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SUMMARY

Backscatter radio – the broad class of systems that communicate using scattered

electromagnetic waves – is the driving technology behind many compelling applications such

as radio frequency identification (RFID) tags and passive sensors. These systems can be

used in many ways including article tracking, position location, passive temperature sensors,

passive data storage, and in many other systems which require information exchange be-

tween an interrogator and a small, low-cost transponder with little-to-no transponder power

consumption. Although backscatter radio is maturing, such systems have limited commu-

nication range and reliability caused, in part, by multipath fading. The research presented

in this dissertation investigates how multipath fading can be reduced using multiple anten-

nas at the interrogator transmitter, interrogator receiver, and on the transponder, or RF

tag. First, two link budgets for backscatter radio are presented and fading effects demon-

strated through a realistic, 915 MHz, RFID-portal example. Each term in the link budget

is explained and used to illuminate the propagation and high-frequency effects that influ-

ence RF tag operation. Second, analytic envelope distributions for the M × L × N , dyadic

backscatter channel – the general channel in which a backscatter system with M transmit-

ter, L RF tag, and N receiver antennas operates – are derived. The distributions show that

multipath fading can be reduced using multiple-antenna RF tags and by using separate

transmitter and receiver antenna arrays at the interrogator. These results are verified by

fading measurements of the M ×L×N , dyadic backscatter channel at 5.8 GHz – the center

of the 5725-5850 MHz unlicensed industrial, scientific, and medical (ISM) frequency band

that offers reduced antenna size, increased antenna gain, and, in some cases, reduced object

attachment losses compared to the commonly used 902-928 MHz ISM band. Measurements

were taken with a custom backscatter testbed and details of its design are provided. In the

end, this dissertation presents both theory and measurements that demonstrate multipath

fading reductions for backscatter-radio systems that use multiple antennas.

xvii



CHAPTER I

INTRODUCTION

Chapter Overview: This chapter provides the following:

• An introduction to backscatter radio and an overview of its technical challenges.

• An introduction to multipath fading and diversity techniques.

• A review of related research literature.

• A brief overview of the research presented in this dissertation.

Since the concept of modulating backscatter for communication was proposed by Stockman

in 1948 [1], considerable research and development has been invested in the area of backscat-

ter radio by both industry and academia. What began as steady developmental work in the

1970’s has crescendoed to a virtual backscatter-radio research and development explosion in

the 21st century [2]. This excitement has been driven by many compelling backscatter-radio

applications such as radio frequency identification (RFID), passive sensors, and passive data

storage. Current or possible applications of backscatter radio include parcel tracking, tem-

perature sensors, inventory tracking, position location, passive memory sticks, and so on.

The growth of backscatter-radio technology is expected only to increase as many yet undis-

covered applications that require communication with little-to-no power consumption are

identified.

Given the ever increasing use of backscatter radio, one might be tempted to think that

it has completely matured as a technology; however, the reality is that much basic research

is still needed to improve backscatter-radio system performance, reduce transponder cost,

and reduce the size of the transponder footprint. The research presented in this dissertation

focuses on backscatter-radio performance; specifically, how backscatter-radio range and

communication reliability are affected by multipath fading. However, before discussing
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multipath fading, it is worthwhile to define a few basic terms and concepts related to

backscatter radio.

1.1 Backscatter-Radio Basics

Backscatter radio is a broad term that refers to any system in which a transponder, or RF

tag1, communicates with an interrogator, or reader, by modulating the electromagnetic fields

scattered from the RF-tag’s antenna(s). The RF tag modulates the scattered fields using

load modulation – i.e., modulating the electromagnetic field by changing the load presented

to the RF-tag antenna [3], shown in Figure 1. Typically, backscatter-radio systems operate

in the far-field of the reader antennas, though it is possible for far-field tags to be used in

the near field [4]. In far-field systems, traveling waves propagate between the reader and

the RF tag and the power carried by the waves scattered from the RF tag is proportional

to |Γ̃(t)|2, where Γ̃(t) is the time-varying, complex load reflection coefficient.

Figure 1: In a backscatter-radio system, the reader transmits a signal to the RF tag which
is modulated using load modulation and scattered back to the reader receiver (Reprinted
from [5], c© 2008 IEEE).

The use of traveling waves and the need for relatively small readers and tags require

1In many instances, the terms RFID tag and RF tag are used interchangeably. Such use is incorrect,
however, since RFID is an acronym for radio frequency identification and is simply one application of an RF
tag.

2



that backscatter-radio systems use high frequencies. In the United States, backscatter-

radio systems typically operate in the unlicensed, industrial, scientific, and medical (ISM)

frequency bands available at 902-928 MHz and 2400-2483.5 MHz with the 902-928 MHz

band experiencing the heaviest commercial use. Though it receives less attention, the 5725-

5850 MHz ISM band is also available for backscatter radio. As discussed in Chapter 4, there

are several potential benefits offered by this frequency band.

Another characteristic of backscatter RF tags is that they can be either passive or

semi-passive, depending on their source of power. A passive RF tag operates its circuitry

using power rectified from the incident wave transmitted by the reader. A semi-passive tag

– sometimes called a battery-assisted passive (BAP) tag – uses a small battery or other

onboard power source to provide DC power for tag operation. In both passive and semi-

passive tags, no power is used to amplify and transmit signals; instead, the mechanism of

communication is scattered waves. Passive and semi-passive backscatter tags are different

from what is commonly called an active RFID tag. Such a tag is actually a transceiver that

transmits and receives signals instead of scattering waves, as is done by transponder (i.e.,

passive and semi-passive backscatter RF tags are transponders). In this dissertation, the

term “RF tag” will refer to both passive and semi-passive backscatter tags that operate in

the far-field of the reader, unless specified otherwise.

Backscatter-radio systems are related to lower frequency, inductively coupled tag sys-

tems; however, the mechanism of communication is different. While both types of systems

use load modulation, traveling waves do not propagate in inductively coupled systems. In-

stead, a change in the RF-tag antenna load produces a corresponding change in the reader

antenna impedance through inductive coupling. Such systems typically operate in the fre-

quency bands at 125/134 kHz (low frequency tags) or 13.56 MHz (high-frequency tags) and

have up to a 1 m range [3, 6].

Of course, real-world use of RF tags cannot always be neatly arranged in the far-field-

backscatter and near-field-inductive categories. For example, when a far-field, backscatter

tag is used in the near-field of the reader antenna, it is difficult to classify the mechanism of

communication as either near-field inductive (or near-field capacitive) or as backscattered
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traveling waves. Instead, communication is accomplished as a combination of the two.

1.2 Backscatter-Radio Challenges

The potential of backscatter radio is great and so are the challenges faced in designing

reliable, low-cost backscatter systems with adequate range. Accordingly, current research

topics cover a wide range of issues including research on antenna designs for RF tags and

readers [7]; techniques to improve isolation between the reader transmitter and receiver [8];

low-power, full-featured, integrated-circuit designs for RF tags [9–11]; data anti-collision

algorithms [12,13]; methods for RF-tag position location [14]; data security measures; near-

field backscatter radio [4]; RF-tag design using organic semiconductors [15]; and efforts

to understand the basic physics of backscatter propagation [16]. At the physical level,

polarization mismatch loss; object attachment loss resulting from impedance mismatch and

reduction in RF-tag antenna gain caused by object proximity; small-scale, multipath-fading

loss; and blockage loss all make backscatter-radio design challenging2.

Small-scale multipath fading alone can significantly reduce an RF-tag’s read range and

reliability. Small-scale fading is caused by waves scattered from objects located in the

vicinity of the backscatter-radio system. If scatterers were not present, a transmitted wave

would exhibit perfectly defined wavefronts (i.e., contours of constant phase) that travel

away from the transmitter in time. In other words, a single homogenous wave, or specular

wave, would propagate through the environment with a constant amplitude at any given

point, discounting path loss [17]. With scatterers present, however, the total field at any

point in space is the linear combination of the specular wave and many nonspecular and

diffuse waves [17] – i.e., multipath waves that are reflected or diffracted from scatterers.

These multipath waves arrive at the receiver with different amplitudes, phases, and angles

of arrival and combine constructively and destructively at different points in space. The

result is that the power received by the RF tag and at the reader receiver varies as a function

of position – small-scale multipath fading. It is the destructive combination of the multipath

waves – a fade – that can render a backscatter system inoperable. For example, Figure 2

2See Chapter 2 for an example and discussion of these losses.
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shows a plot of the power received by a passive RF tag in a multipath environment. As the

RF tag is moved, the peaks and fades of the received power are both above and below the

RF-tag’s sensitivity level – i.e., the minimum power required to turn on the passive RF tag.

The result is that the RF tag will not be able to operate at every position.

Figure 2: A plot of the power received by an RF tag. Multipath waves cause peaks and
fades to occur as the RF tag is moved and limits the number of positions at which the tag
can operate. Note that the sensitivity of this RF tag is hypothetical and does not necessarily
represent that of a real RF tag.

Although small-scale fading is a significant problem, relatively few measurements have

been reported. Fading on the signal received by the RF tag have been reported by Mitsugi

et al. [18,19] and Polivka et al. [20]. Others have also studied fading on the signal received

by the reader – Kim et al. [21] made measurements of the backscatter channel reporting

envelope cumulative distribution functions (CDFs) for the modulated-backscatter signal

received at the reader and Banerjee et al. [22, 23] have presented fading measurements as

well as spatial and frequency diversity gain measurements at 915 MHz. The fading on the

signal received by the reader has radically different fading statistics than that received by

the RF tag resulting in more severe fading [21].

Another type of fading that can affect backscatter radio is large-scale fading, the coun-

terpart of small-scale fading. Large-scale fades are caused, not by multipath waves, but
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by objects that completely or partially block waves from reaching the RF tag or receiver.

Large-scale fades usually occur over a distance of several wavelengths while small-scale fad-

ing occurs on the order of a single wavelength. Both large- and small-scale fades are solely

a function of receiver or RF-tag position, though other types of fading that vary with time

or frequency, are possible. For example, time-varying fades result in temporal power fluc-

tuations and can be caused by time-varying scatterers or transmitter movement. If the

bandwidth of the signal is large enough, the different path lengths of multipath signals

can cause power fluctuations as a function of frequency – frequency-selective fading [17].

While temporal, frequency, or spatial fading can all occur in backscatter-radio systems,

small-scale fading is the most severe given the narrow bandwidths and relatively low data

rates commonly used; though new backscatter-radio applications may change this asser-

tion. Therefore, small-scale multipath fading is the focus of the research presented in this

dissertation.

A common method to analyze small-scale multipath fading is to model the variation of

the signal using stochastic-process theory. It is worth noting that, although small-scale fad-

ing can be modeled using stochastics, the fields are deterministic and governed by Maxwell’s

equations. It is the complexity and sheer number of field/obstacle interactions that occur

in a typical channel that make stochastic-process theory a useful tool. In this approach,

the behavior of the signal is modeled as a random variable whose value is determined by

a prescribed probability distribution. The random variable can represent most any aspect

of the received signal including its power, amplitude, and phase; however, it is most useful

to let the random variable represent the envelope, or amplitude, of the received signal. Its

usefulness comes from the fact that the envelope is proportional to power and can be mea-

sured by both a sophisticated coherent receiver as well as a simple envelope detector. For

example, in Figure 2, the envelope probability distribution function (PDF) of the multipath

fading could be found by constructing a histogram of the envelope (which can be found from

the power) of the received signal at each position. This PDF could then be used to judge

the transmit power necessary to overcome multipath fading, as discussed in Chapter 3.
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As a brief example of how multipath fading can affect a backscatter-radio system, con-

sider such a system operating in an environment that causes the power in the specular and

nonspecular waves to be equal. In other words, the Rician K factor is equal to 0 dB, as

discussed in Chapter 2. Table 2 in Chapter 2 shows that the reader must transmit 12 dB

more power than is necessary in a non-fading channel to ensure that the RF tag fails to

receive adequate power only 5% of the time3. If the reader cannot supply the extra 12 dB

of power, all other factors being equal, the RF-tag range will be reduced by 75%. Though

this is severe, small-scale fading is even more pronounced in the modulated-backscatter

signal received at the reader, as explained in Chapter 3. Therefore, any method to re-

duce or overcome small-scale fading in the backscatter channel can significantly improve

backscatter-radio reliability and range.

1.3 Solutions for Small-Scale Multipath Fading

One way to overcome the effects of small-scale fading is through the use of diversity. Di-

versity is general technique in which multiple, uncorrelated copies of a signal – diversity

branches – are combined so that signal fades are reduced [17, 24]. The reasoning behind

this approach is that if the fading in the different diversity branches is uncorrelated, then the

probability is small that the signal on all of the branches will fade simultaneously. There-

fore, diversity works best when diversity branch correlation is low and when the number of

diversity branches is large. Diversity branches can be decorrelated in many ways that fall

into two general categories: temporal diversity and antenna diversity [17].

Temporal Diversity: Temporal diversity is used to mitigate both time- and frequency-

varying fading. While these techniques have been studied extensively for use in conventional

transmitter-to-receiver channels, some have begun to apply them to backscatter radio. In

one such case, a backscatter-radio system capable of using frequency diversity was designed

by Liu et al. [25], but no tests of a frequency diversity scheme have been reported. In

a frequency diversity scheme, multiple copies of the signal are transmitted on different

3The outage probability is defined in Section 2.2.4
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frequencies that are spaced such that their fading statistics are uncorrelated. These diversity

branches are combined at the receiver to create a single signal with reduced fading.

As an aside, the Federal Communications Commission (FCC) requires that systems

operating the unlicensed ISM frequency bands, occupied by many backscatter-radio systems,

use frequency hopping – i.e., the system must jump from one frequency to the next in the

band at a specified rate [6]. The goal of this requirement is to reduce interference from

nearby systems; however, it also reduces fading for backscatter-radio systems. If the RF

tag is located in a deep fade at one frequency, adequate power may be available when the

system switches to another. Though such a scheme is beneficial, greater gains are available

using antenna diversity, discussed in the next paragraph.

Antenna Diversity: Antenna diversity uses spatial separation, the properties of anten-

nas (the polarization or pattern), or a combination of both to provide uncorrelated diversity

branches. Antenna diversity is commonly used to mitigate small-scale fading in transmitter-

to-receiver channels and, like temporal diversity, has been used by some in backscatter ra-

dio. For instance, Ingram et al. [26] were the first to discuss using transmit diversity (a

particular approach for implementing antenna diversity) in backscatter-radio systems to

mitigate small-scale fading. Since then, Kim et al. [21] have made the first measurements

of the backscatter channel reporting signal envelope CDFs and path loss measurements

at 2.4 GHz. Literature shows that other researchers have employed multiple antennas in

backscatter-radio systems. However, when multiple antennas were included on the reader,

they were not used to combat small-scale multipath fading but for reducing data collisions

when multiple RF tags are present [27, 28]; for locating RF tags [29]; or to detect the di-

rection of movement of an RF tag through a reader portal [30]. Two exceptions are Kim

et al. [31], who tested an antenna array that could be used for spatial and polarization

diversity in low frequency (433 MHz) RFID systems (technically not a backscatter system)

and Rahmati et al. [32] who reported reliability improvements using a commercially avail-

able tag reader with two antennas (presumably using a switched antenna diversity). Others

have also proposed using multiple antennas on the RF tag. Again, these antennas were not

8



motivated by small-scale multipath fading, but were used to increase the power available

to the tag by increasing the number of antennas in a given tag footprint [33,34], to form a

retrodirective patch array to direct the modulated backscatter towards the reader [35], and

to increase the gain of the RF-tag antenna in the direction of the reader with a frequency

steerable patch array [36].

Therefore, though progress has been made, there is still much basic research needed to

reduce the effects of small-scale fading in backscatter-radio systems. The next section will

overview how this research contributes to this goal.

1.4 Research Overview

The research presented in this dissertation seeks to answer the following question:

Can multipath fading be reduced for backscatter-radio systems using multiple

antennas at the reader transmitter, receiver, and RF tag?

This investigation begins in Chapter 2 by describing the major issues related to the RF chain

of a backscatter-radio system. Two link budgets are provided that describe both the power

received by the RF tag and that backscattered to the reader receiver. In Chapter 3, a general

framework for describing the M × L × N , dyadic backscatter channel – i.e., the channel in

which a backscatter-radio system with M transmitter, L RF-tag, and N receiver antennas

operates – is presented. Using this information, analytic envelope PDFs are derived for the

M ×L×N , dyadic backscatter channel that experiences heavy multipath fading (Rayleigh

fading). The analytic PDFs are then used to show that small-scale multipath fading can

be reduced using multiple RF-tag antennas – a pinhole diversity gain – and by adequately

spacing the reader transmitter and receiver antennas, which reduces link correlation4. The

first half this research concludes in Chapter 4 by condensing all of the presented theory into

four practical guidelines for backscatter-radio design. This chapter also includes an example

showing the potential benefits of operating backscatter-radio systems in the 5725-5850 MHz

ISM frequency band.

4Link correlation is defined in Chapter 3
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The second half of this research is experimental in nature and presents multipath-fading

measurements for the M × L × N backscatter channel under line-of-sight (LOS) and non-

line-of-sight (NLOS) conditions in the 5725-5850 MHz ISM frequency band. Chapter 5

gives details of the backscatter testbed designed for this measurement campaign including

details of the custom microwave devices that were designed and prototyped – a custom

direct-conversion receiver, reader patch antennas, and two RF tags. The measurement

results are presented in Chapter 6 in terms of fading CDFs and fade margins which are

compared to the analytic distributions discussed in Chapter 3. Conclusions drawn from

the research and potential future projects are presented in Chapter 7 and derivations and

testbed documentation are included in the appendices.
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CHAPTER II

LINK BUDGETS FOR BACKSCATTER-RADIO SYSTEMS

Chapter Overview: This chapter provides the following:

• A power-up link budget to calculate the power coupled into the tag RFIC.

• A backscatter link budget to calculate the modulated-backscatter power received at
the reader.

• A detailed description of each link budget term.

• A realistic, RFID-portal example at 915 MHz that demonstrates use of the link bud-
gets.

Passive backscatter-radio design is complicated by the fact that power must be supplied to

the RF tag as well as scattered back to the reader receiver. Understanding the propagation

mechanisms that govern these signals is important for both designing reliable backscatter

tags and readers and for developing new, backscatter-radio systems. This chapter provides

two link budgets that describe the power received by the RF-tag radio frequency integrated

circuit (RFIC) and the modulated-backscatter power received at the reader [37]. Each term

of the link budgets accounts for a particular propagation mechanism or transmission line

effect and a detailed discussion of each is given. This chapter concludes by demonstrating

use of the link budgets through an example of a passive, backscatter RFID portal operating

at 915 MHz. The material in this chapter has been adapted from [37].

2.1 Backscatter-Radio Link Budgets

The first radio link budget is the linear-scale, power-up link budget that describes the amount

of power received by the tag RFIC, discounting any loss factors internal to the chip.

Pt =
PT GT Gtλ

2Xτ

(4πr)2ΘBFp
(1)
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Pt - power coupled into the tag RFIC (W)

PT - power transmitted by the reader (W)

GT - load-matched, free-space gain of the TX antenna

Gt - load-matched, free-space gain of the tag antenna

λ - carrier frequency wavelength (m)

X - polarization mismatch

τ - power transmission coefficient

r - reader-to-tag separation distance (m)

Θ - RF-tag antenna on-object gain penalty

B - path blockage loss

Fp - power-up link fade margin

Equation (1) is similar to the Friis free-space link budget equation [38], but accounts for

losses X, τ , Θ, B, and Fp commonly encountered in the backscatter channel. The second

radio link budget is the backscatter link budget that governs the amount of modulated-

backscatter power received by the reader.

PR =
PT GRGT G2

t λ
4XfXbM

(4π)4r2
fr2

bΘ2BfBbF
(2)

M - backscatter modulation factor

rf - reader-to-tag separation distance (m)

rb - tag-to-reader separation distance (m)

Xf - reader-to-tag link polarization mismatch

Xb - tag-to-reader link polarization mismatch

Bf - reader-to-tag link blockage loss

Bb - tag-to-reader link blockage loss

F - backscatter link budget fade margin

All other terms are as defined for (1). Equation (2) resembles the radar equation [39] which

reflects the fact that, in many ways, a backscatter radio is a small radar system. Backscatter

radio differs from conventional radar in that the signal transmitted from the reader is used
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to power the RF tag (for passive RF tags) and that the RF tag intentionally communicates

information back to the reader.

The backscatter link budget will take different forms depending on the antenna con-

figuration of the RF-tag reader. In the monostatic configuration, the reader uses a single

antenna to transmit and receive. In this case rf = rb, Xf = Xb, Bf = Bb, and F is equal

to the monostatic fade margin, Fm. In the bistatic configuration, where separate antennas

are used at the reader to transmit and receive, two forms of (2) are possible. If the reader

antennas are closely spaced, then the bistatic collocated fade margin, Fα is used; however, if

the antennas are widely separated, the bistatic dislocated fade margin, Fβ, is used. The link

budget terms determined by the reader antenna configuration are summarized in Table 1.

It should be noted that the G2
t and Θ2 terms in (2), while exact for the monostatic case, are

only approximate for a bistatic reader. This is because the angles of arrival and departure

of waves at the RF-tag antenna are not the same when separate reader transmitter and

receiver antennas are used.

Table 1: Backscatter link budget parameters that are determined by the reader antenna
configuration – monostatic, bistatic collocated, or bistatic dislocated.

Monostatic Bistatic Collocated Bistatic Dislocated

rf = rb

F = Fα F = Fβ
Xf = Xb

Bf = Bb

F = Fm

To clarify the notation in Equation (1) and (2), it should be understood that the RF

channel in which a backscatter-radio system operates is composed of two parts – the forward

link and the backscatter link. The forward link, also called the reader-to-tag link, describes

signal propagation from the reader transmitter to the RF tag and link budget parameters

that pertain to this link are denoted by a subscript f . Similarly, the backscatter link, or

the tag-to-reader link, describes signal propagation from the RF tag to the reader receiver

and link budget parameters that pertain to this link are denoted by a subscript b. These

terms will be used interchangeably throughout this dissertation.
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2.2 Backscatter-Radio Channel Losses

This section presents details of the physical propagation mechanisms and losses that affect

backscatter-radio communication.

2.2.1 Polarization Mismatch

The polarization of an antenna is defined by the polarization of its transmitted waves [38].

The power that an antenna receives is maximized when the polarization of the incident wave

is matched to that of the antenna. When this is not the case, the power lost relative to

the maximum power received with a polarization match is given by two power polarization

mismatch factors, Xf and Xb, for the forward and backscatter links, respectively. Each

of these factors varies from 0, with a complete polarization mismatch, to 1 for a perfect

polarization match.

In a backscatter system, polarization mismatch is of great importance because the ori-

entation of the RF tag is arbitrary. As the orientation of the tag changes, Xf and Xb can

easily render the backscatter-radio system inoperable. One way to ensure that the RF tag

receives power, no matter its orientation, is to transmit a circularly polarized wave from

the reader transmitter. Doing so will result in X = Xf = Xb = 3 dB, but will prevent a

complete polarization match. Another method is to use two linearly-polarized antennas on

the RF tag that are oriented at 45◦ with respect to each other in conjunction with cross-

polarized reader antennas [37]. This method can prevent a complete polarization mismatch

while providing self-interference mitigation1 [37].

2.2.2 Power Transmission Coefficient

Impedance is the ratio of voltage to current that a given device can accept. When a

voltage (or current) wave traveling in a device with impedance ZA is fed into a device with

impedance ZL, the voltage (or current) wave must increase or decrease to conform to the

voltage to current ratio specified by ZL. In order to change, a reflected wave is launched

1Self-interference is the strong, unmodulated signal that propagates directly from the reader transmitter
to the reader receiver, shown in Figure 1. Care must be taken to make sure that this signal does not saturate
the reader receiver.
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that travels in the opposite direction of the original wave. The result is that not all of the

power carried by the original wave is transferred to the second device. This result is general

and pertains to any situation in which transmission-line theory can be applied including an

antenna with an attached load. Given an antenna impedance ZA and a load impedance ZL,

the normalized amount of power delivered to the load, the power transmission coefficient

τ [7, 38], is

τ =
4Re{ZA}Re{ZL}

Re{ZA + ZL}2 + Im{ZA + ZL}2
0 ≤ τ ≤ 1 (3)

When ZA = Z∗
L, where (·)∗ denotes the complex conjugate, maximum power transfer occurs

and τ = 1.

RF tags are particularly susceptible to impedance mismatch losses. RF-tag antenna

impedance detuning caused by object attachment [7, 40, 41], close object proximity [42],

and antenna deformation [43, 44] will all reduce τ . Mismatches can also be caused by

variations in the input of impedance of the RFIC as the received power changes [40, 45].

As an example of antenna detuning, Figure 8 shows that the simulated impedance of a

half-wave folded dipole drops from its design value of 300+ j100 Ω to a virtual short circuit

as it is brought close to an infinite, perfectly conducting plane. The result is that τ ≈ 0.

It should be noted that object proximity and attachment will cause a change in both the

antenna’s impedance and its gain, discussed in Section 2.2.6.

2.2.3 Modulation Factor

As discussed in Chapter 1, an RF tag modulates the signal backscattered from its antenna by

switching the load impedance between two or more states. Typically, a binary modulation

scheme (two reflection coefficient states) is used and the amount of modulated-backscatter

power is described by the modulation factor M , which Prothro et al. [46] defined to be

M =
1
4
|ΓA − ΓB|2 (4)

where the reflection coefficient is defined as [18]

ΓA,B =
ZA,B

RFIC − Z∗
ant

ZA,B
RFIC + Zant

(5)
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and ZA,B
RFIC is the input impedance of the RF port of the RFIC, Zant is the input impedance

of the RF-tag antenna, and (·)∗ is complex-conjugate operator. These impedances are

shown in Figure 3. This equation assumes the DC component of the received backscattered

signal is removed, the backscatter signal has a 50% duty cycle, and an equal number of tag

impedance states (data bits) are received.

Figure 3: A simplified block diagram of an RF tag. The input impedance of the tag’s
RFIC ZA,B

RFIC is changed between states A and B by switching the load between ZA
L and ZB

L

(Reprinted from [37], c© 2009 IEEE).

The choice of the modulation factor presents a tradeoff in design parameters [6]. While

an open and short circuit, shown on the Smith chart in Figure 4, maximize the power

scattered back to the reader, they also minimize the power coupled into the RF tag (see

Section 2.2.2). Instead, designers of some commercially available RF tags use amplitude-

shift-keying (ASK) modulation and switch the reflection coefficient between a matched

load and a short, M = 0.25, to balance the power backscattered and absorbed by the

RFIC [10]. The short can be easily achieved with a field-effect transistor (FET) and, if

designed properly, enough power can be received during the matched load state to operate

while in the short circuit state. Other designers use phase-shift-keying (PSK) and simply

modulate the reactive component of the chip impedance [11]. This allows constant power

to be supplied to the RFIC regardless of the modulation state.

