (Fig. 4.1c). A single photoresist mask will be used for etching the stack and the 

lithography is performed only once. After developing the photoresist (1813) a diluted 

acetic acid is used to chemically etch the ZnO film. This step should be accurately timed 

since excessive undercut may occur otherwise. In case of AlN film, dry etching in 

inductively-coupled plasma (ICP) etcher is preferred. Anisotropic etching of AlN is 

possible in low pressure (5mTorr) chlorine plasma. However, photoresist mask is not 
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useful for etching AlN in ICP since the mask will be eroded very quickly and the layers 

underneath will be exposed. Instead, an oxide hard mask should be employed for dry 

etching of AlN. It should be noted that the residues of the oxide hard mask can not be 

removed in BOE if the top metal electrode is made of Aluminum. BOE etches away Al 

and therefore Mo is a better alternative for these devices. If Al is preferred because of 

ease of use and application, then the top electrode deposition can be postponed to after 

AlN dry etching step (the processing steps should be reordered).      

 After etching the piezoelectric film the silicon device layer will be etched in SF6 

plasma using Bosch recipe [67].  An SOI compatible recipe is used on a STS ASE tool to 

prevent the notching effect on the oxide interface [68]. The buried oxide layer will be 

kept intact to be used as an etch stop for the beck side silicon etching step performed 

next. 

4.1.6 Back-Side Etching 

The last lithography step in the process flow is performed on the back side of the 

SOI wafer to open release holes underneath the resonator from the backside (Fig. 4.1d). 

During the backside lithography and the consecutive etching the top side of the wafer can 

be protected by a layer of photoresist covering the surfaces of the wafer. The photoresist 

used for this step is SPR 220 spun at 2000 rpm which results in a mask thich enough 

(>8µm) for etching through the thick handle wafer. The process wafer is flipped and 

mounted on another oxide-covered handle wafer. STS ASE is used to etch the backside 

silicon and the buried oxide layer will be the etch stop for the etching process. After 

etching through the silicon layer the final step is to remove the oxide in order to release 

the device. The oxide can be removed in an inductively coupled plasma (ICP) etcher 
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either from the top or the bottom. By etching the oxide layer from the top the oxide layer 

under the resonant structure will be part of the device body and can be effective in 

reducing the temperature coefficient of frequency (TCF) as it will be seen later on. In this 

case the top side etching mask should not be removed after etching the silicon layer. This 

is only possible if both top and bottom patterning steps are done back to back with no 

processing step performed in between. After the two lithography steps are done the stack 

etching is performed and backside etching is done right after.  Then the wafer is flipped 

over again and the oxide is etched in an ICP tool from the top while the top mask is still 

intact.  

 At the end the photoresist residues are etched in an oxygen plasma cleaning 

chamber and the devices are ready for measurement. Devices fabricated on a layer of 

nano-crystalline diamond deposited on silicon are also fabricated in this dissertation and 

the details of the fabrication process will be discussed in Chapter 7.  

   4.2 Effective Coupling Factor 

In order to gauge the quality of the ZnO film sputtered in Georgia Tech. 

fabrication facilities, frequency response measured from a typical device is used to 

extract the effective coupling factor in a TPoS resonator. It should be noted that this value 

is correlated to the material coupling factor [69] and not equal to that. 

 The component values in the equivalent circuit of Fig. 2.10 are extracted by curve 

fitting the measured response with the simulated response (Fig. 4.6): 

Rm = 190Ω,    Lm= 786.6µH,    Cm=3.6fF,      C0=0.25pF,     Cf = 10fF 
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Figure 4.6: Overlapped simulated (red-line) and measured (blue-line) frequency responses from a 94.5MHz 
ZnO-on-Silicon resonator. 

 

The effective coupling factor can be calculated by using these values in equation 

(3.10):  
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This is a moderate coupling factor considering that the maximum coupling factor 

for in-plane ZnO resonators (no substrate) can be as high as ~6% [70]. 
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CHAPTER 5 

THIN FILM PIEZOELECTRIC-ON-SUBSTRATE OSCILLATORS 

 
In this chapter the application of lateral bulk acoustic thin-film piezoelectric-on-

substrate (TPoS) resonators in high frequency reference oscillators is studied. High-

frequency low-motional-impedance TPoS resonators are designed and fabricated in two 

classes of high-order and coupled-array lateral-extensional. Devices of each class are 

used to assemble reference oscillator circuits and the performance of the oscillators are 

measured and discussed. Since the motional impedance of these devices is small the 

transimpedance amplifier (TIA) in the oscillator loop is reduced to a single active 

component (one transistor) and 3 resistors, which is very power-efficient. The lowest 

reported power consumption is ~350µW for an oscillator operating at ~106MHz.  A 

passive temperature compensation method is also utilized by including the buried oxide 

layer of the SOI substrate in the structural resonant body of the device, and a very small 

(-2ppm/ºC) temperature coefficient of frequency (TCF) is obtained for an 82MHz 

oscillator. 

5.1 Introduction 

Micromachined high-Q frequency-selective components with small form-factor 

are in high demand to replace quartz crystal resonators in temperature-stable, low-phase 

noise oscillator applications. Significant progress has been made in developing oscillators 

that utilize silicon-micromachined capacitive resonators with Q values comparable to that 

of a quartz resonator [71,72]. However, high frequency capacitive resonators require 

relatively high dc polarization voltages (5-20V) for operation, which complicates the 
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design of the oscillator circuit in today’s low-voltage CMOS processes. Moreover, the 

motional impedance of capacitive resonators is much larger than that of a quartz 

resonator, and their power handling is lower. These resonators are usually operated at low 

pressures (mTorr regime), which makes their packaging process costly and challenging.  

Also, the temperature compensation techniques demonstrated so far lose efficiency at 

high frequencies. 

The thin-film piezoelectric-on-substrate (TPoS) resonator technology has the 

potential to address some of the issues mentioned above. The piezoelectric transduction 

provides for very small motional impedance that eliminates the need for multiple gain 

stages to sustain oscillation. Moreover, the use of low-loss substrate (e.g. single crystal 

silicon) provides for relatively high quality factor values in air. Therefore, vacuum 

packaging is not necessary which makes the technology more cost-competitive. 

Application of the substrate also improves the power handling of the resonator which 

directly affects the far-from-carrier phase-noise characteristic of the oscillator built based 

on these devices. Another important advantage of TPoS resonators over capacitive 

devices is that no bias voltage is necessary for their operation. This is a very attractive 

feature considering the low operating voltage of the modern integrated circuits.  

In this chapter, TPoS-based oscillators are presented at IF to UHF frequencies. An 

arraying technique for TPoS resonators is introduced and evaluated in comparison with 

the high-order resonators. The temperature coefficient of frequency (TCF) of TPoS 

resonators is also shown to be reduced by incorporating the buried oxide (BOX) layer of 

the SOI substrate in the resonator structure.  The large positive TCF of the oxide layer 

[73] compensates for the negative TCF of the rest of the material in the resonant structure 
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and enables near-zero-TCF devices, provided the thickness of the layers is adequately 

controlled.     

5.2 Resonator Design 

A TPoS resonator is comprised of a thin-film piezoelectric layer sandwiched 

between two metallic electrodes stacked on top of a relatively thick substrate layer. The 

substrate layer which usually comprises a large portion of the resonant structure is chosen 

from low acoustic loss material such as single crystal silicon or nano-crystalline diamond 

(NCD). The metal electrodes are patterned to match with the strain field in a targeted 

resonance mode-shape. With a careful electrode design, the coupling factor is optimized, 

and the motional impedance of the resonator is minimized.  For the resonators used in 

this chapter the top electrode is split into two electrically isolated electrodes. The bottom 

electrode covers the entire resonant structure where as it can optionally be patterned to 

match the shape of the top electrode.  

5.2.1 High-Order Design  

In order to excite high-order lateral-extensional mode-shapes of a rectangular 

plate supported in the middle from both sides, the optimum top electrode pattern 

resembles an interdigitated transducer (Fig. 5.1a) [42]. This design matches the periodic 

strain field pattern of the structure excited in its high-order lateral-extensional resonance 

mode. The third-order mode-shape of a rectangular plate simulated in FEMLAB is shown 

in Fig. 5.2. The color code in this picture demonstrates the strain field. Bluish colors 

present areas under compressive strain and reddish colors are representative of the tensile 

strain. At resonance opposite charges are accumulated on the two electrodes because the 

strain polarity is changing from one finger to the other. Therefore, signal polarity is 
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reversed at resonance. It is worth mentioning that the same electrode pattern can also 

excite the fundamental resonance mode of the same structure where strain field is 

uniform across the whole structure. However, in the following sections we will show that 

the sustained oscillation resonance mode can be selected between the two modes without 

the need for any mode-suppression circuitry. 

  

 

 
Figure 5.1: Schematic viewgraphs of (a) a third-order and (b) a two-resonator coupled array TPoS 
resonator. 

 

5.2.2 Arrayed Design  

Although the motional impedance of the high-order TPoS resonators can be 

improved by utilizing high-order resonators, increasing the resonance order gives rise to 

some issues. The wide freestanding resonant structures supported by small beams at 

nodal points (Fig. 5.1a) are not constrained enough to suppress excitation of unwanted 

resonance modes. To further decrease the impedance of the resonator either length or the 

resonance mode-order of the resonator is increased. This, in turn, raises the number of 

spurious modes that have low motional impedance and can be detected in the frequency 

response.   

(a) (b)
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In order to solve this problem, a coupled array of individual resonators is 

suggested (Fig. 5.1b). Each of these resonators is supported with a separate set of support 

beams, which improves the rigidity of the resonant structure and consequently suppresses 

the vibration amplitude of the spurious modes. The motional impedance of the resulted 

coupled-array resonator should ideally be inversely proportional to the number of 

resonators existed in the array.    

 

Figure 5.2: The third-order lateral extensional resonance mode-shape of a block resonator simulated in 
FEMLAB. 

 

5.3 Frequency Response Measurement 

To measure frequency response of the fabricated resonators a Karl-Suss high-

frequency probe station, Cascade GSG probes, and an Agilent network analyzer (E8364) 

are used. A Lakeshore high-frequency vacuum probe station with heated/cooled chuck is 

alternatively used for carrying out the measurements in vacuum. 

