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SUMMARY

The numerical resolution of turbulent flows in high-speed environment is of fun-

damental importance but remains a very challenging problem. First, the capture of

strong discontinuities, typical of high-speed flows, requires the use of shock-capturing

schemes, which are not adapted to the resolution of turbulent structures due to their

intrinsic dissipation. On the other hand, low-dissipation schemes are unable to re-

solve shock fronts and other sharp gradients without creating high amplitude numer-

ical oscillations. Second, the nature of turbulence in high-speed flows differs from its

incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid

closure must be adapted to the modeling of compressibility effects and shock waves

on turbulent flows.

The developments described in this thesis are two-fold. First, a state of the art clo-

sure approach for LES is extended to model subgrid turbulence in compressible flows.

The energy transfers due to compressible turbulence and the diffusion of turbulent

kinetic energy by pressure fluctuations are assessed and integrated in the Localized

Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the reso-

lution of the LES equations and of the model transport equation, which combines a

central scheme for turbulent resolutions to a shock-capturing method. A smoothness

parameter is defined and used to switch from the base smooth solver to the upwind

scheme in regions of discontinuities.

It is shown that the developed hybrid methodology permits a capture of shock / tur-

bulence interactions in direct simulations that agrees well with other reference simula-

tions, and that the LES methodology effectively reproduces the turbulence evolution

xiv



and physical phenomena involved in the interaction. This numerical approach is then

employed to study a problem of practical importance in high-speed mixing. The

interaction of two shock waves with a high-speed turbulent shear layer as a mixing

augmentation technique is considered. It is shown that the levels of turbulence are

increased through the interaction, and that the mixing is significantly improved in

this flow configuration. However, the region of increased mixing is found to be local-

ized to a region close to the impact of the shocks, and that the statistical levels of

turbulence relax to their undisturbed levels some short distance downstream of the

interaction.

The present developments are finally applied to a practical configuration relevant

to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow

is considered numerically, and compared to the results of an experimental study. A

fair agreement in the statistics of mean and fluctuating velocity fields is obtained.

Furthermore, some of the instantaneous flow structures observed in experimental

visualizations are identified in the present simulation. The dynamics of the interaction

for the reference case, based on the experimental study, as well as for a case of

higher freestream Mach number and a case of higher momentum ratio, are examined.

The classical instantaneous vortical structures are identified, and their generation

mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical

structures, recently revealed in low-speed jets in crossflow but never documented for

high-speed flows, are identified during the flow evolution.

xv



CHAPTER I

INTRODUCTION

There is a renewed interest in the research community in high altitude and high-speed

flight. Advanced designs for supersonic and hypersonic vehicles still require significant

developments, particularly in the field of propulsive systems. Ramjet engines, in which

the incoming air flow speed is decreased to subsonic speed relative to the engine, can

be efficiently used for M = 3 to 5 flight regimes, but beyond these speeds, alternate

propulsion systems are required. The Supersonic Combustion ramjet (or scramjet)

engine, where the incoming airflow is decelerated but remains supersonic within the

engine, is one of the most promising propulsion options. The study of mixing and

combustion processes in supersonic environment has thus been the topic of on-going

research. A review of scramjet propulsion (Curran and Murthy [2000]) highlights

the different programs in Japan, Russia, Germany, France and the United States,

including their specific and complementary aspects.

Studies of high-speed mixing have been, for the most part, experimental. Progress

in high-speed imaging and acquisition systems have permitted the development of

sophisticated methods that provide qualitative and quantitative evaluations of super-

sonic velocity (supersonic PIV, LDV) and scalar fields (Planar Laser Scattering, Pla-

nar Laser-Induced Fluorescence, CARS thermometry). These campaigns are however

limited by the lack of modularity and the high cost associated with the experimental

rigs. The development of high accuracy, low cost, dynamic numerical simulations,

on the other hand, could make Computational Fluid Dynamics (CFD) a complemen-

tary tool for preliminary design purposes, as insights into the physics involved in
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fundamental configurations and in specific geometries could be gained. To be opera-

tional, such a numerical tool should be able to simulate high-speed flows reliably, at

reasonable computational cost.

Turbulence in such engines is of fundamental importance, as fast mixing of fu-

els and oxidizers is a requirement to an efficient and stable combustor. Turbulence

in compressible flows differs from its incompressible counter-part, and an accurate

numerical approach should account for these changes. The objective of this the-

sis is to develop a novel numerical methodology for accurate low-cost calculations

of high-speed turbulent flows. To better understand the challenges associated with

this development, we first review the physics of compressible turbulence, from the

early observations and interpretations to the current knowledge. We then present an

overview of the challenges encountered during the design of high-fidelity numerical

schemes for the numerical resolutions of high-speed turbulent flows. These physi-

cal and numerical backgrounds lead in to the specific aims of this thesis, which are

exposed in the final section of the chapter.

1.1 Turbulence in Compressible Flows

1.1.1 Compressible Turbulence

Turbulence is present in most flows of practical interest and has a strong impact on

their evolution. The seemingly random fluctuations in pressure, velocity, etc. can

significantly change the dynamics of a system, increasing the drag over a body and

generating noise, but also leading to high levels of mixing. Turbulence has for these

reasons been the focus of a large body of research, involving theoretical, analytical,

experimental and, more recently, numerical works. Despite the chaotic nature of

turbulence, reliable predictions can be made for many simple, fundamental config-

urations. However, due to the large span of time- and length- scales involved, the
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complexity of the flow equations, and the variability in experimental and numeri-

cal studies, the fundamental physics of turbulence is not yet fully understood, and

remains a very active and prolific area of research.

Most of the early studies have concentrated on simpler incompressible flows, that

is, flows with little fluctuations in density associated with pressure fluctuations. The

simplifications brought to the governing equations from the incompressible assump-

tion facilitate theoretical and analytical derivations. Furthermore, experimental stud-

ies are often limited to low-speed incompressible conditions. Yet, the quest for in-

creased flight speeds has been a major motivation for aeronautical developments, and

the study of compressible turbulent flows has become necessary as flight speed has in-

deed increased. The characterization of high-speed compressible and turbulent flows

is an effort that has combined analytical studies to experimental observations. A tur-

bulent flow is called compressible when a significant amount of density fluctuations

is formed in response to perturbations in the pressure field (Lele [1994]), and these

density variations are associated with local velocity divergence. Kovásznay [1953]

carried out a small perturbation analysis of the Navier-Stokes equations and showed

that a field of turbulence could be essentially decomposed into three modes of fluc-

tuations: vorticity, acoustic and entropy modes. In first order analysis, these modes

are decoupled. However, higher order analyses show that mode coupling occurs, and

that any two modes can interact through non-linearities and generate all three modes

(Chu and Kovásznay [1958]). Furthermore, the turbulent velocity is characterized

as the superposition of a solenoidal (non-divergent) component, and a dilatational

(irrotational) part obtained from a Helmholtz decomposition. The first contribution

is found in incompressible flows, whereas the second component is typical of com-

pressible flows. Their energetic behaviors are very different in nature. The vortical

structures of the solenoidal field interact through non-linearities and viscous forces,

and form the well-known energy cascade. The dilatational field is an ondulatory and
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Figure 1: Transfers between mean kinetic energy, turbulent kinetic energy and
thermal energy (adapted from Ristorcelli [1997]).

propagative mode, where kinetic energy is exchanged with the energy contained in

the thermodynamics fluctuations. The energy balance in compressible turbulence

is then more complex than in the incompressible case as new physical phenomena

arise. The turbulent production and solenoidal dissipation (hereafter noted P and

εs respectively) are the main actors of the energy budget in incompressible turbulent

flows. The new energy transfers, highlighted in Fig. 1, come from the dissipation

of compressible turbulence by the dilatational dissipation (εd) of turbulent kinetic

energy and by the pressure dilatation correlation (< pd >). These decompositions

have been employed in Rapid Distortion Theories and Linear Interaction Analyses in

order to gain insight in the fundamental processes of compressible turbulence. This

analytical work is however limited to fundamental, homogeneous flows, and cannot

be applied to general and practical configurations.