The power backscattered from an RF tag can also be characterized using the tag’s

effective radar cross-section (RCS). Over the years, much research on the RCS of loaded
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Figure 4: A smith chart showing the open circuit and matched loads used in commercially
available passive RF tags. For the custom RF tags discussed in Section 5.3.2, the load was
switched between an open and short circuit to maximize the power backscattered to the
reader.

antennas has been done with the goal of making “stealthy” antennas – antennas with zero

RCS (non-scattering) – for military applications. For modulated-backscatter applications,

the goal is to maximize an antenna’s RCS while still absorbing enough power to turn on the

tag’s RFIC. The theory of loaded antenna RCS for modulated-backscatter applications has

been presented by Nikitin and Rao [47], Penttilä et al. [48], and Fuschini et al. [49], among

others. In general, the RCS σRCS can be written in terms of a load-dependent antenna

component and a load-independent structural component,

σRCS =
λ2

4π
G2

t |As − ΓA,B|2, (6)

where As is a complex-valued term that represents the structural component and ΓA,B,

defined in (5), represents the antenna component [50]. Since the backscattered signal is

proportional to the difference between modulation states, the differential RCS [51] is

∆σRCS =
λ2G2

t

4π
|ΓA − ΓB|2 (7)

Note that differential RCS is only dependent on the antenna load, not the structural com-

ponent of the RCS.
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2.2.3.1 Understanding the Backscattered Signal

Equation (4) shows that the modulated-backscatter power is dependent on the difference

between the complex reflection coefficients of each impedance state. While it may not seem

intuitive for the backscattered information to be contained in the difference between two

reflection states, recall that an RF-tag antenna scatters waves just like any other object in

the backscatter channel. What differentiates the RF-tag backscattered signal from other

scattered signals is that the RF-tag signal changes with time. If a direct-conversion receiver2

is used in a static channel, the signals scattered from objects in the channel will be converted

to a DC signal ṼDC while the time-varying signal from the RF tag Ṽdata will oscillate at the

modulation rate, as shown in Figure 5. The baseband signal at any given time epoch is

Baseband Received Signal = ṼDC + Ṽdata (8)

Therefore, the desired, modulated-backscatter signal can be extracted from the total re-

ceived signal by blocking ṼDC with a series capacitor.

Figure 5: The passband and baseband signal received from a backscatter RF tag. The
baseband signal is composed of an unmodulated DC signal ṼDC and an oscillating data
signal Ṽdata.

To see how ṼDC and Ṽdata relate to the reflection coefficient at the RF tag, consider

the IQ diagram shown in Figure 6. In this figure, the signal received by the reader in

RF-tag impedance state A S̃A is the vector sum of the transmitted carrier (plus other

smaller, unmodulated, scattered signals) C̃ and the modulated-backscatter signal, which is

proportional to the RF-tag antenna load reflection coefficient Γ̃A. Likewise, the received

signal in RF-tag impedance state B S̃B is the sum of C̃ and a signal proportional to Γ̃B.

2A direct-conversion receiver converts the spectrum of the received, high-frequency, passband signal
directly to a signal whose spectrum is centered around DC. A discussion of the direct-conversion receiver
designed for this dissertation is provided in Section 5.3.3.

18



Figure 6: An IQ diagram showing the components of the backscatter signal received at
the reader. The received signal S̃A,B is the vector sum of the transmitted carrier (plus other
smaller, unmodulated, scattered signals) C̃ and the modulated-backscatter signal, which is
proportional to the RF-tag antenna load reflection coefficient Γ̃A,B.

The baseband equation for S̃A and S̃B received with a coherent, direct-conversion receiver

can be written as follows:

S̃A =
1
2
h̃

b
Γ̃Ah̃

f
x̃ (9)

S̃B =
1
2
h̃

b
Γ̃Bh̃

f
x̃ (10)

where h̃
f

and h̃
b

are the baseband, complex coefficients of the forward and backscatter

links, respectively, and x̃ is the magnitude of the tone transmitted from the reader3. By

examining Figure 5, S̃A and S̃B can be written in terms of ṼDC and Ṽdata, as shown by

Prothro et al. [46]:

S̃A = ṼDC +
1
2
Ṽdata (11)

S̃B = ṼDC − 1
2
Ṽdata (12)

3Equations (9) and (10) are simplified versions of (20) given in Chapter 3 under the assumption of a
static, narrowband channel with a backscatter-radio system using 1 transmitter, 1 RF-tag, and 1 receiver
antenna. Furthermore, it has been assumed that additive noise is negligible. A discussion of the backscatter
channel is provided in Chapter 3 and these assumptions are revisited in Section 5.4.

19



Likewise, ṼDC and Ṽdata can be written in terms of S̃A and S̃B as follows:

ṼDC =
S̃A + S̃B

2
=

1
4
h̃

b
h̃

f (
Γ̃A + Γ̃B

)
x̃ (13)

Ṽdata =
S̃A − S̃B

2
=

1
4
h̃

b
h̃

f (
Γ̃A − Γ̃B

)
x̃ (14)

Therefore, if ṼDC is removed from the total received signal (given by (8)), then (14) shows

that the modulated-backscatter signal is proportional to the difference between the complex

reflection coefficients. Of course, the formulation of Ṽdata would be different if a reference

other than the DC level had been chosen.

It should be noted that the modulation factor in (4) cannot be directly calculated from

the square of Ṽdata in (14). In (14), Ṽdata is proportional to 1
2 h̃

b
h̃

f
because S̃A and S̃B are

written using the baseband channel notation given by Durgin [17]. In (4), the baseband

channel coefficients – 1
2 h̃

b
h̃

f
– are removed so that 0 ≤ M ≤ 1. The other link budget

parameters account for channel effects.

2.2.4 Multipath Fade Margins

Multipath fading was discussed in Section 1.2 where it was stated that fading can be ana-

lyzed using stochastic-process theory. Envelope distributions are especially useful and the

particular envelope distribution to be used is determined by the link budget in question and

the propagation characteristics of the channel. Once an appropriate probability distribution

has been chosen, a safety factor, or fade margin, is included in the link budget to ensure

that the backscatter-radio system can operate with a certain outage probability. For any

channel, the fade margin in the linear scale can be calculated as

Fade Margin = 10 log10

[[
F−1

A (Outage Probability)
]2

Pav

]
(15)

where FA is the CDF of the received signal envelope, A is a random variable representing the

signal envelope, and Pav is the average power of the channel. In words, the fade margin is the

additional power that must be transmitted from the reader to maintain the specified outage

probability in a channel with fading compared to that without. The following paragraphs

describe the appropriate distributions for the different configurations of the backscatter

channel described by (1) and (2).
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2.2.4.1 The Power-up Fade Margin, Fp

The two probability distributions most commonly chosen to model fading in the power-up

link budget (1) are the Rayleigh and Rician distributions. A Rician distribution is used

when a strong line-of-sight (LOS) path exists between the reader and the RF tag; otherwise,

the Rayleigh distribution is used. The level of fading is described by the Rician K factor –

the ratio of the power in the specular LOS signal to the power in the nonspecular, scattered

signal. Reported Rician K factors for backscatter channels are −∞ dB and 2.8 dB [21],

though higher values are certainly possible. These numbers represent the K factors of the

individual forward and backscatter portions of the link where it has been assumed that each

half of the link has the same K factor.

2.2.4.2 The Monostatic, Backscatter-Link Fade Margin, Fm

Fading in the monostatic, backscatter link, though caused by the same physical mechanisms,

is described by radically different distributions than those of the power-up radio link. The

reason for this difference is that the fading in the reader-to-tag link is multiplied by the

fading in the tag-to-reader link. The fading of the backscattered signal can be modeled

using a product-Rayleigh (for the non-line-of-sight (NLOS) case) or a product-Rician (for

the LOS case) distribution. Since a single antenna is used to transmit and receive in a

monostatic reader, the forward and backscatter channels are identical. Intuitively, this

means that the forward and backscatter channels may fade simultaneously resulting in the

deepest fading of all the backscatter links [52].

2.2.4.3 The Bistatic, Collocated Backscatter-Link Fade Margin, Fα

The bistatic, collocated link differs from the monostatic link in that two separate, but closely

spaced, reader antennas are used to transmit and receive. In terms of fading, this means

that the reader-to-tag and tag-to-reader links will be less correlated. Hence, when compared

to the monostatic backscatter link, fading in the bistatic collocated link will always be less

severe because the likelihood that both halves of the link fade simultaneously is less.
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2.2.4.4 The Bistatic, Dislocated Backscatter-Link Fade Margin, Fβ

In the bistatic, dislocated backscatter link, the reader transmitter and receiver antennas are

separated by a very large electrical distance. This large separation causes the fading in the

reader-to-tag and tag-to-reader links to be statistically uncorrelated and, since the fading

is modeled by complex-Gaussian random variables, independent. Therefore, the fading in

this link will be the least severe of the all the backscatter links, but still worse than the

power-up link.

2.2.5 Calculated Fade Margins

Table 2 shows fade margins for several different channels and levels of fading. The outage

probability is shown in the left column and is defined as the likelihood that the power

received at the reader receiver has faded below Pav by an amount equal to the fade margin

[37],

Outage Probability = Pr[PR ≤ Pav/(Fade Margin)]. (16)

For example, for the power-up link with K = 0 dB, the required fade margin Fp to guarantee

that signal fades render the system inoperable with a only a 10% probability is 9 dB. In

other words, an additional 9 dB of power must be transmitted to limit system failures to

10%.

Table 2: Small-scale multipath fade margins for the power-up (Fp), monostatic (Fm),
and bistatic-dislocated (Fβ) backscatter links. Fade margins are reported in dB (Modified
from [37], c© 2009 IEEE).

K = −∞ dB K = 0 dB K = 3 dB K = 10 dB

Outage
Probability Fp Fm Fβ Fp Fm Fβ Fp Fm Fβ Fp Fm Fβ

0.5 2 6 4 1 5 3 1 3 2 0 1 1

0.1 10 22 15 9 20 14 7 16 11 3 7 5

0.05 13 29 19 12 26 17 10 21 15 4 9 6

0.01 20 43 28 19 40 26 16 34 22 6 13 9

0.005 23 49 32 22 46 29 19 40 26 7 15 10

0.001 30 63 40 29 60 37 26 54 33 9 20 13
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2.2.6 On-object Antenna Gain Penalties

Though an RF-tag antenna may perform well when separated by several wavelengths from

conductive and dielectric materials, its operation may cease completely when brought close

or attached to an object. Aside from altering the input impedance (discussed in Section

2.2.2), object attachment reduces the antenna’s radiation efficiency and distorts the antenna

pattern limiting both the backscattered power for communication and, for a passive RF

tag, the power available for RFIC operation. In (1) and (2), the on-object gain penalty Θ

accounts for these losses and is defined in the linear scale as the ratio of the load-matched,

free-space gain Gt of the RF-tag antenna to the gain of the RF-tag antenna attached to an

object Gon−object.

Θ =
Gt

Gon−object
(17)

In (17), the power used to calculate Gt and Gon−object should be averaged over the half-space

facing away from the object. This makes Θ a useful “rule-of-thumb” for design engineers re-

gardless of the angle-of-arrival of waves at the RF tag. Unfortunately, calculating Gon−object

is difficult analytically and is complicated by Θ’s dependence on material properties, object

geometry, frequency, and antenna type. Therefore, the best method to determine Gon−object

is through careful simulation or measurement.

Measurements, shown in Table 3, have demonstrated that Θ can range from 0.9 dB on

cardboard to 10.4 dB on an aluminum slab [53].

Table 3: On-object gain penalties for various materials measured at 915 MHz in the dB
scale [53] (Reprinted from [37], c© 2009 IEEE).

Cardboard Acrylic Pine De-ionized Ethylene Ground Aluminum
Sheet Slab Plywood Water Glycol Beef Slab

0.9 1.1 4.7 5.8 7.6 10.2 10.4

Initially, some of the gain penalties in Table 3 may not seem significant; however, recall

that the backscatter link budget (2) decreases as 1/Θ2, so an aluminum slab may result in

over a 20 dB loss in backscattered power. Furthermore, the power-up link, (1), decreases as

1/Θ. Even though the losses caused by Θ are not as severe as those seen in the backscatter
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link budgets, passive RF tags are generally more sensitive to changes in the power-up link.

2.2.7 Path Blockages

When an object intrudes on or completely blocks the LOS path between the reader and the

RF tag, the power received by the RF tag or backscattered to the reader will decrease. In

the wireless literature, the large-scale power fades caused by blockages are often modeled

with a log-normal distribution,

fB(b) =
1

σB

√
2π

exp

(
−(b − µB)2

2σ2
B

)
(18)

where b is the index of the PDF, µB is the average value of B, and σB is the standard

deviation of B – all in the dB scale. No study of path blockages has been reported for

backscatter radio because many commercial, passive backscatter systems depend on a LOS

channel for operation. However, as more backscatter systems operate in NLOS channels –

which is currently possible for semi-passive tags and will become more common for passive

tags as their power consumption is reduced – path blockage statistics will become more

significant in link budget calculations.

2.2.8 Path Loss

Though not represented by a particular term in Equations (1) - (2), path loss accounts for

the decrease in received power as the distance from the transmitter increases. In theory,

an electromagnetic wave propagating away from an antenna will have a spherically shaped

phase-front. Since antennas only radiate a finite amount of power and the surface area of

a sphere increases with the square of its radius, the power density observed at a distance

r from the source will decrease as 1/r2 – free-space path loss. When the radiator is not in

free space, reflections and diffractions will change the rate at which power decreases and is

accounted for by a path loss exponent n. In the decibel scale, the simplest path loss model

is given by

Lp = P0 + 10nlog(r) (19)

where P0 is a constant, n is the path loss exponent, and r is the reader-to-tag separation

distance in meters [21]. Many path loss models and path loss exponents have been studied
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for conventional transmitter-to-receiver links [54]. In general, path loss exponents for indoor

channels vary widely from building to building and even from room to room. Though few

measurements have been conducted for backscatter links, it has been found that path loss

exponents are very close to free-space values [21]. Therefore, in (1) and (2), n = 2 for the

forward and backscatter links; however, when semi-passive tags are considered, these values

may vary because of their large operating range.

2.3 RFID-Portal Example

In this section, the radio link budgets described in Section 2.1 are demonstrated through an

example of an RFID portal operating at 915 MHz. This section defines the RF-tag system

parameters, describes the propagation environment, and then plots the link budgets as a

function of the reader-to-tag separation distance for two different object attachments.

2.3.1 RF-Tag Reader

In this system, tagged objects pass through a passageway, or portal, to which the reader’s

antennas are fixed. The reader has the ability to operate with a single transmitter and

receiver antenna (monostatic mode) or with two widely-spaced transmitter and receiver

antennas (the dislocated bistatic mode). In either mode, the transmitter and receiver

antennas are right-hand circularly polarized patch antennas that resonate at 915 MHz with

a gain of 7 dBi. The sensitivity of the reader is -80 dBm [40,55].

2.3.2 RF Tag

Figure 7 shows the equivalent circuit of the RF-tag antenna, impedance transformation

network, and antenna port of the tag RFIC. The RF tag uses a single folded dipole antenna

that is linearly-polarized with a free-space, load-matched gain of 2.1 dBi and an approximate

free-space terminal impedance of 300 + j100 Ω, determined from Figure 8 [46]. The input

impedance at the antenna port of most tag RFICs can be modeled as a series resistor of a

few ohms (often less than 30 Ω) in series with a capacitor that is a fraction of a picofarad [6].

For this example, it is assumed that the tag RFIC uses ASK modulation and switches its

impedance between two states, ZA
RFIC = 20−j350 Ω and ZB

RFIC = 2−j0.1 Ω (an approximate
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short circuit). The non-zero input impedance of ZB
RFIC reflects the fact that field-effect

transistors cannot provide a true short circuit, but are modeled as a small shunt resistance

in parallel with a small capacitance whose values depend upon the transistor implementation

and biasing. For efficient power transfer from the antenna to the tag RFIC, a matching

network is used to transform the antenna impedance to ZIN = 20 + j350 Ω creating a

conjugate impedance match with the tag RFIC in impedance state A. In most RF tags,

lumped-element impedance transformation networks are not used; instead, the necessary

inductance or capacitance is incorporated directly in the structure of the planar antenna [6].

In this example, the matching network is treated separately from the antenna structure for

illustrative purposes. As mentioned previously, the power required for the tag to power-

up varies widely by design; in this example, we assume that -13 dBm is required at 915

MHz [40,56].

Figure 7: The equivalent circuit of the folded dipole RF-tag antenna, impedance transfor-
mation network, and RFIC antenna port used in the 915 MHz portal example (Reprinted
from [37], c© 2009 IEEE).

2.3.3 The Propagation Environment

The RF-tag system operates in a cluttered environment that experiences small-scale mul-

tipath fading due to multipath propagation. As the RF tag passes in front of the reader’s

antennas, a LOS path exists resulting in a Rician K factor of 3 dB. Furthermore, it is

assumed that no blockages impair the LOS path and a 5% outage probability is desired.

Some of the tagged objects passing through the portal are made of cardboard and, for illus-

tration of one of the worst-case propagation scenarios, it is assumed that others are made
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of aluminium.

2.3.4 Link Budget Calculations

The information in the previous paragraphs combined with Table 2 and Table 3 provide all

of the parameters necessary to calculate the terms in the link budgets. A brief description

of each is provided below and summarized in Table 4.

Transmit Power, PT : In the United States, the Federal Communications Commission

(FCC) limits the power that an RF-tag system can transmit to 4 W of equivalent isotropic

radiated power (EIRP). EIRP power is simply the product of the transmitted power and

transmitter antenna gain (PEIRP = GT PT ) in the linear scale. Since the reader’s antennas

have a gain of 7 dBi (5 in the linear scale), the maximum continuous wave (CW) power

transmitted is limited to 29 dBm (or 800 mW).

Modulation Factor, M , and Power Transmission Coefficient, τ : The RF tag mod-

ulates backscatter by switching its input impedance between two states. When the RF tag

is attached to a cardboard object, the antenna’s impedance changes little from its free-space

value, ZIN = 20 + j350 as seen at the output of the impedance transformation network.

Using ZIN , ZA
RFIC, and ZB

RFIC in (4), the modulation factor on cardboard is found to be

M = 0.25 in the linear scale. Using (3), the power transmission coefficient on cardboard is

τ = 1 in the linear scale.

As the RF tag is brought close to an aluminum object, the impedance of the folded

dipole antenna drops rapidly, as shown in Figure 8. For a very small object-to-tag separation

distance of 0.005λ, which approximates object attachment, the terminal impedance of the

antenna drops to approximately 0.5 + j25Ω. The corresponding impedance seen at the

output terminals of the impedance transformation network is ZIN = 0.31 + j290 Ω. This

assumes that the values of the impedance transformation network are not altered by close

metal proximity – an assumption that may not be valid for a matching network incorporated

into the antenna structure. Using ZIN , ZA
RFIC, and ZB

RFIC in (4) and (3), the modulation

factor and power transmission coefficient are found to be M = 3.5×10−5 and τ = 6.2×10−3,
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(a) (b)

Figure 8: Folded dipole antenna impedance (simulated using NEC) as a function of the
electrical distance from a perfectly conducting half-plane at 915 MHz [46] for electrical
spacings of (a) 0.005λ to 0.06λ and (b) 0.005λ to 0.5λ (Reprinted from [37], c© 2009 IEEE).

respectively (both in the linear scale).

Gain Penalty, Θ: From Table 3, the gain penalty for cardboard and metal are Θ = 0.9

dB (1.2 in the linear scale) and Θ = 10.4 dB (11 in the linear scale), respectively.

Fade Margins: To maintain a 5% outage probability in a multipath environment with

K = 3 dB, the required fade margins from Table 2, are Fp = 10 dB (10 in the linear scale)

for the power-up link, Fm = 21 dB (126 in the linear scale) for the reader in the monostatic

mode, and Fβ = 15 dB (32 in the linear scale) for the reader in the bistatic, dislocated

mode.

Polarization Mismatch, X: Since the reader’s antennas are circularly polarized and the

RF-tag antenna is linearly polarized, a 3 dB polarization mismatch will result on both the

reader-to-tag and tag-to-reader links; therefore, Xf = Xb = 0.5 in the linear scale.
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Table 4: 915 MHz RF-tag portal example parameters in the linear scale (Reprinted from
[37], c© 2009 IEEE).

Material PT (mW) GT,R Gt Xf,b Fp Fm Fβ

Cardboard 800 5 1.6 0.5 10 126 32

Aluminum 800 5 1.6 0.5 10 126 32

Material λ (m) M τ Θ B

Cardboard 0.33 0.25 1 1.2 1

Aluminum 0.33 3.5 × 10−5 6.2 × 10−3 11 1

2.3.5 Discussion

Figure 9(a) shows plots of the power-up link, described by (1), for three different cases

along with the minimum power threshold for tag RFIC operation. In the first power-up

link budget, X, τ , Θ, B, and F are all equal to 1 (in the linear scale). This is the Friis

free-space link budget – a link budget that assumes free-space path loss, no impedance or

polarization mismatches, no path blockages, and no multipath fading. The second case is

the power-up link for an RF tag attached to cardboard and the third is the power-up link

for an RF tag attached to an aluminum object. Note the extreme optimism of the Friis

free-space link budget. Compared to the realistic second and third cases, an RF-tag system

designed using the Friis link budget may overestimate its range by several meters. In the

second case, though cardboard attachment itself does little to affect the tag’s operation,

fading and polarization mismatches reduce the range of the RF tag to less than 2 m. In the

third case, the reduced antenna impedance results in an extremely small power transmission

coefficient τ that, along with a large gain penalty, prevents the RF tag from turning on.

Similarly, Figure 9(b) shows plots of the backscatter links described by (2) for an RF tag

attached to cardboard and aluminum and the minimum power threshold for signal detection

– i.e., the receiver’s sensitivity. A brief comparison of Figure 9(a) and Figure 9(b) shows

that the range of the RF tag is limited by the power-up link (1), not the backscattered

power. The effect of the reader antenna configuration is also seen; the monostatic link is

several dB worse than the bistatic, dislocated case regardless of material attachment. Like
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the power-up link, the low antenna impedance caused by aluminum attachment results in

an extremely small modulation factor M . The small amount of modulated power scattered

from the RF tag is below the reader’s sensitivity threshold and is, therefore, undetected.

(a) Power-up Links

(b) Backscatter Links

Figure 9: Power-up and backscatter links plotted as a function of reader-to-tag separation
distance, r. In (b), it is assumed that r = rf = rb (Reprinted from [37], c© 2009 IEEE).

2.4 Conclusion

This chapter has presented two link budgets that completely describe the major propagation

mechanisms affecting UHF and microwave backscatter communication. These tools are
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useful for predicting backscatter-radio system performance and will help reduce expensive

prototyping iterations. Furthermore, these link budgets may be used with the theory and

design guidelines presented in Chapter 3 and Chapter 4 to show how multiple antennas can

reduce small-scale fading and improve backscatter system range and reliability.
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CHAPTER III

FADING DISTRIBUTIONS FOR THE M × L × N DYADIC

BACKSCATTER CHANNEL

Chapter Overview: This chapter provides the following:

• A detailed description of the M × L × N , dyadic backscatter channel.

• New, analytic envelope PDFs for the M × L × N , dyadic backscatter channel with
Rayleigh-fading links.

• Demonstration of pinhole diversity gains that reduce multipath fading for backscatter-
radio systems.

• A discussion of the effects of link correlation and how it can be reduced to minimize
small-scale multipath fading.

• A description of multipath fading distributions for the LOS, M × L × N , dyadic
backscatter channel.

This chapter defines and discusses the M × L × N , dyadic backscatter channel and shows

that small-scale fading can be reduced using RF tags with more than one antenna. This

chapter lays the theoretical framework for the measurements presented in Chapter 6 and is

adapted from [52] and [5].

3.1 The M × L × N Dyadic Backscatter Channel

The most general backscatter channel is the M × L × N , dyadic1 backscatter channel – a

pinhole channel [57] that describes the propagation of signals in a backscatter-radio system

consisting of M transmitter, L RF-tag, and N receiver antennas. In a pinhole channel,

propagation paths are forced to converge at a point in space which causes the propagation

paths to be correlated. In conventional transmitter-to-receiver channels, this has been

1The term “dyadic” has a double meaning. It reflects both the two-fold nature of the channel created by
the forward and backscatter links and the fact that the modulated signals are represented in matrix form.
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shown to reduce the rank of the channel matrix and limit channel capacity [57] and available

diversity gains. In RF channels, the point of convergence may be a diffracting edge [58,

59], a hallway or tunnel [58], a metal screen [57], rings of scatterers separated by a long

distance [60], or the antenna(s) of a mobile station that is (are) found in amplify-and-

forward channels [61]. In the dyadic backscatter channel, the point of convergence is (are)

the RF-tag antenna(s). All of these pinhole channels, except the amplify-and-forward and

dyadic backscatter channels, cease their pinhole behavior under LOS conditions. The dyadic

backscatter and amplify-and-forward channels remain pinholes in both LOS and NLOS

conditions making them some of the only true pinhole channels.

The hallmark of any pinhole channel is that it can be modeled as the cascade of two

channels. In the M × L × N , dyadic backscatter channel, shown in Figure 10(a), these

channels are called the forward and backscatter links. The forward link, H̃f (t, �r ), describes

signal propagation from the M transmitter antennas to the L RF-tag antennas and the

backscatter link, H̃b(t, �r ), describes the propagation of signals scattered from the L RF-tag

antennas to the N receiver antennas.

In mathematical terms, the received, baseband signal from the M × L × N , dyadic

backscatter channel is

�̃y(t, �r ) =
1
2

+∞∫
−∞

+∞∫
−∞

H̃b(τb; t, �r )S̃(t − τb)H̃f (τf ; t − τb, �r )�̃x(t − τb − τf )dτbdτf + �̃n(t). (20)

In (20), �̃y(t, �r ) is an N×1 vector of received, baseband signals; H̃b(τb; t, �r ) is the N×L, com-

plex, baseband-channel impulse-response matrix of the backscatter link; and H̃f (τf ; t, �r ) is

the L × M , complex, baseband-channel impulse-response matrix of the forward link [17].

S̃(t) is the narrowband, L×L signaling matrix, �̃x(t) is an M×1 vector of signals transmitted

from the reader transmitter antennas, and �̃n(t) is an N × 1 vector of noise components.
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(a)

(b)

Figure 10: (a) The general, M × L × N , dyadic backscatter channel with M transmitter
antennas, L RF-tag antennas, and N receiver antennas described mathematically by (20)
(Reprinted from [5], c© 2008 IEEE). (b) The path from the mth transmitter antenna to the
nth receiver antenna is shown where h̃

f
lm and h̃

b
nl are elements of the forward and backscatter-

link matrices, H̃f and H̃b, respectively. Elements of the forward and backscatter-link ma-
trices that terminate or originate on a common RF-tag antenna have link correlation ρ
(Reprinted from [52], c© 2007 IEEE).
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3.1.1 The Signaling Matrix

The narrowband signaling matrix, S̃(t), is an L×L matrix that describes the time-varying

modulation that an RF tag places on radio signals absorbed and scattered by the L tag

antennas. Therefore, it is natural to define the signaling matrix as the L port scattering

matrix commonly used in RF hardware design. A comprehensive discussion of the general

L port scattering matrix is given by Pozar [62]; however, two notes are worth mentioning.

