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SUMMARY

Algorithms based on Markov chains are ubiquitous across scientific disciplines, as they

provide a method for extracting statistical information about large, complicated systems.

Although these algorithms may be applied to arbitrary graphs, many physical applications

are more naturally studied under the restriction to regular lattices. We study several local

Markov chains on lattices, exploring how small changes to some parameters can greatly

influence efficiency of the algorithms.

We begin by examining a natural Markov Chain that arises in the context of ”monotonic

surfaces’, where some point on a surface is sightly raised or lowered each step, but with a

greater rate of raising than lowering. We show that this chain is rapidly mixing (converges

quickly to the equilibrium) using a coupling argument; the novelty of our proof is that it

requires defining an exponentially increasing distance function on pairs of surfaces, allowing

us to derive near optimal results in many settings.

Next, we present new methods for lower bounding the time local chains may take to

converge to equilibrium. For many models that we study, there seems to be a phase tran-

sition as a parameter is changed, so that the chain is rapidly mixing above a critical point

and slow mixing below it. Unfortunately, it is not always possible to make this intuition

rigorous. We present the first proofs of slow mixing for three sampling problems motivated

by statistical physics and nanotechnology: independent sets on the triangular lattice (the

hard-core lattice gas model), weighted even orientations of the two-dimensional Cartesian

lattice (the 8-vertex model), and non-saturated Ising (tile-based self-assembly). Previous

proofs of slow mixing for other models have been based on contour arguments that allow

us prove that a bottleneck in the state space constricts the mixing. The standard contour

arguments do not seem to apply to these problems, so we modify this approach by intro-

ducing the notion of “fat contours” that can have nontrivial area. We use these to prove
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that the local chains defined for these models are slow mixing.

Finally, we study another important issue that arises in the context of phase transitions

in physical systems, namely how the boundary of a lattice can affect the efficiency of the

Markov chain. We examine a local chain on the perfect and near-perfect matchings of

the square-octagon lattice, and show for one boundary condition the chain will mix in

polynomial time, while for another it will mix exponentially slowly. Strikingly, the two

boundary conditions only differ at four vertices. These are the first rigorous proofs of such

a phenomenon on lattice graphs.

vi



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Physical systems and phase transitions . . . . . . . . . . . . . . . . . . . 1

1.2 Sampling and counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Nanotechnology and self-assembly . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline and summary of results . . . . . . . . . . . . . . . . . . . . . . . 7

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 General Markov Chain Mechanics . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Spin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Tools for bounding mixing time . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

III SAMPLING WITH BIAS USING EXPONENTIAL METRICS . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Monotonic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 An extension to path coupling . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Proof that Mmon is rapidly mixing . . . . . . . . . . . . . . . . . . . . . . 32

IV BOUNDING CONDUCTANCE USING “FAT FAULTS” . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Non-bipartite independent sets . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Weighted even orientations . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Non-saturated Ising . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.4 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 The non-saturated Ising model . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Rapid mixing at high temperature . . . . . . . . . . . . . . . . . . 47

vii



4.2.2 Slow Mixing at low temperature . . . . . . . . . . . . . . . . . . . 49

4.3 Weighted Even Orientations . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Edge orientations as edge colorings. . . . . . . . . . . . . . . . . . 56

4.3.2 Fast Mixing at low λ . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Slow Mixing at high λ . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Independent Sets on the Triangular Lattice . . . . . . . . . . . . . . . . . 62

V HOW BOUNDARY CONDITIONS CAN AFFECT MIXING RATE . . . . . . 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Perfect matchings in the square-octagon lattice . . . . . . . . . . . . . . . 72

5.2.1 Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Fast Mixing of M̂Broder on Ω̂ . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Slow Mixing of M̂Broder on Ω̂′ . . . . . . . . . . . . . . . . . . . . 77

viii



LIST OF FIGURES

1 Two typical configurations in the Ising model, left at high temperature and
right at low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 A monotonic surface in two dimensions. . . . . . . . . . . . . . . . . . . . . 23

3 A monotonic surface in three dimensions. . . . . . . . . . . . . . . . . . . . 24

4 A pair of downsets σt (left) and ρt (right) where ρt = σt ∪ {(1, 1)} . . . . . . 27

5 A pair of downsets σt (left) and ρt (right) where ρt = σt ∪ {(0, 0, 0)} . . . . 28

6 Downsets that differ on x, where Mmon increases φt by adding v∗ + ui, for
any i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Downsets that differ on x, where Mmon increases φt by removing x− ui, for
any i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Downsets that differ on x, where Mmon increases φt by adding the vector
above x or removing the vector below x. . . . . . . . . . . . . . . . . . . . . 34

9 An independent set on L with a contour separating the odd points (left), and
the injection that removes the contour to increase the size (center and right). 39

10 The three colors of the tri-partition of the triangular lattice. . . . . . . . . . 40

11 An independent set of the triangle lattice, with a contour separating one
region of points from the others. . . . . . . . . . . . . . . . . . . . . . . . . 40

12 An even orientation of the Cartesian lattice, with contours separating one
region of sources and sinks from the others. . . . . . . . . . . . . . . . . . . 42

13 A move of the Markov chain MNonsat. . . . . . . . . . . . . . . . . . . . . . 44

14 An independent set “dominated” by odd vertices (in white), although the
majority are even (in black). . . . . . . . . . . . . . . . . . . . . . . . . . . 46

15 A fault line (black) and the fat fault containing it (gray). . . . . . . . . . . 52

16 An example of σ, σ with bad edges highlighted, and ψ(σ). . . . . . . . . . . 53

17 A configuration σ ∈ Ω8 (with sources and sinks marked) and the correspond-
ing edge-coloring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

18 A coloring σ, σ with the fat contour removed, and ψ(σ). . . . . . . . . . . . 60

19 An independent set on Λ and the corresponding empty faces. . . . . . . . . 62

20 A cycle of winding vector (1, 1), the strip remaining after its removal, and
the cycle of winding vector (0, 1) created using the path across the strip. . . 64

21 Adjacent faces which are point-adjacent (left), edge-adjacent (center), and
neither (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

ix



22 A set σ containing a pair of fault lines with differing winding vectors, and
ψ(σ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

23 A set σ containing a fault line with a black bulge on each side, and ψ(σ). . 66

24 Examples of L̂ (left) and L̂′ (right) for n = 5. . . . . . . . . . . . . . . . . . 73

25 A almost-perfect matching of L̂′ and that matching’s contraction. . . . . . . 73

26 All seven possible matchings of the edges incident to a diamond in L̂, and
the contracted form of each in L. . . . . . . . . . . . . . . . . . . . . . . . . 74

27 Examples of H (left), I (center), and J (right). . . . . . . . . . . . . . . . . 78

28 A graph H ∈ H, H\A(H), H\A(H)\P (H) and ψ(H). . . . . . . . . . . . . 79

29 Examples of H ∈ H and PE(H) and PW (H) (in gray), with P−(H) (in black). 80

30 Examples of P ∗ (gray) touching P− (black). In both cases, if P ∗ is not along
the boundary, there is a P ∗-available face. . . . . . . . . . . . . . . . . . . . 81

x



CHAPTER I

INTRODUCTION

1.1 Physical systems and phase transitions

Many physical systems in nature exhibit a phase transition as a parameter is changed. As

the temperature of water is lowered, it changes abruptly from a liquid to a solid. If the

temperature is held constant but the pressure decreased, water changes from a liquid to

gas. Likewise, if the temperature of iron is decreased, it suddenly gains a magnetic charge,

a process called “spontaneous magnetization.” For each of these we see a single parame-

ter for which a very slight (microscopic) change, affects the entire system in a dramatic

(macroscopic) way.

Statistical physicists study mathematical models of such systems in an effort to discern

how subtle changes in the way individual particles behave can affect the behavior of the

whole system. For example, the Ising model is a good model for magnetism. In this model,

we have a group of iron atoms on some graph, say the two dimensional Cartesian lattice, and

each atom is given a “positive” or “negative” spin, corresponding to two possible directions

for the spin of the electron. I.e., given a graph G = (V,E), we let ΩIsing(G) be the set of

all assignments of spins to the vertices of G, so

ΩIsing(G) := {+,−}V .

Neighboring atoms prefer to have identical spins, and the strength of this preference in-

creases as the temperature is lowered. Specifically, the Gibbs (or Boltzmann) distribution

for the Ising model assigns probability to each configuration as follows. Given σ ∈ ΩIsing(G),

we let

π(σ) = eβ
P

(x,y)∈E σ(x)σ(y)/Z,

where β is inverse temperature, and

Z =
∑

τ∈ΩIsing(G)

eβ
P

(x,y)∈E σ(x)σ(y)
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is the normalizing constant known as the partition function. At high temperatures (low

β), neighboring spins are loosely correlated and a typical configuration contains a fairly

random assortment of positive and negative atoms, while at low temperature the influence

of neighbors is stronger and there will be large clusters where spins agree. Figure 1 illustrates

two such typical configurations.

Figure 1: Two typical configurations in the Ising model, left at high temperature and right
at low.

We are interested in algorithms that generate configurations from a large set according

to their Gibbs probabilities, or some other meaningful probability distribution such as the

uniform distribution. This approach is known as “random sampling.” An alternative might

be to enumerate all of the configurations in the set, but this can be prohibitively slow. For

example, in the context of the Ising model on n atoms, we could try to list all 2n possible

configurations and find the likelihood of each, but for such a large set, this would take

exponential time. Sampling offers an alternative to enumeration where we can learn about

typical configurations while only examining a small proportion of the set of configurations.

A popular approach to random sampling is to use Markov chains, or algorithms that

“walk” around the state space. For example, starting with an arbitrary Ising configuration,

we change the spin of a randomly chosen individual atom, one by one. This local Markov

chain is a popular approach known as Glauber dynamics. It is usually simple to engineer

the transition probabilities so that If we iterate moves of the chain long enough, we will

arrive at a random sample that will be chosen according to our goal distribution, or close to

it. Another example of a Markov chain is shuffling cards to arrive at a randomly permuted

deck; we start at an arbitrary ordering, say from the previous game, and randomly mix the
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cards using some operation until we arrive at a “fair” deck for the next game, or close to

one. We are concerned with designing efficient algorithms for which the number of steps

needed is not too large.

Random sampling of such configurations arises naturally in statistical physics. Physicists

are interested in thermodynamic properties of collections of particles, like the iron atoms

represented in the Ising model. Recall that the partition function Z is a sum over allowable

configurations of their Gibbs weight. Important thermodynamic properties of the system,

such as the specific heat, heat capacity, free energy, and entropy are all functions of the

partition function Z (see, e.g., [?]). Sampling configurations with probability proportional

to their energy gives insight into the value of the partition function, and in many cases

allows us to get arbitrarily good estimates of Z.

One of the most exciting discoveries arising from interactions at the interface of physics

and theoretical computer science is that many natural sampling algorithms undergo a phase

transition, much like the models themselves,. Just as the physical system changes from un-

magnetized to magnetized as the temperature drops, these sampling algorithms are believed

to undergo an abrupt change whereby they are efficient at high temperature and inefficient

at low temperature. Amazingly, it is believed that the temperature at which the Glauber

Dynamics for the Ising model change from fast to slow could be precisely the temperature

that the physical magnet gains a charge! In this thesis we study questions about Markov

chain algorithms that shed some light on the connections between physical properties of a

system and algorithms for random sampling from the set of allowable configurations.

1.2 Sampling and counting

Sampling problems are fairly ubiquitous across most areas of sciences. From a combinatorial

and computational perspective, one of the primary interests stems from the fundamental

connection between sampling and counting.

Two classic counting problems with important connections to sampling are estimating

the volume of a convex body and finding the permanent of a matrix. If we discretize space,

calculating volume can be conceived as a counting problem: given a convex body, finding the
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volume is essentially equivalent to counting the points in the body when the discretization

is fine enough [?]. Finding the permanent of a 0, 1 matrix is also a counting problem, as it

is equivalent to counting the number of perfect matchings of an associated bipartite graph

[?].

Unfortunately, both of these problems are #P -Complete, meaning they are in a complex-

ity class of very difficult counting problems. The class #P can be thought of as a counting

analogue of NP ; a problem is in NP if a non-deterministic machine can determine whether

a configuration exists in polynomial time, and a problem is in #P if a non-deterministic

machine can determine how many configurations exist in polynomial time. (See [?] for

more on the complexity of counting.) As computing the volume and the permanent are

#P -Complete, algorithms to find exact solutions are believed to require exponential time,

and are therefore impractical.

Finding approximate solutions to these and similar problems, however, is an interesting

and important challenge. Successful algorithms for approximating both the volume and the

permanent were discovered in [?] and [?]. In both cases, the algorithms rely on subroutines

for generating random samples. In 1986, Jerrum, Valiant, and Vazirani formalized the

connection between sampling and counting for a large group of problems known as self-

reducible, and showed that an algorithm with polynomial running time to approximate

either the counting or sampling problem implies an algorithm with polynomial running

time for approximating the other [?].

Sampling algorithms based on Markov chains simulate a random walk on the set of con-

figurations for long enough that the sample will be chosen close to the correct distribution.

We say a chain is rapidly mixing if the walk gets arbitrarily close to the stationary distri-

bution in time polynomial in the size of the configurations. We say a chain is slowly mixing

when there are starting configurations from which the random walk will take exponential

time to converge to the stationary distribution. Our goal, then, is to design Markov chains

which are provably rapidly mixing, as they provide efficient sampling algorithms.

We define chains by indicating which pairs of configurations are neighbors. The most

straightforward of these is Glauber Dynamics, in which the chain changes the configuration
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only on individual points during a step. Many problems well-studied in combinatorics can

be sampled efficiently using Glauber Dynamics, at least for some settings of the parameters

defining the models. Consider, for example, the set of k-colorings of a graph G = (V,E),

i.e., the number of possible mappings f : V → [k] where (x, y) ∈ E implies f(x) 6= f(y). If

we want to sample k-colorings of graphs, we can start at any valid k-coloring. The Glauber

Dynamics then proceed by choosing a vertex uniformly at random. It then changes the

coloring by choosing randomly from the set of allowable colors that do not appear among

the vertex’s neighbors. This chain was shown to be rapidly mixing k is large enough [?] or

when k is large and the graph has sufficiently large girth [?]. Another important example

is sampling the independent sets of a graph. Given a graph G = (V,E), an independent set

is a subset I ⊆ V such that x, y ∈ I implies that (x, y) /∈ E. The Glauber Dynamics for

sampling independent sets of a graph add or remove a single vertex from the independent

set, so long as it does not violate the independence property. This chain is rapidly mixing

when the maximum degree is small or when the chain is weighted to favor sparse sets [?].

Likewise, there are also similar results for local algorithms sampling matchings on general

graphs [?] and many other combinatorial structures.

All of the above results hold for arbitrary graphs, but we are also interested in the

special case of sampling these types of combinatorial structures in lattice graphs since many

applications arise in that context. The most common lattice instances are finite regions of

2-dimensional Cartesian lattice Z
2, but other regular graphs are also of interest. In many

cases there are simple algorithms that can be defined when the input graph is restricted to

lie on a lattice that might not even make sense in the context of general graphs. Moreover,

even for algorithms that can be defined in general, it is possible that we can prove much

better bounds on the mixing time when we consider the restricted problem. For example,

we cannot expect to be able to sample 3-colorings uniformly on arbitrary graphs since even

producing one sample is NP-complete. However, the Glauber dynamics are known to be

rapidly mixing for any finite, simply-connected region of Z
2 [?]. Notice that it is easy to

generate 3-colorings here because the lattice is bipartite and therefore 2-colorable. Finally,

sampling on lattices for various models motivated by physics using Glauber dynamics can
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give insight into the physical system itself. Identifying phase transitions is a good example

of this.

An important related concept that arises in the context of sampling configurations of a

physical system is how the convergence rates are affected by the environment in which they

are placed. The physical phase transition often disappears when the boundary states are

fixed in certain ways, although much is not known about whether this also holds for the

corresponding sampling question. Martinelli, Sinclair, and Weitz [?] showed that for the

Ising model on a complete finite tree, changing the boundary of the tree does in fact greatly

affect the convergence rate dramatically. They showed that when all points on the boundary

are fixed to have the same spin, then the chain converges in time that is a polynomial in

the size of the tree. However, when the boundary is free, and none of the spins are fixed,

the chain converges in time exponential in the size of the tree. It is conjectured that the

same dichotomy holds for various lattice models motivated by statistical physics. We make

progress towards verifying this conjecture by showing that measuring this effect is possible

for a certain local chain on a lattice model.

1.3 Nanotechnology and self-assembly

Another field where the algorithmic underpinnings of sampling turn out to arise quite

naturally is nanotechnology, and in particular self-assembly. Self-assembly is a process

in which large numbers of simple objects aggregate into larger structures in random but

predictable ways. One exciting approach that has received much attention is tile-based

self-assembly, where very small tiles are designed with markings on each side so that two

tiles are more likely to join together along an edge if their markings match. Wang studied

such tiling systems and showed that they form a universal model of computation [?]. As

the field of nanotechnology make advancements in technology, these have become an even

more enticing object of study.

The challenge, then, is two fold. The first is to define tiles and markings so that tiles are

likely to assemble predictably into large aggregates. The second is to control the efficiency

of such an assembly, so that tiles aggregate quickly and with few errors. The approach
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taken by Seeman [?, ?], Winfree [?], and others is to use DNA double-crossover molecules

in order to construct marked tiles with DNA sequences on each side. These are constructed

so that pairs of tiles we want next to each other have large numbers of matching base pairs

along their edges, with the likelihood of their attaching being given by their hybridization

energies. See, e.g., [?, ?, ?, ?, ?] for more details and definitions of hybrid energies.

