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ABSTRACT

There exist a wide variety of experiments, or simulations, in which regional sci-

entists require regular and irregular lattice structures with a predefined number

of spatial units (n). While many GIS software offer the possibility to generate a

regular lattice, to obtain an irregular tiling of a given size is not always a straight-

forward task. The utilization of an irregular lattice usually requires that the re-

searcher finds a large enough real map that matches as closely as possible the

required number of spatial units. This practice is usually carried out without con-

sidering whether or not the selected lattice is a good representation, in terms of

its connectedness characteristics, of a “typical” real map of polygons.

In this project we propose an algorithm, written in Python as a toolbox for

clusterpy, that combines fractal theory, theory of stochastic processes and compu-

tational geometry for simulating realistic irregular tiling with a predefined num-

ber of spatial units. The irregular tiling generated with this algorithm guarantee

consistency in their connectedness characteristics and, therefore, reduce potential

distortions in the results of the experiments due to an inappropriate selection of

the lattice structure.
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1. Introduction

A main task in order to propose regional science methodology is to guarantee a

good behaviour of them over real data. This task becomes more difficult when we

take into account the fact that the geographies used to test algorithms and method-

ologies could mislead their valuation in different ways such as the significance of

hypothesis tests (Anselin and Moreno, 2003; Mur Lacambra, 1992), the computa-

tionally efficiency (Duque et al., 2010), or could violate some of the assumptions

used to construct the mathematical theories as the assumption of stationarity in

spatial econometrics (Hooper and Hewings, 1981). In order to avoid these con-

sequences different types of tilings such as real maps from specific parts of the

world, regular tilings, or Voronoi diagrams, are commonly used by regional scien-

tists however because their topologycal characteristics are far of being considered

as those of real maps then the consecuences does not dissapear.

The most intuitive approach is using real maps divided by normative regions;

e.g; Europe by countries, United States by counties, Spain by municipalities.1 In

one hand these structures has random realistic connectedness characteristics but

in the other hand they do not necessary represent the topological characteristics

of different parts of the world, as example, Fig. 1.1 shows two set of 900 areas

extracted from two different parts of the world, on the left from the normative

division of United States by counties with an average number of neighbors of

5.81 ± 0.96 and maximum of neighbors of 9, on the right from Spain divided by

municipalities with an average number of neighbors of 6.015 ± 2.60 and a maxi-

mum number of neighbors of 31. These differences are more critical because it is

common to find that researchers usually use maps from the countries where they

reside. Another disadvantage with this approach is that it could be difficult to con-

struct large sets of maps, even more if different sizes are required. Last problem is

1According to Duque et al. (2007) normative regions are defined as: “the expression of a political
will; their limits are fixed according to the tasks allocated to the territorial communities, to the sizes of
population necessary to carry out these tasks efficiently and economically, or according to historical,
cultural and other factors”

1
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usually faced with some sampling approaches (Anselin and Moreno, 2003).

(a) United States (b) Spain

Fig. 1.1: Randomly sampled maps of 900 areas

Regarding regular lattices, they are easy to be generated, do not present re-

strictions about the number of areas and their over simplified structure usually

make it easier to summarize mathematical theories and explain the behaviour

of tested methodologies (Whittle, 1954; Bartlett, 1975; Griffith, 1987). The dis-

advantages of using these tilings are that they make it necessary to set stricter

assumptions when the tested methodologies are going to be used for real appli-

cations; e.g, the problem of spatial stationarity in STARMA models (Hooper and

Hewings, 1981), improper conclusions of the properties of statistics in hypothe-

sis testing (Anselin and Moreno, 2003; Mur Lacambra, 1992) and over qualifica-

tion of computational efficiency of algorithms (Duque et al., 2010; Aldstadt and

Getis, 2006). A middle point between regular tilings and real maps are Voronoi

diagrams, which are theoretical structures with random properties that do not re-

stricts the amount and sizes of maps, however as is showed in section 3.2 their

topological characteristics are far of those of real maps.2

Due to the inappropriateness of using these tilings and the importance of

using general realistic structures to evaluate algorithms and methodologies in re-
2Voronoi diagrams could be considered as an special case of a birth and growth stochastic

process known as Johnson-Mehl tessellations when both, birth and growth rates, are equal for
each area (Moller, 1995; Chiu, 2011)
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gional science, it becomes evident the necessity of a new method to generate

tilings with, in average, similar characteristics of real maps from different parts of

the world, without restricting the size and number of maps. In order to meet this

necessity in this project we propose and algorithmic approach supported in fractal

theory, stochastic equations and geometric computation. The algorithm is de-

veloped in python and is officially introduced in clusterpy (version 1.1.0)(Duque

et al., 2011b).

In chapter 2 of this thesis the basic definitions of polygons and tilings are pre-

sented, proposing a consensus taxonomy of tilings, also we propose a set of indica-

tors commonly used to characterize tilings in different fields such as graph theory

(Garrison, 1964; Tinkler, 1972), geographical sciences (Gould, 1967; Boots, 1982,

1984, 1985), and metallography (Le Caer and Delannay, 1995; Aste et al., 1996;

Peshkin et al., 1991; Le Caer and Delannay, 1993). In chapter 3 the relationship

between tilings and regional science is exposed, latter the average values of the

indicators of maps from different parts of the world is presented as the benchmark

values and compared with the indicators of commonly used tilings. In chapter 4

a brief theoretical background of Stochastic Diferential Equation and Fractal di-

mension is presented, the rest of the chapter propose two algorithms, the first one

(MR-Polygon) to generate irregular polygons and the second (RI-Map) to generate

tilings with similar characteristics of real maps using MR-Polygons. In chapter 5

the indicators of RI-Maps are obtained and compared with those of regular tilings,

Voronoi diagrams and real maps. In chapter 6 and 7 some conclusions and ideas

for future research are presented. Finally in chapter 8 is showed how to install the

clusterpy and some examples are presented.





2. About tilings and space partitions

2.1 Space partition, consensus taxonomy of tilings

In order to define tessellations, also known as tilings, it is necessary to briefly

introduce the concept of polygon, which is a plane figure enclosed by the set of

finite straight line segments. Polygons can be categorized according to its bound-

aries, convexity and symmetry.

i) Respect to its boundary, a polygon can be classified as simple if it is formed

just by one simple plain figure without holes (Fig. 2.1 a,b and c). Non-simple

polygons, also known as complex,3 are all of those that have holes or are

formed by multiple parts (Fig 2.1.d). The concept of complex polygons is

commonly used in geography to define areas with lakes or islands.

ii) According to its convexity, polygons can be convex or non-convex. Polygons

are convex if every pair of points in the polygon can be connected by a

straight line without crossing the boundary of the polygon (Fig. 2.1 a and

b), (Johnson, 2001), otherwise are non-convex (Fig. 2.1 c and d).4

iii) Based on its symmetry, polygons on which all the angles have the same magni-

tude and all the sides are of equal length are regular (Fig. 2.1.a), otherwise,

irregular (Fig.2.1 b,c and d) (Johnson, 2001).

A tessellation, in a bidimensional space, is a set of polygons with no gaps and

no overlaps covering a subspace or the entire space. Formally, a tessellation of any

subspace S ⊆ Rn is the division into k subsets i ⊆ S such that ∪i = S and ∩i = φ

where φ is the empty set of Rn (Grunbaum and Shephard, 2011), hereinafter only

cases where n = 2 are taken into account. This definition does not restricts the

shapes of the polygons which form the tessellation (Ghyka, 2004; Penrose, 1974;

Berger, 1966; Robinson and Berkeley, 1971).5

3Complex polygons do not refer to polygons which exist in the Hilbert plane (Coxeter, 1974).
4Concave polygons are simple and non-convex.
5Tilley (2006) imposes the condition that a tessellation must be formed by identically shaped

polygons

5
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(a) Simple Regular convex (b) Simple Irregular convex

(c) Simple Irregular con-
cave

(d) Complex polygon of
two parts, one of them with
a hole

Fig. 2.1: Examples of different type of polygons

There exist different taxonomies of tilings, the use of one or another depends

on the study field. In Fig. 2.2 consensus taxonomy is proposed classifying tilings

according to the shape of its polygons, the spatial relationship between them, and

the use, or not, of symmetric relationships to construct the tessellation.6 Table 2.1

shows an example of each category of this consensus taxonomy.