First, the signaling matrix of a passive or semi-passive RF tag has elements s̃ij(t) with

magnitude less than unity, |̃sij(t)| ≤ 1, since there is no amplification of the backscattered

signal. Second, though it is not required that the signaling matrix be symmetric, most RF

tags will satisfy this property.

The signaling matrix may take several different forms depending upon the physical

implementation of the modulation circuitry and RF-tag antennas.

3.1.1.1 Identity Signaling Matrix

If each RF-tag antenna modulates backscatter with the same signal and no signals are

transferred between the antennas, the signaling matrix is equal to a normalized identity

matrix,

S̃(t) = s̃(t)IL = Γ̃(t)IL (21)

where IL is the L×L identity matrix and Γ̃(t) is the complex, RF-tag antenna load reflection

coefficient.

3.1.1.2 Diagonal Signaling Matrix

If the RF-tag antennas modulate backscatter with different signals and no signals are trans-

ferred between the antennas, the signaling matrix is a diagonal matrix,

S̃(t) = diag [̃s11(t) . . . s̃LL(t)]

= diag
[
Γ̃1(t) . . . Γ̃L(t)

]
. (22)
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3.1.1.3 Full Signaling Matrix

If the RF-tag antennas modulate backscatter independently, i.e., with different signals, and

signals are transferred between the antennas, the full signaling matrix,

S̃(t) =

⎡
⎢⎢⎢⎢⎢⎣

s̃11(t) . . . s̃1L(t)
...

. . .
...

s̃L1(t) . . . s̃LL(t)

⎤
⎥⎥⎥⎥⎥⎦ , (23)

is used. Signal transfer between antennas is represented by the off-diagonal elements (i.e.,

s̃ij where i �= j). The fact that power can be transferred between the RF-tag antennas gives

the designer a potential additional degree of freedom in signal scheme design; however, at

this point, no application of the full signaling matrix has been identified.

For the remainder of this chapter, it is assumed that the signaling matrix has the form

of (21), the identity signaling matrix, with binary reflection of signals, Γ̃ = ±1, to provide

maximum signal power.

3.2 M × L × N Dyadic Backscatter Channel Envelope PDF

Using the M × L × N , dyadic backscatter channel synthesized in the previous section,

envelope distributions of the signal received at the nth receiver can be derived. In this

channel, each element of the forward link H̃f and the backscatter link H̃b is an independent,

identically distributed (i.i.d.), complex-Gaussian random variable. The elements of the

backscatter and forward links can be written, respectively, as h̃
b

=
(
wb + jvb

)
and h̃

f
=(

wf + jvf

)
where wf,b and vf,b are ∼ N (

µf,b, σ
2
f,b/2

)
. Here, µf,b and σ2

f,b are the mean and

variance of h̃
f

and h̃
b
, respectively.

Link Correlation: In the M × L × N , dyadic backscatter channel, propagation paths

that originate or terminate on a common RF-tag antenna can have link correlation ρ, shown

in Figure 10(b). Link correlation simply describes the correlation, or relationship, between

fading in the forward and backscatter links. Link correlation can be controlled by varying

the spacing between the reader transmitter and receiver antennas. Details may be found in
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Appendix B.4 and work by Griffin and Durgin [52]. Mathematically, this means that

ρ =
2 Cov(wf , wb)

σbσf
=

2 Cov(vf , vb)
σbσf

(24)

where Cov(·, ·) is the covariance operator. While ρ is convenient for analysis, a more practi-

cal metric is the correlation between the envelopes of h̃
f
lm and h̃

b
nl – link envelope correlation

– since this correlation can be easily calculated from measured data. It can be shown that

envelope correlation ρe is related to link correlation by ρe ≈ ρ2 [63,64]. In remainder of this

dissertation, both ρ and ρe will be used when appropriate.

The signal received at the nth receiver antenna is proportional to the sum of ML

complex-Gaussian products, described by (25) and Figure 11,

ỹn(t, �r ) ∝
L∑

j=1

(h̃
f
j1 + . . . + h̃

f
jM )︸ ︷︷ ︸

g̃f
j

h̃
b
nj . (25)

Figure 11: In a backscatter-radio system, the signal received at the nth receiving antenna
is the sum of ML complex-Gaussian products. However, only L of these products are
statistically independent (Reprinted from [5], c© 2008 IEEE).

In (25), each element of the backscatter-link matrix, h̃
b
, is multiplied by M , i.i.d.,

forward-link elements, (h̃
f
j1 + . . . + h̃

f
jM ), which can be expressed as a single complex-

Gaussian random variable, g̃f
j , with mean M(µf + jµf ) and variance Mσ2

f . Therefore, the

signal received at the nth receiver antenna is proportional to the sum of L, i.i.d., complex-

Gaussian products.
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3.2.1 Rayleigh-Fading Links

In a typical M × L × N , dyadic backscatter channel, LOS propagation dominates and the

elements of the forward and backscatter matrices follow a Rician distribution (µf,b �= 0).

The M × L × N Rician envelope PDF will be discussed in Section 3.2.2, but first, the

lower bound of this case, the M ×L×N , dyadic backscatter channel with Rayleigh-fading

forward and backscatter links, will be studied. In this case, the elements of the forward and

backscatter links can be written, respectively, as h̃
b
=
(
wb +jvb

)
and h̃

f
=
(
wf +jvf

)
where

wf,b and vf,b are ∼ N (
0, σ2

f,b/2
)
. The envelope PDF of the M ×L×N , dyadic backscatter

channel fA(α, ρ) can be derived from that of the product of two Rayleigh random variables,

as shown in Appendix B.

This PDF, fA(α, ρ), is best understood by examining three special cases: the case with

uncorrelated forward and backscatter links (ρ = 0), that with fully-correlated forward and

backscatter links (ρ = 1), and that with link correlation in the range 0 < ρ < 1. As

shown in Appendix B, analytical expressions can be found for the PDF with ρ = 0 and

ρ = 1; however, the case of 0 < ρ < 1 requires numerical techniques. Plots of the PDF for

0 < ρ < 1 are given in Section 3.3.4.

3.2.1.1 Uncorrelated Links, ρ = 0

The envelope PDF for the case of ρ = 0 is

fA(α, 0) = αL

(
2√

Mσbσf

)1+L
21−L

Γ
(
L
)Kν

(
2α√

Mσbσf

)
(26a)

where A is the random channel envelope, α is the index of the PDF, Γ(·) is the gamma

function, and Kν(·) is a modified bessel function of the second kind with order ν = 1 − L.

The mean and variance of (26a), respectively, are

µA =

√
Mσbσf

2
π(2L)!

4LL!(L − 1)!
(26b)

and

σ2
A = MLσ2

bσ
2
f

(
1 − L

4

[
π(2L)!
4L(L!)2

]2)
. (26c)

Simplified expressions for the PDF, mean, and variance are given in Table 5 for several

M × L × N channel configurations.
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Table 5: Simplified envelope statistics for M × L × N , dyadic backscatter channels with
uncorrelated (ρ = 0), Rayleigh-fading links (Reprinted from [5], c© 2008 IEEE).

fA(α, 0) µA σ2
A

L = 1
4α

ζ2
K0

(2α

ζ

) π

4
ζ

(
1 − π2

16

)
ζ2

L = 2
4α2

ζ3
K−1

(2α

ζ

) 3π

8
ζ

(
2 − 9π2

64

)
ζ2

L = 3
2α3

ζ4
K−2

(2α

ζ

) 15π

32
ζ

(
3 − 225π2

1024

)
ζ2

L = 4
2α4

3ζ5
K−3

(2α

ζ

) 35π

64
ζ

(
4 − 1225π2

4096

)
ζ2

where ζ =
√

Mσbσf

3.2.1.2 Fully-Correlated Links, ρ = 1

The envelope PDF for the case of ρ = 1, which may occur only in a 1 × L × 1, dyadic

backscatter channel in which a single reader antenna is used to transmit and receive, is

fA(α, 1) = αL/2

(
1

σbσf

)1+L/2
21−L/2

Γ
(
L/2

)Kν

(
α

σbσf

)
(27a)

where Kν(·) is a modified bessel function of the second kind with order ν = 1−L/2 and all

other terms are as defined for (26a). The mean and variance of (27a), respectively, are

µA = σbσfΨ (27b)

where

Ψ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πL!
2L(L/2 − 1)!(L/2)!

for even L,

2L
[
(L/2 − 1/2)!

]2
2(L − 1)!

for odd L,

and

σ2
A = 2Lσ2

bσ
2
f

(
1 − Λ

2L

)
(27c)
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where

Λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
πL!

2L(L/2)!(L/2 − 1)!

]2

for even L,

[
2L−1

[
(L/2 − 1/2)!

]2
(L − 1)!

]2

for odd L.

Simplified expressions for the PDF, mean, and variance are given in Table 6 for several

M × L × N channel configurations.

Table 6: Simplified envelope statistics for M × L × N , dyadic backscatter channels with
fully-correlated (ρ = 1), Rayleigh-fading links (Reprinted from [5], c© 2008 IEEE).

fA(α, 1) µA σ2
A

L = 1
1
ζ

exp
(−α

ζ

)
ζ ζ2

L = 2
α

ζ2
K0

(α

ζ

) π

2
ζ 4ζ2

(
1 − π2

16

)

L = 3

√
2α3

πζ5
K−1/2

(α

ζ

)
2ζ 2ζ2

L = 4
α2

2ζ3
K−1

(α

ζ

) 3π

4
ζ 8ζ2

(
1 − 18π2

256

)

where ζ = σbσf

3.2.2 Rician-Fading Links

Similar to the Rayleigh-fading case in Section 3.2.1, the envelope PDF of the signal received

at the nth receiver antenna through the M×L×N , dyadic backscatter channel with Rician-

fading links can be derived from the PDF of the product of two Rician random variables.

Although analytic solutions are not possible, this PDF can be solved numerically by applying

the techniques used in Appendix B to the product-Rician PDF given in Appendix A.4.

This can be done only for the case of independent forward and backscatter links because

no expression for the product of two dependent Rician random variables is available. Plots

of these PDFs are presented in Section 3.3.4.
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3.3 Diversity Gains in the Dyadic Backscatter Channel

This section explores the effects of multiple RF-tag antennas and link correlation on the

level of small-scale multipath fading in the M × L × N , dyadic backscatter channel. It is

shown that using multiple RF-tag antennas results in a pinhole diversity gain that reduces

small-scale fading. Likewise, it is shown that reducing link correlation can have a similar

effect.

3.3.1 The Benefits of Multiple RF-Tag Antennas

Figure 12 shows plots of (26a) and (27a) along with the PDF of a conventional, transmitter-

to-receiver, Rayleigh-fading channel. Each PDF has been normalized to unit power, that

is, E{A2} = 1 where E{·} denotes the ensemble average.

Figure 12: Plots of the envelope PDF at the nth receiver antenna, with ρe = 0 and ρe = 1,
for several dyadic backscatter channels along with the PDF of a conventional, transmitter-
to-receiver, Rayleigh-fading channel. Each PDF has been normalized to unit power, that is,
E{A2} = 1 where E{·} denotes the ensemble average (Reprinted from [5], c© 2008 IEEE).

In Figure 12, it can be seen that the PDF of the dyadic backscatter channel has deeper

fades than that of the conventional Rayleigh channel, but improves as RF-tag antennas are

added. This is evident from the fact that the area bounded by the PDF curve for α less
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than a given value – which gives the probability that the envelope will be between zero and

the given value – decreases as RF-tag antennas are added. The most significant change is

seen for the fully-correlated channel, ρe = 1, where the PDF changes from an exponential

distribution for the 1 × 1 × 1 channel to a product-Rayleigh distribution for the 1 × L × 1

channel (L >1). Not only does the PDF change as RF-tag antennas are added, but also

with ρe, as shown in Figure 13(a) and Figure 13(b). These figures have same normalization

as Figure 12. As ρe is reduced, the PDFs improve for both the 1 × 1 × 1 and 1 × 2 × 1

channels. Improvements as RF-tag antennas are added can also be seen in Figure 14(a).

(a) Normalized 1 × 1 × 1, dyadic-backscatter-channel PDF

(b) Normalized 1 × 2 × 1, dyadic-backscatter-channel PDF

Figure 13: The PDF of the signal received at the nth reader-receiver antenna for (a)
the 1 × 1 × 1 and (b) 1 × 2 × 1 channels with different ρe values. Each distribution has
been normalized to unit power (i.e., E{A2} = 1 where E{·} denotes the ensemble average).
These figures are reprinted from [52], c© 2007 IEEE.

42



(a) Gains due to pinhole diversity and increased RF-tag scattering aperture.

(b) Gains due solely to pinhole diversity.

Figure 14: Average BER plots for backscatter-radio systems operating in various dyadic
backscatter channels with independent, Rayleigh-fading, forward and backscatter links; un-
coded BPSK modulation; and noise and interference that is additive, white, and Gaussian.
Each curve represents the average BER of the signal received at the nth reader-receiver
antenna with no diversity combining. Each BER curve is plotted against the SINR at the
nth reader-receiver antenna in the 1 × 1 × 1 channel. In (a), the simulated, random chan-
nel matrix is normalized by M for constant transmit power and the BER improvements
are caused by both pinhole diversity gains and a larger tag scattering aperture as RF-tag
antennas are added. In (b), the simulated, random channel matrix is normalized by ML
to show the BER improvements caused solely by pinhole diversity gains. These figures are
reprinted from [5], c© 2008 IEEE.
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Figure 14(a) plots simulated, average BER curves versus the signal-to-noise-plus-interference-

ratio (SINR) for various dyadic backscatter channels with independent, Rayleigh-fading

forward and backscatter links. The simulations use uncoded, coherent, binary-phase-shift

keying (BPSK) modulation with noise and interference that is additive, white, and Gaussian.

In these Monte Carlo simulations, 69 × 106 channel realizations were used to approximate

the ensemble average of the BER and the simulated, random channel matrix was normalized

by the number of transmit antennas M for constant transmit power.

As RF-tag antennas are added, the slopes of the BER curves increase, and the curves are

shifted in a manner similar to that caused by conventional diversity and coding techniques.

For a BER of 10−4, there is a 10 dB gain from the 1×1×1 channel to the 1×2×1 channel,

with slightly larger gains for the L = 3 and L = 4 cases. Like the PDFs, the average BER

curves are also a function of ρe, shown in Figure 15.

Figure 15: Average BER plots for the 1×1×1, 1×2×1, and 1×3×1 dyadic backscatter
channels for several values of link envelope correlation, ρe. In these Monte Carlo simulations,
Rayleigh-fading forward and backscatter links; uncoded BPSK modulation; and noise and
interference that is additive, white, and Gaussian were assumed. Each curve represents
the average BER of the signal received at the nth reader-receiver antenna with no diversity
combining. Each BER curve is plotted against the SINR at the nth reader-receiver antenna
in the 1 × 1 × 1 channel (Reprinted from [52], c© 2007 IEEE).
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For each dyadic backscatter channel (i.e., the 1×1×1, 1×2×1, and 1×3×1 channels),

the average BER improves as ρe is lowered; however, the number of RF-tag antennas has

stronger effect.

In summary, this section has shown that the PDF and the average BER of the dyadic

backscatter channel are affected by both the number of RF-tag antennas and the level of

link envelope correlation. An explanation of these effects is given in the following sections.

3.3.2 Pinhole Diversity Gains

One source of the PDF improvements in Figure 12 and the communication gains in Figure

14(a) and Figure 15 is a pinhole diversity gain caused by the use of multiple RF-tag antennas.

The term pinhole diversity is derived from the fact that each RF-tag antenna corresponds

to a pinhole in the channel that provides a set of spatially-separated propagation paths, or

pinhole diversity branches. Equation (25) shows that, for an RF tag with L antennas, L

diversity branches are formed by the independent, complex-Gaussian-product terms of the

dyadic backscatter channel. As L increases, the probability that the envelope will fade is

reduced and, as L becomes very large, the derived envelope distributions become Rayleigh,

as expected. This is shown mathematically in Appendix B.3.

Since pinhole diversity does not require diversity branch combining at the reader, it

is often assumed that it is equivalent to diversity combining without channel knowledge

in a transmitter-to-receiver channel – i.e., the non-coherent addition of diversity branches

received through a transmitter-to-receiver channel. However, pinhole diversity differs from

both non-coherent diversity combining and conventional, coherent diversity combining in

two important aspects.

3.3.2.1 PDF Shape Change

Non-coherent diversity-branch combining in a transmitter-to-receiver, Rayleigh-fading chan-

nel only increases the power (or variance) of the received signal. Pinhole diversity gains,

on the other hand, are caused by the summation of terms that have a product-Rayleigh

distribution and result in a favorable change in the shape of the PDF. This is can be seen

in Figure 12 in which each PDF has been normalized to unit power. In fact, the number of
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pinholes available in the channel determines the shape of the PDF. Analysis of (25) shows

that this is a general result; when normalized to equal power, the 1 × L × 1 channel with

uncorrelated, Rayleigh-fading links has the same PDF shape as the 1×2L×1 channel with

fully-correlated, Rayleigh links.

3.3.2.2 Reader Design Simplification

In a transmitter-to-receiver channel, gain combining, switch combining, or gain combining

in conjunction with space-time block codes must be used to affect a favorable change in

the PDF shape. Pinhole diversity gains, on the other hand, can be realized in the dyadic

backscatter channel using only multiple RF-tag antennas to modulate backscatter – no

change in the reader receiver hardware, reader transmitter hardware, or signaling scheme

is required.

It should be noted that as Rayleigh products are summed, the power of the channel

distribution does increase and can be attributed to an increase in the RF-tag effective

scattering aperture as antennas are added. This increase in scattered power can itself result

in improved BER performance [26]. The BER plot shown in Figure 14(a) reflects both

this increase in effective scattering aperture and improved PDF shape caused by pinhole

diversity. To see the BER improvement caused solely by pinhole diversity, the simulated,

random channel matrix has been normalized by ML, in Figure 14(b), so that the channel

power is held constant with respect to both M and L. Figure 14(b) shows that pinhole

diversity causes a 7 dB and 8 dB gain for the 1× 2× 1 and 1× 3× 1 channels, respectively,

compared to the 1 × 1 × 1 channel. Actual communication gains in a backscatter-radio

system are due to both pinhole diversity gains and increased effective scattering aperture;

therefore, all performance comparisons should be based on Figure 14(a).

3.3.3 Link Envelope Correlation

A second source of improvement evident in Figure 12, Figure 14(a), and Figure 15 is the

reduction of link envelope correlation ρe. In a conventional transmitter-to-receiver channel,

spatial fading correlation will hinder communication and limit available diversity gains. In

a pinhole channel, such as the dyadic backscatter channel, ρe can have the same effect.
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Previous work on realistic pinhole channels has focused on situations in which the two links

of the pinhole channel – i.e., the forward and backscatter links – are likely dissimilar (e.g.

outdoor propagation [60] or amplify-and-forward channels [61]) justifying the assumption

of independent links. In many backscatter-radio systems, however, reader transmitter and

receiver antennas may be closely spaced or even collocated giving rise to a potentially large

ρe. A high degree of link envelope correlation will occur when the dominant mechanism of

wave propagation (i.e., LOS or NLOS) and the angles of arrival/departure at the reader

are similar. Since a high level of link envelope correlation implies that the propagation

environment of the forward and backscatter links are similar, fully-correlated links can only

occur when the reader transmitter and receiver antennas are collocated and have the same

antenna patterns. If the antennas are spatially separated and/or the antenna patterns

are different, ρe will be reduced. This allows the designer some control over the level of

link envelope correlation. The separation distance and pattern required to reduce ρe to an

acceptable level will vary depending upon the channel.

In the analysis presented in Section 3.2, it is assumed that ρe is equal for each set of paths

(see Figure 10). In an actual dyadic backscatter channel, antenna coupling, close spacing

of RF-tag antennas, and the scattering environment will likely cause ρe to be different for

each RF-tag antenna. In addition, these effects may also cause fading correlation between

the modulated-backscatter signals received from each RF-tag antenna.

3.3.4 Limits on Pinhole Diversity Gains

In Section 3.3.2, it was shown that a pinhole diversity gain is available in dyadic backscatter

channels with Rayleigh-fading links; however, pinhole diversity in a Rician backscatter chan-

nel – Rician fading is the most common type of fading found in the forward and backscatter

links – has not yet been investigated. In a Rician channel, a strong, LOS specular wave

dominates other multipath waves and results in less severe fading. To investigate this case,

envelope PDFs of the signal received at the nth reader-receiver antenna in an M × L × N ,

dyadic backscatter channel with independent, Rician-fading links are plotted in Figure 16

and Figure 17.
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(a) The dyadic backscatter channel with Rician-fading links for Kf = Kb = 0 dB

(b) The dyadic backscatter channel with Rician-fading links for Kf = Kb = 3 dB

Figure 16: Plots of the envelope PDF at the nth receiver antenna in a dyadic backscatter
channel with Rician-fading links for (a) Kf = Kb = 0 dB and (b) Kf = Kb = 3 dB. In each
plot, ρe = 0 and each PDF has been normalized to unit power, that is, E{A2} = 1 where
E{·} denotes the ensemble average.
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(a) The dyadic backscatter channel with Rician-fading links for Kf = Kb = 6 dB

(b) The dyadic backscatter channel with Rician-fading links for Kf = Kb = 10 dB

Figure 17: Plots of the envelope PDF at the nth receiver antenna in a dyadic backscatter
channel with Rician-fading links for (a) Kf = Kb = 6 dB and (b) Kf = Kb = 10 dB. In
each plot, ρe = 0 and each PDF has been normalized to unit power, that is, E{A2} = 1
where E{·} denotes the ensemble average.
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The PDFs plotted in Figure 16 and Figure 17 were calculated numerically using the

procedure discussed in Section 3.2.2. In Figure 16, it can be seen that, for K less than

approximately 3 dB, the probability of receiving a small envelope is greater in the M ×1×n

channel than in the M × 2× n, M × 3× n, or M × 4× n channels. However, for K greater

than approximately 3 dB, Figure 17 shows that pinhole diversity gains disappear and fading

in the M × 1 × n channel is less severe than the M × L × n channel (for L > 1).

The severe fading observed in the backscatter channel with K = 10 dB is caused by the

interference of multiple specular waves propagating in the channel. Since the channel has a

very high K factor, a specular wave will be scattered off each RF-tag antenna. According

the formulation of the PDF plotted in Figure 17, the modulated-backscatter signal received

from each RF-tag antenna is statistically independent. Therefore, for an RF-tag with

two antennas, the two specular waves received by the reader will interfere and cause severe

fading. Measurements in Chapter 6 show, however, that correlation between the modulated-

backscatter signals received from real RF-tag antennas can reduce the Rician-fading severity.

The numerical approximations for the PDFs shown in Figure 16 and Figure 17 are very

similar to that of a channel experiencing two-wave with diffuse power (TWDP) propagation

[65].

3.3.5 Conventional Diversity Gains

As discussed previously, pinhole diversity causes the shape of the channel envelope PDF

to change favorably and contributes to BER improvements; however, if conventional diver-

sity combining techniques are used at the reader, even greater gains are available. Figure

18 shows average BER curves for backscatter-radio systems using maximal ratio combin-

ing (MRC), the optimal diversity-combining technique for a fading channel, at the reader

receiver. No diversity combining is performed at the RF tag. In these Monte Carlo simula-

tions, 69 × 106 channel realizations were used to approximate the ensemble average of the

BER and the receiver had perfect knowledge of the independent, Rayleigh-fading forward

and backscatter links. Comparison of the BER plots for the M × L × 1 channel in Figure

14(a) and Figure 18 shows that MRC offers no further improvement over that caused by
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Figure 18: Average BER plots for backscatter-radio systems operating in various dyadic
backscatter channels with independent, Rayleigh-fading forward and backscatter links; un-
coded BPSK modulation; and noise and interference that is additive, white, and Gaussian.
Each curve represents the average BER of the received signal using MRC with perfect chan-
nel knowledge at the reader receiver. The random channel matrix used in this simulation
has been normalized by M for constant total transmit power. Each BER curve is plotted
against the SINR at the nth reader-receiver antenna in the 1 × 1 × 1 channel (Reprinted
from [5], c© 2008 IEEE).

pinhole diversity gains (and increased scattering aperture), since the M×L×1 channel offers

only a single diversity branch to the MRC combiner at the reader receiver. However when

N > 1, MRC gains and pinhole diversity gains combine for a significant communication

performance improvement. At a BER of 10−4, the M × 2× 2 and M × 3× 3 channels show

up to a 25 dB and 34 dB gain with respect to the 1×1×1 channel, respectively. These gains

reflect both a power gain due to the increased RF-tag scattering aperture and an improved

PDF due to pinhole diversity and maximal ratio combining. Like pinhole diversity gains,

MRC gains will decrease as the K factor of the channel increases.
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3.4 Range and Reliability Examples

This chapter has has provided analytic expressions and numerical approximations for the

PDF of the M ×L×N , dyadic backscatter channel with Rayleigh and Rician links, respec-

tively. The chapter has also shown how fading in these channels can be decreased through

pinhole diversity gains, minimizing link correlation, and using conventional diversity com-

bining. This section will use the previous BER plots and link budgets to show how these

gains translate into range and reliability improvements.

Reliability Improvement: One way to show a reliability improvement is to use the

BER versus SINR plots shown in Figure 14(a) and Figure 18. Suppose that an RF tag is a

fixed distance from the reader such that there is adequate power to operate a passive RF

tag (no such limitation is required for a semi-passive tag). If the channel worsens, by the

introduction of interfering signals or increased fading from additional scatterers, the SINR

at the reader may drop below the threshold required for successful detection of the signal.

This may happen even though the passive RF tag is still powered. As Figure 14(a) shows,

an RF tag using multiple antennas will have a lower SINR threshold for a given BER.

For a BER of 10−4, the threshold is up to 10 dB lower for an RF tag using two antennas

to modulate backscatter than for an RF tag using one antenna – a significant reliability

increase. Figure 18 shows that an even greater SINR improvement – up to 25 dB for an

M × 2 × 2 system – will be realized using MRC at the reader receiver. In each of these

cases, it is assumed that the RF tag is a fixed distance from the reader and that the RF

tag is powered.

For completeness, it should be mentioned that the SINR gain mentioned above may be

reduced in an actual 1 × 2 × 1 channel since the target BER may be greater than 10−4,

indoor path loss may be larger or smaller than free-space path loss (assumed in the link

budgets from Section 2.1), and the statistics of interfering signals may not be white and

Gaussian (assumed in Figure 14(a)). Even so, since the source of this gain (i.e., the pinhole

diversity gain and an increased RF-tag scattering aperture) only requires uncorrelated signal

envelopes at the backscatter-radio system antennas, multiple RF-tag antennas will provide
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gains regardless of assumptions about path loss and noise-plus-interference statistics.