Two problems we examine in this thesis are motivated by tile-based self-assembly mod-

els. In the first, we consider many tiles of the same type associating and disassociating

with a large substrate, but at unequal rates. We show conditions under which the chain

is rapidly mixing in any number of dimensions. Interestingly, the models that arise are

equivalent to biased versions of sampling problems arising from statistical physics and com-

binatorics, namely lozenge tilings (modeling dimers on the triangular lattice), 3-colorings

on the Cartesian lattice (modeling the anti-ferromagnetic Potts model) and biased card

shuffling.

The second self-assembly model we consider can be thought of as a generalization of the

Ising model. We can think of the classic Ising model as a tiling with + and − tiles, where

tiles prefer to be adjacent to tiles of the same type. In the self-assembly context, however,it

makes sense to think of a non-saturated model where these tiles associate and disassociate

allowing for empty spaces where there are no tiles at all. This is equivalent to an Ising

model where spins can be non-existent and we call this the “non-saturated Ising model.”

1.4 Outline and summary of results

In Chapter 2, we provide an introduction to the area of sampling and finite Markov chains.

We give more formal definitions for the ideas mentioned earlier, and introduce two technical

methods to upper and lower bound the mixing rate.

In Chapter 3, we look at a biased tiling model motivated by self-assembly. We show

conditions under which the chain is rapidly mixing in any number of dimensions. Our

main innovation is to introduce a geometric distance function, which allows distances to be

exponentially large. This lets us construct a coupling proof of rapid mixing. This is joint

work with Dana Randall and Amanda Pascoe [?].
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In Chapter 4, we examine three models where it is intuitively clear that local Markov

chains will be inefficient because of a conjectured phase change in the system, but where no

known tools seem sufficient for a rigorous proof. These models are the non-saturated Ising

model arising in self-assembly, and independent sets and edge-orientations of the lattice,

motivated by statistical physics. Establishing slow mixing for these models has been a

challenge, as standard contour arguments typically used seem not to apply. We modify this

approach by introducing the notion of “fat contours” that can have nontrivial area, and use

these to establish slow mixing of local chains dened for these models. This is joint work

with Dana Randall [?, ?, ?].

Finally, in Chapter 5, we further examine the role of boundary conditions on mixing

rates. We define a local chain on perfect and near perfect matchings of the square-octagon

lattice and show that with one boundary condition it will mix in polynomial time, while

for another it will mix exponentially slowly. Amazingly, the two boundary conditions only

differ at only four vertices. These are the first rigorous proofs of this phenomenon on lattice

graphs. This is joint work with Nayantara Bhatnagar and Dana Randall [?].
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CHAPTER II

BACKGROUND

In this chapter, we give a brief introduction to Markov chains, including definitions and

some of the fundamental theorems. We then give an overview of two of the techniques used

to upper and lower bound mixing rates in subsequent chapters.

2.1 General Markov Chain Mechanics

We will be concerned with sampling elements of a large set known as the state space Ω. To

do so, we use a Markov chain on the elements of Ω.

Definition 2.1 A Markov chain is a series of random variables σ0, σ1, σ2, . . . such that

the value of σi depends on σi−1 and no earlier variable. I.e. for all s0, s1, · · · ∈ Ω,

P[σi = si|σ0 = s0, σ1 = s1, σ2 = s2, . . . σi−1 = si−1] = P[σi = si|σi−1 = si−1].

The elements σi ∈ Ω are known as the states or configurations. It will be convenient to

define the Markov chain in terms of the current state σi and the allowable next states σi+1,

along with the likelihood of each, given that we are at σi. To formalize this, we define a

directed graph on Ω, representing which states can immediately follow others. Our Markov

chain M simulates a walk on that graph: σ0 is an arbitrary configuration, and σ1 is chosen

randomly from the neighbors of σ0. Then σ2 is chosen randomly from the neighbors of σ1,

and so on. These choices can be uniformly distributed, but more often they are weighted.

We also define a transition matrix P , so that for a pair of configurations σ, ρ, P [σ, ρ] is the

transition probability, or likelihood of M moving to ρ in one step if we are currently at σ.

Raising this matrix to the t power, P t[σ, ρ] is the likelihood of M moving from σ to ρ in t

steps.

As more and more of these steps are taken, the chance of being at any given configuration

approaches the stationary distribution π, provided the Markov chain and state space satisfy

a few properties:
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Definition 2.2 A Markov chain is irreducible if, for all σ, ρ ∈ Ω and t > 0, there exists a

t′ > t such that

P t
′

[σ, ρ] > 0.

Definition 2.3 A Markov chain is aperiodic if, for all σ, ρ ∈ Ω,

g.c.d.{t : P t(σ, ρ) > 0} = 1.

We call a chain ergodic if it is both irreducible and aperiodic. As we can see in the

following lemma, being ergodic and having a finite state space implies convergence to a

unique stationary distribution π.

Lemma 2.1 Any finite, ergodic chain on Ω with transition probability P converges to a

unique stationary distribution π. I.e., for all σ, ρ ∈ Ω,

lim
t→∞

P t(σ, ρ) = π(ρ).

If a chain is not irreducible, there could be multiple stationary distributions. If a chain

is not aperiodic, there might not be a stationary distribution at all. In this sense, being

ergodic is both a necessary and sufficient condition for a finite chain to have a unique

stationary distribution.

For a Markov chain and probability distribution π, the Detailed Balance condition de-

termines whether π is the unique stationary distribution for a given Markov chain.

Definition 2.4 Given a Markov chain M on state space Ω with transition probabilities

P (·, ·), we say that a probability distribution π satisfies detailed balance if

π(σ)P (σ, ρ) = π(ρ)P (ρ, σ)

for all σ, ρ ∈ Ω.

The following lemma allows us to infer what distribution a chain converges to.

Lemma 2.2 Given a finite, ergodic chain M and a probability distribution π that satisfies

detailed balance with respect to π, then π is the unique stationary distribution for M.
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As example, we turn to the Ising model. The local Markov chain MIsing takes a given

configuration σt ∈ ΩIsing and produces a new configuration σt+1 by choosing a vertex of

G at uniformly random and changing the spin of that vertex. It is clear that this chain is

ergodic. For now, we look at the infinite temperature case, where vertices choose their spin

independently from their neighbors. In this case, MIsing changes the spin of the vertex

uniformly among + and −. As the probability of changing the spin of a vertex is the same

as the probability of changing it back, P[σ, ρ] = P[ρ, σ] for all σ, ρ ∈ Ω. Therefore the

uniform distribution satisfies detailed balance, and by Lemma 2.2, MIsing converges to the

uniform distribution at infinite temperature.

In general, we will not have such simple Markov chains that converge to the uniform

distribution. For the Ising model at finite temperature, the stationary probability of a

given configuration depends on the associated energy, and designing a chain that converges

to such a distribution is non-trivial. However, in 1953, Metropolis et al. [?] showed how

to define a Markov chain that does converge to an arbitrary probability distribution. This

was generalized by Hastings in 1970 [?], and so shares their names.

Definition 2.5 The Metropolis-Hastings Algorithm on a connected state space Ω with

probability distribution π repeats the following steps:

• For current configuration σt, choose a neighbor σ′t of σt uniformly at

random with probability 1/2∆, where ∆ is the maximum number of

neighbors of any configuration.

• With probability min
(
1,

π(σ′t)
π(σt)

)
, let σt+1 = σ′t.

• Otherwise let σt+1 = σt.then the

It is straightforward to see from Lemma 2.2 that the Metropolis-Hastings Algorithm con-

verges to the distribution π. Throughout this thesis we will use variations on the Metropolis-

Hastings Algorithm to ensure our chains converge to the desired distributions.

We can now examine this notion of convergence to the stationary distribution more

closely. However, to do so rigorously, we must first define a distance metric on distributions.
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Definition 2.6 The total variation distance between two distributions π1 and π2 is

||π1, π2||TV :=
1

2

∑

ρ∈Ω

|π1(ρ) − π2(ρ)|.

With this metric, we can now define the mixing time as the time after which the Markov

chain gets within ε of π, for some given ε > 0, and all starting configurations σ.

Definition 2.7 For a chain with transition probability P and stationary distribution π, we

define the mixing time τ(ε) for ε > 0 as

τ(ε) := max
σ∈Ω

min{t : ||P t′(σ, ·), π(·)||TV ≤ ε,∀t′ ≥ t}.

This allows us to define our broad definitions of fast and slow mixing.

Definition 2.8 We call a Markov chain rapidly mixing if the mixing time is bounded above

by a polynomial in n and log ε−1, where n is the size of each configuration in Ω.

Definition 2.9 We call a Markov chain slowly mixing if the mixing time is bounded below

by an exponential in n, where n is the size of each configuration in Ω.

Before discussing specific chains, it is important to mention that the mixing time of a

Markov chain can also be described using spectral analysis of the transition matrix.

Definition 2.10 Define the spectral gap of a matrix M to be

Gap(M) := λ0 − |λ1|,

where λ0 and λ1 are the largest (in magnitude) eigenvalues of M .

The following theorem is well-known in probability theory, and relates the spectral gap

and the mixing time [?].

Theorem 2.1 For a Markov chain M with transition probability P and stationary distri-

bution π, the following holds for all ε > 0.

τσ(ε) ≤ − ln (π(σ)ε)

Gap(P)
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and

τ(ε) ≥ −|λ1| ln(2ε)

2Gap(P)
.

Theorem 2.1 implies that determining the spectral gap of the transition matrix charac-

terizes the mixing time. Unfortunately, the number of rows and columns in the transition

matrix is the size of the state space, and so the matrix is too large to write down, before

even trying to calculate the eigenvalues directly. Instead, clever indirect methods have been

introduced to bound the spectral gap. We give an overview of two of these methods, cou-

pling and conductance, in Section 2.3. First, it will be useful to formalize the Ising model

so that we can demonstrate these methods.

2.2 Spin Configurations

The majority of the models we study in this thesis were originally defined to represent simple

physical systems, with an energy function on the space of configurations. This energy

function is defined by a Hamiltonian H(σ). For models where the energy is determined

solely from nearest-neighbor interactions,

H(σ) =
∑

(u,v)∈E
g(σ(u), σ(v)),

for some function g. Similar to a spring relaxing, systems tend to favor configurations that

minimize energy, where this preference is controlled by temperature. Each configuration in

Ω is given a weight

w(σ) = e−βH(σ),

where β = 1/T is inverse temperature. Thus, for low values of β the differences between

the energy of configurations are dampened, while at large β these differences are magnified.

The likelihood of each configuration is then given by

π(σ) = w(σ)/Z,

where Z =
∑

τ w(τ) is the normalizing constant known as the partition function. This

probability measure is known as the Gibbs (or Boltzmann) distribution. Taking derivatives

of the generating function Z (or lnZ) with respect to the appropriate variables allows us
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to calculate many of the interesting thermodynamic properties of the system, such as the

specific heat and the free energy.

As example of such an energy function, we turn to the Ising model as mentioned in

Chapter 1. For σ ∈ {+,−}n, the Hamiltonian of the ferromagnetic Ising model is given by

H(σ) = −
∑

(u,v)∈E
Jσ(u)σ(v),

where J is a parameter corresponding to the energy of nearest-neighbor interactions. We

define β = 1/T as the inverse temperature. Then the stationary probability of σ is π(σ) =

eβH(σ)

Z , where Z is the partition function. For an informal introduction to the Ising model,

see [?]. In this work, we use a change a variables, so that λ = eβ . Then

π(σ) = λH(σ)/Z.

For a graph G, we define the Markov chain MIsing on ΩIsing(G) by repeating the following

steps:

• Choose uniformly at random vertex v ∈ V (G), s ∈ {+,−}, and p ∈ (0, 1).

• For current configuration σt, let σ′t be the same configuration, but

with σ′t(v) = s.

• Among the neighbors of v, if more of v’s neighbors have spin s than

spin −s, let σt+1 = σ′t.

• Otherwise let Γs be the set of neighbors with spin s and Γ−s be the

set of neighbors with spin −s. If p < λ|Γ−s|−|Γs|, then let σt+1 = σ′t.

Otherwise let σt+1 = σt.

Just as with the Metropolis-Hastings Algorithm, there is a large chance of leaving σt

alone; if s = σt(v), then σt+1 = σt. Also just as with the Metropolis-Hastings Algorithm, if

a proposed move raises the stationary probability of the configuration, it is accepted with

probability 1. If the move lowers the probability of the configuration, it is accepted with

the ratio of the two probabilities.
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In general, these local Markov chains that change only a small portion of the configu-

ration at each step, are called Glauber Dynamics. Most of this thesis looks at algorithms

of this type. We now define some of the methods we use to bound the efficiency of these

algorithms.

2.3 Tools for bounding mixing time

Coupling and conductance are two methods of bounding the mixing rates of Markov chains.

In this thesis, we use coupling in several proofs of rapid mixing, and use conductance in

several proofs of slow mixing, as well as a proof of fast mixing which we elaborate on in

Chapter 5.

2.3.1 Coupling

One of the most popular methods for bounding mixing times is coupling [?]. A coupling is

itself a Markov chain that operates on pairs of states simultaneously so that the marginals

respect the original Markov chain, with the condition that once the two states agree, they

stay in agreement. The coupling time, or the expected time until agreement, can provide a

good bound on the mixing time if the coupling is carefully chosen. We now formalize this

notion.

Definition 2.11 For initial states σ, ρ, let T σ,ρ = min{t : σt = ρt | σ0 = σ, ρ0 = ρ}, let the

coupling time be

T = max
σ,ρ

E[T σ,ρ].

The following theorem relates mixing and coupling times [?].

Theorem 2.2 For any coupling, τ(ε) ≤ ⌈T e ln ε−1⌉.

As an example of a coupling, we turn again to the Ising model. With the local chain

MIsing as defined above, one straightforward coupling is to choose the same (v, s, p) for

both σt and ρt, to generate σt+1 and ρt+1. Bounding the coupling time for two arbitrary

configurations, however, can be quite difficult.
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In general, while coupling is potentially a powerful technique, it is often difficult to

measure the expected change in distance between two arbitrary configurations. The method

of path coupling, introduced by Bubley and Dyer [?], greatly simplifies this approach by

showing that we really need only consider pairs of configurations that are close according

to some metric on the state space.

The idea behind path coupling is to consider a small set U ⊆ Ω×Ω of pairs of configu-

rations that are “close” according to some distance metric ϕ. Suppose that we have shown

that the expected change in distance is decreasing for all of the pairs in U . To now reason

about arbitrary configurations σ, ρ ∈ Ω, we define a shortest path σ0, σ1, ..., σr of length r

from σ = σ0 to ρ = σr, where (σi, σi+1) ∈ U for all 0 ≤ i < r. If we define U correctly,

then ϕ(σ, ρ) =
∑r−1

i=0 ϕ(σi, σi+1). Then, by linearity of expectation, the expected change in

distance between σ and ρ is the sum of the expected change between the pairs (σi, σi+1).

Each of these has been shown to be at most zero, so the total distance is at most zero. Of

course, after the update there might be a shorter path between the new configurations σ′

and ρ′, but this just causes the new distance to be even smaller.

Theorem 2.3 Let φ be an integer-valued metric defined on Ω × Ω which takes values in

{0, . . . , B}. Let U be a subset of Ω×Ω such that for all (Xt, Yt) ∈ Ω×Ω there exists a path

Xt = Z0, Z1, . . . , Zr = Yt such that (Zi, Zi+1) ∈ U for 0 ≤ i < r and
∑r−1

i=0 φ(Zi, Zi+1) =

φ(Xt, Yt).

Let M be a Markov chain on Ω and let (Xt, Yt) be a coupling of M, with φt = φ(Xt, Yt).

Suppose there exists γ ≤ 1 such that for all (Xt, Yt) ∈ U ,

E[φt+1 − γφt] ≤ 0.

(1.) If γ < 1, then the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1 − γ
.

(2.) If there exists κ > 0 such that Pr[φt+1 6= φt] > κ for all t provided that Xt 6= Yt,

then

τ(ε) ≤
⌈
eB2

κ

⌉
⌈ln ε−1⌉.
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By way of example, we now use Theorem 2.3 to prove that MIsing is rapidly mixing for

the coupling just described when λ close to 1. This proof is far weaker than the current state

of the art, but it provides an example of how proofs using Theorem 2.3 are constructed.

For the metric φ, we use the Hamming distance, or simply the number of vertices on

which the two configurations differ. Let U be the pairs of configurations that have Hamming

distance 1. Thus for any (σt, ρt) ∈ U , there is a single vertex v∗ on which σt(v
∗) and ρt(v

∗)

differ. Without loss of generality, we assume σt(v
∗) = + and ρt(v

∗) = −.

In our coupling, where the same choice of (v, s, p) is made for both σ and ρ, any choice

of v distance at least 2 from v∗ will make no change in the distance φ(σt, ρt); the same

change is made to both configurations, so the distance is not effected.

When v = v∗, MIsing may decrease the distance between σt and ρt; one of the choices

of s succeeds with probability 1 and the other succeeds with probability at least λ−4. (For

instance, if every neighbor of v∗ has spin +, then v = v∗, s = + succeeds with probability

1 and v = v∗, s = − succeeds with probability λ−4. Hence, given MIsing chose v = v∗, the

expected change in distance is at most −1 − λ−4.

