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SUMMARY

Organic and inorganic nanostructured materials, nano- and mesoscale objects

and devices, and their integration into existing microelectronic technologies have been

at the center of recent fundamental and applied research in nanotechnology. One

of the critical needs is to develop an enhanced predictive capability of structure-

property correlations and enable robust high performance systems by design. My

thesis work was concerned with the theoretical and experimental studies of electronic

and mechanical properties of chemically functionalized nanowires.

I will first describe a theoretical approach for investigating structure-property

correlations in atomic-sized metallic wires based on the Density Functional Theory

(DFT) for structure calculations and the Non-equilibrium Green’s Function (NEGF)

technique for electronic transport properties simulations. This synergistic approach is

shown to yield the atomic structure of the smallest niobium nanowires. Furthermore,

the method was applied to simulate electronic properties of chemically functionalized

graphene nanoribbons.

Further, I will demonstrate an experimental technique for simultaneous measure-

ments of force and conductance in atomic-size objects based on quartz tuning fork

piezoelectric sensors. A peculiar scaling effect, relevant for a broad range of test and

measurement applications, namely the squeeze film effect, was observed during the

development of the sensors. Using theoretical analysis based on finite element sim-

ulations of the hydrodynamic behavior of the sensors in a broad range of ambient

conditions, I explain the observed phenomenon.

xi



CHAPTER I

INTRODUCTION

This thesis concerns with the theoretical and experimental descriptions of the elec-

tronic and mechanical properties of nanostructures. The technological impetus for

studying nanostructures came from molecular electronics. In recent years research in

this field has exploded due to a proliferation of new and exciting techniques (e-beam

lithography, self-assembled monolayers, etc.) for producing atomic level structures.

Coupling of these techniques with the ability to manipulate atomic systems (such

as Scanning Tunneling Microscopes (STM), Atomic Force Microscopes (AFM), or

Mechanically Controllable Break Junctions (MCBJ)) opens the possibility to cre-

ate novel quantum coherent devices for both engineering applications and research

into fundamental physics. At present the size of commercially available transistors

is about 45 nanometers (nm) which is roughly 150 metal atoms in a row. Although

new fabrication techniques allow a further 20 nm decrease in size, the transition to

the atomic scale is, however, not just a simple continuation of the on-going device

miniaturization, but requires a true quantum approach to the system. Consequently,

the fabrication and fundamental working principles of the devices require a thorough

understanding of the properties of basic nanostructures like nanowires, ribbons, and

the point contacts. The development of theoretical ab initio methods like the Den-

sity Functional Theory (DFT) for structure calculations and Non-equilibrium Green’s

Function (NEGF) formalism for electronic transport has accelerated the research fur-

ther, since now the experimental observations can be verified by accurate modeling.

Before detailing the experimental results and their implications, Chapter II cov-

ers structure calculations of mesoscopic conductors. Along with covering the basics
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of DFT and related computational techniques this chapter contains calculations of

the structure of the smallest niobium nanowires. Just before breaking, the smallest

nanowire consists of a dimer made of two niobium atoms suspended between bulk

electrodes. This result is consistent with the previous calculations of the structure

of niobium nanowires. We also investigate the changes in the morphology of nio-

bium nanowires with elongation and compression. Comparison of our calculation

with experimental and other theoretical results gives a verification of our method.

Chapter III deals with the theory of quantum electronic transport properties in

nanowires. First, the Landauer’s semi-phenomenological model of transport is intro-

duced, followed by a brief introduction into the NEGF method. The relation between

the two theories is shown as well. The NEGF calculations were performed on two

systems: niobium dimer nanowires and chemically functionalized graphene nanorib-

bons. Niobium nanowire calculations gave the total conductance values consistent

with both the experimental data and similar theoretical calculations. In the case

of graphene nanoribbons, the presence of aromatic molecules in the vicinity of the

ribbon was shown to give a strong modification of the conductance spectrum at finite

voltages. This suggests a potential applications for graphene nanoribbons as chemical

sensors.

Among important topics in nanoscale physics is the structure and transport prop-

erty correlations in nanosystems. Therefore, innovative research methods and tech-

niques capable of measuring several of the basic properties simultaneously are re-

quired. In Chapter IV, I present design and calibration of a force sensor, potentially

capable of pico-Newton force resolution, which can be combined with a scanning tun-

neling microscope for simultaneous force-conductance measurement. An originally

developed calibration procedure, based on the changes of the resonant frequency of

the sensor cantilever in gas at different pressures, is described and verified through

both experiments and finite-element computer modeling.

2



Finally, Chapter V describes a peculiar scaling effect observed at low pressures,

the squeeze film effect. The onset of this phenomenon occurs at the pressure where

the mean free path of the gas molecules become comparable to the gap height between

the oscillating cantilever and the surface. Significant changes in the behavior of the

resonance frequency of the probe were observed at lower pressures. A quantitative

explanation of this behavior, is based on the laws of hydrodynamics is given. In

addition, a semi phenomenological model for the change of the resonant frequency

was developed, which successfully describes the behavior of the sensor over six decades

of pressure - from atmospheric to all the way deep into the squeeze layer regime.

In Appendices, I describe relevant techniques for different parts of the thesis:

Appendix A describes the measurement of transfer function and phase methods to

obtain the resonance frequency of the vibrating cantilever. Finite-element methods

were used for the computer modeling of the cantilever and the details are given in

Appendix B. Finally, Appendix C describes the electronic circuits based on the phase-

locked loop, for tracking the change in resonance frequency of cantilever continuously.

3



CHAPTER II

NIOBIUM NANOWIRE STRUCTURE

The study of electronic structure is a complex many-body problem, where the full

solution is not possible in practice. It demands the quantum mechanical description

of electrons in atoms, molecules and condensed phases. Such a description amounts to

an investigation of the spectral properties of Schrödinger or Hamiltonian operators;

which are self-adjoint, partial differential operators. In general, an exact solution

of the spectral problem is not possible due to the complicated correlations induced

in the electron positions by the mutual Coulomb interaction, and consequently ap-

proximate methods are required. It was in 1964, when Hohenberg and Kohn (HK)

showed that the ground state energy of an electron system is uniquely determined

by the ground state electron density [1]. This research established a rigorous frame-

work for earlier density based theories like the Thomas-Fermi theory, and marked

the beginning of Density Functional Theory (DFT). Later, in 1965 Kohn and Sham

invented a constructive scheme for implementing the HK map of the ground state

density to the ground state energy [2]. The Kohn-Sham scheme basically consoli-

dates the complications arising from the mutual electron interaction into a so-called

exchange-correlation functional and then treats this functional approximately. Elec-

tronic structure calculations based on density functional theory is presented in this

chapter.

The chapter starts with a brief introduction to the many-body problem followed by

the Hohenberg-Kohn theorems. The Kohn-Sham scheme is then introduced followed

by a discussion of the exchange-correlation functional and its various approximations

for the pseudopotential and representation of wave functions. Then we discuss the
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program SIESTA (Spanish Initiative for Electronic Simulations with Thousands of

Atoms), which is one of the numerical implementation of DFT. We also present the

simulation parameters under which the program was used. Finally, we compare the

results obtained from this program with results for the structure of the niobium

nanowire published earlier [3].

2.1 Density Functional Theory

2.1.1 The many body problem

A many-body Hamiltonian is a self-adjoint operator in a Hilbert space which governs

the dynamics of the negatively charged electrons and positively charged nuclei which

constitute matter. The many-body Hamiltonian is significantly simplified when the

large difference in mass between electrons and nuclei, me/Mn ≈ 10−3−10−5, is used to

decouple the nuclear and electron systems. The simplification is more commonly re-

ferred to as Born-Oppenheimer approximation [4]. Physically, the decoupling implies

that the light electrons respond instantaneously to changes in the nuclear positions.

Thus, a sum of the electron kinetic energy, T , the attractive interaction between

electrons and nuclei, Ven, the Coulomb repulsion between the electrons, Vee, and the

Coulomb repulsion between the nuclei, Vnn gives the Hamiltonian describing N elec-

trons moving in the potential from M fixed nuclei of charge Zk > 0:

H = T + Ven + Vee + Vnn. (1)

The term Vnn is a constant depending only on the nuclear positions that enter the

Hamiltonian as parameters. The possible presence of force fields other than those

originating from the nuclear charges are taken into account by generalizing the Hamil-

tonian such that the term Ven is replaced by Vext, the potential due to these external

forces. Thus, the Hamiltonian of Eq. (1) takes the form:

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

M∑

k=1

Zk

|ri −Rk| +
N∑

i<j

1

|ri − rj| +
M∑

k<l

ZkZl

|Rk −Rl| , (2)
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where ri, rj represents the position vection of electrons and Rk, Rl represents the

position vector of the nuclei. This Hamiltonian is a partial differential operator whose

existence of self-adjoint extensions is intimately related to the existence of the ground

state. The ground state and the corresponding ground state energy satisfy the eigen-

value equation HΨ0 = E0Ψ0, while the excited states (if they exist) are eigenstates

with eigenvalues En > E0. Presently, the most popular and powerful method for

calculating ground state properties of atomic-scale systems is the Density Functional

Theory (DFT) [5, 6]. In contrast to the N-particle wave function used in the varia-

tional schemes or the Green’s function used in many-particle perturbation theory, the

central object in DFT is the electron density. The next three sections give a general

introduction to DFT.

2.1.2 Hohenberg-Kohn Theorems

In principle, DFT is an exact theory with only one Born-Oppenheimer approxima-

tion. However, its practical realization will require additional approximations. DFT

is based on two variational theorems, also known as the Hohenberg-Kohn (HK) the-

orems [1]. The first theorem states that for systems with a non-degenerate ground

state, there is a one-to-one correspondence between the external potential, vext(r), of

the many-body Hamiltonian, (Eq. (1)) and the corresponding ground state electron

density, n(r). In other words, two potentials differing by more than a constant lead

to different ground state densities. This observation has profound theoretical con-

sequences because it sets up a correspondence between densities and ground states:

n(r) → Ψ0[n]. This follows since n(r) determines vext(r) that in turn defines H and

thus its ground state. The correspondence n→ 〈Ψ0[n]|A|Ψ0[n]〉 shows that all ground

state properties are determined by the ground state density. This holds in particular

for the ground state energy for which we introduce the functional

Ev[n] = 〈Ψ[n]|T + Vee|Ψ[n]〉+

∫
vext(r)n(r)dr. (3)

6



The subscript v indicates the dependence on the external potential. An application

of the variational principle shows that the ground state energy and density can be ob-

tained by minimizing Ev[n] over the set of densities originating from non-degenerate

ground states. The DFT can be used for a degenerate ground state by relying on func-

tionals (that are unique for the state) instead of the construction of the wavefunctions

that could be different for ground state. Since the full Hamiltonian is the functional

of electron density, it is desirable to consider the sum of kinetic and interaction en-

ergies as a functional of density too because then we can use the universality of this

functional for not depending on the system properties which are given by external

potential. I denote this functional F [n].

The second theorem states the variational principle for the universal functional F .

For a given external potential Vext the global minimum of the universal functional:

E[n(r)] = F [n(r)] +

∫
Vext(r)n(r)dr (4)

gives the exact ground state energy E0. Any electron density distribution n(r) is

indeed an exact ground state density on which the above global minimum is realized

and since the ground state exists for any physical system, the question of existence of

ground state density does not rise. The second theorem provides a way to construct

the ground state density and, in view of first theorem, all other properties of the

system by minimizing the functional E. No other information is required. However,

the explicit form of this functional is unknown and the core problem in DFT is to

find good approximations to F . In the next section we discuss a less direct, though

much more accurate, approach for determining F .

2.1.3 Kohn-Sham Theory

The decomposition of the usual variational problem into a complicated universal

part and a relatively simple system-dependent part is the main achievement of the

density functional formalism. However, still the HK theorems do not provide a way

7



to minimize the energy functional or the functional itself. So Kohn and Sham (KS)

[2] extended the basic idea of the Thomas-Fermi model, namely, to obtain the ground

state kinetic energy from a non-interacting reference system. For a given interacting

ground state density, n(r), KS assumed the existence of an external potential, Vs(r),

such that the ground state density of the non-interacting Hamiltonian,

Hs = T + Vs, (5)

is equal to n(r). In other words, KS treated the “interacting electrons” as “non-

interacting electrons in an effective potential.” Since Vs is uniquely determined by n

(by the non-interacting version of the HK theorem), we have the density functional:

Es[n] = Ts[n] +

∫
Vs(r)n(r)dr, (6)

where Ts is the kinetic energy of the non-interacting electron gas of a system with

density n(r). Further, the energy functional (Eq. (3)) of the interacting system can

be decomposed as:

Ev[n] = Ts[n] +
1

2

∫ ∫
1

|r − r′|n(r)n(r′)drdr′ +
∫
Vext(r)n(r)dr + Exc[n], (7)

where we have introduced the exchange-correlation (xc-) functional:

Exc[n] = F [n]− Ts[n]− 1

2

∫ ∫
1

|r − r′|n(r)n(r′)drdr′ +
∫
Vext(r)n(r)dr. (8)

The xc-functional contains the correlation contribution to the kinetic energy as well

as the electron interaction energy beyond the Hartree approximation. The philos-

ophy of the decomposition is to extract as much energy as possible and then hope

that the rest (Exc) is a small correction for which reasonable approximations can be

constructed. Note that Exc, like F , is a universal functional. Next we address the

determination of the potential Vs. The ground state density, n0, is by assumption

a common minimizer for Ev[n] and Es[n] when the variational densities are subject
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to the condition
∫
n(r)dr = N . In terms of functional derivatives this condition is

expressed by:

δ

δn

∣∣∣∣
n0

(
Ev[n]− µ

∫
n(r)dr

)
= 0 (9)

with a similar equation for Es. The number µ is a Lagrange multiplier invoking the

condition of constant particle number. To within a trivial constant these variational

equations, together with equations (6) and (7), determine Vs:

Vs(r) = Vext(r) +

∫
1

|r − r′|n0(r
′)dr′ + Vxc([n0]; r), (10)

where the exchange-correlation potential is defined by

Vxc([n0]; r) =
δExc[n]

δn(r)

∣∣∣∣
n0

. (11)

The potential Vs and the single-particle Hamiltonian (Eq. (5)) are referred to as

the effective or Kohn-Sham potential Hamiltonian. A similar prefix is used for the

corresponding single-particle eigenstates, ψn, and eigenvalues, εn. The ground state

density, n0, can be obtained from the N lowest Kohn-Sham eigenstates. Since the

Kohn-Sham potential in turn depends on n0, the solution must in practice be obtained

through a self-consistent procedure.

2.1.4 The exchange-correlational functional

Within the Kohn-Sham scheme, all effects originating from the correlation between

the positions of the electrons in the many-body ground state are contained in the

xc-functional. In fact, neglecting Exc leads to the Hartree approximation. The first

attempt was the Local Density Approximation (LDA) [2], where it is assumed that

the xc-energy density ε(r) in the functional E =
∫
n(r)ε(r)dr takes the form

ε(r) = ε[n(r′)](r) ≈ ε[n(r)](r) = εlda(n(r), r) (12)

making ε(r) a function of position of the observation point and the electron density

at that point. Then the real density function n(r) is approximated and replaced by
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that of a free homogeneous electron gas in infinite space without external fields. So,

the exchange correlation potential can be calculated for the free homogenous electron

gas as a function of electron density and this also satisfies the universal property of

the functional. In practice xc-energy density, εlda, is represented by some analytic

function fitted to numerical calculations [7, 8, 9]. Although the LDA is only valid

for slowly varying densities, it performs surprisingly well for a much larger class of

systems [10]. One possible explanation for the unexpected success of LDA is that the

partitioning of the energy is in such a way, that the exchange-correlation part is only

about one percent of the total energy. Another reason is that the exchange-correlation

hole describing the mutual electron repulsion is correctly described in LDA. It is often

pointed out, that the errors appearing through LDA effectively and often cancel out

in DFT.

LDA is further improved by considering the gradient of the density instead of the

spatially homogeneous density n(r), at any point r. The first attempt “gradient-

expansion approximations” (GEA) tries to systematically calculate gradient correc-

tions of the form |∆n(r)|, |∆n(r)|2, ∆2n(r), etc., to the LDA. However, in practice,

the inclusion of the low-order gradient corrections never improves on the LDA and

often worsens it. On the other hand, higher-order corrections like |∆n(r)|α or ∆βn(r)

(with α, β > 2) are exceedingly difficult to calculate, and little is known about them.

A major breakthrough was the so-called Generalized Gradient Approximation (GGA),

where the more general functions of n(r) and ∆n(r), which need not proceed order

by order, were used instead of a power-series-like systematic gradient expansions [11].

Such functionals, take the general form:

Exc =

∫
f(n(r),∇n(r))dr. (13)

In the above equation different GGAs differ in the choice of the functions f(n(r),∇n(r))

and this makes different GGAs much more different from each other than the differ-

ent parametrization of the LDAs. The xc-functional used for most of the calculations
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presented in this thesis is the GGA of Perdew, Burke, and Ernzerhof (PBE) [12] and

revised PBE (RPBE) [13] GGA functionals have been applied.

2.1.5 Pseudopotential

The psueudopotential for a particular chemical system is approximated by some uni-

versal atomic pseudopotential for the free atom. The fact that the chemical proper-

ties of an atom are determined almost entirely by their outermost valence electrons

is used in the pseudopotential method. So, the core electrons are chemically inert,

therefore they are ignored in the self-consistent solution of the KS problem, and the

core states are simply freezed to those obtained for the free atom. This simplification

is connected with a corresponding replacement of the true valence wave functions

with pseudo-wave functions that lead to a major reduction in the number of wave

functions which have to be handled. The pseudopotential is designed to make the

pseudo-wave functions node-less and as smooth as possible, thereby rendering them

more easy to represent. The generation of pseudopotentials usually follow three basic

guidelines [16]:

1. The pseudopotential should reproduce the true valence eigenvalues for the iso-

lated atom.

2. The pseudo-wave functions should coincide with the true valence wave functions,

beyond a given core radius, rc.

3. The integrated charge of the pseudo-wave function within the core should equal

the corresponding charge of the true valence wave function, and this condition

gives pseudopotentials that are called norm-conserving pseudopotentials.

The scattering properties of the atom are guaranteed by the continuity of the wave

functions, and together with charge conservation, the scheme produces correct ground
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state density outside of the atomic core regions. However, the space in the region out-

side and inside the spheres surrounding the atomic cores is split by this procedure and

additional spherical coordinates defining the spheres are introduced in the calculations

making the norm-conserving pseudopotential less efficient. To resolve this problem, a

method [14] called projected augmented wave (PAW) is introduced in which instead of

partitioning the space, the wave function is partitioned. The partitioned wavefunction

is equal to pseudo wavefunction defined everywhere, minus the pseudo wavefunction

inside the pseudization spheres plus the exact wavefunction inside the pseudization

spheres. A method physically similar to PAW is the ultrasoft pseudopotentials, point-

ing to the improved smoothness of the associated pseudo-wave functions [15]. This

is especially good for some elements like oxygen and nickel where the valence states

are so localized that a representation of the pseudo-wave functions in terms of plane

waves requires a very high energy cut-off. Application of ultrasoft pseudopotentials

implies that the pseudo-wave functions, ψ̃n are not orthonormal in the usual sense,

but instead satisfy the generalized orthonormality relation, 〈ψ̃n|S|ψ̃m〉 = δnm , where

S = I+
∑

ij |β(n)
i 〉Q(n)

ij 〈β(n)
j | is a generalized non-local overlap operator [15]. Although

these methods resolve most of the issues, another problem remains. The rapid varia-

tions of the valence states in the core region (where their kinetic energy is very high)

are extremely difficult to represent in terms of a fixed basis set. In the pseudopotential

method this problem is overcome by replacing the strong field from the nucleus and

the core electrons by a softer pseudopotential [16, 17]. Such a replacement is always

connected with a corresponding replacement of the true valence wave functions with

pseudo-wave functions. In this work norm-conserving soft pseudopotentials have been

used for all calculations.
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2.1.6 Representation of the wave functions

The wavefunction is expanded in a basis set, {φn} in order to determine the spectrum

of the KS Hamiltonian:

ψn(r) =
∑
m

(cn)mφm(r). (14)

The KS eigenvalues, εn, and eigenvectors, cn, are found as the solutions to the gen-

eralized matrix eigenvalue problem, Hcn = εnScn , where Hnm = 〈φn|H|φm〉 and

Snm = 〈φn|φm〉 are the Hamiltonian and overlap matrices. In practical computer

implementations only a finite number of basis functions can be handled, and thus the

basis set has to be truncated. Basis sets used for electronic structure calculations

can be roughly divided into two groups. The first type of basis functions covers the

system-independent functions such as plane waves [18] or wavelets [19]. The main

advantage of these basis sets, is that their size can be systematically increased un-

til the result of the calculation has converged. However, the main disadvantage is

that the number of basis function required to obtain convergence is normally so large

that direct solution of the matrix eigenvalue problem within the entire basis space

is not possible. Therefore one has to use iterative methods to determine the lowest

(occupied) part of the spectrum [18].