Range Improvement: Suppose that a backscatter-radio system operates in channel with

Rayleigh-fading links and all parameters of the channel, except the reader-to-tag separation

distance, are held constant. As the separation distance increases, path loss will decrease

the power received at the reader causing the SINR to decrease. At some distance from

the reader, which is determined by the reader sensitivity, the SINR will fall below the

threshold required to maintain a target BER. Using multiple RF-tag antennas lowers this

threshold allowing the reader-to-tag-to-reader separation distance r = rf + rb to increase

further without exceeding the desired BER. For a backscatter-radio system using two RF-

tag antennas and a target BER of 10−4, Figure 14 shows that a up to a 10 dB SINR gain

is available. Therefore, according to (2) in Section 2.1, if all link budget terms are held

constant and the fade margin is decreased by 10 dB, the range of the RF tag can increase

by up to 78%.

Of course, the range improvement realized depends on the error metric used and the

characteristics of the channel. For example, if the outage probability defined by (16) is

considered, the range increase for a backscatter-radio system using two RF-tag antennas

compared to that using a single antenna can be derived from the fade margins in Table 7

and Table 2, respectively. If the RFID-portal example in Section 2.3 is considered, the fade

margin given in Table 7 drops to 13 dB for a two antenna RF tag compared to 15 dB (from

Table 2) for a single antenna RF tag. According to (2), this results in a 12% range increase.

However, if the same system were to operate in a backscatter channel with Rayleigh-fading

links, up to a 26% range increase would be realized. It should be noted that these range

gains assume sufficient power is available for an RF tag to operate.

3.4.1 Discussion

The analysis of this chapter has assumed that the modulated-backscatter signals received

from each RF-tag antenna at the reader are independent; however, correlation will exist

as a function of the RF tag and reader antenna element spacing, electromagnetic coupling

between array elements, and the angle spectrum of the multipath waves [17]. In a rich
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Table 7: Fade margins for the signal received at the nth reader antenna using a bistatic,
dislocated reader (Fβ) in the M × 2 × N , dyadic backscatter channel. Fade margins are
reported in dB.

Outage
Probability K = −∞ dB K = 0 dB K = 3 dB K = 10 dB

0.5 2.7 2.3 1.9 0.8

0.1 12 11 10 9.9

0.05 15 14 13 13

0.01 23 22 20 20

0.005 26 25 24 23

0.001 33 32 31 30

scattering environment, such correlation can be reduced at the reader by separating array

elements by at least λ/2 [24]; however, footprint constraints may require smaller spacing of

RF-tag antennas resulting in higher correlations and reduced pinhole diversity gain. At very

worse, RF-tag antenna envelope correlation will reduce the M ×L×N , dyadic backscatter

channel to an effective M×1×N channel with added power caused by the increased RF-tag

scattering aperture. Fortunately, research shows that diversity antennas with less than λ/2

spacing can also have low correlation [66,67]. Even in the case where pinhole diversity fails,

MRC combining at the reader can be used to increase the RF-tag range and reliability.

3.5 Conclusion

The M × L × N , dyadic backscatter channel is a pinhole channel with deeper small-scale

fades than a conventional transmitter-to-receiver channel. Pinhole diversity can mitigate

this fading by changing the shape of the fading distribution resulting in reduced fading for

Rician backscatter links with K less than approximately 3 dB. Examples have demonstrated

that pinhole diversity gains lead to increased backscatter-radio communication reliability

and up to a 78% range increase. These gains require no channel knowledge or diversity

combining at the reader, only the modulation of backscatter using multiple RF-tag antennas

and separate, adequately-spaced reader transmitter and receiver antennas. Even greater

range and reliability gains are available if MRC is used at the reader receiver.
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CHAPTER IV

BACKSCATTER-RADIO DESIGN GUIDELINES

Chapter Overview: This chapter provides the following:

• Four design guidelines for backscatter-radio system design.

• Arguments for the use of the 5725-5850 MHz ISM frequency band for backscatter
radio.

• An example demonstrating the potential performance of a backscatter-radio system
operating in the 5725-5850 MHz ISM frequency band.

In Chapter 3, a detailed discussion of small-scale multipath fading in the M ×L×N , dyadic

backscatter channel was presented. It was shown that a pinhole diversity gain is available for

RF tags that use multiple antennas to modulate backscatter in Rician channels with K less

than approximately 3 dB. Link envelope correlation and conventional diversity combining

techniques were also discussed. Although the previous chapter was largely theoretical, the

presented theory leads to several very practical design guidelines for backscatter radio which

have been adapted from [5] for this chapter. These are presented in Sections 4.1 through

4.3 and followed by a 5.8 GHz RFID system example demonstrating the potential benefits

of using the 5725-5850 MHz ISM frequency band for backscatter radio. This example has

been adapted from [37] for this chapter.

4.1 Design Guideline 1: Use Multiple RF-Tag Antennas

The pinhole diversity gains presented in Chapter 3 are only available to RF tags with more

than one antenna. Figure 12 and Figure 14(a) show a large improvement for an RF tag

with two antennas, with only slightly more for each additional antenna. Based on this,

using two RF-tag antennas is the best balance of the RF-tag footprint and pinhole diversity

gains. Furthermore, each RF-tag antenna must be used to modulate backscatter; pinhole
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diversity gains and increased scattering aperture are not available to RF tags that use one

antenna for communication and another to receive power. Also, using cross-polarized RF-

tag antennas will reduce correlation between signals scattered from each antenna. However,

the favorable correlation effects of cross-polarization must be balanced with the detrimental

effects of unequal diversity branch power [17] caused by cross-polarization.

4.2 Design Guideline 2: Use Separate Reader Antennas

In Figure 12, a comparison of PDFs with independent and fully-correlated links shows that

the correlated case is worse than that of independent links. This difference can also be seen

by comparing monostatic fade margin Fm and the bistatic-dislocated fade margin Fβ in

Table 2. A fully-correlated link represents an extreme case that can only occur if a single

reader antenna is used for both transmitting and receiving. Using separate, adequately-

spaced transmitter and receiver antennas avoids this problem.

4.3 Design Guideline 3: Use Reader Antenna Arrays

As shown in Section 3.3.5, great gains for backscatter-radio systems are available through

the use of conventional antenna diversity at the reader. Hence, whenever cost effective, it is

beneficial to use an antenna array at the reader receiver (or at the transmitter) to provide

multiple diversity branches to a conventional diversity combiner. The elements of the reader

array should be adequately spaced to reduce fading correlation.

4.4 Design Guideline 4: Use a High Frequency

One way to effectively implement these design guidelines is to operate backscatter-radio

systems at a higher frequency than is normally used. In the United States, the two most

commonly used frequency bands are the 902-928 MHz and 2400-2483.5 MHz ISM bands;

however, another ISM frequency band is available at 5725-5850 MHz. In this band, the

wavelength is much smaller than that found in the 902-928 MHz band and leads to the

following benefits:
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4.4.1 Small Antennas

Since antenna dimensions scale with wavelength, as illustrated in Figure 19, antennas in the

5725-5850 MHz ISM band can be made small enough to allow multiple antennas to be used

on each RF tag without increasing, and possibly decreasing, their footprint size compared

to the footprint of a 902-928 MHz RF tag. This will allow many small objects to be tagged,

an extremely important step toward realizing widespread use of RF tags. In addition, the

small wavelength of the 5725-5850 MHz ISM band will allow very compact antenna arrays

to be constructed at the reader; in fact, these arrays may be small enough for use on mobile

and hand-held readers.

Figure 19: Half-wave dipoles for 915 MHz, 2450 MHz, and 5790 MHz drawn proportionally
(not actual size) to show the relative decrease in size with increasing frequency (Reprinted
from [37], c© 2009 IEEE).

4.4.2 Increased Antenna Gain

For a fixed antenna aperture, (28) shows that additional antenna gain is available at higher

frequencies (smaller wavelengths) [38].

G =
4π

λ2
Aeff (28)

For example, according to (28), there is an additional 7.8 dB of antenna gain available at

5790 MHz compared to 2450 MHz and an additional 16.4 dB compared to 915 MHz.

4.4.3 Increased Object Immunity

As was shown in Section 2.3, when an antenna is attached-to or brought close-to a metallic

object, its impedance will change and potentially reduce the power transmission coefficient

τ and modulation factor M . From Figure 8 in Section 2.3, it can be seen that the impedance
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of the antenna will increase significantly even if its electrical distance from the metal is in-

creased by only a fraction of a wavelength. Though this electrical distance may be increased

by physically moving the antenna away from an object, it may also be increased by decreas-

ing the wavelength (i.e., increasing the frequency). For example, Figure 8 shows that the

real part of the impedance at an electrical distance of 0.01λ is ≈ 2 Ω at 915 MHz. If the

physical distance is unchanged and the frequency is increased to 5790 MHz, the electrical

distance becomes 0.06λ with a corresponding real impedance of ≈ 40 Ω. This increase will

result in a larger power transmission coefficient τ and modulation factor M .

The assertion that increased frequency will result in increased object immunity is based

upon the fact that the physical size of an antenna’s near-field becomes smaller as the fre-

quency is increased. As the near-field region becomes smaller, nearby objects will intrude

less into the near-field and, as a result, have a smaller effect on its fields. The NEC simula-

tions shown in Figure 8 indicate that this is the case for the impedance of a folded-dipole

antenna as its distance from a perfectly conducting half-plane is increased; however, the

antenna’s behavior on dielectric objects has not been simulated. Furthermore, even though

increased frequency may improve an antenna’s performance on metal, the improvement may

not be enough for the tag to operate. In addition, pattern distortion and on-object gain

penalties may still render the RF tag inoperable. Therefore, it should be concluded that,

although simulations indicate object immunity improvements as the frequency is increased,

more investigation is needed for different object materials and geometries.

4.4.4 Additional Bandwidth

An additional benefit of using the 5725-5850 MHz ISM is the increased bandwidth that is

available compared to the 902-928 MHz ISM band. This bandwidth will make high data

rate and spread spectrum backscatter communication possible [12].

4.5 High-Frequency Example

Consider the same RF-tag system described in Section 2.3. If this system were redesigned

to operate at 5.79 GHz, then the high-frequency benefits described above would apply. The

resulting changes in the link budget parameters are described in the following sections and
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summarized in Table 8.

4.5.1 Increased Antenna Gain

If the antenna’s effective area remains constant, (28) dictates that an additional 16.4 dB of

gain is available as λ decreases from 33 cm at 915 MHz to 5 cm at 5.79 GHz. Therefore,

at 5.79 GHz, the reader antenna gains are now 23.4 dBi (219 in the linear scale) and the

RF-tag antenna gain is now 18.5 dBi (71 in the linear scale).

4.5.2 Multiple Tag Antennas and MRC

At 5.79 GHz, it is practical to use two antennas on each RF tag and a two element antenna

array at the reader receiver. If maximal ratio combining (MRC) is performed on the diversity

branches received from the two-element receiver array, then Fβ is reduced to 8 dB (6.3 in

the linear-scale) for a 5% outage probability. This result was obtained through Monte Carlo

simulation of the backscatter channel with ρe = 0. For this example, the power-up fade

margin Fp remains unchanged from the 915 MHz example.

4.5.3 Increased Object Immunity

From the example in Section 2.3, the RF-tag antenna attached to a metal object is 0.005λ

from the metal surface at 915 MHz. If the RF tag now operates at 5.79 GHz and its

physical distance from the metal surface is unchanged, the electrical separation distance

becomes 0.033λ. At this distance, Figure 8 shows that the antenna’s input impedance is

now approximately 10 + j100 Ω which corresponds to ZIN = 2.3 + j319 Ω at the output

terminals of the impedance transformation network, shown in Figure 7. From (3) and

(4), the power transmission coefficient and modulation factor for metal attachment are now

τ = 0.13 and M = 4.4×10−3 (both in the linear scale), respectively. Because of cardboard’s

weak effect on the antenna impedance, τ and M for cardboard attachment do not change

from the 915 MHz example.

To complete this example, the transmitted power must be decreased to 12.6 dBm (or

18.3 mW) to meet FCC power limitations with the increased reader antenna gains. Since

no measurements of gain penalties at 5790 MHz are available, 915 MHz gain-penalty values
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from Table 3 are used.

Table 8: 5.79 GHz RF-tag portal example parameters in the linear scale (Reprinted from
[37], c© 2009 IEEE).

Material PT (mW) GT,R Gt Xf,b F Fβ λ (m) M τ Θ B

Cardboard 18.3 219 71 0.5 10 6.3 0.05 0.25 1 1.2 1

Aluminum 18.3 219 71 0.5 10 6.3 0.05 4.4 × 10−3 0.13 11 1

4.5.4 Discussion

Figure 20(a) compares the power-up link budgets evaluated at 915 MHz and 5790 MHz

and shows surprising results. For cardboard attachment, the links are almost identical; the

power sacrificed to higher path loss at 5790 MHz is balanced by increased antenna gain at

the RF tag. For metal attachment, increased object immunity combines with the increased

antenna gain at 5790 MHz to make the link approximately 13 dB better than that at 915

MHz. Similar improvement is seen for the bistatic, dislocated links shown in Figure 20(b).

Here, the reduced fading, increased RF-tag antenna gain, and the greatly increased reader-

receiver antenna gain cause the links at 5790 MHz to perform approximately 24 dB and 45

dB better than those at 915 MHz for cardboard and aluminum attachment, respectively.

While these gains still do not now allow the RF tag to operate while attached to the

aluminum slab, they may do so for other, less-extreme material attachments and result in

significant range and reliability improvements. Semi-passive tags will immediately benefit

from the gains evident in Figure 20(b) since their performance is not constrained by the more

stringent power-up link. Passive tags will also experience significant benefits; however, the

benefits shown in Figure 20(a) will be limited in some commonly used tag RFIC technologies

by parasitic capacitance that increases power consumption at high frequencies. However,

with careful circuit layout and use of technologies other than conventional silicon, it should

be possible to adequately reduce the power consumption of high-frequency tag RFICs at

reasonable manufacturing costs. Such high-frequency, low-power RFICs will have operating

ranges comparable to their low-frequency counterparts, but with the added advantage of

reduced fading and increased object immunity.
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(a)

(b)

Figure 20: Power-up and backscatter links plotted as a function of reader-to-tag separation
distance, r. In (b), it is assumed that r = rf = rb (These figures are reprinted from [37], c©
2009 IEEE).
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For example, Curty et al. [10] have reported a tag RFIC made using technology other

than conventional silicon that operates at a high frequency with low power consumption.

Their tag RFIC consumes 2.7µW (-25 dBm) at 2.45 GHz and was fabricated using 0.5 µm

silicon-on-sapphire technology.

It should be noted that while use of 5.79 GHz will allow for increased RF-tag antenna

gain, it will also increase the antenna’s directivity. The result will be an RF tag that is more

orientation sensitive than that at 915 MHz. If the RF-tag’s orientation is fixed or its range

very small, the increased directivity will not be an issue; however, for other applications,

it may pose a serious, but not insurmountable problem. In such cases, multiple reader

antennas can be used to power the RF tag from different spatial positions. Furthermore,

as tag RFIC technology advances and the required turn-on power is decreased, the RF-tag

antenna gain and, as a result, directivity can be reduced without sacrificing tag range.

4.6 Conclusion

This chapter has presented four practical design guidelines that, if implemented, will enable

backscatter-radio systems to realize the gains discussed in Chapter 3. The benefits of imple-

menting these design guidelines in the 5725-5850 MHz ISM frequency band were illustrated

with an example showing that, in theory, high-frequency backscatter-radio systems can have

comparable range to their lower-frequency counterparts. Such high-frequency systems ben-

efit from increased antenna gain, reduced small-scale fading, and increased object immunity

compared to systems operating in the 902-928 MHz or 2400-2483.5 MHz frequency bands.

Of course, the words of caution mentioned in Section 4.4.3 must be heeded.
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CHAPTER V

EXPERIMENTAL DESIGN

Chapter Overview: This chapter provides the following:

• A brief overview of the differences between conventional and backscatter channel
sounding.

• An overview of the backscatter measurement campaign.

• A description of the backscatter testbed.

• A detailed description of the signal processing used in the backscatter testbed.

• A description of the calibration procedure used for each measurement.

• A discussion of noise effects on the measured signals.

This chapter marks the beginning of the experimental portion of this dissertation. The

goal of the measurements performed in this research was to measure multipath fading in

the backscatter channel, calculate an estimate of the fading distribution, and compare the

distribution estimate with the fading distributions discussed in Chapter 3. This chapter

provides an overview of the testbed used to make the fading measurements.

5.1 The Challenges of Backscatter Channel Sounding

While the backscatter channel has many similarities with a conventional transmitter-to-

receiver channel, the analysis presented in Chapter 3 has revealed several significant dif-

ferences. The same is true for the methods required to obtain empirical, backscatter-

channel data – channel sounding. The most significant difference between conventional and

backscatter channels is that, in a backscatter channel, the modulated, backscattered signal

must be separated from the unmodulated carrier transmitted from the reader. Therefore,

the backscatter channel cannot be measured by transmitting a CW tone and extracting the

magnitude and phase of the received signal – even for narrowband measurements. However,
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since RF tags have the ability to modulate the amplitude and phase of the backscattered

signal, any channel sounding method that uses either PSK or ASK modulation is appropri-

ate, though it is often most practical to for the tag to use a binary symbol alphabet. For

wideband channels, sounding methods used in conventional transmitter-to-receiver channels

such as pulsed response, pulse compression, or spread spectrum techniques [54] could po-

tentially be adapted for backscatter channel sounding, though no such attempts have been

reported in the literature.

For narrowband, backscatter channel sounding with a coherent receiver, the simplest

sounding waveform is generated by modulating backscatter with a square wave and passing

the received signal through a matched filter at the reader. The output of the matched

filter, sampled at time t = 0, will contain periodic peaks that are scaled versions of the

complex channel coefficients. Though simple, this waveform does not provide significant

discrimination between the peaks and the noise floor (limiting dynamic range) nor the

ability to distinguish from which RF-tag antenna the backscatter signal originated. Both

of these drawbacks can be overcome by modulating backscatter with a pseudo-random

noise (PN) code [68]. Typically used for wideband channel measurements, the PN code

allows channel samples to be determined from the autocorrelation of the received signal.

This spread spectrum scheme works well in the presence of interferers and, if each RF-tag

antenna modulates backscatter with a different PN code, allows the signals from multiple

RF-tag antennas to be separated. It can also be used to simultaneously separate signals

from multiple RF tags [12]. In particular, maximal length sequences, or m-sequences, have

excellent autocorrelation properties and can be generated by simple shift register circuitry

– a benefit for RF tags.

Another difference between conventional and backscatter channel sounding is the re-

quired spatial sampling rate. The spatial Nyquist rate for a backscatter channel is twice

that of a conventional channel. This is shown in Figure 21 where the total path length from

the reader transmitter to the RF tag and back to the reader receiver |�rf +�rb| is proportional

to 2�rtag,

|�rf + �rb| = |2�rtag − �rtx − �rrx|. (29)
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It is worth noting that (29) is only an approximate relationship. This is because a signal

may scatter off of the RF tag more than once before propagating back to the reader receiver;

however, these components usually contain negligible power, in which case (29) is exact.

Figure 21: The relationships between the total distance between the transmitter-to-tag-
to-receiver link �rf + �rb and the position of the receiver, transmitter, and RF tag. Equation
(29) shows that �rf + �rb is proportional to 2�rtag.

5.2 Measurement Campaign Plan

The goal of this measurement campaign was to determine the envelope distribution of the

M ×L×N backscatter channel at 5.79 GHz (λo = 5.2 cm) as a function of RF-tag position

and compare it with the theory presented in Chapter 3. The theory suggests that certain

channels will exhibit small-scale multipath fade reductions more than others; therefore, the

following channels were chosen for measurement:

• Monostatic, 1 × 1 × 1 Channel: A single patch antenna was used at the reader to

transmit and receive and a single-antenna RF tag (SAT) modulated the backscatter.

• Monostatic, 1 × 2 × 1 Channel: Again, a single patch antenna was used at the

reader to transmit and receive, but a dual-antenna RF tag (DAT) modulated the

backscatter.
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• Bistatic, 1 × 1 × 2 Channel: In this channel, the reader transmitter antenna was

separated from the two receiver antennas by several wavelengths and the SAT was

used to modulate backscatter.

• Bistatic, 1 × 2 × 2 Channel: Like the previous channel, a single transmitter and

two receiver antennas were used at the reader and the DAT was used to modulate

the backscattered signal. Again, the transmitter and receiver antennas were widely

spaced.

Each of these channel configurations were measured under NLOS and LOS conditions in

rooms E558 and E560 of the Van Leer Building on the Georgia Institute of Technology

Atlanta campus, respectively. Detailed diagrams of these measurement sites are provided

in Figure 36 and Figure 43, respectively, in Chapter 6.

For each measurement, an unmodulated, 5.79 GHz carrier was transmitted from the

reader and scattered by the RF tag. The RF tag modulated the backscatter using an m-

sequence that was 31 bits long at a chip rate of 1 MHz. The modulated-backscatter signal

was received by the two direct-conversion receivers and the in-phase (I) and quadrature (Q)

baseband signals were digitized using analog-to-digital converter (ADC) boards contained

in a personal computer and stored for later processing. To measure the fading as a function

of position, the RF tag was placed on a linear positioner that was controlled by the personal

computer. A measurement of the backscattered signal received from the RF tag was taken

at points on a square grid that was 30 cm × 30 cm (approximately 6λo × 6λo) at a spatial

sampling rate of 1 cm (approximately λo/5). From (29), it can be seen that this spatial

sampling rate was slightly higher than the Nyquist sampling rate.

5.3 Overview of the Backscatter Testbed

Simplified block diagrams of the monostatic and bistatic backscatter testbeds are shown in

Figure 22. The major components of each testbed were:

• Microwave Signal Source: An Agilent E8247C signal generator was used to provide

both the unmodulated 5.79 GHz carrier transmitted to the RF tag as well as the local
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(a)

(b)

Figure 22: Simplified block diagrams of the (a) bistatic and (b) monostatic backscatter
testbeds.

oscillator (LO) source for the direct-conversion receivers. Using a single signal source

ensured that the measurements were phase-stable. The digital-to-analog converter

(DAC) boards used to sample the receiver outputs and the function generators used

to control the RF-tag modulation were locked to the 10 MHz reference signal provided

by the Agilent E8247C signal generator.

• Direct-Conversion Receivers: Three custom, direct-conversion receivers were de-

signed and prototyped for use in the backscatter testbed. These receivers allowed co-

herent channel measurements to be taken in the presence of a strong self-interference
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signal.

• RF Tags: Two custom RF tags were designed and prototyped for this measurement

campaign. Their motivation and design are presented in Section 5.3.2.

• Reader Antennas: Three 5.79 GHz patch antennas were designed and prototyped

for use as the reader transmitter and receiver antennas.

• Personal Computer: A personal computer was used to control two ADC boards

and one digital-to-analog converter (DAC) board. The ADCs were used to sample

the baseband I and Q signals output from the direct-conversion receivers and a DAC

was used to control the gain of the receivers. The ADC and DAC boards were con-

trolled using a C++ program. All data processing and linear positioner control were

accomplished using functions written in Matlab. Details of the software are provided

in Appendix D.

• Linear Positioner: A linear positioner was used to move the RF tag through the

channel. The screw-drive type positioner was made by Velmex, see Figure 23, and

was controlled by a personal computer through a set of Matlab functions.

The direct-conversion receivers, RF tags, and reader antennas were all custom-designed and

prototyped for this measurement campaign. The following sections discuss these compo-

nents in more detail.
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Figure 23: The linear positioner used to move the RF tag through the channel. The
positioner is shown with the SAT attached.

5.3.1 Reader Antennas

Linearly-polarized patch antennas, shown in Figure 24, were used at the reader transmitter

and receiver. These antennas were designed for 5.79 GHz on an FR4 substrate and each

had a broadside gain of approximately 3.8 dBi. The antenna pattern of one of the patch

antennas is shown in Figure 25.

5.3.2 RF Tags

Two RF tags were designed and prototyped for this measurement campaign. The first was

a single-antenna tag (SAT) and the second a dual-antenna tag (DAT) whose block diagrams

are shown in Figure 26.
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Figure 24: The 5.79 GHz, linearly-polarized patch antennas used at the testbed reader
transmitter and receiver.

Figure 25: E- and H-plane antenna patterns of one of the reader patch antennas at 5.79
GHz.

70



(a)

(b)

Figure 26: Block diagrams of the (a) SAT and (b) DAT.
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The following factors motivated their design:

• Equal Comparison: For a fair comparison of fading with the SAT and DAT, the

two RF tags must use the same type of antenna and the antennas of the DAT should

be made on the same substrate.

• Flexibility: The SAT and DAT designs allow the backscattered signal to be modu-

lated with an arbitrary bit-sequence – i.e., any amplitude shift keying (ASK) wave-

form. In this realization of the testbed, a differential bit-sequence was output from

two Agilent 33250A function generators to control the RF-tag modulation; however,

any source of differential binary signals could be used.

• Decoupling: Careful design was required to decouple the closely spaced antennas

of the DAT. This was accomplished using orthogonal DAT antennas which were each

impedance matched to the 50 Ω switch using Ansoft HFSS, a 3D electromagnetic and

microwave software package.

Each tag consists of a 5.79 GHz slot antenna whose load was switched between an open

and short circuit by a microwave gallium arsenide (GaAs), pseudomorphic, high electron

mobility transistor (PHEMT) switch (M/A-Com MASW-007107 V2). Since it was not

necessary to power an RFIC on the SAT or DAT, these extreme load values were chosen

to maximize the backscattered power. See Section 2.2.3 for a discussion of RF-tag loads.

The slot antenna is connected to the switch through an ungrounded, coplanar-waveguide

(CPW) transmission line and matching section. A DC blocking capacitor (Mouser part

number 766-C06BL851X5ZNX0T) was used at the switch input port and at the shorted

output port per the datasheet recommendations. The switch was toggled using two digital

control lines referenced to a third ground line. Photos of the SAT and DAT are provided

in Figure 27. The RF-tag board layout was done in Cadence PCB Editor and the Ca-

dence design files and Gerber files are stored on the Propagation Group’s SVN server at

https://durgin-srv1.ece.gatech.edu/repos/RFID/trunk/Backscatter Radio/

Hardware Design/RF Tag Board/.
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(a)

(b)

Figure 27: Photos of the (a) SAT and (b) DAT showing the 5.79 GHz slot antenna,
coplanar-waveguide transmission line, matching section, and microwave FET switch.
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One potential problem with the SAT and DAT designs was that the control lines from the

signal source could act as an antenna and contribute to the modulated-backscatter signal.

To measure the contribution from the control lines, the SAT and DAT antenna patterns

were measured with and without their antennas shorted, as shown in Figures 28 - 30. When

the antennas were shorted with copper tape, the measured pattern was only composed of

signals backscattered from the control lines or other unwanted modulation sources. All

of the pattern measurements showed that the backscatter modulated by the control lines

was much smaller than that from the slot antennas. In general, the un-shorted antenna

signal was at least 20 dB greater than that from the control lines and the two only became

comparable near the nulls of the un-shorted antenna patterns.
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(a)

(b)

Figure 28: E- and H-plane patterns of the SAT in both its normal operating mode and
with the antenna shorted. The noise floor of the pattern measurement is shown for reference
and all of the patterns are normalized to the maximum power received from the three
measurements.
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(a)

(b)

Figure 30: Antenna patterns of the DAT at an angle of 45◦ with respect to the polar-
ization of the transmitter antenna. The figures show the pattern measured with the long
dimension of the tag (a) perpendicular and (b) parallel to the transmitter polarization. The
patterns with the antennas shorted and noise floor of the pattern measurement are shown
for reference and the patterns are normalized to the maximum power received from the
three measurements.