When v is chosen in the neighborhood of v∗, there is some chance of the distance

increasing. If a move’s chance of success is different on the two configurations, then there

is a chance that it succeeds on one and not the other, and the distance between them

increases. For this simple example, we use the fact that between σt and ρt, Γ(v) differs on

only one point. The maximum difference in success rates for each move can then differ by

some λi(1 − λ2), depending on the neighbors of v. This is maximized when i = 0, so the

maximum difference in success rates for each move is 1 − λ−2. As there are at most eight

choices of v and s with this property, the chance of increasing the distance by 1 is at most

8(1 − λ−2). Therefore for λ close to 1,

E[φ(σt+1, ρt+1|σt, ρt] − φ(σt, ρt) ≤ 8(1 − λ−2) − 1 − λ−4 < 0.

The maximum distance between any two configurations is simply the number of vertices,

so B is polynomial. Therefore we may use part (2.) of Theorem 2.3, and the chain is rapidly

mixing.
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2.3.2 Conductance

A Markov chain must have good flow in order for it to be rapidly mixing, since a bottleneck

can take a very long time to cross. This notion was formalized by Jerrum and Sinclair [?]

and Lawler and Sokal [?] as the following.

Definition 2.12 For a set S ∈ Ω, define the conductance of S as

ΦS :=

∑
σ∈S,ρ6∈S π(σ)P (σ, ρ)

π(S)
.

The product π(σ)P (σ, ρ) is the “capacity” of the edge (σ, ρ), and so ΦS is the total

capacity of the edges leaving S, divided by the stationary probability of S. Note that, for

chains satisfying detailed balance, π(σ)P (σ, ρ) = π(ρ)P (ρ, σ), so the capacity into the set

is the same as the capacity out.

Definition 2.13 The conductance for the chain M, Φ, is then defined as

Φ := min
S:π(S)≤1/2

ΦS .

If a Markov chain has exponentially low conductance, then there exists a cut in the

state space forming a bottleneck. This makes it intuitively clear that the chain will be slow

mixing, as any chain which starts on one side of the bottleneck will take exponential time

just to cross to the other side. Perhaps more surprisingly, it turns out that the converse is

true as well, that every chain that is slow mixing has exponentially low conductance. The

following formalizes this [?].

Theorem 2.4 For any Markov chain with conductance Φ and eigenvalue gap Gap(P ), we

have

Φ2

2
≤ Gap(P ) ≤ 2Φ.

Recall that the spectral gap is inversely related to the mixing time, so this shows that

a Markov chain is rapidly mixing if the conductance is at least 1/p(n) for some polynomial

p (where n is the size of the state space), and slowly mixing if the conductance is less

than e−cn for some constant c. We will primarily use the second inequality in this theorem
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to show slow mixing by demonstrating that the conductance is exponentially small. The

following corollary will be a useful reformation of this part of the theorem.

Corollary 2.5 For state space Ω and Markov chain M with transition probability P and

stationary probability π, if Ω is the disjoint union of S1, S2 and S3 such that

1) P (s1, s3) = 0 for all s1 ∈ S1 and s3 ∈ S3,

2) π(S2) ≤ cnπ(S1) for some constant c < 1,

and

3) π(S2) ≤ cnπ(S3) for some constant c < 1.

Then M is slow mixing on Ω.

To prove Corollary 2.5, one need only notice that Φ < ΦS2 < cn. By Theorem 2.4, this

implies exponentially small spectral gap, and therefore exponentially large mixing time.
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CHAPTER III

SAMPLING WITH BIAS USING EXPONENTIAL METRICS

In this chapter, we look at how to use Markov chains to sample monotonic lattice surfaces

where the surfaces are biased towards those with greater height. The unbiased version has

been studied previously, and this variant has been introduced in several applications. We

present new arguments for fast mixing based on coupling that rely on an exponentially

weighted distance metric.

3.1 Introduction

Many combinatorial and physical models on lattices have a height function representation,

including several 2-dimensional tilings and 3-colorings on Zd (see, e.g., [?]). These height

functions map a d-dimensional configuration to a surface in d+ 1 dimensions that has well-

defined local properties. For example, lozenge tilings on the triangular lattice correspond

to a monotonic surface on the 3-dimensional Cartesian lattice that looks like the upper

envelope of a set of cubes, where each cube is supported by other cubes on its lower three

sides.

It is easy to generalize this family of monotonic surfaces to d-dimensions. In 2 dimen-

sions, the monotonic surface is a “staircase walk” that always moves to the right or down,

and we will think of surface as the upper envelope of a set of unit squares in which each

square is supported to its left and bottom. Likewise, in d-dimensions we consider a set of

d-dimensional unit cubes within an input region such that each unit cube is supported by

other cubes in the lower d directions, if these are all within the region. In other words,

starting with a cube that is in our set, as we decrease in any of the d directions we must

hit another cube in the set or we must hit the boundary of the region.

The Glauber dynamics on monotonic surfaces adds and removes individual cubes (squares)

when possible. Informally, we choose a point on the surface uniformly. If that point lies

on a cube that can be removed, then we remove it. If that point lies on a cube that can
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be added, then we add it. Otherwise we do nothing. In a 2-dimensional rectangular region

it is easy to see that if we can add a unit square along the staircase walk, then we cannot

remove a square at the same place; this is also true in higher dimensions. We define the

Markov chain much more carefully in Section 3.2.

In two dimensions, it is easy to see that Glauber dynamics are rapidly mixing using a

standard coupling argument. With a three dimensional surface, the problem is considerably

more interesting. Luby, Randall and Sinclair [?] show that a related chain is rapidly mixing

and subsequently Randall and Tetali [?] showed that this implies that Glauber dynamics is

also. However, the behavior of the chain is unknown for d > 3.

Recently there has been a lot of interest in biased version of this chain where we are more

likely to add unit cubes than remove them. If P (σ, τ) is the probability of moving from σ to

τ in one move, where τ is formed by adding one cube to σ, then λ = P (σ, τ)/P (τ, σ) is the

bias of the chain. Using detailed balance, it is easy to see that the stationary probability of

a configuration σ will be proportional to λ|σ|, where |σ| is the number of unit cubes defining

the surface σ. The biased versions of the chain come up in the context of nanotechnology [?]

and biased card shuffling [?] and a biased version of the Glauber dynamics for 3-colorings

came up in the context of asynchronous cellular automata [?]. We will restrict our attention

to the first two examples where the monotonic surfaces correspond to sets of supported

cubes.

The nanotechnology example that motivated our work comes up in a model of DNA

self-assembly. “Square” tiles are constructed from strands of DNA so that each side is

single-stranded. Tiles are encouraged to line up and attach by making the corresponding

edges contain complementary sequences. At appropriately chosen temperatures these tiles

will have a good chance of correctly assembling, and a much smaller chance of disassociating

and breaking apart. The model considered by Majumder et al. [?] allows the left column

and bottom row of a large square to form, and then allows tiles to associate with the

large substrate if their left and bottom neighbors are already present. Likewise, tiles can

disassociate if their upper and right neighbors are not present, and disassociation happens at

a lower rate. The dynamics of this model are precisely captured by the Glauber dynamics
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on 2-dimensional monotonic surfaces. The 3-dimensional analogue is also used to study

self-assembly, where tiles are shaped like cubes and complementary sequences are used to

encourage matching faces to self-assemble.

Benjamini et al. [?] gave tight bounds on the mixing rate of Glauber dynamics for the

biased chain in rectangular regions of Z2 for any constant bias. In 3 and higher dimensions

substantially less is known. Majumder et al. [?] showed the chain mixes quickly when the

bias is O(n2); apparently the case of large bias is the most interesting for the nanotechnology

applications. Nothing else is known about the convergence of the biased chain, and both of

these results are highly technical and do not readily generalize to other values of the bias

or other dimensions.

We make progress in several aspects of the problem of sampling biased surfaces. In

two dimensions we show that the baised chain is rapidly mixing for any bias, even when

it is smaller than a constant. Our proof of fast mixing is significantly simpler than the

arguments of Benjamini et al. and our bounds are near optimal when the bias is constant,

the case they consider (losing only a factor log(n)). In addition, our arguments generalize

to sampling biased surfaces on any region that is simply-connected, not just the rectangular

regions previously considered. Our arguments also hold in high dimensional lattice regions.

In d-dimensional lattice regions we find that the Glauber dynamics are rapidly mixing when

the bias λ ≥ d. Again, our bounds on the mixing time are within log(n) of optimal when

the regions are rectangular, but they also show fast mixing for arbitrary simply-connected

regions.

The key observation underlying these results is showing that the distance between pairs

of configurations is always decreasing in expectation if we define an exponential metric

on the state space. It will be more convenient to think of monotonic surfaces as unions

of downsets in a lattice in order to show why an exponential metric is sufficient for these

problems. Finally, we show how to modify the path coupling theorem when the distances can

be exponentially large. The first half of the theorem when the distance decreases by at least

an inverse polynomial amount in expectation during each move. However, it is necessary

to modify the second part of the theorem to deal with the case when the expected change
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is less than an inverse polynomial since in the standard version the maximum distance is a

factor of the running time. We present a modified version of the theorem in this case that

allows us to conclude that the chain converges in polynomial time.

The remainder of the chapter is organized as follows: In Section 3.2 we define the model

and the Glauber dynamics more carefully. In Section 3.3 we introduce a modified path

coupling theorem that is more appropriate in the setting when distances are exponentially

large. Finally, in Section 3.4 we show how we can use our new path coupling theorem to

conclude that the chain is rapidly mixing.

3.2 Monotonic surfaces

Let R be any simply-connected region on the two dimensional Cartesian lattice Z
2 that is

the union of a set of unit squares. A monotonic surface in R is a path starting and ending

on the boundary of R that only takes steps down and to the right. Such a path is illustrated

in Figure 2 when R is an n × n square. By examining the coordinates of the faces of R

“below” such a surface, we have a set of lattice points σ ⊂ [0, . . . , n]2 such that for some

integer vector x ∈ Z
2, x ∈ σ implies x− ui ∈ σ, provided x− ui ∈ R (where ui is the unit

vector in the i direction). In this way, each point of σ is “supported” by the point below it

and to the left which are lie under the surface (or are outside of R).

Figure 2: A monotonic surface in two dimensions.

In three dimensions, let R be a simply-connected region on Z
3 consisting of the union

of unit cubes. A monotonic surface in R is the union of two dimensional faces such that

any cross-section along an axis-aligned plane is a two-dimensional monotonic surface. Such

a surface is illustrated in Figure 3 when R is an n × n × n cube. Again, examining the

coordinates of the corners of the unit cubes “below” such a surface, we have a set of points

σ ⊂ [0, . . . , n]3, such that for some integer vector x ∈ Z
3, x ∈ σ implies x−ui ∈ σ, provided

x− ui ∈ R.
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Figure 3: A monotonic surface in three dimensions.

In general, we consider simply-connected regions R ∈ Z
d composed of unit hyper-cubes,

and a d-dimensional monotonic surface is a set of d − 1 dimensional faces, such that any

cross-section along an axis-aligned (d − 1)-dimensional hyper-plane is a d − 1-dimensional

monotonic surface. The following definitions will help us define the set of regions we will

be considering.

Definition 3.1 For v ∈ Z
d, we define the ray r(v∗) to be the infinite set

r(v) = {(k + v∗1 , k + v∗2 , . . . , k + v∗d) : k ∈ Z}.

Definition 3.2 For a d-dimensional simply-connected region R ∈ Z
d, we say R is nice if,

for all v ∈ R, R
⋂
r(v) is connected.

Note that all hyper-rectangular regions are nice.

It will be convenient to think about monotonic surfaces on nice regions in terms of

“downsets.” Let u∗ = (1, 1, ..., 1) ∈ Zd. Then given a nice region R, we let RL be the lower

envelope of the region. That is, RL = {v ∈ R such that v − x∗ /∈ R}.

Definition 3.3 For a simply-connected region R ⊂ Zd consisting of the union of unit cubes,

define a downset to be a subset σ of R, with RL ⊂ σ, such that if v ∈ σ and v − ui ∈ R for

any i, then v − ui ∈ σ.

For a nice region R, we define Ωmon to be the set of all downsets of R. The following

definition helps us formalize the Markov chain we will be using to sample from Ωmon.

Definition 3.4 Let R be any nice region and let σ be any downset of R. We say the

boundary of σ is ∂(σ) = v ∈ σ such that v + u∗ /∈ σ.
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To sample from Ωmon, we start at an arbitrary downset σ0 = RL. Then if we are at

a given downset σt at time t, we pick a point v ∈ ∂(σ) and a vector b ∈ ±1. If b = +1,

then we let σt+1 = σt ∪ (v+ u∗) if this is a valid downset; otherwise we keep σt unchanged.

If b = −1, then we let σ + t+ 1 = σt \ v if this is a valid downset; otherwise we keep σt

unchanged.

For nice regions, moves of this type will connect the state space Ωmon. To see this,

let σ be any downset, and let vmax be any point in σ such that
∑

i v
max
i is maximized.

Then we can always remove vmax and move to σ′ = σ \ vmax without violating the downset

condition. Thus, from any valid downset σ we can always remove points and get to the

“lowest” downset RL.

Notice that for any σ and v, if σ ∪ v is a valid downset, then |∂(σ)| = |∂(σ ∪ v)|. This

is because we are adding v and removing v \ u∗ from ∂(σ) to form ∂(σ ∪ v). Therefore if

follows that for any nice region R, the size of the boundary of any valid downset is fixed.

We call this the span of R. The following two definitions will be convenient when we bound

the mixing time of our Markov chain.

Definition 3.5 The span of a nice region R is α = |∂(σ)|, for any downset σ of R.

Definition 3.6 Let R be any nice region. The stretch of R is

β = max
v∈R

∑

i

vi − max
v∈R

∑

i

vi.

Thus, the stretch is the maximal distance between two points in R in the u∗ direction.

Now, note that the Markov chain just described converges to the uniform distribution

over downsets. We will modify the transition probabilities to define the Glauber dynamics

with the appropriate Metropolis-Hastings probabilities [?] so that we converge to the right

distribution on biased surfaces. Notice that this new chain also connects the state space by

the same argument.

With all this said, for a given nice, d-dimensional nice region R, we now define the biased

Glauber dynamics on Ωmon.

With a given downset σt ⊂ R, each step of Mmon repeats the following steps:
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• Choose (v, b, p) uniformly at random from ∂(σt) × {+1,−1} × (0, 1).

• If b = +1, let σt′ = σ ∪ (v + u∗).

• If b = −1 and p > 1
λ, let σt′ = σ \ v.

• If σ′t is a valid downset, let σt+1 = σ′t. Otherwise let σt+1 = σt.

We now present the following two theorems that bound the mixing rate of Mmon. The

first pertains to constant λ in 2 and higher dimensions. We include a corollary that gives

bounds in the significant special case that the region R is a hyper-cube. The second theorem

allows us to bound the mixing rate of Mmon when the bias is arbitrarily close to 1 in 2

dimensions.

Theorem 3.1 Let R be any nice d-dimensional region with volume n. If d = 2, then let

constant λ > 1 be the bias, or if d ≥ 3 let λ ≥ d2 be the bias. Then the mixing time of

Mmon on Ωmon satisfies

τ(ε) = O(αβ lnn ln ε−1),

where α is the span and β is the stretch of R.

Notice that we always have α, β ≤ n, so the mixing time of Mmon is at mostO(n2 lnn ln ε−1)

for constant λ. In addition, when R is the h × h × ... × h hyper-cube, with hd = n, then

α = O(hd−1) and β = O(h). This gives the following corollary of Theorem 3.1.

Corollary 3.2 Let R = h × h × ... × h be the d-dimensional hyper-cube with hd = n. If

d = 2 with constant λ > 1 or d ≥ 3 with λ ≥ d2, then the mixing time of Mmon satisfies

τ(ε) = O(n lnn ln ε−1).

Up to a lnn factor, this matches the optimal running time. (The chain may require O(n)

steps just to connect the state space, so certainly no bound lower than O(n) is possible.) We

prove this result for all constant biases, just as in the Benjamini et al. result [?]. However,

our result is more general, pertaining to any nice region in any dimension. We also improve

their result for d = 2 by proving that the chain is rapidly mixing when λ is smaller than a

constant. The second theorem deals with this case and is as follows.
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Theorem 3.3 Let R be any nice 2-dimensional region with volume n. Let λ ≥ 1 be any

small bias, which can depend on n. Then the mixing time of Mmon on Ωmon satisfies

τ(ε) = O(n5 ln ε−1),

where α is the span and β is the stretch of R.

This theorem is just a minor extension of Theorem 3.1, but it demonstrates how the ma-

chinery developed in this chapter can be used when we have exponentially large distance

functions and we only have small (or no) decrease in the distance in expectation during a

move of the chain.

To understand why it is difficult to use coupling to prove these theorems, we first examine

the straightforward coupling of (σt, ρt) by simply choosing the same (v∗, b, p) to generate

both σt+1 and ρt+1. The natural distance metric on Ωmon×Ωmon is the Hamming distance,

where h(σt, ρt) = |σt△ρt| (and △ is the symmetric difference). However, with this coupling

and metric, we face difficulty with even the simplest of pairs (σt, ρt).

Examine the pair of downsets in Figure 4. They differ on a single point, so h(σt, ρt) = 1.

For coupling to show that Mmon is fast mixing, the expected distance E[h(σt+1, ρt+1)] must

be at most h(σt, ρt). For this pair of downsets, there are two choices of (x∗, b) that decrease

that distance; if Mmon succeeds on ((0),+1) or on ((0),−1) then (σt+1, ρt+1) is (ρt, ρt) or

(σt, σt), respectively. In either case, the distance between σt+1 and ρt+1 decreases by 1.

Figure 4: A pair of downsets σt (left) and ρt (right) where ρt = σt ∪ {(1, 1)} .