The second type of basis set is designed to mimic the exact eigenstates of the

system already at the outset. Examples of such basis sets are the atomic orbitals

used in the DFT program SIESTA [20, 22] and the atom-centered Gaussian orbitals

used in the Gaussian electronic structure package [21]. In general, these DFT codes

give reliable results with a relatively small number of basis functions, making them

optimal for large scale computations where high accuracy is less crucial. On the other

hand there is no consistent way to extend these basis sets and thereby converge the

results with respect to the size of the basis. In this work the second type of basis sets

have been used for all calculations, because we wanted to obtain results on a desktop

computer. Further, the self consistent algorithm used in the package is shown in Fig.
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Figure 1: Self consistency algorithm for density functional Theory.

1.

2.2 SIESTA

Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) is

not only a computer program implementation but also a method to perform electronic

structure calculations and ab initio molecular dynamics simulations of molecules and

solids. It uses the standard KS self-consistent density functional method in the local

density (LDA) or generalized gradient (GGA) approximations with norm-conserving

pseudopotentials. Additionally, it projects the electron wavefunctions and density

onto a real-space grid in order to calculate the Hartree and exchange-correlation

potentials and their matrix elements.

SIESTA solves the Kohn-Sham equations by expanding the wave functions using

localized, numerical orbitals as basis sets. It uses atomic orbitals as basis set, allowing

multiple-zeta and angular momenta, polarization and off-site orbitals. The radial

shape of every orbital is numerical, and any shape can be used and provided by
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the user with the condition that it has to be strictly zero beyond a user-provided

distance from the corresponding nucleus. This condition is the key for calculating the

Hamiltonian and overlap matrices in O(N) (order N) operations. It also allows the

use of localized linear combinations of the occupied orbitals like the valence-bond, or

Wannier-like functions, making the computer time and memory scale linearly with

the number of atoms. Using the nomenclature of quantum chemistry, the hierarchy of

basis sets are established, from single-ζ (zeta) to multiple-zeta. Four different types

of basis sets are available in SIESTA, and they are listed below in order of increasing

size and accuracy.

1. SingleZeta; least accurate; a single basis orbital for each valence orbital.

2. SingleZetaPolarized; SingleZeta plus one basis orbital for the first unoccu-

pied shell.

3. DoubleZeta; two basis orbitals for each valence orbital.

4. DoubleZetaPolarized; DoubleZeta plus one basis orbital for the first unoccu-

pied shell.

In most practical cases, the DoubleZetaPolarized basis set gives very good accuracy,

but for large systems with many (e.g., transition metal) atoms this basis set might

be too big to fit in the computer memory. A brief theoretical background of the basis

sets is given below.

Single Zeta Orbitals: The single zeta basis set covers the valence configuration,

which contains all open shells and, in some cases, also some high-energy closed shells

(such as the d shell in transition metals). The basis functions are found by solving

the radial Schrödinger equation for the atom with a confinement potential. The

confinement potential is defined by the parameters, V0, rinn and rc. Here V0 defines

the softness of the confined potential. If this parameter is zero, a hard-wall potential

is used.
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The parameter rc determines the confinement radius of the numerical orbitals.

The confinement radius is taken as the position of the first node of the wave function

with energy Enl + ∆E, where Enl is the energy of the corresponding pseudo-atomic

eigenstate and ∆E is the excitation energy of pseudo atomic orbital due to its confine-

ment to a finite range. Additionally, rinn is the inner radius where the soft confinement

potential starts off.

Double Zeta Orbitals: The double zeta orbital is constructed through a proce-

dure reminiscent of the splitting of a Gaussian basis set. The split orbital is obtained

by constructing an analytical basis orbital that matches the first zeta orbital smoothly

at the radius rsplit. The functional form used for the split orbital is,

φ2ζ
l (r) =





rl(al − blr
2), if r < rsplit

l

φ1ζ
l (r), if r ≥ rsplit

l .
(15)

The split radius rsplit is determined by specifying a split norm parameter. This

parameter finds the matching radius of an analytical orbital which splits the first zeta

orbital into a double zeta basis. The matching radius is determined by specifying that

the norm of the split orbital relative to the norm of the first zeta orbital should have

the value split_norm. Valid numbers are in the range from (but not including) 0 to

1.

Polarization Orbitals: The polarization orbitals have higher angular momenta

than the valence orbitals. Such orbitals are generated by perturbing the single zeta

orbitals by an electric field, and extracting the l + 1 component of the perturbed

orbital.

Further, SIESTA is written in Fortran 90 and the computer memory is allocated

dynamically. Also, it may be compiled for serial or parallel processors’ execution.

All these reasons make simulations with several hundred atoms feasible with modest

workstations and desktop computers. In output, SIESTA provides total and partial

energies, atomic forces, stress tensor, electric dipole moment, atomic, orbital and bond
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populations (Mulliken), and electron density. It also provides geometry relaxation for

fixed or variable cell, constant-temperature molecular dynamics (Nose thermostat),

variable cell dynamics (Parrinello-Rahman), spin polarized calculations (collinear or

not), k-sampling of the Brillouin zone, and projected density of states. In the following

sections, an overview of the SIESTA package is given.

2.2.1 Quickstart

An appropriate Fortran Compiler is required for installing SIESTA. Although the

compiler can be downloaded and run under Windows operating system, Linux is

more appropriate and stable operating system for programming and scientific simu-

lations. Next we downloaded SIESTA, which is distributed freely for academic use

after registration.

The downloaded file for SIESTA is in compressed format that is unpacked and

then installed to obtain the fully functional program. The source code with the

Makefile resides in the SRC directory. The command ./configure in a terminal will

start an automatic scan of your system and then the make command will complete

the required installation. Although we did not edit, the configure script might need

some help in order to find the Fortran compiler. Also, it is recommended to install

(unpack and configure) SIESTA in /usr/local directory and then set the PATH and

link as suitable.

A fast way to test the installation of SIESTA and to get a feeling for the workings

of the program is implemented in directory Tests. There are several subdirectories

with pre-packaged (Flexible Data Format) FDF files and pseudopotential references in

this directory. After compiling SIESTA the command make will run the program in

subdirectory work, where all the resulting files can be found.
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2.2.2 FDF File

The main input file, which is read as the standard input, contains all the physical

data of the system and the parameters of the simulation to be performed. This file

is written in a special format called FDF that allows data to be given in any order or

to be omitted in favor of default values. Here we offer a glimpse of it through the

following rules:

1. The FDF syntax is a “data label” followed by its value. Values that are not

specified in the data file are assigned a default value.

2. FDF labels are case insensitive, and characters ‘-’ ‘ ’ ‘.’ in a data label are

ignored. Thus, LatticeConstant and lattice_constant represent the same

label.

3. All text following the ‘#’ character is taken as comment.

4. Logical values can be specified as T, true, .true., yes, F, false, .false., no.

Also a blank is equivalent to true.

5. Character strings should not be in apostrophes.

6. Real values which represent a physical magnitude must be followed by its units.

The function fdf_convfac in file ~/siesta/Src/fdf/fdf.f has the units that

are currently supported by the program. Also, it is important to include a

decimal point in a real number to distinguish it from an integer, in order to

prevent ambiguities when mixing the types on the same input line.

7. Complex data structures are called blocks and are placed between %block label

and a %endblock label.

8. It has the flexibility to include other FDF files and redirect the search for a

particular data label to another file. If a data label appears more than once, its
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first appearance is used.

Almost all of the tags are optional except NumberOfSpecies, NumberOfAtoms, and

ChemicalSpeciesLabel in addition to introducing the atomic positions via

AtomicCoordinatesAndAtomicSpecies. Rest is assigned default by SIESTA (which

can be seen in out.fdf file) if a given tag is not found in the input file.

2.2.3 Input parameters

The fdf file takes several input parameters. This section describes the changes made

in the different input parameters during the customizing of SIESTA.

• Geometry Constraints: The data label fix constraints to the change of atomic

coordinates during geometry relaxation or molecular dynamics. More details are

available in the instruction manual for SIESTA [22]. However, in this section

only the details used in simulation of the niobium wire are presented. Geometry

Constraints is a block input, and it can take several constraints within the block.

We needed to fix the position of 40 atoms out of 44 atoms. So we used the

position constraint. It fixes the positions of the specified atoms to their initial

values. Typical example is: %block GeometryConstraints

cellside c

cellangle alpha beta gamma

position from -1 to -10

position 4 5 6

rigid 1 2

%endblock GeometryConstraints

Lines may be up to 130 characters long. Ranges of atoms in a line may contain

up to 1000 atoms. All names must be in lower case. The list of atoms for a

given constraint may contain several atoms (as in lines 4 and 5) or a range (as

in the third line), but not both.
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• Geometry Relaxation: The molecular dynamics type of run has to be conjugate

gradient to obtain the relaxed structure of the system. So MD.TypeOfRun should

be added and set to CG because the default is set to Verlet for more then one-

atom systems. Along with type of run other parameters which are changed are

the number of CG steps, maximum force tolerance etc.

• PAO.Basis: Since we included the semi-core electrons in the simulation we had

to specify the PAO.Basis (pseudo atomic orbital (PAO) basis) in the FDF file.

Default values of rc are taken if they are set to 0. The format is also important.

The orbitals should be specified in the increasing values of l quantum number

and then n quantum number if there are more then one n values for one l

value. The tutorial has a method to find the optimum values for the cut-off

radius (rc) of orbitals by plotting the Final Total Energy of single atom for

different values of rc.

• PAO.EnergyShift: A standard for orbital-confining cutoff radii. It is the exci-

tation energy of the PAO’s due to the confinement to a finite-range. It offers

a general procedure for defining the confining radii of the original first− zeta

PAO’s for all the species guaranteeing the compensation of the basis. It has

effect when the block PAO.Basis is not present or when the radii specified in

that block are zero for the first zeta. It should be noted that PAO.EnergyShift

has to be positive (Default value: 0.02 Ry).

• Mesh Cut-off: Parameter defining the density of the real-space grids. The

parameter is given as an energy E, which implicitly defines the grid spacing ∆x

from the equivalent plane wave cut-off component kc = π/∆x (note that there

is no factor of 2 here) which is related to the energy as E = ~2k2
c/2me, where

me is the electron mass. A higher value (energy) of this parameter gives better

accuracy but it requires more and more computation power because the mesh is
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more and more finer. Making the MeshCutoff too small can lead to the eggbox

effect. This effect can increase the number of steps required for relaxation. The

block EggboxRemove can be used to handle this problem. Refer to the manual

for more details about this block.

• ElectronicTemperature: The electron temperature, T that enters in the Fermi

distribution

f(E) =
1

e(E−Ef)/kBT + 1
, (16)

where Ef is the Fermi energy, and kB is the Boltzmann constant. For molecules

with a very small HOMO-LUMO gap, the convergence rate of the self-consistent

loop can usually be improved by increasing the electron temperature to smooth

the Fermi distribution. Also metals (and in particular semi-metals) can some-

times be hard to converge at a low electron temperature, if there are band edges

close to the Fermi level. In such cases, it is often possible to use a smaller k-point

sampling if the the electron temperature is increased. The electron tempera-

ture has nothing to do with the lattice temperature or phonons, but is strictly

related to the electron distribution function. The default value is 300 Kelvin.

• Denchar: The program Denchar calculates charge densities and/or electronic

wavefunctions in real space of 3D grid points, from the output generated by

SIESTA. For spin-unpolarized calculations, the fully self-consistent charge den-

sity and the difference between the self-consistent field (SCF) charge density and

the superposition of atomic densities are calculated. In this way, we can study

how the chemical bonds change the charge distribution. To run the program the

first thing we must do is to run SIESTA for the system we are interested in, set-

ting up variable WriteDenchar to true. In this way SIESTA will generate two

files called SystemLabel.PLD and SystemLabel.DIM where information needed

to plot the charge density and/or wavefunctions in real space is dumped. We
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also need to have the file ChemicalSpecies.ion that contains the information

about the basis set for each species in our system. Besides these files, we will

need the density matrix file, SystemLabel.DM to plot the charge density and the

file SystemLabel.WFS to plot the wavefunctions. Finally, we need to define the

number of grid points and the three spanning vectors in the real space. The pro-

gram is run separately using the command denchar <SystemLabel.fdf> and

the output is printed in a standard Gaussian Cube format file, that is visualized

using the package Xcrysden.

2.2.4 Generationing the pseudopotential

The atomic pseudopotentials are stored either in binary files (ChemicalSpeciesLabel.vps)

or in ASCII files (ChemicalSpeciesLabel.psf), and are read at the beginning of the

execution for each species defined in the input file. These files are generated by

the ATOM program. It is included in siesta/Pseudo/atom. All pseudopotentials

should be thoroughly tested before using them. We refer to the standard literature on

pseudopotentials in ATOM manual siesta/Pseudo/atom/atom.tex. The program’s

basic capabilities are:

• All-electron DFT atomic calculations for arbitrary electronic configurations.

• Generation of ab-initio pseudopotentials (several flavors).

• Atomic calculations in which the effect of the core is represented by a previously

generated pseudopotential. These are useful to make sure that the pseudopo-

tential correctly reproduces the all-electron results for the valence complex.

Atom: The program ATOM has to be complied and configured separately. Go to

the /siesta/Pseudo directory and make appropriate changes to the Makefile for

a different compiler and type make to install the program. The Tutorial directory

has several examples that will help to test the program. Note: The program is very
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sensitive to the format of the input file. There is a scale at the end of the file that

will help to guide to enter the inputs. Make sure that the different input statements

including the comment statements are according to the particular format.

Nb Pseudopotential: The Nb pseudopotential was generated using tm2 method

with 13 electrons in the core cell. The orbitals used were 4s, 4p, 4d and 4f. The cor-

responding cut-off radii were 0.97, 1.04, 1.42 and 1.42 Bohrs. Also the pseudopotential

was non-relativistic and non-spin polarized.

2.3 Simulations and Results

The different structures of niobium nanowires, that were simulated using SIESTA

are described in this section. Several numerical and experimental results showed

consistent electronic properties of the smallest niobium contacts. Thus, we assumed

the smallest stable structure i.e., a niobium dimer and started with a relatively simpler

model of just two niobium atoms without any constraints. Then to test the effect of

constraints, we placed two fixed atoms on either side of the dimer. Next we moved to

our real system of having two semi-infinite electrodes with a hanging dimer. In each

of the subsections, simultaneous comparison of the obtained results is also made with

earlier published experimental and theoretical results.

2.3.1 Niobium dimer

We set our first simulation in SIESTA to obtain the relaxed structure of a simple

niobium dimer. The initial position as shown in Fig. 2 was set to be plus and minus

1.00 Å for the two atoms of the dimer. We did not put any geometry constraints

on any of the atoms and thus allowing them to move freely with each iteration to

minimize the energy and the force between the atoms. However, the iterations were

constrained by the tolerance levels. We set the tolerance level for density matrix by

defining the DM.Tolerance to be 10−4 and for force to be 0.01 eV/Å. Also, if the

simulation is not converging we set the upper limit for maximum allowed number of
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self consistent field iterations and force iterations. The upper limit for self consistent

field iterations MaxSCFIterations was set equal to 100 and the force iterations were

bounded by setting MD.NumCGsteps (Molecular Dynamics - Number of Conjugate

Gradient Steps) equal to 50. Since we want to obtain the relaxed structure we used

the Conjugate Gradient (CG) for the MD.TypeofRun (Molecular Dynamics Type of

Run). We also fix the maximum displacement for each conjugate gradient step to

be 0.1 Å. We choose the PAO.Basis to be double zeta polarized and the electronic

temperature set to 50 meV. The orbital confining cutoff radii were chosen by setting

PAO.EnergyShift equal to 150 meV. MeshCutoff was chosen 200 Ry to be balanced

between the computational power and accuracy.

The simulation converged at the relaxed distance between niobium atoms at 2.13

Å (Fig. 2). It took four conjugate gradient steps in approximately 750 seconds to

minimize the force to 0.001322 eV/Å. The earlier results have reported a relaxed dis-

tance as 2.117 Å for the singlet state of niobium dimer [23]. Further we also analyzed

the binding energy of the dimer. We ran the program explicitly for single niobium

atom and doubled the total energy. The difference of the total energy obtained from

single atoms simulation and dimer simulation was taken as the binding energy since

all other parameters were kept constant. Our simulations gave the total energy of

single atoms to be -1526.12 eV and the total energy of dimer was -3062.15 eV. These

numbers give us a binding energy as 9.91 eV for the dimer or 4.955 eV for each atom.

The reported binding energy is between 4 eV to 6 eV depending on the configuration

of the dimer as singlet or triplet state [23]. Also, Delta RHO and RHO is plotted in

Fig. 3 to support the dimerization. In conclusion, we verified that our simulations

give satisfactory results for the dimer.
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Figure 2: Final relaxed distance between the niobium dimer atoms is 2.113 Å. The
resulting wavefunction is also plotted at grid isovalue, −10−4 rendered both negative
and positive values.

2.3.2 Niobium dimer between two niobium atoms

The next simulation was run for a niobium dimer hanging between two other niobium

atoms. We set the initial the coordinates of the niobium dimer atoms such that the

distance, ‘d’, between the dimer atoms is 1.65 Å, and the positions of each of the

two outermost atoms is fixed at distances, a = a′ = 3.16 Å away from the respective

dimer atoms (Fig. 4). A new block GeometryConstraints, defined in previous

section, was used to fix the positions of outer atoms. Also, we choose these positions

such that the interatomic separation is greater then the dimer distance, and thus we

biased the simulation to dimerize the atoms in the middle instead of forming two

separate dimers. Most of the other parameters were kept similar, but to converge the

simulations we changed the PAO.EnergyShift equal to 20 meV, the PAO.Basis was

set to DoubleZeta and the DM.Tolerance to be 10−3. Some other parameters were

also changed during the trial and error part to make the program converge, but they

will not change the output significantly.
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Figure 3: Delta RHO (Top) is plotted at grid isovalue, 5 × 10−4 rendered both
negative and positive values and Valence pseudocharge density. RHO (Bottom) is
plotted at grid isovalue, 10−3 rendered for positive values only.
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After 51 conjugate gradient interaction steps the program converged and gave

the final relaxed coordinates. Fig. 4 shows the wavefunction along with the final

relaxed structure. The final relaxed positions were a = 2.91 Å, d = 2.19 Å, and

a′ = 2.87 Å. The results show that we started with the the initial position where

the dimer atoms were closer than the relaxed state atoms. Also, it was seen in test

simulations that if we start with the atoms placed at the positions separated by lattice

constants, the relaxed state can result in two dimers. All these decisions to choose

the initial coordinates can be justified by the limitation of SIESTA that we have to

start with initial conditions that are close the final expected state. On comparison

of the initial and final coordinates, we see that simulations in SIESTA changed the

coordinates upto 0.5 Å. Fig. 5 displays the RHO, the valence pseudocharge density

at the mesh used by dhscf.f, (which calculates the self-consistent field contributions

to Hamiltonian matrix elements, total energy, and atomic forces); and the Fig. 6

plots DRHO, i.e. the valence pseudocharge density minus the sum of atomic valence

pseudocharge densities of the relaxed system. The maximum force for these positions

was 0.08 eV/Å. There are no previous data to verify these results. However, we can

justify the distances using the fact that the outer fixed atoms try to pull the dimer

atoms in the middle. This increases the bond distance between the dimer atoms.

Also, a bulky lattice of niobium atoms is absent, so it was difficult to obtain a relaxed

state of free dimer. We consider the complete lattice in the remaining part of the

chapter.

2.3.3 Niobium dimer between two niobium electrodes

Finally, we moved to a more realistic situation of having two semi-infinite electrodes

with the niobium dimer hanging between the two tips of the electrodes. We analyzed

three different situations for the dimer. The first was to set the dimer exactly in the

center of the two tips, which we called the symmetric position. The next position
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Figure 4: Wave function is plotted at grid isovalue, 10−3 rendered for both positive
and negative values. The distances between different atoms are displayed by the
arrows. Initial distances were a = a′ = 3.16 Å and d = 1.65 Å whereas the final
relaxed positions were a = 2.91 Å, d = 2.19 Å, and a′ = 2.87 Å.