77



5.3.3 Direct-Conversion Receiver

A direct-conversion receiver, shown in Figure 31, was designed and prototyped for this

measurement campaign. Each receiver was designed to meet the following goals:

Figure 31: The direct-conversion receiver designed for the backscatter testbed. The re-
ceiver consists of two boards – the RF front-end board and the baseband amplification
board. The two boards are connected through the external coaxial cables shown above.

Self-interference Mitigation: All backscatter-radio receivers must be able to receive the

strong, unmodulated carrier – i.e., self interference – transmitted from the reader while still

detecting the much weaker modulated backscatter from the RF tag. The custom receivers

designed for this testbed blocked the self-interference signal after down-converting it to

DC. While other methods for canceling self interference signals exist [69, 70], this method

was straightforward to implement and prevented saturation of the baseband amplification

board. The sensitivity and dynamic range of the receivers in the testbed are discussed in

Section 5.6.

Coherent Reception: Coherent reception was required because it is possible for the

envelope of the total received signal – i.e., the unmodulated carrier plus the modulated-

backscatter signal – to remain constant as the tag switches between two modulation states.
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For example, consider the backscattered signal shown in Figure 6 in Section 2.2.3.1. The

backscattered signal received by the reader is proportional to the difference between S̃A and

S̃B, described by (14). In a backscatter channel, although the phase φ between Γ̃A and Γ̃B is

fixed, their phase θ relative to C̃ is not. This phase can change with the reader transmitter

and RF-tag position as well as with alterations in the RF-tag antenna impedance. Therefore,

it is always possible that θ could change such that S̃A and S̃B have the same magnitude. In

such a situation, an envelope receiver – which can only detect the magnitude of the signals

– would not detect the difference between the modulation states.

Ṽdata =

∣∣S̃A

∣∣− ∣∣S̃B

∣∣
2

= 0 since
∣∣S̃A

∣∣ =
∣∣S̃B

∣∣ (30)

A coherent receiver, however, can differentiate between the two states because it measures

both the magnitude and phase of S̃A and S̃B.

It should be noted that backscatter measurements can be accomplished using a vector

network analyzer which is available many RF laboratories. Though various methods exist,

one way to separate the tag signal from waves scattered off objects in the channel is to

make a measurement with no tag present. This background measurement can then be

subtracted from measurements with tags present [47]. In this method, the input impedance

of the RF-tag RFIC would have to be changed at a rate slower than the analyzer’s sweep

time so that each tag state can be detected. The direct-conversion receivers designed and

prototyped for the backscatter testbed have the advantage that multiple RF tags can be

measured simultaneously, they can receive backscatter signals modulated at a high rate,

and, though not proven, likely have greater sensitivity in the presence of a self-interference

signal.

5.4 Backscatter Testbed Signal Processing

As described in Section 3.1, the general equation that describes the baseband, modulated-

backscatter signal received through the M × L × N backscatter channel is

�̃y(t, �r ) =
1
2

+∞∫
−∞

+∞∫
−∞

H̃b(τb; t, �r )S̃(t − τb)H̃f (τf ; t − τb, �r )�̃x(t − τb − τf )dτbdτf + �̃n(t). (31)

Several simplifications to (31) are possible for this measurement campaign.
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1. Narrowband Channel: Since the signaling matrix, S̃(t), was chosen to generate a

31-bit m-sequence clocked at a chip-rate fc of 1 MHz, the resulting passband band-

width was narrowband at the chosen carrier frequency of 5.79 GHz.

2. Static Channel: Small-scale fading measurements are most easily accomplished in

a static channel – i.e., a channel in which no scatterers vary as a function of time. To

make sure that the channel was approximately static, the following efforts were made:

measurement sites were chosen that did not contain moving objects and that were away

from hallways with heavy traffic; no persons were allowed in the measurement site or

in portions of adjacent rooms that might affect the measurements1; and fluorescent

lights were were turned off during measurements.

It may seem odd that the fluorescent lights were powered off, but it was found that

their operation raised the noise floor of the testbed by several dB. This is because

the plasma in the lights acted as a very good electrical conductor and, hence, a good

scatterer. As the alternating current (AC) signal from the florescent ballast turned the

lights on and off, the plasma acted as an RF-tag antenna and modulated backscatter.

The spectrum of the backscattered noise from the lights resembled phase noise and

extended up to 1 MHz away from the carrier frequency. Modulated backscatter from

fluorescent lights has also been report by Ibrahim et al. at 915 MHz [71].

3. Narrowband Transmitted Signal: Since an unmodulated carrier was transmitted

from the TX antennas, �̃x(t) reduces to a constant �̃x in the baseband representation.

The transmitted signal can be reduced further to a scalar x̃ since only a single trans-

mitter was used in this implementation of the backscatter testbed.

4. Identity Signaling Matrix: Since the same m-sequence was used to modulate the

backscattered signal from each RF-tag antenna, the signaling matrix reduces to the

identity signaling matrix discussed in Section 3.1.1, which can be written S̃(t) = s̃(t)IL

where IL is the L × L identity matrix.

1This precaution was followed for the NLOS measurements; however, the LOS were not significantly
affected by body movement. Therefore, people were allowed behind the testbed during LOS measurements.
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Under these conditions, the baseband signal received at the nth reader-receiver antenna can

be written as

ỹ(t, �r ) =
1
2
�̃hb(�r )IL

�̃hf (�r )s̃(t)x̃ + ñ(t). (32)

The sampled version of ỹ(t, �r ), which is actually the sum of the I and Q components output

from the receiver, is ṽ[nT,�r ] and can be written

ṽ[nT,�r ] = ỹI [nT,�r ] + jỹQ[nT,�r ] =
1
2
�̃hb[�r ]IL

�̃hf [�r ]s̃[nT ]x̃ + ñ[nT ], (33)

where n denotes the sample number, T = 1/fs, fs is the sampling frequency, and ỹI and ỹQ

are N × 1 in-phase and quadrature signal vectors. Here, parentheses (·) denote continuous

time functions and brackets [ · ] are used for discrete, or time-sampled, functions. It should

be noted that �̃hb[�r ], IL, and �̃hf [�r ] are non-scalar because L RF-tag antennas were used in

the channel. Therefore, ṽ[nT,�r ] is the signal received at the nth time sample.

Forty periods of the m-sequence were recorded at a rate of fs = 20 MHz at each RF-tag

position and filtered using a fast fourier transform. Recall that the spectrum of an m-

sequence is composed of discrete frequencies spaced every fc/L that have a sinc envelope [72].

The majority of the signal power is contained in the main lobe of the spectrum which is

bounded by nulls at ±fc. Filtering was accomplished by transforming the sampled signal to

the frequency domain; removing all but the frequency components of the sinc’s main lobe,

shown in Figure 32; and then transforming the filtered signal back to the time domain,

z̃ [nT,�r ].

z̃ [nT,�r ] = h̃filter[nT ] ⊗ ṽ[nT,�r ] =
1
2
�̃hb[�r ]IL

�̃hf [�r ]s̃[nT ]x̃ + ñ[nT ] (34)

where h̃filter[nT ] is the impulse response of the digital filter and ⊗ denotes the convolution.

In (34), the same notation is used to express the filtered and unfiltered sampled signals,

1
2
�̃hb[�r ]IL

�̃hf [�r ]s̃[nT ]x̃ + ñ[nT ], for simplicity. The filtered time domain signal z̃ [nT,�r ] was

then correlated with a filtered copy of the ideal m-sequence, M̃ [nT ] = h̃filter[nT ] ⊗ s̃[nT ].

The correlation between z̃ [nT,�r ] and M̃ [nT ] can be written as,

RM̃,z̃[δ] =
N−δ−1∑

n=0

M̃ [nT + δ] z̃ ∗ [δ, �r ]. (35)
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(a)

(b)

Figure 32: The (a) unfiltered spectrum of the m-sequence backscattered from an RF tag
at a chip rate of 1 MHz. Note, full spectrum is not shown. After filtering, shown in (b), only
the main lobe of the m-sequence spectrum remains. In this figure, the spectra’s amplitudes
are normalized by their maximum values.

where RX,Y [δ] is the correlation between X[nT ] and Y [nT ] with a time delay of δ. X[nT ]

and Y [nT ] are vectors of time samples with length N and (·)∗ denotes the complex conju-

gate. Substituting (34) into (35) gives

RM̃,z̃[δ] =
1
2
�̃hb[�r ]IL

�̃hf [�r ]RM̃,s̃[δ]x̃ + RM̃,ñ[δ]. (36)

where RM̃,s̃[δ] is the correlation between measured and the filtered, ideal m-sequences and

RM̃,ñ[δ] is the correlation between the received noise and the filtered, ideal m-sequence.

The result is a series of peaks that occur when the filtered, measured m-sequence and the

filtered, ideal m-sequence completely overlap, shown in Figure 33. The final output w̃[nT,�r ]
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Figure 33: The peak of the correlation RM̃,s̃[δ] of the filtered ideal and measured m-
sequences normalized to its maximum value. The peak of the correlation occurs when the
measured and ideal m-sequences are aligned.

is found by finding the maximum value of RM̃,z̃[δ] and normalizing it by the maximum value

of the autocorrelation of the filtered, ideal m-sequence:

w̃[�r ] =
max

{RM̃,z̃[δ]
}

max
{RM̃,M̃ [δ]

} =
1
2

[
�̃hb[�r ]IL

�̃hf [�r ]x̃
]∗

+ ñ∗
spread[�r ] (37)

where ñ∗
spread[�r ] is the complex conjugate of the noise that has been spread by correlation

with M̃ . The final channel coefficients �̃hnorm[�r ] relative to the calibration measurements

(see Section 5.5), are found from the complex conjugate of the correlated received signal

w̃[�r ] divided by the complex conjugate of the correlated calibration measurement w̃cal[�r ],

h̃norm[�r ] =
w̃∗[�r ]
w̃∗

cal[�r ]
=

1
2
�̃hb[�r ]IL

�̃hf [�r ]x̃ + ñ spread

1
2
�̃hb

cal[�r ]IL
�̃hf

cal[�r ]x̃
= �̃hb

norm[�r ]IL
�̃hf

norm[�r ] + ñ (38)

where �̃hb
norm[�r ] and �̃hf

norm[�r ] are the forward and backscatter-link coefficients relative to

the calibration measurement, ñ is a normalized spread noise term, and (·)∗ is the complex

conjugate. The calibration measurement w̃cal[�r ] was processed in the exact same manner

as w̃[�r ]. If the noise component in �̃wcal[�r ]∗ is negligible, the channel envelope α is found

by taking the absolute value of h̃norm[�r ]

α =
∣∣h̃norm[�r ]

∣∣ (39)
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5.5 Testbed Calibration

In any high-frequency channel measurement, careful calibration of the system is important.

In conventional transmitter-to-receiver systems, back-to-back calibration techniques are of-

ten used in which the transmitter is directly connected to the receiver (with any necessary

attenuation). In a backscatter system, however, such a calibration is often not practical

since the signal to be received must be scattered rather than transmitted. Therefore, for

this measurement campaign, a free-space calibration was used. The SAT or DAT under test

was placed 40.5 cm from the reader antennas and the signal received from the RF tag was

recorded. The calibration measurements were conducted indoors, the polarizations were

matched, and the tags were close enough to the reader antennas so that multipath signals

were not significant. A diagram of the calibration setup for the monostatic and bistatic

testbed is shown in Figure 34 and a photo of the SAT bistatic calibration is given in Figure

35. All of the measurement values reported in Chapter 6 are normalized by the complex

calibration values, as described in Section 5.4.

(a) (b)

Figure 34: The calibration setup for the (a) bistatic and (b) monostatic measurements.

5.6 Testbed Sensitivity and Measurement Noise

In these measurements, it was important to ensure that noise did not significantly affect the

measured signal, particularly for the small signals measured in a deep fade. If the measured
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Figure 35: The SAT calibration measurement. The testbed transmitter and receiver
antennas are spaced 26 cm apart and the SAT is positioned with a string 40.5 cm from both
the transmitter and receiver antennas.

signal was dominated by noise, which is assumed to be a Gaussian random process, then the

envelope distribution of the measured signal would appear to be Rayleigh. Such a distri-

bution would be hard to distinguish from from the expected product-Rayleigh distribution

for small envelope values. Therefore, the measured data was compared to the linear-scale

mean of the noise power. Noise power measurements were made by sampling the received

signal with no RF-tag modulation. If the measured data was less than 20 dB above the

linear-scale mean noise power, it was not included in the calculated distribution estimate.

If the measured envelope is written as αmeas = αtrue ±αnoise, then the percent error caused

by noise can be defined as

Percent Error = 100 × αmeas − αtrue

αtrue

= ±100 × αnoise

αtrue

= ±100 × 10(Pnoise dBm−Ptrue dBm)/20. (40)

In (40), it is assumed that Ptrue ≥ Pnoise. A 20 dB difference between the noise power and

the true signal power results in ±10% envelope error. Time averaging was used to lower

the noise floor of the testbed and, hence, increase its sensitivity. A maximum of thirty-two
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time averages were used resulting in a minimum noise floor, calculated from the linearly-

averaged noise output of the two receivers, of -142 dBm. Since the maximum input power

of the bistatic receivers is -12 dBm, the useful dynamic range of the testbed is 110 dB.

The measured noise floor for the monostatic testbed was -142 dBm (with 32 time averages)

and, since its maximum input power was -5 dBm, had a dynamic range of 117 dB. Though

its dynamic range was larger, the monostatic testbed was not as sensitive as the bistatic

testbed. This was because the transmit power had to be reduced to prevent power reflected

from the transmitter/receiver antenna from driving the receiver into its nonlinear region.
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CHAPTER VI

MEASUREMENT RESULTS

Chapter Overview: This chapter provides the following:

• Received power and phase plots of the backscattered signal measured at the reader
as a function of RF-tag position.

• Measured estimates of the channel fading CDF demonstrating link correlation effects
and pinhole diversity gains.

• Measured fade margins for NLOS and LOS backscatter channels.

• Measured diversity gains using maximal ratio combining at the reader receiver.

Fading measurements of the 5.79 GHz (λo = 5.2 cm), dyadic backscatter channel were taken

under both NLOS and LOS conditions using the following testbed configurations: the mono-

static reader with the SAT, the monostatic reader with the DAT, the bistatic reader with

the SAT, and the bistatic reader with the DAT. The NLOS and LOS measurements are

presented in two sections. In each section, estimates of the envelope CDFs – tabulated from

the measured channel samples – are compared with the envelope CDFs derived in Chapter

3 and used to investigate link correlation effects (for the LOS measurements only), to see

pinhole diversity gains, and to calculate link budget fade margins. The chapter concludes

with a discussion of the conventional diversity gains that can be realized using MRC in the

backscatter testbed.

6.1 Fading in the NLOS Backscatter Channel

NLOS measurements were made in room E558 of the Van Leer Building on the Georgia

Institute of Technology main campus. These measurements were “through-wall” – i.e., the

backscatter testbed reader was located in room 560, and the RF tag was located in room

558, as shown in Figure 36. The LOS was blocked by both the sheet-rock wall and a large,
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metallic sheet (actually, the metallic stripline cavity shown in Figure 37) which was added

for the purpose of creating a rich scattering environment. Such an environment was created

at the RF tag by waves diffracting around the metallic sheet as well as those reflected off

the many nearby scatterers. These scatterers included wooden workbenches, a drill press,

metal book shelves, many miscellaneous objects on the floor and book shelves, and the

floor (the RF tag and reader antennas were 86 cm above the floor). Additional multipath

occurred at the reader because of a nearby desk. Details of the measurement procedure can

be found in Chapter 5.

In this setup, only bistatic measurements were made because the sensitivity of the

monostatic setup was not adequate for accurate measurements. A discussion of receiver

sensitivity and noise can be found in Section 5.6.

aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa

aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa

aaaaaaaa
aaaaaaaa

aaaaaaaa
aaaaaaaa

aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa
aaaaaaaaaa aaaa

aaaa
aaaa
aaaa

aaaa
aaaa
aaaa
aaaa

aaaaa
aaaaa
aaaaa
aaaaa

Figure 36: The bistatic measurement setup between rooms E560 and E558 of the Van Leer
Building on the Georgia Institute of Technology main campus. Coherent channel samples
were taken at 5.79 GHz as the RF tag was moved uniformly across a 30 cm × 30 cm
(approximately 6λo × 6λo) square in 1 cm (approximately λo/5) increments. In this figure,
the area over which the tag was moved is denoted by the orange square and the RF tags
and reader antennas were approximately 86 cm above the floor.
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Figure 37: The metallic stripline cavity used as a metallic sheet to block the LOS for the
NLOS measurements between rooms E560 and E558 of the Van Leer Building.

6.1.1 NLOS Spatial-Fading Plots

Before delving into the NLOS envelope distributions, it is useful to examine the channel

samples plotted as a function of RF-tag position. Figure 38 and Figure 39 show the measured

channel power in dB and phase in degrees of each RF-tag measurement position for the SAT

and DAT, respectively. In both cases, two separate receiver antennas, separated by 3.5λo,

were used to collect data. The power is normalized to the maximum power recorded in each

measurement area so that the magnitude of the fades can be easily seen. Each measurement

set in Figure 38 and Figure 39 is plotted on the same scale and is oriented to match the

measurement diagram provided in each figure.

Both the SAT and DAT plots show deep, rapid fades of up to 40 dB. Furthermore, the

measured phase plots show no defined phase fronts; instead, the phase appears jumbled

indicating the lack of a dominate specular wave.
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As mentioned in Section 5.6, measurements that were within 20 dB of the measured noise

floor were removed from all distribution calculations. For the NLOS SAT channel, shown

in Figure 38, measurements at the following (X,Y) RF-tag positions were removed from the

signal received at RX 1: (22,8), (22,15), (28,24). At RX 2, the following measurements were

removed: (3,26), (3,29). For the NLOS DAT channel, shown in Figure 39, measurements

at the following (X,Y) RF-tag positions were removed from the signal received at RX 2:

(18,14). In Figures 38 - 39, the removed power and phase data points are assigned to -40

dB and -180 degrees, respectively.

6.1.2 Measured Estimates of the NLOS Backscatter-Channel CDF

Measured estimates of the NLOS envelope distributions for the SAT and DAT are shown in

Figures 40 - 41 along with the corresponding analytic distributions of the Rayleigh-fading

backscatter channel given by (26a) in Section 3.2. Visual inspection reveals that the mea-

sured estimates of the NLOS CDFs match those given by (26a) very well.

Figure 40: Measured estimates of the bistatic SAT CDF in the NLOS fading channel and
the CDF of the derived, analytical, 1 × 1 × 1 distribution; the measured CDF estimates at
RX 1 and RX 2 are shown. The curves are plotted on axes normalized by the root of the
power of each distribution

√
P for unbiased comparisons.

92



Figure 41: Measured estimates of the bistatic DAT CDF in the NLOS fading channel
along with the CDF of the derived, analytical, 1 × 2 × 1 distribution; the measured CDF
estimates at RX 1 and RX 2 are shown. The curves are plotted on axes normalized by the
root of the power of each distribution

√
P for unbiased comparisons.

This observation was confirmed using two error measurements [21]. The first error mea-

surement is the linear mean-square-error (MSE), simply calculated as the average squared

difference between the estimated (i.e., the measured) and derived CDFs. The second is the

logarithmic MSE, defined as

Log MSE =
1
N

N∑
i

[
10 log10

[
Fm(αi/

√
P )

]− 10 log10

[
F (αi/

√
P )

]]2
, (41)

where Fm(·) is the measured estimate of the CDF, F (·) is the CDF of the derived, analytic

distribution, and αi/
√

P is the ith envelope measurement normalized by the power of the

distribution P . The logarithmic MSE is useful because it emphasizes the difference between

the estimated and analytic CDFs for small envelope values – the region of most concern for

backscatter-radio designers. The minimum mean square errors (MMSE) are presented in

Table 9 and the measured estimates of the SAT CDF and the DAT CDF are compared to

the CDFs derived from Equation (26a) and (27a) for the 1× 1× 1, 1× 2× 1, 1× 3× 1, and

1× 4× 1 channels (8 analytic CDFs in all). For the SAT measurements at RX 1 and RX 2,

the analytic, 1 × 1 × 1 CDF, calculated from (26a), minimizes the mean-square error. For
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the DAT measurements, the analytic, 1 × 2 × 1 CDF with ρe = 0 does the same, except

that the linear MMSE indicates the best match at RX 1 is the 1× 3× 1 CDF. In this case,

however, since the CDFs for 1×L× 1 channels become very similar for large envelopes, the

logarithmic MMSE is a more meaningful comparison.

Table 9: Best-fit results for the measured estimates of the bistatic SAT CDF and the
bistatic DAT CDF compared to the derived, 1 × 1 × 1, 1 × 2 × 1, 1 × 3 × 1, and 1 × 4 × 1
CDFs for both ρ = 0 and ρ = 1.

Linear MMSE Logarithmic MMSE

Measured CDF Estimate MMSE Best Match MMSE Best Match

SAT-CDF Estimate at RX 1 1.57E-4 1 × 1 × 1 , ρ = 0 9.99E-2 1 × 1 × 1 , ρ = 0

SAT-CDF Estimate at RX 2 9.85E-5 1 × 1 × 1 , ρ = 0 1.13E-2 1 × 1 × 1 , ρ = 0

DAT-CDF Estimate at RX 1 7.22E-5 1 × 3 × 1 , ρ = 0 8.92E-2 1 × 2 × 1 , ρ = 0

DAT-CDF Estimate at RX 2 4.12E-5 1 × 2 × 1 , ρ = 0 9.62E-2 1 × 2 × 1 , ρ = 0

6.1.3 Pinhole Diversity in the NLOS Backscatter Channel

Comparison of the bistatic SAT measurements and bistatic DAT measurements in the NLOS

channel reveals that the pinhole diversity gains predicted in Chapter 3 do occur, as Figure

42 shows. The pinhole diversity gain is evidenced by the fact that the estimate of the SAT

CDF is higher than that of the DAT CDF for normalized envelope values α/
√

P below

approximately 0.8. While the gain can be seen in Figure 42(a), it is best seen in the

logarithmic plots shown in Figure 42(b).

Pinhole diversity gains can also be seen by examining the fade margins calculated from

the measured estimates of the NLOS distributions1. Table 10 shows that the fade margin

required to maintain a given outage probability is reduced when using the DAT as opposed

to the SAT. Furthermore, the fade margins calculated from the measured estimates of the

distributions provide a good match with the fade margins derived from (26a) for the 1×1×1

channel distribution and 1 × 2 × 1 channel distribution.

1The fade margin is defined by Equation (15) in Section 2.2.4.
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Note that the measured fade margins do not increase above approximately 29 - 30 dB

for either RX 1 or RX 2 and result in significant differences with the derived fade margins.

This error is likely caused by the limited number of small measured envelopes. As more

data points with small envelope values are added, this error should decrease.

Table 10: NLOS fade margins in dB calculated from estimates of the SAT and DAT
distributions measured at RX 1 and RX 2.

Outage
Probability

Measured SAT Derived
1×1×1†

Measured DAT Derived
1×2×1†RX 1 RX 2 RX 1 RX 2

0.5 3.4 4.1 4.1 2.6 2.9 2.9

0.1 14 16 15 12 12 12

0.05 18 20 20 15 14 16

0.01 24 27 28 22 23 24

0.005 29 29 32 25 26 26

0.001 29 29 42 28 30 36
† Fade margins calculated from the distribution given by (26a) in Section 3.2.1.

6.1.4 Discussion

The measured estimates of the NLOS CDFs agree well with the M × L × N distributions

presented in Section 3.2.1. These measurements show that pinhole diversity gains do occur

and that (26a) is accurate for certain 1 × 1 × 1 and 1 × 2 × 1 channels that are NLOS

and experience rich multipath. The agreement between the derived distributions and the

measured distribution estimates also indicates that the modulated signals backscattered

from each of the DAT antennas have small correlation – i.e., the assumption of fading

independence between the signals from different RF-tag antennas made in Section 3.2 is

valid for this case.

No attempt was made to separate large-scale and small-scale fading in the distribution

estimates presented in this section. The agreement between the derived CDFs and the

measured CDF estimates indicates that large-scale fading was not significant.

96



6.2 Fading in the LOS Backscatter Channel

LOS measurements were made in room E560 of the Van Leer Building on the Georgia Insti-

tute of Technology main campus, shown in Figure 43. Though a strong LOS existed between

the testbed reader and the RF tag, multipath propagation was caused by the walls, floor,

and ceiling of the room; laboratory desks and workbenches; and other miscellaneous objects

located in the laboratory. Because the LOS was not obstructed for these measurements,

adequate power was available for both monostatic and bistatic measurements.

6.2.1 LOS Spatial Fading Plots

Figures 44 - 46 show plots of the normalized received power in dB and signal phase in

degrees as a function of RF-tag position. Like Figures 38 - 39, these figures display power

normalized to the maximum recorded in each measurement and all of the LOS spatial plots

are displayed on the same scale.

Examination of Figures 44 - 46 shows less severe fading than that evident in the NLOS

measurements. Differences are also apparent between the monostatic, LOS measurement

and the bistatic, LOS measurements – the deepest monostatic fades are approximately 20

dB while the maximum bistatic fades are approximately 12 dB. Unlike the jumbled phases

measured in the NLOS measurements, well-defined phase fronts can be seen in each LOS

measurement. The phase progression indicates the presence of a dominate specular wave

reflecting off the concrete wall behind the RF tag.

As mentioned in Section 5.6, measurements that were within 20 dB of the measured

noise floor were removed from all distribution calculations. For the LOS-measurement sets,

however, all of the measurements were above this threshold and no measurements were

removed. Like the NLOS measurements, no attempt was made to separate large-scale and

small-scale fading in the LOS distribution estimates.
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(a) The monostatic backscatter testbed.
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(b) The bistatic backscatter testbed.

Figure 43: The (a) monostatic and (b) bistatic measurement setup in room E560 of the
Van Leer Building on the Georgia Institute of Technology main campus. Coherent channel
samples were taken at 5.79 GHz as the RF tag was moved uniformly across a 30 cm × 30
cm (approximately 6λo × 6λo) square in 1 cm (approximately λo/5) increments. In these
figures, the area over which the tag was moved is denoted by the orange square and the RF
tags and reader antennas were approximately 178 cm above the floor.
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6.2.2 LOS Link-Correlation Effects

As with the NLOS measurements, estimates of the LOS fading CDFs were calculated from

the measurements for fading analysis. Figure 47 compares estimates of the monostatic CDFs

to estimates of the bistatic CDFs for both the SAT and DAT measurements in the LOS

channel. One of the first observations that can be made is that, for both the SAT and DAT

measurements, fading in the monostatic case is more severe than that in the bistatic case.