There are also two choices of (x∗, b) that increase the distance. If Mmon chooses ((1),+1)

or ((−1),−1), then ρt+1 gains a new point ((2, 1) or (1, 2), respectively), but σt+1 remains

unchanged; no addition to σt of a vector along that ray leaves a valid downset. With either

of these choices of (x∗, b), the distance between σt+1 and ρt+1 increases by 1.
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If λ = 1, this would be sufficient for coupling; the expected change in distance is 0.

Unfortunately, with any λ > 1, the chance of Mmon choosing a p large enough to succeed

on ((0),−1) is less than 1. Therefore the expected distance between the pair (σt, ρt) increases

after one step.

In higher dimensions, the situation becomes even worse. For the pair of 3 dimensional

downsets in Figure 5, there are three moves which increase the Hamming distance. (Choos-

ing ((0, 1),+1) adds (1, 1, 0) to ρt, choosing ((−1, 1),+1) adds (1, 0, 1) to ρt, and choosing

((1, 0),+1) adds (0, 1, 1) to ρt. In all three cases the move succeeds with probability 1, and

σt remains unchanged.) There are only two moves which decrease the distance (Choosing

((0, 0),+1) makes ρt+1 = σt and choosing ((0, 0),−1) can make σt+1 = ρt.) Of course, the

three moves that increase the distance succeed with probability 1, but one of the two moves

which decreases the distance only succeeds with probability 1
λ .

Figure 5: A pair of downsets σt (left) and ρt (right) where ρt = σt ∪ {(0, 0, 0)} .

One promising solution is to alter the distance metric. When two downsets differ on

some point x, the two moves which decrease the distance involve removing x from σt △ ρt,

while the moves that increase the distance involve adding x + ui to σt △ ρt (for some i).

Therefore we consider a distance metric that counts the distance between two sets that

differ on x as greater than the distance between two sets that differ on x + ui. Of course

the above examples can just as easily constructed around x+ui as around x, so our metric

must measure the distance between two sets differing on x+ui as greater than the distance

between two sets differing on x+ ui + uj (for some j), and so on.

We find the following distance metric suffices. For two downsets σ, ρ, let

φ(σ, ρ) =
∑

x∈σ△ρ
(
√
λ)d·n−‖x‖1 ,
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where ‖ · ‖1 is the L1 norm.

Unfortunately, this metric presents new problems as well. First, it potentially takes

on non-integer values, while the Path Coupling Theorem deals solely with integer valued

metrics. Second, the maximum distance between any two sets is now exponential in n,

while the expected change in distance between a pair of downsets might be arbitrarily

small, especially for λ very close to the bound in the theorem.

We therefore prove an extension to the Path Coupling Theorem.

3.3 An extension to path coupling

We begin by examining the two parts of Theorem 2.3. In the first, the mixing time of a

chain is bounded by logarithm of the maximum distance B. The distance between two

configurations may be exponentially large with respect to n and Theorem 2.3 still proves

that the mixing time of the chain is polynomial in n. However, it does require that there

exists a γ such that for all (σt, ρt) ∈ U , E[φ(σt+1, ρt+1)] ≤ γφ(σt, ρt). This γ measures the

contraction in expected distance from one step to the next,; if the contraction is within an

inverse exponential of 1, e.g. γ = 1 − 2−n, then the bound on mixing time is exponential

and the first part of Theorem 2.3 does not prove that the chain is fast mixing.

The second part of Theorem 2.3 requires no such bound on contraction; there we need

only that E[φ(σt+1, ρt+1)] ≤ φ(σt, ρt). However the associated bound on the mixing time is

in terms of B, not logB. Therefore if the distance metric can be exponentially large, e.g.

B = 2n, the second part of Theorem 2.3 does not prove that the chain is fast mixing either.

In this section we present the following theorem which allows for exponentially large

distance metrics without requiring such a polynomially bounded contraction in expected

distance.

Theorem 3.4 Let φ be a real-valued metric defined on Ω×Ω which takes values in [0, B]\(0, 1).

Let U be a subset of Ω × Ω such that for all (Xt, Yt) ∈ Ω × Ω there exists a path Xt =

Z0, Z1, . . . , Zr = Yt such that (Zi, Zi+1) ∈ U for 0 ≤ i < r and
∑r−1

i=0 φ(Zi, Zi+1) = φ(Xt, Yt).

Let M be a Markov chain on Ω and let (Xt, Yt) be a coupling of M, with φt = φ(Xt, Yt).
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Suppose there exists γ ≤ 1 such that, for all (Xt, Yt) ∈ U ,

E[φt+1 − γφt] ≤ 0.

(1.) If γ < 1, then the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1 − γ
.

(2.) If there exists η, κ > 0 such that P [|φt+1 − φt| ≥ ηφt] ≥ κ for all t provided that

Xt 6= Yt, then

τ(ε) ≤
⌈

2e ln2(B)

η2κ
ln ε−1

⌉
.

There are two important distinctions between Theorem 2.3 and 3.4. The first is that

Theorem 3.4 allows for non-integer metrics (provided that for all X,Y ∈ Ω, φ(X,Y ) < 1

implies φ(X,Y ) = 0). This is a minor restructuring of the proof of Theorem 2.3 [?], and

follows exactly from their proof.

The second is that γ may be zero (or very small) while the maximum distance B is

exponentially large; this is the case for which both parts of Theorem 2.3 are insufficient for

proving fast mixing. The second half of Theorem 3.4 deals with this case. We prove it with

a slight modification of the original proof of Theorem 2.3, replacing the original distance

φ(Xt, Yt) with ln(φ(Xt, Yt)). We require some technical lemmas concerning the expectation

and variance of the logarithm of the distance function, which we present below, but the

novelty of Theorem 3.4 is more in the statement of the result, than a new method of proof.

Note that including our modification to handle case of when γ = 0 and B is exponential

requires a strong bound on the variance of φt. Without this bound on variance, Theorem

2.3 would not be not true; for example, if φ0 = 2n and φt+1 = φt − 1, then clearly it will

take time exponential in n for φt = 0.

To provide the technical modifications necessary to prove Theorem 3.4, we define a

new variable ψ, where ψt = ln(φt), if φt > 0, and ψt = −1, if φt = 0. This means that

ψt ∈ [−1, ln(B)]. In Lemma 3.1 below, we will show that if the expected distance is non-

decreasing, then the expected log of the distance non-decreasing. In Lemma 3.2, we show

that if that the variance of φ is greater than a constant multiple of the current distance, then

30



the variance of ψ is at least a constant. Together, these lemmas give a proof of Theorem

3.4, following the exact structure of the proof of [?].

Lemma 3.1 If E[φt+1 − φt] ≤ 0, then E[ψt+1 − ψt] ≤ 0.

Proof:

Let {r1, r2, . . . } be the possible values for φt+1, each occuring with probability {ζ1, ζ2, . . . }.

That is, P[φt+1 = ri|φt] = ζi, with
∑r

i=1 ζi = 1.

Then,

E[ψt+1] =
∑

i

ζi ln(ri)

= ln

(
∏

i

rζii

)

≤ ln

(
∑

i

ζiri

)

= ln (E[φt+1])

≤ ln E[φt]

= ψt,

where the first inequality is by the Arithmetic-Geometric Mean Inequality, and the second

is given in the lemma. �

Lemma 3.2 If there exist η, κ > 0 such that P[|φt+1 − φt| ≥ ηφt] ≥ κ, then

E[(ψt+1 − ψt)
2] ≥ η2κ.

Proof:
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As before, let φt = φ[σt, σ
′
t]. Then,

κ ≤ P [|φt+1 − φt| > ηφt]

= P

[
φt+1

φt
− 1 > η

]
+ P

[
φt+1

φt
− 1 < −η

]

= P [ψt+1 − ψt > ln(1 + η)] + P[ψt+1 − ψt < ln(1 − η)]

≤ P [ψt+1 − ψt > η] + P[ψt+1 − ψt < −η]

= P
[
(ψt+1 − ψt)

2 > η2
]
.

Hence,

E[(ψt+1 − ψt)
2] =

∑

ℓ

ℓ P[(ψt+1 − ψt)
2 = ℓ]

≥ η2κ.

�

The proof of Theorem 3.4 follows the method of [?], replacing φt with ψt.

3.4 Proof that Mmon is rapidly mixing

To prove Theorems 3.1 and 3.3 , we return to the coupling of (σt, ρt) that simply supplies

the same (v∗, b, p) to both σt and ρt. We let U be the set of downsets that differ on a single

tile. However, instead of the Hamming distance, we define

φ(σ, ρ) =
∑

x∈σ△ρ
(
√
λ)dn−‖x‖.

We will show that this distance metric is sufficient to show that φt is decreasing in

expectation when λ is a constant as in the statement of Theorem 3.4. We begin by bounding

the number of moves which increase the distance between surfaces.

For a pair (σt, ρt) ∈ U , there are two different ways the distance can increase in

(σt+1, ρt+1). If σt = ρt ∪ {x}, we can increase the distance by attempting to add a v

that succeeds in σt but fails in ρt. This occurs when v = x + ui for some i, so v is “sup-

ported” in σt but not ρt. The other way to increase the distance between σt and ρt is to
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remove a v that succeeds in ρt but not in σt. This occurs when v = x−ui for some i, as the

move creates a valid downset in ρ but not in σ. The following lemma bounds the number

of such increases in distance.

Lemma 3.3 For σt = ρt∪{x}, there are at most d choices of (v∗, b) such that φt increases.

Proof:

We prove the Lemma by claiming that for dimensions i 6= j, if Mmon can increase the

distance by choosing v = x+ui, then it cannot increase the distance by choosing v = x−uj .

This follows from a proof by contradiction: If Mmon can increase the distance with x+ui,

then it is because ρt+1 = ρt∪{x+ui} is a valid downset. That means x+ui−uj ∈ ρt. On the

other hand, if Mmon can increase the distance with x−uj , it is because σt+1 = σt\{x−uj}

is a valid downset, and x − uj + ui 6∈ σt. But this contradicts the fact σt △ ρt = {x},

justifying our claim.

This implies that, to increase the distance, Mmon may add vectors of the form x+ui for

various dimensions i as in Figure 6, or it may remove vectors of the form x− ui for various

dimensions i, as in Figure 7, or it may add x+ ui and remove x− ui in a single dimension

i, as in Figure 8. In each of these cases, there are at most d choices of v that increase the

distance. �

Figure 6: Downsets that differ on x, where Mmon increases φt by adding v∗+ui, for any i.

We also bound the increase in φt for each of these pairs (v∗, b).

Lemma 3.4 If the selection of v∗ and b by Mmon can cause φt to increase, then the expected

increase is at most φt

nd−12d
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Figure 7: Downsets that differ on x, where Mmon increases φt by removing x − ui, for
any i.

Figure 8: Downsets that differ on x, where Mmon increases φt by adding the vector above
x or removing the vector below x.

Proof:

If the move is of the form v = x + ui for some i, then the increase in distance is

(
1
d

)‖v‖1 = φt√
λ
.

If the move is of the form v = x − ui for some i, then the increase in distance is
(

1√
λ

)‖v‖1

= φt
√
λ, but the chance of choosing an appropriate p is 1

λ . Therefore the expected

increase is again φt√
λ
. �

This finally allows us to show that the expected distance is non-increasing.

Lemma 3.5 For φt = φ(σt, ρt),

E[φt+1 − φt] ≤ 0.

Proof:

As shown by Lemmas 3.3 and 3.4, there are at most d choices of (v∗, b) that can increase

φt, with an expected increase of φt√
λ

each. There are also two choices of (v∗, b) that decrease

φt. These correspond to adding x and removing x. These each decrease φt by φt, and
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succeed with probability 1 and 1
λ , respectively. Therefore the expected change in distance

is

E[φt+1 − φt] ≤ d · φt√
λ
−
(

1 +
1

λ

)
φt

Substituting for λ > 1 when d = 2 or λ > d2 for arbitrary d proves the lemma. �

We may now prove Theorem 3.1, showing that Mmon is rapidly mixing for appropriate

choices of the bias λ. We appeal to the Theorem 3.4 to show that our coupling is sufficient.

Proof of Theorem 3.1:

We need only go through the requirements for Theorem 3.4 one by one.

For arbitrary σ, ρ ∈ Ωmon, if x ∈ σ △ ρ for some x, then φ(σ, ρ) ≥
√
λ
nd−‖x‖1 ≥ 1.

Therefore if φ(σ, ρ) < 1, φ(σ, ρ) = 0.

We let U be the set of downsets that differ on a single vector. For arbitrary σ, ρ ∈ Ωmon,

we can connect σ to ρ by simply adding or removing the vectors in σ△ ρ one by one, and

φ(σ, ρ) is the sum of the distances.

There are at most nd possible vectors in σ△ ρ, so φ(σ, ρ) ≤ nd
√
λ
nd

for all σ, ρ. For any

pair of σ, ρ such that |σ △ ρ| = 1, Mmon can always add that vector on which they differ.

The appropriate v∗ is chosen with probability (2n)d−1 and the appropriate b is chosen with

probability 1
2 (and every p succeeds when adding). Therefore there is a 2nd−1

2 chance of

changing |φt| by |φt|.

Thus, therefore we can prove Theorem 3.1 using the first part of Theorem 3.4 �

Proof of Theorem 3.3: We prove Theorem 3.3 using the second case of The Path Coupling

Theorem, Theorem 3.4. The majority of the necessary conditions were shown in the proof

of Theorem 3.1. All that remains is to show the bound on the variance of the distance.

For any pair of non-equal downsets σt, ρt, examine a point v satisfying minv∈σt△ρt
{‖v‖}.

Without loss of generality, assume v ∈ σt\ρt. By the minimality of v, ρt ∪ {v} is a valid

downset. Furthermore, by the minimality of v, removing v from σt△ρt reduces the distance
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between the sets by at least φ(σt,ρt)
n . This move occurs with probability at least 1

n , so we

may use the second half of Theorem 3.4, with ln(B) = O(n), κ = 1
n and η = 1

n . (These

extreme values of κ and η occur when the region is a long, thin rectangle, e.g. the n × 1

region.) �
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CHAPTER IV

BOUNDING CONDUCTANCE USING “FAT FAULTS”

In this chapter we consider problems where a conjectured phase transition is causing Markov

chains to require exponential convergence time at sufficiently low temperature (or low fu-

gacity). In particular, we study three models: independent sets on the triangular lattice,

weighted even orientations, and the non-saturated Ising model. (We define all of these mod-

els formally in the following section.) In each of these models, the intuition behind why the

chain should be slow seems initially clear, but standard arguments do not seem sufficient

for rigorous proof. We generalize these arguments to define a new tool, “fat faults,” and

use it to upper bound the conductance, thereby lower bounding the mixing time.

4.1 Introduction

We begin with a model for gas molecules, the so-called “hard-core lattice gas model.” We let

L = (V,E) be the n× n Cartesian lattice, and define ΩInd to be the set of all independent

sets of σ, that is, all σ ⊂ V such that for all v1, v2 ∈ σ, (v1, v2) 6∈ E. One imagines a gas

molecule at each point of σ, with the diameter of the molecule so large that there is not

room for a molecule at any adjacent point.

The stationary distribution on ΩInd is parameterized by a “fugacity” λ > 1, so that

larger independent sets are favored over smaller sets. The distribution is defined as

π(σ) = λ|σ|/Z,

where Z is the partition function. To sample from ΩInd, we start at any initial σ0 ∈ ΩInd,

say the empty set, and repeatedly add or remove single vertices, where possible, according

to the correct conditional probabilities to converge to π.

More precisely, we define the following Markov chain.

Given a current independent set σt, a move of the chain MInd is defined by repeating the
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following steps:

• Choose (v, b, p) uniformly from V × {+1,−1} × (0, 1).

• If b = +1 and σt ∪ {v} is a valid independent set, let σt+1 = σt ∪ {v}.

• If b = −1 and p ≥ 1
λ, let σt+1 = σt\{v}.

• Otherwise let σt+1 = σt.

The binary b determines whether MInd attempts to add or remove the vertex v from σt and

the probability p gives a chance of failure when removing vertices, so that MInd converges

to π.

An interesting phenomenon occurs as the parameter λ is varied: for sufficiently small

values of λ, MInd converges rapidly, while for sufficiently large values of λ, the convergence

will be prohibitively slow. The intuition for this transition is that when λ is sufficiently

high, large independent sets dominate the stationary distribution π; most of these sets

will contain predominantly vertices on the odd sublattice of L or predominantly vertices

on the even sublattice, as these pack much closer than vertices of differing parity and the

set may contain more vertices. However, for MInd to move from a set containing mostly

odd vertices to a set containing mostly even vertices, it must visit a configuration that has

roughly half of its vertices on each sublattice. If λ is large, these balanced configurations

will have exponentially small probability. As shown in Corollary 2.5, this means that it will

take exponential time to converge to equilibrium. See, e.g. [?, ?, ?].

Peierls arguments [?] allow us to formalize this intuition by defining “contours,” or

paths dividing regions of odd vertices from regions of even vertices. We then construct

injections that map configurations with long contours to configurations with substantially

larger stationary probability. For independent sets, the injection is constructed by shifting

the interior of such a contour and adding many new vertices to the set, as in Figure 9. For

formal definitions, see, e.g., [?, ?, ?, ?].

For the Ising model at low temperature, the proof of slow mixing is similar; when

temperature is sufficiently low, Ising configurations are greatly penalized for containing
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Figure 9: An independent set on L with a contour separating the odd points (left), and
the injection that removes the contour to increase the size (center and right).

adjacent vertices of differing spins, so configurations will be prominently one spin or the

other. However to move from a configuration with predominantly one spin to a configuration

with predominantly the other, MIsing must pass through a configuration with roughly half

of each spin.