5.3.1 High-Order versus Arrayed Design 

Top-view optical viewgraphs of a third-order ZnO-on-silicon resonator and a 

four-resonator arrayed counterpart are shown in Fig. 5.3. These devices are fabricated on 

5µm thick SOI substrate and the BOX layer is removed from the backside. The center-to-



 46

center top electrode finger pitch for these devices is 40µm. the third-order device is 

160µm long where as the arrayed resonator is only 60µm long.  

A typical measured frequency response plot of a third-order ZnO-on-silicon 

resonator is shown in Fig. 5.4. The wide-span (100MHz) frequency response of a 12-

resonator coupled-array is demonstrated in Fig. 5.5 along with an SEM of the fabricated 

device. 

 

 

Figure 5.3: Optical viewgraphs of (a) a third-order and (b) four-resonator coupled array TPoS resonators. 

 

 

 Figure 5.4: The frequency response plot of a third-order TPoS resonator. 

~20dB

f ~ 94.5MHz 
Rm~ 390Ω 
Qunloaded ~ 3000

(a) (b)
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Figure 5.5: The wide-span (100MHz) frequency response and the SEM of a 12-resonator coupled array. 
 

Unlike the third-order device there is no strong spurious resonance peaks detected 

in the 100MHz vicinity of the primary resonance peak. Measured frequency responses of 

arrayed devices with 4, 6, and 12 resonators located on the same die of a processed wafer 

are shown in Fig. 5.6.  
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Figure 5.6: Frequency response plots of 4, 6, and 12-resonator coupled arrays. 

The metal electrode finger width for the 4-resonator array is different than the 

other two resonators and that is the reason for observing relatively large frequency 

discrepancy. The motional impedances are ~550Ω for the 4-resonator, 210Ω for the 6-

resonator and 110Ω for the 12-resonator array. The predicted inverse proportionality of 

6-resonator 
array

12-resonator 
array

4-resonator 
array

~50dB 

f ~ 96.5 MHz 
Rm~ 120Ω 
Qunloaded ~ 3000
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the motional impedance with the number of resonators in the array holds with good 

precision for the two larger devices. These results confirm that the motional impedance of 

the coupled array device can be systematically decreased while avoiding spurious modes.   

5.3.2 Temperature-Stable Resonators  

A 2µm thick SOI substrate with 2µm of BOX layer is used as the starting 

substrate for the fabrication of temperature-stable resonators. For these resonators the 

BOX layer is etched in the ICP from the top as explained in chapter 4 and therefore, a 

~2µm oxide layer is included in the stack of the resonant structure. A typical frequency 

response plot measured from a 12-resonator arrayed device fabricated on this substrate is 

shown in Fig. 5.7.  

  Even though the dimension of the device is the same as the device measured in 

Fig. 5.5, the resonance frequency is decreased from ~95MHz to less than 82MHz. This is 

a direct result of including the oxide layer in the resonant structure. The elastic modulus 

of oxide (~75MPa) [74] is lower than the elastic modulus of silicon (~150MPa) and 

therefore the resonance frequency is lower.  

 

Figure 5.7: The frequency response of a temperature-compensated 12-resonator coupled array. 

f ~ 81.5 MHz 
Rm~ 400Ω 
Qunloaded ~ 1700 
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5.3.3 AlN-on-Silicon Resonators 

AlN-on-silicon resonators are fabricated on a 10µm SOI wafer, where the 

thickness of the AlN layer is 1µm. The frequency responses measured from the same 

third-order resonator with 40µm finger pitch size is shown in Fig. 5.8. For this device the 

resonance frequency is increased compared to the ZnO-on-silicon counterpart. This is 

mostly due to the fact that the acoustic velocity in the AlN film (11400m/s) is greater than 

the acoustic velocity in ZnO (6400m/s) [75]. 

Figure 5.8: The frequency response and the SEM picture of a third-order AlN-on-silicon resonator. 
 

As explained before the same top electrode pattern can excite the fundamental 

extensional mode of the rectangular plate and the response plot is shown in Fig. 5.9a. The 

resonance frequency (~35.5) is approximately one third of the third-order mode as 

expected and the motional impedance is not smaller even thought the quality factor is 

larger. The unloaded quality factor of the resonance peak shown above is measured to be 

~17000 in vacuum (Fig. 5.9b). The motional impedance of the device is also reduced in 

vacuum which is inversely proportional with the increase in Q. 

 

f ~ 106.3 MHz 
Rm~ 250Ω 
Qunloaded ~ 4000
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Figure 5.9: The frequency response of the third-order resonator at fundamental mode; a) in air b) in 
vacuum. 
 

The motional impedance of high frequency high-order TPoS resonators can be 

further reduced by increasing the order number. The frequency response shown in Fig. 

5.10 is measured from a 9th order 208MHz device with a 20µm finger pitch size. The 

impedance is only ~70Ω and the unloaded Q is ~6000 in air. This will result in an 

excellent close-to-carrier phase noise for the oscillator assembled using this device while 

no vacuum packaging is required.    

 

 

Figure 5.10: The SEM and the frequency response of a 9th-order AlN-on-silicon resonator with a 20µm 
finger pitch. 

 

f ~ 35.7 MHz 
Rm~ 350Ω 
Qunloaded ~ 10,000

f ~ 35.7 MHz 
Rm~ 180Ω 
Qunloaded ~ 17,000 

f ~ 208 MHz 
Rm~ 70Ω 
Qunloaded ~ 6,000

(a) (b)
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Higher frequency resonators are enabled by further reducing the top electrode 

finger pitch size. The resonance frequency plot shown in Fig. 5.11 is measured from a 9th 

order AlN-on-silicon resonator. The center frequency is at ~500MHz with measured 

unloaded Q of ~5800 in air.  The motional impedance of the resonator is ~150Ω which 

makes the device very attractive for oscillator application. 

   

Figure 5.11: The SEM and the frequency response of high-order 500MHz AlN-on-silicon resonator. 

 

5.4 Linearity Measurement 

Figure 5.12a shows the recorded frequency response of the third-order resonator 

(ZnO-on-silicon) with excitation source power ranging from -5dBm to 15dBm. The 1dB 

compression point is measured at 15dBm. For a 12-resonator device however, the power 

handling is significantly improved, showing only 0.2 dB compression at 15dBm of input 

power, as illustrated in Fig. 5.12b. This improvement can be related to the increased 

actuation area on the coupled array resonator (larger resonant structure).  

 

fm ~ 500 MHz 
QL (50Ω term.) ~ 3500 
QUL ~ 5800 in air  
Rm ~ 150Ω 
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Figure 5.12: The nonlinearity measurement for a) third-order TPoS resonator and b) 12-resonator coupled 
array TPoS resonator. 

 

Next set of experiments demonstrate the enhanced power handling in a TPoS 

resonator compared to the same device after etching the silicon layer in the stack. Figure 

5.13a shows overlapped frequency response plots of an AlN-on-silicon device excited in 

its fundamental mode while the network analyzer output power is varied from -15dBm to 

10dBm. As seen, a very minute change is observed in the resonance peak. After 

performing this measurement the silicon device layer is etched away from the backside in 

an ICP tool. Frequency responses of the device are measured again for several applied 

input power and overlapped in Fig. 5.13b. Measured Q is reduced to ~740 and the 

resonance peak is deformed starting from –10dBm of applied power.  
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Figure 5.13: The nonlinearity measurement for an AlN-on-silicon resonator a) before, and b) after etching 
the structural silicon substrate. 
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As expected, the resonance frequency after etching the silicon layer is slightly 

increased, since the acoustic velocity in AlN is higher than acoustic velocity in silicon. 

The fact that after etching the silicon layer the resonator exhibit highly nonlinear and the 

measured quality factor of the resonator is reduced can clearly confirm the advantages of 

including the silicon substrate in a lateral-extensional resonator. 

5.5 Oscillator Design 

The resonators presented in this chapter are utilized to make oscillators. The 

oscillation sustaining circuit is very simple. The low motional impedance of the resonator 

reduces the number of required gain stages to sustain oscillation. The excellent power 

handling of these devices improves the far-from-carrier phase noise of the oscillator and 

eliminates the need for an automatic level control (ALC) circuit. The ALC circuit is 

customary to operate capacitive resonators in the linear region [72] and by eliminating it 

total power consumption of the oscillator is further improved. In addition, the coupled 

array resonators are free of spurious modes, eliminating the possibility of locking to an 

undesired mode. 

 In order to sustain oscillation, the amplifier should create 180 degrees of phase-

shift. This is because the output signal of the coupled-array and the high-order resonator 

is 180 degrees out-of-phase relative to the input signal. Therefore as shown in Fig. 5.14 

the transimpedance amplifier (TIA) can be reduced to a single NPN transistor in 

common-emitter configuration. An emitter degeneration resistor is used to improve the 

linearly while maintaining sufficient voltage headroom for oscillation. The feedback 

resistor eliminates the need for separate biasing network and improves the overall phase-

noise performance of the oscillator. 
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Figure 5.14: The schematic circuit diagram and output waveform of the single-transistor oscillator. 
 

The first device utilized in the oscillation loop is the temperature-compensated 

12-resonator coupled array. The phase noise of the oscillator is measured using an 

Agilent E5500 phase noise measurement system and is shown in Fig. 5.15 (after 

buffering the output signal). A close-to-carrier phase noise of -72dBc/Hz at 1kHz offset 

and a phase noise floor of -137dBc/Hz are measured for the oscillator. 

 

Figure 5.15: The measured phase-noise of the coupled-array temperature-stable oscillator. 

The TCF of the oscillator is also measured in an environmental chamber and the 

result is plotted in Fig. 5.16. 
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Figure 5.16: The measured TCF plot of the temperature-stable TPoS oscillator 

 

The next oscillator is based on the third-order AlN-on-silicon resonator of Fig. 

5.8. To study the effect of sustaining circuit this resonator was tested with two different 

circuits. One circuit is the simple single-transistor design of Fig. 5.14 and the other is an 

amplifier designed and fabricated in 0.18µm CMOS (Fig. 5.17) [76]. The sustaining 

amplifier consists of a transimpedance amplifier with tunable gain and two subsequent 

voltage amplifiers. The gain tuning is achieved by changing the resistance of an NMOS 

resistor. The reason behind incorporating two gain stages is to satisfy Barkhausen’s phase 

criterion for oscillation. In addition to that, adding the second voltage gain stage helps 

relaxing gain constrains on the first gain stage; thereby, reducing the power consumption. 

Due to large power-handling of these resonators (> 5dBm), automatic level control 

(ALC) is not necessary. 