Figure 5: Valence pseudocharge density (RHO) is plotted at grid isovalue, 1.0 ren-
dered for positive values.

Figure 6: Bottom: Delta RHO is plotted at grid isovalue, 10−2 rendered for both
positive and negative values.
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was to displace the dimer slightly towards one of the electrode and we referred this

one as the asymmetric position. Finally, we tilted the dimer and obtained the relaxed

structure. This setup was referred to as the tilted positions. In each of the three cases

we used 21 atoms for each electrode. We set the positions of each atoms according

the the niobium lattice. The lattice was chosen so that electrode form a tip on one

end and regular bulk at the other end. The atom of the tip was allowed to move with

respect to each iteration, whereas the rest of the atoms in the electrode were fixed

using the geometry constraint block. Most parameters were same as the previous

case except DM.MixingWeight was set to 0.05 and DM.NumberPulay was set to 50 to

speed up the convergence process. In the next paragraphs we will explain each of

these structures in more details.

Symmetric Dimer: We started with the dimer placed symmetrically between

the electrode. Only the tip atoms of the electrode and the dimer atoms were allowed

to move. The geometry constraint block fixed the remaining 40 atoms during the

simulation. The resulting structure is shown in Fig. 7. The initial distances between

the electrode and dimer atoms were a = a′ = 2.78 Å and d = 2.05 Å. These values

were taken from the earlier published results and so we were expecting our relaxed

distances close to the initial values. The simulation did not change the coordinates

significantly except that the tip atoms were pulled inside by the electrodes and the

dimer distance increased by 2%. The final coordinates relaxed to a = a′ = 3.00

Å, d = 2.09 Å. These changes can be considered small, and thus the results are in

agreement with the distances reported in Ref. [3]. Fig. 7 displays the grid isovalue

for the valence pseudocharge density, RHO. It shows that the pseudocharge density

between the dimer and the electrode tips is reduced indicating a free dimer with

no significant chemical bonding with the electrodes. Further, Fig. 8 displays the

change in pseudocharge density DRHO which implies that during the simulation the

pseudocharge density for the valence shell has significantly increased between the
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Figure 7: Symmetric niobium Dimer between two niobium electrodes with valence
pseudo charge density, RHO plotted for grid isovalue 10−1 rendered for positive values
only. The initial distances were a = a′ = 2.78 Å and d = 2.05 Å, and the final relaxed
distances were a = a′ = 3.00 Å and d = 2.09 Å.

Figure 8: Symmetric niobium Dimer between two niobium electrodes with DRHO
plotted for isovalue 10−4 rendered for positive values only.

dimer atoms. However, it is to be noted that the isovalues has been chosen such

that they magnify the results making them easy to compare. These results prove the

expected dimerization process.

Asymmetric Dimer: In case of asymmetric dimer, we increased the inter-

electrode distance to 9.2 Å and displaced the dimer to one side by 1.05 Å so that

the coordinates of the dimer were at distances 1.55 Å and 0.5 Å from the origin. As

shown in Fig. 9, we placed the atoms with a = 3.05 Å, d = 2.05 Å, and a′ = 3.55

Å. The final coordinates relaxed to a = 3.01 Å, d = 2.09 Å, and a′ = 3.55 Å. So,

the result we obtained is an asymmetric dimer and it is comparable to earlier results

[3]. However, we could not obtain a relaxed structure at the electrode distance of
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Figure 9: Asymmetric niobium dimer between two niobium electrodes with RHO
plotted for grid isovalue 10−1 rendered for positive values only. The initial distances
were a = 3.05 Å, d = 2.05 Å and a′ = 3.55 Å; and the final relaxed distances were
a = 3.01 Å, d = 2.09 Å, and a′ = 3.55 Å.

Figure 10: Asymmetric niobium dimer between two niobium electrodes with DRHO
plotted for grid isovalue 10−5 rendered for positive values only.

8.5 Å. Similar to the symmetric structure case we obtained figures for the valence

pseudocharge density, RHO (Fig. 9) and change in pseudocharge density, DRHO

(Fig. 10) which proves the dimerization.

Tilted Dimer: We studied this structure in more detail. We started by reducing

the distance between the two electrodes, and then changed the initial rotation angle

of the dimer axis from 90 ◦ to 110 ◦ in five different steps of 90, 94, 97, 100, and 110

degrees. The dimer stayed in its original position for the 90 ◦. However, for all other

angles except the 110 ◦, we obtained the relaxed angle of 99 ◦ between the dimer

axis and the line connecting the tip of the two electrodes. We obtained the relaxed

structure for 6.50 Å, 6.63 Å and 6.8 Å; and we observed that the change in distance
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Figure 11: The initial angle was 97 ◦ while the relaxed final angle between the
dimer axis and the axis connecting the two niobium electrodes was 99 ◦. The valence
pseudocharge density, RHO, is plotted for grid isovalue 10−1 rendered for positive
values only.

between the electrodes did not change the angle of rotation significantly. Finally,

for 110 ◦, the simulation did not converge. Fig. 11 displays the final angle between

the dimer axis and the line connecting the two niobium electrodes with the RHO

density isosurface. Fig. 12 displays the final distances of tilted dimer between two

niobium electrodes with delta RHO density isosurface rendered for both the negative

and positive values.

The results obtained from SIESTA are not in close agreement with the earlier

published results. While Marchenkov et al. [3], have shown that the tilted dimer

should make an angle of 94 ◦ with the electrodes, we have obtained 99 ◦. Another

notable difference is the relaxed distance between the tip atoms of the electrodes.

Our results give a tip to tip distance between 6.8 Å and 6.9 Å as compared to 6.63

Å published earlier. The differences can be attributed to the difference in method

of calculations. The previous results have been calculated using plane-wave basis

whereas we have used a basis set that resembles the system wavefunctions.

In conclusion, we can say that we verified the earlier published results using

SIESTA. One of the major problems with SIESTA is that the simulations may never

converge. But given this disadvantage, we simulated all the results on a desktop

computer using a single processor. All the results are obtained in comparatively less
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Figure 12: Final positions of tilted dimer between two niobium Electrodes with
DRHO plotted for grid isovalue 10−3 rendered for both positive and negative values.

time then the ones obtained using plane-wave basis. A previous intuition of the final

relaxed structure was definitely helpful for our case. Several times we have observed

that some atom may start moving in some arbitrary direction and still the simula-

tion converged. So we obtained some other relaxed state in which we may not be

interested. However, in our simulations, we had previous knowledge of the relaxed

state, thus we were able to verify the results successfully. Once we had the required

structure, we deal with the transport properties in the next chapter.
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CHAPTER III

ELECTRON TRANSPORT IN NANOWIRES

The theoretical description of quantum electron transport through molecular sys-

tems is a complex many-body problem similar to that of the electronic structure

calculation. The study of electron transport became unavoidable when the advances

in the semiconductor technology made it possible to fabricate conductors so small

that the quantum nature of electrons could be observed directly in transport experi-

ments. These semiconductor structures are characterized as mesoscopic systems (the

lengthscales are of the order of 1 µm), intermediate between the microscopic and

macroscopic scales. So to study the variety of transport calculation problems, di-

verse approaches, ranging from exact many particle problem treatment within some

simplified model for the system to semi-empirical models for transport through quite

realistic structures consisting of hundreds of atoms, were developed. Here we will

focus mainly on realistic systems such that we include the atomic descriptions of

both the molecular system and the metal electrodes. Among the different available

methods we use the ab initio method, often known as first principle calculations that

start from the geometry of the system, then transport properties can be calculated

using the Green’s functions and the DFT used in the previous chapter. Although

the results depend on the degree of approximations used, the main advantage of the

ab initio method is that the obtained results are free from any empirical estimations

and expectations needed in other methods. Moreover, the approximations used in the

numerical methods can be improved on, and thus the convergence can be checked.

In this chapter a general method for describing quantum electron transport will be

introduced. We demonstrate how the transport formalism can be combined with

34



standard electronic structure methods to provide a first-principles description of elec-

tron transport in atomic-scale systems. The method is based on the non-equilibrium

Green’s function (NEGF) formalism of Keldysh [24] and Kadanoff and Baym [25],

and originally was used to study transport in mesoscopic systems.

The chapter starts with an introduction of three important length scales that are

used to characterize electron transport in the quantum regime. Further, the gen-

eral transport formalism is introduced and an expression for the current through a

quantum constriction is derived under fairly general conditions. For non-interacting

electrons the obtained formula is shown to reduce to the well-known Landauer for-

mula. A brief discussion of the NEGF method describing transport through a single

energy level is presented to give the background of the package Atomistix, which was

used for calculating the transport properties. A more comprehensive account of the

theory presented in this chapter can be found in Refs. [26, 27, 28]. We also describe

important parameters used in Atomistix to run the simulation on a desktop computer.

Finally, we compare the transport properties of niobium nanowire with the results

published by Marchenkov et. al.

3.1 Length Scales

Electrical conductance, relating the current through a conductor to the applied volt-

age G = I(V )/V , is a key quantity in the description of electron transport. For a

macroscopic sample the classical conductance is given by

G = σ
A

L
, (17)

where A and L are the cross-sectional area and the length of the sample, respec-

tively, and σ is the material- dependent conductivity whose inverse is also known as

resistivity. When the dimensions of the sample become comparable to the de Broglie

wavelength of the particles, the quantum nature of the charge carriers becomes im-

portant, and the classical relation, Eq. (17), breaks down. Next, we introduce the
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three length scales; Fermi wavelength, phase coherence length, and mean free path.

These scales are important in the microscopic description of electron transport.

Fermi wavelength: The wave function of an electron in a crystalline metal

contains a Bloch factor, exp(ikr), that determines the complex phase of the wave

function throughout the crystal [4]. The wavelength of this oscillating phase asso-

ciated with a conduction electron at the Fermi level is called the Fermi wavelength,

λF = 2π/kF . In metals the Fermi wavelength is of the order of the lattice spacing,

i.e., a few Å; while in semiconductors where the density of conduction electrons is

very low, the Fermi wavelength can be tens of nanometers. These numbers give an

estimate of the limiting length of a quasi one-dimensional quantum wire.

Phase coherence length: Physically, the phase coherence length, lφ, defines

the length scale on which the electron’s wavefunction retains information about the

initial phase; i.e., the distance a conduction electron moves before its phase is lost,

i.e., lφ = vF τφ, where vF is the Fermi velocity. Therefore quantum interference

can be observed on this length scale. Here, τφ, is the phase coherence time during

which the phase of an electron is completely lost due to inelastic interactions with

the dynamic environment of phonons, magnetic impurities, and other conduction

electrons. However, static scatterers such as lattice defects, boundaries, or impurities

do not destroy the electronic phase.

The decoherence can be illustrated by considering an electron in the two possible

states |a〉 and |b〉. During the time τφ the electron interacts with another system

initially in a state |0〉, and the combined states evolve as: |a〉 ⊗ |0〉 → |a〉 ⊗ |1〉 and

|b〉 ⊗ |0〉 → |b〉 ⊗ |0〉 . The consequence is

(|a〉+ eiφ|b〉)⊗ |0〉 → |a〉 ⊗ |1〉+ eiφ|b〉 ⊗ |0〉 (18)

and the state of the electron thus evolves from the pure state |a〉+eiφ|b〉, to the mixed

state |a〉〈a| + |b〉〈b|, in which the phase is completely lost. At low temperatures,

external degrees of freedom are frozen out, and lφ increases accordingly. A typical
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phase coherence length for Au at T = 1 K is around 1µm [29].

Mean free path: The mean free path is defined as lm = vF τm, where τm is

the time it takes for a conduction electron to change its initial momentum through

scattering events. However, these events can be elastic as well as inelastic, so τm is not

related to τφ. In a perfect crystal, the electron moves unhindered, and thus τm = ∞
whereas in a real system, the presence of scatterers will reduce τm to a finite value.

In combination with the characteristic system dimension, L, the relative sizes of

the length scales introduced above define different transport regimes. The systems

considered in the present work are assumed to be in the phase-coherent regime where

lφ > L. Additionally, lm > L can be realized in high purity samples like atomic

contacts [29] and carbon nanotubes [30]. Under these conditions electron transport

is said to be ballistic, since the electrons can move unhindered through the system.

However, the formation of a good contact is crucial; because in most molecular junc-

tions, the electrons will scatter significantly at the interface between electrodes and

molecule as well as inside the molecule itself. In this case, lφ > L > lm and the trans-

port are called diffusive. The distance between atoms is comparable to λF in a metal,

and therefore molecules coupled to metallic leads must take the full atomic structure

into account. The section is concluded by stating the relevant relation of length scales

that characterize the molecular contacts investigated in this work: λF ' lm < L < lφ.

3.2 The Landauer Scattering Approach

If phase coherence length is greater than the dimension of the system, all the char-

acteristic lengths of the device coherence is maintained over all distinct paths of the

device. Then, the entire circuit itself acts as a quantum scatterer of coherent electrons

from the input leads, which are considered to act as perfect reservoirs for electrons.

Pursuing this concept further Landauer [31] proved that when the entire device region

is quantum coherent, it is possible that the transport properties of the system may
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Figure 13: Scattering problem with charge reservoirs injecting electron waves into
ideal leads that connect to the device region.

be obtained by using a scattering matrix approach. Moreover, he was able to show

that the conductance of a quantum coherent circuit is quantized and depends on the

transmission coefficients of the scattering matrix only.

The Scattering Matrix Formalism: Landauer considered the physical situ-

ation depicted in Fig. 13, where, charge reservoirs inject electron waves into ideal

leads that connect to the device region, which is considered as a scattering center.

The reservoirs absorb an incident electron perfectly without any backscattering and

the leads are considered as electron waveguides that restrict the motion to only one

dimension. This restriction quantizes the electronic states in the leads, which implies

that only a finite number of modes are capable of propagating to and from the de-

vice region. Sharvin’s conductance formula predicts semiclassically that this number

is proportional to k2
F A, where A is the cross-sectional area of the conductor. With

the physical picture in place, the scattering matrix approach can now be applied in

order to solve for charge transport across a coherent device. To begin, we define the

scattering matrix analogous to standard quantum mechanics textbooks [32]:

S =




s11 s12

s21 s22


 =




r t′

t r′


 , (19)
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such that S relates the incoming probability amplitudes, ai, with the outgoing am-

plitudes, bi, in the following fashion:


b1

b2


 =




r t′

t r′






a1

a2


 . (20)

In general sij of the scattering matrix are matrices whose entries relate the probabil-

ity of an incoming electron wave on mode i being scattered into mode j. Therefore,

in general the ai and bi in the previous equation are vectors. Moreover, the di-

agonal terms in the scattering matrix refer to reflection of a wave on mode i into

mode j on the same lead, whereas the off diagonal terms relate the transmission of

electron waves. Additionally, to ensure particle number conservation, the scattering

matrix must be unitary, i.e., SS†=I. This implies that the scattering matrix must

have an inverse and thus the matrix is diagonalizable. Further, the decomposition

of the scattering matrix into individual, non-interacting modes is unique up to per-

mutations [33]. So, an incoming electron wave on mode i is either transmitted onto

mode i of the other lead or is reflected back into mode i of the original lead in the

newly diagonalized basis. These diagonalized modes of the system that have been

decoupled from one another are also referred to as conduction channels. Hence, the

problem of calculating the transport properties for an entire system has been reduced

to summing contributions from independent channels. Further, in transport theory,

the calculation of the conductance of a device adds practical importance to Landauer

formalism.

Single Channel Conductance: The problem of calculating the conductance of

a device has been simplified to the conductance of single channel that can be solved

by calculating the current through a quantum scatterer. Therefore we introduce

the creation and annihilation operators for electron waves on mode m of lead α

in the following way: the energy dependent creation and annihilation operators for

incoming electron waves are a†mα(ε) and amα(ε), respectively. Similarly b†mα(ε) and
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bmα(ε) refer to the creation and annihilation operators for outgoing electrons. Using

these definitions it can be shown that the current due to mode m on lead α is given

by the expression [34]:

Imα =

∫ ∞

−∞
dε

(〈a†mα(ε)amα(ε)〉 − 〈b†mα(ε)bmα(ε)〉) . (21)

Clearly, a net current is caused by an imbalance in the population of incoming and

outgoing electrons from the device; however it can be simplified using the scattering

matrix, which relates the incoming and outgoing electrons. Using the relation:

bmα =
∑

nβ

(sαβ)mnanβ, (22)

and also the fact that the Fermi distribution of the reservoir imposes the condition:

〈a†mα(ε)amα(ε)〉 = δmnδαβfα(ε), (23)

the equation for the current in lead 1 (summed over all modes) can be rewritten as:

I1 =
2e

h

∫ ∞

−∞
dε(f1(ε)− f2(ε+ eV ))Tr(t†t). (24)

Also at the limiting case of small voltages (V ¿ EF ) and at T = 0K, the integral

will evaluate to eV · Tr(t†t) and the current can be rewritten as:

I1 =
2e2

h
Tr(t†t)V. (25)

The above equation gives the expression for conductance as::

G =
2e2

h
Tr(t†t) = G0 · Tr(t†t), (26)

G0 ≈ 77µS ≈ 1

12.9kΩ
. (27)

Here it should be noted that the expression for conductance is in terms of fundamental

constants and scattering matrix parameters only. The fundamental constants combine
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to form the quantum of conductance, G0. From this expression, the total conductance

of the device is then given by a sum over all conductance channels:

Gtot =
∑

i

Gi = G0

∑
i

τi, (28)

where τi is termed the transmission coefficient of channel i and is given by, τi =

Tr(t†i ti). Since we know that the decomposition of the scattering matrix into individ-

ual conduction channels is unique (up to a permutation), any transport quantity of a

mesoscopic coherent device can be given in terms of the transmission coefficients of

its conduction channels. These sets of transmission coefficients are also known as the

mesoscopic PIN code of that device. However, though the effect can be predicted us-

ing first principles arguments, some outstanding questions still remain. For instance,

if we let τ = 1 (i.e., a ballistic point contact), this implies that all electrons incident

on the scattering center are transmitted with a probability of one, why would the

channel still have a finite conductance? One would naively suspect that for a ballistic

channel the conductance should approach infinity since there are no scattering centers

to impede the transmission of electrons. The answer to this question is subtle and

lies in the fact that the distribution of states in the leads is not a Fermi distribution

[35]; hence there is a finite conductance of a ballistic contact even if τ = 1.

3.3 Non-equilibrium Green’s Function technique [27]

Turning back to the picture introduced in the Landauer formulation of quantum cur-

rents, we introduce an alternative/complimentary description to DFT of the metal-

molecule-metal system, which is known as non-equilibrium Green’s function (NEGF)

method. Besides calculating the expressions for current and charge densities in

nanoscale (both molecular, metallic, and semiconductor) conductors under bias, we

give some intuitive explanations of one particle Green’s functions in a compact form

together with derivations of the expressions for the current and the density matrix.

Starting with the introduction of Green’s function, we develop formalism for the self
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energies of the leads. With these definitions in place, we calculate the expression for

current and transmission spectrum.

Green’s Function: In the discrete Schrödinger equation, H|n〉 = E|n〉, we divide

the Hamiltonian H and wavefunction |n〉 of the system into contact (H1,2, |ψ1,2〉) and

device (Hd, |ψd〉) subspaces:



H1 τ1 0

τ †1 Hd τ †2

0 τ2 H2







|ψ1〉
|ψd〉
|ψ2〉




= E




|ψ1〉
|ψd〉
|ψ2〉



, (29)

where τ1,2 describes the interaction between device and contacts. In general we have

N contacts (H1,...,N) connecting (τ1,...,N) the device Hd to the reservoirs. It is also

assumed that the contacts are independent, i.e., there are no cross terms (τ) between

the different contacts. Now the Green’s function, G(E) can be defined as:

(E −H)G(E) = I. (30)

The reason for calculating the Green’s function is that it is easier than solving the

Schrödinger equation. Moreover, the Green’s function gives the response of a system

to a constant perturbation, |v〉 in the perturbed Schrödinger equation:

H|ψ〉+ |v〉 = E|ψ〉. (31)

The response to this perturbation is given by:

(E −H)|ψ〉 = −|v〉
|ψ〉 = −G(E)|v〉.

(32)

Notation: In this text we will denote the retarded Green’s function with G or GR and

the advanced with G† or sometimes with GA. Additionally, capital G denotes the full

Green’s function, and its sub-matrices are denoted by G1, Gd , G1d etc. Lowercase

is used for the Green’s functions of the isolated subsystems, e.g., (E − H2)g2 = I .

Also, note that the retarded Green’s function of the isolated contact (g2), gives the
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solution corresponding to an outgoing wave in the contact and the advanced Green’s

function, (g†2), gives the solution corresponding to an incoming wave.