The reason for this fading improvement is that link envelope correlation ρe is reduced by

using spatially-separated transmitter and receiver antennas, as discussed in Section 3.3.3.

Note that while the estimate of the monostatic CDF shows worse fading than that of the

bistatic CDF for small envelope values, it also exhibits a higher probability of having a large

envelope. The link correlation between the fading on the forward and backscatter links that

causes a higher probability of destructive interference (fades) for the monostatic link also

causes the probability of constructive interference (peaks) to be larger.

6.2.3 Pinhole Diversity Gains

Figure 48 plots the measured estimate of the SAT CDF and the measured estimate of the

DAT CDF for the bistatic testbed and Figure 49 shows the same for the monostatic testbed.

For the measured estimates of both the monostatic and bistatic CDFs, a pinhole diversity

gain is observed; however, it is smaller than that observed in the NLOS measurements.

A small pinhole diversity gain indicates that, at least for small envelopes, the measured

estimates of the SAT CDFs and the DAT CDFs are similar for this channel. This is con-

firmed by examining the linear and logarithmic MSEs. To calculate the MMSE for the LOS

channels, the measured estimates of the CDFs were compared to the CDF of the signal re-

ceived at the nth reader antenna through the M ×L×N channel with Rician-fading links2.

Comparisons of the measured CDF estimates were made to this derived distribution for K

factors ranging from -9 dB to 16.5 dB in 0.25 dB increments. These MMSEs are given in

Table 11.

2The derivation of this distribution is described in Section 3.2.2.
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(a) Measured estimates of the monostatic SAT CDF and the bistatic SAT CDFs.

(b) Measured estimates of the monostatic DAT CDF and the bistatic DAT CDFs.

Figure 47: Comparison of the estimates of the monostatic and bistatic CDFs for the (a)
SAT and (b) DAT measurements in the LOS channel. The CDF estimates are plotted on
axes normalized by the root of the power of each distribution

√
P for unbiased comparisons.
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(a) The measured estimates of the SAT CDF and the DAT CDF for the LOS, monostatic
backscatter channel plotted on linear axes.

(b) The measured estimates of the SAT CDF and the DAT CDF for the LOS, monostatic
backscatter channel plotted on log-log axes.

Figure 49: The measured estimates of the SAT CDF and the DAT CDF for the LOS,
monostatic backscatter channel plotted on (a) linear and (b) log-log axes. The CDF esti-
mates are plotted on axes normalized by the root of the power of each distribution

√
P for

unbiased comparisons.
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Both the linear and logarithmic MMSEs indicate that the measured estimates of the

bistatic SAT CDFs best fit the 1 × 1 × 1 distribution with K between 13 - 13.5 dB. The

measured estimates of the DAT CDFs best match the 1×1×1 distribution with K between

11.75 - 12.75 dB. Similar matches are found for the measured estimates of the monostatic

CDFs, shown in Table 12.

Table 11: The best-fit, LOS envelope distributions for the estimates of the bistatic distri-
butions measured in the LOS channel. The measured distribution estimates were compared
to numerical approximations of the distributions for the 1 × 1 × 1, LOS channel and the
1×2×1, LOS channel for ρe = 0 and K ranging from -9 dB to 16.5 dB in 0.25 dB increments.

Measured
CDF

Estimate

Best Fit 1 × 1 × 1 LOS Best Fit 1 × 2 × 1 LOS

Distribution Distribution

Linear MSE Logarithmic MSE Linear MSE Logarithmic MSE

MMSE K dB MMSE K dB MMSE K dB MMSE K dB

SAT at RX 1 1.56E-4 13 3.43E-1 13.5 1.87E-2 11.25 2.61E+1 16.5

SAT at RX 2 7.16E-5 13.25 2.43E-1 13.5 2.09E-2 11.75 3.11E+1 16.5

DAT at RX 1 1.10E-4 12.75 1.29E-1 12 1.89E-2 11.5 3.67E+1 8.5

DAT at RX 2 8.41E-5 11.75 7.28E-1 12.75 1.52E-2 11.25 2.78E+1 16.5

Table 12: The best-fit, LOS envelope distributions for the estimates of the monostatic
distributions measured in the LOS channel. The measured distribution estimates were
compared to numerical approximations of the distributions for the 1 × 1 × 1, LOS channel
and the 1× 2× 1, LOS channel for ρe = 0 and K ranging from -9 dB to 16.5 dB in 0.25 dB
increments.

Measured
CDF

Estimate

Best Fit 1 × 1 × 1 LOS Best Fit 1 × 2 × 1 LOS

Distribution Distribution

Linear Logarithmic Linear Logarithmic

MMSE K dB MMSE K dB MMSE K dB MMSE K dB

SAT 1.03E-4 8.5 8.21E-1 9 3.27E-3 9.75 1.55E+1 7.25

DAT 2.50E-4 7.75 1.19E+0 9.5 2.90E-3 8.75 1.31E+1 7.5

The best-fit for the measured estimate of the monostatic SAT CDF is the 1 × 1 × 1

distribution with K between 8.5 - 9 dB while the measured estimate of the monostatic

DAT CDF best fits the 1 × 1 × 1 distribution with K between 7.75 - 9.5 dB.

As with the NLOS measurements, fade margins can be calculated from the measured
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estimates of the LOS CDFs for the SAT and DAT. These are shown in Table 13 and reflect

the previous observation that only a small pinhole diversity gain is available in this LOS

channel. In other words, for both the monostatic and bistatic measurements, the difference

between the SAT and DAT fade margins is very small.

Table 13: LOS fade margins (in dB) calculated from the measured distribution estimates.

Outage
Probability

Monostatic Bistatic

SAT DAT
SAT DAT

RX 1 RX 2 RX 1 RX 2

0.5 0.78 1.0 0.47 0.36 0.31 0.50

0.1 5.9 5.8 2.9 2.9 3.5 3.5

0.05 8.0 6.8 3.7 3.6 4.6 4.4

0.01 10 8.9 5.7 5.5 6.5 5.7

0.005 11 9.9 6.0 5.9 7.7 6.3

0.001 14 11 6.4 6.6 8.9 7.0

6.2.4 Discussion

Many of the LOS measurements discussed previously provide direct support for the backscat-

ter channel theory presented in Chapter 3. First, Figure 47 shows that using separate,

adequately-spaced reader transmitter and receiver antennas decreases link correlation in

the LOS backscatter channel and provides a corresponding reduction in multipath fading.

Second, Table 11 shows a very good match between the estimate of the SAT CDF measured

in the bistatic channel and the numerically-approximated, 1 × 1 × 1, LOS distribution for

K ≈ 13 dB. Third, very small pinhole diversity gains are realized for the LOS-monostatic

and LOS-bistatic channels. This is expected because of the very high K factor of the LOS

backscatter channel, as described in Section 3.3.4.

What is not expected is that the measured estimate of the LOS DAT CDF matches

the numerically-approximated, 1 × 1 × 1, LOS CDF more closely than the 1 × 2 × 1, LOS

CDF, shown in Table 11. Also, the severe fading predicted in Section 3.3.4 for the 1× 2× 1
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channel with a high K factor is not exhibited by the measured estimates of the DAT CDFs.

Furthermore, the measured estimates of the monostatic SAT CDF and the monostatic DAT

CDF match the numerically-approximated, 1 × 1 × 1, LOS CDF with ρe = 0 quite well.

These apparent discrepancies between the M × L × N , dyadic backscatter channel theory

and measurements can be explained by additional correlation in the LOS channel.

The analytic envelope distributions for the NLOS channel presented in Section 3.2.1

and the numerical approximations of the M × L × N envelope distributions for the LOS

channel shown in Figure 16 and Figure 17 both assume that the total signal received at

the nth reader antenna is the sum of L, i.i.d., product-Rayleigh or L, i.i.d., product-Rician

random variables, respectively. For the NLOS case, measurements confirmed that this was

at least approximately true even though the RF-tag antennas were closely spaced. The

high level of multipath propagation experienced by the RF tag resulted in a channel with

a very small spatial coherence distance – i.e., the correlation of the channel as a function

of space decreased rapidly [17]. This is not true, however, for the LOS measurements. The

spatial coherence of the channel is much greater than that of the NLOS channel and results

in correlation between the signals received from the two RF-tag antennas.

Consider the following: if the signal transmitted from the reader is approximated as a

planewave, then the phase of the modulated-backscatter signal received from each RF-tag

antenna is determined by the path length that the waves have traveled. The phase difference

between these signals is

Phase Difference = exp
{
j
2π

λ

[
R1 − R2

]}
, (42)

where R1 =
∣∣�rf

1

∣∣ +
∣∣�r b

1

∣∣ is the total path length from the reader to DAT antenna 1, R2 =∣∣�rf
2

∣∣+∣∣�r b
2

∣∣ is the total path length from the reader to DAT antenna 2, and λ is the wavelength,

as shown in Figure 50. R1 and R2 can be written as the sum of their x and y components:

R1 =
√(

rf
1 x

)2 +
(
rf
1 y

)2 +
√(

rb
1 x

)2 +
(
rb
1 y

)2
, (43)

R2 =
√(

rf
1 x

)2 +
(
rf
1 y + ∆tag

)2 +
√(

rb
1 x

)2 +
(
rb
1 y − ∆tag

)2
, (44)

where rf,b
1 x = rf,b

2 x , rf
2 y = rf

1 y +∆tag and rb
2 y = rb

1 y−∆tag. From (43) and (44), it can be seen

that if ∆tag << rf,b
1 x or ∆tag << rf,b

1 y , then R1 ≈ R2 and the phase difference in (42) will
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Figure 50: The separation distances between the reader and each antenna of the DAT.
The total path length to DAT antenna 1 is R1 =

∣∣�rf
1

∣∣ +
∣∣�r b

1

∣∣ and the total path length to
DAT antenna 2 is R2 =

∣∣�rf
2

∣∣ + ∣∣�r b
2

∣∣.
be very small. As a result, the received signal is not composed of two independent specular

waves, as assumed in the numerically-approximated, M × L × N distributions of the LOS

backscatter channel, but of two specular waves with correlated phases. In essence, a single

phase front propagates from the tag to the reader which makes the estimate of the DAT

distribution resemble that of the SAT. In a strong LOS channel – such as the one measured

in this section – RF-tag footprint restrictions will likely not allow ∆tag to be large enough to

reduce the correlation between the modulated-backscatter signals received from each DAT

antenna to near zero. Instead, additional multipath propagation is required, as evidenced

by the NLOS measurements.

Therefore, this correlation explains why the measured estimate of the DAT CDF closely

matched that predicted for the SAT and explains why the severe fading predicted for the

1×2×1 channel with a high K factor was not measured. Correlation between backscattered

signals also explains why a larger range of K factors was shown to be the best fit by the

linear and logarithmic MSE analysis. The linear MMSE is most sensitive to the CDF-fit

for large envelope values while the logarithmic is more sensitive for small envelope values.
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The large range of K factors indicates that the measured estimates of the LOS DAT CDFs

do not exactly match either the derived, 1 × 1 × 1-channel CDF or the derived, 1 × 2 × 1-

channel CDF; instead, they match something in between. This is caused by the additional

correlation found in the LOS channel.

Another factor that may have influenced the measured estimates of the LOS DAT CDFs

was unequal scattering from each RF-tag antenna. The backscatter from each DAT antenna

was verified to be approximately equal (approximately 2-7 dB difference in received power)

before each measurement. However, as the RF tag was moved through the channel, nulls

and peaks in the DAT’s antenna pattern may have caused unequal power to be received

from each antenna.

6.3 Conventional Diversity Gains

The modulated-backscatter signals received at RX 1 and RX 2 in the NLOS, bistatic mea-

surements and the LOS, bistatic measurements can be combined to demonstrate the fading

gains realized using conventional diversity combining. It was impossible to gather enough

channel samples to present conventional diversity gains in terms of BER, as was done in the

Monte Carlo simulation results presented in Section 3.3.5; therefore, the estimated CDF

and fade margins of the combined diversity branches are presented in Figures 51 - 52 and

Table 14, respectively. The diversity branches from RX 1 and RX 2 were combined using

MRC with the receiver having perfect knowledge of the channel. A noticeable reduction

in fading is evident for the NLOS SAT measurements and the NLOS DAT measurements

shown in Figure 51. An improvement is also seen for small envelope values in the LOS

measurements, though not as large as those for the NLOS channel. In both the NLOS and

LOS measurements, larger conventional diversity gains are realized for the DAT than for

the SAT. This is because the multipath richness of the backscatter channel is increased by

the DAT’s two pinholes compared to the single pinhole of the SAT3.

3Recall that RF-tag antennas act as pinholes in the dyadic backscatter channel. See Section 3.1.
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Table 14: Fade margins (in dB) calculated with and without MRC from the measured
distribution estimates of both the bistatic, NLOS channel and the bistatic, LOS channel.

Outage
Probability

NLOS LOS

MRC SAT† DAT† MRC SAT† DAT†

SAT DAT RX 1/2 RX 1/2 SAT DAT RX 1/2 RX 1/2

0.5 2.8 1.8 3.4/4.1 2.6/2.9 0.3 0.23 0.47/0.36 0.31/0.50

0.1 13 8.8 14/16 12/12 2.2 2.7 2.9/2.9 3.5/3.5

0.05 16 11 18/20 15/14 3.0 3.4 3.7/3.6 4.6/4.4

0.01 22 16 24/27 22/23 4.8 4.5 5.7/5.5 6.5/5.7

0.005 26 18 29/29 25/26 5.3 5.3 6.0/5.9 7.7/6.3

0.001 29 23 29/29 28/30 6.2 7.5 6.4/6.6 8.9/7.0
† No MRC performed.
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CHAPTER VII

CONCLUSIONS

In short, this research has sought an answer to the following question:

Can multipath fading be reduced for backscatter-radio systems using multiple

antennas at the reader transmitter, receiver, and RF tag?

The answer was found to be a resounding yes. It was found that small-scale multipath

fading can be reduced in backscatter-radio systems by the following:

Using Multiple-Antenna RF Tags: New fading distributions derived for the M×L×N ,

dyadic backscatter channel have shown that using multiple RF-tag antennas to modulate

backscatter can reduce fading on the signal received at one of the reader receiver antennas.

This gain, known as a pinhole diversity gain, is available in backscatter channels in which

the K factor of the forward and backscatter links is less than approximately 3 dB. As

multipath fading is decreased (i.e., a higher K factor), measurements show that the signal

received from a multiple-antenna RF tag will have a distribution very similar to that of a

single-antenna RF tag. In other words, pinhole diversity gains are best realized in channels

that experience heavy small-scale multipath fading. As multipath propagation decreases,

there is no penalty for using multiple RF-tag antennas.

The theory has shown that pinhole diversity gains can, in some cases, result in up to a

78% increase in RF-tag read range. Pinhole diversity gains have been confirmed through

the first fading measurements of the M × L × N , dyadic backscatter channel at 5.8 GHz.

Cumulative distribution functions tabulated from the NLOS measurements matched those

from the derived fading distributions well and exhibited the predicted pinhole diversity

gains.

Reducing Link Correlation: Using spatially-separated, reader transmitter and receiver

antennas will decrease fading on the modulated-backscatter signal received by the reader.
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Fading is reduced because the spatial separation reduces link correlation between fading

on the forward and backscatter links. This was demonstrated by fading measurements

in both LOS (Rician-fading forward and backscatter links) and NLOS (Rayleigh-fading

forward and backscatter links) channels. In backscatter channels with Rayleigh-fading links,

reducing link correlation can reduce fading to the same extent as using multiple RF-tag

antennas. For instance, it was shown that, in backscatter channels with Rayleigh-fading

forward and backscatter links, a channel with fully-correlated links and two RF-tag antennas

has equivalent fading to channel with zero link correlation and a single RF-tag antenna.

Therefore, careful attention must be paid to the design of reader transmitter and receiver

antennas.

Using Antenna Arrays: Using antenna arrays at the reader transmitter or receiver will

allow conventional diversity gains to be realized. Fading measurements confirmed this and

showed that using RF tags with multiple antennas will increase conventional diversity gains.

These fade reducing techniques may best be realized using frequencies higher than the

commonly used 902-928 MHz and 2400-2483.5 MHz ISM bands. It was shown, through

example, that several potential advantages are offered by the 5725-5850 MHz ISM frequency

band – higher antenna gain, smaller antenna size, additional bandwidth, and, in some cases,

increased object immunity.

In summary, this research has provided both theory and measurements that show the

effectiveness of using multiple antennas to reduce multipath fading in backscatter-radio

systems. The small-scale multipath fade reduction offered by multiple antennas will make

backscatter-radio systems with increased range and communication reliability possible.

7.1 Summary of Original Work Completed

This research has made the following original contributions to the field of backscatter radio

and to the wireless community in general:

• Synthesized a detailed description of the general, M × L × Nbackscatter channel.
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• Provided two link budgets for backscatter-radio systems and a discussion of the prop-

agation and high-frequency effects that influence backscatter-radio operation.

• Derived new, analytic envelope distributions for the M × L × N , dyadic backscatter

channel with Rayleigh-fading forward and backscatter links.

• Demonstrated small-scale multipath fade reductions through pinhole diversity gains,

by reducing link correlation, and using conventional diversity combining at the reader.

• Designed and prototyped the first 5.8 GHz backscatter testbed for backscatter-channel,

multipath-fading measurements.

• Made the first multipath-fading measurements of the signal received from RF tags

using multiple antennas and made the first backscatter fading measurements at 5.8

GHz.

7.2 Future Work

As with any research project, more questions have been raised and opportunities uncovered

than could possibly be pursued in this dissertation. Therefore, the following topics will be

left for future research:

• Fully functional RF-tag development – develop an RFIC that integrates the multi-

antenna signaling techniques discussed in this dissertation and allows backscatter to

be modulated with an arbitrary waveform.

• Frequency-selective fading – Explore frequency selective fading in the M × L × N ,

dyadic backscatter channel and see if any of the envelope distributions derived in this

dissertation could be applied.

• Backscatter Space-time Block Codes – Develop new or adapt existing space-time block

codes for use in modulated-backscatter communication.

• TWDP Fading – Formalize the relationship between the 1 × 2 × 1, LOS channel

discussed in Section 3.3.4 and the two-wave with diffuse power (TWDP) fading dis-

tributions previously reported [65].
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• Multi-tag Experiments – Use the 5.8 GHz backscatter testbed to measure how the

presence of multiple RF tags affects multipath fading on the signal backscattered from

one of the RF tags.

• Ultra-wideband Modulated Backscatter – Investigate the use of ultra-wideband for

short-distance, high data rate, modulated-backscatter communication.

• Sensor Development – Use the multi-antenna techniques outlined in this work to

develop passive, long-range, reliable backscatter sensors.
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APPENDIX A

IMPORTANT SMALL-SCALE FADING DISTRIBUTIONS

To benefit from the material presented in this dissertation, a firm understanding of several

probability density functions (PDF) is necessary. This appendix provides definitions and

parameters for the Rician, Rayleigh, and product-Rayleigh PDFs based on work by Simon

[73].

A.1 The Rician Distribution

The Rician distribution [74] is one of the most important fading distributions used in channel

analysis. It is often used to analyze the fading that occurs on the envelope of the signal

received through a transmitter-to-receiver channel whose propagation can be described by

the sum of a strong, specular wave and many diffuse, multipath waves. Such a scenario

often occurs when a LOS exists between the transmitter and receiver. The diffuse, multipath

waves can be modeled as a zero-mean, complex-Gaussian random variable and the presence

of the unfading specular wave simply adds a nonzero mean. Therefore, the Rician random

variable A is equal to the envelope of a complex-Gaussian random variable with nonzero

mean.

A = ||Z|| = ||X + jY|| (45)

where X ∼ N (µx, σ2/2), Y ∼ N (µy, σ
2/2), σ2 is the variance of A, µx,y are the means of

and X and Y, µx = µy �= 0. In this appendix, N (µ, σ2) denotes a normal distribution with

mean µ and variance σ2. A derivation of the distribution is given by [17] on page 126, and

the result is presented below. From [73], the PDF of a Rician random variable is

fA(α) =
2α

σ2
exp

(
−α2 + a2

σ2

)
I0

(
2αa

σ2

)
, α ≥ 0 (46)
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where a =
√

µ2
x + µ2

y and I0(·) is a modified Bessel function of the first kind. The average

power of the distribution is

Pav = σ2

(
1 +

a2

σ2

)
(47)

It is common to define K, the Rician K factor, as ratio of the non-fading specular power

and the diffuse, multipath power. Using this definition, average power can be written

Pav = σ2(1 + K
)

(48)

The cumulative density function (CDF) of a Rician random variable is

FA(α) = 1 − Q

(√
2a

σ
,

√
2α

σ

)
, α ≥ 0 (49)

where Q(·, ·) is the first order Marcum Q-function [73] defined as

Q(δ, β) =
∞∫

β

x exp

(
−x2 + δ2

2

)
I0
(
δx
)

(50)

In words, the Marcum Q-function is the integral of the Rician PDF from β to ∞ and gives

the probability that the Rician random variable is greater than β.

A.2 The Rayleigh Distribution

The Rayleigh distribution [75] is simply a special case of the Rician distribution in which

no specular wave is present. In mathematical terms, a Rayleigh random variable is equal

to the envelope of a zero-mean, complex-Gaussian random variable.

A = ||Z|| = ||X + jY|| (51)

where X ∼ N (0, σ2/2) and Y ∼ N (0, σ2/2). Hence, the Rician specular term a2 = 0 and

(46) reduces to the the PDF of a Rayleigh random variable

fA(α) =
2α

σ2
exp

(
−α2

σ2

)
, α ≥ 0 (52)

A derivation of the Rayleigh distribution is given by [17] on pages 116 - 118. The average

power of this distribution is

Pav = σ2 (53)

The CDF of a Rayleigh random variable is [73]

fA(α) = 1 − exp

(
−α2

σ2

)
, α ≥ 0 (54)
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A.3 The Product-Rayleigh Distribution

The product-Rayleigh distribution is the distribution resulting from the multiplication of

two random variables with Rayleigh distributions. Therefore, for this distribution, A is the

envelope of the product of two complex-Gaussian random variables.

A = ||BC|| = ||(X + jY)(W + jV)|| (55)

where X,Y ∼ N (0, σ2
A/2) and W,V ∼ N (0, σ2

B/2). The PDF of A is given by Simon1 [73]

as

fA (α, ρ) =
4α

(
1 − |ρ|2)

σ2
Aσ2

B (1 − ρ2)2
I0
(

2α |ρ|
σAσB (1 − ρ2)

)
K0

(
2α

σAσB (1 − ρ2)

)
(56)

for α ≥ 0. In (56), I0 is a zero-order, modified bessel function of the first kind and K0 is a

zero-order, modified bessel function of the second kind. The correlation between B and C

is indicated by ρ, the normalized correlation coefficient, and is defined as

ρ =
Cov(X,W)√

Cov(X,X)Cov(W,W)
=

2 Cov(X,W)
σAσB

(57)

=
Cov(Y,V)√

Cov(Y,Y)Cov(V,V)
=

2 Cov(Y,V)
σAσB

where −1 ≤ ρ ≤ 1 and Cov(· , ·) is the covariance operator. It is assumed that

Cov(X,Y)√
Cov(X,X)Cov(Y,Y)

=
Cov(W,V)√

Cov(W,W)Cov(V,V)
= 0 (58)

In other words, the real parts of B and C have correlation ρ; likewise, the imaginary parts

of B and C have correlation ρ. The correlation between the real and imaginary parts of B

and C is zero. Since B and C are complex-Gaussian random variables, it is implied that

the real and imaginary parts of B and C are independent.

1Equation (56) differs from that given by Simon [73] in that it has been normalized to satisfy
∞∫
0

fA(α, ρ)dα = 1
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A.4 The Product-Rician PDF

The PDF of the product of two independent Rician random variables is [73]

fA(α) =
4

σ2
fσ2

b

exp[−Kb − Kf ]

×
∞∑
i=0

∞∑
l=0

1
(i!)2(l!)2

(
Kb

σ2
b

)i(Kf

σ2
f

)l(σb

σf

)i−l

× αi+l+1K(i−l)

(
2α

σbσf

)
(59)

where A is the random channel envelope; α is the index of the distribution; Kf and Kb are

the Rician K factors of the forward and backscatter links, respectively; σ2
f and σ2

b are the

variances of the forward and backscatter links, respectively; and Kν(·) is a modified bessel

function of the second kind with order ν. The power of the product of two independent

Rician random variables is

E{A2} = σ2
bσ

2
f exp[−(Kb + Kf )]1F1(2; 1;Kb)1F1(2; 1;Kb) (60)

= σ2
bσ

2
f (1 + Kb)(1 + Kf ) (61)

where 1F1(a; b; z) is a confluent, hypergeometric function of the first kind [76]. The average

power received at the nth reader-receiver antenna through the M × L × N backscatter

channel is

E{A2} = MLσ2
bσ

2
f (1 + Kb)(1 + Kf ) (62)
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APPENDIX B

THE M × L × N BACKSCATTER-CHANNEL PDF DERIVATION

This appendix presents the derivation of the distribution of the signal received at the nth

reader-receiver antenna through the Rayleigh-fading, M×L×N , dyadic backscatter channel.

As discussed previously, the signal received at the nth reader-receiver antenna is proportional

to the sum of L, i.i.d., complex-Gaussian products. Therefore, the envelope of the signal is

A = |h̃b| × |h̃f | (63)

where h̃
b

and h̃
f

are correlated, zero-mean, complex-Gaussian random variables with vari-

ances σ2
b and Mσ2

f , respectively. The PDF of the sum of L, i.i.d. random variables can

be found from the product of their characteristic functions (CF). Therefore, this deriva-

tion proceeds by finding the CF of (56), raising it to the Lth power, and transforming the

resulting CF back into a PDF.

The CF of (56) is found using the Hankel transform [17]:

Φ(ν) =
∞∫
0

fA(α)J0(να)dα (64)

Substituting (56) into (64), solving, and then raising the result to the Lth power yields:

Φ(ν; ρ) =

[
σ4

bσ
4
fM2

16

(
1 − ρ2

)4(
1 − |ρ|2)2

×
(

ν2 +
4
(|ρ| − 1

)2
σ2

bσ
2
fM

(
1 − ρ2

)2
)

×
(

ν2 +
4
(|ρ| + 1

)2
σ2

bσ
2
fM

(
1 − ρ2

)2
)]−L/2

(65)

Equation (65) is the CF of the general, M × L × N , dyadic backscatter channel with link

correlation ρ. The PDF of (65) is found using the inverse Hankel transform [17]:

fA(α) = α

∞∫
0

Φ(ν)J0(να)νdν (66)
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However, this integral is difficult to solve analytically. Therefore, two special cases will be

considered: the case where h̃
b

and h̃
f

are independent (ρ = 0) and the case where h̃
b

and

h̃
f

are completely correlated (ρ = 1).

B.1 Independent Channels (ρ = 0)

In (65), if ρ approaches zero in the limit, the following CF results:

Φ(ν) =

(
4

ν2σ2
bσ

2
fM + 4

)L

(67)

Applying the inverse Hankel transform to (67) yields the PDF of the M × L × N , dyadic

backscatter channel with independent forward and backscatter links.

fA(α, 0) = αL

(
2√

Mσbσf

)1+L
21−L

Γ(L)
K(1−L)

(
2α√

Mσbσf

)
(68)

The mean and variance of (68) were found by direct application of their definitions.