These modal decompositions are also often used in the interpretation of experi-

mental results. Multiple experimental studies have focused on high-speed shear layers

and their deviation from the incompressible behavior. The skin friction coefficients in

a high-speed boundary layer and the mixing layer growth rate were found affected by

the free-stream velocity / Mach number. Two types of compressible turbulent flows

have been identified: those affected by the variations in the mean thermodynamics
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fields, and those that contain small scale fluctuations in thermodynamics variables

that interact with the turbulent structures. High-speed boundary layers were found

to be mostly affected by the large density/temperature gradients within the layer. If

properly scaled (e.g., van Driest [1951]), these high flows could be directly related

to the incompressible boundary layers. Morkovin [1962] postulated that the acous-

tic mode was negligibly small in a typical non-hypersonic boundary layer, and that

the entropy mode was also negligible for adiabatic flows. Small scale fluctuations

in the thermodynamics field would then be associated with the velocity fluctuations

through an isentropic process. The vortical mode of fluctuations is dominant, and

the turbulent structures are comparable to their incompressible counter-parts (Brad-

shaw [1977], Friedrich and Bertolotti [1997]). From that perspective, compressible

turbulence plays little role in the physics of supersonic boundary layers.

Turbulent mixing layers, on the other hand, were found to be strongly affected by

the flow compressibility. Experiments have shown that the mixing layers growth rate

is reduced as the levels of compressibility are increased (Brown [1974], Papamoschou

and Roshko [1988]). Also, the turbulent structures in the flow are changed in high

speed flows: the turbulent shear stress decreases, and the normal stress anisotropy in-

creases in increasingly compressible mixing layers. Furthermore, the (reduced) growth

rate is a visible and easily measurable quantity. Parameterizations of the effects of

compressibility on spatial mixing layers have been obtained, that relate the ratio of

the compressible to the incompressible growth rates to a quantification of the level

of compressibility in the shear layer. The convective Mach number (Mc, defined

from the velocity difference and the average speeds of sound in the two streams, Pa-

pamoschou and Roshko [1988]), and other parameters (Slessor et al. [2000]) have been

proposed as a measure of the compressibility levels, leading to a fairly good collapse

of well-documented experimental data of growth rate reduction onto a single curve

(Barone et al. [2006]). Another motivation for the study of high speed mixing layers
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lies in the practical implications of the reduced growth rate: mixing is of fundamental

interest for high-speed propulsion systems, where fuel / oxidizer mixing is of great

importance. For these reasons, this configuration is an ideal candidate for the study

of compressible turbulence in practical flows, and has been the focus of many studies,

but the actual impact of compressible turbulence could not be estimated.

A new look into the fundamentals of compressible turbulent dynamics has emerged

with the development of highly accurate computational techniques and the direct nu-

merical simulations of isotropic turbulent and homogeneous shear flows. The objective

of the early studies was the characterization and quantification of the compressible

energy transfers, reviewed earlier, then regarded as the main cause for the shear layer

growth rate reduction. More particularly, the increasing impact of the dilatational

dissipation with compressibility was primarily suspected, and many researchers have

studied its evolution, eventually leading to scaling laws and models for εd. Zeman

[1990] attributed the most part of the dilatational dissipation to the appearance of

shocklets in the flow. These regions of localized compressions (shocks in regions of

strong dilatational velocity fields, which satisfy the Rankine-Hugoniot relations) have

been observed in direct simulations of two-dimensional shear layers, and found to

strongly impact the mixing layer developments. From an assumed probability den-

sity function of the occurrence of shocklets, Zeman [1990] proposed a simple modeling

expression for the dilatational dissipation in this analytical work, relating εd linearly

to εs, with a exponential dependence on the square of turbulent Mach number Mt

(defined as the Mach number based on the rms velocity of the turbulent kinetic en-

ergy). Another closure for the dilatational dissipation was derived by Sarkar based

on DNS simulations of isotropic compressible turbulence (Sarkar et al. [1989]) and

homogeneous shear flows (Sarkar [1992]). Again, a linear scaling between solenoidal

and dilatational dissipations was found, with a proportionality factor depending on

M2
t . The other compressible energy transfer, the pressure dilatation correlation, has
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also been regarded as a major means of turbulence modification in compressible flows.

Acoustic modes, amplified through pressure-dilatation, were believed to lead to acous-

tic losses, hence reducing the levels of turbulent kinetic energy in the flow. Again,

many researchers have studied the structural form of this energy transfer, and several

models have been proposed (Zeman [1990], Taulbee and Van Osdol [1991], Sarkar

[1992], El Baz [1992]).

These models successfully reproduced a decrease in the mixing layer growth rate,

but failed to capture the changes in the mixing layer turbulent statistics, and dete-

riorated the simulations of high-speed boundary layers. Their physical relevance was

questionable. The presence of shocklets has not been confirmed in experiments and

three-dimensional numerical simulations unless relatively high Mach numbers (well

above the lowest Mach numbers showing compressibility effects) are considered (Vre-

man [1997], Rossmann et al. [2002], Fu and Li [2006]). Furthermore, the effective

dissipation due to these features, when present, is found to be at most a few per-

cent of the overall dissipation (Lele [1994], Vreman [1997]). These early models were

found not to represent the physics of energy transfers in fully developed compressible

turbulence, but rather modeled the evolution of flows away from acoustic equilibrium.

More insight into the development of supersonic mixing layers has been gained

later from analytical results, Rapid Distortion Theory studies and DNS studies of

compressible mixing layers. The principal modes of instability change as the convec-

tive Mach number is increased. The two-dimensional, most unstable modes of incom-

pressible mixing layers (Michalke [1964], Pierrehumbert and Widnall [1982], Metcalfe

et al. [1987]) are found to persist for convective Mach numbers up to Mc = 0.6,

though the growth rate of the wave decreases as the Mach number is increased. Af-

ter Mc = 0.6, the most unstable mode of the mixing layer has been found to be

three-dimensional, with further decrease in the instability growth rate (Sandham and

Reynolds [1991]). These trends persist in the non-linear regimes (Lele [1994]). It has
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been shown that the pressure strain correlation, which re-distributes the turbulent

kinetic energy between the different components of the turbulent stresses, decreased

with the convective Mach number, hence increasing the shear stress anisotropy (Sarkar

[1995], Simone et al. [1997]). The turbulent production is then reduced, and the tur-

bulent kinetic energy within the mixing layer decreases. Modifications in turbulent

behavior for compressible mixing layers is found to be mostly of a structural nature.

At the same time, a more fundamental understanding of compressible turbulence

has been gained from analytical and spectral studies. Fundamental studies have

shown that the solenoidal velocity field in isotropic turbulence is not strongly af-

fected by the levels of compressibility. The spectral representation of the solenoidal

energy shows a persisting k−5/3 behavior in the inertial range, unless high values of

the turbulent Mach number are considered (Mt = O(1), Lele [1994], Bataille et al.

[1997]). Furthermore, the amount of dilatational energy remains relatively small for

moderate values of the turbulent Mach number. It has also been shown that the

dilatational dissipation scales as M 4
t , and inversely to the Reynolds number in the

limit of small turbulent Mach numbers (Ristorcelli [1997], Fauchet and Bertoglio

[1999]). The pressure-dilatation is related to the departure from equilibrium in the

turbulent energy budget (balance between production and dissipation), and can ac-

cordingly play a non-negligible role in out-of-equilibrium flows. The energy losses

due to acoustic radiation were, however, found to represent a rather small portion of

the turbulent kinetic energy production in many cases (Lele [1994], Dussauge [2001]),

unable to represent alone the turbulent kinetic energy reduction. Finally, it should

be noted that high values of Mt are not likely to be encountered in configurations

of practical interest, unless hypersonic speeds are considered (Ristorcelli and Blais-

dell [1997], Ristorcelli [1997], Dussauge [2006]), leading to a ”weakly compressible

nature of turbulence” (Ristorcelli and Blaisdell [1997]). The small Mt developments

described here are valid for a large range of practical configurations.
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Overall, it is seen that turbulence in high-speed flows is mostly solenoidal, with lit-

tle contributions from the dilatational components of the velocity field. Furthermore,

the universal scales of the solenoidal component of the velocity are not affected by the

presence of compressible turbulence, and still show an incompressible behavior. Scal-

ings of the dilatational dissipation and pressure-dilatation correlation show that the

former is negligibly small for most cases of practical turbulent flows (small Mt, large

Reynolds number), whereas the latter can play a role in out-of-equilibrium flows, and

should be considered in the turbulent energy budget. The most important impact of

compressibility on the turbulent behavior resides in the modification of the Reynolds

stresses caused by the reduced pressure strain rate correlation.