 The measured phase noise densities of the two oscillators at the same frequency 

are plotted in Fig. 5.17. More than 10dBc/Hz improvement in the phase noise of the 

CMOS oscillator at all frequencies emphasizes the effect of the sustaining circuit and the 

applied signal power on the oscillator performance. 

-2ppm/ºC
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Figure 5.17: The schematic diagram of the designed CMOS TIA and the phase noise plots measured from 
the oscillators based on the single transistor and the CMOS amplifiers.  
 

Finally the phase noise of an oscillator built based on the 208MHz AlN-on-silicon 

resonator of Fig. 5.13 is shown in Fig. 5.18. For this oscillator the above CMOS 

sustaining circuitry is utilized. The measured phase-noise at 1 kHz offset is −95dBc/Hz 

and phase-noise floor is −152dBc/Hz. Improvement in the phase-noise floor can be 

explained by the low motional impedance of the resonator, and improvement in close-to-

carrier phase-noise can be explained by the fact that the unloaded Q of the resonator was 

large and the amplifier is designed to minimize the phase-noise at high frequencies. 

 

Figure 5.18: The measured phase-noise of the 208MHz oscillator.  

 

Single transistor 

CMOS Chip 
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5.6 Dual mode Oscillator  

In this section we explore a new characteristic of high-order TPoS resonators that 

can be attractive for many applications such as multi-standard wireless transceivers, 

accurate sensors, and highly stabilized clock generators. Dual-mode excitation of quartz 

crystal resonators is a common practice in order to accurately compensate for 

environmental interferences [77]. The dual-harmonic quartz oscillators are amongst the 

most accurate temperature-compensated oscillators available in the market [77]. The 

principle of operation is based on using two different resonance modes of a single quartz 

plate (for example first and third harmonics [78]); since the temperature coefficient of 

frequency (TCF) for each mode is different, the oscillator itself can be used as a very 

accurate temperature sensor. However, in order to excite the crystal in two frequencies, 

mode-suppression circuits are required in each oscillation loop to attenuate the signal 

which is amplified in the other loop. It will be shown that a high-order TPoS resonator 

can be easily excited in two harmonic modes using a very simple scheme with minimal 

power consumption. This study may open new opportunities for TPoS oscillators to 

achieve higher level of accuracy while used as sensors and clock generators. 

5.6.1 Operation Principle 

The silicon layer in a TPoS resonator forms the main body of the resonant 

structure and the metal electrodes are patterned to match the strain field in a targeted 

resonance mode-shape. With a careful electrode design, the coupling factor is optimized, 

and the motional impedance of the resonator is minimized. For the resonator used in this 

section, the top electrode is split into two electrically isolated electrodes that resemble a 

three-finger interdigitated transducer (Fig. 5.1a).  
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This pattern is designed to match the periodic strain field pattern of a block 

structure excited in its third width-extensional resonance mode (Fig. 5.19a). When the 

resonator is excited in this mode-shape, opposite charges are accumulated on the two 

electrodes since the strain polarity is changing from one finger to the other. Therefore, 

signal phase is reversed at resonance. As mentioned before the same electrode pattern can 

also excite the fundamental resonance mode where strain field is uniform across the 

entire device (Fig. 5.19b). However, in this mode-shape the input and output signals are 

in-phase at resonance. This is in contrast with the operation of the other thickness-mode 

resonators such as quartz crystal which exhibit the same zero signal phase-shift at all 

modes harmonic modes.    

 

Figure 5.19: Width-extensional resonance mode-shapes of a rectangular silicon plate simulated in 
FEMLAB; a) third-order b) first-order. 
 
 

The above-mentioned characteristic of a high-order TPoS resonator can be 

exploited to realize a dual-frequency oscillator with a single resonator. Fig. 5.20 shows a 

block diagram of the designed architecture. Each amplification stage shown in the figure 

introduces 180º of phase shift. Therefore, when only one amplification stage is included 

in the oscillator loop, the sustained oscillation frequency corresponds to the third-order 

resonance mode in which 180º phase-shift will be introduced by the resonator. In 

a b
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contrast, if both of the amplification stages are included in the loop, the low frequency 

first-order mode will be sustained in which input and output signals are in-phase at 

resonance. In this scheme no precautions need to be taken for mode-suppression as a 

result of the additional phase-shift in the third harmonic. 

 
 

Figure 5.20: The block diagram of the architecture used to implement the dual-frequency oscillator. 
 

5.6.2 Implementation and Characterization 

The same resonator shown in Fig. 5.8 is used to implement the dual mode 

oscillator. The first- and the third-mode frequency responses of the resonator in air are 

presented in Fig. 5.21.   

  
 
Figure 5.21: The first and the third-order frequency response of the resonator shown in the SEM of Fig. 5.8.  

180°180° 

f1 = 35.5MHz 
Rm=420Ω 
Unloaded Qair ~ 7200 

f3 = 105.7MHz 
Rm=280Ω 
Unloaded Qair ~ 4000 
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The measurements are repeated in vacuum and results are shown in Fig. 5.22. As 

expected, the measured quality factors are improved and the motional impedances are 

reduced, inversely proportional with the Q. However, the improvement ratio for the lower 

frequency mode (10100/7200) is more than what is observed for the higher frequency 

mode (4500/4000), which indicates that the dominant loss mechanism at higher 

frequencies is not air damping. 

  
Figure 5.22: The first- and the third-order frequency response of the resonator (Fig. 5.8) in vacuum.  
 
 

The frequency shift of the resonance peak with temperature for the two modes are 

measured and plotted as percentage normalized frequency change in Fig. 5.23. As shown, 

the TCF is slightly different for the two modes. This temperature characteristic is useful 

in a technique developed for accurate measurement of the resonator temperature [78]. 
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Figure 5.23: The percentage normalized frequency change with temperature for the two resonance modes. 
The TCF values are -33ppm/ºC and -28ppm/ºC.  

f1 = 35.5MHz 
Rm=300Ω 
Unloaded Qvacuum ~ 10100 

f3 = 105.7MHz 
Rm=240Ω  
Unloaded Qvacuum ~ 4500 
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5.6.3 Oscillator Circuit 

The schematic viewgraph of the designed two-stage amplifier is shown in Fig. 

5.24. The first stage is a transimpedance amplifier (TIA) comprised of a single NPN 

transistor (fmax ~ 70GHz) in common-emitter configuration. An emitter degeneration 

resistor is used to improve the linearity while maintaining sufficient voltage headroom for 

improved far-from-carrier phase-noise. The feedback resistor (10kΩ) eliminates the need 

for a separate biasing network and improves the overall phase-noise performance of the 

oscillator. The second stage is also a simple voltage amplifier comprised of a single NPN 

transistor in common emitter configuration. Each stage creates ~180º of phase shift as 

required and the values of the resistors are carefully chosen to minimize the power 

consumption. The required voltage gain for the second stage is not large since the 

motional impedance of the low frequency resonance mode is not much larger than the 

high frequency resonance mode counterpart.  

 

Figure 5.24: The schematic circuit of the dual-frequency oscillator 

 

The measured waveform and phase-noise of the oscillator at the fundamental 

resonance frequency is shown in Fig. 5.24. The measurements are carried out with an 
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Agilent EE5500 phase-noise analyzer. An external 50Ω buffer is used to interface the 

oscillator with the measurement unit. 

The oscillation at 35.5MHz in air starts with 0.86V supply voltage and 330µA of 

current for the two stages combined. Therefore, the power consumption of the circuit at 

oscillation (35.5MHz) is <300µW. The phase-noise measurement is repeated in vacuum 

and the result is overlapped on the plot in Fig. 5.25. The oscillation starts at lower supply 

voltage (0.82V) in vacuum and the power consumption is reduced to 200µW. Affected by 

the improved quality factor of the resonator in vacuum, the close-to-carrier phase-noise is 

also improved by ~4dBc/Hz at 1kHz offset from the carrier unlike the far-from-carrier 

phase-noise which is limited by the external buffer. 

 

 
Figure 5.25: The measured waveform and phase noise for the 35MHz oscillation frequency in air and in 
vacuum. 
 

When the circuit is switched to the single stage operation mode, the oscillation at 

105.7MHz starts with 0.98V supply voltage and 350µA current (Pmin~340µW). The 

increased power consumption might seem to be counterintuitive after leaving the second 

amplification stage out of the oscillation loop. This is explained by the higher required 

-143dBc/Hz 

-94dBc/Hz 

-90dBc/Hz 



 63

bandwidth, which demands for a larger bias current. The measured phase-noise and the 

waveform of the oscillator at 105.7MHz are presented in Fig. 5.26. 

One important advantage of using TPoS resonators in oscillator application is that 

despite their small size they exhibit excellent power handling. Therefore, as opposed to 

the capacitive micromechanical devices [71,72], automatic level control (ALC) circuits 

are not required to guarantee excitation of the resonator in the linear region. Therefore, 

larger signal levels can be applied to the device and better far-from-carrier noise density 

will result while using a simple oscillator circuit with minimal power consumption in a 

compact solution. 

 
Figure 5.26: The measured waveform and phase noise for the 105.7MHz oscillation frequency in air. 
 

 

5.7 Conclusion 

In this chapter, low power reference oscillators based on thin-film piezoelectric-

on-substrate (TPoS) resonators were presented at IF to UHF frequencies. Coupled-array 

TPoS resonators were introduced and proved to be a superior design over the high-order 

devices in providing the means to systematically reduce the impedance while preventing 

-88dBc/Hz 
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excitation of unwanted spurious modes. Also a temperature-stable oscillator with a TCF 

of -2ppm/ºC was built by incorporating the buried oxide layer of the SOI substrate in the 

stack of resonant structure. Finally, a dual frequency single resonator oscillator 

architecture was introduced that could select between the fundamental and the high-order 

mode of a TPoS resonator without the need for any mode-suppression circuit. 
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CHAPTER 6 

THIN FILM PIEZOELECTRIC-ON-SUBSTRATE MONOLITHIC 

FILTERS 

Micromachined thin-film piezoelectric-on-silicon (TPoS) acoustic filters 

fabricated on a single suspended resonant structure are presented in this chapter. 

Symmetric and asymmetric resonance modes of a silicon resonant structure are 

piezoelectrically excited, and coupled to realize a second-order narrowband filters. High 

order lateral bulk acoustic resonance modes of a rectangular plate are utilized to design 

filters at low RF frequencies. Thickness mode filters are also realized at GHz frequencies 

using a new interdigitated electrode design. Device dimensions and electrode patterns 

effective in changing the bandwidth of lateral and thickness mode filters are identified 

and experimentally verified. Multiple frequency narrowband lateral mode filters 

fabricated on a SOI substrate with filter Q values larger than 300 and thickness mode 

filters with filter Q values in the range of 150 to 900 at 3.1GHz are demonstrated.       