Self Energies: The Green’s function of the device (Gd) can be calculated sepa-

rately without calculating the whole Green’s function (G). We start from the defini-

tion of the Green’s function and obtain:



E −H1 −τ1 0

−τ †1 E −Hd −τ †2
0 −τ2 E −H2







G1 G1d G12

Gd1 Gd Gd2

G21 G2d G2




=




I 0 0

0 I 0

0 0 I




(33)

Selecting the three equations in the second column:

(E −H1)G1d − τ1Gd = 0,

−τ †1G1d + (E −Hd)Gd − τ †2G2d = I,

(E −H2)G2d − τ2Gd = 0.

(34)

Solving the above set of equations, we obtain:

Gd = (E −Hd − Σ1 − Σ2)
−1, (35)

where the expressions for Σ1 = τ †1g1τ1 and Σ2 = τ †2g2τ2 are the so called self-energies.

The effect of the contacts on the device can be interpreted as the addition of the self-

energies to the device Hamiltonian, since when we calculate the Green’s function of the

device, we just calculate the Green’s function for the effective HamiltonianHeffective =

Hd+Σ1+Σ2. However, this interpretation is valid during the calculation of the Green’s

function only, because the eigen-values and -vectors of this effective Hamiltonian are

quantities that cannot be interpreted easily. Additionally, the Green’s function gives

the spectral function, A = i(G−G†) that gives the density of states and all solutions

to the Schrödinger equation. To prove this, we start with the two solutions |ψR〉 and

|ψA〉 corresponding to advanced and retarded Green’s functions for the Schrödinger

Eq. (31) in presence of a perturbation |v〉:

|ψ〉A = −G|v〉 (36)
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|ψ〉R = −G†|v〉. (37)

Since the difference of these solutions (|ψ〉A − |ψ〉R) = (G − G†)|v〉 = −iA|v〉) is a

solution to the Schrödinger equation:

(E −H)(|ψ〉A − |ψ〉R) = (E −H)(G−G†)|v〉 = (I − I)|v〉) = 0, (38)

we have |ψ〉 = A|v〉, that is also a solution to the Schrödinger equation for any vector

|v〉. Next we expand the Green’s function in the eigenbasis to show that the spectral

function actually gives all solutions to the Schrödinger equation:

G =
1

E −H
=

∫

k

|k〉〈k|
E + iδ − εn

, (39)

where the δ is the small imaginary part, |k〉’s are all normalized eigenvectors toH with

the corresponding eigenvalues εk. Expanding the spectral function in the eigenbasis

gives:

A = i

(
1

E + iδ −H
− 1

E − iδ −H

)
(40)

= i

∫
dk|k〉〈k|

(
1

E + iδ − εk
− 1

E − iδ − εk

)
(41)

= i

∫
dk|k〉〈k|

(
2δ

(E − εk)2 + δ2

)
(42)

where δ is our infinitesimal imaginary part of the energy. In the limiting case when

δ goes to zero we obtain:

A = 2π

∫
dkδ(E − εk)|k〉〈k| (43)

= 2πDOS(E)|k(E)〉〈k(E)| (44)

In the Eq. (42), since 2δ
(E−εk)2+δ2 goes to zero everywhere except at E = εn, the

expression for A simplifies to integration of the delta function, δ(E − εn) over E that

gives the 2πδ(E−εn) factor along with the function DOS(E) or density of states. Eq.

(44) shows that the spectral function gives us all solutions to the Schrödinger equation.
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The same method can be extrapolated to find all solutions to the Schrödinger equation

of the isolated contact from its spectral function, ai.

Transport Problem: After we have the expression for the self-energy of the

individual contacts, we consider the transport problem by analyzing the response to

the incoming wave. First, we note that in the non-equilibrium case reservoirs with

different chemical potentials will inject electrons and occupy the states corresponding

to incoming waves in the contacts. Therefore, to find the solutions corresponding to

these incoming waves, we consider contact 1 isolated from the other contacts and the

device. It should be noted that at a certain energy, we will have solutions correspond-

ing to an incoming wave that is totally reflected at the end of the contact. These

solutions are denoted with |ψ1,n〉, where 1 is the contact number and n is a quantum

number indicating that we may have several modes in the contacts. As shown earlier

these solutions can be obtained from the spectral function a1 of the isolated contact.

To calculate the wavefunction on the whole system caused by the incoming wave in

contact 1, we connect the contacts to the device. Also a wavefunction should be

of the form |ψ1,n〉 + |ψR〉, where |ψ1,n〉 is the totally reflected wave and |ψR〉 is the

retarded response of the whole system. Putting in the ansatz |ψ1,n〉 + |ψR〉 into the

Schrödinger equation (Eq. (29)) gives:




H1 τ1 0

τ †1 Hd τ †2

0 τ2 H2




(|ψ1,n〉+ |ψR〉) = E(|ψ1,n〉+ |ψR〉) (45)




E|ψ1,n〉
τ †1 |ψ1,n〉

0




+




H1 τ1 0

τ †1 Hd τ †2

0 τ2 H2



|ψR〉 = E(|ψ1,n〉+ |ψR〉) (46)

H|ψR〉 = E|ψR〉 − τ †1 |ψ1,n〉. (47)
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It should be noted that in the above equation:

|ψR〉 ≡




|ψ1〉
|ψd〉
|ψ2〉




and |ψ1,n〉 ≡




|ψ1,n〉
0

0



. (48)

Similar to Eq. (31), we see that |ψR〉 is nothing else but the response of the whole

system to a perturbation of −τ †1 |ψ1,n〉,

|ψR〉 = Gτ †1 |ψ1,n〉. (49)

Note that we have chosen the retarded response that means the part of the wave only

that is traveling towards the device is the incoming wave. It will be useful to have

the expressions for the device wavefunction (|ψd〉) and contact wavefunction (|ψ1,2〉).

|ψd〉 = Gdτ
†
1 |ψ1,n〉 (50)

|ψ2〉 = g2τ2|ψd〉 (51)

= g2τ2Gdτ
†
1 |ψ1,n〉. (52)

To calculate the wavefunction in the contact containing the incoming wave (contact

1) we need to add the incoming wave:

|ψ1〉 = (1 + g1τ1Gdτ
†
1 )|ψ1,n〉. (53)

Knowing the wavefunctions corresponding to incoming waves in different contacts

enables us to fill up the different solutions according to the electron reservoirs filling

the contacts.

In the non-equilibrium case we are often interested in the charge density matrix

ρ,

ρ =
∑

k

f(k, µ)|ψk〉〈ψk|, (54)

where the sum runs over all states with the occupation number f(Ek, µ), which is

determined by the reservoirs filling the incoming waves in the contacts.

f(Ek, µ1) =
1

1 + e(Ek−µ1)/kBT
(55)
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is the Fermi-Dirac function with the chemical potential µ1, and temperature (T )

of the reservoir responsible for injecting the electrons into the contacts. Also the

wavefunction on the device is given by an incoming wave in contact 1, which is given

by expression in Eq. (51). Adding up all states from contact 1 gives:

ρd[from contact 1] =

∫ ∞

E=−∞
dEDOS(E)f(E, µ1)|ψk〉〈ψk| (56)

=

∫ ∞

E=−∞
dEf(E, µ1)

∑

k

DOS(E)Gdτ
†
1 |ψ1,k〉〈ψ1,k|τ1G†d (57)

=

∫ ∞

E=−∞
dEf(E, µ1)Gdτ

†
1

(∑

k

DOS(E)|ψ1,k〉〈ψ1,k|
)
τ1G

†
d (58)

=

∫ ∞

E=−∞
dEf(E, µ1)Gdτ

†
1

a1

2π
τ1G

†
d. (59)

Introducing the new quantity Γ1 = τ1a1τ
†
1 = i(Σ1−Σ†

1), we obtain the simple formula:

ρ[from contact 1] =
1

2π

∫ ∞

E=−∞
dEf(E, µ1)GdΓ1G

†
d. (60)

The total charge density thus becomes a sum over all contacts:

ρ =
2(2 for spin)

2π

∫ ∞

E=−∞
dE

∑
i

f(E, µi)GdΓiG
†
d. (61)

Probability Current and Transmission: A current arises when there is a

difference in chemical potentials in the reservoirs that are filling the contact device.

This current can be calculated in a way similar to that used to calculate the charge

density in the previous paragraph, i.e., we use the expression for wavefunction to

obtain the physical quantity current. The reason for using a wavefunction is the not-

so-clear velocity operator for a discrete Hamiltonian. In the continuum case, velocity

is clearly defined and thus we can obtain nice expression. In our case we have to

use the wavefunctions for the system to obtain the current that has a probability

associated with it. Therefore, we use the definition of velocity analogous to the

one in fluid mechanics and derive an expression for the current from the continuity

equation using two contacts. Since in steady-state, the probability to find an electron
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on the device is
∑

i |ψi|2 (where the sum runs over the device subspace) is conserved,

we have the following continuity equation:

0 =

δ
∑

i

|ψi|2

δt
(62)

=
∑

i

δ〈ψ|i〉〈i|ψ〉
δt

(63)

=
∑

i

(
δ〈ψ|i〉
δt

〈i|ψ〉+ 〈ψ|i〉δ〈i|ψ〉
δt

) (64)

=
i

~
∑

i

(〈ψ|H|i〉〈i|ψ〉 − 〈ψ|i〉〈i|H|ψ〉) (65)

=
i

~
∑

i

(〈ψ|H|ψd〉 − 〈ψd|H|ψ〉) (66)

=
i

~
∑

i

(〈ψ|Hd + τ1 + τ2|ψd〉 − 〈ψd|Hd + τ †1 + τ †2 |ψ〉) (67)

=
i

~
∑

i

([〈ψ1|τ1|ψd〉 − 〈ψd|τ †1 |ψ1〉] + [〈ψ2|τ2|ψd〉 − 〈ψd|τ †2 |ψ2〉]). (68)

Using the previously derived results the in continuity equation, we obtain Eq. (68) in

which the first term in the bracket represents the incoming probability current into

the device from contact 1 and the one in second bracket from contact 2. Generalizing

to an arbitrary contact i gives us the electric current (at one energy) as the charge

(-e) times the probability current:

ii = −ie
~

(
〈ψi|τi|ψd〉 − 〈ψd|τ †i |ψi〉

)
. (69)

Here, ii is defined as positive for a current from the contacts into the device. The

total current through the device can be calculated by putting in the wavefunction

of the device and the contacts (|ψd〉, |ψ1〉, |ψ2〉) together and then adding all the

contributions. Thus, the current into the device from a incoming wave of one energy

48



(E) in contact 1 (|ψ1,n〉) through the coupling defined by τ2 is:

i2 from 1 = −ie
~

(
〈ψ2|τ2|ψd〉 − 〈ψd|τ †2 |ψ2〉

)
(70)

= −ie
~

(
〈ψ1,n|τ1G†dτ †2g†2τ2Gdτ

†
1 |ψ1,n〉 − 〈ψ1,n|τ1G†dτ †2g2τ2Gdτ

†
1 |ψ1,n〉

)
(71)

= −ie
~
〈ψ1,n|τ1G†dτ †2(g†2 − g2)τ2Gdτ

†
1 |ψ1,n〉 (72)

= − e
~
〈ψ1,n|τ1G†dΓ2Gdτ

†
1 |ψ1,n〉. (73)

Adding over the modes n and noting that the levels are filled from the reservoir

connected to contact 1 gives (2 for spin):

I2 from 1 = −2
e

~

∫ ∞

E=−∞
dEf(E, µ1)

∑
n

DOS(E)〈ψ1,n|τ1G†dΓ2Gdτ
†
1 |ψ1,n〉 (74)

=
2e

~

∫ ∞

E=−∞
dEf(E, µ1)

∑
m,n

DOS(E)〈ψ1,n|τ1|m〉〈m|G†dΓ2Gdτ
†
1 |ψ1,n〉 (75)

=
2e

~

∫ ∞

E=−∞
dEf(E, µ1)

∑
m

〈m|G†dΓ2Gdτ
†
1

(∑
n

DOS(E)|ψ1,n〉〈ψ1,n|
)
τ1|m〉

(76)

=
2e

~

∫ ∞

E=−∞
dEf(E, µ1)

∑
m

〈m|G†dΓ2Gdτ
†
1

a1

2π
τ1|m〉 (77)

=
e

π~

∫ ∞

E=−∞
dEf(E, µ1)Tr(G†dΓ2GdΓ1). (78)

(79)

To get the total current through the device, the current from contact two has to be

subtracted away:

I =
e

π~

∫ ∞

E=−∞
dE (f(E, µ1)− f(E, µ2)) Tr(G†dΓ2GdΓ1), (80)

which is exactly the Landauer formula for the current (Eq. (24)).

3.4 Atomistix Tool Kit

Among the different available choices to ab initio electron transport simulation codes,

we used the Atomistix Tool Kit, which was earlier known as TransSIESTA (transport

49



properties using SIESTA) [36, 37, 38, 39]. It is a program capable of modeling elec-

trical properties of nanostructured systems coupled to semi-infinite electrodes (open

system). For instance, the two electrodes could be metal crystals and the nanostruc-

ture could consist of molecules between the metal surfaces.

The NEGF techniques are combined with the DFT for the electronic structure

calculations. The method is capable of modeling the electronic structure of geometries

where periodic boundary conditions are employed in the x and y direction, while

in the z direction the system is divided into three regions with two semi-infinite

atomic systems (viewed as periodic crystals) coupled via a scattering region in the

middle. Before the semi-infinite system calculation can start, a separate calculation

of the bulk phase of the electrodes must be performed in order to obtain the bulk

Hamiltonian parameters. This Hamiltonian is used for calculating the surface Green’s

function of the electrode. Next a computational supercell is defined that includes all

atoms in the left electrode, scattering region and right electrode. The interaction

range of the localized basis set determines the number of atoms needed to describe

the electrode region. In the open system calculation, all Hamiltonian parameters

within the supercell are calculated within a DFT self-consistent approach and passed

to the NEGF subroutine. The Hamiltonian parameters of the electrode atoms are

substituted with bulk Hamiltonian parameters and determine the non-equilibrium

(NE) density matrix of the system by combining the supercell Hamiltonian with the

remainder of the electrodes using the surface Green’s functions. New Hamiltonian

parameters are determined from the NE density, and the steps are repeated self-

consistently.

To start the calculation, a starting guess for the potential in the scattering region

is used, typically from a separate bulk calculation in the supercell region. When a

bias voltage is applied the semi-infinite electrode systems have different electrochem-

ical potentials, and a good starting point across the scattering region is to start from
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the unbiased system potential. The Hamiltonian matrix is calculated from this start-

ing guess using a localized basis set. This matrix is used to setup the NEGF of the

system. In the next step the NE density matrix is calculated from the NEGF. The

density matrix defines the effective potential in the scattering region and thereby new

Hamiltonian parameters. The steps are repeated until a self-consistent solution is

found. Once the self-consistent Hamiltonian is obtained, post-processing tools can

be used to extract additional information. It is possible to calculate transmission

coefficients within an energy window and separate transmission into eigenchannels.

It also calculates the total current from transmission. Additionally, left or right prop-

agating scattering states for a particular energy can be obtained and separated into

eigenchannels. Eigenstates of projected self-consistent Hamiltonian are also accessi-

ble. Current-voltage characteristics can be obtained after successful calculation for a

range of voltages.

Just like in SIESTA, all the parameters for the simulation can be defined in the

script. However, the difference is that SIESTA uses FORTRAN whereas Atomistix

uses Python programming language. Also, Atomistix is more sophisticated and has

a graphical user interface Virtual Nano Lab (VNL). We installed the software Atom-

istix along with VNL and defined all our simulation parameters using VNL. The script

(*.py file) is generated while using VNL and can be accessed any time for detailed

information about the simulation parameters. Since Atomistix is based on an algo-

rithm similar to that of SIESTA, most of the parameters defined in VNL are same

as the parameters defined in SIESTA, and their details are given in previous chapter.

Besides the common parameters there are some additional parameters in Atomistix

because this software can handle the quantum transport simulations. Therefore, in

this section we present an overview of these new parameters.
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Figure 14: Screenshot of Atomistix software package.

3.4.1 Two-Probe Set-up

The general definition of a two-probe system is a geometry where two semi-infinite

periodic systems, or electrodes, are combined with a finite scattering region, called

the central region. The electrodes are created by cleaving a crystal or a nanotube,

and the cleaved surfaces are then combined with the central region to form the two-

probe system. VNL automatically takes care of most of the setup of the electrodes.

Additional fine tuning, such as the positioning, rotation, and translation of molecules

in the central region must be handled by the user. We give the details of the set-up

in following paragraphs.

Cleaving a periodic system: When a periodic system, which can be either a

bulk crystal or a nanotube, is open in the Atomic Manipulator, right-clicking either

the left panel or the 3D preview window will display an option to Cleave the bulk.

When the bulk is cleaved, it is transformed from a periodic system to a two-probe

system without any central region. The result is two separate surfaces. Two new

tabs, called Two-Probe and Surface appear in the Atomic Manipulator. Fig. 14

displays the screenshot of the set-up.

At the top of the Surface tab, three integer numbers (h, k, and l) corresponding
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to the Miller indices for the crystal system are entered. The other important quantity

to specify when setting up a surface is the two-dimensional surface cell that is spanned

by two surface unit vectors (called S1 and S2). Combining the surface cell with a unit

vector in the transport direction SC, we obtain the three-dimensional electrode cell

(visualized as boxes around the atoms of the left and right electrodes). The part of

each electrode that is contained in these boxes will be repeated periodically along the

SC direction (which is always parallel to the Cartesian Z axis) to form semi-infinite

electrodes.

Once the Miller indices have been specified, VNL will attempt automatically to

determine the smallest possible surface unit cell, specified in terms of the primitive

surface vectors SA and SB. A slight complication arises from the numerical require-

ment that the electrodes must be periodic in the transport direction. Therefore, for

some Miller indices and crystal types, it is required that the surface cell contains more

than one layer. Each atom with a unique Z coordinate defines a layer. A typical ex-

ample is an fcc crystal cleaved along the [111] plane. In this case, the unit cell contains

3 atoms, corresponding to the stacking sequence ABC. The depth of the electrode

cells is specified in terms of the number of layers in the direction perpendicular to

the surface plane. By default, VNL suggests a number of layers that generates the

smallest cell fulfilling the two basic requirements mentioned above. Usually, there

is no reason to change this value.By default, the surface vectors S1 and S2 are set

identical to the primitive surface vectors SA and SB. However, S1 and S2 can be

defined as an arbitrary linear combination of SA and SB, and thereby control both

the shape and the size of the surface cell.

The central region of a two-probe system: The central region of a two-probe

system consists of all the atoms not included in the electrode cells. When cleaving a

bulk, the Atomic Manipulator automatically adds several “electrode atoms”; these,

however, are not contained in the electrode cell. These atoms are part of the central
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region, and are so-called surface atoms. The number of surface atoms is controlled by

the Surface Layers parameters, which can be set separately for the left and right

electrodes. In general, these atoms can be separated into three groups: left surface

atoms, right surface atoms, and the rest. There is no strict rule for choosing the right

number of surface layers, but a good guess is to use values that give a surface depth

comparable to the screening length (a certain distance away from the central region

where the electrodes can be considered unperturbed by the addition of the molecule).

Close to the central region, the electrodes are modified by the presence of the

molecule and the “gap” in the electrode material. The number of surface layers

specify the extension of this perturbation region, i.e., the part of the electrodes in

which the electron density may differ from its bulk equivalent. If this region is not long

enough, implying that the influence of the central region in reality extends deeper into

the electrodes, the central region will not be completely screened. As a consequence,

the results will not be accurate. The recommended approach is to choose a moderate

value for the number of surface layers, and then increase this systematically until the

results converge.

Another parameter on the two-probe panel is the central region width, which is

equivalent to the distance between the two last electrode atoms facing the central

region. A new value for the central region width may be entered in the left panel, or

one may use the Translate command from the context menu to move the electrode

in a controlled fashion.

To insert molecules in the central region, simply drop a molecular configuration on

the open Atomic Manipulator window. Also, new molecules can be added manually

while working on a two-probe system by right-clicking the left panel and choosing

Insert new molecule entry from the context menu. Working with molecules in the

two-probe configuration of the Atomic Manipulator is completely analogous to cre-

ating molecules when it comes to positioning and orienting the molecule.
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3.4.2 Analysis of Output

The simulation gives the transmission spectrum, transmission coefficients, eigenval-

ues, eigenstates, and density of states along with several other results, which are less

relevant for our purpose of calculating transport properties. However, the output is

generalized and the default values may not give the right interpretations. Therefore,

in this part of the chapter, we discuss the analysis and interpretation of different

simulation results.