To show that this set of “balanced” configurations has exponentially low stationary

probability, we again define “contours,” or paths dividing regions of one spin from the

other. We then again construct injections that map configurations with long contours to

configurations with substantially larger stationary probability. For Ising configurations, the

injection is constructed by reversing the spin of all vertices on the interior of such a contour.

For formal definitions, see, e.g. [?, ?, ?].

4.1.1 Non-bipartite independent sets

The phase change observed for local Markov chains on independent sets of the Cartesian

lattice is believed to persist when the underlying lattice is a finite subset of the 2-dimensional

triangular lattice. (Here we use the same chain MInd with a different underlying graph.)

For small λ, the MInd is known to be rapidly mixing [?], but for large enough λ, independent

sets will tend to be denser and we again expect any local dynamics to be slow.

Notice that on the triangular lattice there are three maximum independent sets instead

of two, arising from the natural tri-partition of the lattice, which we color black, white and

gray as in Figure 10.

The most likely configurations should be largely monochromatic, since these will be the

densest. To move from an independent set that is mostly black to one that is mostly white,

for example, it is necessary to visit one that has fewer than n/2 vertices of each of the three
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Figure 10: The three colors of the tri-partition of the triangular lattice.

colors, so there is no dominant color, and these should be unlikely when λ is large. At initial

glance, it seems an easy application of Corollary 2.5.

Figure 11: An independent set of the triangle lattice, with a contour separating one region
of points from the others.

Unfortunately, the proof that these sets with no dominant color have small total prob-

ability is significantly more difficult than on L. Contour arguments that succeed on the

Cartesian lattice do not seem to generalize readily to non-bipartite graphs such as the tri-

angular lattice. The problem is that a contour surrounding a region whose boundary is

black might be adjacent to some vertices that are white and some that are gray; there is no

guarantee that any local operation such as shifting or flipping the interior of the contour

will allow us to add enough new vertices to sufficiently increase the weight, as it does on

bipartite lattices. An example of such a problematic balanced configuration is illustrated

in Figure 11.

4.1.2 Weighted even orientations

The second model we consider should also be slow mixing, but again seems resistant to

standard contour arguments. We again let L = (V,E) be the n × n Cartesian lattice, and
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define Ω8 to be the set of even orientations of E, i.e., orientations of edges so that each

vertex on the interior of L has even in-degree and out-degree. This is known as the 8-vertex

model in statistical physics, as there are eight possible orientations of the edges incident to

any vertex.

We call vertices sources if they have in-degree 0 and sinks if they have out-degree 0;

all other vertices are called Eulerian since their in-degree and out-degree are both 2. For

σ ∈ Ω8, let S(σ) be number of sources and sinks in σ. Given λ > 0, we define distribution

π on Ω8 by setting π(σ) = λS(σ)/Z for each σ ∈ Ω8, where Z is the partition function.

To sample from Ω8, we start at an arbitrary even orientation σ0, say the orientation

that points every edge to the right or down, and reverse the directions of the edges around

a random face of L with the probabilities defined by the Metropolis-Hastings algorithm to

converge to π. More precisely, we define the following Markov chain.

Given a current even orientation σt, a move of the chain M8 is defined by repeating the

following steps:

• Choose (f, p) uniformly from F (L) × (0, 1), where F (L) is the set of faces

of L.

• Let σ′t be the orientation generated by reversing all four edges incident

to f.

• If π(σ′t) ≥ π(σt) or if p ≥ π(σ′t)
π(σt)

, then let σt+1 = σt.

• Otherwise, let σt+1 = σt

Notice that M8 reverses an even number of edges incident to any vertex of V , so σt+1 is

always a valid even orientation.

When λ = 0, the only allowable configurations are Eulerian orientations (known as the

6-vertex model) where every vertex has in-degree = out-degree = 2, and the local Markov

chain is known to be efficient [?, ?]. When λ is close to 1, we can use simple coupling

arguments to show that the chain is again rapidly mixing. However, when λ is sufficiently
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large, we expect most vertices to be sources or sinks, and the chain should take exponentially

long to move from a configuration that has predominantly sources which are on the odd

sublattice and sinks which are on the even sublattice, to one with predominantly even

sources and odd sinks.

While one would expect that configurations that are “balanced” are exponentially un-

likely, this does not seem to follow from any standard contour arguments. As demonstrated

by Figure 12, there is no clear map between valid configurations by flipping or shifting the

interior of contour that is guaranteed to significantly increase the stationary probability, as

required for the Peierls argument.

Figure 12: An even orientation of the Cartesian lattice, with contours separating one
region of sources and sinks from the others.

4.1.3 Non-saturated Ising

The third model we consider is motivated by a problem in self-assembly. Recall that self-

assembly is a process in which tiles are designed with markings on each side so that two are

more likely to join together along an edge if they have matching markings.

The standard Ising model can be thought of as a fully-packed, or saturated, self-assembly

model with two tiles A and B (corresponding to + and −) occupying lattice points, where

each tile prefers to be next to others of the same type. In this abstraction, we imagine that

every square is occupied by one of the two tile types.

A simple modification of the standard Ising model makes it more fitting for a tile-based

self-assembly model where configurations can include empty spaces. In the non-saturated

Ising model, empty spaces are represented by a third tile type 0. As in the Ising model, we
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define ΩNonsat = {A,B, 0}V , we define the Hamiltonian as

H(σ) =
∑

(u,v)∈E
g(σ(u), σ(v)),

for some function g. We then define the Gibbs distribution as

π(σ) =
eβH(σ)

Z
,

where Z is the partition function and β is the inverse of the temperature T .

The range of g depends on the construction of our tiles; there is a stronger energy

for pairs of tiles that contain more complementary markings. However we always assume

a tile of either type most prefers to be next to another tile of the same type, but also

prefers to have its neighbors occupied rather than unoccupied, even if it is with a tile

of the other type. Therefore for some values wmatch > wdiffer > 0, we set the weights

g(A,A) = g(B,B) = wmatch, g(A,B) = g(B,A) = wdiffer and g(0, x) = g(x, 0) = 0 for all

x ∈ {A,B, 0}.

For simplicity, we let λ = eβwmatch and µ = eβwdiffer . We can now describe the stationary

probability of a configuration σ as

π(σ) =
λ#matchµ#differ

Z
,

where #match is the number of nearest neighbor pairs that are both assigned A or both

assigned B, and #differ is the number of pairs where one tile is A and the other is B. We

will use this representation throughout the section.

For the non-saturated Ising model it might make the most sense to connect two config-

urations of Hamming distance one only if one of the configurations has a tile of type 0 in

the position of disagreement, as in Figure 13; recall that 0 represents an empty position,

so these moves correspond to tiles of type A or B attaching or detaching from the larger

configuration. Switching from A to B should require two moves: first removing A and then

adding B.

To sample from ΩNonsat, we start at an arbitrary tiling σ0, say the empty tiling ({0}V ),

and add or remove a tile at a random vertex, with the probabilities defined by the Metropolis-

Hastings algorithm. More precisely, we define the following Markov chain.
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Figure 13: A move of the Markov chain MNonsat.

Given a current tiling σt, a move of the chain MNonsat is defined by repeating the following

steps:

• Choose (v, s, p) uniformly from V × {A,B, 0} × (0, 1).

• If s = 0, let σ′t be the tiling identical to σt except with σ′t(v) = 0.

• If s = A or B and σt(v) = 0, then let σ′t be the tiling identical to σt

except with σ′t(v) = s. If σt(v) 6= 0, let σ′t = σt.

• If π(σ′t) ≥ π(σt) or if p ≥ π(σ′t)
π(σt)

, then let σt+1 = σt.

• Otherwise, let σt+1 = σt

As in the models described above, the intuition for using Corollary 2.5 seems clear; let

S1 be the set dominated by A and S3 be the set dominated by B. To pass from S1 to S3,

one must pass through a set with no dominating tile type, in S2. As the distribution tends

towards configurations with tiles that are next to those of the same type, this set S2 should

be of exponentially small weight.

Unfortunately, as with the models above, actually proving that this set is of exponen-

tially small weight is difficult; there is no clear way to show that containing a long contour

separating A from B implies exponentially small weight.

4.1.4 Our results

We provide the first rigorous proofs that Glauber dynamics are slow for the models described

above. For even orientations and the non-saturated Ising model, we show slow mixing

of the local Markov chain on rectangular regions with fixed boundary conditions, while
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for independent sets on the triangular lattice we consider regions with periodic (toroidal)

boundary conditions; these turn out to be the simplest regions for our arguments. Our

three main theorems are as follows.

Theorem 4.1 Let Λ be an n × n rhomboidal region of the triangular lattice with periodic

boundary conditions. Let ΩInd be the set of independent sets on Λ, and let MInd be the

local Markov chain on ΩInd. There exists constants λ′, k such that for all λ > λ′, the mixing

time of MInd is Ω(ekn).

Theorem 4.2 There exists constants λ′, k such that for all λ > λ, the mixing time of M8

is Ω(ekn).

Theorem 4.3 For all values of wmatch > wdiffer > 0, there exists constants T1, T2, k1, k2

such that for all T > T1, the mixing time of MNonsat is O(nk1), but for all T < T2, the

mixing time of MNonsat is Ω(ek2n).

Our proofs are based on several innovations. First, following [?], we abandon the ap-

proach of partitioning the state space so that the middle set contains “balanced” configu-

rations in the sense described above, and instead base the partition of the state space on

“topological obstructions.” Roughly speaking, the middle set in our partition of the state

space is defined by the presence of “fault lines,” or paths across the region that pass only

through “unfavorable” regions (in our cases, vacant vertices in ΩInd, Eulerian vertices in

Ω8, and edges where opposing tiles touch in ΩNonsat.). The absence of a fault line is char-

acterized by the presence of a pair of monochromatic blocking path of “favorable” vertices,

and the type of these paths determines which part of the state space a configuration lies in.

To see why this is different from the standard approach, consider an independent set

that contains such a pair of perpendicular paths, composed entirely of vertices on the

odd sublattice, and then also includes all possible vertices on the even sublattice in the

remaining space. Such a set is illustrated in Figure 14. This independent set is considered

“odd” because it contains a pair of paths on the odd sublattice across the graph. This is

despite the fact that it has O(n2) even vertices and only O(n) odd ones. This partition
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of the state space was shown to greatly simplify the combinatorial methods underlying the

Peierls argument for bipartite independent sets [?] and can be extended to the models we

consider here as well.

Figure 14: An independent set “dominated” by odd vertices (in white), although the
majority are even (in black).

It is still the case that the 1-dimensional contours on bipartite lattices, sufficient in the

context of independent sets and the Ising model, do not readily generalize to our problems

for the reasons outlined above. However, a generalized notion of contours to a potentially

2-dimensional region can be made to work. Instead of defining a minimal connected set of

unfavorable vertices, we define “fat contours” to be maximal connected sets of unfavorable

vertices. We define an injective map from configurations in the “middle set” of the state

space, i.e. those containing a fault line, by replacing an entire fat contour with favorable

vertices (a maximal independent set, a maximal set of sources and sinks, or a full set

of matching tiles). We then show that the gain in stationary probability is sufficient to

outweigh the amount of information needed to invert the map.

Finally, in order to show slow mixing in the context of independent sets on the triangular

lattice with periodic boundary conditions, it is necessary to study multiple non-contractible

fault lines, depending on the color of the boundary vertices. On the Cartesian lattice with

periodic boundary conditions, it was only necessary to find up to two non-contractible cycles

and to shift (or flip) the configuration between these; on the triangular lattice it is sometimes

necessary to find three non-contractible cycles, as there are three colors of regions and our

fault line might not be bounded by the same color on each side.
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For ease of explanation, we prove these theorems in the reverse order of how they were

presented above. We prove Theorem 4.3 in Section 4.2, Theorem 4.2 in Section 4.3, and

Theorem 4.1 in Section 4.4.

4.2 The non-saturated Ising model

To show fast and slow mixing for for the non-saturated Ising model at high and low tem-

perature, we do not deal with specific temperatures T as they relate to wmatch and wdiffer.

Instead we use the construction that λ = eβwmatch and µ = eβwdiffer , and show that MNonsat

is rapidly mixing when λ and µ are close to 1, and MNonsat is slowly mixing when λ and

µ are very large.

4.2.1 Rapid mixing at high temperature

We first consider the high temperature case in which tiles still prefer to be present, and

nearest neighbors prefer to be of the same type, but these preferences are rather weak. In

other words, we consider the case when λ and µ are close to 1, and use Theorem 2.3 to

show that MNonsat is rapidly mixing. Specifically, we prove the following theorem.

Theorem 4.4 For ε > 0 and 1 < µ < λ < 1.1, the mixing time τ(ε) of M is O(n2 ln 1/ε).

Notice that the first part of Theorem 4.3 follows as a corollary.

To prove MNonsat is rapidly mixing for λ and µ close to 1, we use a coupling argument;

we create a new Markov chain which acts on pairs of configurations in Ω × Ω, and show

that the time until any two configurations become equal under this coupling is polynomial

in n. To define the coupling, we choose a triple (v, s, p) exactly as before, but now, given

a pair of configurations (σt, ρt) at time t, we apply the move defined by the same triple to

both configurations at once, getting a new pair (σt+1, ρt+1).

We define the distance φ(σ, ρ) as the minimum number of moves of MNonsat to go from

σ to ρ. (Note that this is slightly different than the Hamming distance, as changing a

single vertex from A to B requires two moves.) Using Theorem 2.3, we may restrict our

examination to the pairs that are distance 1. If we show that, for any such pair, the expected

distance decreases after a single move, this will show rapid mixing.
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Lemma 4.1 Let σt and ρt be configurations such that φ(σt, ρt) = 1. Then, for every

1 < µ < λ < 1.1,

E[φ(σt+1, ρt+1)] ≤ 1 − 1

9n2
.

Proof:

Let v∗ be the single vertex on which σt and ρt differ. Without loss of generality, we may

assume σt(v
∗) = A and ρt(v

∗) = 0.

When performing the move prescribed by the triple (v, s, p) to the pair (σt, ρt), the

distance only changes if v is v∗ or a neighbor of v∗. In all other cases, the Markov chain

performs the same change to σt and ρt, and φ(σt, ρt) = φ(σt+1, ρt+1).

On the other hand, if v is v∗ or one of its neighbors, the distance might increase or

decrease by 1 after the move. To show that the expected distance is decreasing, we first

lower bound the probability of it decreasing, and then upper bound the probability of it

increasing.

The two moves on which we may decrease the distance are when v = v∗ and s is either A

or 0. In the first, ρt is changed to σt while σt remains the same. Therefore ρt+1 = σt = σt+1.

In the second, σt is changed to ρt while ρt stays the same, so σt+1 = ρt = ρt+1. The

probability of choosing an appropriate v and s, and an p high enough that the move succeeds,

is

1

n2

1

3
min

(
1,
π(σt)

π(ρt)

)
+

1

n2

1

3
min

(
1,
π(ρt)

π(σt)

)
.

As π(σt) ≥ π(ρt), this probability is lower bounded by 1
3n2 + 1

3n2λ4 .

There are many moves that potentially increase the distance. The first is when v = v∗

and s = B. Then the move automatically does nothing to σt, but might further change

ρt+1. This occurs with at most probability 1
n2

1
3 .

Another move that may increase the distance is choosing a vertex v′ adjacent to v∗.

Here, the range of acceptable p might be larger for one configuration than the other, so one

configuration’s move succeeds while the other’s fails. Such a difference occurs if σt(v
′) =

ρt(v
′) 6= 0. Then, when v = v′ and s = 0, the Markov chain changes π(σt) by a factor of

(at most) λ more than it changes π(ρt). Hence after choosing v and s, the probability of
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succeeding on σt and not ρt is at most λi(1− 1
λ), for some i. This is maximized when i = 0,

and the chance of choosing v and s is 1
n2

1
3 . Therefore the difference of their two chances of

success is at most 1
n2

1
3(1 − 1

λ).

As there are only four neighbors of v∗, we have

E[φ(σt+1, ρt+1) − φ(σt, ρt)] ≤
1

3n2
+

4

3n2

(
1 − 1

λ

)
− 1

3n2
− 1

3n2λ4

=
1

3n2

(
4 − 4

λ
− 1

λ4

)

<
1

3n2

(
−1

3

)

�

This allows us to prove Theorem 4.4.

Proof of Theorem 4.4:

The maximum distance between any pair of tilings is 2n2 (from the all A tiling to the

all B tiling). If we let U ⊂ ΩNonsat×ΩNonsat be the pairs of configurations that differ by a

single move of MNonsat, then the expected distance between any pair in U is non-increasing.

This proves Theorem 4.4 by Theorem 2.3. �

4.2.2 Slow Mixing at low temperature

We now turn our attention to the low temperature case, when λ and µ are both large and

λ is much greater than µ. When λ/µ is large, there is a large penalty to the stationary

probability each time an A tile is placed next to a B tile, or when we have a 0 tile. We will

show that when this ratio is large enough, typical configurations will be dense and will have

a predominance of A tiles or B tiles. This allows us to show there is a bottleneck in the

state space, implying that the chain is slowly mixing due to small conductance. Specifically,

we show the following theorem.

Theorem 4.5 If λ
µ > 28, then there exists constant c > 1 such that the mixing time of M

on the non-saturated Ising model on the n× n square toroidal lattice is Ω(cn).
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We use the conductance method described by Corollary 2.5. To move from a config-

uration which is dominated by A tiles to a configuration which is dominated by B tiles,

MNonsat must pass through a configuration where there is no dominating type. Intuitively,

these configurations without a dominating type are heavily penalized when A and B inter-

act often. We therefore partition the state space into three sets, and show that the set of

configurations with no dominating type forms a bottleneck.