i) According to the variety of the shapes of polygons forming the tiling: If all the

polygons have the same shape, then the tiling is denoted as homomorphism,

otherwise polymorphism.

ii) According to the regularity of the polygons forming the tiling, and the way

that they intersect each vertex, considering a vertex as all the points of tiling

that intersects three or more polygons: Regular tilings are formed by regular

polygons in which all the vertex join the same arrangement of polygons Tilley
6An alternative category is proposed for tilings formed by fractal polygons that are informally

defined by Mandelbrot (1982) as rough fragmented geometric shapes which could be infinitely
divided into scalable parts.
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Fig. 2.2: Consensus taxonomy of tilings

(2006). If the polygons are regular, but there are different configurations of

vertexes, then the tiling is semi-regular, otherwise irregular (Ghyka, 2004).

iii) According to the existence of symmetric relationships within the tiling. Sym-

metrical relationships are three: Translation: the tiling is formed by trans-

lating a subset of areas; reflection: there are axes of reflection in the tiling;

rotation: it is possible to obtain the same tiling after a rotation process of less

than 2π (Radin, 1993). A symmetric tiling implies the presence of, at least,

one symmetric relationship, otherwise the tiling is asymmetric.

iv) According to the symmetric relationship of translation. A tiling is periodic

if and only if it implies the use of translation without rotation or reflection,

otherwise aperiodic (Tilley, 2006).

2.2 Measuring the topological characteristics of tilings

A common framework in fields such as regional sciences and metallography

is to use some sparse matrix indicators to summarize and compare the topological
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(a) Homorphism (b) Homorphism (c) Polymorphism
Regular Irregular Semiregular

Periodic Symmetric Periodic Symmetric Periodic Symmetric.
(Ghyka, 2004)

(d) Polymorphism (e) Polymorphism (f) Polymorphism
Semiregular Semiregular Regular

Aperiodic Symmetric Aperiodic Asymmetric Periodic Symmetric
(Penrose, 1974) (Ghyka, 2004)

(g) Polymorphism (h) Polymorphism (i) Polymorphism
Irregular Irregular Irregular

Aperiodic Symmetric Aperiodic Asymmetric Periodic Symmetric

Table 2.1: Tilings examples



An algorithmic approach for simulating realistic irregular tilings 9

characteristics of tilings through its contiguity matrix (Gould, 1967; Boots, 1982;

Le Caer and Delannay, 1995; Aste et al., 1996; Peshkin et al., 1991).7 In our case

six indicators are used, each of which is briefly described below.

The first three indicators are the maximum (Mn), minimum (mn) and aver-

age (µ1) number of neighbors per area. The fourth indicator, Sparseness S, is the

percentage of non-zero elements of the contiguity matrix. The fifth indicator is the

first eigenvalue of W (λ1) which, due to its ability to summarize different aspects

of the structures, were originally used to study the connectivity matrix of networks

in graphs theory (Garrison, 1964; Tinkler, 1972), and subsequently adopted by re-

gional scientist to characterize topological characteristics of the contiguity matrix

(Gould, 1967; Boots, 1982, 1984, 1985). The last indicator is the variance of the

number of neighbors per polygon (µ2) which is commonly used as a measurement

of the spatial disorder withing a tiling.

7For more information about contiguity matrix see Anselin (1988)





3. Tilings in regional science

Within the field of regional science tilings are commonly used with two purposes,

in one hand, real maps are used to study real phenomena; e.g. analyze spatial

patterns, confirm spatial relationships between variables, detect spatio-temporal

regimes within a data panel. On the other hand, they are used to evaluate the

behaviour of statistical tests (Anselin and Moreno, 2003; Mur Lacambra, 1992);

algorithms (Duque et al., 2010); and topological characteristics of maps (Aste

et al., 1996; Le Caer and Delannay, 1995, 1993). In the last case it is necessary to

use sets of tilings that satisfy some requirements imposed by the regional scientist;

e.g, number of areas, regularity or irregularity of the polygons, number of maps,

among others. To accomplish this it is common to use polymorphism irregular

aperiodic asymmetric, such as real maps and Voronoi diagrams; or homomorphism

regular periodic symmetric such as regular lattices, as geographical base for real or

simulated data. In next section we will be focused on the second use of tilings.

3.1 Commonly used tilings

The process of propound an appropriate set of tilings to evaluate methodolo-

gies is not always a trivial task, specially when different topological characteristics

may differ even within tilings considered in the same category; e.g; real maps from

different parts of the world; regular lattices formed by hexagons or squares. An

ideal scenery is to be able to collect a set of tilings with representative characteris-

tics of maps from different parts of the world, which is not always possible because

the availability of maps and its number of areas. Different strategies are followed

in order to face this problem, as an example a common practice is to use a map

with a large number of areas and algorithmically construct the desired number

of maps with the desired number of areas. The problem with these approaches

is that different parts of the world could have different topological characteristics

and hence different results and conclusions could be drawn if the base map is not

properly selected. This situation becomes more critical when reviewing the litera-

11
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ture is found that those topological characteristics are not taken into account and

the selection of the large map is influenced by the location where the researcher

applies; e.g; Duque et al. (2011a) uses maps from Colombia and United States

to propose the regionalization algorithm MAX-P; Anselin and Moreno (2003) use

United States maps to compare the performance of an statistical test over regular

and irregular lattices; Mur Lacambra (1992) compares different methods to detect

spatial autocorrelation over two artificial contiguity matrix and the map of Spain

by regions. Fig. 3.1 shows the distribution of the Average number of neighbors,

the first eigenvalue and the Aboav-Weaire coefficient of maps generated using

United States by counties and Spain by NUTS3. In summary it is possible to con-

clude that maps of Spain are less connected and the number of neighbors are more

correlated than maps of United States. As an example, selecting maps of United

States instead of Spain could considerably increase the execution time of algo-

rithms which its computational complexity increase with the number of neighbors

(Aldstadt and Getis, 2006; Duque et al., 2010)

Because the difficulty of collecting an appropriate map and to take advan-

tage of more controlled structures some authors use alternative approaches such

as regular tilings or Voronoi diagrams. Regarding to regular lattices, they are eas-

ily generated, do not present restrictions about the number of areas and its over

simplified structure usually make it easier to summarize mathematical theories

and explain the behaviour of tested methodologies (Whittle, 1954; Bartlett, 1975;

Griffith, 1987). The problem of using regular tilings is that they have some de-

sirable theoretical properties that usually are not present in real maps and hence

some assumptions or requirements need to be guaranteed before studding real

phenomena using methodologies tested over them; e.g; the problem of spatial sta-

tionarity in STARMA models (Hooper and Hewings, 1981), improper conclusions

of the properties of statistics in hypothesis testing, (Anselin and Moreno, 2003;

Mur Lacambra, 1992), over qualification of computational efficiency of algorithms

(Duque et al., 2010; Aldstadt and Getis, 2006). Regarding Voronoi diagrams, as

will be shown in section 3.2, although they have random topological properties

they are far from those of real maps.
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Fig. 3.1: Topological differences of maps from Spain and United States

3.2 Topological comparison of tilings

By now it is clear the advantages and disadvantages of the alternative ap-

proaches (regular tilings and Voronoi diagrams) to select a set of tilings to eval-

uate a methodology, however the question about if those categories of tilings are

truly different remains open. To answer this, we propose a benchmark of topolog-

ical indicators that a tiling must reproduce in order to be considered real and then

compare the values of regular lattices and Voronoi diagrams. To obtain the bench-
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mark the indicators proposed in section 2 are calculated over 1, 000 instances of

maps with 100, 400, 900, 1, 600, 2, 500, 3, 600 areas, obtained from a sampling pro-

cess over a world map at the smaller administrative division available in Hijmans

et al. (2011), Fig. 3.2 illustrates the sampling process and Table 3.1 shows the

number of maps sampled from each continental area. For Voronoi diagrams the

same number of tilings with the same number of areas are used.8 For regular

lattices just one instance is enough. Table 3.2 shows the expected value of the

indicators for each type of tiling grouped by number of areas, additionally, for real

maps and Voronoi diagrams the standard deviation is calculated and presented

bellow the expected values. In order to avoid the effect caused by the boundary

to the values of Mn, mn, µ1, µ2 the boundary areas are allowed to be neighbors of

other areas but are not considered to calculate the indicators, however for S and

λ1 all areas are used because they are matrix properties.

Fig. 3.2: Base map and example of a random irregular maps obtained from
it.