Transmission Spectrum: The function calculates and returns the total trans-

mission coefficient Tσ(E), where σ is the spin as a function of the energy E based

on a self-consistent two-probe calculation. The total transmission coefficient is de-

fined as an integral of the k-point dependent transmission coefficients TE(k, σ) (It can

be calculated separately using the function Transmission Coefficients.) over the

k-points (kx, ky) in the 2D Brillouin zone perpendicular to the transport direction.

Transmission Eigenvalues: The function calculates the transmission eigenval-

ues

λi(E,k, σ), i = 1, . . . , Neigenchannels (81)

for a given energy E and a given set of quantum numbers (k, σ). Here, Neigenchannels

indicates the number of eigenchannels that corresponds to non-vanishing eigenval-

ues. The transmission eigenvalues λi(E,k, σ) are calculated as the eigenvalues of the

Hermitian matrix t†t, where t(E,k, σ) is the transmission matrix.

Transmission Eigenstates: The function calculates and returns the transmis-

sion eigenstates Ψn(E,k, σ) corresponding to a given energy E and a given set of

quantum numbers (n,k, σ). The transmission eigenstates Ψn(E,k, σ) are calculated

as the eigenvectors (expressed in real space) of the Hermitian matrix t†t.

For all the transmission properties, the following values need to be defined.
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1. Energies: A list of energies for which the transmission values should be calcu-

lated. The list is determined by specifying how many equidistant energy values

there are from which starting value to which ending value.

2. Green’s Function Infinitesimal: The imaginary infinitesimal added to the energy

of the retarded Green’s function.

3. Quantum Numbers: Sequence of quantum numbers (k-points for A and B) for

which the transmission coefficients are to be calculated, and the spin of the

system.

The rest of the parameters are left default. However, depending on the compu-

tation power, some can be changed to give more accurate results. A significant one

is the Brillouin Zone Integration in the Method tab of Nanolanguage Scripter.

The defaults values are set to 1 for number of k-points along x and y axis (A and

B). This gives results for a one dimensional linear chain. But for more complicated

systems, these values should be increased to obtain meaningful results.

3.5 Niobium Nanowire

We started the calculation of the transport properties of a niobium nanostructure

by first simulating a perfect nanowire. Then we moved to more complex structures,

namely the pyramid shaped electrodes of niobium to create a point contact. For

this we used the relaxed structure obtained from SIESTA in previous chapter. We

describe the simulation results below and simultaneously discuss the comparison with

the previously published data.

3.5.1 Perfect Niobium Nanowire

The simplest form of nanowire is a one dimensional linear chain of niobium atoms

separated by the lattice constant of bulk material, i.e., 3.3 Å. We followed the instruc-

tions given in the solved example of Atomistix manual for aluminum. So we picked
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Figure 15: The transmission spectrum of a perfect niobium nanowire. The three
curves represent following configurations: (1) the blue curve represents the configu-
ration in which all the atoms are separated by the lattice constant (3.3 Å); (2) the
red curve displays that a niobium dimer in the wire reduces the transmission; and
(3) the green curve shows that the transmission is further reduced when the dimer is
displaced from its symmetric position.

up a linear chain template from the Crystal Cupboard and changed the Basis atom

from carbon to niobium. In the Atomic Manipulator, we also changed the z axis

lattice constant to 3.3 Å and made the x and y axis seperation very large (15.0 Å)

compared to the lattice constant. The linear chain was then cleaved to make elec-

trodes and then we placed two more niobium atoms between the electrodes. We

changed the Width between the electrodes to 9.9 Å and placed the extra atoms were

placed at distances separated by the regular lattice constant. Most of the parameters

in Nanolanguage Scripter were kept constant except for the Analysis tab we se-

lected the Transmission Coefficients, Transmission Eigenstates, Transmission

Eigenvalues, and Transmission Spectrum.

The results were obtained as expected. As shown in the blue curve of Fig. 15, we
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Figure 16: The transmission eigenstates of a perfect nanowire of niobium at isosur-
face 0.005.

see that niobium has six channels at Fermi energy that is consistent with the 5d and

4s orbitals of niobium. Because we are studying a perfect wire, the conductance is

quantized in integer steps of 2e2

h
as expected from the Landauer formula G = 2e2

h
N(ε),

where N(ε) denotes the number of bands existing at the energy ε. The results are

comparable to that of aluminum perfect wire analyzed by [40] because aluminum has

three eigenchannels and niobium has six.

Further in Fig. 16 we display the transmission eigenstates of the perfect nanowire

at isosurface 0.005. The eigenstates are calculated at k = (0.0, 0.0) because our

system effectively is one-dimensional, and we require one k-point only in the transverse

direction.

The transmission eigenvalues of the matrix t†t are six integer values equal to

unity representing the six eigenchannels. This is consistent with the transmission

coefficient, 5.963 at Fermi energy. Theoretically, this value was expected to be 6.0

but it is off by a few decimal places because of the limitations of the mesh that can
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be generated on a desktop computer.

Next we placed a dimer in the linear chain and performed the similar calculations.

The dimer was placed such that the distances between the electrodes and two atoms

of the dimer were similar to the distances obtained from the relaxed structure from

SIESTA in the previous chapter of this thesis. To introduce the least error, we

used the distances from the Ref. [3] for our calculations. So for a symmetrically

placed dimer, we used a = a′ = 3.04 Å and d = 2.05 Å, where a and a′ represent

the distance from electrode to dimer, and d is the distance between the two dimer

atoms. The red curve in Fig. 15 displays the effective transmission on the energy

scale. Clearly, the dimerization reduces the transmission of individual channels, hence

the total transmission is also reduced. All other parameters were kept similar to

that of a perfect wire configuration where all the atoms are separated by the lattice

constant of bulk niobium. Since the total conductance is transmission multiplied

by the G0 (conductance quanta), the conductance of wire with symmetrically placed

dimer is 2.5G0 at Fermi energy. This value is comparable to 2.8G0, which is measured

experimentally using the mechanically controlled break junction technique [3]. The

difference in the values can be attributed to the fact that we are considering a one

dimensional chain instead of the point contact.

To study the limits of the linear chain, we also simulated the configuration in

which the dimer is displaced from its symmetric position. All other parameters were

kept constant, and we obtained the transmission spectrum displayed by the green

curve in Fig. 15. Again as expected the transmission reduced and the observed

conductance value was 1.8G0, which is comparable to the experimental value of 2.1G0.

The decreased conductance justified the name for anti-symmetric dimer configuration

as the low conductance configuration.
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Figure 17: Transmission spectrum of point contact niobium nanowire.

3.5.2 Niobium nanowire point contact

Although a linear chain gives significant information, still there are differences as

mentioned in the previous part. So we simulated a point contact to extract more in-

formation about the nanowire. We configured the coordinates of the niobium atoms

such that they make a pyramidal shape and placed the dimer in between the elec-

trodes. The arrangement is displayed in Figs. 18 and 19. To calculate the transmis-

sion spectrum, the range of energy was set from -1.0 to 1.0 eV. The resulting plot

is displayed in Fig. 17. Further, we also calculated the transmission eigenstates and

eigenvalues. For both the eigenstates and eigenvalues, we set the parameter energy

that is scaled with respect to the Fermi energy equal to 0.0 eV, and the k quantum

numbers were chosen to be (0.0,0.0) and (0.5,0.5). For the two quantum numbers the

results are displayed in Fig. 18 and Fig. 19, respectively.

The results do not match the expected results published in Ref. [3]. The reason is

attributed to the fact that we were not able to simulate the exact structure because

of the limitations of computational power. Also, we could not find the transmission

spectrum of the individual channels of niobium because Atomistix gives eigenvalues

that are dependent on the quantum number, k. To find the transmission of a channel,
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Figure 18: Transmission eigenstate 0.

Figure 19: Transmission eigenstate 1.
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we need to integrate over k⊥ [40].

G =

∫
dk⊥
ΩBZ

G(k⊥), (82)

where, ΩBZ is the area of the first Brillouin zone and the integral is carried out

by converting it into a finite sum
∫

dk⊥
ΩBZ

→ Σk⊥w(k⊥), where w(k⊥) represents the

weights of the discrete k⊥ points. Since transmission and conductance, G are related

by Eq. (26), the transmission of single channel depends on the weight, w(k⊥), and

finding the weight was beyond the scope of the thesis. Although, I did not find the

conductance of individual channels, the main achievement was obtaining the transport

properties on nanowires on a desktop computer.

3.6 Graphene

Graphene is a rapidly rising star on the horizon of materials science and condensed

matter physics. This strictly two-dimensional material exhibits exceptionally high

crystal and electronic quality and, despite its short history, has already revealed a

cornucopia of new physics and potential applications. Owing to its unusual electronic

spectrum, graphene has led to the emergence of a new paradigm of “relativistic”

condensed matter physics, where quantum relativistic phenomena, some of which

are unobservable in high energy physics, can now be mimicked and tested in table-

top experiments. More generally, graphene represents a conceptually new class of

materials that are only one atom thick and, on this basis, offer new inroads into low-

dimensional physics that have never ceased to surprise and continue to provide a fertile

ground for applications. Graphene is the name given to a flat monolayer of carbon

atoms tightly packed into a two-dimensional (2D) honeycomb lattice and is a basic

building block for graphitic materials of all other dimensionalities. It can be wrapped

up into 0D fullerenes, rolled into 1D nanotubes, or stacked into 3D graphite. Graphene

also provides an excellent condensed-matter analogue of (2+1)-dimensional quantum

electrodynamics [41, 42, 43], which propelled graphene into a thriving theoretical toy
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model. On the other hand, although known as integral part of 3D materials, graphene

was presumed not to exist in the free state, being described as an “academic” material

[42] and believed to be unstable with respect to the formation of curved structures

such as soot, fullerenes, and nanotubes. All of a sudden, the vintage model turned

into reality, when free-standing graphene was unexpectedly found three years ago

[44, 45] and, especially, when the follow-up experiments [46, 47] confirmed that its

charge carriers were indeed massless Dirac fermions. So, the graphene “gold rush”

has begun.

3.6.1 Transport Properties

The high electronic mobility found in graphene nanoribbons (GNRs) and the facilities

for their growth suggest they may be used for future electronics and in many other

nano-technological applications. GNRs are single atomic layers that are understood

as an infinite unrolled carbon nanotube. Similar to the case of nanotubes, ballistic

transport and quantized electronic conductance are expected to be found in graphene

structures. In particular, different quantization rules have been predicted for clean

zigzag-GNRs and armchair-GNRs. Edge states in zigzag ribbons provide a single

channel for electron conduction which is not the case for armchair configuration. Dis-

tinct and amusing designs of GNRs are proposed to highlights their peculiar transport

properties. One example is the manifestation of the so-called Klein paradox [48], that

predicts that the electron can pass through a high potential barrier without an ex-

ponential decay. Also interesting is the discussion about the possible manifestation

of half-metalicity in nanometer-scale GNRs reported on recent first-principles calcu-

lations [49]. From the point of view of applications, it has been shown that graphene

exhibits chemical sensors properties. Recently, it was reported a graphene-based gas

sensor allows the detection of individual gas molecules adsorbed on graphene. In this

work, we will focus on the effects of side-attached one-dimensional chains of hexagons
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Figure 20: The top (bottom) figure displays a zigzag (armchair) graphene nanorib-
bon with a aromatic ring attached on its side.

pinned at the edges of the GNRs. These one dimensional chains could be useful to

simulate, qualitatively, the effects on the electronic transport of GNRs when benzene-

based organic molecules are attached into the edges of the ribbons. A simple scheme is

proposed to reveal the main electronic properties and the changes on the conductance

of such decorated planar structures. For simplicity, we consider the structures shown

in Fig. 20 for armchair (AGNRs) and zigzag (ZGNRs) nanoribbons with the linear

poly-aromatic hydrocarbon as the organic molecules attached to the nanoribbons.

3.6.2 Simulation and Results

In this section we will present how the capabilities in Atomistix ToolKit and

VNL can be used to study various types of systems involving graphene, ranging from
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a simple, infinite sheet of graphene to complex junctions that are investigated for,

e.g., gas sensors. The geometrical structure of graphene is simple and regular, and

the infinite, planar structure is readily available in the Crystal Cupboard in VNL.

However, to create any kind of device-like structure, the infinite sheet must be cut

into a suitable shape. A common shape, at least for electronics applications, is a

so-called graphene nanoribbon (GNR). These can actually be quite cumbersome to

set up in an effective manner, not least considering the required protonization of the

edges (hydrogen termination) that is needed in finite structures in order to satisfy

all carbon valence electron bonds. Therefore, here we use a NanoLanguage script

provided with the VNL for constructing graphene nanoribbons.

The graphene ribbon script itself is relatively simple (less than 100 lines of code)

and quite instructive with detailed comments. However, it is not necessary to dig

into the code at all in order to use the script in practice. The only thing required is

the modification of four simple parameters. The parameters are easy to understand,

and there are only four basic ones:

• armchair: The option allows us to choose an armchair/zigzag ribbon by setting

this parameter to True/False.

• width: The width of the ribbon is specified by the number of atomic layers

across the ribbon. This number must be even for zigzag ribbons.

• repetitions: This parameter configures the number of times the unit cell

should be repeated along the ribbon.

• PAC: Set this parameter to True/False to select whether the structure should

be constructed as a Periodic Atom Configuration (True) or a Molecule

Configuration (False).

To set up a two probe system of a zigzag or armchair ribbon, drop the script on

the Atomic Manipulator, and create the two electrodes. Although VNL is satisfied
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with only one repetition of the electrode cell, it is safer to select two periods to

ensure quality results. The calculation time overhead will be very small. To create

the central region we can simply choose a suitable number of surface layers. Any

even number, both left and right, will work geometrically, but to ensure sufficient

screening, we used at least 8 layers both left and right. To close the gap between

the left and right surfaces, the central region width should be set to 1.23 Å, which is

consistent with the C-C bond length in graphene. The benzene rings were inserted

using the Molecular Configuration tab in VNL. The rings were translated and

rotated to place them in appropriate positions as shown in Fig. 20. Additionally,

the hydrogen atoms were adjusted to satisfy the valency of the graphene and benzene

bonds. We change the basis set to SingleZeta to speed up the calculations, and the

Brillouin Zone Integration Parameter values were set to 20, 2, and 100 for x, y,

and z axis, respectively. While choosing these parameters we maintained a balance

between the computation power and accuracy of the results. (Note: The transport

properties are calculated in the z direction and the ribbon extends along x axis.) On

the Analysis tab we select Transmission Spectrum (100 points from 5 eV to +5

eV), and Transmission Eigenstates at 0 eV.

The graphs in Fig. 22 display the results of simulation of GNR after adding

the benzene rings. Here all the energies are scaled with respect to Fermi energy.

The transmission spectrum displays the black curve for the transmission of a zigzag

graphene nanoribbon in absence of any aromatic rings. The red curve is for one

aromatic ring, whereas the green curve displays the effect of adding two rings. A

prominent feature of the spectrum is the enhanced transmission near the Fermi level.

This peculiarity can be attributed to the conductance gaps due to the Anderson

localization of electrons [50, 51, 52, 53]. Further, in the presence of benzene we

see the dips in the transmission spectrum and peaks in the DOS plot at particular

energies that increase with the increase in the number of rings. Although a complete
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Figure 21: The figure displays the zigzag graphene nanoribbon (width = 6) with
an aromatic ring attached on its side. It also displays transmission eigenstates. The
color bar across the bottom gives information about the particular transmission value
at certain locations on the nanoribbon.

theory of the dips, also known as the Fano antiresonances (FARs), is not discussed

in this thesis; in brief, the dips emerge in a system when discrete states coexist with

continuum energy states [54]. Essentially, the behavior of the electronic transport is

in agreement with the expected results proved by other authors [55].

The armchair nanoribbon was a comparatively complex structure because the

side-attached rings were connected to the ribbon via more then one C-C bond. The

corresponding transmission spectrum and DOS plot are displayed in Fig. 24. Besides

the ideal AGNR transmission displayed by the black curve, the figure displays the

effect of aromatic rings. It should be noted that N=1 configuration (red curve) is

not a complete ring. Two carbon atoms and equivalent valence hydrogen atoms are

removed from the benzene ring to match the geometry. Again, like the ZGNAR plot,

we have the green and blue curves for the addition of one and two rings, respectively.

The results are in complete agreement with the results published by Rosales, et al.

[55].
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Figure 22: The graphs displays transmission spectrum (left) and density of states
(right) of graphene in presence of aromatic rings. The black curve displays the trans-
mission of a zigzag graphene nanoribbon in absence of any aromatic rings. In the
presence of benzene we see dips in transmission (left) and peaks in DOS (right) at
particular energies (scaled with respect to Fermi energy) which increase with an in-
crease in the number of rings. The red curve is for one aromatic ring, whereas the
green curve displays the effect of the addition of two rings.

Figure 23: The figure displays the armchair graphene nanoribbon (width = 6) with a
aromatic ring attached on its side. It also displays transmission eigenstates. The color
on the graphene nanoribbon can be interpreted using the color bar in the bottom.
The color shade gives the particular transmission value at certain locations on the
nanoribbon.
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Figure 24: The graphs displays transmission spectrum (left) and density of states
(right) of graphene in the presence of aromatic rings. The black curve displays trans-
mission of a armchair graphene nanoribbon in the absence of any aromatic rings. In
the presence of benzene we see dips in transmission (left) and peaks in DOS (right) at
particular energies (scaled with respect to Fermi energy) which increase with increase
in number of rings. The red curve is for one aromatic ring, the green curve for two
rings, and the blue curve for three rings.

In conclusion, this chapter provides a method for theoretical calculations of the

transport properties of nanostructures. Although, theoretical explanation of the

curves are described briefly, the main emphasis was on the method of computing the

results. Although there are limitations because of the computation power, we still

obtained results which give significant information about the behavior of mesoscopic

quantities. It is worth mentioning here that we have used only a single processor

mode of the package, and the software can be used in parallel mode on dual or quad

processor computers. Thus, more complicated structures like biomolecules and pro-

teins can be simulated. Therefore the method described and tested in this chapter

gives a beginning of a new dimension of research.
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CHAPTER IV

PICONEWTON FORCE SENSOR AND ITS

CALIBRATION

In nanoscale physics the correlation in structure and transport properties of nanosys-

tems is of particular interest and innovative research methods and techniques capable

of measuring several properties simultaneously are required. Therefore, this chapter

describes the experimental approach planned to verify the simulation results pre-

sented in previous chapters. To verify the relaxed structure obtained by minimizing

the force and energy simultaneously, we designed a force sensor that can measure po-

tentially piconewton forces. Depending upon the order of magnitude of force, using

the Newton’s second law of motion, different methods can be employed to measure

force. But forces of atomic scales are difficult to measure, and the need for measuring

these forces in both industrial and research environments has increased the role of

force sensors. Among the different available sensors that measure forces of atomic

scales, the Atomic Force Microscope (AFM) is the one most widely used. In experi-

mental condensed matter physics, the AFM is used to scan surfaces, to measure the

nano-scale forces and for many similar applications. The heart of the AFM and other

surface profilometers is the sensor tip, which maps the surface. The forces acting on

the tips are usually sensed by mounting the tip on a cantilever beam (CL). Optical

detection is the most common method to detect the deflection, but piezoresistive and

piezoelectric detection schemes are also available. The piezoelectric quartz tuning

forks (QTF), which are produced annually in millions mainly for the watch industry,

can be used as force sensors instead of CLs. Giessibl [56] showed various advantages

of using tuning forks in the AFM, the most remarkable is using tuning forks in a
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cryogenic environment.

Continuing with the QTF approach, an absolute calibration of these forks is pre-

sented in this chapter. Some terminology is presented first to provide a common

basis for understanding the cantilever motion in force sensors. The first section is

the theoretical background for the calibration process. Then, we present the exper-

imental designs and results of the calibration process. We measured frequency shift

with respect to pressure and related it to the added mass that can be connected to

external force acting on the QTF. We also compared our results for alignment of QTF

in a gravity field. The perpendicular and parallel alignment gives different results.

Further the experiment is performed at low temperature. The obtained results agree

with the theoretical prediction. This shows that this method of measuring force gives

us more flexibility to measure the forces in different environments as compared to nor-

mal AFMs. Next, we combine this force measurement setup with a simple scanning

probe microscopy. Although this method of measuring force has several advantages,

it was not used for the actual measurements. Instead, a more robust system that uses

the micro-fabrication techniques was used to verify the niobium nanowire structure

and transport properties. This system is discussed briefly in last section.