6.1 Introduction 

Micromachined electromechanical filters have been long desired as replacement 

for off-chip components commonly used in wireless transceiver architectures. The unique 

advantage of these on-chip components is the potential for integration with the rest of the 

electronics which ultimately improves the level of integrity and complexity in the next 

generation wireless analog signal processing units.  This feature is particularly attractive 

in multi-band transceivers that operate over a wide frequency spectrum and require arrays 

of filters with large Q values and small shape-factors to fit in a compact portable package. 
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Developing a miniaturized micromechanical filter that meets the requirements on 

insertion loss (IL), selectivity and power handling all at once is a challenging task rarely 

accomplished in the past.  

Capacitive coupled-resonator filters even though successful in providing excellent 

selectivity fueled by their high Q resonance peaks, usually suffer from their large IL if 

terminated to 50Ω [79,80]. This problem is more prominent at higher frequencies as a 

result of inefficient electromechanical coupling coefficient. On the other hand, 

piezoelectric transduction mechanism with orders of magnitude larger coupling 

coefficient offers a better alternative for enabling low IL filters. Today, thin-film 

piezoelectric bulk acoustic resonators (FBAR) are implemented in front-end transceiver 

circuits at GHz frequency range [16]. A number of FBAR resonators are electrically 

connected in a ladder configuration to provide low-loss high-order filters with a very 

sharp roll-off skirt. However, for these electrically coupled filters to provide adequate 

out-of-band rejection, the number of resonators in the coupling chain should be 

considerably large (between 4 to 10) [81]. Moreover, the center frequency of an FBAR 

filter is mostly dictated by the thickness of the deposited piezoelectric film and therefore 

devices fabricated on a substrate can only have close (if not the same) center frequencies. 

Therefore, electrically coupled FBAR filters span on a large area, and cannot offer an 

integrated solution for covering dispersed frequencies in a wide range, which eventually 

can limit their application.  

Electrical isolation between input and output ports of an acoustically-coupled 

filter is the key to reach large isolation in a small, low-order filter. Second-order stacked 

thin-film piezoelectric BAW filters have been demonstrated with narrow pass-bands and 
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excellent isolation suitable for applications where small size is critical [82]. The principle 

of operation for these acoustically-coupled filters is the same as stacked crystal filters 

[83]. However, the fabrication process is relatively complicated in a sense that multiple 

precisely-controlled thin-film deposition steps are involved and thickness deviation can 

substantially degrade the performance of the filter. These filters also suffer from single-

band operation on a chip.   

In this chapter, we introduce an alternative class of acoustically-coupled 

piezoelectric filters called monolithic thin-film piezoelectric-on-substrate (TPoS) filters. 

Multiple modes of a single resonant structure are coupled in order to achieve a higher 

order system. The same technique has been implemented in monolithic crystal filter 

(MCF) technology for decades [84]. In an MFC, by properly patterning isolated metal 

electrodes on a single quartz plate, multiple resonance modes of the plate are coupled at 

low frequencies.  Theoretically all different classes of resonance modes such as flexural, 

rotational, and extensional can be utilized to create monolithic coupled resonator filter 

devices. However, great majority of the MCF’s have been based on coupled thickness 

extensional modes [84,85]. Center frequency of these filters are not usually more than a 

few ten’s of MHz and they are limited to the thinnest crystal plate that can be 

reproducibly manufactured. With the emergence of thin-film technologies very high 

frequency (few GHz) thickness mode piezoelectric filters are demonstrated and 

commercialized (e.g. FBAR’s). However, the technique most attractive for low-

frequency crystal filters (monolithic mode coupling) have not been yet adopted for these 

new-generation of acoustic devices. 
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  Our attempt is to demonstrate the potential for the same acoustic coupling 

techniques to be utilized in thin-film piezoelectric devices at high frequencies. Multiple-

frequency filters on a single substrate can be implemented by changing the lateral 

geometry of the lateral-mode filters. We demonstrate slight frequency shift in thickness 

mode devices covering multiple adjacent channels in a single-band and substantial 

change in the resonance frequency in lateral mode devices for multiple-band operation of 

the filters fabricated on a single substrate. The bandwidth in these filters can be 

controlled by changing the device dimensions and electrode pattern. Preliminary 

guidelines for the design of monolithic thin-film piezoelectric filters are presented. 

6.2 Design Principles 

A monolithic TPoS filter is structurally the same as a two-port TPoS resonator 

(Fig. 6.1). The difference between a TPoS resonator and a filter is mainly in the top 

electrode pattern. In a TPoS filter the top electrode is properly patterned to enable 

excitation of dual resonance modes of a released structure. In a symmetric mode 

displacement in both electrodes is in-phase where as, in an asymmetric mode the 

developed strain field on the two electrodes is 180º out of phase.     

 
 

Figure 6.1:  The schematic diagram of a monolithic TPoS filter. 
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Piezoelectric film 

Top electrode 

SOI 
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The transfer function of this coupled-mode system is not of second order and 

rather is of fourth order which fits the definition of a second-order filter.  Higher order 

filters (3rd, 4th…) can also be realized using the same concept but we will limit our 

discussion to second-order filters in this work.  

Monolithic crystal filters have been chronically attractive for their small size, ease 

of fabrication, and therefore lower cost. Monolithic TPoS filters are also believed to 

inherit the same advantages over other types of electromechanical filters. By coupling 

multiple modes of a single resonant structure the need for a discrete coupling element is 

eliminated which simplifies both the design and fabrication process and reduces the 

overall area consumption. The only issues to be dealt with are design procedures for 

choosing the device shape and patterning the electrodes in order to control the filter 

bandwidth and to suppress unwanted modes.  

 Depending on the frequency of interest different category of resonance modes can 

be employed to realize monolithic TPoS filters. For LF to IF frequency band flexural 

resonance modes are suitable. Lateral extensional resonance modes suit IF to low RF 

applications and thickness extensional modes are of interest for GHz range. Simulating 

the resonance mode-shape of a chosen structure provides considerable insight for 

optimization of the electrode pattern to maximize the electromechanical coupling and 

consequently reduce the insertion loss of the filter. After simulating the targeted 

resonance mode, surface areas of the structure on which the polarity of the strain field is 

identical should be covered with connected pieces of metal electrode. Connecting areas 

with opposite polarity strain field results in charge cancellation and reduces the coupling 

coefficient.   
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Although this design method is always valid, it loses applicability very quickly 

when the resonant structure is a multi-layer compound stack of material and is enlarged 

in order to reduce the motional impedance. Finding resonance mode-shapes of large 

structures requires very large number of meshing elements in finite element analysis 

(FEA) tools which makes the method impractical. However, some intuitive design rules 

extracted from simulating simple structures can be loosely applied for more complicated 

cases. In next sub-sections two resonant mode-shapes of a simple plate are discussed to 

better explain some of these rules. 

6.2.1 Lateral Mode 

We assume a rectangular silicon plate (similar to Fig. 6.1) as the resonant 

structure. In the first width extensional mode, the resonant body uniformly expands and 

contracts as seen in the mode-shape of Fig. 6.2a. However, there exists another width-

extensional mode-shape where the displacement in the two halves of the structure (along 

the length) is out-of-phase (Fig. 6.2b). If the entire length of the structure is covered with 

a single metal piece (a one-port device) only the symmetrical width-extensional mode-

shape can be excited. Also, if the two isolated input and output ports in a two-port device 

comprise of two metal stripes covering the length of the device in parallel again the 

asymmetric mode-shape can not be excited. On the contrary, by splitting the electrode in 

two isolated pieces from the middle of the device, both modes can be excited. In that 

case, the system transfer function is of fourth order (second-order filter).  
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Figure 6.2: Simulated dual fundamental width-extensional resonance mode-shapes of a 40µm wide silicon 
plate a) symmetric and b) asymmetric. 

 

Based on the same discussed concept, dual high-order lateral extensional modes 

of a plate can be excited and coupled. By increasing the mode-number (device size) the 

actuation area can be increased and therefore motional impedance is lowered for higher 

frequencies. Dual mode-shapes of a plate in third-order resonance mode are simulated in 

Fig. 6.3. The optimized electrode pattern for such a mode-shape is a multi-finger 

electrode matching the strain field and split into half from the middle (Fig. 6.3). The 

center-to-center finger pitch is equal to the wavelength. The same pattern can 

theoretically be repeated indefinitely to reduce the IL. 

The critical dimension which defines the center frequency in a lateral mode 

monolithic filter is the width of the plate (or the finger pitch). However, the length of the 

device on the other hand has an interesting effect which can be employed to design the 

BW of the filter. It is observed in simulations that by changing the length (marked in Fig. 

6.3) of the plate the frequency spacing between the dual modes will change. Therefore, 

the BW of a filter at a certain center frequency can be modified by changing the length of 

(b)(a) 
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the plate. By decreasing the length the BW will increase and this trend will be 

experimentally verified in the following sections.    

 

Figure 6.3: Simulated dual third-order width-extensional resonance mode-shapes of a 160µm wide silicon 
plate and the schematic viewgraph of the suggested electrode pattern.  

 

6.2.2 Thickness Mode 

A similar rectangular plate can be simulated in the first thickness extensional 

resonance mode and the mode-shape is shown in Fig. 6.4a. The simulation is performed 

in 2D (cross section of the plate) in order to reduce the computational complexity. As 

seen, this mode-shape is symmetric relative to the X=0 axis. The dual asymmetric mode-

shape is shown in Fig. 6.4b.  Similar to the lateral mode case, in this mode-shape the 

strain field in the two halves of the structure is out-of-phase. Therefore, the optimized 

electrode pattern to excite and couple the two modes is shown in Fig. 6.4b.  

One would conclude that the same electrode pattern used for a lateral mode filter 

can potentially excite the coupled thickness modes of the structure. Even though 

theoretically true in practice it was observed that the pattern employed for a lateral-mode 

device is not optimized for operation of a thickness mode filter. The problem is the 

excessive number of spurious modes excited by a simple two-piece electrode pattern. In 

length 

(a) (b)
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other words, this pattern is not efficient in constraining acoustic energy in two targeted 

modes on a relatively large suspended plate. 

Figure 6.4: Simulated first-order dual thickness resonance mode-shapes of a silicon plate in 2D. 
 