For regular lattices it is evident that they are not capable to emulate the

8Voronoi diagrams where generated using random uniform points
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Number of areas
Group Number 81 100 400 900 1,600 2,500 3,600

of areas
1: America 28,041 240 240 240 240 244 244 244
2: Europa 26,245 225 225 225 225 229 229 229
3: Africa 35,943 308 308 308 308 313 313 313
4: Asia 24,503 210 210 210 210 214 214 214
5: Oceania 1.880 17 17 17 17 0 0 0
Total 116,612 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Table 3.1: Number of maps from each group for a given number of areas.

topological characteristics of real maps in any of the indicators because they are

absolutely ordered tilings, µ2 = 0, with 4 and 6 neighbors per area over the entire

structure. Respect to λ1 and S it is also important to note that regular tilings

formed by hexagons are more connected than real maps while those formed by

squares are less connected. Also note that in both cases the variations of the

indicators while the number of areas increase is much lower than the variations of

reals maps, which means that its topological characteristics are not highly affected

by the size of the map.

About Voronoi diagrams it is found that they are not capable to generate

atypically connected areas, values of Mn tending to 12 and mn greater than 3. Re-

garding µ1 they have a similar value of real maps, µ1 close to 6 which is supported

by the tenet of previous studies which suggest irregular tilings have an average

number of neighbors close to 6 (Weaire and Rivier, 2009). From the values µ2,

close to 1.7, is possible to infer that they are more ordered than real maps. Addi-

tionally note that the magnitude of the change of the indicators while the size of

the maps increase is smaller than real maps, showing that the topological charac-

teristics of Voronoi diagrams are more stable for different sizes of maps. Finally

the standard deviations evidence that the random properties of Voronoi diagrams

are less disperse than on real maps.
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Number of areas
81 100 400 900 1,600 2,500 3,600

Real Maps

Mn
12.28 13.22 23.22 29.55 42.77 48.53 60.64
±7.52 ±9.90 ±29.89 ±36.27 ±50.59 ±55.07 ±64.58

mn
2.33 2.13 1.55 1.23 1.04 1.01 1.00
±1.11 ±1.06 ±0.86 ±0.60 ±0.22 ±0.10 ±0.00

µ1
5.57 5.59 5.67 5.69 5.70 5.72 5.72
±0.65 ±0.61 ±0.49 ±0.45 ±0.46 ±0.37 ±0.37

µ2
5.85 6.72 9.76 7.90 8.85 7.73 8.00
±13.85 ±22.58 ±28.79 ±15.35 ±12.82 ±9.39 ±8.11

S
0.060 0.049 0.013 0.006 0.003 0.0022 0.0015
±0.005 ±0.004 ±0.001 ±0.0005 ±0.0003 ±0.00015 ±0.0001

λ1
5.96 6.09 6.89 7.30 8.03 8.33 8.92
±0.53 ±0.65 ±1.52 ±1.82 ±2.42 ±2.62 ±3.02

Mn 4 4 4 4 4 4 4
mn 4 4 4 4 4 4 4

Reg. Lattice µ1 4 4 4 4 4 4 4
(Squares) µ2 0 0 0 0 0 0 0

S 4.44 3.64 0.95 0.43 0.24 0.16 0.11
λ1 3.80 3.84 3.96 3.98 3.99 3.99 3.99

Reg. Lattice Mn 6 6 6 6 6 6 6
(Hexagons) mn 6 6 6 6 6 6 6

µ1 6 6 6 6 6 6 6
µ2 0 0 0 0 0 0 0
S 6.30 5.19 1.39 0.64 0.36 0.23 0.16
λ1 5.55 5.62 5.88 5.94 5.96 5.97 5.98

Voronoi Diagrams

Mn
9.15 9.36 10.37 10.90 11.26 11.49 11.71
±0.77 ±0.79 ±0.75 ±0.74 ±0.70 ±0.67 ±0.68

mn
3.36 3.26 3.00 3.00 3.00 3.00 3.00
±0.48 ±0.44 ±0.03 ±0.00 ±0.00 ±0.00 ±0.03

µ1
5.75 5.77 5.88 5.92 5.94 5.95 5.96
±0.07 ±0.05 ±0.02 ±0.01 ±0.00 ±0.00 ±0.00

µ2
1.68 1.70 1.75 1.76 1.76 1.77 1.77
±0.31 ±0.27 ±0.13 ±0.09 ±0.07 ±0.05 ±0.04

S
6.67 5.47 1.44 0.65 0.37 0.24 0.17
±0.08 ±0.05 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

λ1
5.88 5.96 6.20 6.26 6.28 6.29 6.30
±0.05 ±0.05 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02

Table 3.2: Average connectedness characteristics for real maps, regular lat-
tices and Voronoi diagrams



4. Generating realistic tilings

In this section we propose a procedure to generate polymorphism irregular aperi-

odic asymmetric tilings with similar characteristics of real maps. To attain this we

divide the section in four parts, the first and second parts briefly introduce the the-

oretical concepts which support the algorithms, the third part introduces a novel

way to generate irregular polygons based on a mean reverting process in polar

coordinates and the fourth part proposes a recursive procedure to generate tilings

with similar topological characteristics of real maps using the irregular polygons

of the third part.

4.1 Introduction to the mean reverting process

In order to propose the MR − Polygon algorithm it is necessary to briefly

introduce some formal background to state the mean reverting process. Next

some basic concepts about Brownian motion and stochastic differential equations

are introduced. The following definitions and concepts are constructed based on

Mao (1997).

4.1.1 Brownian motion

Definition 4.1.1. Let (ω,F, P ) a probability space with a filtration {F}t≥0. A stan-

dard unidimensional Brownian motion {Bt}t≥0 is a continuous real valued process

Ft − adapted with the following properties.

1. B0 = 0

2. {Bt}t≥0 has stationary increments, which means that Bt − Bs is identically

distributed to Bt+h −Bs+h for each s, t ∈ T and each s+ h, t+ h ∈ T

3. {Bt}t≥0 has independent increments, which means that for each ti ∈ T with

t1 < t2 < · · · < tn and n ≥ 1, Bt2 − Bt1 , . . . , Btn − Btn−1 are independent

random variables.

17



18

4. For 0 ≤ s ≤ t < ∞, the increment Bt − Bs follows a normal distribution with

mean 0 and variance t− s

5. {Bt}t≥0 is continuous and not differentiable at any point

A Brownian motion has other important properties that are important to

mention. Among them one of the most important is the self similarity which means

that a Brownian motion preserves, at different scales, the patterns of a Brownian

instance. It is important to note that using this concept it is possible to establish

an important relation between Brownian motions and fractals (see section 4.2).

1. A Brownian motion is a Gaussian process

2. The covariance of a Brownian motion is cov(Bs, Bt) = min(s, t)

3. A Brownian motion is 0.5− selfsimilar which means

(T
1
2Bt1 , . . . , T

1
2Btn)

d
= (BTt1

, . . . , BTtn )

4.1.2 Stochastic differential equations

In this section a brief introduction to stochastic differential equations is

made. To attain this, first a general n-dimensional stochastic differential equation

and its solutions are showed. Second the theorems of existence and uniqueness of

solutions are stated. Third the Linear Stochastic Differential Equation is presented.

Finally the solution of the linear equations in strict sense are presented and related

with the mean reverting process used to propose the MR-Polygon algorithm.

Let (ω,F, p) be a complete probability space with a filtration F ≥ 0. Let

B(t) = (B1(t), B2(t), . . . , Bm(t))T , t ≥ 0 an m-dimensional Brownian motion over

the probability space. Let t0 < T between 0,∞. Let x0 be an Ft0-measurable

random variable such that E[x0]2 < ∞. Let f : R2 × [t0, T ] → Rn and g : Rn ×
[t0, T ]→ Rn×m, both of them Borel-measurable.
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Consider the n-dimensional Stochastic Differential Equation given by (4.1)

with initial value x(t0) = x0. By definition this (4.1) is equivalent to the stochastic

integral equation (4.2).

dx(t) = f(x(t), t)dt+ g(x(t), t)dtB(t); t0 ≤ t < T (4.1)

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

g(x(s), s)dB(s); t0 ≤ t < T (4.2)

Definition 4.1.2. A Rn valuated stochastic process {x(t)}t0≤t≤T is known as solution

of (4.1) if the following conditions are true:

I) {x(T )} is continuous and Ft adapted

II) {f(x(t), t)} ∈ L 1([t0, T ];Rn) and {g(x(t), t)} ∈ L 2([t0, T ];Rn×m)

III) Equation (4.2) is true for each t ∈ [t0, T ]

It is said that {x(t)} is unique if any other solution {x̄(t)} is exactly the same

as {x(t)}.