4.1 Theoretical Background

In this section we introduce the theory used to deal with the QTFs. Since the individ-

ual prongs of QTFs (Fig. 30) are like vibrating prismatic beams, first we introduce

the model for vibration of cantilever in viscous fluid. We begin with a brief description

of the derivation of the ratio of resonance frequency of cantilever in fluid, ωf , to that

in a vacuum, ωvac [57]. The ratio involves a cantilever geometry dependent function,

namely the hydrodynamic function. Next, we derive this function for the prismatic

geometry of our cantilever. The following section combines the prior two sections and
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gives a simplified equation for the normalized frequency shift, which is the main mea-

surement parameter of our system. Then, we describe the effect of adding an external

mass on the QTF to change the resonance frequency of the cantilever. Additionally,

we present an equivalent electronic circuit of our peizoelectric QTF that was used to

measure the resonance frequency using a network analyzer and to analyze of observed

data. Finally, we demonstrate that the resonance frequency and the quality factor

depend on the temperature.

4.1.1 Resonance frequency of cantilever

In this section, we present a general theory for the dynamic deflection of a cantilever

beam immersed in a viscous fluid and excited by an arbitrary external driving force.

Also, here we derive the theory applicable to any cross section that is uniform along

its entire length. The governing equation for the dynamics deflection function, w(x, t)

of such a cantilever is [57]:

EI
∂4w(x, t)

∂x4
+ ρchb

∂2w(x, t)

∂t2
= F (x, t), (83)

where E is the Young’s modulus, I is the moment of inertia of cantilever, and ρc is

the density of cantilever. Also the dimensions of the cantilever are given by L, b, and

h corresponding to length, width, and thickness of the cantilever. The right hand

side of the equation has the external applied force per unit length, F , that is the

function of the spatial coordinate x along the length of cantilever, and t is the time.

The boundary conditions for Eq. (83) are the clamped and free ends of the cantilever

that can be represented by following mathematical expressions:

[
w(x, t) =

∂w(x, t)

∂x

]

x=0

=

[
∂2w(x, t)

∂x2
=
∂3w(x, t)

∂x3

]

x=L

= 0. (84)

Since we are interested in deriving an expression for frequency, it is easier to proceed

with the Fourier transform (X̂ =
∫∞
−∞ xe

iωtdt) of Eq. (83). We obtain

EI

L4

d4 ˆW (x|ω)

dx4
− ρchb ˆW (x|ω) = F̂ (x|ω). (85)
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For a cantilever moving in fluid, the external force has the hydrodynamic loading

component, F̂hydro(x|ω), and the driving force term, F̂e(x|ω) (applied electric potential

across the peizoelectric QTF.) The driving force is taken arbitrarily, so Eq. (83)

can be solved by first replacing this function with a Dirac-delta function and then

using Green’s function theory. However, at this point we are more interested in the

resonance frequency instead of complete solution of the equation, therefore we need

to consider the hydrodynamic force in detail. This force can be obtained from the

Navier-Stokes equation given by:

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇p+ η∇2u + f , (86)

where ρ is density of fluid, u is flow velocity, p is the pressure, and η is its viscosity.

Under the incompressible assumption, density is a constant and it follows that the

gradient of the velocity field is zero, i.e., ∇.u = 0. This equation is more specifically

a statement of the conservation of volume and a necessary condition for Newtonian

fluids. Further, we take the Fourier transform of the fluid flow equation and apply

an extra condition that the external force, f = 0, to obtain the following form of Eq.

(86):

−∇p̂ + η∇2û = iρωû. (87)

Now we calculate the effect of the hydrodynamic force on the cantilever [58] using

the generalized expression for force vector, F , on any three-dimensional body with

surface S, moving in any manner whatsoever in an incompressible viscous fluid, which

is at rest at infinity.

F =

∫

S

[−pdS + ρΩ× dS]. (88)

This equation gives force per unit length using the parameters, pressure per unit

length, p, and the curl of velocity field which is commonly known as vorticity, Ω.

These parameters can be obtained from solving Eq. (87), and we obtain a general
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form of the F̂hydro(x|ω) as:

F̂hydro(x|ω) =
π

4
ρω2b2Γ(ω)Ŵ (x|ω), (89)

where the function Γ(ω) is hydrodynamic function, and it depends on the geometry

of the cantilever. We calculate this function in the next part of this section. But

now, we plug in the equation for generalized hydrodynamic force in Eq. (85), and we

obtain,

d4Ŵ (x|ω)

dx4
− C1

4

(
ω

ωvac,1

)2 (
1 +

πρb

4ρch
Γ(ω)

)
Ŵ (x|ω) =

F̂e(x|ω)L4

EI
, (90)

where ωvac,1 is the fundamental radial frequency of the beam in vacuum given by,

ωvac,1 =
C2

1

L2

√
EI

ρchb
, (91)

and C1 = 1.875104... is the smallest positive root of the cantilever boundary condition

equation [59]:

1 + cosCncoshCn = 0, n = 1, 2, 3, .... (92)

Finally, in the absence of dissipative effects, the resonant frequency of cantilever ωf

in presence of fluid is given by:

ωf

ωvac

=

(
1 + Γ(ω)

πρb

4ρch

)−1/2

. (93)

For gases ρ
ρc

is of the order of 10−2. So, we expand Eq. (93) and obtain the shift in

resonance frequency

ωf

ωvac

− 1 =
∆ωf

ωvac

= −Γ(ω)
1

2

πρb

4ρch
. (94)

Since ω = 2πf , we have

∆f

f0

= −Γ(ω)
1

2

πρb

4ρch
. (95)
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4.1.2 Hydrodynamic function

We now present analytical expressions for the hydrodynamic function, Γ(ω), of a pris-

matic cantilever. Investigations of Tuck [58] have demonstrated that for a cylindrical

beam the hydrodynamic function is given by

Γ(ω) = 1 +
4iK1(−i

√
iRe)√

iReK0(−i
√
iRe)

. (96)

Here, the functions K0 and K1 are modified Bessel functions of the third kind. The

Reynolds number is given by

Re =
ρωd2

4η
, (97)

where d is the diameter of cylinder and corresponds to dominant length scale in

the hydrodynamic flow. ω is the vibration frequency of the cantilever and gives the

dominant time scale for the motion in fluid. An infinitesimally, thin rectangular can-

tilever has approximately identical function, as that of the cylinder and the deviations

between the two functions never exceed 15% over the range 0.1 ≤ Re ≤ 1000. Fur-

thermore, from Appendix 1 of Ref. [58], it is evident that the hydrodynamic function

for a cylindrical or a rectangular cantilever possess the same asymptotic forms in the

limits as Re → 0 and Re →∞, namely,

Γ(ω) =





1 : Re →∞
−4i

Re ln(−i
√

i Re)
: Re → 0

. (98)

Also Dorignac, et al., [60] demonstrated that if the Reynolds number is ≈ 0.05, there

is negligible difference between the values of hydrodynamic functions of cylindrical

and prismatic cantilevers. Since our system a has Reynolds number of the same

order, we use this approximation for our calculations of hydrodynamic function for

the prong of the QTF. To verify the above approximation we used the package,

COMSOL Multiphysics, that uses the finite-element method to solve the required

differential equations. The model for the simulation was designed such that we fixed
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Figure 25: Surface pressure profile of fluid using the color map. The maximum and
minimum values represented by the particular color are shown on the scale on the
right. Also the scale on the right and bottom of the figure can be used to find the
width and height of cantilever.

the cantilever and moved the fluid with the velocity of the same order as that of

the cantilever motion. We obtained the velocity field displayed in Fig. 26 and the

pressure field of the fluid displayed in Fig. 25. Then we used Eq. (88) to obtain

the force per unit length, F , by surface integration of pressure and vorticity (curl

of velocity field). We compared these values with Eq. (89). All the parameters in

this equation are known, except the hydrodynamic function, Γ(ω). Thus we obtained

the unknown function and plotted it with respect to pressure as shown in Fig. 27.

This graph supports our hypothesis that the hydrodynamic function can be taken

as unity for the pressure lying between 0.1 to 1.0 bar. We discuss the theory and
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Figure 26: Velocity of fluid is plotted using the color map. The maximum and
minimum values represented by the particular color are shown by the scale on the
right.
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Figure 27: The hydrodynamic function for a rectangular cross-section geometry is
displayed in this graph. For pressure range, 0.1 < pressure < 1.0 bar, this function
can be considered unity.

approximations for pressures below 0.1 bar in the next chapter.

4.1.3 Adding an external mass on QTF

With the approximation of hydrodynamic function, we have the complete theory

for the required calibration. Eq. (95) gives a linear correspondence between the

resonance frequency of the QTF and the fluid density. In the following part, we show

that an external force acting on the QTF has an equivalent linear correspondence

relation that connects the force on the cantilever with the −∆f/f0. Therefore, once

we establish this equivalent relation, we will have the absolute force measurement
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technique because the proportionality constants for force measurements are similar

to that for the calibration process. The external force acting on the prong can be

considered as an external mass glued to the tuning fork. The effect of external mass

on the resonance frequency of the cantilever can be estimated using the fact that

−∆f/f0 is proportional to added mass, m. It can be easily checked using the relation

for simple harmonic oscillation.

f =
1

2π

√
k

m0 +m
(m0 = ρcLhb)

∆f

f0

≈ −1

2

m

m0

. (99)

Here, k is the effective spring constant of the QTF, m0 is effective mass of the QTF,

f0 is resonance frequency when m = 0. So, f0 in this equation is equivalent to

that in previous discussion of cantilever vibrating in a fluid at very low pressure.

This relationship shows that the shift in resonance frequency is proportional to extra

added mass and inversely proportional to mass of QTF. Thus, if m0 is known, we can

find m by measuring −∆f/f0 hence the force acting on the QTF. The approximate

sign shows the approximation that m is much smaller then m0. Christen [61] has

studied the air and gas damping on vibrating QTF. Higher pressure range has shown

that

∆f

f0

= −1

2

M

ρcA
(100)

Here, M is mass per unit length, i.e., the uniform load on the beam, and A is cross-

sectional area. By simply knowing ρc and A, we obtain a direct measure of added

mass M . The resonance frequency of the QTFs is measured with respect to differ-

ent pressures, and then using Eq. (95) we found the effective density, ρc. Using

the measured values of dimensions of QTFs, we found the effective mass, (m0), of

cantilever.
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Figure 28: Butterworth-Van Dyke circuit.

4.1.4 Electrical equivalent circuit of quartz tuning fork

Piezoelectric oscillators can be modeled by an electronic equivalent circuit called

the Butterworth-Van Dyke (BVD) circuit shown in Fig. 28. The LCR resonator

models the mechanical resonance: the inductance, L, stands for the size of kinetic

energy storage, i.e., the effective mass; the capacitance, C, reflects the potential

energy storage, i.e., the spring constant; and the resistor, R, models the dissipative

processes. The parallel capacitance, C0, is given by the contacts and cables. The

transfer function Y (ω) = I(ω)/U(ω), the so called admittance, is

Y (ω) =
1

R + 1
ιωC

+ ιωL
+ ιωC0, (101)

and is experimentally measurable. The admittance of the LCR branch is small and

can be compensated electronically with a bridge circuit. In Fig. 29 we plot the

phase and transfer function of a BVD circuit with respect to frequency. On the

resonance, the current through LCR branch flows in phase with the voltage. The

current through the parallel capacitance has a phase shift of 90 degrees and causes

a small phase shift of the total current. The maxima in the transfer function graph

represent the resonance frequency of the LCR branch. However, the admittance of

C0 is small compared to the admittance of the LCR branch. The parallel capacitance

leads to the typical minimum in admittance shortly after the maxima.
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Figure 29: Transfer function of Butterworth-Van-Dyke filter.
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Figure 30: The NC26 quartz tuning fork after removing the aluminium casing.

4.1.5 Low temperature effect

To calculate the effect of temperature on resonance frequency we assume that the

fluid in which the cantilever is vibrating obeys the ideal gas law. The density of fluid

is inversely proportional to temperature when the pressure is kept constant; therefore

from Eq. (95), −∆f/f0 will also be inversely proportional to temperature, T.

∆f

f0

∝ 1

T
. (102)

4.2 Setup for calibration of QTF

It was noted in the previous section that by knowing the effective mass of the QTF

we can find the force acting on the sensor. This section explains the experimental

setup used to determine the effective mass of the tuning fork. First, we describe

the type of QTFs we used and the method used for sample preparation. The next

section describes the uncertainty in resonance frequency of QTF due to manufacturing

process. We then selected one of the samples and glued one of the prongs of QTF to

a ceramic substrate. Next, we explain the effect of gluing the prong on −∆f/f0. The

results of this experiment were used to determine the effective mass of the QTF. We

added measured mass on the vibrating prong and measured −∆f/f0; and using the

effective mass, we verified our experimental results.
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4.2.1 Sample preparation

A QTF model NC26 from Fox Electronics was used for the experiment. These QTFs

are available for the watch industry and are enclosed in aluminum cases. Also the

QTFs have the resonance frequency of 215 = 32768 Hz. We designed twelve samples

of QTFs by carefully removing their cases. To remove the case, we fixed the QTF

between the jaws of a rotating drill and gently touched the case of the QTF with

a very sharp blade. The pressure on the blade was kept constant so that it cut the

aluminium uniformly. Eventually the aluminium was cut off, leaving behind the QTF,

as shown in Fig. 30. Special care was taken not to damage the prongs. We did not

want to mix different samples, and so we numbered the QTF samples as Sample#1,

Sample#2, and so on.

4.2.2 Frequency measurement

We used the Stanford Research Systems model SR780 two-channel network signal

analyzer for our measurements. The analyzer is configured to measure admittance in

one window and phase in other. (Details of the configurations are given in Appendix

A of this thesis.) Using Labview program, we measured the data in tabular form and

transferred them to a computer hard disc. We fitted the data for admittance plots

to the transfer function of Butterworth Vandyke filter to find the values of equivalent

resistance R, capacitance C, inductance L, and stray capacitance C0. Using these

parameters, we obtained the values of −∆f/f0 and the quality factor. We verified

both of these values using the parameters R, C, L, and C0 obtained from equivalent

phase plots. We studied the −∆f/f0 and the quality factor of the QTFs in pressure

range from 10−6 bar to room pressure. Here, the value for f0 is the resonance frequency

at 10−6 bar.
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4.2.3 Tip Preparation

The tips for the force sensor were prepared by a double lamella drop-off etching

technique (Fig. 31). In this technique the tip is prepared in a 2M NaOH solution at

a dc voltage of 2-3 V. The etching apparatus consists of a metal plate with a centered

hole of 3 mm diameter. The wire is threaded through the hole, and the upper end is

glued to the QTF. The lower end is dipped in a conducting cup filled with electrolyte.

A drop of freshly prepared NaOH solution is placed in the hole so that the solution

fills the cavity and is not overflowing on the bottom or top of the stainless steel plates.

Positive dc voltage is connected to the cup (cathode) and negative pole is connected to

the metal plate with the hole (anode). Etching occurs at the portion of the wire that

is encircled by the metal plate. When the wire becomes thin, the lower part of the

wire falls down and at this moment, the current switches to zero. No circuit breaker

is needed, and no more etching is done at the upper part of the tungsten wire, which

serves as the tip. Once the tip is etched the assembly is rinsed with distilled water,

and the tip is checked with an optical microscope. The alignment of the tungsten

wire has to be very carefully adjusted through the center of the hole of the electrode

to avoid lateral forces caused by surface tension. The etching height is set so that the

tuning fork does not touch the top stainless steel cup, and far more importantly, no

epoxy on the tungsten wire will be immersed in the solution. The silver in the epoxy

will severely affect the electrochemical reaction and adversely influence the etching

of the tungsten. Fig. 31 shows the setup to prepare the STM tips. The right figure

shows the voltage and current variation with time during the etching process.

We then add point masses of order 10−7 kgs on the tip of the tuning fork prong

and study −∆f/f0. Then, we use this value to determine the mass added to the QTF.

This experimental value is compared to the known added mass, hence the calibration

is verified. Using the calculated value of ρc and measured −∆f/f0, we calculated the

added mass on the tuning fork and compared it with the known value of added mass.
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Figure 31: Left: Tip preparation using double lamella drop-off etching technique.
Right: Voltage-Current variation with time during the electrolysis.

4.3 Results

In this section we present several results obtained during the calibration procedure.

Since we start with more then one sample of QTF, we prove that even if the individual

samples have different frequencies, −∆f/f0 is indifferent. Next, we study the effect

of adding a substrate on one of the prong of QTF because, in our experimental

design, we plan to use the freely vibrating prong as a cantilever. Another interesting

observation found during the calibration process was the effect of gravity. The effect

of low temperatures was also verified before we attached the tip to our sample QTFs.

Finally, we conclude the calibration section with a comparison between the value of

attached mass as measured using a weigh machine and the value obtained from our

calibration method.

4.3.1 Sample effect on resonance frequency

We studied the effect of different QTF samples on −∆f/f0. Fig. 32 shows the

study for four different QTFs. To present the range of data for pressure in a more

manageable way, −∆f/f0 is plotted with respect to pressure on a logarithmic scale.
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This plot gives more details about change in −∆f/f0 at low pressures. The graphs

show that −∆f/f0 is invariant to sample. Although the resonance frequency for each

sample can be different, but −∆f/f0 is the same. We are worked in a high pressure

region, but even at low pressures, the effect remains the same. The different curves

lie on the top of each other, and the error is within the resolution of the instrument

3x10−6. Additionally, it should be noted that, at room temperature and pressure,

these force sensors in air have a noise floor of 0.62pN/
√
Hz [61]. However, this

noise can be ignored because the forces we are measuring here are of much higher

magnitude.

4.3.2 QTF and cantilever

We glued one prong of the fork to the ceramic substrate [62]. This setup is like a

cantilever, since the other prong is free to vibrate. Gluing one prong to a substrate is

also equivalent to adding extra mass on one of the prongs, thus −∆f/f0 was expected

to reduce by a factor given by Eq. (100). To verify this hypothesis, −∆f/f0 was

measured the same way as before and plotted with respect to pressure, as shown

in Fig. 33. The logarithmic graph plots the wider range for pressure indicating a

decrease followed by increase in −∆f/f0 when the pressure is continuously reduced.

Also at high pressures the magnitude of −∆f/f0 scales down. This can be explained

by the Eq. (99) that says adding an external mass on the QTF will decrease the above

magnitude by a factor proportional to the mass. Further, we can choose a conducting

epoxy to measure a tunneling current in a way similar to that in a scanning tunneling

microscope.

To determine the proportionality constants that relate the pressure calibration

with the external force, we obtained the data for helium gas density and viscosity at

pressure range from 0.1 to 1 bar [63]. Using the calliper we measured the dimensions

of QTF and used the values, L = 3.00 mm, b = 0.33 mm, and h = 0.40 mm for
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Figure 32: The graphs display the pressure on linear (top) and log (bottom) scale
variation of −∆f/f0 with pressure for four QTFs.
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Figure 33: To design an equivalent cantilever, we glued one of the prongs of QTF
on a substrate. This modifies the tuning fork and consequently the measurements of
−∆f/f0 vs. pressure changes.
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Figure 34: Theoretical and experimental comparison of −∆f/f0 vs. pressure. We
adjusted the effective density, ρc of QTF in the theoretical model to fit it with the
experimental plot. The plot here gives ρc = 1525Kg/m3.

the length, width, and height, respectively. Then we plotted Eq. (94) to obtain the

theoretical graph for the vibration of a prismatic cantilever in a fluid. It should be

noted that we plotted the theoretical graph between −∆f/f0 and pressure, where

the ideal gas law was used to relate the corresponding density of helium gas with

pressure. We compared this graph with the experimental observations graph and

adjusted the effective density, ρc of QTF, to fit the experimental graph shown in Fig.

34. We obtained ρc = 1525Kg/m3, which gives m0 = 6.04× 10−4 gms. To verify the

calibration we show that the added mass on the tip agrees with our calibration of

−∆f/f0. In the Table 1 we show the comparison of added mass to mass calculated
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Table 1: Resonance Frequency at Room Pressure for QTF after addition of different
masses.

Mass (gms) Resonance ∆f=f0-f
1 Calculated

Frequency(Hz) (Hz) Mass (gms)
0.0001 27314.00 4811.56 0.0001178
0.0002 22550.75 9574.81 0.0002344
0.0004 19414.44 12711.12 0.0003122

using −∆f/f0. Here f0 is the resonance frequency without any added mass. The

corresponding change in the resonance frequency due to each additional glued mass

is plotted in Fig. 35.