E{A} =

√
Mσbσf

Γ(L)
Γ
(3
2

)
Γ
(
L +

1
2

)
(69)

The variance of A is given by Cov(A,A) = E{A2}−E{A}2 where Cov(·, ·) is the covariance

operator. Solving for the variance requires the power (or second moment) of the distribution

to be known. The second moment is

E{A2} = MLσ2
bσ

2
f (70)

Hence, the variance of A is:

Cov(A,A) = MLσ2
bσ

2
f

(
1 −

Γ2
(3
2

)
Γ2
(
L +

1
2

)
LΓ2(L)

)
(71)

The mean and variance reduce to:

µA =

√
Mσbσf

2
π(2L)!

4LL!(L − 1)!
(72)

and

σ2
A = MLσ2

bσ
2
f

(
1 − L

4

[
π(2L)!
4L(L!)2

]2)
. (73)

It can be shown that (68) integrates to 1.
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B.2 Dependent Channels (ρ = 1)

In (65), as ρ approaches one in the limit, the following CF results:

Φ(ν) =

(
1

ν2σ2
bσ

2
fM + 1

)L/2

(74)

The PDF is found using the inverse Hankel transform. Solving using the same method as

for (68), the PDF for the 1×L×1, dyadic backscatter channel with fully-correlated forward

and backscatter links is:

fA(α, ρ = 1) = αL/2

(
1

σbσf

√
M

)1+L/2
21−L/2

Γ
(

L
2

) K(1−L/2)

(
α

σbσf

√
M

)
(75)

Again, the mean and variance of (75) can be solved by direct application of their definitions.

For reference, the power of the PDF is

E{A2} = 2MLσ2
bσ

2
f . (76)

The mean and variance are, respectively:

E{A} =
2
√

Mσbσf

Γ
(L

2

) Γ
(3
2

)
Γ
(L

2
+

1
2

)
(77)

Cov(A,A) = 2MLσ2
bσ

2
f

(
1 −

2Γ2
(3
2

)
Γ2
(L

2
+

1
2

)
LΓ2

(L

2

)
)

(78)

The mean and variance reduce to:

µA =
√

MσbσfΨ (79)

where

Ψ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πL!
2L(L/2 − 1)!(L/2)!

for even L,

2L
[
(L/2 − 1/2)!

]2
2(L − 1)!

for odd L,

and

σ2
A = 2MLσ2

bσ
2
f

(
1 − Λ

2L

)
(80)
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where

Λ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
πL!

2L(L/2)!(L/2 − 1)!

]2

for even L,

[
2L−1

[
(L/2 − 1/2)!

]2
(L − 1)!

]2

for odd L.

It can be shown that (75) integrates to 1.

B.3 The Limit for Large L

According to the central limit theorem, as L approaches infinity in the limit, (68) and (75)

will become Rayleigh distributions. The simplest way to show this is by taking the limit of

the CF given by (65). To prevent the power of the distribution from becoming infinite as

L → ∞, the variance of (65) is normalized by L, as shown in (81).

σ2
bσ

2
fM

L
=

σ2

L
(81)

The limit then yields:

lim
L→∞

Φ(ν; ρ) = lim
L→∞

[
σ4

16L2

(
1 − ρ2

)4(
1 − |ρ|2)2

(
ν2 +

4L
(|ρ| − 1

)2
σ2
(
1 − ρ2

)2
)(

ν2 +
4L

(|ρ| + 1
)2

σ2
(
1 − ρ2

)2
)]−L/2

= lim
L→∞

[(
ν2σ2

(
1 − ρ2

)2
4L

(|ρ| − 1
)2 + 1

)(
ν2σ2

(
1 − ρ2

)2
4L

(|ρ| + 1
)2 + 1

)]−L/2

= exp

(
−ν2σ2

(
1 − ρ2

)2
8
(|ρ| − 1

)2
)

exp

(
−ν2σ2

(
1 − ρ2

)2
8
(|ρ| + 1

)2
)

= exp

(
−ν2σ2

4
(|ρ|2 + 1

))
(82)

Applying the inverse Hankel transform to (82) and substituting σ2
bσ

2
fM for σ2 gives the

corresponding PDF:

fA(α) =
2α

σ2
bσ

2
fM

(|ρ|2 + 1
) exp

(
−α2

σ2
bσ

2
fM

(|ρ|2 + 1
)
)

(83)

Equation (83) is a Rayleigh PDF with the following mean and variance:

E{A} =
1
2

√
πσ2

bσ
2
fM

(|ρ|2 + 1
)

(84)

Cov(A,A) =
(
1 − π

4

)
σ2

bσ
2
fM

(|ρ|2 + 1
)

(85)
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If L is allowed to approach ∞ in the limit of the mean and variance of (68) (described by

(69) and (71), respectively), it can be shown that they are equal to (84) and (85) evaluated

for ρ = 0, respectively. The same can be shown of the mean and variance of (75), described

by (77) and (78), respectively.

B.4 A Note on Link Envelope Correlation

It should be noted that, while (65) holds for any value of M , L, or ρ, care must be taken in

the choice of ρ so that the correlation matrix is positive semi-definite [52]. The ijth entry

of the correlation matrix V – the correlation matrix of H̃f and H̃b – is

Vij =
Cov(Ai, Aj)

σiσj
(86)

where Ak is the kth element of

�A = [h̃
f
11, h̃

f
21, · · · , h̃

f
lm, h̃

b
11, h̃

b
21, · · · , h̃

b
nl]

T

(a column vector formed from the entries of the forward and backscatter-link matrices), σi is

the standard deviation of the ith element of �A, and Cov(x, y) is the covariance between the

scalars x and y. The positive semi-definite constraint places a limit on ρ that is a function

of M ; however, for the 1 × L × 1 discussed in this dissertation, ρ may vary between zero

and one (0 ≤ ρ ≤ 1) while satisfying this constraint.
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APPENDIX C

TESTBED SETUP AND MEASUREMENT GUIDE

As described in Chapter 5, many pieces of test and measurement equipment and custom

electronics were interfaced to create the backscatter testbed. This appendix gives details of

the connections, calibration, and software commands required to operate the testbed.

C.1 Testbed Connections

The connections for the backscatter testbed presented in this dissertation are shown in

Figure 53 and Figure 54 and the necessary DC power supply connections are shown in

Figure 55. Photographs of the testbed and connections are shown in Figures 56 - 61.

It can be seen from both Figure 53 and Figure 54 that many components were used to

condition the 80 MHz clock signal for the Exacq ADC boards. The low-pass filters removed

harmonics output from the signal generator and added loss to keep the amplifier operating

in its linear region. The bias tee was used to add a DC offset to the 80 MHz sinusoid.

The DC offset was required for the Exacq ADC boards to correctly sense the clock signal;

without it, the ADC would not consistently return signal samples.

In the bistatic testbed, receivers 1 and 2 were used because of their high sensitivity.

In the monostatic testbed, however, reflections from the transmitter/receiver antenna that

were received through the circulator (see Figure 54) tended to saturate these receivers.

Instead, receiver 3 was used because of its ability to operate linearly with a larger input

signal.
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Figure 55: Block diagram of the power supply connections necessary for the backscatter
testbed.
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Figure 56: The back of the personal computer used to control the backscatter testbed.
The RS232 cable used to control the linear positioner, the USB to GPIB controller, and
the connections associated with the Exacq ADC and DAC boards are shown. In this figure,
the ADCs associated with each receiver are label as they are represented in the software –
RXA and RXB. See Appendix D for more information.

Figure 57: A photo showing the connections between the two Agilent 33250A function
generators used to output the differential, pseudo-random bit sequence for the RF tags.
The pseudo-random code was loaded into the memory of each function generator by the
Matlab control software through the GPIB.
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Figure 58: The Velmex linear positioner with the single-antenna RF tag attached to the
RF-tag stand. The RF-tag stand is made from polyvinyl chloride (PVC) pipe sections.

Figure 59: The receivers used in the backscatter testbed for multipath-fading measure-
ments.

133



Figure 60: The back of a direct-conversion receiver showing the holes that provide access
to the potentiometers used to null the DC offset of the I and Q channels.

Figure 61: The bistatic backscatter testbed showing the transmitter antenna, two receiver
antennas, the two direct-conversion receivers, the 5.79 GHz signal generator, and the power
supplies. The transmitter and receiver antennas were held in place by a polyvinyl chloride
(PVC) stand.
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C.2 Testbed Calibration

Before each measurement set was made, the following calibration procedure was followed:

1. The system – including all signal sources and DC power supplies – was powered on

and allowed to warm up for at least 10-20 minutes before any calibration adjustments

or measurements.

2. The RF input of each receiver was terminated with a 50Ω load and the gain of the

receiver was set to its maximum value (0.28 VDC)1. The DC offset of the I and Q

channels was then zeroed by adjusting two potentiometers with a small screwdriver

through two holes (see Figure 60) in the back of each receiver. The DC was offset was

adjusted so that it was within ±10mV of the ground reference.

3. The conducted power output to the transmitter antenna was measured with a spec-

trum analyzer. For the bistatic measurements, approximately 29 dBm was incident

on the transmitter patch antenna while only approximately 3 dBm was transmitted

in the monostatic setup. The monostatic transmitted power was limited by reflec-

tions from the transmitter/reciever antenna that could saturate the RF input of the

receiver.

4. As an optional step, the power input into the LO ports of each receiver was measured.

This power was approximately 2 dBm for each measurement.

5. After completing steps 1 - 4, the RF tag was placed on its stand and positioned,

as described in Section 5.5, for the calibration measurement. With the RF tag in

place, the power of the self-interference signal was measured at the receiver RF in-

put port using a spectrum analyzer. If the self-interference power did not exceed the

upper limit of the receiver given in Table 20 in Section E.5.2, then the calibration

proceeded; otherwise the transmit power or the position of the antennas was ad-

justed. Note that the self-interference power depends heavily on the proximity of the

1This is the voltage that is specified in ExacqPutData.exe as described in Appendix D.4, not the actual
voltage present at the receiver’s gain input.
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transmitter/receiver antennas to scatterers (including the user’s body); therefore, it is

important to measure the self-interference with the antennas in the positions used for

fading measurements. If the DAT was being calibrated, a measurement was first taken

to verify that each RF-tag antenna was backscattering a signal. To do this, one of the

RF-tag slot antennas was covered with conductive copper tape and the backscattered

signal from the other antenna was measured. Then, the tape was moved to the other

antenna and the measurement repeated. The calibration measurement for the RF tag

was taken using no time averaging.

C.3 Software Commands

The high level Matlab function used to control the testbed is RunTestbed(teststructs,1).

Teststructs is an m-file that contains all of the test parameters in an array of structs. The

second argument of RunTestbed() is the array index specifying which struct is to be run.

Usually, the size of the struct array is one and therefore, k = 1. Details of testructs and

the other software used for this testbed is given in Appendix D.
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APPENDIX D

SOFTWARE DESCRIPTION

This appendix briefly describes the software used for the measurement campaign presented

in this dissertation. The goal of this section is to enable to the reader to take a measure-

ment; hence, only the most important functions necessary for operating the testbed will be

discussed.

D.1 Overview

Both C++ and Matlab programs were interfaced to collect data from the testbed. The

Matlab function RunTestbed() is the top-level program called to operate the testbed. Via

subfunctions, RunTestbed calls ExacqGetDataAGCAVG.exe which controls the Exacq ADC

and DAC boards as well as the receiver gains for data collection. ExacqGetDataAGCAVG.exe

outputs each collected data point into an ASCII file whose name is specified by the calling

Matlab function. Each ASCII file contains time sampled data corresponding to a particular

RF-tag position. All C++ development was done with Dev-C++ 4.9, a free development

environment that uses Mingw – a compiler based on the GNU compiler collection (GCC).

It is available for no cost at http://www.bloodshed.net/devcpp.html.

All of the software developed for the testbed is permanently archived on the Propagation

Group’s Subversion (SVN) server at https://durgin-srv1.ece.gatech.edu/repos/RFID/

trunk/Backscatter Radio/Code/BackscatterTestbed/Code. It may be accessed through

an SVN client such as Tortoise SVN which is available for download at

http://tortoisesvn.net/. The header files and libraries for communicating with the Ex-

acq DAC boards were provided by Exacq Technologies and are located in the same directory

on the SVN server.
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D.2 Matlab Function Description

This section provides a brief description of some of the Matlab functions required to operate

the testbed. It is important to note that all of the software was designed to always operate

two direct-conversion receivers (receiver box 1, 2, or 3). In the software, the two receivers

are called RXA and RXB. Which physical receiver is assigned to RXA or RXB is determined

in teststrucs.m.

D.2.1 Functions for Testbed Operation

teststrucs.m: This file contains an array of structs that specifies all of the information

required to make a measurement. Each struct in the array corresponds to a different set

of measurement parameters. Usually, only one struct is included in the array. The struct

fields and typical values are as follows:

• k = 1; – Specifies the index of the struct in the array s of teststructs. The first index
should always be set to 1. If additional structs are desired, then k can be set to k =
k + 1.

• s(k).ReceiverBoxes = [1 2]; – Specifies the number of the physical receiver to be
used as RXA and RXB. Two and only two receivers must always be specified. They
are always entered in the order [RXA RXB].

• s(k).N = 5; – This specifies the number of shift register bits used to generate the m-
sequence that is output from the two function generators that modulate the backscat-
tered signal.

• s(k).ChipRate_Hz = 1e6; – The chip rate (in Hz) or the rate at which new bits
are output from the function generators to drive the RF tags.

• s(k).PNPeriods = 40; – The number of periods of the m-sequence to be collected
during each ADC acquisition.

• s(k).SampleRate_Hz = 20000000; – The rate in Hz at which the Exacq ADC boards
sample the I and Q outputs of the receivers.

• s(k).SampleNum = (2^(s(k).N)-1)*1/(s(k).ChipRate_Hz)*s(k).PNPeriods*
s(k).SampleRate_Hz; – Calculates the number of samples to be collected. Because
of memory limitations on the Exacq ADC boards, SampleNum cannot exceed 29952.

• s(k).LOFreq_MHz = 5790; – Specifies the frequency in MHz to be transmitted to the
RF tag and used as the receiver LO.

• s(k).LOPower_dBm = 9.75; – The power in dBm to be output from the CW signal
generator. This power was reduced to 2 dBm by splitters and attenuators before being
input into the receivers.
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• s(k).PosSupply_V = 12; – Specifies the positive DC voltage in volts output by the
Instek PST-3202 power supply. This is the positive DC supply for the receivers.

• s(k).PosCurrentLim_A = 1.25; – Specifies the current limit in amps for the positive
DC supply of the Instek PST-3202 power supply. This limits the current for the
positive DC supply of the receivers.

• s(k).NegSupply_V = 8; – Specifies the negative DC voltage in volts output by the
Instek PST-3202 power supply. This is the negative DC supply for the receivers.

• s(k).NegCurrentLim_A = .4; – Specifies the current limit in amps for the negative
DC supply of the Instek PST-3202 power supply. This limits the current for the
negative DC supply of the receivers.

• s(k).TestFileName = ’ChannelData.dat’; – This is an obsolete entry in teststructs.m.

• s(k).TestFileNameMat = ’ChannelData.mat’; – The name of the file to which pro-
cessed, complex channel samples are stored.

• s(k).AvgCnt = 16; – The number of sample sets that are time-averaged.

• s(k).PositionX_cm = 50:80; – Specifies the points in centimeters on the X axis
that are to be sampled.

• s(k).PositionY_cm = 2:30; – Specifies the points in centimeters on the Y axis that
are to be sampled.

• s(k).MotorNumber = 1; – The number of the linear positioner motor. This is always
set to 1.

• s(k).UsePositioner = true; – If set to true, then the linear positioner is initialized
and used to move the RF tag. If set to false, then the positioner is not used and may
be disconnected.

• s(k).FuncGenAttached = true; – If set to true, the function generators will be
initialized through the GPIB; else, if set to false, the program does not communicate
with the function generators and they can be disconnected from the GPIB cables.
This is useful if the m-sequence has already been loaded into the function generators
and they need to be moved a long distance from the testbed personal computer.

• s(k).ProcessDataFlag = false; – If set to true, data will be processed as each sam-
ple set is recorded; else, the data will simply be stored for later processing. Processing
data as each sample set is recorded increases the test time significantly.

• s(k).UseGainControl = true; – If set to true, the gain control algorithm will be
used when taking samples; otherwise, data samples will be recorded with gains that
are specified manually. See Appendix D.4 for more information.

• s(k).TXRXASpacing_cm = 34; – The distance in centimeters between the transmit
antenna and the RXA receiver antenna.

• s(k).TXRXBSpacing_cm = 52; – The distance in centimeters between the transmit
antenna and the RXB receiver antenna.
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• s(k).TXPwratAntenna_dBm = 29.5; – The power in dBm measured at the input of
the transmitter antenna.

• s(k).TXAntennaGain_dBi = 4.8; – The transmitter antenna gain. This is recorded
for reference and is not used anywhere in the code.

• s(k).RXAntennaGain_dBi = 4.8; – The receiver antenna gain. This is recorded for
reference and is not used anywhere in the code.

• s(k).RXASelfInputPower_dBm = -20.7; – The self-interference power at the RF
input port of RXA.

• s(k).RXBSelfInputPower_dBm = -20.1; – The self-interference power at the RF
input port of RXB.

• s(k).Notes = ’’; – A variable to enter any pertinent notes.

RunTestbed(ssa,k): This is the master control function for the testbed. To make a

measurement, call RunTestbed(teststructs,1) at the Matlab command prompt. The

test will be run according to the parameters specified in teststructs.m. Since teststructs.m

can contain an array of test structures, you must specify which element of the array you

wish to execute. For all of the measurements reported in this dissertation, k = 1. This

function always operates as though two receiver boxes were attached; in practice, one may

be physically disconnected. In the software, the two receivers are designated RXA and

RXB. The function proceeds as follows:

1. Prompts the user to enter a folder in which to store data. It is important to store each

measurement in its own folder. Otherwise, the testbed software will overwrite the raw

data files (the *.dat files). The program will also place a copy of teststructs.m in

the folder so that it is clear to which measurement the *.dat files belong.

2. Creates two receiver objects, one for RXA and one for RXB. The receiver objects are

used to pass, store, and process the data within the Matlab program.

3. Creates GPIB objects for communicating with the CW signal generator (the LO

source), the Instek PST-3202 power supply, and the two Agilent 33250A function

generators.
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4. Places the linear positioner at its initial position – X = 1 cm. The Y position is moved

manually by the user.

5. Prompts the user to move the linear positioner to its initial Y position.

6. The function then begins the data collection loop. With the positioner at its initial Y

position, the linear positioner moves across the specified X range. At each X position,

RunTestbed.m calls GetDataAGCAVG() to collect the raw data samples from the Exacq

ADC boards.

7. After samples have been recorded at all of the X positions corresponding to a particular

Y value, the user is prompted to move the linear positioner to the next Y position

and the data collection loop repeats.

GetDataAGCAVG(tt,PosX,PosY,PathName,varargin): This function is called by

the RunTestbed() function and, in turn, calls the ExacqGetDataAGCAVG.exe program to

collect data samples from the Exacq ADC boards. Here, tt is the current measurement

struct specified in teststructs.m, PosX and PosY are the current X and Y position of the

RF tag in centimeters, PathName is the path to the folder where raw data measurements

are stored, and varagin contains the receiver objects. ExacqGetDataAGCAVG.exe gathers

data from the specified Exacq ADC boards and writes the raw ASCII data to the *.dat

files in the folder specified by the user. If s(k).ProcessDataFlag = true, then RunTestbed()

will read the ASCII data from the *.dat file and store the raw measurement data in the

CurrentIdata or CurrentQdata fields of the RXA and RXB objects for later processing by

the ProcessData() function. Otherwise, once ExacqGetDataAGCAVG.exe records the data

in the *.dat file, control will return to RunTestbed(). If the UseGainControl flag is set in

teststructs.m, then ExacqGetDataAGCAVG.exe automatically adjusts the gain of the each

receiver; otherwise, samples are taken at the manually specified gain settings. See Section

D.4 for information on how to manually set the receiver gain.

ProcessData(tt(k),RXA,RXB): If the ProcessDataFlag is set in teststructs.m, then

this function is called from the RunTestbed() function. ProcessData() processes the raw
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data samples stored in the CurrentIdata or CurrentQdata fields of the RXA and RXB

objects, respectively, according to the method outlined in Section 5.4. The resulting complex

channel samples are stored in the RXGainNormChannelCoef V field of the RXA or RXB

receiver objects. Here, tt is the current measurement struct specified in teststructs.m and

RXA and RXB are the receiver objects.

D.2.2 Functions for Data Processing

Many Matlab functions were written to process and visualize the measured data. For the

sake of brevity, only a few will be highlighted here.

The ProcessFileData(k) function is called to process raw data samples recorded by the

backscatter testbed. ProcessFileData(k) prompts the user to select the folder containing

the data files. The folder must contain a copy of teststructs.m to specify the measurement

parameters associated with the data. The index of the struct array to be read from test-

structs.m is a required argument and is usually set to k = 1. ProcessFileData() reads

the raw data samples from the *.dat file contained in the specified folder and then calls

ProcessData() to process the raw data (just as RunTestbed(teststructs,1) does if the

ProcessDataFlag is set in teststructs.m). The processed channel samples are stored in

the same folder with the file name specified by the TestFileNameMat field in teststruct.m.

Once the raw data samples have been processed, several functions can be called to

estimate the measured fading distribution and to plot the measurements:

• MakePDF(monoorbi,VarInterp,numbins) – This function returns the PDF and CDF

of the measured values normalized by the calibration measurements.

• MakeMRCPDF(monoorbi,VarInterp,numbins) – This function returns the PDF and

CDF of the measured values normalized by the calibration measurements after MRC

combining has been performed.

• PlotSpatialPowerData(VarInterp) – This function plots the power (in dBm) of

each measured data point relative to the calibration measurement. The data points

are plotted on an (x,y) grid and normalized to the maximum measured value.
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• PlotSpatialPhaseData(VarInterp) – This function plots the phase (in degrees) of

each measured data point relative to the calibration measurement. The data points

are plotted on an (x,y) grid.

In each of the above functions, monoorbi is used to specify that the measurements were

taken either with the monostatic testbed or with the bistatic testbed. VarInterp is used

to specify the desired number of interpolated data points. If VarInterp is nonzero, an

FFT based interpolation method is used; otherwise, no interpolation is performed. For all

of the results presented in this dissertation, VarInterp was set to zero. The last argument,

numbins, specifies the number of bins into which normalized data points are grouped during

calculation of the data histogram.

In each of these functions, the processed data is first normalized by the calibration mea-

surements by calling CalData(MonoOrBi,VarInterp,PrompText). Therefore, by calling

MakePDF(), MakeMRCPDF(), PlotSpatialPowerData(), or PlotSpatialPhaseData() the

user will be prompted to locate both the processed data samples and calibration measure-

ments. After the data is normalized to the calibration measurements, the user is prompted

to specify the location of the noise floor and corresponding calibration measurements. The

noise floor measurements are normalized to calibration data and any measured data points

that are within 20 dB of the noise floor are discarded. More information is given in Section

5.6.

D.3 C++ Function Description

Two C++ programs were written for the backscatter testbed. The first, ExacqPutData.exe,

allows the gains of the direct-conversion receivers to be set manually. Its use is described

in Section D.4. The second and more important program is ExacqGetDataAGCAVG.exe

which is called by the Matlab function GetDataAGCAVG() to sample and return measured

data from the Exacq ADC boards. When called, ExacqGetDataAGCAVG.exe initializes the

Exacq ADC boards, records samples of the I and Q baseband signals, and then outputs the

samples to either the console screen or the specified ASCII file. ExacqGetDataAGCAVG.exe

can return sampled data with or without automatic gain control (AGC). If the AGC flag
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is set by the -a switch, ExacqGetDataAGCAVG.exe takes small sample sets and adjusts

the gain of each receiver until they are operating in their linear gain region. The full

number of samples, specified by the -n switch, are then recorded. The assumption is that

the channel is static while the AGC loop adjusts the receiver gains and records the final

samples. If time averaging is used, multiple sample sets are recorded; therefore, calling

ExacqGetDataAGCAVG.exe with the following switches would result in a total of 8192 raw

signal samples: ExacqGetDataAGCAVG.exe -n 1024 -g 8. The multiple sampled sets are

recorded in sequential order in the *.dat file. A complete list of the command line switches

for ExacqGetDataAGCAVG.exe are as follows:

-v – Specifies verbose mode. ExacqGetDataAGCAVG.exe will return its current status to
the console.

-b – Specifies the ExacqDeviceNumber from which data is to be read. The device num-
bers can be changed from the Exacq Control Center. More than one board can be
entered. For example, to read from Exacq boards 1 and 2, use ’-b 1 2’

-c – Specifies the channels to be read. For the Exacq CH3160 ADC boards, valid channels
are 0,1,2,3. Two channels must be specified for each receiver in the order [RXAI RXAQ
RXBI RXBQ] where, for example, RXAI is the I channel of RXA. For example: -c 0
1 0 1 is a valid switch.

-n – The number of requested samples. The program will round this to the next largest
multiple of 2048.

-r – The rate at which samples are to be taken in Hz. This is the same for all ADC
boards specified.

-i – The input voltage range (in Volts) of the Exacq A/Ds. Valid ranges are: 0.050 V,
0.100 V, 0.200 V, 0.500 V, 1 V, 2 V, 5 V. Four values, one for each channel of each
receiver must be specified. The order is: RXA0 RXA1 RXB0 RXB1 where RXA1
specifies channel 1 of RXA an so on. If using AGC, these values are ignored.

-e – External clock flag: If set, an external clock is used; otherwise the internal clock is
used for data collection.

-f – File Output Flag: If set, data is written to the file specified by the following argu-
ment. Else, data is written to the console screen.

-t – Wait for 2.75 volt trigger on Ain0 before taking data. Note, when triggering, this
channel is high impedance, DC coupled and cannot be used for analog input. This
switch was not used in the testbed reported in this dissertation.

-x – Specifies which physical receiver is used. The first receiver listed is associated with
the first specified Exacq Board and the second box with the second board.
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-a – Use automatic gain control.

-d – Specifies the number of the Exacq DAC board (defaults to 5).

-z – Specifies the DAC channels used for gain control on the specified receiver boxes. The
first channel is listed is used for the first specified receiver and the second channel for
the second specified receiver.

-g – Specifies the number of time averages to be performed. If AGC is used,
ExacqGetDataAGCAVG.exe takes several small sample sets to adjust the receiver gains
and then repeatedly records the number of sample sets specified by the -g switch.
The size of each sample set is determined by the -n switch.

-? – Lists a description of each input argument.