 

One alternative approach to alleviate the problem is an interdigitated pattern (Fig. 

6.5). With this design, in the in-phase mode the area covered by fingers is under uniform 

strain field where as in the dual mode the displacement of the two finger sets is out-of-

phase. The latter mode-shape resembles a high order standing acoustic wave. Using FEA 

analysis multiple mode-shapes from this family can be identified in a structure. These 

modes are different in the number of strain-alternating sections developed in the structure 

at resonance. 

 

 

Figure 6.5: The schematic viewgraph of interdigitated electrode pattern for monolithic thickness mode 
TPoS filters. 

(a) (b)
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One of these modes dividing the structure of Fig. 6.4 in three sections is shown in 

Fig 6.6. Since the resonance frequency of each of these modes is slightly different than 

the others, the frequency spacing or in other words the bandwidth of the second order 

thickness mode filter can also be designed by changing the number of fingers covering a 

suspended plate. From FEA simulation results, it is predicted that by increasing the 

number of fingers the frequency spacing between the two coupled modes increases. The 

legitimacy of this prediction will be evaluated by experimental measurements presented 

in the following section. 

 

Figure 6.6: Simulated thickness resonance mode-shapes of a silicon plate in 2D with three strain-alternating 
sections. 

 

In contrast with FBAR filters, in a TPoS device the strain field developed in the 

film and consequently, the electromechanical coupling for the fundamental thickness-

mode is not usually the strongest. This is because the piezoelectric layer comprises a 

fraction of the structure thickness. Therefore, the mode number for which the insertion 

loss is the lowest depends on the thickness ratio between the piezoelectric film and the 

substrate. For example, in a thickness mode TPoS filter with approximately 2 to 1 

thickness ratio between the silicon layer and the piezoelectric film, the third harmonic 

thickness-mode is more likely to have the lowest insertion loss, where as with the 
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thickness ratio of 1 to 1, maximum charge is developed on the electrodes for the second 

harmonic mode. It is also noteworthy that for a TPoS device, even mode orders can also 

be excited as opposed to an FBAR where only odd mode orders appear.  

6.3 Equivalent Electrical Model 

Mechanically-coupled resonator systems are represented variously in electrical 

domain. One common representation of these systems is shown in Fig. 6.7 [86]. 

Individual resonators in this circuit are modeled as series RLC tanks coupled through a 

coupling shunt capacitor (Cc). This capacitor symbolizes the effect of the coupling 

element and increases the order of the transfer function of the system from two to four. 

Rm, Lm, and Cm are the motional resistance, inductance and capacitance of the resonator 

and Cs is the static shunt capacitance of the input and output electrodes to ground. Cf  

represents the stray capacitance that passes a portion of the signal from input to the 

output directly.  

 

 
Figure 6.7: The schematic equivalent electrical model for second-order mechanically-coupled resonator 
filters and a typical corresponding frequency response. 
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In this model, it is clear that the filter insertion loss is closely related to the 

motional impedance of each individual resonator. However, increasing the termination 

load impedance (RT) will also improve the insertion loss and also affects the ripple in the 

pass-band (loading the Q). The effect of termination load on the filter characteristic is 

limited by the figure of merit defined in equation 3.11. This is because increasing the 

termination impedance will not affect the response if the equivalent impedance of the 

shunt capacitor is not comparably large. In other word, if the impedance of the shunt 

capacitor is small then a large portion of the current will not pass through the termination 

impedance and therefore increasing the termination is ineffective. In most RF 

applications the standard termination load is fixed at 50Ω and therefore the equivalent 

impedance of the shunt capacitor at the frequency of operation should be large compared 

to 50Ω and concurrently the motional impedance should be small relative to 50Ω (Large 

figure of merit). 

The same model seen in Fig. 6.7 can be employed for monolithic filters. 

However, unlike mechanically-coupled resonators no discrete coupling component is 

identified in a monolithic filter and rather the acoustic energy is coupled through the 

substrate. This may cause discrepancies between the frequency response of the electrical 

model and the actual device as it will be seen. 

In the electrical model of Fig. 6.7 the frequency of the in-phase mode (no current 

passing through the coupling capacitor) is always lower than the frequency of the out-of-

phase mode. This is not usually the case for a monolithic filter and therefore two notches 

will appear before and after the filter passband in the frequency response. In order to 

include this characteristic in the electrical model there are some alternatives. One is to 
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use an ideal transformer in the model which accounts for phase inversion in one of the 

modes (Fig. 6.8a) [87]. This way the frequency of the two modes can be controlled 

separately and if the frequency of the resonance peak in the branch with mode inversion 

is chosen lower than the other branch the two notches appear in the frequency response 

(Fig. 6.8c). The other alternative is to replace the coupling capacitor with a coupling 

inductor (Fig. 6.8b) [88]. The inductor will take care of the phase inversion and the 

notches will appear in the frequency response. 

 

 
 
 

 
 

 
 

Figure 6.8: Alternative equivalent electrical models for second-order mechanically-coupled resonator filters 
a) with transformer b) with coupling inductor, and c) a typical corresponding frequency response.  
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6.4 Implementation and Results 

Fabricated monolithic TPoS filters on a SOI substrate were tested on a Suss RF 

probe station using Agilent E5071B and E8364B network analyzers in atmospheric 

pressure.  SOLT calibration was performed with GSG probes. Two-port s-parameter 

measurements were taken, and saved as frequency plot pictures and touchstone (.s2p) 

data files.  

The first presented result is measured from a lateral mode device with center 

frequency of ~440MHz (Fig. 6.9). The center-to-center finger pitch size for this device is 

drawn as 16µm. The frequency spacing between the two resonance peaks is ~1.2MHz 

which results in a filter Q of ~300. The termination impedance is set to 500Ω for this 

measurement and lower IL is expected by increasing the termination impedance. 

Frequency response plots of Fig. 6.10 are measured from two different monolithic 

filters with a center frequency at ~635MHz. These results show how the bandwidth of a 

lateral monolithic filter can be designed by changing the length of the device. The finger 

pitch size in these two devices is 10µm. The plot presented in Fig. 6.10a is measured 

from a device with a length of 50µm and the plot in Fig. 6.10b is from a device with a 

length of 35µm. As it was expected the BW of the filter is increased by reducing the 

length of the device. However, one should notice that by decreasing the length of the 

device (assuming the same number of fingers) the total area covered by electrodes 

(actuation area) is reduced. Therefore to design low IL filters with relatively wide BW 

the number of finger should be increased to keep a large actuation area.  



 79

  

Figure 6.9: The measured frequency response and SEM picture of a monolithic lateral TPoS filter at 
440MHz. 
 

 

 
Figure 6.10: The SEM picture of a lateral TPoS filters with 10µm finger pitch and frequency response for 
two devices; a) 50µm long and b) 35µm long  

 

As opposed to the frequency response plot presented in Fig. 6.9 the two notches 

before and after the filter passband are more prominent in the results shown in Fig. 6.10. 

This is because the appearance of the notches is dependent on the feedthrough impedance 

of the filter. For lower frequencies where the feedthrough impedance is large (the signal 

floor is low) the two notches almost disappear in the noise floor, where as at higher 

(b)(a)

(Length) 

simulated 
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frequencies the effect of the feedthrough capacitance is dominant. Table 6.1 summarizes 

the individual component values used to plot the simulated response in Fig. 6.10b. The 

model introduced in Fig. 6.8b is used for generating the plot and as it is seen the model 

can capture the filter characteristic with acceptable accuracy. To further improve the 

model one can include the effect of dielectric loss in the piezoelectric film by adding 

shunt resistances to ground in the input and output ports. Also asymmetry in the 

measured frequency response can be captured by including a capacitor in the inductive 

coupling branch [88]. 

 
TABLE 6.1: COMPONENT VALUES IN THE ELECTRICAL MODEL OF FIG. 6.8B USED FOR SIMULATION. 
 

element Lm Cm Rm Lc Cs Cf 

value 100uH 0.625fF 750Ω 0.6uH 0.65pF 8fF 

 

The highest-frequency (915MHz) fabricated monolithic lateral-mode filter is 

shown in the optical micrograph of Fig. 6.11. The finger pitch on this device is 6µm and 

the measured frequency response is presented in Fig. 6.11 as well. 

  

Figure 6.11: The optical micrograph and the frequency response of a 915MHz lateral TPoS filter. 
 

Thickness mode TPoS filters are also fabricated and characterized. Results from 

two different monolithic TPoS filters designed for operation in a thickness extensional 
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mode are shown in Fig. 6.12. The thickness ratio of the silicon to the ZnO film is ~5 and 

the mode number with the minimum IL were measured to be the 5th mode at ~3.5GHz. 

The overlapped measured plots are taken from adjacent devices with a various lateral 

dimension labeled as L on the inset SEM picture of the device. 
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Figure 6.12: Measured frequency response plots and the SEM picture of 3.5 GHz thickness mode 
monolithic TPoS filters.  

 

The frequency response plots replicate each other with a frequency offset of 

<20MHz. The filter BW is ~8.5MHz resulting in a filter Q of >400. The filters are 

inductively tuned (shunt inductors are used to cancel out the effect of shunt capacitors) 

and terminated to 250Ω. The measured isolation of >40dB is remarkably large for a 

second order filter consuming a small area of less than 500µm×250µm.  

To confirm the BW design method discussed in section 6.2.2, on the same 

suspended plate we have patterned the top electrode with various number of fingers and 

measured the frequency response for each device. Results are consistent with the trend 

predicted and the BW of the filters with larger number of fingers is larger. Table 6.2 

summarizes the measured BW for four different filters and shows the corresponding 

number of fingers. Two of the frequency response plots are shown in Fig 6.13. 

 

L 

~40dB 
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TABLE 6.2: BW OF THICKNESS-MODE FILTERS WITH IDENTICAL RESONANT STRUCTURE AND DIFFERENT 
NUMBER OF FINGERS. 

 
# of fingers 9 11 13 15 

BW(MHz) 4 9 15 22 

Filter Q 875 333 206 140 

 

 

Figure 6.13: Measured frequency response plots and optical viewgraphs of two thickness mode monolithic 
TPoS filters with different number of fingers.  

 

6.5 Conclusion 
 

Monolithic thin-film ZnO-on-silicon filters are designed and fabricated utilizing 

lateral and thickness extensional resonance modes of a free-standing composite structure. 