We also take the approach of [?] and focus on finding the simplest possible description

of the cut to simplify the subsequent analysis. We define middle set F as configurations

that have a “fault line”: a long path consisting entirely of “unfavorable” edges, where either

a tile is unoccupied or where A meets B. We formalize these definitions momentarily, but

any configuration with such a path will be penalized for each edge, and therefore have very

low stationary probability.

The key idea is that the state space Ω now can be partitioned into three sets A, F and

B. Any configuration that does not have a fault line can be shown to have a large connected

component of a single type of tile crossing the lattice region; these configurations (which

actually comprise the majority of Ω) lie in A or B according to the tile type.

In the proof, we show that it is necessary for the Markov chain to pass through configu-

rations in F to move from A to B, and yet F has exponentially smaller Gibbs measure than

each of the other two sets; this guarantees that the chain is slowly mixing since it is enough

to show that the chain has exponentially small conductance. This idea of using “topological

obstructions” based on fault lines to partition the state space for a proof of slow mixing

has been applied previously in the context of independent sets [?] and the standard Ising

model [?].

We need to define several terms to formalize the argument.

Definition 4.1 We call an edge good if it lies between A and A or B and B, and call it

bad otherwise.

Definition 4.2 Here we define a vertical fault line to be a path of bad edges from the top

of L to the bottom. Define a horizontal fault line similarly.
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We say two faces of the lattice are adjacent if they share an edge. Define an A-bridge

to be a path of adjacent A faces from one side of L to the other.

Definition 4.3 Define an A-cross to be a pair of A-bridges, one vertical and one horizontal.

Define a B-cross similarly.

Let F be the set of configurations that contain a fault line. Let A and B be the

configurations which have an A-cross and a B-cross, respectively. We now show that these

three sets partition Ω.

Lemma 4.2 The sets A, F , and B are disjoint, with A ∪ F ∪ B = ΩNonsat. Furthermore,

for any σ ∈ A and ρ ∈ B, P (σ, ρ) = 0.

Proof:

Since we are in two dimensions, no configuration can have both an A-cross and a B-

cross, as their intersection would have both types of tiles. Similarly, a configuration cannot

have both a cross and a fault line, as the fault line would put a bad edge across a bridge,

contradicting the notion of a bad edge. Therefore A, F , and B are disjoint.

To show that the three sets make up all of ΩNonsat, examine a configuration σ with no

horizontal bridge. Let T be the set of bichromatic vertices of σ that have a face-connected

path to the top of L. As the top of L is not a bridge, T is non-empty (although not

necessarily connected). By the definition of T , each edge incident to T is good, or it would

be included in T . If T never reaches the bottom of L, then the vertices incident to T contain

a horizontal bridge (and therefore a contradiction). On the other hand, if T reaches the

bottom of L, then there is a vertical fault line.

In a similar argument, if σ has no vertical bridge then σ has a horizontal fault line.

Therefore ΩNonsat = A ∪F ∪ B.

To show that MNonsat may not move from A to B, note that every move of MNonsat

either adds or removes a tile. Moving from σ ∈ A to ρ ∈ B would entail first breaking an

A-cross and then creating a B-cross; this requires at least two moves. Hence F divides A

from B. �
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Clearly π(A) = π(B) by symmetry. To use Corollary 2.5, we need only show that for

large n, π(F) < Cn, for some fixed constant C < 1. To this end, we define a function ψ

that maps configurations in F to new configurations with exponentially larger stationary

probability. Although this function will not be one-to-one, we will show that, for each con-

figuration in ΩNonsat, the total stationary probability of the pre-image is exponentially less

than the weight of the configuration itself. This will allow us to show that F is exponentially

smaller than ΩNonsat, and therefore significantly smaller than each of A and B.

We know that any configuration σ ∈ F has at least one fault line, and possibly many.

The function ψ will select one and then will remove it by adding A tiles everywhere that

is currently unoccupied, thereby forcing the new configuration to have much greater Gibbs

weight. This would be enough to show that π(F) were small if ψ were injective, but of

course it typically is not. Therefore we need to argue that for each σ ∈ F , the increase

in weight of ψ(σ) is large enough to account for all the pre-images in F . In addition, we

need to generalize the notion of a fault line to a maximal connected component, in order to

define a map that has the described properties.

Definition 4.4 Define a fat fault to be a maximal connected set of adjacent bad edges

containing a horizontal or vertical fault line.

An example of a fault line and a fat fault is illustrated in Figure 15.

Figure 15: A fault line (black) and the fat fault containing it (gray).

For ψ, we choose an arbitrary fat fault T of σ, say the lexicographically first one, and

replace all of the bad edges of T with good edges.

To define ψ formally, first notice that the regions separated by the edges of T are either

individual faces of 0 or larger collections of faces that are bordered with entirely A or entirely

B. We call a region bounded by A tiles to be A-bordered and define B-bordered regions

similarly. To find ψ(σ), fill in every 0 face with a A, and flip the sign of every A or B face

in the B-bordered regions. Therefore every edge that was bad in σ is between two A tiles
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in ψ(σ). Such a change is illustrated in Figure 16.

Figure 16: An example of σ, σ with bad edges highlighted, and ψ(σ).

Now suppose that we are given σ′ ∈ Img(ψ). Notice that in order to invert ψ to recover

σ, it suffices to have an encoding of T and a labeling of the distinct regions of T dictating

for each whether they were 0s, A-bordered, or B-bordered before the map made them all

A-bordered. In what follows we will continue to call the faces of T regions to distinguish

them from the faces of the underlying lattice; a region of T may contain far more than one

face of L.

We now proceed to prove several lemmas that provide the necessary bounds to put these

pieces together.

Lemma 4.3 Let Tm be the set of fat faults with m bad edges. The number of fat faults in

Tm is at most n216m.

Proof:

For some T ∈ Tm, a depth-first search of the edges of T hits each edge at twice, so takes

at most 2m steps. For each step of the search, we follow an edge north, south, east, or west.

If we are given the starting point and these 2m steps, we can recreate T . There are at most

n2 possible starting points, and 42m possible depth-first search traversals, so we have the

lemma. �

Lemma 4.4 For a given T ∈ Tm, the number of labellings of the regions of T as A-bordered,

B-bordered, or 0 is at most
√

3
m
.

Proof:

53



Every region of T is bounded by at least four edges. Each edge is on the boundary of

two regions. Therefore the number of regions is at most m/2. Hence there are at most 3
m
2

choices of labellings for each region. �

We may now use Lemmas 4.3 and 4.4 to bound the weight of the pre-image of ψ.

Lemma 4.5 For each σ′ ∈ Img(ψ),

π(ψ−1(σ′)) < n4 28µ

λ

n

π(σ′).

Proof:

We first partition pre-images based on the size of the fat fault defining ψ. Let ψ−1
m (σ′)

be the set of all σ such that the fat fault chosen by ψ has m edges and ψ(σ) = σ′. The

function ψ turns every bad edge of T into an edge separating A and A, thereby increasing

the weight of each by at least a factor of λ
µ . So, for each σ ∈ ψ−1

m (σ′),

π(σ) ≤
(µ
λ

)m
π(σ′).

On the other hand, |ψ−1
m,ℓ,s(σ

′)| is bounded by the number of possible fat faults T and

labellings of the regions of T . By Lemmas 4.3 and 4.4,

|ψ−1
m (σ′)| < n216

√
3
m
< n228m.

Putting these pieces together, we have

π(ψ−1(σ′)) =
n2∑

m=n

π(ψ−1
m (σ′))

=
n2∑

m=n

∑

σ∈ψ−1
m (σ′)

π(σ)

=

n2∑

m=n

|ψ−1
m,ℓ,s(σ

′)|(µ
λ

)mπ(σ′)

<

n2∑

m=n

n228m(
µ

λ
)mπ(σ′)

< n2n2(
28µ

λ
)nπ(σ′).
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Lemma 4.5 allows us to now prove our main Theorem, that at low temperatures the

Markov chain mixes slowly.

Proof of Theorem 4.5:

We will show that when λ > 28µ, F has exponentially low stationary probability, and

thus the chain has exponentially small conductance.

π(F) =
∑

σ′∈Img(ψ)

π(ψ−1(σ′))

<
∑

σ′∈Img(ψ)

n4

(
28µ

λ

)n
π(σ′)

≤ n4

(
28µ

λ

)n ∑

σ′∈ΩNonsat

π(σ′)

= n4

(
28µ

λ

)n
.

where the first inequality is by Lemma 4.5. By Corollary 2.5, this implies that the mixing

time of MNonsat is exponential in n. �

4.3 Weighted Even Orientations

We now return to even orientations of the lattice. Recall, given a fixed constant λ > 0, for

each σ ∈ Ω8, π(σ) = λS(σ)/Z, where S(σ) is the number of sources and sinks in σ and Z is

the partition function.

When λ = 0, it is known that M8 is rapidly mixing, as this corresponds to Eulerian

orientations on Cartesian lattice regions (since there cannot be any sources or sinks) [?, ?].

When λ = 1, all even orientations are equally likely and the probability of flipping the

orientation of edges around any face is the same. If we define the distance between two

configurations to be the number of edges in which their orientations differ, then it is easy

to construct a coupling argument to show that the chain is rapidly mixing. In fact, when

λ = 1, all moves occur with probability 1/2. We can define a coupling so that the distance

function never increases during moves of the coupled chain.
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When λ is close to 1 but not equal, the distance function can increase as well as decrease,

but the coupling argument still can be made to work when λ is sufficiently close to 1. We

present this straightforward argument in Section 4.3.2.

However, when λ is large, the Markov chain behaves quite differently and we verify

that the convergence to equilibrium requires exponential time. This proof is based on the

fat-faults presented in the earlier, but before proceeding with our analysis of the mixing

time, we present a reinterpretation of Ω8 as an edge coloring. This edge coloring model will

aid in the clarity of both the proof of rapid mixing for low λ and of slow mixing for high λ.

4.3.1 Edge orientations as edge colorings.

For a given even orientation, color an edge white if it points from a vertex on the even

sublattice to a vertex on the odd one, and color it black if it points from an odd vertex to

an even one. An example of this transformation is shown in Figure 17.

Figure 17: A configuration σ ∈ Ω8 (with sources and sinks marked) and the corresponding
edge-coloring.

Now Ω8 can be seen as the set of edge-colorings where every internal vertex has an even

number of edges of each color. The sources and sinks are now monochromatic vertices, i.e.,

all incident edges are the same color. We call vertices that are incident to both black and

white edges bichromatic.

4.3.2 Fast Mixing at low λ

We first deal with λ close to 1, and show that the chain is rapidly mixing via Path Coupling.

Theorem 4.6 For λ < 1.1, M8 is rapidly mixing.
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Proof:

This follows from a standard Path Coupling argument. We use the most straightforward

coupling, distance metric, and set U . For the coupling, we simply supply the same face F

and real value p for both σt and ρt, when generating σt+1 and ρt+1. For our distance

metric φ(σ, ρ), we take simply the number of moves of M8 to convert σ to ρ. For our set

U ⊂ Ω8 × Ω8, we take the configurations that differ on a single move.

For such a pair σt, ρt, let f∗ be the face on which they differ. There are two moves for

which M8 decreases the distance in σt+1, ρt+1, flipping f∗ one way or flipping it back. The

probability of these two is at least 1 + 1
λ4 .

The moves for which M8 could increase the distance are when it chooses a face adjacent

to f∗. If these moves are more likely to succeed on, say, σ than ρ, then the distance could

increase if p is chosen between the two acceptance probabilities. For each of these eight

faces, the chance of p being chosen in such a range is at most 1 − 1
λ2 .

Summing these two probabilities, the expected change in distance between σt and ρt is

at most

8

(
1 − 1

λ2

)
− 1 − 1

λ4
.

Substituting for the bounds on λ, we prove the theorem. �

This proof can be significantly improved, but this straightforward argument shows that

M8 is rapidly mixing for λ in some range around 1.

4.3.3 Slow Mixing at high λ

We may now proceed to the main proof, which is that the chain is slowly mixing. The

intuition is that it takes a long time to move from a configuration that is predominantly

white to one that is predominantly black. This is because it is necessary to pass through

configurations that have a large number of bichromatic vertices, and these have much smaller

stationary probability. The goal is to show that there is a partition of the state space that

defines a bad cut so that we can use the conductance theorem to show that the chain

mixes slowly. Rather than the natural choice of partitioning the state space according to
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the relative numbers of black and white vertices in the configurations, we instead use the

approach of [?] and partition according to “fault lines.”

We need to define a looser definition of “adjacency” for vertices of L. Therefore we call

two vertices edge-adjacent if they are adjacent in the traditional sense (they share an edge

of L) and call two vertices of L face-adjacent if they lie on a common face of L. (“Face-

adjacent” is a broader term, as the vertices can be edge-adjacent or diagonally opposite

across a face.)

Definition 4.5 Let a vertical fault line to be a connected path of bichromatic face-adjacent

vertices from the top of L to the bottom. A horizontal fault line is defined similarly.

Let F ⊂ Ω8 be the set of all configurations containing a fault line. We may now define

the construction which blocks the existence of a fault line.

Definition 4.6 Define a vertical bridge to be a edge-connected path of monochromatic ver-

tices which touches both the top and bottom of L. A horizontal bridge is defined similarly.

We say that a configuration has a cross if it contains both a horizontal and a vertical bridge.

Note that the pair of crossing bridges must be of the same color. We let W be the set

of configurations containing a white cross and B be the set of configurations containing a

black cross. We now show that these three sets F , W, and B are disjoint and characterize

all of Ω8.

Lemma 4.6 We may partition Ω8 into F , W, and B. That is, every configuration of Ω8

has either a fault line, a white cross, or a black cross (but no two of these).

Proof:

The sets W and B are clearly disjoint, as every configuration in W has a vertical white

bridge and every configuration in B has a horizontal black bridge; no configuration can

have both. Similarly F is disjoint from W and B because fault lines obstruct crosses; if a

configuration has a horizontal fault line it cannot have a vertical bridge. What remains to

be shown is that these three sets cover all of Ω8, that any configuration without a cross

must have a fault line.
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Just as in Section 4.2, let σ be a configuration with no horizontal bridge and T be the

set of bichromatic vertices of σ that have a face-connected path to the top of L. As the top

of L is not a bridge, T is non-empty (although not necessarily connected). By the definition

of T , each vertex adjacent to T is monochromatic, or it would be included in T . If T never

reaches the bottom of L, then the vertices adjacent to T contain a horizontal bridge (and

therefore a contradiction). On the other hand, if T reaches the bottom of L, then there is a

vertical fault line. In a similar argument, if σ has no vertical bridge then σ has a horizontal

fault line. �

We now show that for M8 to pass from W to B, it must pass through F , so the edges

incident to F define a cut in the state space.

Lemma 4.7 For transition probability P (·, ·) of M8, we have P (σW , σB) = 0 for all σW ∈

W and σB ∈ B.

Proof:

Assume we do have configurations σW ∈ W and σB ∈ B that differ by a single move of

M8, say on face f . Configuration σW has both vertical and horizontal white bridges and

σB has vertical and horizontal black bridges. Outside of f , σW = σB, so each contain both

white and black paths from f to the top, bottom, left, and right of L. Moreover, for f to be

critical to there being a black or a white cross, one edge eB of f must be incident to only

black edges outside of f , and the opposite edge eW of f must be incident to only white edges

outside of f . Coloring eB black and eW white, we must then have both a horizontal white

bridge and a vertical black bridge, which is a contradiction. We therefore can conclude that

W and B are not connected by a single move. �

Next we show that the stationary probability of F is exponentially small.

Definition 4.7 Define a fat contour to be a maximally face-connected set of bichromatic

vertices containing a fault line.
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As a fault line is a face-connected set of bichromatic vertices, any configuration with a fault

line has a fat contour. To bound π(F), we define a mapping ψ : F → Ω8 which takes σ ∈ F

and re-colors edges incident to a fat contour so that the contour contains only white (or

black) vertices. Although ψ is not one-to-one, we will show that for every σ′ ∈ Img(ψ), the

stationary probability of the pre-image ψ−1(σ′) = {σ ∈ O : ψ(σ) = σ′} is exponentially less

than the stationary probability of σ′.

Our definition of ψ(σ) proceeds as follows. First, choose an arbitrary fat contour of σ, F

(e.g. farthest to the left or top). In the complement of F , each of the connected components

(or “islands” of F ) has a boundary which is either entirely white or entirely black. We reverse

the color of every edge within the white islands (leaving black islands as they are). Now

the edges incident to F are entirely black, and F can be re-colored completely with black

monochromatic vertices. An example of this modification is in Figure 18. The resulting

configuration has |F | more monochromatic vertices than the pre-image, corresponding to

additional sources and sinks in the original even orientation.

Figure 18: A coloring σ, σ with the fat contour removed, and ψ(σ).

Notice that to find the inverse of ψ, we need only the location of F and the colorings

of the edges incident to vertices of F . The edges on the boundary of the fat contour will

then define whether a island was originally white or black, and we can recover the colors of

edges in those islands accordingly. In Lemma 4.8 below, we bound the number of possible

fat contours and their edge colorings. This allows us to bound the size of F in Lemma 4.9.

Lemma 4.8 If F is a fat contour such that |F | = ℓ, then there are fewer than n2 · 64ℓ

possible choices for the vertices of F and fewer than 6ℓ colorings of the edges incident to

those vertices.
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Proof:

The location of a vertex of F , together with a description of a DFS traversal of F

starting at this vertex, is sufficient to reconstruct the vertices in F . As there are at most

eight choices at each step in the DFS (four adjacencies along edges and four diagonals across

faces) there are at most 82ℓ such traversals. With n2 choices for the starting vertex, we

have the bound on F .