4.3.3 Gravity effect

We also studied the effect of gravity on the fork. Fig. 36 shows that there is significant

difference in the resonance frequency of the QTF depending on whether the the fork

is aligned vertically or horizontally relative to the direction of gravity. In Fig. 37

we show the corresponding vertical and horizontal alignment of the vibrating prong

relative to direction of gravitational force. Shift in resonance frequency increases

by as much as three times when both prongs are vibrating parallel to gravitational

force. With the addition of extra mass on the prong, the effect of gravity becomes

increasingly prominent. This affect can be explained easily by the fact that when

the prongs are parallel to gravity, the added mass will effect the resonance frequency.

The gravitational force affects this mode of vibration. But when the gravitational

force is perpendicular to the vibrating prongs, the mode of vibration of prongs is not

affected by the force acting on prongs due to gravity.

4.3.4 Low temperature effect

Finally we studied the effect of low temperature on the shift in resonance frequency.

Thus, we reduced the temperature to 77 K using liquid nitrogen. Fig. 38 shows that

the slope of graph of −∆f/f0 vs. pressure changes by a factor of 3.8. The change

in the slope can be explained directly by the change in density of helium gas due
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Figure 35: To verify the calibration we glued test masses on the vibrating prong and
this graph displays that the changes in −∆f/f0 are in agreement with the proposed
theoretical model.
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Figure 36: Variations in frequency due to parallel and perpendicular alignment
of the QTF after three additional pieces of small masses are attached on the tip.
−∆f/f0 increases by as much as three times when both prongs are vibrating parallel
to gravitational force.
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Figure 37: Parallel and perpendicular arrangements of the QTF prongs with respect
to gravity.

to change in temperature. When the temperature drops to that of liquid nitrogen,

the density of helium gas increases which decreases the resonance frequency of the

QTF. As a result of decrease in resonance frequency, −∆f/f0 increases by the same

factor we used to decrease the temperature. Thus, the observed result is in agreement

with the proposed theoretical model given by Eq. (102) in the theory section of this

chapter.

4.4 Experimental Setup

In this section we describe a detailed setup for our experiments to measure the physical

and electrical properties of the niobium nanowire. The setup is similar to a basic setup

of a scanning tunnelling microscope, and the idea is taken from the setup developed

by Müller [65]. We start with the isolation system developed to make our system

indifferent to the vibration of the environment, which includes the building, floor or

any other vibration source. Next we build up the electronics to amplify the nano-

amperes current to a value measurable by commercially available instruments. Then
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Figure 38: Low temperature measurements are compared with the room tempera-
ture results. The slope increases because the decrease in temperature increases the
density of helium gas that increases the corresponding shift in resonance frequency.
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we develop the mechanics for the sample to approach the vibrating prong (cantilever)

of the QTF. This includes the coarse approach using a step-up motor and later the

fine approach using the piezo crystals.

4.4.1 Vibration isolation

The basic idea of vibration isolation is to make the internal resonance frequencies of

the entire experimental setup very high and to mount it on a support with a very

low resonance frequency. The support will follow only the low-frequency building

vibrations and suppress most of the high-frequency components. The experiment in

turn will not be disturbed by the remaining low-frequency vibrations, because they do

not introduce any internal motions into the setup (it just moves as a whole). Typical

frequencies that can effect the experiment are:

• 1 Hz building vibrations due to people walking around, etc.

• 10-100 Hz building vibrations due to ventilation, appliances, etc.

• 1-10 kHz lowest internal resonance of typical mechanics of the setup.

The quality of vibration isolation also depends on the spectral distribution of

building vibrations and on the lowest resonance frequency of the mechanical setup.

Popular vibration isolation systems used for scanning tunneling microscopes mainly

use one of the following methods:

• Air support tables which include heavy plate resting on inflated supports, possibly

with active regulation to maintain constant height. These tables are nice because

they give a large, steady work surface, but they are expensive and bulky.

• A stack of steel plates (typically about 1 cm thick), with rubbery material in between

them is quite efficient. Although the elastic material is quite stiff and the resonance

frequencies of the individual stages are quite high, the supported mass decreases from

bottom to top, which generates multiple stages of damping resonance frequency.

• “Pendulum” method includes massive blocks suspended by springs, rubber bands,
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or elastic tubing. This method of vibration isolation is inexpensive and simple to

build. However this method may need some damping (e.g. damping from internal

friction of the suspension) to avoid oscillations at resonance. It is easy to achieve very

low resonance frequencies by combining a large mass with a soft suspension and that

is why we have used this method for vibration isolation of our system. The following

formulation gives a brief explanation of the mechanism.

If a block of mass, m, is suspended by a spring of spring constant, k, and length,

L, the resonance frequency for vertical and lateral motion will be,

fvertical =
1

2π

√
k/m (103)

flateral =
1

2π

√
g/L, (104)

where the gravitational acceleration, g = 9.81 m/s2. Again if the mass, m, is attached

to the suspended spring, the spring will lengthen by a distance d = mg/k. This can

be substituted into Eq. 103 to give,

fvertical =
1

2π

√
g/d. (105)

Therefore, the oscillation frequency can be simply estimated from the distance the

spring stretches when the load is attached. Typically, a resonance frequency of 1 Hz

will result via an extension of 25 cm under a load that can be achieved by combining

a huge mass with a strong spring or a smaller mass with a soft spring. Results really

should be the same, as long as the mass used is a rigid block with high internal

resonance frequencies. The lateral resonance frequency will automatically be lower

than the vertical one, since L > d is always true once the mass is attached. We

implemented this mechanism using two rubber cords with a fastener from which we

hang the support. The entire experimental setup was placed on this support, and it

provided sufficient mass to damp the undesired vibration.
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Figure 39: Current to voltage amplifier circuit.

4.4.2 Tunneling current amplifier

The following section focuses on the amplifier that converts the small tunneling cur-

rent to a measurable voltage. The requirements for the current amplifier are simple

enough: convert the small tunneling current to a voltage that can be handled com-

fortably, and do it as fast as possible to allow for fast Z height tracking and fast

scanning. Typical tunneling current setpoints are of the order of 1 nA. To allow

flexibility for higher setpoints and leave some headroom in case the tip comes closer

to the sample than desired, tunneling currents of about 100 nA should be handled

without overflows. Some applications require tunneling currents as low as a few pA,

but that means very high amplification. The current amplifier is located on the STM

scanning head (right next to the tunneling junction itself). We have used a double

staged current to voltage amplifier circuit for converting small current signals ( 0.01

microamps) to a more easily measured proportional voltage. Using the current rule

for opamps, i.e., the inputs draw no current, we have Vout = −IinRf .

• A1 = LF356 (Operational Amplifier)
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Figure 40: Operational amplifier circuit to convert small current to measurable
voltage.

• A2 = LF356 (Operational Amplifier)

• C1 = 0.022µF

• R1 = 100KΩ

• R2 = 1KΩ

• R3 = 1MΩ

• R4 = 20KΩ (Variable Resistor)

• R5 = 20KΩ (Variable Resistor)

LF356s are operational amplifiers produced by National Semiconductors. These

are monolithic JFET input operational amplifiers that incorporate well matched, high

voltage JFETs on the same chip with standard bipolar transistors. These amplifiers

feature low input bias and offset currents/low offset voltage and offset voltage drift,

coupled with offset adjustment that does not degrade drift or common-mode rejection.

The devices are also designed for high slew rate, wide bandwidth, extremely fast

settling time, low voltage and current noise, and a low 1/f noise corner.
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4.4.3 Approach mechanism

The following section describes the mechanics used to control the motion of the tip

while it approaches the sample. Besides the fact that we are working with the length

scales of the order of namometers or less, another factor that is considered while

designing the system is the stability of the tip and sample system. Therefore, we

used the tripod system of precesion screws and the stepper motor for coarse approach

mechanics and the piezo stack actuators for the fine approach. The sample was fixed

on the base while the tip was fixed on the head that moved closer to sample using

the course and fine approach mechanics. The following paragraphs give the separate

details of each of these mechanics.

Coarse approach: A straightforward mechanism is to use a micrometer-resolution

precision screw, in addition to the differential springs, consisting of a soft spring, which

is compressed by a screw, and in turn pushes against a very strong spring supporting

either the sample or the tip. However, we avoided the spring system and used a

mechanical tripod shown in Fig. 41 for the coarse approach. The mechanical setup

is simple: both the head and the base consist of single blocks. The head rests on

three supports that are the ball-shaped tips of precision screws. The piezo scanning

system is mounted on the head. In particular, the piezo scanning system is glued to a

removable piece that is attached to the head with a screw. The sample is attached to

the base by scotch tape, which is not shown in the figure. The two precision screws

in front, next to the piezo system, have knurled knobs for manual operation. Turning

these screws will change the tip to sample distance by nearly the same distance that

the screw is moved. Since sample surfaces are very smooth and a reflection of the

approaching tip can be seen on the surface, the coarse approach using these screws

usually is done manually, under visual control using an optical microscope.

Precession screw with stepper motor: Motion of the third support screw in

the back, however, is reduced by a factor of about 15. Since the piezo tip is quite
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Figure 41: Approach mechanics design displaying the base, head, and three screws.
The step motor controls the fine adjustment screw. The piezo actuators control the
precise approach of the tip to sample.
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Figure 42: Step motor used to drive the precession screw automatically. The motor
can be integrated with a computer to program the steps needed for the tip-sample
approach.

close (≈ 1 cm) to the line connecting the other two supports and the third screw is 15

cm away from this line, the whole head acts as a lever. Also the travel of the original

precision screw is limited typically to a few millimeters; so the range of approach

using this screw is of the order of a few tens of microns. Additionally, the precession

screw is driven automatically by a stepper motor to eliminate the tedium of a manual

approach and the vibrations introduced by touching the instrument. So we used a

Lin Engineering integrated motor, shown in Fig. 42, to control the motion of the

screw. This motor can be programmed using Labview, and an appropriate feedback

loop can be set for the desired approach mechanics of the tip. Next, using a coupler

we connect the precession screw to the motor. However, the axis of motor shaft

and the screw require a very precise alignment, and the coupler could not provide

sufficient precession.

Piezo approach: Piezo elements are apparently used universally to produce the

small motions (on the nanometer scale) of the tip in scanning probe and atomic force

microscopy. Piezoelectric materials - most notably some types of ceramics that have

been polarized by letting them cool down in the presence of an electric field - exhibit

a mechanical deformation when a voltage is applied across them. The exact amount

of deformation depends on the material and its geometry. Typically, excursions of

a few nanometer/Volt may be obtained from handy piezo elements, say 1 inch in

length. Among the different available geometries, piezo stack actuators shown in Fig.
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Figure 43: Piezo stack actuator used for the X/Y scanning motion and for the Z
height tracking.

43 were used for the fine approach mechanism. These actuators are manufactured by

piling up a quantity of piezoelectric discs or plates, which are individually contacted

electrically. The stack axis is the axis of the linear motion: the thickness of the

layers increases by applying a voltage and thereby the total stack lengthens. We

glued three actuators for the X/Y scanning motion and for the Z height tracking.

The applied voltage across the piezo actuators is controlled by the Thorlabs 3-D axis

piezo controller. Again this controller can be integrated with the computer to setup

the feedback loop.

Finally, the feedback loop can be programmed using the proportional, integral,

and differential controllers such that at each step of the loop we check the tunneling

current. For zero values of this current, we rotate the step motor to rotate the

precession screw then change the voltage of the Z axis piezo actuator so that the

stacks elongate and tip moves closer to sample. The tunneling current is measured

again and the loop continues until we achieve a non-zero current, which indicate that

the tip is close enough to the sample to continue with the experiment.

4.4.4 Phase-locked loop

Having the approach mechanics similar to a STM setup, in our quest to measure

the force on the nanowire, we now need a continous frequency tracking system. As
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Figure 44: Block diagram of a phase-locked loop circuit used to track the frequency
that is changing with the applied force on the cantilever.

the tip is dipped in bulk material and then pulled back, the atoms will rearrange

themselves such that they are in the minimum energy and the minimum force con-

figuration. The continuous rearrangement will change the force continuously, which

in turn will change the resonance frequency of the vibrating QTF. This change in

frequency can be tracked by an simple electronic circuit, called a phase lock loop

(PLL). The basic configuration of a PLL, as shown in Fig. 44, is a phase detector, a

loop filter, and a voltage controlled oscillator (VCO). The phase detector compares

the phase of the input signal with that of the VCO, and its output voltage is fil-

tered and applied to the VCO whose output frequency moves in the direction so as

to reduce the phase difference of the input signal and output of VCO. When the

loop is “locked,” the frequency of the VCO is exactly equal to the average of the

input signals. The entire circuit is commercially available on single microchips, like

MC14046B from ON Semiconductor, and can be configured for the required frequency

range. (Details of the configuration are given in Appendix C of this thesis). The

VCO also gives a DC voltage that is directly proportional to the “locked” frequency.

This voltage can be measured precisely and the required results can be observed.

However, a more advanced version of the circuit called the Lock-in Amplifier is

commercially available from the Stanford Research Systems. This amplifier can
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be interfaced with the computer and therefore we used it for all frequency tracking

measurements. Theoretically, this method of measuring the physical and electrical

properties of nanowire should work, and it should be able to give observable results.

However, a more sophisticated method was developed simultaneously that not only

gave more accurate results but also was much easier to implement.

4.5 Mechanically Controllable Break Junctions [66, 67]

The method used the microfabrication facilities and is more commonly known as

Mechanically Controllable Break Junctions (MCBJ). The essence of the MCBJ tech-

nique is the use of a bendable substrate which, when placed in a three point bending

configuration, enables the length and, consequently, the width of the contact to be

changed dynamically through piezoelectric actuation. Indeed, the MCBJ method al-

lows complete control over the length of device region from that of a bulk contact

to a single atom contact to a tunnel junction. However, not only do MCBJ have an

extensive range of possible atomic configurations, but also they are naturally robust

against mechanical vibrations, which implies that one can easily maintain single atom

contacts for long periods of time. This combination of range and stability provide

an ideal testbed for mesoscopic system physics. For the fabrication of mechanically

controllable break junctions, the major design goal is to create a metallic structure

whose smallest dimensions can be altered through elastic deformation of the underly-

ing substrate; to that end, our design employs the technique of suspending a narrow

metallic bridge between two contacts on a flexible substrate. Using this configuration,

the width of the bridge can be precisely varied from hundreds of nanometers down to

a single atom by bending the substrate with a mechanical actuator.
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CHAPTER V

SQUEEZE-FILM EFFECT

In the presence of a compressible gas film, the moving surfaces of the two prongs of

QTF squeeze the gas from between them. If the gas pressure is low, the molecular

mean free path is comparable to the gap between the prongs, and the gas cannot be

treated as a continuous medium. The gas at low pressure has an interesting effect

on the frequency response of the QTF: above the cut-off frequency, the gas film is

trapped and squeezed between the moving prongs and behaves like a low dissipation

spring element; whereas below the cut-off frequency, the gas has enough time to flow

out of the prong surfaces, thus causing significant dissipation. Figure 35 shows that

−∆f/f0 decreases with pressure and then increases again. The effect of decreasing

and then increasing of −∆f/f0 becomes more prominent after the addition of extra

mass. Although a hypothesis is presented to explain this effect, a detailed theoretical

model was beyond the scope of this thesis. Therefore, we use results derived from

fluid flow in a viscous medium to develop the hypothesis. We start with the Reynold’s

equation, which is essentially the Navier-Stokes’ equation in the presence of several

constraints. The squeeze number is an important assumption for the derivation of

this equation. Another important parameter is Knudsen’s number, which defines the

effective gas viscosity in different pressure ranges. Having the above definitions, we

narrowed the pressure range to where this formalism is valid. For pressures outside

this range, we develop a model involving the vibrating cantilever and the atoms of

the fluid medium to explain the variation in frequency.

105



5.1 Theoretical background

We used the theory of squeeze-film effect to explain the strange frequency response

QTF. In micromechanical systems when a cantilever is moving near a stationary

surface in presence of a fluid, a squeeze-film damping effects the resonance frequency

of the cantilever. As a plate moves perpendicularly towards a parallel surface a small

distance away, the plate forces the fluid to be pushed out of the gap causing a damping

force and compresses the fluid resulting in a spring force. The pressure gradient of gas

between the body and the stationary surface is related to the velocity profiles in the x

and y directions when the body is undergoing squeeze-film motion in z direction. The

flow of fluid can be described by the Navier-Stokes’ equation (Eq. (86)). However,

for this particular system the following assumptions are made [68]:

• The gap height, ξ is always much smaller than the lateral extent of the moving

body.

• The motion is sufficiently slow that the unsteadiness can be neglected.

• The gas obeys the ideal gas law.

• The system is isothermal with density proportional to pressure.

In particular, by assuming steady state conditions, ∂u
∂t

= 0, and neglecting the

inertial term, u · ∇u, we write the classical momentum equation for the film reduced

from the Navier-Stokes’ equation (Eq. (86)) as:

∂p

∂ζ
=

∂

∂z

(
η
∂uζ

∂z

)
, (106)

where ζ represents the x and y coordinates, and uζ = uζ(x, y, z) is the velocity field

components (in x and y directions) as a function of the coordinates. Essentially the

assumptions mentioned above can be written in a condensed format by considering

the ratio of the inertial force per unit volume, ρuζ(∂uζ/∂ζ), to the viscous force per

unit volume, η(∂2uζ/∂z
2), which gives the applicability of Eq. (106). As shown in

Ref. [69], the magnitude of the ratio can be approximated by a modified Reynold’s
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number, Re∗,
ρϑ2

b

ξ2

ηϑ
=
ρωb

η

ξ2

b
= Re∗, (107)

where ϑ = uζ(x, y, 0) is the velocity of the driving surface (the velocity of the driving

surface is considered identical in both x and y directions) and is given by the frequency

of vibration times the dominant length scale, i.e., ϑ = ωb. It should be noted that

the modified Reynold’s number is dependent on the thickness of the film rather than

on the cross section area of the vibrating cantilever. So the use of Eq. (106) instead

of the complete Navier-Stokes’ equation is justified if the ratio (modified Reynold’s

number) is such that Re∗ ¿ 1, or in other words, the viscous force should be larger

than the inertial force. For our analysis of the frequency response of QTFs, this ratio

determines the upper bound of the pressure.

Now the momentum equation in Eq. (106) can be combined with the continuity

equation,

∂ρ

∂t
+∇ · (ρu) = 0, (108)

to obtain a single differential equation relating the pressure, density, surface velocity,

and film thickness. This differential equation is the well-known Reynold’s equation

for a thin fluid film between two moving surfaces. The combination of Eq. (106) and

Eq. (108) allows the distributed film velocity, u, to be eliminated and replaced by the

film surface velocity, ϑ. It should be noted that the velocities of the adjacent bearing

surfaces will be identical for a no slip condition. Next, the momentum equation

(Eq. (106)) can be integrated to obtain the expressions for uζ . Then using these

expressions from the continuity equation, Eq. (108), and integrating that equation

gives the desired Reynold’s equation,

∂

∂x

(
ρξ3

η

∂p

∂x

)
+

∂

∂y

(
ρξ3

η

∂p

∂y

)
= 12

∂

∂t
(ρξ). (109)

The Reynold’s equation can be written in condensed form by normalizing it such that
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we make the following variable changes:

p = (1− p̄eωt)P0, (110)

ξ = ξ0 + ξ̄, (111)

x = x̄b, (112)

y = ȳb. (113)

Here P0 is the ambient pressure, ξ0 gap’s nominal height, and b is the width of

the cantilever. Additionally, the local density of fluid, ρ, is directly proportional to

the pressure, p, because we assume that the gas is ideal. Also, if the cantilever is

vibrating with a frequency, ω, then the pressure is assumed to be an exponential

function (defined in Eq. (110)) of that frequency. Further, Griffin, et al. [70], have

assumed the time dependent gap’s height, ξ̄(t), as a sudden or step change at time

t = 0. All the above simplifications lead to the following form of Reynold’s equation:

∂2p̄

∂x̄2
+
∂2p̄

∂ȳ2
= −12ηb2ω

ξ2
0P0

p̄. (114)

The constants on the right hand side of the equation are combined to define the

squeeze number, σ as:

σ =
12ηb2ω

ξ2
0P0

. (115)

Additionally, Eq. (114) is an eigenvalue equation and its lowest eigenvalue will define

the cut-off frequency, ωc, that limits the lower bound of the pressure while analyzing

the frequency response of the QTF:

ωc =
π2ξ2

0P0

12ηb2
. (116)

Thus, we have a pressure range whose upper bound is determined by the modified

Reynold’s number in Eq. (107), and the lower bound is determined by the cut-off

frequency in Eq. (116).