4.1.2.1 Existence and Uniqueness of solutions

Theorem 4.1.3. Suppose the existence of two positive constants K and K̄ that meets

the next conditions, then exists a unique solution of equation (4.1) and it belongs to

M 2([t0, T ];Rn).

Lipschitz criterion For every x, y ∈ Rn and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ K̄|x− y|2

Lineal growth condition For every (x, t) ∈ Rn × [t0, T ]

|f(x, t)|2 ∨ |g(x, t)|2 ≤ K(1 + |x|2)
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Theorem 4.1.4. Suppose that the linear growth conditions are met, but the Lipschitz

criterion is replaced by the Local Lipschitz Criterion:

For each integer number n ≥ 1, exists a positive constant Kn such that for every

t ∈ [t0, T ] and for every x, y ∈ Rn with |x| ∨ |y| ≤ n

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ Kn|x− y|2

Then exists a unique solution x(t) to (4.1) in M 2([t0, T ];Rn).

Theorem 4.1.5. Suppose that the Lipschitz local criterion is met, but the lineal

growth condition is replaced by the Monotone condition:

Exists a positive constant K such that for every (x, y) ∈ Rn × [t0, T ]

xtf(x, t) +
1

2
|g(x, t)|2 ≤ K(1 + |x|2)

Then exists a unique solution x(t) to (4.1) in M 2([t0, T ];Rn).

On one hand the Lipschitz local criterion ensures that the solution exists

in [t0, τ∞], where τ∞ = limn→∞ τn. On the other hand the monotone condition

ensures that τ∞ = T , which means that the solution exists in the interval [t0, T ].

Consider the Stochastic Differential Equation given by (4.3) with initial value

x(T0) = x0. If the conditions of existence and uniqueness are met for every finite

subinterval [t0, T ] into [t0,∞], then it has a unique solution, called global solution,

into [t0,∞].

dx(t) = f(x(t), t)dt+ g(x(t), t)B(t) (4.3)

Theorem 4.1.6. Suppose that for each real number T > t0 and for each integer

n ≥ 1, exists a positive constant KT,n such that for every t ∈ [t0, T ] and every x, y ∈
Rn with |x| ∨ |y| ≤ n then |f(x, t) − f(y, t)|2 ∨ |g(x, t) − g(y, t)|2 ≤ KT,n|x − y|2.
Also suppose that for every T > t0, exists a positive constant KT such that for every

(x, t) ∈ Rn × [t0, T ],

xTf(x, t) +
1

2
|g(x, t)|2 ≤ KT (1 + |x|2) (4.4)



An algorithmic approach for simulating realistic irregular tilings 21

Then exists a unique global solution x(t) of (4.3) and it belongs to M 2([t0, T ];Rn)

4.1.2.2 Lineal Stochastic Differential Equations

Consider the n-dimensional stochastic differential equation given by (4.5)

over [t0, T ] where F (.), G(.) are matrix valued functions of n×n, f(.), g(.) are func-

tions with values in Rn and B(t) = (B1(t), B2(t), . . . , Bm(t))T is a m-dimensional

Brownian motion. It is said that (4.5) is homogeneous if f(t) = g(t) = · · · = 0, it

is said lineal in strict sense if G1(t) = G2(t) = · · · = 0 and it is said autonomous

if F, f,Gk, gk are t independents. Also it is assumed that F, f,Gk, gk are Borel-

measurable and bounded over [t0, T ]. Under this framework, due to the existence

and uniqueness theorem, equation (4.5) has unique solution in M 2([t0, T ];Rn) for

each initial value x(t0) = x0.

dx(t) = (F (t)x(t) + f(t))dt+
m∑
k=1

(Gk(t)x(t) + gk(t))dBk(t) (4.5)

In this thesis we are only interested in linear equations in strict sense be-

cause, as be shown latter, the Mean Reverting process used to propose the MR-

Polygon is included in this category. Consider the Linear Stochastic Differential

equation in strict sense given by (4.6) over [t0, T ] with initial value x(t0) = x0.

dx(t) = (F (t)x(t) + f(t))dt+
m∑
k=1

(gk(t))dBk(t) (4.6)

The linear homogeneous equation for (4.6) is the ordinary differential equa-

tion given by

dx(t) = F (t)x(t)dt, (4.7)

And the solution of (4.6) is given by

x(t) = φ(t)

(
x0 +

∫ t

t0

φ−1(s)f(s)ds+
m∑
k=1

∫ t

t0

φ−1(s)gk(s)dBk(s)

)
(4.8)
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Particularly when F (t) is t independent, which means F (t) = F is a constant

matrix of n × n the fundamental matrix φ(t) has the form φ(t) = eF (t−t0) and it

inverse φ−1(t) = e−F (t−t0). Then equation 4.6 is solved by

x(t) = eF (t−t0)

(
x(t0) +

∫ t

t0

e−F (s−s0)f(s)ds+
m∑
k=1

∫ t

t0

e−F (s−s0)gk(s)dBk(s)

)
(4.9)

A mean reverting process is a stochastic process that takes values following

a long term tendency with presence of short term variations where the value of

the process x at the moment t is given by the solution of the stochastic differential

equation (4.10), where µ is the long term tendency, α is the mean reversion speed,

σ is the gain on the diffusion term, x(t0) is the value of the process when t = 0 and

{Bt}t≥0 is an unidimensional Brownian motion. As can be seen (4.10) is formally a

linear stochastic equation in strict sense over [t0, T ], being F (t) = −α, f(x) = αµ,

gt = σ and is in just one dimension, which means m = 1.

dXt = α(µ−Xt)dt + σdBt (4.10)

Under this framework, using (4.9), the solution of (4.10) with φ = eF (t−t0) =

e−α is given by

x(t) = e−α(t−t0)

(
x(t0) +

∫ t

t0

eα(s−s0)αµds+

∫ t

t0

eα(s−s0)σdB(s)

)
, (4.11)

Particularly to propose the MR-Polygon algorithm we can assume t0 = 0 and

then
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x(t) = e−αt
(
x0 +

∫ t

0

eαsαµds+

∫ t

0

eαsσdB(s)

)
= x0e

−αt + e−αt
∫ t

0

eαsαµds+ e−αt
∫ t

0

eαsσdB(s)

= x0e
−αt +

e−αteαtαµ

α
+

∫ t

0

e−α(t−s)σdB(s)

= x0e
−αt + µ+

∫ t

0

e−α(t−s)σdB(s). (4.12)

Evaluating (4.12) when t0 = 0 is obtained the value of x0

x(0) = x0 + µ→ x0 = x(0)− µ,

Substituting again into (4.12) the solution is given by

x(t) = µ+ (x(0)− µ)e−αt + µ+

∫ t

0

e−α(t−s)σdB(s).∀t ∈ [0, T ] (4.13)

For practical purposes generating polygons the use Euler approximation given

by (4.14) is used, where εt ∼ N(0, 1),

Xt = Xt−1 + α(µ−Xt−1)∆t + σ
√

∆tεt (4.14)

4.2 Introduction to the fractal dimension

In this section the concept of fractal dimension as a way to measure a subjec-

tive feeling of how densely a fractal occupies a metric space is introduced, under-

standing a fractal as rough fragmented geometric shape which could be infinitely

divided into scalable parts (Mandelbrot, 1982). The fractal dimension is a very

important measure because it is a way to connect fractals with real world data, for

example it is possible to get the fractal dimension of a coastline, an irregular poly-

gon, a cloud, a tree or the colors emitted by the sun. Next the fractal dimension is
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formally introduced, following Barnsley (2000).

Let (X, d) be a complete metric space. Let A ∈ H be a nonempty compact

subset of X, being H the space whose points are the compact subsets of X, other

than the empty set. Let ε > 0. Let B(x, ε) denote the closed ball of radius ε

centered at x ∈ X. Define N (A, ε) the least number of closed balls of radius ε

needed to cover the set A. In other words,

N (A, ε) = the smallest positive integer M such that A ⊂
M⋃
n=1

B(Xn, ε),

For a set of points xn : n = 1, 2, 3, . . .M ⊂ X. To prove that N (A, ε) exists,

surround each point x ∈ A by an open ball of radius ε covering A using opens sets.