1.1.2 Shock / Turbulence Interaction

The findings presented earlier have highlighted the very low levels of compressible

(dilatational) velocity in many practical configurations. The changes in compressible

turbulent flows have been found to be mostly of a structural nature. These results are

valid for flows with small bulk dilatation, that is, when the length-scales of the tur-

bulent fluctuations are comparable or smaller than the characteristic length-scales of

the pressure fluctuations. The presence of strong compressions, typical of supersonic

flows, changes the considerations presented earlier, and lead to a different evolution

of the turbulent statistics.

Interactions of shocks with shear flows occur in many high-speed flow situations

such as external aerodynamics of transonic, supersonic and hypersonic vehicles or

internal flows in scramjets. Such interactions can have a strong impact on the flow

evolution, increasing turbulent mixing, but also increasing losses and surface drag

and/or heat transfer depending upon the strength of the shock. Many studies of

shock / turbulence interactions have been conducted, both numerically and experi-

mentally (see Andreopoulos et al. [2000] for a review), and physical insights have been
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gained from the studies of simple test cases, such as the interaction of shocks with

isotropic and/or homogeneous turbulence, studied experimentally (e.g., Jacquin et al.

[1993], Honkan and Andreopoulos [1992], Barre et al. [1996], Agui et al. [2005]) and

numerically using high-order shock capturing methods (e.g., Lee et al. [1993], Han-

nappel and Friedrich [1995], Lee et al. [1997], Mahesh et al. [1997], Jamme et al. [2002,

2005]) and, more recently, using a shock-fitting method (Sesterhenn et al. [2005]).

It has been shown that shock / turbulence interactions generally lead to an ampli-

fication of all components of the turbulent stresses, and consequently of the turbulent

kinetic energy. In the case of shock / isotropic turbulence interactions, linear analysis

shows that the stream-wise component of the stress is the most amplified for a mean

flow Mach number of M ≤ 2, and that the trend is reversed afterward. As the mean

flow Mach number is further increased, the amplification factors saturate at M ≈ 3

(Lee et al. [1997]).

A more detailed observation of the turbulence evolution behind the shock shows

that the transverse fluxes decrease first in the post-shock region as a consequence

of the compression, while the streamwise stress is directly amplified In response to

the incoming fluctuations in velocity and thermodynamics, the shock front corrugates

and oscillates around its mean position. This phenomenon leads to the generation

of pressure and dilatational velocity fluctuations behind the front. The acoustic po-

tential energy created from this corrugation feeds the Reynolds stresses: evanescent

acoustic waves amplify the levels of turbulence further downstream of the interaction

(Lee et al. [1993, 1997], Jamme et al. [2002]). This energy transfer occurs over a

short region behind the shock, and amplifies mostly the dilatational velocity field,

hence increasing the level of compressible turbulence. The non-linear coupling be-

tween solenoidal and dilatational modes leads to a redistribution of the energy, leaving

downstream a field of homogeneous and mostly solenoidal turbulence.
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The amplification of the turbulent stresses behind the shock was found to be de-

pendent on the shape of the initial energy spectrum of the incoming turbulent fields,

its thermodynamic state and its level of compressible turbulence (Lele [1994], Han-

nappel and Friedrich [1995]). Lee et al. [1997] demonstrated that the physics of the

interaction shock / turbulence actually had only little dependence on the initial spec-

trum, but much stronger correlation was found for the other parameters. Linear anal-

ysis and direct simulations showed that thermodynamic and entropy fluctuations were

reduced through the interaction, even more so as the Mach number was increased.

Correlations between streamwise velocity and temperature fluctuations of the initial

turbulent field were found to influence the anti-correlation of vortical and acoustic

modes in the post-shock region, and impact the level of stress amplification. A posi-

tive correlation between streamwise velocity and temperature fluctuations reduces the

stresses amplification factor and increases the transverse characteristic length-scales,

while a strongly negative correlation results in an essentially opposite trend (Mahesh

et al. [1997], Jamme et al. [2002]), significantly impacting the interaction of shock

waves with turbulent boundary layers.

1.2 Numerical Simulation of Compressible Turbulent Flows

Simulations of supersonic turbulent flows are a somewhat recent effort. Most of

the early numerical schemes were found either too dissipative to perform turbulent

studies, or incompatible with the strong variations found in compressible turbulent

flows. Besides fundamental studies, the resolution of practical configurations in com-

pressible environment by Reynolds Averaged Navier Stokes (RANS) or Large-Eddy

Simulations (LES) suffered from the same inadequacy of the computational methods,

and from the absence of closure models adapted to high-speed turbulent flows. The

challenges that need to be faced to develop a reliable LES methodology for the sim-

ulation of compressible turbulent flows are two-fold: first, the resolution of turbulent

11



flows requires highly accurate non-dissipative schemes. Second, the practical simu-

lations of turbulent flows cannot be performed exactly for full-scale configurations,

and modeled equations have to be solved for this flows. The relevance of the results

depends on the accuracy of the modeling method adopted.

1.2.1 Numerical Issues in Supersonic Turbulent Flows Computations

A proper computational methodology requires highly accurate numerical schemes that

permit the capture of flow discontinuities such as shocks and contact discontinuities,

as well as the resolution of turbulent structures. This is a challenging task, as the

self-steepening nature of shock waves requires a dissipative scheme to enable their

capture with reduced unphysical oscillations, whereas a low-dissipation is desired for

the accurate resolution of turbulent fields. The techniques developed for the resolution

of the hydrodynamics equations, where crisp discontinuity capturing is desired, are

presented first. The second part reviews the development of algorithms for the studies

of turbulent flows in supersonic environments, where, in addition to shock-capturing

properties, a low dissipation is desired.

� Upwind schemes for the resolution of supersonic flows

Until 1959, most numerical approaches were based on the expansion of the gov-

erning equations into Taylor series to obtain a finite difference approximation to

the governing equations. Implicitly, the functions discretized are assumed continuous

with continuous derivatives. This assumption is certainly not true in supersonic flows,

where shocks and contact discontinuities are part of the flow. Many researchers have

developed directionally biased numerical methods to handle physical discontinuities.

Even then, most schemes were found to be dispersive, which led to high amplitude

non-physical oscillations in the regions of the discontinuities.

Godunov [1959] first recognized that this assumption of continuous functions could

be relaxed by resolving the Euler equations in a finite volume framework (while most
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studies until then were using finite difference), and resolving a Riemann problem for

every interface. Getting an evaluation of the fluxes through the exact solution of

the non-linear problem relaxed the assumption of continuous variables. This method,

which allowed the non-dispersive resolution of flows with discontinuities was applied,

and, to some extent, further developed in the following years. In the beginning of

the 1970’s, fundamental studies on the mathematical formulation of upwind schemes

for the resolution of systems of hyperbolic equations were conducted (Lax [1972],

van Leer [1973]), which later led to the development of more accurate, more stable

and less dissipative methods. Among the first such contributions, and maybe one of

the most influential, was the Monotone Upstream Centered Schemes for Conserva-

tion Laws (MUSCL) approach of van Leer [1973, 1974, 1979], where a higher order

reconstruction of the physical field was achieved, while preserving the monotonicity

of the solution.

Further developments of upwind schemes followed in the 1980’s, based on the

previous studies. Colella and Woodward extended the order of the reconstruction

method, and developed the high-order and very accurate Piecewise Parabolic Method

(Colella and Woodward [1984]). A framework was devised by Harten et al. [1987], for

which an arbitrary order of accuracy can be achieved by adapting the stencil for the

reconstruction to an adapted smoothness parameter. This scheme, based on the Total

Variation Bounding condition and called Essentially Non Oscillatory (ENO) scheme,

has been further extended by Liu et al. [1994b] to the Weighted Essentially Non

Oscillatory (WENO) schemes, resulting in sharper resolutions of the discontinuities.