Default switches: -b 1 2 -c 1 2 1 2 -n 2048 -r 20000000 -i 5 5 5 5 -d 5 -z 0 1 -x 1 2 -g 1

D.4 Manual Gain Control

The gain of the receiver was controlled by the Exacq DAC board connected through a PCI

interface in the personal computer. A C++ program was written to allow manual control of

the gain by calling ExacqPutData.exe at the MSDOS command prompt. For example, the

following command can be issued from the command line to set the gain to its maximum

value: C:\<current directory>\exacqputdata.exe -d5 -o0 0.28. This command is

useful for adjusting the receiver’s DC offset. For this command, <current directory>

is the directory in which the executable file is located; -d5 specifies the internal address

of the Exacq DAC board (this was always set to 5 for the measurements reported in this

dissertation, but can be changed using the Exacq Control Center software provided with

the Exacq boards); -o specifies the channel, 0 or 1, on which the voltage will be output; and

the last number, 0.28 is the voltage (in volts) to be output. The Exacq DAC board expects

a 50 Ω load, but the receivers provide a high impedance load. Therefore, the voltage set

by the Exacq DAC board must be set to half the desired value. Since the maximum linear

gain voltage for the receivers is 0.55 V (see Appendix E.5.2), 0.28 V was output to set the

receiver to its maximum linear gain.
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APPENDIX E

DIRECT-CONVERSION RECEIVER DESIGN AND OPERATION

This appendix gives the design rationale and details of the direct-conversion receivers used

in the backscatter testbed described in Chapter 5.

E.1 Receiver Requirements

As outlined in Section 5.3.3, the major motivations for designing and prototyping custom

receivers were the desire to mitigate large self-interference signals and provide coherent

reception. Furthermore, to maximize the utility of the backscatter testbed, it was desired

that the receivers operate over the entire 5725-5850 MHz ISM frequency band with high

sensitivity for long-range tag measurements.

With these goals in mind, a direct-conversion receiver was designed and prototyped.

The receiver was implemented on two, four-layer FR4 printed circuit boards (PCB) – a

high-frequency RF front-end board shown in Figure 63 and a low frequency baseband am-

plification board shown in Figure 64. The boards were mounted in a metal box and sealed

with copper tape, shown in Figure 31. The cost of a single direct-conversion receiver was

approximately $400 – $340 for parts and $66 for the custom printed circuit board (PCB).

The custom PCBs were manufactured by Advanced Circuits, http://www.4pcb.com.

E.2 Receiver Design Rationale

Before the architecture of the receiver was chosen, a method for mitigating self-interference

was selected. Two options were considered. The first approach, known as active carrier

cancelation, reduces the self-interference signal while amplifying the desired modulated-

backscatter signal before the signal is down-converted [69, 70]. In this approach, a copy

of the received signal is subtracted from the original signal to reduce the amplitude of the

self-interference signal. This method is effective when the desired modulated-backscatter
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signal is so small that directly attenuating the received signal would bury the modulated-

backscatter signal in the receiver’s noise floor. A second approach is to directly convert the

self-interference signal to a zero intermediate frequency (IF) and block or adaptively cancel

it from the baseband signal. Filtering the DC signal with a blocking capacitor is by far the

simplest method to remove the self-interference; however, a very large capacitor is required

so that the cut-off frequency of the high-pass filter (formed by the series capacitor) is below

the first spectral component of the desired signal. One drawback to this approach is that

large capacitors are slow to respond to time-varying DC offsets [77]. Even so, this method

– directly converting the self-interference signal to zero IF and filtering with a DC blocking

capacitor – was chosen in order to minimize receiver complexity.

The chosen self-interference blocking technique can be used with either a heterodyne

or homodyne receiver architecture. In a heterodyne receiver, the RF signal is mixed to a

non-zero IF, amplified, filtered, and then mixed to baseband. In a homodyne – or direct-

conversion – receiver, the RF signal is mixed directly to baseband where it is then filtered

and amplified. In either receiver architecture, the self-interference cannot be removed until

the RF signal has been converted to a zero IF; therefore, any amplification before the base-

band stage will amplify both the desired modulated-backscatter signal and the undesired

self-interference. A direct-conversion receiver has the advantage that most of the ampli-

fication occurs at the baseband stage after the self-interference signal has been removed.

This prevents self-interference from saturating the baseband amplifiers and requires fewer

components than a heterodyne receiver. Therefore, the direct-conversion architecture was

chosen.

The direct-conversion architecture, however, is not without its difficulties. B. Razavi [77]

has outlined the following challenges of the direct-conversion architecture:

E.2.1 DC Offsets

In a direct-conversion receiver, a portion of the LO signal will leak back to the input of the

mixer where it mixes with itself causing a DC offset at the baseband stage. While this is

a significant problem for many direct-conversion receiver applications, in this design, the
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self-interference DC blocking capacitor will remove any DC offsets caused by self-mixing.

E.2.2 I/Q Mismatch

In any I/Q receiver, whether direct-conversion or heterodyne, the amplitude and phase of

the I and Q channels will not match exactly. This problem is largely due to imperfectly

matched hardware. Therefore, the I/Q mismatch of each receiver was carefully characterized

and, as shown in Section E.5.1, the resulting errors were found to be tolerable.

E.2.3 Even Order Distortion

Unlike superheterodyne receivers, direct-conversion receivers are susceptible to second-order

intermodulation products. However, since the testbed was to be used in a fairly controlled

environment, it was not expected that second-order intermodulation products would cause

problems. If they did, the testbed could be moved to a location with fewer interferers.

E.2.4 Flicker Noise

Flicker noise is inversely proportional to frequency and dominates other sources of noise at

low frequencies. Avoiding this type of noise is one of the benefits of directly sampling an

IF (i.e., not converting the signals to a zero IF); however, if the self-interference is to be

converted to a DC voltage and blocked, flicker noise will be present. The effect of flicker

noise can be reduced by using a modulation whose spectrum is not close to DC. For example,

the first non-zero spectral component of an m-sequence is given by the ratio of the chip-rate

fc over the length of the m-sequence L [72]. Therefore, through careful choice of fc and L,

the spectrum of the m-sequence can be moved away from DC.

E.2.5 LO Leakage

It was already noted that LO leakage will result in a baseband DC offset caused by self-

mixing, but the LO leakage can also find its way to the LNA input and radiate from the

receiving antenna. Though greatly attenuated, this signal can act as interference to other

nearby receivers. In this high-frequency backscatter testbed, the radiated LO leakage signal

will not interfere with other backscatter receivers, but will be received as additional self-

interference and will not affect the channel measurements. Measurements of LO leakage
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from the receiver’s RF input are presented in Appendix E.5.3.

E.3 Direct-conversion Receiver Overview

Figure 62 shows a simplified block diagram of the direct-conversion receiver designed for the

backscatter testbed. The RF input is bandpass filtered, passed through a low-noise amplifier

(LNA), and then mixed with the externally provided LO signal to shift the spectrum to

baseband. The signal is then low-pass filtered to remove the LO leakage and harmonics

(not shown), passed through a DC blocking capacitor to remove the self-interference signal,

amplified by a baseband variable gain amplification stage, and then passed through a low-

pass, anti-aliasing filter. A more detailed block diagram of the receiver is provided in Figure

63 and Figure 64. The direct-conversion receiver was prototyped on two boards – the RF

front-end board and the baseband amplification board. Photos of these boards are given in

Figures 65 - 66.

Figure 62: A simplified block diagram of the direct-conversion receiver. The maximum
input range of the gain control voltage was ±800mV, though testing showed that the max-
imum linear gain voltage range was less, as shown in Table 20 of Appendix E.5.2.
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Figure 63: The RF front-end board of the direct-conversion receiver.

Figure 64: The baseband I or Q amplification stage of the direct-conversion receiver.
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(a)

(b)

Figure 65: Photos of the (a) top and (b) bottom of the RF front-end receiver board.
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(a)

(b)

Figure 66: Photos of the (a) top and (b) bottom of the baseband amplification board.
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E.3.1 Components

A brief description of each of the major receiver components is provided in the follow-

ing paragraphs. A complete list of all of the components used on the RF front-end and

baseband-amplification boards are provided in Tables 17 - 19.

Front-End Filter: The front-end, bandpass filter is the TOKO TDFM2A dielectric filter.

It spans the 5.8 GHz ISM band with a bandwidth of 150 MHz centered at 5775 MHz.

Low Noise Amplifier: Two configurations of the direct-conversion receiver are possible.

The first configuration is intended for use in the bistatic testbed and uses the Minicircuits

GALI-39+ as the LNA. This amplifier provides a low noise figure, high gain, and good

isolation in a surface mount package. For the monostatic testbed receiver, the GALI-84+

is used as the LNA. It is has a higher noise figure than the GALI-39+, but can handle

more input power – its 1 dB compression point is approximately 5-6 dB higher than the

GALI-39+.

High-Frequency Mixer: The Minicircuits MCA1-80LH+ is was chosen to down-convert

the received RF signals because of its high 1 dB compression point, good LO-RF isolation,

and good RF and IF port voltage standing-wave ratios (VSWR). The mixer requires a 10

dBm LO signal.

Baseband DC Block Filter: Four parallel capacitors provide 188 µF to block baseband

DC signals. This high capacitance was chosen to provide a low cut-off frequency for the

high pass filter formed by the series capacitor.

Baseband Filter: 125 MHz of passband bandwidth is available in the 5725-5850 MHz

ISM frequency band. This translates to 62.5 MHz of baseband bandwidth. The Minicircuits

PLP-70+ 70 MHz, low-pass filter is used to filter out the high-frequency LO signal that

leaks through the mixer and to reject power received in the FM broadcast bands from 88 -

108 MHz.
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Baseband-Amplification Stage: Three amplifiers are used in the baseband-amplification

stage. The first, Texas Instrument’s OPA2846, is a low-noise, voltage-feedback operational

amplifier (VFA) set to provide an inverting voltage gain of 50 (in the linear scale). To

minimize the noise figure of the receiver, it is important for the first stage of baseband

amplification to have a small noise figure and high gain since there is quite a bit of loss

in the RF down-conversion stage. This amplifier is located on the RF front-end board.

The second amplifier, located on the baseband amplification board, is the AD8336 variable

gain, VFA from Analog Devices. A DC current is injected into the non-inverting input

of the amplifier to provide DC offset adjustment. The DC offset on both the I and Q

channels can be adjusted with two 10-turn potentiometers. The final amplifier is the Texas

Instruments OPA2674. It is a current-feedback operational amplifier (CFA) configured as a

non-inverting, unity gain buffer to drive a 50Ω load. The overall linear gain of each receiver

is presented in Appendix E.5.2.

Anti-Aliasing Filter: The final component of the baseband amplifier board is a Mini-

circuits PLP-10.7+ 10 MHz low-pass filter. This filter was chosen to minimize aliasing at

the 20 MHz sampling rate used by the Exacq ADC boards to sample the baseband I and

Q outputs.

LO Generation Circuit: This circuit amplified, split, and phase-shifted the LO signal

for mixing with the received RF signal. A detailed block diagram of the LO generation

circuit is shown in Figure 63. To operate properly, a 5.79 GHz, 2 dBm signal is injected

into the LO connector of the receiver. The signal is amplified by a Minicircuits GALI-84+

amplifier and then split and phase-shifted using a 90o hybrid microstrip circuit. The 90o

hybrid was design using the theory provided by Pozar [62] and optimized using Ansoft HFSS,

a 3D electromagnetic and microwave software package. The 90o hybrid was optimized for

5.79 GHz operation and, since it is a narrowband device, its performance will degrade as

the LO frequency is shifted.
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Table 17: List of components for the RF front-end board.

Quantity Part Reference Value Part Number Cost

Parts Purchased from Digikey at http://www.digikey.com

12 C1,C12,C13,C18 0.1µF 399-1281-1-ND $0.12

C22,C23,C24,C25

C27,C29,C30,C31

4 C21,C26,C28,C32 10µF 495-2238-1-ND $0.45

8 C4,C5,C6,C7 47µF 490-3888-1-ND $2.76

C8,C9,C10,C11

4 J4,J5,J6,J7 Power Pins WM4800-ND $0.92

1 R5 100Ω P100LCT-ND $0.10

2 R19,R26 91Ω RR08Q91DCT-ND $0.14

4 R20,R21,R27,R28 50Ω RR08Q49.9DCT-ND $0.14

2 R22,R29 1kΩ RHM1.00KHCT-ND $0.08

1 R14 50Ω P49.9LCT-ND $0.10

6 R23,R24,R25 0Ω P0.0GCT-ND $0.07

R30,R31,R32

12 R6,R7,R8,R9 42.2Ω 541-42.2AACT-ND $0.29

R10,R11,R12,R13

R15,R16,R17,R18

4 R1,R2,R3,R4 91Ω P91ACT-ND $0.08

(or 541-42.2AACT-ND

for GALI-84+)

4 U16,U18,U23,U25 Ferrite Choke 240-2401-1-ND $0.09

2 U17,U24 OPA2846 Op Amp 296-16853-5-ND $6.40

4 U19,U20,U21,U22 Testpoint 50XXK-ND $0.32

Continued on next page
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Table 17 – continued from previous page

Quantity Part Reference Value Part Number Cost

4 HeatSink 345-1041-ND $0.49

Parts Purchased from Mini-Circuits at http://www.minicircuits.com

1 U3 LNA GALI-39+ $2.40

(or GALI-84+)

1 U4 2-way, 0◦ SCN-2-65+ $2.50
Power Splitter

2 U5,U7 10 dB LO Mixer MCA1-80LH+ $14.95

2 U6,U8 70 MHz LPF PLP-70+ $13.70

3 U12,U13,U15 High Power Amp GALI-84+ $4.00

4 U1,U9,U10,U14 RF Choke TCCH-80+ $3.45

Parts Purchased from Richardson Electronics at http://www.rell.com

1 U2 Front-End BPF TDFM2A-5775V-11 $5.00

Parts Purchased from Lighthorse Technologies, Inc.
at http://www.rfconnector.com

4 J1,J2,J3,J8 SMA Connector LTI-SASF55MGT $4.89

Parts Purchased from Mouser at http://www.mouser.com

7 C2,C3,C14,C15 DC Block 766-C06BL851X5ZNX0T $2.59

C16,C17,C19,C20

Table 18: List of components for the baseband board

Quantity Part Reference Value Part Number Cost

Parts Purchased from Digikey at http://www.digikey.com

Continued on next page
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Table 18 – continued from previous page

Quantity Part Reference Value Part Number Cost

16 C1,C2,C4,C5 0.1µF 399-1281-1-ND $0.12

C6,C9,C10,C12

C13,C14,C17

C19,C21,C23,C25

C32

8 C3,C7,C11,C15 10µF 495-2238-1-ND $0.45

C18,C20,C22,C24

2 C8,C16 1nF PCC1952CT-ND $0.18

3 C26,C28,C30 0.33µF 493-2339-1-ND $0.18

1 C27 0.1µF 493-2336-1-ND $0.21

2 C29,C31 1µF 493-2396-1-ND $0.19

6 J6,J11,J14,J15 Power Pins WM4800-ND $0.92

J16,J17

6 J7,J8,J9,J10 JUMPER WM4000-ND $0.17

J12,J13

4 R1,R6,R10,R15 2kΩ 311-2.0KDCT-ND $0.17

2 R2,R11 10kΩ 3269P-1-103LF-ND $4.43

4 R3,R5,R12,R14 301Ω 311-301DCT-ND $0.14

6 R4,R8,R9,R13 100Ω RR08P100DCT-ND $0.14

R17,R18

8 R7,R16,R19,R29 0Ω P0.0GCT-ND $0.07

R24,R31,R38,R41

2 R21,R26 453Ω P453HCT-ND $0.07

2 R20,R25, 50Ω RR08Q49.9DCT-ND $0.14

8 R22,R23,R27,R28 300Ω RR08P300DCT-ND $0.14

Continued on next page
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Table 18 – continued from previous page

Quantity Part Reference Value Part Number Cost

R37,R39,R40,R42

2 U1,U26 OPA2674 296-15212-5-ND $2.75
Op Amp

2 U2,U5 AD8336 Variable AD8336ACPZ-R7CT-ND $9.30
Gain Amp

4 U3,U4,U6,U7 Ferrite Choke 490-1018-1-ND $0.06

4 U8,U9,U10,U11 Ferrite Choke 240-2401-1-ND $0.09

1 U16 10VDC 296-11140-1-ND $0.78
Regulator

3 U17,U18,U19 HeatSink 345-1041-ND $0.49

1 U20 +5VDC MC78M05ACDTRKGOSCT-ND $0.77
Regulator

1 U25 -5VDC MC79M05CDTRKGOSCT-ND $0.58
Regulator

4 U77,U78,U79,U80 Testpoint 50XXK-ND $0.32

Parts Purchased from Lighthorse Technologies, Inc.
at http://www.rfconnector.com

5 J1,J2,J3,J4,J5 End Launch SMA LTI-SASF55MGT $4.89

Parts Purchased from Mini-Circuits at http://www.minicircuits.com

2 U12,U13 10.7 MHz LPF PLP-10.7+ $13.70
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Table 19: Miscellaneous components for the direct-conversion

receiver.

Quantity Part Value Part Number Cost

Reference

Parts Purchased from Mouser at http://www.mouser.com

2 N/A Feed Thru 657-54F-785-005 $7.56
Filter

1 N/A GND Connector 534-7313 $0.15

1 N/A Aluminum 546-1590E $21.54

Enclosure

7 N/A 1/4 in. 4-40 534-9400 $0.14
Machine Screws

4 N/A 2 inch 534-2207 $1.39
4-40 standoffs

7 N/A 4-40 Hex nuts 534-9600 $0.05

7 N/A #4 Washer 524-11-142C $3.33 for 100

Parts Purchased from Digikey at http://www.digikey.com

9 N/A Power Connector WM2900-ND $0.44

E.4 Receiver Schematics

This section presents detailed electrical schematics of the RF front-end board and the base-

band amplification board used in the direct-conversion receiver. Figures 67 - 71 show the

schematic of the RF front-end board while Figures 72 - 76 display the schematic of the

RF baseband amplification board. In each schematic, the reference numbers (e.g. C1,

C2, etc.) correspond to those given in Tables 17 - 19. All of the schematics were devel-

oped using the Cadence Design Entry program which was used to output a netlist for

the board layout. The board layout was begun using OrCAD Layout Plus, but because
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of licensing issues, this program was replaced with Cadence PCB Editor. Therefore, the

baseband amplification board layout was completed in OrCAD Layout Plus and the RF

front-end board layout was done in Cadence PCB Editor. Cadence design files and Ger-

ber files for each of the boards are archived on the Propagation Group’s SVN server at

https://durgin-srv1.ece.gatech.edu/repos/RFID/trunk/Backscatter Radio/

Hardware Design/Receiver Board/.
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E.5 Receiver Characterization

This section outlines the procedure used to characterize the performance of the three direct-

conversion receivers. The important performance metrics that were measured for each

receiver are:

• Relative I and Q amplitude and phase errors.

• Linear gain range.

• The return loss of each receiver port.

• LO leakage from the receiver’s RF input.

The I and Q amplitude and phase errors and the linear gain range were measured using

the setup shown in Figure 77 and the return loss and LO leakage were measured using

an Agilent E5071B network analyzer. The setup shown in Figure 77 was fully automated

through Matlab programs using the GPIB and was able to sample the receiver’s I and Q

output as a function of receiver gain, RF input frequency, and RF input power.

Figure 77: The test equipment setup for characterizing the direct-conversion receivers
used in the backscatter testbed.
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E.5.1 Relative I and Q Amplitude and Phase Errors

The relative I and Q amplitude and phase errors were measured to determine the total am-

plitude and phase error produced on the final combined signal. A procedure for measuring

and correcting relative amplitude and phase errors was presented by Churchill et al. [78]

which used digital filtering of the sampled I and Q signals to determine two correction

factors. The relative amplitude and phase errors between the I and Q signals can be back-

solved from the correction factors. In the formulation by Churchill et al., the baseband I

and Q signals – corresponding to a received RF tone – with relative amplitude and phase

errors can be written as

I = A(1 + ε) cos(2πft) + a (87)

Q = A sin(2πft + φ) + b (88)

where A is the amplitude, f is the frequency, φ is the relative phase error, ε is the relative

amplitude error, and a and b are DC offsets. If no errors are present, the I and Q terms of

(87) and (88) reduce to a cosine and sine wave, respectively – the expected baseband output

corresponding to a sinusoid received at the RF input. Figures 78 - 80 plot the relative phase

error φ (in degrees) and the relative amplitude imbalance (in the dB scale) for each receiver.

In these plots, the relative amplitude imbalance is defined as

Relative Amplitude Imbalance = 10log10(1 + ε) (89)

The blue lines represent the measured relative amplitude and phase errors for different

RF input power levels1. The figures show that some of the measurements were affected

by noise and examination of the data indicated that this was the case for measurements

corresponding to low RF input power levels. Some of the extremely noisy measurements

were removed from the figures to aid in visualization, but the global maximum error and

median error at each frequency – calculated using all of the measurements in each figure –

are shown.

1These measurements were too numerous to label individually.
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The total amplitude error and the total phase error of the combined I and Q signals were

calculated from the median relative amplitude errors (1 + εmed) and median phase errors

φmed shown in Figures 78 - 80. To calculate the total peak amplitude and phase errors for

each frequency, two vectors were formed from several sampled periods of the signals with

and without imbalance errors, described by (90) and (91), respectively.

Terror
[
k
]
= (1 + εmed) cos

[
2πfk

]
+ j sin

[
2πfk + φmed

]
(90)

Tideal

[
k
]
= cos

[
2πfk

]
+ j sin

[
2πfk

]
(91)

For each frequency, the total percent amplitude error Ak and total phase error Pk of the

kth time sample were calculated as shown in (92) and (93), respectively.

Ak = 100 ×
∣∣Terror

[
k
]∣∣− ∣∣Tideal

[
k
]∣∣∣∣Tideal

[
k
]∣∣ (92)

Pk = ∠ Terror
[
k
]− ∠ Tideal

[
k
]

(93)

In (93), the subtraction accounts for the 2π periodicity of the phase. The total peak

amplitude error and the total peak phase error were found by taking the maximum of (92)

and (93) over the full range of k for each measured frequency. These total peak errors are

plotted in Figures 81 - 83. For receiver 1 and 2, the total peak amplitude error is less than

10% and the total peak phase error is less than 10o for all measured frequencies. For receiver

3, the total peak amplitude error is less than 20% and the total peak phase error is less

than 25o. The poorer performance of receiver 3 is likely caused by an impedance mismatch

between the LNA (Minicircuits GALI-84+) and the down-conversion mixers. However, for

the envelope distribution measurements presented in this dissertation, total peak amplitude

errors were of most concern and considered acceptable.
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(a)

(b)

Figure 81: The total peak amplitude and total peak phase error of the combined I and Q
signals for receiver 1. These errors are calculated from equations (92) and (93) using the
median relative amplitude and phase errors given in Figure 78.
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(a)

(b)

Figure 82: The total peak amplitude and total peak phase error of the combined I and Q
signals for receiver 2. These errors are calculated from equations (92) and (93) using the
median relative amplitude and phase errors given in Figure 79.
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(a)

(b)

Figure 83: The total peak amplitude and total peak phase error of the combined I and Q
signals for receiver 3. These errors are calculated from equations (92) and (93) using the
median relative amplitude and phase errors given in Figure 80.
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E.5.2 Receiver Linear Gain Region

The test setup shown in Figure 77 was also used to determine the linear operating region

of each receiver. Figures 84 - 86 show plots of the RF input power versus the baseband

output power for the I and Q channels of each receiver. The linear region for each receiver

is the region to the left and below the vertical and horizontal black lines. The region to

the right of the vertical line is where the baseband amplification board saturates while the

region above the horizontal is where the high-frequency LNA saturates. Figures 87 - 89 show

the total receiver gain measured at the I and Q outputs as a function of the gain control

voltage Vgain for a given RF input power level. The RF input power level was chosen to

avoid saturating the LNA in order to determine the maximum linear range of the baseband

amplifiers. These figures were used to approximate the gain of each receiver with a linear

equation which is shown graphically by the black line in Figures 87 - 89. These equations

and the linear limits of each receiver are summarized in Table 20.
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(a)

(b)

Figure 84: The RF input power versus the baseband output power for the (a) I and (b)
Q channels of receiver 1. The region to the left and below the black lines is the linear
operating region of the receiver.
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(a)

(b)

Figure 85: The RF input power versus the baseband output power for the (a) I and (b)
Q channels of receiver 2. The region to the left and below the black lines is the linear
operating region of the receiver.
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(a)

(b)

Figure 86: The RF input power versus the baseband output power for the (a) I and (b)
Q channels of receiver 3. The region to the left and below the black lines is the linear
operating region of the receiver.
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(a)

(b)

Figure 87: The total gain of receiver 1 measured at the (a) I and (b) Q channels as a
function of the gain control voltage Vgain for a given RF input power level. The orange lines
mark the upper and lower limits of the linear gain region.
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(a)

(b)

Figure 88: The total gain of receiver 2 measured at the (a) I and (b) Q channels as a
function of the gain control voltage Vgain for a given RF input power level. The orange lines
mark the upper and lower limits of the linear gain region.
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(a)

(b)

Figure 89: The total gain of receiver 3 measured at the (a) I and (b) Q channels as a
function of the gain control voltage Vgain for a given RF input power level. The orange lines
mark the upper and lower limits of the linear gain region.
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Table 20: The limits of the linear region for each receiver and the equation approximating
the receiver linear gain at both the I and Q output.

Receiver 1

RF Input Power Limit (dBm): -12

I and Q Baseband Output Power Limit (dBm): 13

Linear Gain Voltage Range (V): −0.43 ≤ Vgain ≤ 0.55

I Channel Gain Equation (dB)†: GainI = 49.39 Vgain + 34.7

Q Channel Gain Equation (dB)†: GainQ = 49.187 Vgain + 34.46

Receiver 2

RF Input Power Limit (dBm): -12

I and Q Baseband Output Power Limit (dBm): 13

Linear Gain Voltage Range (V): −0.38 ≤ Vgain ≤ 0.55

I Channel Gain Equation (dB)†: GainI = 49.39 Vgain + 34.7

Q Channel Gain Equation (dB)†: GainQ = 49.351 Vgain + 34.609

Receiver 3

RF Input Power Limit (dBm): -5

I and Q Baseband Output Power Limit (dBm): 13

Linear Gain Voltage Range (V): −0.34 ≤ Vgain ≤ 0.55

I Channel Gain Equation (dB)†: GainI = 49.39 Vgain + 34.7

Q Channel Gain Equation (dB)†: GainQ = 49.366 Vgain + 28.43
†GainI and GainQ are in the dB scale and Vgain has units of Volts.
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E.5.3 Return Loss and LO Leakage Measurements

The return loss and LO leakage through the RF input port were measured using an Agilent

E5071B network analyzer. The measurements for each receiver are presented in Figures

90 - 92.

(a)

(b)

Figure 90: The (a) return loss for the baseband ports and (b) return loss and LO leakage
at the ports on the RF front-end board for receiver 1.
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(a)

(b)

Figure 91: The (a) return loss for the baseband ports and (b) return loss and LO leakage
at the ports on the RF front-end board for receiver 2.
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(a)

(b)

Figure 92: The (a) return loss for the baseband ports and (b) return loss and LO leakage
at the ports on the RF front-end board for receiver 3.
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