By changing the lateral dimension of these filters both coarse and fine frequency offset is 

achievable in laterally-excited and thickness mode devices. The BW of a TPoS filter can 

also be designed by changing the device dimension and the electrode pattern. Single-chip 

multi-band narrow BW filters with large out-of-band rejection are fabricated using a 

simple and low-temperature process in a small foot-print, suitable for channel-select 

filtering in new generation wireless communication equipment. Narrow BW lateral mode 

filters at low RF range and thickness mode filters with Q values in the range of 150 to 

~900 were demonstrated. 

Number of fingers: 11 
Filter Q : 333 

Number of fingers: 13 
Filter Q : 206
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CHAPTER 7 

THIN FILM PIEZOELECTRIC-ON-DIAMOND RESONATORS AND 

FILTERS 

In this chapter thin-film piezoelectric-on-diamond composite bulk acoustic 

resonators are introduced. These resonators benefit from the large elastic modulus of the 

nano-crystalline diamond to increase the resonance frequency. More than 1.8× increase in 

the resonance frequency is measured for devices fabricated on 2µm thick diamond 

compared to the same size devices made on 6µm thick silicon on insulator substrate. 

Application of these resonators in monolithic filters and mass sensors are demonstrated  

7.1 Introduction 

Nano-crystalline diamond (NCD) is an emerging material with growing 

applications in MEMS, driven by its superior mechanical properties such as high acoustic 

velocity, low acoustic loss, chemical stability, and very low wear rate. The use of 

polycrystalline diamond as an acoustic media for surface acoustic wave (SAW) devices 

has proven unparalleled in increasing the frequency of operation while relaxing 

requirement on the lithographic resolution [89]. Capacitively transduced diamond disk 

resonators have also been showcased at GHz frequencies, increasing the resonance 

frequency by a factor of ~2 compared to the same size resonators made of polysilicon 

[90]. However, very high motional impedance of these capacitive devices limits their 

system-level applications as they are required to interface with low impedance radio 

frequency (RF) electronics. A resonator with high impedance introduces excessive loss if 
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used in a filter and requires multiple gain stages to sustain oscillation in an oscillator 

circuit, increasing the power consumption and design complexity.  

As discussed in previous chapter the large electro-mechanical coupling coefficient 

in a TPoS resonator can potentially provide orders of magnitude lower motional 

impedance compared to a capacitive resonator at the same frequency. The underlying 

structural material in these devices improves the energy density, structural integrity, and 

for the most part defines the resonance frequency. 

In this chapter, silicon is replaced with NCD to further increase the resonance 

frequency of the device and relax the requirements on lithographically-defined feature 

sizes of the resonator at high resonance frequencies. The temperature coefficient of 

frequency of diamond is relatively low (-12ppm/ºC) [90], adding more value to its 

application as a substrate. A thin layer of oxide with a large positive TCF (~85ppm/ºC) 

[91] can be used as a passive temperature compensation technique. Although, lower 

acoustic velocity of the oxide film decreases the resonance frequency, it is offset by very 

large acoustic velocity of diamond. Therefore, both resonance frequency and temperature 

stability of thin-film piezoelectric-on-diamond (TPoD) resonators are superior to devices 

made from other structural materials such as silicon or pure piezoelectric [92]. 

One common application for resonators is in gravimeters. Quartz crystal 

microbalance (QCM) mass sensors have found many applications in chemical and 

biological sensors [93]. However, their relatively large size can limit the extent in which 

QCM sensors are used in microsystems to detect small traces of chemical or biochemical 

agents. Specifically, in applications for which an array of mass sensitive sensors is 
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required to distinguish between various types of molecules, QCM sensors fail to offer a 

compact and cost effective solution. 

In recent years, micromachined resonant mass sensors with much smaller form-

factor have attracted a lot of attention to fill in the gap for arrayed and/or implantable 

mass sensors. Cantilever beams [94] and thin film bulk acoustic resonators [95] are 

amongst the more successful realizations of micromachined mass sensors. Higher 

frequency of operation can potentially improve the sensitivity of these devices compared 

to QCM sensors, if high quality factors are maintained [96]. Sensitivity to environmental 

parameters (e.g., temperature) is also an issue that needs to be addressed in order to 

facilitate robust operation of micromachined mass sensors. Complex actuation and 

readout mechanism [94] is another bottleneck hindering widespread use of these devices 

in microsystems. 

Capacitively-transduced lateral bulk acoustic resonant sensors were introduced in 

our group as an effort to address some of the issues associated with micromachined mass 

sensors [97]. These devices demonstrated relatively high Q values in air at ~12MHz while 

minimizing the change in the effective stiffness of the structure imposed by absorbed 

mass. However, to increase the sensitivity, the device dimension needed to be scaled 

down, resulting in a reduced capacitive transduction area. Therefore, motional impedance 

of the device will increase, which translates to high power consumption and higher phase 

noise when interfaced with an oscillator circuit. More importantly, small capacitive air 

gaps are prone to blockage and squeeze film damping when exposed to environment. 



 86

In this chapter, the TPoD structure is used for implementation of monolithic 

filters and 1.5× frequency increase over geometrically identical devices fabricated on SOI 

(chapter 6) is observed.    

Also a TPoD resonator with the same resonant structure introduced in [97] is 

characterized as a mass sensor. The class of devices introduced in this chapter can 

promise extremely compact assembly of fully temperature-compensated array of mass 

sensors in the future. 

7.2 Process Development 

Although the fabrication process flow for TPoD resonators (Fig. 7.1) is very 

similar to that of TPoS resonators, processing on a thin-film NCD substrate requires 

development of new processing steps.  

7.2.1 Process Flow 

Two to three micrometers of nano-crystalline diamond is deposited on silicon 

wafers in a microwave assisted chemical vapor deposition chamber at 800ºC to prepare 

the initial substrate. The surface roughness of the diamond film is directly related to the 

thickness and the grain size of the nano-crystalline diamond.  

 
Figure 7.1: Schematic process flow for the fabrication of TPoD resonators; a) stack development b) etch 
and release. 

Metal 
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This roughness imposes a major challenge in our technology by reducing the ZnO 

piezoelectric coefficient as a result of scattering the crystallographic orientation of the 

grains. To address this problem, a thin (<1µm) buffer oxide layer is deposited in a plasma 

enhanced chemical vapor deposition (PECVD) tool and polished back to less than 0.5µm 

thickness before the subsequent layers are deposited/patterned (Fig. 7.1a). This polished 

oxide layer has dual functionality: first, it provides a smooth surface for the deposition of 

high quality ZnO; second, it reduces the TCF of the resulting composite resonator 

structure.  

The bottom metal electrodes are deposited and patterned followed by sputtering a 

thin (<0.5µm) ZnO film. Top metal electrodes are deposited and patterned and access 

holes to the bottom electrodes are etched. A relatively thick (3µm) PECVD oxide mask 

layer is deposited and patterned and the resonator structural stack is etched, layer by layer 

down to the silicon substrate (Fig. 7.1b). ZnO is wet-etched in diluted acetic acid 

solution; the buffer oxide and the diamond layers are dry etched in an inductively coupled 

plasma (ICP) tool. Oxygen plasma is used to etch the diamond layer. The final release 

step is performed by isotropically etching silicon in ICP using SF6 gas. For wide 

structures silicon layer is etched away from the backside, the same way it was performed 

in the SOI process. Finally, the residue of the oxide mask layer is removed in ICP. 

7.2.1 ZnO Sputtering 

As discussed in chapters two and three the quality of c-axis oriented ZnO film has 

a significant effect on the performance of the fabricated resonator, specifically on its 

motional resistance (Rm), through the effective piezoelectric coefficient (d31): 
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m 2
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∝ . (7.1)

The properties of the substrate and its surface have a dominant effect on the 

quality of the sputtered ZnO film [98,99]. As seen in the SEM view of Fig. 7.2a, the 

surface roughness of the polycrystalline diamond is directly projected to the sputtered 

ZnO, and scatters the columnar grain structure. The polished surface of an oxide layer 

deposited on top of the diamond layer compensates for the surface roughness and 

significantly improves the quality of the sputtered ZnO (Fig. 7.2b).  

  

Figure 7.2: SEM pictures comparing the morphology of sputtered ZnO a) directly on NC diamond and b) 
on polished oxide coated NC diamond.   

To analyze the properties of the sputtered ZnO, x-ray diffraction (XRD) has been 

used. In Fig. 7.3 measured 2θ XRD curves from ZnO samples sputtered on polished 

oxide and diamond substrates at different temperatures are compared. The best quality 

ZnO is obtained by sputtering on polished oxide at elevated temperature (350ºC), which 

confirms the effect of the surface roughness and the sputtering temperature on the grain 

orientation.  
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Figure 7.3: XRD 2θ plots measured from ZnO sputtered samples on different substrates with various 
sputtering parameters.  
 

7.3 Resonator Design and Fabrication 

In this work, the resonator structure is a rectangular plate excited in its lateral 

extensional mode. The top electrodes are patterned to form an array of interdigitated 

fingers. This results in a two-port resonator configuration resonating in a high order 

lateral mode. Increasing the transduction area (number of fingers) in this design reduces 

the motional resistance of the device, making it suitable for RF applications []. Smaller 

finger pitch increases the frequency of operation. The SEM of Fig. 7.4a is a fabricated 

15th order TPoD resonator with a finger pitch size of 10µm. A cross-section SEM view of 

the composite stack is shown in Fig. 7.4b. 

On polished oxide/diamond 
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On polished oxide/diamond   
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Figure 7.4: a) The SEM of a fabricated TPoD resonator; and b) The cross-sectional view of the etched 
composite stack. 

7.4 Effect of Oxide 

The frequency of operation and the resonance mode-shape are functions of 

relative thicknesses of all the layers comprising the resonant structure. The fundamental 

resonance mode-shape for a structure with L=5µm and W=2µm consisting of a 2µm thick 

diamond layer, a 0.5µm thick oxide layer and a 0.5µm thick ZnO layer is simulated in 

FEMLAB. The result is presented in Fig. 7.5a. The mode-shape for an identical resonator 

but without the oxide layer is shown in Fig. 7.5b (ZnO layer is directly deposited on 

diamond).  

The Young’s modulus of the diamond was assumed to be 1000GPa in these 

simulations. As seen in the simulated results, the oxide layer reduces the resonance 

frequency from 1.4GHz to 1.2GHz and also affects the resonance mode-shape. The 

displacement field in the device with buffer oxide layer quickly fades out from the ZnO 

layer toward the diamond film, and out-of-plane components are considerably prominent 

compared to the case without oxide. This can cause charge cancellation sites to develop 

across electrodes, and increases the effective motional impedance of the resonator. 
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Edge of the silicon 
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Figure 7.5: Width-extensional resonance mode-shapes of a 5µm wide strucuture comprising a) diamond, 
oxide and ZnO layers; and b) diamond and ZnO layers (no oxide). 