Finally, for each vertex in F , there are at most 6 possible Eulerian orientations of the

incident edges, so 6ℓ is an immediate (albeit weak) upper bound on the number of colorings

of the edges incident to F . �

Lemma 4.9 There exist constants λ0, n0, c > 1 such that, if λ > λ0 and n > n0, then

π(F) < c−n.

Proof:

For each ℓ ∈ [n, n2], let Fℓ be the edge-colorings in F where the fat contour chosen by

ψ is of size ℓ. Then, for each σ′ ∈ Img(ψ),

π(ψ−1(σ′)) =

n2∑

ℓ=n

∑

σ∈Fℓ:ψ(σ)=σ′

π(σ)

=
n2∑

ℓ=n

∑

σ∈Fℓ:ψ(σ)=σ′

π(σ′) · λ−ℓ

≤
n2∑

ℓ=n

n264ℓ6ℓ · π(σ′) · λ−ℓ

< n5

(
384

λ

)n
π(σ′).

where the first inequality is by Lemma 4.8.

This bound on the pre-image allows us to bound π(F) as follows:
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π(F) =
∑

σ′∈Img(ψ)

π(ψ−1(σ′))

<
∑

σ′∈Img(ψ)

n5

(
384

λ

)n
π(σ′)

= n5

(
384

λ

)n
π(Img(ψ))

< n5

(
384

λ

)n
.

Taking λ > 384 yields the lemma. �

By Corollary 2.5, this proves Theorem 4.2.

4.4 Independent Sets on the Triangular Lattice

A similar approach to that of the previous sections can be applied to the context of inde-

pendent sets on the triangular lattice. The primary challenge in extending the argument to

this context is that the map now needs to be based on shifting the interior of a contour to

change the contents, and here the lattice regions have periodic boundary conditions.

We let Λ be a 3n×3n rhomboidal region of the triangular lattice with periodic boundary

conditions and let ΩInd be the set of all independent sets of Λ. The lattice has a natural

tri-partition, which we color black, white, and gray. Call a face of Λ empty if it is not

incident to any vertex of I, as illustrated in Figure 19. Call two faces of Λ adjacent if they

share at least one vertex. We then define a fault line to be a non-contractible cycle of empty

faces. We let F ⊂ ΩInd be the set of all independent sets with at least one fault line.

Figure 19: An independent set on Λ and the corresponding empty faces.

The obstruction preventing a fault line must be a set of tightly packed vertices of I.

62



Call two vertices of an independent set touching if they are incident to faces which share an

edge. Note that touching vertices must have the same color. We define a monochromatic

bridge to be a non-contractible cycle of touching vertices of I. For any non-contractible

cycle, the winding vector is an ordered pair of integers (wx, wy), where wi represents the

net number of times the cycle intersects an elementary loop in the ith lattice direction. For

instance, the elementary loops have winding vector (0, 1) and (1, 0). We say a configuration

has a monochromatic cross if it contains two bridges with different winding vectors. (As

cycles with different winding vectors must intersect, these two bridges are automatically of

the same color.) We let B, W, and G be the set of independent sets containing black, white,

and gray crosses, respectively.

We first show that these sets define a partition of ΩInd.

Lemma 4.10 Every independent set in ΩInd has a fault line or a white, black, or gray

cross, but no two of these.

Proof:

This proof is similar to the argument in [?] that shows that independent sets on the

Cartesian lattice without fixed boundary conditions must have horizontal and vertical

bridges of one color or there must be a fault line. Again, a key point we use here is

that any two non-contractible cycles of different winding vectors must intersect.

The sets B, W, and G are disjoint, as an independent set cannot have two crosses of

different colors; that would involve two bridges of different winding vectors and different

colors, whose intersection would lead to a contradiction. Similarly, F is disjoint from B,

W, and G, as no set can have both a cross and a fault line; the fault line must intersect at

least one of the bridges, which is impossible.

To see that there must be either a cross or a fault line, examine the torus after the

removal of a bridge. The remaining space is a non-contractible strip of the torus of the

same winding vector as the bridge. If there exists a path of touching vertices across this

strip, we find a second bridge of a different winding vector and therefore a cross. This is

illustrated in Figure 20. If no such path exists, then there must exist a fault line along the
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strip.

Figure 20: A cycle of winding vector (1, 1), the strip remaining after its removal, and the
cycle of winding vector (0, 1) created using the path across the strip.

This proves the lemma. �

We now show that removing F disconnects W, B, and G. We let P (·, ·) be the transition

probabilities of MInd.

Lemma 4.11 Let I1 ∈ W, I2 ∈ B and I3 ∈ G be three independent sets. Then P (Ii, Ij) = 0

for all i 6= j.

Proof:

Individual moves of MInd either add or remove a single vertex. Clearly it requires

multiple moves to eliminate one cross and complete another. �

We now show that the stationary probability of F is exponentially small. In doing so,

we again extend fault lines to 2-dimensional regions. Define a fat contour to be a maximally

connected set of empty faces containing a fault line. We define a mapping ψ : F → ΩInd

which eliminates at least one fat contour. Although the mapping is not one-to-one, we will

show that each I ′ ∈ Img(ψ) has a pre-image whose total weight is exponentially smaller.

To bound the number of sets in this pre-image, we first bound the number of fat contours.

Lemma 4.12 If F is a fat contour with ℓ faces, then there are at most 2n236ℓ choices for

the locations of those faces.

Proof:

We begin by limiting the notion of adjacencies in F . Define two adjacent faces to be

edge-adjacent if they share an edge. Call them point-adjacent if they share a single vertex
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and yet are not both adjacent to a common face. As illustrated in Figure 21, not all pairs of

adjacent faces are edge- or point-adjacent. However, note that edge- and point-adjacencies

suffice to connect F , as a vertex of I removes a complete hexagon from F . We can therefore

find a traversal of F that uses only edge- and point-adjacencies.

There are 2n2 choices for a face to start the DFS of F . Then each step of the DFS has

six possible directions (three edge-adjacencies and three point-adjacencies), so there are at

most 62l possible traversals starting at f . �

Figure 21: Adjacent faces which are point-adjacent (left), edge-adjacent (center), and
neither (right).

Our definition of ψ is slightly more complicated than in Section 4.3 because we are

considering toroidal regions. Suppose first that F contains two fault lines with different

winding vectors. Then the complement of F contains only regions whose boundaries are

contractible. By the maximality of F , each of these regions has a monochromatic boundary,

so we may refer to these connected components (or “islands”) by the colors of their bound-

aries. Note that if the lattice partition is colored as in Figure 22, if we shift all white islands

one space East so that their boundaries become gray, shift all black islands one space to

the North-East so that their boundaries also become gray, and leave gray islands as they

are, we form a new independent set of the same size. After this shift, all vertices incident

to F are gray, so ψ may fill the entire fat contour with gray vertices. If F has ℓ faces, ψ

adds exactly ℓ/6 vertices to I, each the center of a vacant hexagon. Such a transformation

is illustrated in Figure 22.

Unfortunately, fat contours need not contain multiple fault lines with differing winding

vectors and, indeed the complement of F can contain regions whose boundaries are non-

contractible. If this is the case, then F has a bridge on each side. Define a bulge to be

a maximal set of touching vertices of I which contain a bridge. In this case F must be

incident to a bulge on each side. If these are of the same color, ψ can shift all islands within
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Figure 22: A set σ containing a pair of fault lines with differing winding vectors, and
ψ(σ).

F to that color and fill F , as in Figure 23.

Figure 23: A set σ containing a fault line with a black bulge on each side, and ψ(σ).

Complicating matters further, there may be no fat contour incident to two bulges of

the same color. For instance, let F1 be a fat contour incident to a white bulge on the left

and a black one on the right. To the right of the black bulge there must be another fat

contour, F2. If F2 is incident to a white bulge, ψ can shift the islands of F1 and F2 and the

black bulge all to white. Then ψ can fill both fat contours with white vertices. If F1 and

F2 contain ℓ1 and ℓ2 faces (respectively), then ψ adds (ℓ1 + ℓ2)/6 vertices to I.

In one final case, suppose we have no pair of neighboring fat contours bordered by bulges

of the same color. Then there must then be a third fat contour F3 which is incident to still

another bulge. Luckily we only have three colors of bulges; at some point these colors must

repeat. For example, if we have, in order, a black bulge, F1, a white bulge, F2, a gray bulge,

F3, and then a black bulge, then ψ can shift the white bulge, the gray bulge, and all islands

of the fat contours to black. We may then fill all three fat contours with black vertices.

To find the inverse of ψ, note that we need only the faces of the fat contour(s); the colors

of the neighboring vertices can be inferred from the shape of F , and these colors define the

direction of the shift.
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We may now bound the stationary probability of F .

Lemma 4.13 There exist constants λ0, n0, c > 1 such that, if λ > λ0 and n > n0, then

π(F) < c−n.

Proof:

For each ℓ ∈ [n, 2n2], let Fℓ ⊂ F be the independent sets where the fat contours chosen

by ψ contain a total of ℓ faces. Given ℓ1,ℓ2,ℓ3 such that ℓ1 + ℓ2 + ℓ3 = ℓ, Lemma 4.12 shows

that there are at most
∏3
i=1 2n236ℓi = 8n636ℓ choices of faults such that |Fi| = ℓi. Then,

for each I ′ ∈ Img(ψ),

π(ψ−1(I ′)) =

2n2∑

ℓ=n

∑

I∈Fℓ:ψ(I)=I′

π(I)

=

2n2∑

ℓ=n

∑

I∈Fℓ:ψ(I)=I′

π(I ′) · λ− ℓ
6

<

2n2∑

ℓ=n

l38n636ℓ · π(I ′) · λ− ℓ
6

< 64n12

(
366

λ

)2n2

6

π(I ′).

The bound on the pre-image then allows us to bound π(F) as follows:

π(F) =
∑

I′∈Img(ψ)

π(ψ−1(I ′))

<
∑

I′∈Img(ψ)

64n12

(
366

λ

)2n2

π(I ′)

= 64n12

(
366

λ

) 2n2

6

π(Img(ψ))

< 64n12

(
366

λ

) 2n2

6

.

Taking λ > 366 completes the proof. �

Note that by symmetry the sets W,B and G have equal stationary probability. Observing

now that their total weight is at least 1− c−n, Corollary 2.5 allow us to complete the proof
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of Theorem 4.1. Thus, we have shown that the Glauber dynamics on independent sets of

the triangular lattice converges slowly to equilibrium for large λ.
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CHAPTER V

HOW BOUNDARY CONDITIONS CAN AFFECT MIXING RATE

We now examine how the boundary of a graph can influence the mixing rate of a finite

Markov chain. The motivation for this question comes from physics, where the boundary

represents an external environment, and differences in the boundary are known to strongly

influence whether or not there is a phase transition in the underlying infinite model. It is not

yet understood whether we see a similar change for the corresponding finite computational

models. I.e., can a Markov chain be fast for a region with one boundary and slow with

another? We make progress towards answering this question affirmatively in this chapter.

5.1 Introduction

We return again to the Ising model on the n × n Cartesian lattice. Recall that each

configuration σ in the state space ΩIsing = {+,−}n2
consists of an assignment of a +

or − spin to each of the vertices, and the Gibbs distribution assigns weight

π(σ) = λ−D(σ)/Z,

where D(σ) = |{(i, j)∈E | σ(i)6=σ(j)}| and Z is the partition function.

Physicists study whether there is a unique limiting distribution as n→ ∞ to characterize

when there is a phase transition in the underlying model. For each value of n, the vertices

on the boundary of an n×n grid are hard-wired to be + in one case, and − in another case,

and the Gibbs measure on the interior is defined as the limiting conditional probabilities

of these two distributions. It is well known that there is a critical value λc, such that for

λ < λc, the limiting distribution is unique, yet for λ > λc, correlations between the spins of

vertices inside a finite region and the spins on the boundary persist over long distances, and

there are multiple limiting distributions (see, e.g., [?]). This appears related to the phase

change observed in the context of mixing rates of local chains on finite regions. When λ is

sufficiently small, local dynamics are efficient, while when λ is sufficiently large, local chains
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require exponential time to converge to equilibrium [?]. It is believed that these physical

and computational models both have abrupt changes at a critical point, that is the same

in the finite and infinite case.

The problems addressed in this chapter examine this conjectured connection. How much

influence can the choice of the boundary have on the mixing rate of a finite Markov chain?

Martinelli, Sinclair and Weitz [?, ?] took a significant step towards exhibiting the influence

of the boundary on mixing rates by demonstrating this phenomenon when the underlying

graph is a tree, known in physics as the Bethe-approximation to the lattice. They left as an

important open question whether this also occurs when the underlying graph is a lattice.

This is a much more challenging question because lattice regions are non-amenable graphs

[?], i.e. the boundary forms a much smaller proportion of the vertices than on trees. More

importantly, the presence of short cycles dramatically increases the difficulty of the analysis.

5.1.1 Our Results

We present the first proof that the choice of boundary can cause an exponential difference

in the mixing rate of a local chain defined on the 2-dimensional lattice. We analyze a chain

defined by Broder [?], used to sample matchings, or sets of edges with no common vertices.

To sample perfect and near-perfect matchings (where the edge set covers all or all but two of

the vertices), we start at an arbitrary perfect or near-perfect matching σ0 and add, remove,

or trade edges. More precisely, we define the Broder Markov chain as follows.

Given a current perfect or near-perfect matching σt, a move of the chain MBroder is defined

by repeating the following steps:

• Choose e uniformly from the edges of the graph.

• If both endpoints of e are unmatched in σt, let σt+1 = σt ∪ {e}.

• If e ∈ σt and σt is perfect, let σt+1 = σt\{e}.

• If exactly one endpoint of e is matched in σt, say in some edge e′, let σt+1 =

σt ∪ {e}\{e′}.
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• Otherwise let σt+1 = σt.

Jerrum and Sinclair [?] showed that proving a polynomial bound on the number of near-

perfect matchings for a graph, in terms of the number of perfect matchings on that graph,

is sufficient to prove that MBroder is fast mixing on the perfect and near-perfect matchings

of that graph.

Theorem 5.1 Let Ω̂P be the set of perfect matchings and Ω̂N be the set of near-perfect

matchings. If |Ω̂N | ≤ p(n)|Ω̂P | for some polynomial p, then Φ is at least inverse-polynomial.

We study MBroder on a certain lattice called the “square-octagon lattice,” generated

by tiling the plane with regular octagons filling the gaps with squares, as in Figure 24.

For a given a finite region of this lattice, we specify which boundary vertices are matched

internally, thereby remaining part of the finite region, and which are matched externally, in

which case they are effectively deleted. We then analyze MBroder on the remaining vertices.

We find that there are two boundary conditions such that the chain is fast mixing with one

and slow mixing with the other. More remarkably, these two boundary conditions differ

only by the inclusion or exclusion of four vertices! This suggests that the sensitivity to

boundary conditions does not necessarily scale with the size of the region and may depend

on only a constant number of vertices.

5.1.2 Techniques

The matchings of the lattice can be reformulated as a “contour model” on finite regions of

the Cartesian lattice. We show that we can represent matchings as even subgraphs of the

Cartesian lattice, with a penalty in Gibbs measure for families with many edges, favoring

configurations with a relatively small subgraph. The important feature is that the union

of these contours form a subgraph of even degree vertices, except for at most two on the

interior. The Broder chain allows us to remove or add an edge in each step, provided we

only introduce at most two new odd degree vertices.

In the first (fast) case, the boundary is defined so that initially all vertices, including

the boundary, have even degree in the contour representation, and during the simulation
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configurations correspond to contours with at most one path. (All others are closed.) We

show that the weight of perfect and almost-perfect configurations are polynomially related.

Following the canonical path technique introduced by Jerrum and Sinclair [?], this suffices

to show polynomial mixing for both models.

In the second (slow) case, we introduce four designated vertices on the boundary that

have odd degree in the contour representation, forming the endpoints of two paths. As we

simulate the Broder-chain, at most two vertices change parity: if there are 6 odd-degree

vertices during the simulation, these include all four of the designated boundary vertices.

Once one of the initial paths is disconnected, the two pieces tend to shrink. We prove,

via sensitive injections and combinatorial inequalities, that once two designated boundary

vertices become disconnected, it takes exponential time for them to reconnect in the other

pairing. This is sufficient to show slow mixing.

The proofs of slow mixing rely on identifying a small cut set in the state space and

appealing to Corollary 2.5. We define an injection that map configurations in the cut to a

set of configurations that each have much higher stationary probability. This allows us to

conclude that the cut set has exponentially small weight.

5.2 Perfect matchings in the square-octagon lattice

We now demonstrate the effect of this boundary on mixing rates for near-perfect and per-

fect matchings on the square-octagon lattice. Let L̂ to be the diamond shaped region of

the square-octagon lattice that is n squares across, for odd, arbitrarily large n, as illus-

trated in Figure 24. We will designate the four corners of this diamond shaped region as

{vN , vS , vE , vW } for the cardinal directions. Define L̂′ to be the same region of the square-

octagon lattice as L̂, but with the exclusion of one vertex from each of corner. This graph

is also illustrated in Figure 24. Regions L̂ and L̂′ capture the two boundary conditions we

consider.

We let Ω̂ (resp. Ω̂′) be the set of perfect and almost-perfect matchings on L̂ (resp. L̂′)

and let M̂Broder be the Broder-chain on these state spaces. Our main result in this chapter

is the following:
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Figure 24: Examples of L̂ (left) and L̂′ (right) for n = 5.