The developments conducted during that decade also included the design of ap-

proximate Riemann solvers needed for the closure of these upwind schemes. Exact

Riemann solvers suffer from prohibitive costs. Researchers have started defining ap-

proximate solvers that satisfy acceptable accuracy, while significantly reducing the

simulation’s cost. The approximate Riemann solvers of Osher and Chakravarthy
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[1983], Roe (Roe [1981]), Harten-Lax-vanLeer (Harten et al. [1983]), the Two-Shock

Riemann Solver and the Adaptive Non iterative Riemann Solver (Toro [1999]) are

among the most commonly used. These schemes are referred to as Flux Difference

Splitting (FDS) methods. Other shock-capturing methods have been addressed, such

as the Flux Vector Splitting (FVS) techniques. Most of the FVS approaches, of-

ten used in external aerodynamics simulations, are based on the FVS of Steger and

Warming [1981], or on the FVS method of van Leer [1982]. These methods are very

appealing due to their great simplicity and computational efficiency. However, their

excessive dissipation has led researchers towards the development of new schemes,

that combine the simplicity/cost advantages of FVS methods, and the accuracy of

FDS methods, by splitting the treatment of the inviscid equations into pressure-

based fluxes and convection-based fluxes, leading to the Advection Upstream Split-

ting Method (AUSM) class of schemes (Liou and Steffen [1993]). The diffusion of

these methods remains small and viscous flows can be correctly captured. Finally,

the shock-fitting techniques have raised a recent interest. Their basis is the treatment

of shock waves as propagating discontinuities, resolved with the dynamic Rankine-

Hugoniot relations and the integration of this discontinuity to the global resolution.

Their inclusion in general three-dimensional simulations is however complex and pro-

hibitively expensive.

� Hybrid numerical schemes for the study of compressible turbulence in supersonic

flows

The study of compressible turbulent flows using Direct Numerical Simulation

(DNS) and LES can be performed using a wide variety of schemes. Central schemes,

Padé differencing, compact schemes or spectral methods are commonly used in such

studies. Their use for simulations where strong gradients are present is, however, in-

adequate, and alternate approaches are required. Upwind methods with very fine res-

olutions, such that the inherent numerical dissipation does not dominate the turbulent
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behavior, have been successfully employed in the past. High resolution simulations

of compressible turbulence, for instance, have been performed using ENO/WENO

schemes (Ladeinde et al. [1996], Martin [2006]), or the Piecewise Parabolic Method

(PPM) (Mirin et al. [1999]). Such simulations are, however, not always feasible. Lee

et al. [1997] showed in a DNS study of shock / turbulence interaction that the use of a

sixth-order ENO scheme throughout the domain significantly dissipates the turbulent

energy of the flow.

Hybrid schemes have been proposed for the resolution of high-speed viscous prob-

lem in the context laminar flow simulations and/or under-resolved DNS studies, where

schemes developed to capture flow discontinuities were found to be too dissipative and

to artificially increase boundary layer thicknesses and other viscous properties of the

flow. One of the first examples of hybrid schemes was proposed by Harten and Zwas

[1972], blending a Lax-Wendroff method and a Lax-Friedrichs approach, Harten [1978]

later revisiting this methodology and replacing the Lax-Friedrichs scheme with a first

order upwind approach. These formulation, though capable of capturing some of the

important flow physics, were found to strongly depend on the shock detection for-

mulation, and lack universality. The numerical scheme presented by Jameson et al.

[1981] can be seen as a hybrid methodology, where a central scheme with second-order

artificial dissipation, for shock capturing purpose, is blended with a central scheme

with fourth-order artificial dissipation for smooth flow resolution.

The development of hybrid methodologies switching explicitly between different

fluxes evaluations has gained popularity in the studies of high-speed turbulent flows

from a DNS stand-point. Some studies have been conducted using primitive, non

self-adapting hybrid schemes, in which the stationary properties of the flow were

used to arbitrarily separate the regions where upwind schemes are used from those

where central/spectral/compact schemes are used (Lee et al. [1997], Mahesh et al.

[1997]). For instance, for the resolution of shock / turbulence interaction by DNS,
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Lee et al. [1997] used a sixth-order ENO shock-capturing scheme only in the mean-

flow direction, over a relatively short region surrounding the mean shock location,

defined offline, and used a Padé scheme over the remaining cells, and for all cells in

the transverse directions to minimize dissipation effects.

Hybrid schemes, where two different flux computations are employed in differ-

ent regions of the domain, are currently being developed for similar applications. A

dynamic switching procedure is usually associated with these schemes. The local

smoothness of the flow is evaluated and used to determine the scheme to employ.

Many of these hybrid schemes use compact schemes for the capture of the turbulent

structures in the flow, as these schemes show a spectral-like resolution. Further-

more, using low-pass spatial filtering techniques, these methods have been applied to

curvilinear grids. However, compact schemes are poorly suited to the resolution of

transonic to supersonic flows, creating high amplitude, unphysical oscillations, and

much work has been devoted to the stabilization of these schemes in shock-containing

flows, spanning from artificial diffusion (Cook and Cabot [2004], Kawai and Lele

[2008]) to the application of adaptive filters, reducing the accuracy in close shock

regions only (Visbal and Gaitonde [2005]). In the context of hybrid methods, these

compact schemes have been combined to TVD (Rizzetta et al. [2001]), ENO (Adams

and Shariff [1996]) or WENO (Pirozzoli [2002], Ren et al. [2003]) schemes and have

been found well suited to simple canonical flows. However, extension to complex

(practical) geometries and parallelization of such codes is difficult (Hill and Pullin

[2004]), and the computational cost of these schemes is rather high, which makes

such schemes unadapted to full scale simulations.

Alternatively, hybrid schemes that employ classical central schemes for the res-

olution of the smooth regions in the flow have been proposed (Vreman [1997], Hill

and Pullin [2004], Kim and Kwon [2005], Fryxell and Menon [2005]). Their low cost,

good accuracy and applicability in complex domains make them suitable candidates
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for practical applications. Furthermore, their adaptability to body-conforming grids

permits the development of methods valid in practical geometries.

1.2.2 Turbulence Modeling for Compressible and High-Speed Flows

Turbulent flows are entirely described by the Navier-Stokes equations, which involve

a very large range of time- and length- scales. Direct Numerical Simulations of com-

pressible flows can be performed for fundamental configurations, and can provide

valuable insights into the physics and processes of canonical flows. Their extension

to arbitrary, realistic flows of interest is not yet feasible, as the computational re-

sources required increase significantly as the simulated Reynolds number is increased.

Practical, full-scale geometries usually involve very high Reynolds numbers, orders

of magnitude larger than what is currently achievable with DNS. The universality

of the small scales of turbulence has been exploited to reduce the computational re-

quirements. A scale separation permits one to distinguish the geometry-dependent

energetic scales, which require an exact resolution, from the universal scales, which

can be modeled from theoretical and analytical considerations, or from experimental

observations.

In this context, statistical averages of the turbulent motions are commonly used.

Reynolds-Averaged Navier-Stokes (RANS) simulations permit a capture of the time-

averaged fields of the flow, and can provide detailed information on some physical

features and processes in a complex environment, provided an accurate turbulence

model is used. The entire spectrum of turbulent statistics (in time and space) must be

accounted for in the models used in these simulations. Furthermore, the dynamics of

the system is lost. Many applications are strongly affected by the unsteadiness of the

physical processes, and cannot be captured correctly by time-averaged methodologies.

Large Eddy Simulations are an alternative approach to RANS for the simulation of

turbulent flows. There, the universality of turbulence at the small length-scales is
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exploited. The large scales are explicitly resolved, and their interaction with the

small scales modeled. The temporal evolution of the flow is explicitly solved. A

proper modeling of the small (subgrid) scales is required in this approach.

Most numerical studies of high-speed flows are based on models developed for

incompressible flows and include some compressibility corrections derived from some

of the early work described earlier. The dilatational dissipation model of Sarkar [1991]

is often used in practical models (Delarue and Pope [1997], Oevermann [2000], Park

and Mahesh [2007]) This scaling relates the compressible dilatation to the solenoidal

dissipation as:

εd = αd

(
Mt

2 + O(M4
t )
)
εs (1)

As reviewed earlier, this model does not reflect the correct physics of compressible

dilatation, but it is still used as it is successful in capturing the reduced growth rate

of compressible mixing layers. The actual variations of the dilatational dissipation

for relevant aerodynamics applications was shown by Ristorcelli [1997] and Shao and

Bertoglio [1996] to scale as:

εd =
Mt

4

Rel
εs (2)

with an inverse proportionality to the Reynolds number (Rel). From these consid-

erations, the dilatational dissipation is expected to play an important role only in

the context of high Mt and low-Reynolds number compressible flows. Several mod-

els for the pressure-dilatation have also been proposed. Sarkar [1991] conducted a

scaling analysis based on the decomposition of the pressure field into contributions

of incompressible and purely compressible components, and found from DNS stud-

ies of isotropic compressible turbulence (Sarkar [1991]) and compressible shear flows

(Sarkar [1992]) that the pressure-dilatation scales as:

< pd >= −α1PMt + α2εsM
2
t + α3SkkkM2

t (3)

where Skk represents the flow dilatation. This model is still used in some RANS
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applications (Calhoon et al. [2006], Fasel et al. [2006]) In practical aerodynamics

flows, this correlation was found from asymptotic analysis to be a function of the

departure from equilibrium of the turbulent kinetic energy budget. Ristorcelli [1997]

found that:

< pd >∝ M 2
t

(
Sk

ε

)2

[P − ε] (4)

where S is the rate of strain and k the turbulent kinetic energy. This model has been

integrated in second order moment closure models to model the isotropic part of the

pressure strain correlations (Adumitroaie et al. [1999]). Other studies have closed

the pressure-dilatation correlation by explicitly tracking the density and/or pressure

variance in the simulation (Taulbee and Van Osdol [1991], Durbin and Zeman [1992],

Yoshizawa [1995], Hamba [1996]).