 

7.5 TPoD Resonator Measurement Results 

Fabricated devices are connected to a network analyzer on a high frequency probe 

station using ground-signal-ground (GSG) microprobes. A typical measured frequency 

response plot for a device with 40µm finger pitch excited in its third harmonic mode is 

shown in Fig. 7.6.   

  

Figure 7.6: The frequency response plot and the SEM picture of a third-order TPoD resonator with a 40µm 
finger pitch. 

The measured resonance frequency is ~1.8x higher than that of an identical design 

fabricated on a 6µm-thick SOI substrate. The same trend of frequency increase was 

observed for devices with smaller finger pitch. Measured resonance frequencies and 

fr~1.21GHz fr~1.43GHz 
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W
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quality factors from TPoS and TPoD resonators with various finger pitches are 

summarized in Table 7.1. 

TABLE 7.1. SUMMARY OF THE MEASURED RESONANCE FREQUENCY AND THE QUALITY FACTOR FOR TPOS 
AND TPOD RESONATORS WITH VARIOUS FINGER PITCHES. 

Silicon Diamond Finger 
Pitch(µm) f(MHz) Q f(MHz) Q 

Frequency 
ratio 

40 95 3000 174 1800 1.8 
20 186 1800 306 3000 1.6 
10 370 1000 565 1300 1.5 
5 640 800 1230 700 1.9 

Since the thickness of the deposited NCD is not uniform across the wafer, 

different frequency ratios are observed for devices located at different spots on the wafer. 

The highest measured resonance frequency for each finger size is included in Table 7.1. 

Frequency response plots for TPoD devices presented in Table 1 are shown in Fig. 7.7.   

  

Figure 7.7: The frequency response plots measured from TPoD resonators with a 20, 10 and 5µm finger 
pitch. 

The motional impedance of the 1.2GHz resonator is less than 1kΩ. This is a very 

small impedance compared to the reported values from capacitively transduced 

resonators in the same range of frequency [90]. It is expected that the motional resistance 

of the device is further reduced by thinning down or removing the interlayer buffer oxide 

in the resonator structure, and by optimizing the resonator dimensions for a clean mode-

shape. 

The temperature coefficient of frequency for a device with a 40µm finger pitch 

and a resonance frequency of ~155MHz is measured in a temperature and humidity 

f~ 565 MHz 
Rmotional ~ 1.5kΩ 
Q~1300 

f~1.2GHz 
Rmotional ~ 900Ω 
Q~700 

f~306 MHz 
Rmotional ~ 270Ω 
Q~3000 
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control chamber. The TCF plot is shown in Fig. 7.8. The TCF of this device was 

measured to be remarkably low (-2ppm/ºC). By precisely controlling the oxide thickness, 

the overall TCF of these devices can potentially be engineered to a near zero value. 
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Figure 7.8: The TCF curve for a TPoD resonator with 40µm finger pitch resonating at 155MHz. 

 

7.6 Monolithic TPoD Filters 

The NCD substrate was also used for fabrication of monolithic filters. The first 

resonant structure designed for filter application was a long and thin block consisting of a 

stack of ZnO on polished silicon dioxide on polycrystalline diamond. The targeted 

resonance mode of operation was the width-flexural mode. Incorporating two sets of 

isolated electrodes and separating them enables excitation of the dual flexural modes 

presented in Fig. 7.9. FEMLAB simulation results indicate a frequency spacing of 

430kHz between the two modes at a center frequency of ~81MHz for a 200µm long, 

20µm wide block consisting of a 2µm diamond layer, 0.5µm of oxide, and 0.5µm of 

ZnO. The metal electrode is assumed to be a 0.1µm layer of Pt (top plus bottom) and the 

electroded regions are 14µm apart from each other. Block resonators with the same 

structural specifications in different lengths have been fabricated using a process flow 

briefly described before. 

TCF= -2ppm/oC 
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Figure 7.9: Simulated dual width-flexural mode-shapes in a monolithic ZnO-on-diamond micromachined 
filter: a) in-phase b) out-of-phase. 

The SEM of Fig. 7.10 shows a 400µm long fabricated device with 14µm distance 

between the electrodes.  

     
 

Figure7.10: The SEM of a 400µm long, 20µm wide ZnO-on-diamond monolithic flexural TPoD filter   

The frequency responses of Fig. 7.11 are measured from the device shown above 

operated in air. The center frequency is ~78MHz and the filter BW is ~570kHz.  

  
Figure 7.11: The frequency response of the device shown in Figure. 7.8 terminated with a) 50Ω and b) 
500Ω. 
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Lateral-extensional resonance modes were targeted for higher frequency filters 

presented below. The crystalline grain size on the substrate used for these devices was 

smaller compared to the substrate used earlier. Therefore, the surface roughness was 

reduced to tens of nanometer and direct deposition of ZnO on the diamond surface was 

experimented again.  

 XRD rocking curves measured from a ZnO film sputtered on polished oxide and a 

film directly sputtered on the extra-fine grain NCD film are compared in Fig. 7.12. This 

time as opposed to the ZnO film deposited on the rough diamond layer, the rocking curve 

peak is detectable while deposited directly on the diamond. However, the FWHM angle 

is larger which is indicative of the wider angular distribution of c-plane crystal 

orientation around the surface normal.     
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Figure 7.12: Overlapped rocking curves measured from ZnO sputtered directly on diamond with extra fine 
grains and on a buffer polished oxide layer.  

The polished buffer oxide layer is preferably avoided for two important reasons; 

first is the low acoustic velocity of the oxide layer, which reduces the effect of diamond 

on increasing the operation frequency, and second is the effect of the oxide layer on the 

excited mode-shapes.  
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 To study the effect of the buffer layer on the monolithic diamond filters one half 

of a wafer covered with a ~0.5µm polished oxide layer was masked with photoresist and 

dipped in buffered oxide etching (BOE) solution. After this step the photoresist was 

removed and the rest of the fabrication process flow was carried out on the wafer 

regularly. Consequently, half of the devices on the wafer had the oxide layer in their 

structure, where as the other half do not.  

 In the SEM pictures of Fig 7.13 the surface roughness of the ZnO sputtered on the 

polished oxide and sputtered directly on diamond are compared. 

  

Figure 7.13: SEM pictures comparing surface topography of the ZnO and the metal layers deposited on; a) 
extra fine diamond b) polished oxide-covered diamond 

In Fig 7.14 frequency response plots measured from the same monolithic filter 

with and without the oxide in the structure are presented. The device structure is the same 

as the device presented in the SEM picture of Fig. 6.9. It is readily clear how the oxide 

layer affects the response. The resonance frequency is higher compared to the device 

fabricated on silicon in both cases. However, the improvement ratio is relatively small 

when the oxide layer is present (490/440) and larger without the oxide (680/440). 
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Figure 7.14: Frequency responses measured from TPoD filters with the same geometries as the device in 
SEM of Fig. 6.9; a) with and b) without the polished oxide in the stack 

On the other hand, the insertion loss of the filter is much larger for the device 

fabricated directly on the diamond substrate which can be directly correlated to the 

quality of the ZnO sputtered on diamond. At the same time number of spurious modes 

excited on the device with oxide is significantly larger. 

 The same improvement in resonance frequency was observed on the TPoD filters 

with the same size as the one presented in the SEM picture of Fig. 6.10. A typical 

frequency response measured from a device without polished oxide in the stack is 

presented in Fig. 7.15. The measured center frequency is increased with a (900/640) ratio.  

 
Figure 7.15: The frequency response of a TPoD monolithic filter with the same size as the device shown in 
the SEM of Fig. 6.10. 

a b 
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7.7 ZnO-on-Diamond Resonant Mass Sensors  

As shown in Fig. 7.16, the resonant structure consists of a central block and two 

annexed sensing platforms attached to it via separation beams. This design is utilized to 

minimize the change in the effective stiffness of the resonator when an extra mass is 

absorbed to the sensing platform [97].  

   

Figure 7.16: The piezoelectrically-transduced lateral resonant mass sensor. 

The structural material (polycrystalline diamond in this case) is coated with a thin 

piezoelectric layer (ZnO). The piezoelectric layer covering the central block is 

sandwiched between two metal electrodes. The top electrode can be split into two 

separate electrodes for two-port operation of the device. However, by doing so, the 

available actuation/sense area is reduced to half, increasing the motional impedance of 

the resonator. The ZnO layer can be either removed or kept intact on the sensing platform 

depending on the application and the receptor coating.  

An alternating electrical field applied across the ZnO layer introduces an in-plane 

strain field through the d31 piezoelectric coefficient of ZnO. When the frequency of the 

applied electrical signal matches the lateral bulk-extensional resonance mode of the 

structure, the vibration amplitude and the current passing through the electrodes are 

maximized.  
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When some amount of mass (ΔM) is absorbed to the sensing platform the change 

in the frequency can be approximated by Sauerbrey equation (assuming ΔK/Keff << 

ΔM/Meff) [100]: 

c
eff

Mf f
2 M
ΔΔ ≅ − ⋅ . (7.2)

In other word, sensitivity of the sensor can be written as: 

c

eff

ffS
M 2 M
Δ
Δ

= = − . (7.3)

By increasing the stiffness of the resonator structural material (using diamond) 

while reducing the effective mass, the natural frequency and hence the sensitivity of the 

device are increased. However, this may not result in a better mass detection resolution 

since other factors such as Q of the resonator and electrical noise of the interface circuit 

will also contribute to the overall resolution of the sensor [96]. Improvement in the mass 

resolution can only be claimed after performing a system-level measurement, where an 

oscillator circuit is included.  

7.7.1 Simulation Results 

The first length-extensional resonance mode of a device with 70µm long central-

block and 30µm long sensing platform is shown in Fig. 7.17 (simulated in FEMLAB).  

 

Figure 7.17: Length-extensional mode-shapes of a device with 70µm long central block and two 30µm long 
sensing platforms. 