Due to the compactness of A that cover has a finite sub-cover of M̂ open balls.

The closure of those balls we have a cover of M̂ closed balls of radius ε. Let C the

covers of A with at most M̂ balls of radius ε, then C contains at least one element.

Let f : C → 1, 2, 3, . . . , M̂ be defined by f(c) = number of balls in the cover c ∈ C.

Then f(c) : c ∈ C is a set of positive integers having at least an integer N (A, ε).

It is said that a set A has fractal dimension D if for some positive number

C N (A, ε) ≈ ε−D. Where ≈ is used as follows. Let f(ε) and g(ε) be real valued

functions, then it is said that f(ε) ≈ g(ε) if limε→0
log(f(ε))
log(g(ε))

= 1. Solving for D then

D ≈ log(N (A, ε))− log(C)

log(1
ε
)

≈ log(N (A, ε))

log(1
ε
)

− log(C)

log(1
ε
)

(4.15)

Using the definition of “≈” it is clear that the second term in the right hand

side of (4.15) tends to zero and then (4.16).

D ≈ log(N (A, ε))

log(1
ε
)

(4.16)
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Definition 4.2.1. Let A ∈ H (X) where (X, d) is a metric space. For each ε > 0

needed to cover A. If (4.17) exists, then it is called the fractal dimension of A.

D = lim
ε→0

(
log(N (A, ε))

log(1
ε
)

)
(4.17)

In our case we are interested in the fractal dimension of the irregular bound-

ary of a polygon, in this case then A is the boundary, ε is the length of the measure-

ment instrument, and N (A, ε) is the length of A using a measurement instrument

of length ε, denoted as L(A, ε). Under this framework the fractal dimension is

restated as (4.18).

D = lim
ε→0

(
log((L(A, ε))

log(1
ε
)

)
(4.18)

4.3 Mean reverting areas (MR-Polygons)

4.3.1 Algorithm

The problem of characterizing the shape of irregular polygons, as those that

comes from processes of urban growth or administrative borders, is commonly

faced in two ways, evaluating its similitude with a circle (Haggett, 1977) or de-

scribing its boundary roughness with the fractal dimension (Batty and Longley,

1994; Frankhauser, 1998). Chen (2011) established a relationship between booth

ways. In our case both of them are combined, the first approach to propose a

way to create irregular polygons and the second to parametrize them under the

concept of fractal dimension.

To compare irregular polygons with circles different classic indexes are used

such as elongation ratio (Weeitty, 1969), form ratio (Horton, 1932), circularity

ratio (Miller, 1953), compactness ratio (Gibbs, 1961; Cole, 1964; Richardson,

1961), ellipticity index (Stoddart, 1965) and the radial shape index (Boyce and

Clark, 2012). According to Chen (2011) these indexes are based on the minimum

circumcircle and the circle with equal area to the irregular polygon. Under this
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(a) Xt ≥ Xt−∆t
(b) Xt < Xt−∆t

Fig. 4.1: Geometric problem to preserve the length and the fractal dimension
of mean reverting process when is used to create an irregular polygon

approach an irregular polygon can be interpreted as an irregular boundary which

follows a circle with a representative random noise. This interpretation guides us

to use a mean reverting process, equation (4.14), to create irregular polygons.

Following the procedure showed in Pseudocode 1 it is possible to construct

an irregular polygon P in polar coordinates where the points follows a circle with

radius µ and where the distance, following the process, between any two points of

X is exactly the same as the distance, following the frontier in counterclockwise

direction, between their equivalent points in P . Angle φ1 and ∆r of Pseudocode

1 are the result of solving the geometric problem showed in Fig. 4.1 in order to

define (4.19). Points of P are denoted as Pθ with θ between 0 and 2π. Regarding

the effect of the parameters of X on P ; α is the speed at which the process revert

to the circle with radius µ, σ is the scaling factor of the irregularity of the polygon,

X0 is the initial radius. ∆t can not be directly interpreted but it is affecting the

magnitude of the angular steps of P .

Pθ+φ1 =

 Pθ + ∆R if Xt+∆t ≥ Xt

Pθ −∆R if Xt+∆t < Xt.
(4.19)
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Pseudocode 1: MEANREVERTINGAREA

PARAMETERS :
α : Mean revertion speed
σ : Noise scaling factor
µ : Long term tendence
X0 : Initial point
∆t : Time step

Xt−∆t = X0, Initial point of the mean reverting process
P = [(0, X0)], Irregular polygon in polar coordinates
while θ < 2π

do



εt ← N(0,1)
Xt = Xt−∆t + α(µ−Xt−∆t)∆t + σ

√
∆tεt

d← distance between Xt and Xt−∆t

Rθ ← Last radius of the irregular polygon

φ1 = arccos
(

2Rθ−∆2
t

2R2
θ

)
if Xt ≥ Xt−∆t

then
{

∆R = d
(

cos
(

arcsin
(

∆t

d cos
(
φ1

2

))
− sin

(
φ1

2

)
∆t

d

))
else

{
∆R = −d

(
cos
(

arcsin
(

∆t

d cos
(
φ1

2

))
+ sin

(
φ1

2

)
∆t

d

))
Rθ+φ1

= Rθ + ∆R

Add (θ + φ1, Rθ+φ1
) to P

increase θ in φ1

Replace last point of P to (0, X0)
return (P )

4.3.2 Parametrization of MR-Polygons

The second approach to characterize irregular polygon is through the fractal

dimension D of its irregular boundary, which is a number between 1, for smooth

boundaries, and 2 for rough boundaries. In general, an object is considered as frac-

tal if it is dotted with irregular characteristics that are present at different scales of

study (Mandelbrot, 1982). The concept of fractal dimension of boundaries refers

to Richardson (1961) who infers that the length L of an irregular boundary, like a

coast, is given by (4.20) where ε is the length of the measurement instrument, Ĉ

is a constant and D is the fractal dimension of the irregular shape. For practical

purposes D is obtained using (4.21) and is given by 1 minus the slope of log(L(ε)),

this procedure is commonly known as the Richardson plot. For the formal frame-

work of the fractal dimension see section 4.2. Note that (4.21) uses Ĉ and (1−D)

instead of the constant C and −D as the formal definition, this is obtained making

Ĉ = C
ε
.
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L(ε) = Ĉε1−D (4.20)

log(L(ε)) = (1−D) log(ε)− log(Ĉ) (4.21)

Practically in all cases the Richardson plot can be explained with two line

segments having different slopes, then two fractal dimensions can be obtained;

textural, for small scales, and structural, for large scales (Kindratenko and Treiger,

1996). As an example, Fig. 4.2, shows a segment of the United States east coast

taken from Google maps on two resolutions. Note that while the resolution in-

crease some irregularities that were imperceptible on low resolution become vis-

ible. In this sense it may be said that irregularities at low resolution define the

general shape and are related with structural dimension, while the irregularities

at high resolution give the noise and are related with textural dimension. Because

of this is that regional scientists are used to use highly sampled maps which pre-

serves the general shape but removes the little variations looking for some benefits

without changing the topological configuration of maps (Douglas, 1973).

Fig. 4.2: Illustrative example of Irregularities explained by the Structural and
Textural dimension.

In the field of stochastic signals some approaches based on different approx-

imations of the length have been made in order to characterize them through its

fractal dimension. In our case an experimental approach based on the fractal di-
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mension of real polygons is proposed to select an appropriated combination of the

parameters α and σ that generates realistic polygons, because our interest is on

general shape more than little variations only structural dimension is taken into

account.9 The experiment is divided in two parts, in the first part the frequency

histogram of fractal dimensions of the real polygons is constructed. In the sec-

ond part we propose a range of possible values of α and σ, given µ,X0,∆t, that

generates fractal dimensions close to the obtained in the first part. Because the

level of the long term tendency, µ, does not affect the length of X and Pseudocode

1 guarantee that length is preserved then µ can be defined as constant without

affecting the fractal dimension, hereinafter it is assumed µ = X0 = 10. Regarding

∆t it must be a small number in order to properly infer both fractal dimensions,

from now on it is defined as 0.001.

The empirical distribution of the fractal dimension of the irregular polygons

is calculated over a random sample of 10.000 polygons from the world map used

in section 3. The result of this empirical distribution is showed in Fig. 4.3.