Many models have been proposed and employed to account for the influence of

the dilatational turbulence on the flow evolution. Most of the early models have been

derived from direct simulations, where arbitrary levels of compressibility were used

for initial conditions, and did not represent the physics of well-developed compressible

turbulent flows. Other models have been suggested where the energetic transfers are

not modeled directly, but require the resolution of (multiple) additional equations

within the flow, leading to higher levels of complexity and modeling uncertainties.

Models that integrate the analytical scalings of the compressible energetic transfers

have not yet been proposed for simple, energetic closure approaches.

1.3 Objectives of the Present Study

The goal of the present study is to develop a computationally efficient Large-Eddy

Simulation methodology adapted to the resolution of high-speed turbulent flows for

practical applications. The following objectives have been identified to achieve this

goal:
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1. Develop a numerical method that satisfies the constraints imposed by the sim-

ulations of turbulence in high-speed flow.

Regions of strong discontinuities have to be captured as a part of the solu-

tion, so that the methodology can be applied to general flows with propagating

waves. In that sense, a locally dissipative scheme must be employed. Away from

discontinuities, the scheme must be adapted to the resolution of smooth flows

dominated by turbulent structures, reducing the amount of intrinsic dissipation.

A hybrid numerical scheme is developed and presented in this study, that com-

bines a fourth-order central scheme to a flux-difference splitting approach for

shock-capturing purpose. A switching procedure based on an evaluation of the

local flow smoothness is used to combine these two numerical schemes.

2. Extend a state of the art closure approach to properly model the relevant phys-

ical features that arise in supersonic compressible turbulence.

A model adapted to the resolution of high-speed turbulent flow must integrate

the modes of energy transfer typical of compressible turbulence. Furthermore,

the energy budget in shock / turbulence interactions must be modeled correctly.

As reviewed earlier, the level of compressible turbulence in practical flows is

small compared to the incompressible contribution. The extension of a low-

compressibility model to include compressibility effects is justified. The Local-

ized Dynamic ksgs Model (LDKM) is extended in the current study to model

the pressure-dilatation correlation, important in non-equilibrium flows, and the

diffusion of turbulent energy by pressure fluctuations, which plays an impor-

tant role in shock / turbulence interactions. Based on the analytical scalings

described earlier, the dilatational dissipation is found negligible in the problems

of practical interest, where typical Reynolds numbers are high and the turbu-

lent Mach number low. This mode of energy transfer is neglected in the present
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developments. The structural changes of the turbulent features with compress-

ibility are captured through the dynamic evaluation of the closure model.

The LES methodology developed during the present study is validated against fun-

damental studies of canonical flows and practical applications of interest. Notably, a

re-examination of the shock / turbulence interaction is performed in the context of

DNS, to assess the performance of the hybrid methodology, and is repeated using the

LES methodology to show the proper capture of the physical phenomena involved

in this problem. This study is then extended to the analysis of the physics involved

in a shock-induced mixing enhancement technique. Furthermore, the simulation of a

configuration relevant to scramjet injections is performed. The classical configuration

of a sonic jet injection into a supersonic cross-flow is used to highlight the compress-

ible closure performance, and a study of dynamical behavior of the problem, with a

particular emphasis on the dynamics of the turbulence evolution, is performed.

1.4 Thesis Outline

The present thesis is organized as follows: Chapter 2 presents the mathematical

modeling used in the present for the simulations of compressible turbulent fluid flow.

The chapter opens with a description of the Navier-Stokes equations for a compress-

ible flow, followed by a derivation of the LES equations that result from a filtering

operation. The unclosed terms that result from the filtering operation and require

modeling are then highlighted. This chapter is closed by presenting the modeling

approach adopted for this study, including the modeling of the compressible terms,

specific to the present development.

The second developmental aspect of this work is presented in Chap. 3. This

chapter presents a hybrid framework that permits the combination of two schemes

with different characteristics, in order to capture supersonic turbulent flows. A low-

dissipation scheme, adapted to the resolution of turbulent flows away from shocks
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is associated to an upwind method for discontinuity-capturing purpose. A detailed

description of the two numerical schemes integrated in this framework is provided. In

particular, the shock-capturing scheme developed and implemented for the present

study is given in detail.

Chapter 4 presents the testing, validation and application of the presented LES

methodology to problems of shock / turbulence interactions. Direct simulations of

shock / isotropic turbulence are presented first and compared to reference data. This

fundamental configuration is used to validate the numerical approach, and to highlight

the importance of some closure terms in an a priori study of the closure model. This

study is then repeated from an LES perspective, showing the proper capture of the

turbulent evolution with the developed LES methodology. Application to a more

practical case of shock / turbulent shear layer interaction is then considered. A high-

speed mixing layer is simulated with and without shocks interactions, highlighting

the impact of the shocks on the shear layer evolution, and the localized enhancement

of the mixing efficiency due to the turbulence amplification through the interaction.

In Chap. 5, the relevance of this approach is demonstrated by applying it to a

practical scramjet configuration. The numerical set-up reproduces the experimen-

tal study of a sonic jet in supersonic cross-flow, considered as a potential injection

method in scramjet designs. Results show a good capture of the physical processes

and demonstrate the applicability of the proposed hybrid LES approach to practical

supersonic flow modeling and design problems. The influence of the compressible

closure on the flow features is reported. Furthermore, the time-accurate resolution of

this interaction permits a capture of the flow dynamics and an identification of the

time-averaged and instantaneous vortical structures is presented.

Chapter 6 concludes this thesis by summarizing the different developments per-

formed in this work, highlighting their relevance and range of applicability, and finally

closing with a few recommendations for future work.
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CHAPTER II

GOVERNING EQUATIONS AND MODELING

In the present chapter, the governing equations for LES of compressible turbulent

flows and the closure strategy developed for this study are presented. First, the more

general Navier-Stokes equations are described. The filtering operation is presented

next, the LES equations are obtained and the unclosed terms identified. Finally, the

model used to evaluate these subgrid terms is presented.

2.1 The Navier-Stokes Equations

The Navier-Stokes equations can be used to entirely describe any compressible tur-

bulent flow, in the continuum regime, and in the absence of external forces, MHD

effects, etc. These equations express the conservation of mass, momentum, energy

and species densities, and read:

∂ρ

∂t
+

∂ρui

∂xi

= 0 (5)

∂ρui

∂t
+

∂

∂xj
[ρuiuj + Pδij − τij] = 0 (6)

∂ρE

∂t
+

∂

∂xi

[(ρE + P )ui + qi − ujτij] = 0 (7)

∂ρYk

∂t
+

∂

∂xi
[ρYk (ui + Vi,k)] = 0 k = 1, ..., Ns (8)

Here, ρ is the density, (ui)i=1,2,3 is the velocity vector in Cartesian coordinates, P is

the pressure, and Yk is the mass fraction for species k. Also, Ns represents the total

number of species in the flow. The total energy is noted E, and τij, qi and Vi,k are

the stress tensor, the heat flux vector and the species diffusion velocity respectively.

The total energy is the sum of internal energy (e) and kinetic energy:

E = e +
1

2
uk uk, (9)
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where the internal energy is the sum of the contributions from all species:

e =
Ns∑

k=1

Ykek (10)

where ek corresponds to the k − th species sensible energy.

This system of equations remains unclosed until an equation of state (EOS) is

defined to relate the thermodynamics variables together. Furthermore, expressions

for the stress tensor, the heat flux and the species diffusion velocity are required.