Modeled 
added mass
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A resonance frequency of 36MHz is predicted for a structure consisting of 

diamond/oxide/ZnO with 2.5/0.5/0.5µm thicknesses, respectively. As seen in the mode-

shape, the separation beams undergo the highest deformation in the structure and the two 

ends of the sensing platforms mostly experience a translational motion, which minimizes 

change in the stiffness induced by the absorbed mass. Moreover, the maximum vibration 

amplitude occurs on the sensing platform, which helps improving the mass sensitivity.  

To predict the sensitivity of the sensor, an extra piece of mass in the shape of a 

thin (0.5µm) cylinder with a radius of 4µm was added on top of the sensing platform. The 

density of the material (which the cylinder is made of) was altered gradually and 

resonance frequency was simulated each time. A mass sensitivity of 1100Hz/pg is 

predicted for the length-extensional resonance mode of the devices. In the next section, 

the predicted frequency change as a function of added mass is compared to the 

measurement results.   

7.7.2 Experimental Results 

Frequency response of the fabricated resonators is measured using an E5071B 

Agilent network analyzer after wirebonding the device to a custom-made printed circuit 

board (PCB). Extra mass in the shape of a cylinder (made of Pt) is then deposited on the 

device sensing platform using a focused ion beam (FIB) tool. By using FIB, desirable 

amount of mass can be deposited on the device without damaging its functionality. This 

is a relatively accurate method for characterizing the sensitivity of mass sensors while the 

device is not yet coated by receptor material.  
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Figure 7.18 shows an SEM of a fabricated device after deposition of Pt on the 

sensing platforms. Platinum deposition is performed on four devices. The radius of the 

platinum cylinder is kept constant for all devices and the thickness is increased from 100 

to 150, 200, and 300nm. The amount of the added mass is calculated by multiplying the 

approximate cylinder volume with the density of material. Since the deposited material 

by FIB is not 100% Pt and contains a large amount of Carbon and other materials (~50%) 

[101], we used density of platinum for half of the volume and assumed that the rest of the 

volume is filled with carbon. 

 

Figure 7.18: The SEM of the TPoD resonant mass sensor after FIB Platinum deposition. 

After deposition of platinum, devices are wirebonded again and the resonance 

frequency is measured. Figure 7.19 shows the measured frequency response of a device 

with 70µm long central block and 30µm long sensing platform, (a) before, and (b) after 

~48pg platinum deposition. 

The resonance frequency is reduced by ~65kHz after Pt deposition. The motional 

impedance of the devices was measured to be in 20kΩ range with quality factor values 

>3500 at ~40MHz in air (before Pt deposition). Measured quality factors after deposition 

FIB deposited 
Platinum 
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of Pt were lower compared to the values before deposition. This could be caused by 

deposition of a very thin layer of metal-organic contamination on the device surfaces in 

the FIB chamber. 

  

Figure 7.19: Resonance responses of the lateral-extensional resonant mass sensor, (a) before, and (b) after 
~48pg platinum deposition. 

 

The frequency change as a function of the mass deposited on the device is 

compared to the theoretical values predicted by FEMLAB in Fig. 7.20. Sensitivity of 

~1kHz/pg is measured for the 39MHz devices, which is in good agreement with the 

simulated values.  
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Figure 7.20: Comparison between the simulated and measured sensitivity of the TPoD mass sensor.  
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The TCF for these devices is measured using a temperature/humidity control 

chamber. Devices with thicker oxide exhibited lower TCF values (and lower resonance 

frequencies as well). The resulted data points for a resonator with a resonance frequency 

of ~39MHz are plotted in Fig. 7.21, showing a TCF value of ~-6ppm/ºC for the device. 

In order to further reduce the motional impedance of the resonant mass sensor the 

width of the device can be increased, which has very little contribution in the resonance 

frequency while it increases the electrode area and lowers the impedance. 
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Figure 7.21: The measured TCF for a ZnO-on-diamond mass sensor. 

7.8 Conclusion 

A new class of micromachined resonators called the thin-film piezoelectric-on-

diamond (TPoD) was introduced. Large electromechanical coupling of the piezoelectric 

transduction mechanism combined with high acoustic velocity and low acoustic loss of 

nanocrystalline diamond structure gives TPoD resonators an edge compared to other 

available technologies. Application of these resonator in monolithic filters and mass 

snsors were demonstrated and a siginificant frequency enhancement (>1.5×) compared to 

TPoS devices  fabricated on SOI substrate was observed.  

-6ppm/oC 
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CHAPTER 8 

CONLUSION AND FUTURE DIRECTION 

 In this dissertation thin-film piezoelectric-on-substrate (TPoS) technology were 

introduced as a platform for implementation of high Q, highly linear, and low motional 

impedance resonators that can be utilized in many applications such as low-noise stable 

clock generators, narrow bandwidth analog filters, and resonant sensors. Our contribution 

in this thesis can be summarized as follows: 

8.1 High-Frequency TPoS Resonators on SOI 

In this work SOI substrate was mostly used as the starting substrate to fabricate 

TPoS resonators. Novel lateral bulk acoustic resonant structures such as high-order and 

coupled-arrayed resonators were designed, fabricated and tested in order to expand the 

useful range of the operation frequency. Very low motional impedance high Q resonators 

at frequencies up to ~500MHz were demonstrated which can serve the clock generating 

needs of existing high frequency electronic devices and also open room for new 

applications to emerge. 

It was demonstrated that the inclusion of the silicon substrate in the resonant 

structure improves the linearity and quality factor of the piezoelectric resonators which in 

turn enhances the phase noise characteristic of the oscillators built based on these 

devices. The low motional impedance of these resonators, on the other hand, simplifies 

the required sustaining amplifier for oscillator application and significantly reduces the 

power consumption. Simple single transistor oscillators were assembled at high 

frequencies which consumed less than 300µW of power. 
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Moreover, it was noticed that the signal phase is inversed at the high-order 

resonance mode of a two-port high-order lateral-extensional TPoS resonator. This unique 

feature was explored for realization of a dual frequency oscillator where a two-stage 

amplifier could select between the fundamental and the higher order resonance modes of 

the structure by alternatively introduce 0° and 180° phase-shift across the amplification 

path. 

8.2 Monolithic TPoS filters 

High frequency lateral-extensional monolithic filters were introduced in this 

dissertation for the first time. A monolithic filter is a coupled-mode resonant system 

implemented on a single resonant structure. Thickness-mode monolithic quartz crystal 

filters have been commercially available for many years but this technique has never 

been applied to thin-film resonator technology and especially not for lateral-mode 

devices. Using the lateral-extensional mode will provide the means for compact 

implementation of multiple-frequency monolithic filters on a single substrate which is 

attractive for applications in which, arrays of filters at various center frequencies are 

required. Although, TPoS structure was used as the platform to implement these filters 

the technique introduced in this work can be applied to any other type of micromachined 

resonant device. Thickness-modes monolithic TPoS filters were also demonstrated. These 

filters exhibit operation frequencies up to a few GHz.  

By changing the lateral dimension of these filters both coarse and fine frequency 

offset was achieved in laterally-excited and thickness mode devices. The BW of a 

monolithic thickness-mode TPoS filter was also alternated by changing the top electrode 

pattern (changing the finger pitch in an IDT design). Using this technique narrow BW 
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lateral mode filters at 3GHz with filter Q values in the range of 150 to 900 were 

demonstrated. 

8.3 Thin-Film Piezoelectric-on-Diamond Devices 

Another new class of micromachined resonators called the thin-film piezoelectric-

on-diamond (TPoD) was introduced in this dissertation. A thin layer of nanocrystalline 

diamond (NCD) is used in the stack of the resonant structure in order to take advantage of 

the high acoustic velocity of diamond. This way the resonance frequency of the thin-film 

piezoelectric resonator is increased while the limitation on lithographically-defined 

features of the resonator is relaxed. Also, the lower TCF of the diamond makes it easier 

for a TPoD resonator to be compensated for the frequency change with temperature, 

compared to the devices containing silicon in their structure. 

Application of TPoD resonators in monolithic filters and mass sensors were 

demonstrated and siginificant (>1.5×) frequency enhancement compared to TPoS devices  

fabricated on SOI substrate was observed. 

8.4 Future Research 

TPoS resonators have proved to offer immediate advantages over other existing 

micro-resonator technologies by providing high linearity, low motional impedance and 

relatively high quality factor at high frequencies. However, energy loss mechanisms 

limiting the quality factor of these devices are not clearly understood. By studying the 

dominant loss mechanism in these resonators we might find a way to improve the quality 

factor of these resonators and in that case the performance offered by these devices will 

be hard to reach by other competing technologies. 
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Also, the insertion loss of TPoS filters demonstrated in this work is far from 

perfect. The limiting factor for implementation of low-loss filters at this point is 

identified to be the low quality of the piezoelectric film (ZnO) used in these devices. The 

effective electromechanical coupling in these devices is small compared to what can be 

ideally achieved from ZnO (single crystal properties) and also the sputtered film is leaky. 

Therefore, application of commercially-available AlN thin sputtered films is 

recommended to study the limits for implementation of low insertion loss high frequency 

filters. Alternative resonant structure designs should also be attempted in order to 

effectively suppress the spurious modes in the frequency response plot.   

The dual-mode oscillators based on a TPoS resonator can be further studied for 

implementation of extremely accurate temperature sensors and the self temperature-

sensing method utilized in dual-harmonic quartz crystal oscillators can also be employed 

on these devices to assemble oven controlled temperature-stable oscillators using the 

resonator as the temperature sensor and the heater (by passing current through the 

silicon). 

Using diamond as the structural material in the thin-film piezoelectric-on-

substrate technology is yet to be fully explored. AlN is suggested to be used as the 

piezoelectric material of choice in these devices for the same advantages mentioned 

earlier and further because of lesser mismatch in the acoustic velocity of diamond and 

AlN. This way, the out-of-plane displacement of the resonator while resonating in an 

extensional mode is reduced and therefore the effective electromechanical coupling is 

improved. Alternative fabrication methods and materials should be employed to provide 

for a smooth surface on the NCD layer in order to promote growth of c-plane grains. 
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Using a thin polished AlN layer as the buffer layer to compensate for the roughness of the 

NCD layer would be an attractive solution for this problem. 

Finally, on the mass-sensing front, alternative structural designs that minimize the 

effect of viscose damping on the resonator should be studied, in order to enable 

application of TPoS resonators in liquids. Shear in-plane resonance modes if excited in 

the structure can potentially fulfill the in-liquid operation criteria. Miniaturized, high Q, 

high frequency, low impedance, gravimetric mass-sensors that can operate in liquid are 

the ultimate bio-sensing devices that has been long wished for by biological researchers. 
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