Fig. 4.3: Empirical frequency distribution of structural fractal dimensions of
real polygons.

To summarize the fractal dimension of the stochastic polygons obtained with

Pseudocode 1 a surface, of the average dimensions, is generated while both un-
9To calculate the structural dimension we use the EXACT procedure (Allen et al., 1995) with

a is a small value of ∆t, later both dimension were divided using a k-means clustering algorithm
over the points of the Richardson plot.
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known parameters, α and σ, changes from 0.01 to 5 whit steps of 0.1, Fig 4.4.

Based on the surface it can be inferred that fractal dimension is mainly affected by

changes to σ specially when looking at small dimensions, additionally it is possible

to guarantee that fractal dimensions close to 1.23 are obtained when σ takes val-

ues between 1.2 and 1.5 regardless of the value of α. Fig 4.5 shows some examples

of polygons using different values of α and σ. Note that polygons of the middle

row, realistic combinations of α and σ, look similar between them which confirms

the conclusions made about the influence of the parameters to the structural di-

mension, additionally in the same figure, both, original (gray line) and sampled

(black line) polygons are showed reinforcing the fact that sampling a polygon does

not affects the structural dimension. From now on and looking for computational

efficiency only sampled polygons are used.

Fig. 4.4: Fractal dimension of simulated polygons in function of α and σ.

4.3.3 MR-Polygons with python

Using clusterpy is possible to create MR-Polygons with just a few lines of

code. Next some examples are presented.10 Due to the objective of this project no

10To install clusterpy please follow the instructions of section 8.1
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Fig. 4.5: Examples of stochastic polygons generated using (Pseudocode 1)
with different values of σ and α.

visualization tool is exposed, however for more information see python site.

Basic MR-Polygon Creating a basic MR-Polygon using just α, σ and keeping the

others parameters as default.
>>> import clusterpy

>>> from clusterpy.core.toolboxes import mrpolygon

>>> pol = mrpolygon(0.5, 1.2)
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Complete MR-Polygon Creating a MR-Polygon definig α, σ, µ,X0,∆t, nPoints.
>>> import clusterpy

>>> from clusterpy.core.toolboxes import mrpolygon

>>> pol = mrpolygon(0.5, 1.2, mu=10, X0=10, dt=0.001, nPoints=30)

Getting the coordinates of MR-Polygon The function mrpolygon return 6 elements

into a python list [non-sampled angles, non-sampled ratios, sampled

angles, sampled ratios, t, Xt]. To get the sampled polygon it is nec-

essary to get the second and third elements of the result and zip them into

a single list. At the end of the example the polar polygon is transformed to

Cartesian coordinates

>>> import clusterpy

>>> from clusterpy.core.toolboxes.rimaps import mrpolygon, polarPolygon2cartesian

>>> pol = mrpolygon(0.5, 1.2)

>>> sampledAngles = pol[2]

>>> sampledRatios = pol[3]

>>> polarPolygon = zip(sampledAngles, sampledRatios)

>>> polarPolygon

[(0, 10), (0.23, 9.47), (0.44, 9.51), . . . , (6.28, 10)]

>>> cartePolygon = polarPolygon2cartesian(polarPolygon)

>>> cartePolygon

[(10, 0), (9.22, 2.18), (8.58, 4.10), . . . , (10, 0)]

4.4 Recursive Irregular maps (RI-Maps)

4.4.1 Algorithm

On section 3 it was showed that most commonly used tilings are not capable

to emulate the topological characteristics of real maps highlighting the necessity

of new tools to create realistic tilings. Looking to satisfy that necessity and based

on the fractal characteristics of geographic objects, such as cities, exposed in Batty

and Longley (1994) we conceptualize a recursive algorithm on which an irregular

frontier is recursively divided using MR-Polygons which at the end of the recursion

are returned to divide the original frontier into the desired number of areas. Our
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conceptualization of the algorithm was made under three principles. i) Scalability:

Preserving the complexity of the algorithm when the number of areas increases

to make possible the construction of tilings with a large number of areas. ii)

Fractality: Constructing maps from a hierarchically perspective on which each

polygon is divided recursively, looking for the fractality observed in real maps

which are divided on different scales i.e: United States is divided in States which in

turn are divided in counties which also are divided in townships. iii) Correlativity:

Encouraging the presence of spatial agglomerations of areas with similar sizes.

In Pseudocode 2 we present the RI-Maps algorithmic approach to create a

polymorphism irregular aperiodic asymmetric with similar topological character-

istics of real maps dividing an irregular polygon pol into n irregular polygons. As

notation pa is referring to the area of the polygon p. Because the recursive division

of pol is made using MR-polygons then it is necessary to define the values of α and

σ to be used, in this case and based on the experiments made in Section 4.3 they

are taken from a uniform distribution between 0.1 and 0.5 for α, and 1.2 and 1.5 for

σ. About µ X0 and ∆t they are defined with the same values established in Section

4.3. Regarding the sampling process to preserve the computational treatability of

geocomputational operations MR-Polygons are sampled to 30 points.

α ∈ [0.1, 0.5]

σ ∈ [1.2, 1.5]

As can be observed in the RI-Maps procedure there are three parameters that

have not been explained yet (p1, p2, p3). Regarding p1 it is related with the scaling

factor to be used over the MR-Polygons which divides the irregular frontiers, the

higher value of p1 the bigger irregular polygons to be used. About p2 and p3 they

allow the presence of the spatial agglomerations of areas with similar sizes. p2

define how probable it is to increase the number of polygons to create into a

divisor polygon and p3 is the percentage of the missing areas on which the divisor

polygon is increased. Note that if p2 or p3 take values of zero then the map will

be homogeneously divided into areas with similar size and no disorder will be
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present.

For a better illustration of the parameter selection effect on the topologi-

cal characteristics of RI-Maps some examples are presented in Table 4.1. These

examples are presented in small pictures for easy comparison of the general topo-

logical differences, however in the following sections more detailed examples are

presented. In the first row of the table p2 and p3 are defined as 0 and as can be

observed generated tilings are very organized and do not show spatial correlation.

The second and third combinations show spatial agglomerations of areas with sim-

ilar sizes and are less ordered than those of the first row, however in the second

row the groups of areas with similar sizes are less frequent and marked. As will

be shown in section 4.4.2 the tilings generated with the third combination are the

more realistic in terms of their topological characteristics.
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i) p1 = 0.1, p2 = 0.0, p3 = 0.0

ii) p1 = 0.1, p2 = 0.1, p3 = 0.5

iii) p1 = 0.02174, p2 = 0.0676, p3 = 0.3077

Table 4.1: Examples of RI-Maps of 400, 1.600 and 3.600 areas using different
combinations of parameters
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Pseudocode 2: RECURSIVEIRREGULARMAP

if n == 1
then areas← [pol]
else if n == 2

then
{
pol1, pol2 ← Divide pol in 2
areas← [pol1, pol2]

else



missingAreas← n
uncoveredArea← pol
coveredArea← Empty pol
areas← Emtpy list

scalingFactor ←
√

p1×pola
n×π×µ2

while uncoveredAreaa
pola

>= 0.03

do



uncovered2select← Bigger part of uncovered area
if missingAreas× uncovered2selecta

uncoveredAreaa
<= 1.5

then

Append uncovered2selet to areas
coveredArea← coveredArea ∪ uncovered2slect
missingAreas← missingAreas− ni

else



αr ← Random number between αmin and αmax
σr ← Random number between σmin and σmax
poli← MEANREVERTINGAREA(αr, σr, µ,X0,∆t)
poli← Multiply each ratio of polr by scalingFactor
poli← Center polr randomly into uncovered2select
poli← (polr − coveredArea) ∩ pol
poli← Bigger part of polr
ni ← missingAreas× polia

uncoveredAreaa
if Uniform(0, 1) < p2

then ni = ni +missingAreas× p3

ni ← Round n1

if ni ≥ 1

then


areasi← RECURSIVEIRREGULARMAP(ni, poli)
Extend areas with areasi
coveredArea← coveredArea ∪ areasi
missingAreas← missingAreas− ni

uncoveredArea← pol − coveredArea
Append interior holes of coveredArea to areas
coveredArea← Union of areas
while Length of areas < n

do
{

Append the smaller area to its bigger neighbor
while Length of areas > n

do
{

Divide the bigger area
return (areas)

4.4.2 Parametrizing RI-Maps

To properly define p1, p2, p3 to get realistic topological characteristics using

RI-Maps we use a standard genetic algorithm, where the population γ of the itera-

tion i, denoted as γi, is formed by the genomes γij = [pij1 , p
i
j2
, pij3 ], where pij1,p

i
j2

,pij3
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are real numbers between 0 and 1 representing instances of p1, p2, p3 denoted as

phenomes. In this case i ∈ N between 0 and 20 and j ∈ N between 0 and 200.