� Equation Of State

It is assumed in the present study that the gases under consideration obey to the

perfect gas EOS. Introducing the temperature T , this EOS can be expressed as:

P = ρRT (11)

Here, R is the universal gas constant per unit mass. With Ru the universal gas

constant per mole, R is given by:

R = Ru

∑ Yk

MWk
(12)

where MWk is the molar weight of the k − th species. With this EOS, it can be

shown that the internal energy is a function of the temperature only, so that the

k − th species sensible energy is expressed as:

ek = e0
k +

∫ T

T0

Cv,k(T
′)dT ′ (13)

where Cv,k(T ) is the specific heat at constant volume for the k − th species and e0
k is

the reference energy evaluated at a reference temperature T0. Let us also define, for

convenience, the enthalpy as h = e + P/ρ. The sensible enthalpy of a given species k

can then be written as:

hk = h0
k +

∫ T

T0

Cp,k(T
′)dT ′ (14)
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where Cp,k(T ) is the specific heat at constant pressure for the k − th species and is

related to Cv,k(T ):

Cp,k(T ) = Cv,k(T ) +
Ru

MWk

(15)

If the specific heats are assumed independent of temperature, a calorically perfect gas

(CPG) is considered, and it is customary in this case to define the ratio of specific

heats γ as:

γk =
Cp,k

Cv,k
(16)

The EOS is then fully defined with Eqn. 15 and 16. This closure is appropriate to

fundamental studies or simulations of practical flows with low temperatures and/or

flows with small temperature variations. However, when higher variations in the

temperature field are expected, one must resort to a more advance EOS. A thermally

perfect gas (TPG) has temperature-dependent specific heats, and is well adapted to

the simulations of practical flows under moderate conditions of pressure and tem-

perature, that is, away from the critical thermodynamics condition. In the present

study, despite the presence of strong compressive waves, the physical conditions are

far from the critical points and the conditions of validity of the perfect gas EOS are

satisfied. The specific heats temperature dependence are obtained from experimental

measurements and curve-fitting (Gordon and McBride [1994]).

� Definition of the stress tensor

The fluids simulated here are assumed to be Newtonian: the stresses are propor-

tional to the local rate of strain. Mathematically, this is expressed as:

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ λ

∂uk

∂xk
δij (17)

where µ is the viscosity coefficient, assumed to be a function of temperature only.

Again this assumption is acceptable for the pressure and temperature ranges con-

sidered in the present study. For gases, the viscosity is an increasing function of

25



temperature, and different models exist to describe this dependence (White [1991]).

Sutherland’s law for the viscosity is given by:

µ = µ0

(
T

T0

)3/2
T0 + S

T + S
, (18)

where µ0, T0 are species-specific reference values and S a constant. The dependence

is sometimes given as a power-law function,

µ = µ0

(
T

T0

)n

(19)

where the exponent n depends on the fluid composition, but usually takes values close

to 0.7.

The remaining constant in Eqn. 17, λ, is the bulk viscosity. Following Stokes’

hypothesis, it is assumed that the stress tensor is traceless, so that the bulk viscosity

is related to µ as λ = −2/3 µ. Finally, the stress terms are given by

τij = 2µ

(
Sij −

1

3
Skkδij

)
(20)

where Sij is the rate of strain tensor:

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(21)

� Definition of the heat flux vector

The heat flux vector has contributions from the thermal conduction and from the

flux of sensible enthalpy due to species diffusion. Fourier’s law is used to relate the

thermal conduction to the local temperature gradient. The expression for the heat

flux vector is:

qi = −κ
∂T

∂xi
+ ρ

Ns∑

1

YkhkVi,k (22)

For the range of conditions considered in this study, the thermal conductivity κ, is

also a function of the temperature only. Correlations of the type of Sutherland’s law
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or of the power law dependence can be used. A Prandtl number (Pr) can be used to

relate κ to µ. The Prandtl number is defined as:

Pr =
Cpµ

κ
(23)

and is assumed constant in the present study (Pr = 0.72).

� Definition of the species diffusion velocities

The species diffusion velocities, Vi,k, are modeled using a Fickan diffusion approx-

imation. This closure reads:

Vi,k = −Dk

Yk

∂Yk

∂xi

(24)

The diffusion coefficient Dk depends on species k, the other species in the environment

and the static pressure and temperature. Here, these coefficients are obtained from

a constant Lewis number (Le) assumption, where the Lewis number is:

Le =
κ

ρCpDk
(25)

With the equation of state and the expressions for the stress tensor, the heat flux

vector and the species diffusion velocity, the Navier-Stokes equations are closed and

can be solved exactly through Direct Numerical Simulation (DNS). In this context,

accurate simulations of turbulent processes should capture all the relevant scales of

motion, from the largest, scaling with the outer dimensions of the configuration,

down to the smallest scales of the flow, of the order of the Kolmogorov scale. This

separation of scales increases as the Reynolds number is increased. As a consequence,

the discretization requirements grow rapidly as the simulated Reynolds number is

increased. As an illustration, Kaneda et al. [2003] performed a simulation of a Reλ =

1200 isotropic turbulent field, which required a resolution of 40963 grid points. This

Reynolds number, probably about as high as we can get today through DNS, is still

far from what is reached in full-scale configurations. DNS does not appear as a viable

solution to the current industrial and/or practical needs in computer simulations of

fluid flows.
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2.2 Governing Equations for LES

The separation of scales in high-Reynolds number turbulent flows, and the univer-

sality of the small scales, as first envisioned by Kolmogorov, are widely accepted

characteristics of a turbulent flow. The Large Eddy Simulation equations are ob-

tained by spatially filtering the Navier-Stokes equations, in order to separate the

large, geometry-dependent scales from the small, universal scales. LES methods rely

on the assumption that the universal small scales and their interaction with the large

scales can be modeled, whereas the large energy containing scales need to be explic-

itly solved. In the present section, a spatial filter is applied to the Navier Stokes

equations, and the Favré-filtered LES equations are presented. All subgrid, unclosed

terms are explicitly identified.

2.2.1 Spatial Filtering and Favré Averaging

The separation between large and small scales is obtained by applying a spatial filter

to the governing equations. Let G(x,x′) be the mathematical description of the filter

Kernel used for this operation, where x and x′ are position vectors. Then, variable f

is filtered into f as:

f(x, t) =

∫

Ω

f(x′, t) G(x,x′)d3 x′ (26)

where Ω represents the entire domain. In the current implementation, the filter used

is a top-hat filter kernel. Practically, G is the product of three one-dimensional filters:

G(x − x′) =
3∏

i=1

gi(xi − x′
i) (27)

where xi is the i− th computational coordinate, and gi’s are one-dimensional top-hat

filters that read:

gi(xi − x′
i) =





1
∆i

, |xi − x′
i| < ∆i

2

0, otherwise
(28)

∆i is the local one-dimensional filter size in the i−direction. The global filter size

∆ is obtained from the one-dimensional filter sizes as ∆ = (∆1∆2∆3)
1/3. For the
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current LES methodology, the one-dimensional filter sizes are based on the local grid

spacings, and ∆ is a measure of the local grid cell size.

Let us also define the mass-weighted filtered variable, or Favré-filtered variable.

This alternate averaging procedure is often performed for the study of compressible

flows as it significantly reduces the number of unclosed terms that result from the

filtering operation, and is adopted in the present study. f̃ is the Favré-filtered variable

f defined by:

f̃ =
ρf

ρ
(29)

where ρ is the local fluid density.

2.2.2 Filtering the Navier-Stokes Equations

The spatial filter described above can be reduced to a function of x − x′, the relative

position in space, and can thus commute with both temporal and spatial partial

derivatives. The application of the filter to the Navier-Stokes equations is hereafter

presented.

� Mass conservation

The equation for mass conservation reads:

∂ρ

∂t
+

∂ρui

∂xi
= 0 (30)

Using the commutativity of the filter with the derivatives, the filtered continuity

equation reads:

∂ρ

∂t
+

∂ρui

∂xi
= 0 (31)

Finally, in terms of Favré-filtered variables, this equation reduces to:

∂ρ

∂t
+

∂ρũi

∂xi
= 0 (32)

� Momentum conservation
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The governing equation for the momentum is obtained by following the same steps

as for the continuity equation: the exact equation is filtered, and the commutativity of

the filter with the derivatives is called. Finally, Favré-filtering is used. The governing

equation for momentum reads:

∂ρũi

∂t
+

∂

∂xj

[
ρũiuj + Pδij − τij

]
= 0 (33)

This relation is strictly equivalent to the following:

∂ρũi

∂t
+

∂

∂xj

[
ρũiũj + Pδij + τ sgs

ij − τij

]
= 0 (34)

so that the convective term in the equation above can be treated from the resolved

field, and the subgrid stress τ sgs
ij = ρ(ũiuj − ũiũj) is introduced. τ sgs

ij is related to the

correlation of the fluctuating velocities ui and uj at scales smaller than the filtering

dimension (the local grid size). Hence, such terms are called subgrid terms and

denoted using an sgs superscript.