Theorem 5.2 There exist constants c1, c2 > 1 such that the mixing time of M̂Broder on Ω̂

is O(nc1) while the mixing time of M̂Broder on Ω̂′ is Ω(ec2n).

This theorem provides the first rigorous proof that the choice of boundary can greatly

influence the mixing rate of a lattice model.

5.2.1 Contraction

Before presenting the proof of Theorem 5.2, it will be convenient to define a bijection

between perfect matchings and a related contour representation. We contract the lattice

regions L̂ and L̂′ by replacing each of the squares with vertices, so only the edges bounded

on each side by octagons remain. The resulting graph is a region of the Cartesian lattice,

as illustrated in Figure 25.

Figure 25: A almost-perfect matching of L̂′ and that matching’s contraction.

We use hat notation (L̂, Ω̂, M̂Broder, etc.) when referring to the square-octagon graphs,

and regular notation (L, Ω, MBroder, etc.) for the contracted case. To that end, define L

and L′ to be the diamond shaped regions of the cartesian lattice with n vertices across.

Consider the effect of this contraction on a perfect matching of L̂. Figure 26 illustrates

all possible matchings of the edges incident to a diamond in L̂, and their contracted form
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in L. In all cases, the contraction is an even degree vertex. Furthermore, if that vertex is

degree 2, than the endpoints of the incident edges are not colinear in the contracted lattice.

In this way the subgraph of L turns at each point.

Figure 26: All seven possible matchings of the edges incident to a diamond in L̂, and the
contracted form of each in L.

Finally, note that almost-perfect matchings of L̂ and L̂′ contract as perfect matchings

do, except for the parity at some 2 vertices, corresponding to the squares containing the

original unmatched vertices. These vertices have odd degree in the contracted graph, and

are marked with circles in Figure 25.

We define the state spaces Ω and Ω′ with this contraction in mind.

Definition 5.1 We call a subgraph of L a turning graph if all vertices have even de-

gree and vertices of degree 2 are incident to orthogonal edges. We call a subgraph of L′

a turning graph if this applies to all vertices but the ones on the corners of the diamond,

{vN , vS , vE , vW }.

We call these “turning graphs” since, applying a variation of Euler’s Theorem, each

component can be decomposed into a set of Eulerian cycles which turn at every step. We

call a subgraph of L or L′ an almost-turning graph if all vertices of degree 2 turn, and

exactly two vertices have parity different from what was prescribed for turning graphs. Let

ΩT and ΩA (resp. Ω′
T and Ω′

A) be the turning and almost-turning graphs of L (resp. L′).

Let Ω and Ω′ be the union of the turning and almost-turning graphs in each case.

Notice that the uniform distribution on Ω̂ before the contraction does not correspond
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to the uniform distribution on Ω afterwards. Let G ∈ Ω and let v ∈ L. As Figure 26

illustrates, if the degree of v in G is 2, 3, or 4, there is a unique way to expand v to a

square face of Ĝ ∈ Ω̂. However, if d(v) = 0 or 1, then there are two ways to recover the

matched edge(s) that were deleted from the corresponding square. For G ∈ Ω ∩ Ω′, the

number of matchings which contract to G is within a polynomial factor of 2|V (L)|−|V (G)|.

(This polynomial factor is due to the effect of the possible pair of internal vertices with odd

degree if G ∈ Ω′. For clarity we use the 2|V (L)|−|V (G)| figure, as our methods need only be

tight up to a polynomial factor.)

Our first goal is to show that the Broder-chain is fast on Ω̂, and for this we need to show a

polynomial relationship between the numbers of almost-perfect and perfect matchings. For

simplicity, we instead consider their contracted versions in L and introduce a probability

distribution π on turning and almost-turning contours as follows: for G ∈ Ω∪Ω′ let π(G) :=

2−|V (G)|/Z, where Z is the partition function. Then π(G) is within a polynomial factor

of the number of matchings which contract to G. It follows that showing a polynomial

relationship between
∑

G∈ΩT
π(G) and

∑
G∈ΩA

π(G) is sufficient to establish fast mixing of

the Broder-chain.

A key lemma used in our proofs of fast and slow mixing bounds how much information

is necessary to reconstruct a single contour (or path) if we removed it. Our hope is that the

total amount of information is less that the ratio of the weight of the configuration after

the contour is removed to the weight of the original contour. The tricky part here is that

the measure is in terms of the number of vertices on the contour, while the information to

encode the contour is naively related to its length; these two might be incomparable.

Lemma 5.1 Given G ∈ Ω ∪ Ω′, let Aa(G) be the set of almost-turning components A,

edge-disjoint from G, such that |V (G ∪A)| = |V (G)| + a. Then |Aa(G)| ≤ 4n42a.

Proof:

Using an Euler-decomposition, the almost-turning component A can be described as a

single turning path between the odd-degree vertices, where the direction of each edge is

orthogonal to the edge preceding it in the path. If we are given the coordinates of the first
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odd vertex and the initial direction of the path, we can encode the rest in a binary string,

with 0 representing a left-turn and 1 representing a right-turn. This is the most natural

encoding of the turning-path, but requires |E(A)| bits, possibly more than a. It is therefore

insufficient to bound the number of almost-turning components in terms of their number

of vertices, so we must find a different encoding of A which focuses on vertices instead of

edges.

The key idea is that not all turns must be encoded; whenever the path touches the

graph, either because it turns back on itself or because it touches G\A, the next turn is

forced, since walks cannot repeat edges. We therefore only encode those turns when our

path hits previously-empty vertices, creating a bitstream of length a− 1.

Unfortunately, this encoding is not completely unique; after the last recorded turn, the

path might proceed for any number of forced-turns; our encoding would fail to represent how

many. Luckily, knowing the length of the turning-path would determine this uniquely, and

we may surely upper bound the length by 2n2 edges. Hence each binary string corresponds

to at most a polynomial number of turning-paths.

The total size of Aa(G) is therefore upper bounded by the number of possible lengths

times the number of starting vertices and directions, times the number of binary strings of

length a− 1. This gives us |Aa(G)| ≤ 2n2 · n2 · 4 · 2a−1, and the lemma follows. �

5.2.2 Fast Mixing of M̂Broder on Ω̂

For the rapid mixing result of Theorem 5.2, it is sufficient to show a polynomial relationship

between the size of Ω̂P and the size of Ω̂A. Looking at contractions, this is equivalent to

the following:

Lemma 5.2 For some polynomial p, π(ΩA) ≤ p(n) · π(ΩT ).

Proof:

We define a function ψ : ΩA → ΩT . For G′ ∈ ΩT , define the pre-image of G′, namely

ψ−1(G′) = {G ∈ ΩA : f(G) = G′}. We define ψ in such a way that, although ψ−1(G′)

contains many graphs, their total weight is within a polynomial factor of the weight of G′.
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Let A(G) be the component of G containing the two odd vertices and let ψ(G) =

G\A(G). Then, partitioning on the size of A(G), and we see that, for G′ ∈ Img(f),

π(f−1(G′)) =

n2∑

a=1

∑

A∈Aa(G′)

π(G′ ∪A)

=

n2∑

a=1

|Aa(G
′)| · π(G′) · 2−a

≤ 16n4π(G′).

where the last inequality is due to Lemma 5.1. Then

π(ΩA) =
∑

G′∈Img(f)

π(f−1(G′))

≤ 16n4
∑

G′∈Img(f)

π(G′)

≤ 16n4π(ΩT ).

�

By Theorem 5.1, we can conclude that MBroder is fast on L̂, verifying the first half of

Theorem 5.2.

5.2.3 Slow Mixing of M̂Broder on Ω̂′

We turn now to the behavior of the Broder-chain on L̂′. Recall that a perfect matching

of L̂′ contracts to a turning graph of L′ that has four odd-degree vertices in each of the

corners. These must pair up to form two paths we call bridges.

Definition 5.2 For two corner vertices a and b, define an (a, b) bridge to be a turning path

connecting a and b.

Clearly a perfect matching of L̂′ is contracted to a turning subgraph of L′ with an (a, b)

and (c, d) bridge, for distinct corners (a, b, c, d). However, almost-perfect matchings of L̂′
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may be more complex; if two of the corners each connect to an extra odd vertex, then there

may be a bridge only between one pair of corners. If three corners connect to a single odd

vertex, then there may be an (a, b) bridge and a (b, c) bridge, but no bridge between any

other pair of corners. Examples of these are in Figure 27.

Figure 27: Examples of H (left), I (center), and J (right).

To classify these further, let H be the set of graphs in Ω′ where every corner is in some

bridge. For vertices i, j ∈ {vN , vS , vE , vW }, let I(i, j) be the graphs in Ω′ where the only

bridges are between i and j. For i, j, k ∈ {vN , vS , vE , vW }, let J (i, j, k) be the graphs where

only corners i, j, and k are in a bridge. Examples of all three of these sets are in Figure 27.

For ease of notation, we let I = ∪a,bI(a, b) and J = ∪a,b,cJ (a, b, c). These will be the

three sets for Corollary 2.5. We first show that these sets partition all of Ω′, with each

I(a, b) separated from the others by H and J .

Lemma 5.3 The state space Ω′ is the disjoint union of H, I, and J . Furthermore, for

I1 ∈ I(a, b) and I2 ∈ I(c, d), P (I1, I2) = 0 unless (a, b) = (c, d).

Proof:

By the definition of H, I, and J , the sets are obviously disjoint. To show that every

graph G in Ω′ is in one of these sets, we need only show that G has at least one bridge.

However, as G has vertices of odd degree at vN , vS , vE , vW , and at most two other points,

there must be a bridge between two corners.

To show P (I1, I2) = 0, note that to move from a graph in I(a, b) to a graph in I(c, d),

one bridge must be created and one destroyed; as every move of MBroder either adds or

removes an edge, this cannot be accomplished in a single step. �
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To show that these sets J and H are exponentially small, we will define a function ψ

that maps graphs in J or H into I. This function removes a long path and then inserts

4-cycles in the resulting empty faces. An example of this transformation is in Figure 28.

However, before fully defining ψ, we define some long paths in these graphs and give a

technical lemma on the number of empty faces that remain after such paths are removed.

Figure 28: A graph H ∈ H, H\A(H), H\A(H)\P (H) and ψ(H).

For H ∈ H, define PNE(H) to be the maximal bridge from vN to vE. Define PNW , PSE ,

and PSW similarly.

For J ∈ J (vW , vN , vE), let vM be the middle vertex of odd degree connected to both

vW and vE , and let PW (J) be the maximal turning path from vM to vW . Define PE(J)

similarly, from vM to vE. Examples of PW and PE are in grey on the right and center of

Figure 29, respectively.

Definition 5.3 For a given graph G ∈ Ω′, path P ∈ G, and face f of L′, we call f

P -available if f shares a vertex with P but all four edges of f are empty in G\P .

Such a face is adjacent to P , but after ψ removes P , we may insert a 4-cycle on f

without violating the turning property. Such faces are represented by gray squares in the
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Figure 29: Examples of H ∈ H and PE(H) and PW (H) (in gray), with P−(H) (in black).

third part of Figure 28. We will show that for all graphs in H or J , there is some path

with many available faces.

For H ∈ H, let P ∗(H) be the path in {PNE , PNW , PSE , PSW} with the most available

faces. For J ∈ J (vW , vN , vE), let P ∗(J) be the path in {PE , PW } with the most available

faces. This path P ∗ will be the path removed by ψ. Note that whether G ∈ H or G ∈ J ,

G\P ∗ contains a single bridge. Call that bridge P−, illustrated in black in Figure 29.

By the maximal nature of P ∗, any component of even-degree vertices touching P ∗ is

included in P ∗. The only edges which may touch P ∗ and not be included are those of P−.

Unfortunately, combined with the boundary of L′, P ∗ and P− can be constructed to give

fewer P ∗-available faces than one might expect. Luckily, there is a limit to the number of

edges whose adjacent faces can be blocked by both P− and the boundary.

Definition 5.4 Call an edge of P ∗ obstructed if it is both along the boundary of L′ and is

within distance 1 of P−. Call it unobstructed otherwise.

The following lemma shows the relationship between unobstructed edges and P ∗ avail-

able faces.

Lemma 5.4 Given a vertex v in an unobstructed edge of P ∗, at least one of the faces

containing v is P ∗-available.

Proof:

We divide our analysis between edges whose neighbors in P ∗ turn in the same direction,

and those whose neighbors in P ∗ turn in opposite directions.
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If both neighbors turn the same direction, then there is a face bounded on three sides

by P ∗. The only way for this face to not be P ∗-available is if P− includes that fourth side,

as illustrated on the left of Figure 30. However, if P− touches P ∗ on that side, then for

parity issues, it cannot touch P ∗ on the other side. As long as the other side is not outside

the boundary of L′, there are two P ∗-available faces. (The dotted edges in the figure can

only contain edges of P ∗, by the maximality of P ∗.)

Figure 30: Examples of P ∗ (gray) touching P− (black). In both cases, if P ∗ is not along
the boundary, there is a P ∗-available face.

Therefore if both edges adjacent to an unobstructed edge in P ∗ turn the same direction,

both vertices of that unobstructed edge are incident to a P ∗-available face.

If the neighbors turn opposite directions, then there might be one side of P ∗ outside the

boundary of L′ or hit by P−, as on the right of Figure 30. However, on the other side of

P ∗, there must be a P ∗-available face. (Again, the dotted edges can only contain edges of

P ∗, by the maximality of P ∗.) This proves the lemma. �

This allows us to find a large set of P ∗-available faces in which we may insert 4-cycles.

The next lemma provides a lower-bound on the size of this space.

Lemma 5.5 There are at least n
8 independent P ∗-available faces.

Proof:

By the construction of P ∗, it must contain at least n vertices in unobstructed edges. (It

takes a turning path 2n vertices just to go from vE to vW .) By Lemma 5.4, each of these

is contained in a P ∗-available face. As each face contains at most four vertices of P ∗, this

implies that P ∗ has at least n
4 available faces, and at least half of these form an independent

set. �
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Similar to the proof of Lemma 5.2, in proving that |H| + |J | is exponentially small,

we define a function ψ : J ∪ H → I in such a way that the weight of all of ψ−1(G) is

exponentially smaller than the weight of G. The outline of ψ is as follows: First, if G ∈ H,

remove the odd component A(G) if one exists. Then, whether G is in H or J , remove

the long path P ∗, leaving only one bridge. Finally, to encode some small segment of P ∗,

add a subgraph E along the gap P ∗ left behind. Again, this entire process is illustrated in

Figure 28. Note that this final encoding is crucial to the difference between showing that

the inverse is polynomially smaller, and exponentially smaller.

When encoding part of the path, we will be reducing the size of ψ−1(G′), by reducing

the number possible paths P ∗ that had been removed from G. However, in adding edges

to the graph ψ(G), we unfortunately reduce the weight of ψ(G). Therefore it’s crucial that

the information gained by encoding the path is larger than the weight lost by adding edges.

Because we are encoding part of P ∗ in the location of P ∗ itself, we use only the first half

of the available faces. These first n/16 empty faces along P ∗ from Lemma 5.5 encode the

final segment of P ∗ as follows: Break the faces into groups of size 25. We will add exactly

one facial 4-cycle to each group, encoding the last five bits of the bit-string describing the

location of P ∗. (For instance, if the last five bits of P ∗ are 01010, we add a cycle on the

0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + 0 · 24 = 10th available face.) We do this n
16·32 times. In this

way, we encode the last 5n/512 bits of P ∗ at a cost of only 4n/512 additional edges (4 per

face). To find P ∗ given ψ(G), we need only the first |P ∗| − 5n
512 bits encoding P ∗.

With ψ fully defined, we are finally able to show that the inverse of ψ(G) is exponentially

smaller than ψ(G).

Lemma 5.6 There exists constant c > 1 such that, for all G′ ∈ Img(ψ),

π(ψ−1(G′)) ≤ 4n6π(G′)cn.

Proof:

As in Section 5.2.2, we partition ψ−1(G) based on the size of the path removed. Let

ψ−1
ℓ (G′) = {G : ψ(G) = G′, |V (G′)| = |G| + ℓ}.
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Given ψ(G), to retrieve G we need only the path P ∗. By Lemma 5.1, we need only the

starting location and ℓ bits of information to reconstruct P ∗, where |V (G∪P ∗)| = |V (G)|+ℓ.

However, by the construction of ψ, given the first ℓ − 5n
512 bits, we may find the final 5n

512 .

Therefore

|ψ−1
ℓ (G′)| ≤ 4n42ℓ−

5n
512 .

On the other hand, we can bound the weight of G ∈ ψ−1
ℓ (G′). G is missing at most

4n
512 vertices by removing the encoding, and then adds ℓ vertices by adding P ∗. Therefore

∀G ∈ ψ−1
ℓ (G′),

π(G) ≤ π(G′) · 2−(ℓ− 4n
512

)

Together, these two inequalities show that

π(ψ−1
ℓ (G′)) ≤ 4n4π(G′)2−

n
512

< 4n4π(G′)0.9987n.

Summing over all ℓ, we prove the lemma. �

We may now prove Theorem 5.2.

Proof:

π(H) + π(T ) =
∑

I∈Img(f)∩HT

π(f−1(I)) +
∑

I∈Img(f)∩HA

π(f−1(I)) +
∑

I∈Img(f)∩J
π(f−1(I))

< cn
∑

I∈Img(f)

π(I)

≤ c−nπ(I).

This establishes an exponentially small cut in Ω′. By symmetry, π(I(a, b)) = π(I(c, d))

for all a, b, c, d. However, for MBroder to move from one set to the other, it must pass

through the exponentially small set H ∪ J . This bounds conductance, and verifies the

second result in Theorem 5.2. �
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