In order to evaluate the quality of each genome the fitness function is defined

as (4.22), where θ is a set of number of areas, φk is the relative importance for

a maps of k areas, and fk(γ
i
j) is a function given by (4.23) that measures how

different are, in average, the topological indicators of RI-Maps formed by k areas

using the phonome γij. Looking for simplicity stating (4.23) we denote the vector

of real indicators as Ψk = [Mn,mn, µ1, µ2, S, λ1] and Ψk(γ
i
j) as the same vector for

the mean values RI-Maps with k areas using γij, to refer the lth indicator Ψl
k and

Ψl
k(γ

i
j) is used. Regarding ns it is the number of simulations to be generated with

each genome.

F (γij) =

(∑
k∈θ φkfk(γ

i
j)
)∑

k∈θ φk
(4.22)

fk(γ
i
j) =

∑6
l=1

(
∑ns

s=i Ψl
k(γij))−nsΨl

k

nsΨl
k

6
(4.23)

To initialize the algorithm an initial random population of 100 genomes is

generated and the four genomes with lower fitness function are obtained. The

subsequent populations are formed by two parts, the first 64 genomes are all the

possible combinations of the last best 4 genomes, the others 36 genomes are ran-

dom modifications of those 64 genomes. Due to the computational time required

to evaluate (4.22) only maps of 400 and 1.600 were used with an importance of

φ400 = 1 and φ1.600 = 2 respectively. Fig. 4.6 shows the best fitness functions

of each iteration. As conclusion the best phoneme is p1 = 0.02174, p2 = 0.0676,

p3 = 0.3077. As is observed the fitness function shows a quick decrease in the

first 5 iterations to stay constant until 13th iteration and achieve the optimal value

in the 15th iteration. In section 5, the topological indicators of IR-Maps with the

optimal parameters are calculated as a complement of 3.2 and some examples are

showed.
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Fig. 4.6: Fitness function across the iterations

4.4.3 RI-Maps with python

Using clusterpy is possible to create RI-Maps and calculate the topological

indicators of tilings such as real maps or simulated instances. Next some examples

are presented.11

Basic RI-Map Creating and exporting to a shape file a basic RI-Map defining just

the number of areas and keeping the others parameters as default.
>>> import clusterpy

>>> rimap = clusterpy.rimap(1600)

>>> rimap.exportArcData(“<shapeFile>”)

Complete RI-Map Creating and exporting to a shape file a RI-Map defining the

following parameters, Np, [αmin, αmax], [σmin, σmax], ∆t, p1, p2, p3, boundary,

whereNp is the number of points to sample of each polygon, [αmin, αmax] and

[σmin, σmax] are the minimum and maximum values of α and σ to be used

for the MR-Polygons, and boundary is a path pointing to a map stored in a
11As in the previous sections it is assumed that python and clusterpy is installed.
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shapefile with a single polygon to be used as initial irregular polygon. If any

of the parameters is omitted then the value proposed in section 4.4 is used,

if boundary is omitted then the initial polygon will be a MR-Polygon.

Example 1: Using a MR-Polygon as initial boundary
>>> import clusterpy

>>> rimap = clusterpy.rimap(1600,N=30,

alpha=[0.1,0.5],sigma=[1.2,1.5],dt=0.1,pg=0.02174,pu=0.0675,su=0.307701)

>>> rimap.exportArcData(“<shapeFile>”)

Example 1: Using an existing irregular map as initial boundary
>>> import clusterpy

>>> rimap = clusterpy.rimap(1600,N=30,

alpha=[0.1,0.5],sigma=[1.2,1.5],dt=0.1,pg=0.02174,pu=0.0675,su=0.307701),

boundary=“<boundary path>”)

>>> rimap.exportArcData(“<shapeFile>”)

Topological indicators In order to obtain the topological indicators of a tiling

using clusterpy is necessary to use the function topoStats which returns a

list with 6 indicators in the following order [Mn,mn,µ1,µ2,S,λ1].

Example 1: Getting the maximum number of neighbors and the sparseness

for a regular lattice
>>> import clusterpy

>>> grid = clusterpy.createGrid(10,10)

>>> stats = grid.topoStats(regular=True)

>>> stats[0]

4

>>> stats[5]

0.03636

Example 2: Getting the maximum number of neighbors and the sparseness

for a map stored in shapefile
>>> import clusterpy

>>> layer = clusterpy.importArcData(“<shapefile>”)

>>> stats = layer.topoStats()

>>> stats[0]

>>> stats[5]
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Example 3: Getting the maximum number of neighbors and the sparseness

for a RI-Map
>>> import clusterpy

>>> layer = clusterpy.rimap(1600)

>>> stats = layer.topoStats()

>>> stats[0]

23

>>> stats[5]

0.0035



5. Results

As was exposed in section 3.2 using Table 3.2 the topological characteristics of

most common used tilings in regional sciences can not be considered realistic

environments. In this section we present the topological characteristics of RI-Maps

in the same tabular structure and using plots of the average values of irregular

tilings, Voronoi diagrams, real maps and RI-Maps. At the end of the section a set

of examples of RI-Maps are presented and based on the computational results of

(Duque et al., 2010) a computational application is exposed.

5.1 Topological characteristics of RI-Maps

In Table 5.1 the average and standard deviation of the 6 indicators of RI-

Maps using the optimal parameters (p1 = 0.02174, p2 = 0.0675, p3 = 0.3077)

are presented. Additionally in Fig. 5.1 the average values are plotted for easy

comparison. To construct the indicators of RI-Maps a total of 100 instances were

used for each size of map. In Fig. 5.1 it is observed that the maximum number

of neighbors of RI-Maps is close to the value of real maps. Regarding the average

number of neighbors, RI-Maps value is closer to Voronoi diagrams than real maps,

however for practical purposes having values of µ1 close to 6 or 5.2 is clearly not

a big difference. Additionally it is important to note from µ2 that RI-Maps are

disordered than Voronoi diagrams making them more appropriate to emulate real

maps. From Fig. 5.1 it is important to highlight the value of λ1 close to those of

real maps, specially for maps with more than 400 areas. Finally from the values of

S clearly all the compared tilings show similar values. Finally from Table 5.1 it is

found that standard deviations are small, which means that RI-Maps topological

characteristics are less disperse than those of real maps.

5.2 RI-Maps examples

In order to complement the topological characteristics showed before three

groups of RI-Maps examples are presented. In the first group Fig. 5.2 to 5.5 maps

41
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Number of areas
81 100 400 900 1,600 2,500 3,600

Mn
17.24 16.82 25.26 30.50 37.71 46.72 51.60
±9.40 ±6.40 ±8.20 ±6.87 ±6.12 ±6.24 ±6.86

mn
1.98 1.83 1.43 1.06 1.02 1.01 1.00
±1.03 ±0.99 ±0.79 ±0.28 ±0.14 ±0.10 ±0.00

µ1
5.52 5.59 5.82 5.87 5.90 5.91 5.92
±0.25 ±0.22 ±0.07 ±0.05 ±0.04 ±0.04 ±0.04

µ2
7.38 6.31 7.82 8.75 10.50 12.59 12.25
±8.08 ±4.15 ±2.26 ±1.19 ±1.35 ±1.81 ±1.38

S
0.064 0.052 0.014 0.006 0.004 0.0022 0.0016
±0.002 ±0.001 ±0.000 ±0.0000 ±0.0000 ±0.00002 ±0.00001

λ1
6.64 6.70 7.50 7.87 8.39 9.00 9.28
±0.69 ±0.47 ±0.55 ±0.44 ±0.37 ±0.38 ±0.44

Table 5.1: Average connectedness characteristics for simulated maps

Fig. 5.1: Comparison of topological characteristics of reals maps, RI-Maps,
Voronoi diagrams and regular tilings.

with 400, 1.600, 3600, 7.200 are presented with an Spatial Autoregressive Process

with ρ = 0.7.