� Energy conservation

The exact total energy equation is filtered into:

∂ρẼ

∂t
+

∂

∂xj

[
ρ
(
ũjE

)
+ ujP + qj − uiτji

]
= 0 (35)

which again is strictly equal to:

∂ρẼ

∂t
+

∂

∂xj

[
ρũjẼ + ũjP + qj − ũiτji + Hsgs

j + σsgs
j

]
= 0 (36)

where the terms Hsgs
j and σsgs

j correspond to Hsgs
j = ρ

(
Ẽuj − Ẽũj

)
+
(
ujP − Pũj

)
,

and σsgs
j = −(uiτij − ũiτij).

� Species density conservation

Filtering the equations that govern the species conservation leads to the following

relations:

∂ρỸk

∂t
+

∂

∂xi

[
ρ
(
Ỹkui + ˜YkVi,k

)]
= 0 (37)
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Re-arrangement of those terms leads to:

∂ρỸk

∂t
+

∂

∂xi

[
ρ
(
Ỹkũi + ỸkṼi,k

)
+ Y sgs

i,k + θsgs
i,k

]
= 0 (38)

where the terms noted Y sgs
i,k and θsgs

i,k correspond to Y sgs
i,k = ρ

(
ũiYk − ũiỸk

)
, and

θsgs
i,k = ρ

(
˜Vi,kYk − Ṽi,kỸk

)

� Equation of state

The perfect gas EOS is used throughout this study. Filtering this equation leads

to:

P = ρRT = ρR̃T

= ρR̃T̃ + ρRuT
sgs

(39)

where T sgs is the sum of the subgrid species-temperature correlations.

T sgs =
∑ ỸkT − ỸkT̃

MWk

(40)

2.3 Closure Model for the LES Equations

From the initial conditions and the time integration of Eqn. 32, 34, 36 and 38, the

variables ρ, ũi, Ẽ and Ỹk are known. The filtered continuity equation is fully closed.

The other governing equations are unclosed and all the subgrid and filter terms in

these equations require some evaluations or modeling. The total energy being the

sum of a kinetic and an internal contribution, the Favré averaged total energy Ẽ is

given by:

Ẽ = ẽ + 1
2
ũkuk

= ẽ + 1
2
ũkũk + 1

2
(ũkuk − ũkũk)

= ẽ + 1
2
ũkũk + ksgs

(41)

Here, ksgs denotes the un-resolved, or subgrid part of the kinetic energy. The filtered

internal energy is given by:

ẽ =
Ns∑

k=1

Ỹke
0
f,k +

Ns∑

k=1

Ỹk

∫ eT

T0

CV,k(T )dT +
Ns∑

k=1

Esgs
k (42)
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Provided that Esgs
k is evaluated, the Favré filtered temperature can be obtained.

The filtered stress tensor in the momentum equation is computed in analogy to the

unfiltered Navier-Stokes equations as follows:

τij = 2µ(T̃ )

(
S̃ij −

1

3
S̃kkδij

)
(43)

where S̃ij represents the rate of filtered strain. Similarly, the filtered heat flux vector

and the filtered species diffusion velocity are computed as:

qj = −κ(T̃ )
∂T̃

xj
+ ρ

∑
Ỹkhk(T̃ )Ṽi,k + qsgs

j (44)

Ṽi,k = −Dk

Ỹk

∂Ỹk

∂xi

(45)

All the subgrid-scale terms, denoted with a sgs superscript, are unclosed, and

therefore, require specific modeling. These terms are:

τ sgs
ij = ρ (ũiuj − ũiũj) (46)

Hsgs
i = ρ

(
Ẽui − Ẽũi

)
+
(
uiP − ũiP̄

)
(47)

σsgs
i = (ujτij − ũjτij) (48)

Y sgs
i,k = ρ

(
ũiYk − ũiỸk

)
(49)

θsgs
i,k = ρ

(
˜Vi,kYk − Ṽi,kỸk

)
(50)

qsgs
i,k = ρ

(
˜hkYkV i,k − h̃kỸkṼi,k

)
(51)

T sgs =

Ns∑

k=1

(ỸkT − ỸkT̃ )/MWk (52)

Esgs
k = ˜Ykek(T ) − Ỹkek(T̃ ) (53)

It should be noted that, in the expressions for θsgs
i,k , qsgs

i,k and Esgs
k , the repeated index

k does not imply summation. The closure strategy to model the subgrid terms is

presented next.
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An eddy-viscosity type closure is adopted in this study. The eddy viscosity, νt, is

evaluated using a characteristic length-scale, provided by the local grid size ∆, and a

characteristic subgrid velocity, obtained from the subgrid kinetic energy ksgs, so that

νt = cν∆
√

ksgs. The unclosed terms in the momentum equation, the subgrid stresses

τ sgs
ij , are then closed as:

τ sgs
ij = −2ρνt

(
S̃ij −

1

3
S̃kkδij

)
+

2

3
ksgsδij (54)

The two unclosed terms in the energy equation, Hsgs
i and σsgs

i are modeled together:

Hsgs
i + σsgs

i = −(ρνt + µ)
∂ksgs

∂xi

− ρνtcp

Prt

∂T̃

∂xi

+ ũjτ
sgs
ij (55)

The subgrid diffusion of species mass fractions, Y sgs
i,k , is also modeled using an eddy-

diffusivity assumption, as:

Y sgs
i,k = − ρνt

Sct

∂Ỹk

∂xi

(56)

The diffusions due to subgrid fluctuations in species diffusion velocity, θsgs
i,k and qsgs

i,k ,

are neglected in the present study. All simulations in this study are non-reactive,

and the impact of these diffusion terms is expected to be small. Also, T sgs and Esgs
k

are usually found to be very small (Fureby and Moller [1995], Veynante and Poinsot

[1996]), and will be neglected in the present study as well. The determination of the

local value of the subgrid kinetic energy ksgs is needed for the evaluation of the eddy

viscosity, and is described next.

2.3.1 Derivation of the ksgs Closure Model

The subgrid kinetic energy is obtained using a transport equation model. The exact

governing equation for the subgrid kinetic energy is hereafter derived, and the different

contributions to the evolution of ksgs are identified.

� Filtering of the Total Kinetic Energy Equation
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The non-filtered equation for the kinetic energy is obtained from the Navier-Stokes

equations by multiplying the i− momentum equation by ui:

ui
∂ρui

∂t
+ ui

∂ρuiuj

∂xj

+ ui
∂Pδij

∂xj

− ui
∂τij

∂xj

= 0 (57)

Applying the chain rule, and calling the mass conservation Eqn. 5, it is straightfor-

ward to show that:

∂ρK

∂t
+

∂ρujK

∂xj
+ ui

∂Pδij

∂xj
− ui

∂τij

∂xj
= 0 (58)

where K = 1/2(uiui) is the kinetic energy per unit mass. Filtering the previous

equation, and using Favré-filtering, the governing equation for K̃ reads:

∂ρK̃

∂t
+

∂ρũjK

∂xj
+ ui

∂Pδij

∂xj
− ui

∂τij

∂xj
= 0 (59)

� Deriving the Resolved Kinetic Energy Equation

The governing equation for the resolved kinetic energy is obtained similarly. Mul-

tiplying the filtered momentum equation, Eqn. 34, by the filtered velocity ũi, gives:

ũi
∂ρũi

∂t
+ ũi

∂ρũiũj

∂xj
+ ũi

∂

∂xj

[
Pδij + τ sgs

ij − τij

]
= 0 (60)

Again, using chain rules and the filtered equation for mass conservation, Eqn. 32, the

equation for K̃res = 1
2
ũiũi is reached:

∂ρK̃res

∂t
+

∂ρũjK̃res

∂xj

+ ũi
∂

∂xj

[
Pδij + τ sgs

ij − τij

]
= 0 (61)