In addition to the above formulation, Veijola et al. [71], used the Knudsen’s

number, Kn, that is the ratio of free mean path, λ to the gap height, and ξ0 to define
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the effective viscosity in the model for squeeze-film effect. Essentially, Veijola et al.,

have extended a model developed by Fukui et al. [72], who used the Boltzmann’s

transport equation to derive a modified Reynold’s equation for arbitrary Knudsen

numbers and expressed the effective viscosity in terms of Poiseuille flow rate. But the

Poiseuille flow rate cannot be represented in closed form. So Veijola et al., derived a

simple approximate equation that differs by less than 5% from the original equation

that is valid for the Knudsen number’s range given by, 0 ≤ Kn ≤ 880. Therefore the

approximation for the effective viscosity, ηeff , is given by:

ηeff =
η

1 + 9.638K1.159
n

. (117)

Having an expression for effective viscosity leads us to the range of Reynold’s numbers

in which the squeeze-film effect of Eq. (114) can be observed for the vibrating prongs

of QTF.

The next step was to calculate the hydrodynamic function for this range of

Reynold’s numbers and analyze the change in frequency shift graph. So we solve

Eq. (114), and get:

p̄(x̄, ȳ) = p̄0cos(
√
σxx̄)cos(

√
σyȳ), (118)

where the sum of σx and σy is equal to the squeeze number, σ. Next, we want the

expression for effective pressure per unit length, which can be integrated over the

cross section of the cantilever to obtain the force per unit length (as in Eq. (88)).

Also in this equation the vorticity is not effected by the squeeze-film because the

curl of the velocity fields, uζ , (uζ obtained by solving the momentum equation, Eq.

(106)) gives a zero for z-component vorticity. Then, we expand Eq. (118) in Taylor’s

series and write the expression for real pressure per unit length using the pressure

normalization equation defined in Eq. (110) and obtain

p = P0(σx
x

b
)eωt. (119)
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This pressure is similar to the ambient pressure with an extra term, σx. The surface

integration of this pressure will give an expression similar to Eq. (89), but now having

the squeeze number in the force equation. Here, the significance of the squeeze number

is that the viscous forces are much greater then the inertial forces. On simplification,

we obtain the expression for resonance frequency as

∆f

f0

= −Γ(ω)
1

2

πσxρb

4ρch
. (120)

Although this equation has several assumptions, we hypothesize that this model

should explain the observed shift in resonance frequency.

5.2 Results and analysis

The above model is limited to a pressure range that is determined by the modified

Reynold’s number assumption in Eq. (114) and the cut-off frequency limit given by

expression in Eq. (116). The first equation implies that the squeeze-film effect will be

observed for pressures less than 0.1 bar, while the cut-off frequency or 32768 Hz limits

the pressure to values greater then 10−4 bars. Having the lower and upper bounds

of pressures, we calculated the effective viscosity, ηeff , using the Knudsen’s number

that was obtained using the mean free path and the thickness of the fluid film. Using

0.275 mm as the thickness of film as shown in Fig. 45 from Ref. [74] and 196 nm [73]

for mean free path of helium gas at room temperature and pressure, we calculated

the Knudsen’s number that varies between 7.13 × 10−3 (for pressure = 0.1 bar) and

712.73 (for pressure = 10−6 bars). Therefore, the Knudsen’s number for our system

satisfies the criteria (0 ≤ Kn ≤ 880) stated in the theory. Next, we calculated the

squeeze number in Eq. (115) and Reynold’s number in Eq. (97) using the physical

constants from Ref. [63]. We used the density of helium gas equal to 0.16040 kg/m3

and viscosity, η, at room temperature and pressure equal to 19.93 × 10−6 Pa.sec.

The width of the cantilever was approximated to be 0.6 mm and the height was set

to 0.5 mm. Thus the Reynold’s number changed from 15.38 for (for pressure = 0.1
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Figure 45: Dimensions of quartz tuning fork.

bar) to 2.91 (for pressure = 10−6 bars). Since the Reynold’s number is small, we

used the Re → 0 approximation in Eq. (98) and obtained the graph shown in Fig.

48. Thus the hydrodynamic function varies from 1.72 to 3.79 for the corresponding

pressures. With this we have all the parameters needed in Eq. (120), and we plotted

the theoretical values of shift in resonance frequency and compared them with the

observed values in Fig. 49.

The analysis of the graph shows that although the shift in resonance frequency

follows the theoretical model, it does not explain completely the observed phenomena.

A possible reason for the inconsistency is the number of approximations taken in the

theoretical model. The effective viscosity in Eq. (117) is an empirical formula, and it

can be changed to fit the experimental results. A possible formula can be generated

by fitting an exponential decay function that is dependent on the Knudsen number.

So the Eq. (117) can be modified to generate a new effective viscosity as follows:

ηeff =
η

1 + 0.471 + 0.164ln(Kn) + 0.017[ln(Kn)]2
. (121)

However, this force fitting of the viscosity lacks a physical explanation. Though,

it gives a much better explanation of the observed results. We used the effective

viscosity in Eq. (121) to plot the graph shown in Fig. 47.
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Figure 46: Polynomial fit of effective viscosity function to natural logarithm of
Knudsen’s number.
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Figure 47: Theoretical model generated to fit the data.
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Figure 48: Hydrodynamic function plot for moving cylindrical cantilever in fluid.

Also a detailed finite-element, numerical model will give a better result for the hy-

drodynamic function, which can explain the differences. The complete simulation was

beyond the scope of this thesis, therefore we leave it for future work. Further, Blech

[75] has demonstrated that the damping force due to the squeeze-film is maximum at

the cut-off frequency, which corresponds to the pressure of 10−4 bars in our system.

Thus, for pressures below this critical value, we observe the decreased damping force

and so −∆f/f0 increases.
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Figure 49: Squeeze-film effect in QTF sensors.
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5.3 Conclusion

Presented in this dissertation is a detailed analysis of a simple problem. As can be

seen, even a simple real life problem has a diverse range of complexity. We started

with the structure calculation of a niobium wire, that involves only a few atoms.

Different physical theories with several approximations were used to find the structure.

We successfully calculated the structure on a desktop computer. Since the main

advantage of the method presented for structure calculation is its lower requirement

for computational power, more complex structures, including several atoms as in bio-

molecules, can be simulated using the tools. Along with the structure calculation,

we also analyzed the transport properties of nano-structures using the inexpensive

computational resources. Therefore, this method presents hope for future research

in a way that the many-body problem can be solved practically. Therefore, different

fields of physics, chemistry, and biology can be studied in detail and this research can

be considered a forward step in our pursuit of understanding nature.

Having the theoretical tools and models, we developed experimental methods and

then moved towards the engineering implementations of methods to verify the above

developed theory. We started with a simple quartz tuning fork and modified it to be a

sensor. The sensor can have several practical applications in other research areas, but

we focused on the verification of the theoretical results. During the development of the

sensor, we studied different electronic tools available to process the data. Although,

we tried to minimize my diversification and mostly used the commercially available

instruments, we still built some circuits for data acquisition. With the development of

nano-technology, in the future, we will need more sophisticated electronics to acquire

and analyze our data. Mainly, we need circuits with greater precision. For example,

with the available resources we could not increase the force resolution because we

were limited by the frequency resolution. Besides the electronics, we also studied

vacuum technology that includes building a system to control the pressure of the gas
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then the measurement of that pressure. A careful use of cryogenics also was needed

to analyze the low-temperature effects.

In addition, another area of research that could not be avoided was fluid dynam-

ics. While calibrating the quartz tuning fork with respect to pressure, we observed

squeeze-film effect, and we used finite element analysis to complete the calibration.

We used several approximations for the hydrodynamic function and a detailed cal-

culation is required for more accurate results. However, we did not complete the

verification of structure and transport properties of niobium nanowire using the QTF

method, partly because of the limited scope and partly because the development of

MCBJ, which is a more accurate method. Since, we explored the problem from mul-

tiple dimensions and so this dissertation opens the scope for several research fields.
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APPENDIX A

MEASUREMENT OF TRANSFER FUNCTION

Appendix A investigates the measurement transfer function of a quartz tuning fork

using FFT. We used a Stanford Research SR780 Network Analyzer for all our mea-

surements and Labview to transfer the data to computer where we complete the

analysis.

A.1 Stanford Research SR780 Network Analyzer Set-up

The following section gives a stepwise description for the set-up of the network ana-

lyzer. Preset:

1. Press System to display the System menu.

2. Press <Preset> to return the unit to its default settings.

3. Press Enter to confirm preset. This step is required to prevent accidental reset.

Wait until the self tests are completed.

4. Use a BNC Tee to connect the Source Output to the QTF input and Ch1 A

Input. Also connect the QTF output to Ch2 A Input. In this instrument,

transfer function is defined as Ch2 response over Ch1 reference. Thus, Ch1

monitors the QTF input (source output), and Ch2 measures the response of

the device under test.

Source: Press Source to select the source menu.

1. Press <Chirp> to choose Chirp output, which is an equal amplitude sine wave

at each frequency bin of the FFT spectrum.
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2. Using the knob, set the amplitude to 1 Volt.

3. Press Window to select the Window menu.

4. Press <Window> to adjust the FFT Window function.

5. Select (Uniform) with the knob and press Enter. The Chirp source requires

the use of the Uniform window since not all chirp frequency components are

present at all points in the time record. The chirp is exactly periodic with the

FFT time record and does not leak with the uniform window.

6. Press Auto Range for Ch1 and Ch2 to let the analyzer automatically set the

Input Ranges to agree with the signals.

Frequency: Press Freq to select the Frequency menu.

1. Press <Span> to adjust the FFT Span. Use the knob to adjust the Span to 125

Hz and Center frequency to 32768 Hz and press Enter.

Display Setup: Press Display Setup to select the Display Setup menu.

1. Press <Measurement> to adjust the Measurement of the active DisplayA.

2. Select <F2/F1> with the knob to choose Transfer Function (the ratio of the

response (Ch2) to the input (Ch1)) for the Measurement in DisplayA (top) and

press Enter.

3. Press <Units> to change the Units to dB and press Enter.

4. Press Active Display to make DisplayB (bottom) the active display.

5. Follow the previous steps of Display setup and select (Phase) with the knob

and press Enter.

Display option: Press Display Options to select the Display Options menu.

119



1. Select (Log) with the knob to display response function in Log scale and press

Enter.

Marker: Press Marker Select the Marker menu.

1. Press <Width> to adjust the Marker Width for DisplayA and select (Normal)

(Width = 1/2 division) with the knob, then press Enter.

2. Press <Seeks> to adjust what the Marker Seeks within the Marker Region and

select (Max) with the knob and press Enter.

3. The Link key links the two display markers together. This allows simultaneous

readout of Transfer Function Magnitude (top) and Phase (bottom).

A.2 Labview Setup

We used the SR780 Network Analyzer Labview package to transfer our data to the

computer. The downloaded data was separated into x and y coordinate systems and

simultaneous plots were obtained. The front panel of Labview is shown in Fig. 50.
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Figure 50: Labview front panel for data acquisition from SR780 network analyzer.
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APPENDIX B

MODELING IN COMSOL MULTIPHYSICS

The model is implemented using three application modes that the predefined Fluid-Struc-

ture Interaction multiphysics entry sets up automatically. First, the Incompressible

Navier -Stokes application mode computes the fluid dynamics. This mode is active

in the area of the flow channel, and this model performs its computations with the to-

tal stress tensor form. Further, we implement the boundary conditions with non-ideal

weak constraints. This setup results in a more accurate computation of the boundary

conditions. The Lagrange multipliers, computed with the non-ideal weak constraints,

correspond to the negative of the x- and y-components of the fluid force. Therefore it

is not necessary to solve this force separately. Instead the Lagrange multipliers define

the loads in the Plane Strain application mode. Second, the Plane Strain application

mode solves the model’s structural mechanics portion. We activate it in the area of

the cantilever. To get a more accurate computation of the large strains, the large

deformation analysis type is the default setting. The deformation velocity solved

with this application mode acts as the boundary condition for the Incompressible

Navier-Stokes and the Moving Mesh (ALE) application modes. Third, the Moving

Mesh (ALE) application mode solves for the deformed mesh The application modes

as used here form a differential-algebraic equation (DAE) system, because not all the

equations depend on time. This means that the application modes (in the discrete

system) have several algebraic equations that do not contain time-dependent terms.

Therefore, to speed up the computations, one can activate advanced time-stepping

settings to exclude the algebraic equations from the error estimation and to use the
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singular mass matrix. For more accurate results, one must reduce the absolute toler-

ance values for the time stepping.

Model Navigator

1. In the Model Navigator, select 2D from the Space dimension list.

2. From the list of application modes, select MEMS Module>Fluid-Structure

Interaction>Plane Strain with Fluid Interaction>Transient analysis.

3. Click OK to close the Model Navigator.

Geometry Modeling

1. Go to the Draw toolbar and shift-click the Rectangle/Square button.

2. To generate the box containing the air, enter 2.436×10−2 in the Width edit field

and 1.862 × 10−2 in the Height edit field. Also set the origin of the rectangle

to 1.18× 10−2 for x-coordinate and to 8.1× 10−3 for y-coordinate. Click OK to

close the dialog box.

3. Now to generate the cross-section of the cantilever, shift-click the Rectangle/Square

button again and enter 5.0× 10−4 in the Width edit field and 6.0× 10−4 in the

Height edit field. The origin of this rectangle is set to 1.525 × 10−4 for x-

coordinate and 5.5× 10−5 for y-coordinate. Click OK.

Physics Settings

1. From the Options menu, choose Constants and define the following constants

with names and expressions:

Name Expression
mu 10−3

rho 100
umax 5× 10−2

E 2× 105
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2. Again from the Options menu, go to Expressions and then click Boundary

Express- ions. Enter the following equation for boundary 1 and click OK.

uin =
U.t2√

(0, 04− t2)2 + (0, I.t2)2
(122)

Subdomain Settings

1. From the Multiphysics menu, make sure Incompressible Navier-Stokes (mmglf)

is selected. Then in the Subdomain Settings dialog box select subdomain 1

and in the Group list select Fluid domain. Choose the density and viscosity for

air at room temperature and pressure. Leave the remaining settings to default.

2. To deactivate the incompressible Navier-Stokes equations in subdomain 2 (the

solid), select subdomain 2 then in the Group list select Solid domain before

closing the dialog box.

3. Now we set the Plane Strain (smpn) settings in the Multiphysics menu.

4. Deactivate the structural mechanics equations in the fluid by selecting subdo-

main 1, then in the Subdomain Settings dialog box in the Group list select

Fluid domain.

5. Now select subdomain 2 then select Solid domain in the Group list and enter

E in the E edit field for the Young’s modulus. The remaining parameters are

left to default.

6. The Subdomain Settings for Moving Mesh (ALE) are such that the subdomain

1 is free to move and subdomain 2 moves has Displacement variables set to

u, v.

Boundary conditions

1. From the Multiphysics menu, select Incompressible Navier-Stokes (mmglf)

to define the boundary setting for fluid region and apply the following boundary

conditions on the active boundaries:
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Boundary 1 2-4 5-7 8
Type Inflow/Outflow No Slip No Slip Pressure

velocity
x velocity uin 0 ut 0
y velocity 0 0 vt 0

2. The boundary settings for Plane Strain (smpn) application mode are left as

default.

3. For Moving Mesh (ALE) all the boundaries are set to Mesh displacement.

Mesh generation

The mesh parameters are set to default. The resulting triangular mesh is shown

in Fig. 51.

Computing the Solution

1. From the Solve menu choose Solver Parameters.

2. In the Times edit field enter 0:0.00005:0.0005 sec.

3. Type 1e-3 in the Absolute Tolerance edit field to provide sufficient accuracy

in the time stepping and leave the remaining parameters on their default values.

4. From the Solve menu choose the Solver Manager.

5. On the Initial Value page go to the initial value area and click the Initial

Value Expression option button. Close the dialog box and click the Solve

button on the main toolbar to solve the equations.

Postprocessing and Visualization

1. From the Postprocessing menu choose Plot Parameters.

2. On the General page find the Plot Type area; select the Surface, and Streamline

check boxes, then clear all the other check boxes.
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Figure 51: Mesh generated from the finite-element analysis.
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3. On the Surface page go to the Predefined quantities list on the Surface Data

tab, and select Pressure field in the list of quantities under Incompressible

Navier- Stokes.

4. Click the Uniform Color option button, click the Color button, and set the

color to grey.

5. Click the Streamline tab, and select Velocity Field (ns) from the Predefined

quantities list.

6. To calculate the values of force and vorticity on the boundaries, click Boundary

Integration from the Postprocessing menu. Select the corresponding Pressure

and Vorticity in the Predefined Quantities and the numerical values in the

bottom of the windows. We calculated these values for a range of velocity, umax

such that it defines the required Reynold’s number range. The resulting plot is

shown in Fig. 27.
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APPENDIX C

PHASE LOCK LOOP CHIP MC14046B

CONFIGURATION

As shown in Fig. 52, MC14046B has two phase comparators, a VCO, a source follower,

and a zener diode. The two comparators have two common signal inputs, PCAin and

PCBin. Input PCAin can be coupled directly to large voltage signals or indirectly

(with a series capacitor) to small voltage signals. The self-bias circuit adjusts small

voltage signals in the linear region of the amplifier. Phase comparator 1 (an exclusive

OR gate) provides a digital error signal PC1out and maintains 90◦ phase shift at the

center frequency between PCAin and PCBin signals (both at 50% duty cycle). Phase

comparator 2 (with leading edge sensing logic) provides digital error signals, PC2out

and LD, and maintains a 0◦ phase shift between PCAin and PCBin signals (duty cycle

is immaterial). The linear VCO produces an output signal VCOout whose frequency is

determined by the voltage of input VCOin and the capacitors and resistors connected

to pins C1A, C1B, R1 and R2. The source-follower output SFout with an external

resistor is used where the VCOin signal is needed but no loading can be tolerated.

The inhibit input Inh, when high, disables the VCO and source-follower to minimize

standby power consumption. The zener diode can be used to assist in power supply

regulation.

VCO Configuration: The power supply was connected. High voltage +10 volts

to pin 16 (VDD) and ground to pin 8 (VSS). The VCO gives an output frequency signal

at VCOout (pin 4) depending upon the dc voltage at VCOin (pin 9). The voltage can

be between VSS to VDD. No other input signal (input for Phase detectors) is necessary

of this configuration. However, depending upon the input voltage at VCOin the
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Figure 52: Block diagram and pin assignment of the microchip MC14046B com-
mercially produced by On Semiconductor.

VCOout frequency can vary between fmin to fmax. Note: This relationship between

input volatage and output frequency is linear. The fmin and fmax are determined by

the resistors and capacitors connected to pins 6, 7, 11, and 12 of the chip. Resistor R1

connected to pin 11, R2 connected to pin 12, and Capacitor C1 connected between

pins 6 and 7. The other ends of R1 and R2 are grounded. Now fmin & fmax are given

by following expressions

fmin =
1

R2(C1 + 32 pF)
, (123)

where VCOin = VSS, and

fmax = fmin +
1

R1(C1 + 32 pF)
(124)

where in this case VCOin = VDD. The 32 pf is a chip characteristic capacitor that

has to be added in the equation for calculating the frequency. The range of R1, R2

and C1 is as follows:

10 kΩ ≤ R1 ≤ 1 MΩ, (125)

10 kΩ ≤ R2 ≤ 1 MΩ, (126)

100 pF ≤ C1 ≤ .01 µF. (127)

For our experiment we selected R1 = 30.1 kΩ, R2 = 806 kΩ, and C1 = 2.15 nF. This

gives fmin = 15, 225.75 Hz. We adjusted the input voltage for the chip from 10.0

V to 6.8 V to set the fmin to 32 kHz. fmax is given by fmin + 568.60 Hz. A direct
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method of relating the fmax to input voltage for the chip could not be found and

so we measured experimentally using a Stanford Research Network Analyzer. The

difference ∆f = 2fL = fmax − fmin = 903 Hz was observed for a change in VCOin

from 0 to 6.8 V DC. This configuration gives a resolution of 7.5 mV for 1 Hz change

in frequency.

Phase Comparator, Low-Pass Filter, and Source-Follower Configura-

tion: We tried Phase Comparator 1 and Phase Comparator 2 for our experiment;

Phase Comparator 1 was selected. The datasheet of the chip shows that the output

for first comparator is simpler than the 2nd one, so we used the first comparator

for our experiment. We used the Filter A as the Low-Pass filter. C = 2.15 nF and

R = 197.6 Ω. The result is:

fC ≈ 1

2π

√
2πfL

RC
= 1.3 kHz. (128)

This is an error in the configuration since the data sheet says that for 2nd phase

comparator, fC ≤ fL. Appropriate values for R and C are given as follows:

R ≤ 35.3KΩ,

C = 0.01µF.
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