In the second group of examples, Fig. 5.6 to 5.7, a set of maps, created

taking advantage of the fact that RI-Maps can use any irregular polygon as the

external boundary. In Fig 5.6(a) United States by counties is presented and Fig

5.6(b) shows the result of use main single part of the external boundary of United
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Fig. 5.2: SAR(0.7) process over a RI-Map of 400 areas

Fig. 5.3: SAR(0.7) process over a RI-Map of 1.600 areas
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Fig. 5.4: SAR(0.7) process over a RI-Map of 3.600 areas

Fig. 5.5: SAR(0.7) process over a RI-Map of 7.200 areas
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States as input to construct an RI-Maps with the same number of areas as coun-

ties into the single part (3304 polygons). In 5.7 and Fig 5.8 the same exercise

is made using Colombia dividing by municipalities (1124 polygons) and Italy in

third administrative level (7308 polygons). Finally to present the capacity of our

algorithm of generating maps with a large number of areas a RI-Map of 20, 000

areas is presented in 5.9.

(a) United States

(b) RI-maps in United States boundary

Fig. 5.6: RI-Map using United States external boundary as initial polygon
(3.304 polygons)
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(a) Colombia (b) RI-Maps in Colombia

Fig. 5.7: RI-Map using Colombia external boundary as initial polygon (1.124
polygons)

5.3 Application of RI-Maps

By now it is clear the regional scientists necessity of a new tool to generate

tilings with similar topological characteristics of real maps, however in this section

an example of use is exposed, proposing an improvement to the computational

efficiency analysis made by Duque et al. (2010) of the AMOEBA (A Multidirec-

tional Optimal Ecotope-Based Algorithm). In summary AMOEBA is an algorithm

originally proposed by Aldstadt and Getis (2006) to detect spatial clusters and

posteriorly computationally improved by Duque et al. (2010), where using a con-

structive algorithm managed to make it feasible in maps with a high number of

areas. To present the results Duque et al. (2010) proposed 3 computational exper-

iments one of them analyzing the running time of AMOEBA while the number of

areas of regular tilings increase. Understanding AMOEBA is easy to figure that the

computational efficiency is highly affected by the maximum number of neighbors

handled during the iterative process, which means that regular lattices are not

hardly enough computational tests for AMOEBA. To illustrate this, on one hand a
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tiling of 900 areas is constructed and over it 30 Spots processes of 4 clusters are

generated, on the other hand, a set of 30 RI-Maps with 900 areas are constructed,

each of them with a Spots process of 4 clusters. Latter AMOEBA is running over

each Spot process and the running time recorded, Fig. 5.10 shows the differences

in the execution times. This figure reinforce confirms the fact that using regular

tilings to infer the computational efficiency of an algorithm could over-evaluate

the real behaviour. It is important to note that our experiment is to show that

robust conclusions can be made using RI-Maps and not invalidate the results ob-

tained in (Duque et al., 2010).
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(a) Italy

(b) RI-Maps in Italy boundary

Fig. 5.8: RI-Map using Italy external boundary as initial polygon (7.308)
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Fig. 5.9: RI-Map of 20.000 areas
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Fig. 5.10: Execution times of AMOEBA over regular tilings and RI-Maps of
900 areas



6. Conclusions

From this project different conclusions can be established, some of them are based

on the theoretical background of tilings in regional sciences and others from a

computational point of view.

• Based on the topological characteristics of tilings it is evident that commonly

used tilings are highly restricted to emulate realistic space partitions. Taking

into account these restrictions different consequences of an inappropriate

selection of the tilings to test the methodologies emerge, for example mislead

the analysis of an indicator or over-evaluate the computational efficiency of

an algorithm.

• Despite of the importance of tilings to made a good evaluation of method-

ologies and algorithms there are not enough tools to allow researchers to

properly infer the capabilities of their methods in real applications.

• A new tool to generate realistic tilings based on stochastic processes, fractal

theories and geometric computation is proposed in order to allow researches

to properly evaluate their algorithms and methodologies.

• From the implementing process in python it was found that currently geo-

computational tools are not powerful enough to deal with quite irregular ge-

ometries, making difficult to develop these types of algorithms and forcing

developers to seek for alternative solutions for simple theoretical geometric

operations complicating the codes and making them lose some computa-

tional efficiency.
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7. Future research

During the development process of RI-Maps different challenges and ideas for fu-

ture researches emerged. Some of them are briefly described bellow.

• In section 4.3.2 the surface of fractal dimension of a mean reverting process

is constructed in an empirical way, Fig. 4.4, however an ideal way to get

that surface would be through an analytical procedure. The problem of the

analytical procedure is that the euclidean distance of an stochastic polygon

can not be obtained due to the square root is not a lineal function and is

not possible to pass from (7.2) to (7.3), being (7.3) the expression obtained

using the stochastic calculus for a mean reverting process. A future research

is to use a different distance definition to avoid the square root and state a

analytical formulation for the fractal dimension of a mean reverting process

(4.13).

d(Xt) = d(X0, X1) + d(X1, X2) + d(X2, X3) + · · ·+ d(XT−1, XT )(7.1)

=
√
d2(X0, X1) +

√
d2(X1, X2) + · · ·+

√
d2(XT−1, XT ) (7.2)

6=
√
d2(X0, X1) + d2(X1, X2) + · · ·+ d2(XT−1, XT ) (7.3)

• As is exposed in section 3.2 the topological characteristics of maps from

different parts of the world may differ, see Figure 3.1. Based on these differ-

ences a future research is to deeply study how the 7 indicators proposed in

section 2.2 change in space.

• Due to the computational problem of geometric packages it is clear the ne-

cessity of new improvements to geocomputational methods.
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8. Python library

In order to make the algorithms proposed in this thesis available for researchers

they are implemented in python taking advantage of the basic functions of clus-

terpy, library of spatial clustering algorithms developed by RiSE group (Duque

et al., 2011b). In this section is explained how to install clusterpy and additional

codes required to execute RI-Maps, latter a briefly introduction to the basic opera-

tions with clusterpy is made and posteriorly some examples are presented.

8.1 Installing clusterpy

ClusterPy is a library of algorithms for spatial clustering, however it has some

functions that make easy the use of spatial algorithms, for example, importing and

exporting maps. clusterpy (Version 1.1.0) incorporates MR-Polygons and RI-Maps

algorithms. In order to install clusterpy (Version 1.1.0) follow the instructions of

http://rise-group.org/section/Software/clusterPy/.12:

8.2 Examples of clusterpy

Using clusterpy different operations can be made, for example import and

export shape files, simulate spatial processes and generate regular tilings, next

some examples of use are presented, however for more advanced examples please

refer to “http://www.rise-group.org/risem/clusterpy/”. Aditionally for more ex-

amples of how to create MR-Polygons and MR-Maps see the section 4.3.3 and 4.4.3

respectively.

Importing shape files Creating a new Layer from a shapefile
>>> import clusterpy

>>> layer = clusterpy.importArcData(“<SHAPE FILE>”)

Regular tilings Creating a new Layer with a regular lattice of 10× 10
>>> import clusterpy

>>> grid = clusterpy.createGrid(10, 10, lowerLeft=(0, 0), upperRight=(100, 100))

12It is assumed that python 2.7 is already installed in your computer and can be executed from
the terminal, for more information about python see “http://www.python.org/”
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Simulated Spots process Creating a grid of 10× 10 with an spots process with 4

clusters, a level of compactness of 0.7, and significance of 0.9
>>> import clusterpy

>>> grid = clusterpy.createGrid(10, 10, lowerLeft=(0, 0), upperRight=(100, 100))

>>> grid.generateData(“Spots”,“rook”, 1, 4, 0.7, 0.9)

Exporting data to Shapefile Creating a grid of 10×10 with an spots process with

4 clusters, a level of compactness 0.7, and significance of 0.9 and exporting

it to a shape file
>>> import clusterpy

>>> grid = clusterpy.createGrid(10, 10, lowerLeft=(0, 0), upperRight=(100, 100))

>>> grid.generateData(“Spots”,“rook”, 1, 4, 0.7, 0.9)

>>> grid.exportArcData(“gridFile”)

Exporting RI-Map to Shapefile Creating a RI-Map of 1.600 and saving it to a

shape file
>>> import clusterpy

>>> grid = clusterpy.createGrid(10, 10, lowerLeft=(0, 0), upperRight=(100, 100))

>>> grid.generateData(“Spots”,“rook”, 1, 4, 0.7, 0.9)

>>> grid.exportArcData(“gridFile”)
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