� Deriving the Subgrid Kinetic Energy Equation

The un-resolved kinetic energy, ksgs, is the subgrid part of the filtered total kinetic

energy: ksgs = K̃ − K̃res. Subtracting Eqn. 61 from Eqn. 59 gives:

∂ρksgs

∂t
+

∂ρ( gujK−fuj
eKres)

∂xj
+

(
ui

∂Pδij

∂xj
− ũi

∂Pδij

∂xj

)
−
(
ui

∂τij

∂xj
− ũi

∂τij

∂xj

)

− ũi
∂τsgs

ij

xj
= 0

(62)
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The second term in this last equation can be re-arranged into:

∂ρ
(
ũjK − ũjK̃res

)

∂xj
=

∂ρũjk
sgs

∂xj
+

∂ρ
(
ũjK − ũjK̃

)

∂xj
(63)

so that the convective term for ksgs is obtained. Chain rules are used to re-arrange

the contributions that involve the pressure and the stress tensor, and the final form

of the ksgs equation reads:

∂

∂t
ρ ksgs +

∂

∂xi
(ρ ũik

sgs) = Tksgs + pdksgs + Pksgs − Dksgs (64)

where the different contributions to the ksgs evolution equation have been re-cast:

Tksgs represents the diffusion of ksgs, pdksgs is the pressure dilatation correlation, and

Pksgs and Dksgs are the production and dissipation of ksgs respectively. Their exact

expressions are given by:

Tksgs = − ∂

∂xi

(
(ρK̃ ui − ρ K̃ũi − ũjτ

sgs
ij ) + (uiP − ũiP ) − (ujτij − ũj τij)

)
(65)

pdksgs = P
∂ui

∂xi
− P

∂ũi

∂xi
(66)

Pksgs = −τ sgs
ij

∂ũj

∂xi
(67)

Dksgs =

(
τij

∂ui

∂xj
− τij

∂ũi

∂xj

)
(68)

This equation requires modeling since diffusion, dissipation and pressure-dilatation

correlation cannot be readily evaluated. The diffusion due to subgrid fluctuations

in kinetic energy, subgrid fluctuations in viscous stress, and subgrid fluctuations in

pressure all contribute to the global diffusion of ksgs and each require proper modeling.

The first contribution (often referred to as the triple velocity correlation) and the

second are modeled using a gradient diffusion model. First, the subgrid stress work

is modeled by:

−∂ − (uiτij − ũi τij)

∂xi

=
∂

∂xi

(
µ

∂ksgs

∂xi

)
(69)
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Second, the subgrid transport of subgrid kinetic energy is modeled by:

−
∂
(
ρK̃ ui − ρ K̃ũi − ũjτ

sgs
ij

)

∂xi
=

∂

∂xi

(
ρ

νt

σK

∂ksgs

∂xi

)
(70)

where σK is a model constant.

The diffusion due to subgrid pressure fluctuations is often neglected in LES of

flow where compressibility effects are small. This approximation might be acceptable

in low Mach number flows. However, as will be seen later, this contribution is fun-

damental in the context of shock / turbulence interactions, and requires modeling.

Following the eddy-viscosity formulation used in the present study, this term is closed

as:

uiP − ũiP = ρR̃(ũiT − ũiT̃ ) = −ρνtR̃

σP

∂T̃

∂xi

(71)

Noting that this diffusion term is directly related to the subgrid diffusion of enthalpy

in the governing equation for the energy conservation, the closure coefficient σP is

taken to be the same, that is, the turbulent Prandtl number Prt. The global model

for the diffusion of subgrid kinetic energy reads:

Tksgs =
∂

∂xi

[(
ρνt

σk

+ µ

)
∂ksgs

∂xi

+
ρνtR̃

Prt

∂T̃

∂xi

]
(72)

For high Reynolds number flows, the dissipation of turbulent kinetic energy occurs

mostly at the small scales. Its expression is universal and depends on the energy

transfer rate within the inertial range. In compressible flows, however, the dissipation

of turbulent kinetic energy has contributions from the solenoidal and the dilatational

fields. Most models for the compressible part of the dissipation evaluate this term as

a function of the solenoidal contribution, with a dependence on the turbulent Mach

number, as reviewed earlier. The analytical work of Ristorcelli [1997] and Fauchet and

Bertoglio [1998] showed that the actual dependence is on M 4
t , which remains small

for most flows of practical concern. Furthermore, the relation between solenoidal

and compressible dissipation scales as the inverse of the Reynolds number. The
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contribution of the compressible part is then very small compared to the solenoidal

part, and is therefore neglected in the present model. By analogy with the Kolmogorov

concept of energy cascade, and assuming that the cutoff scale lies within the inertial

range, the dissipation of subgrid kinetic energy is assumed to be entirely determined

by the characteristic turbulent velocity scale (based on ksgs) and the characteristic

length-scale (the local grid cell size), so that:

Dksgs = ρcε(k
sgs)3/2/∆ (73)

The last unclosed term in the governing equation for ksgs is the pressure dilatation

correlation. Here again, this term is often neglected in simulations where compress-

ibility is not expected to play a major role, but does require a proper modeling in the

context of high-speed flow simulations. The study of Ristorcelli [1997] shows that this

term varies with M 2
t , and depends on the departure from equilibrium, that is, the dif-

ference between production and dissipation of turbulent energy. The present closure

formulation uses this scaling analysis to model the pressure dilatation correlation as:

pdksgs = αpdM
sgs
t

2

(
ρS̃ksgs

Dksgs

)2

(Pksgs − Dksgs) (74)

where M sgs
t

2 is the turbulent Mach number based on ksgs, and S̃ is related to the

total strain rate:

S̃2 =
1

2
S̃ijS̃ij (75)

The final form of the evolution equation for the subgrid kinetic energy used here

is finally obtained as:

∂
∂t

ρ ksgs + ∂
∂xi

(ρ ũik
sgs) = ∂

∂xi

[
(ρνt + µ) ∂ksgs

∂xi
+ ρνt

eR
Prt

∂ eT
∂xi

]

−
(

1 + αpdM
sgs
t

2
(

ρ eSksgs

Dksgs

)2
)(

τ sgs
ij

∂euj

∂xi
+ ρcε

(ksgs)3/2

∆

) (76)
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2.3.2 Evaluation of the Model Coefficients

2.3.2.1 Nominal Values of the Closure Coefficients

The closure for the LES equation and for the ksgs equation is now complete, and

uses six closure coefficients, (cν, cε, σk, P rt, Sct, αpd). Nominal values for cν and cε

can be obtained from theoretical considerations. The dissipation coefficient can be

determined from an assumed model turbulent spectrum. The Pao energy spectrum

(Pao [1965]) is a good approximation for the energy spectral distribution at high

Reynolds numbers of isotropic flows:

E(κ) = αε
2
3 κ− 5

3 exp(−3

2
α(κη)

4
3 ) (77)

where α is the Kolmogorov constant (α ≈ 1.5), η the Kolmogorov scale and ε the

total dissipation. This model spectrum contains both inertial and dissipative ranges.

Considering κc the cut-off wavenumber, given by κc = π/∆ (see, e.g. Pope [2000]),

the subgrid kinetic energy is:

ksgs =

∫ ∞

κc

αε
2
3 κ− 5

3 exp(−3

2
α(κη)

4
3 )d κ (78)

Assuming that the cutoff length-scale is well within the inertial, far from the dissi-

pative scales, so that ∆/η >> 1, or in other form, κcη << 1, the exponential term

remains very close to 1, and ksgs is approximated as:

ksgs =

∫ ∞

κc

αε
2
3 κ− 5

3 dκ =

(
3α

2

)3/2
ε2/3

κ
2/3
c

(79)

so that the total dissipation is related to the subgrid kinetic energy:

ε =

(
2

3α

)3/2

(ksgs)3/2κc = 0.931
(ksgs)3/2

∆
(80)

The spectrum of dissipation is obtained from the energy spectrum as D(κ) = 2νκ2E(κ).

Its integration between κc and ∞ gives εksgs:

εsgs = 2ν

∫ ∞

κc

αε
2
3 κ− 5

3 κ2exp(−3

2
α(κη)

4
3 )d κ = ε exp(−3

2
α(κcη)

4
3 ) (81)
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Again, the exponential term is assumed to be fairly close to 1, so that the dissipation

of subgrid kinetic energy is given by εsgs ≈ ε = 0.931 (ksgs)3/2

∆
.

Spectral closure theories (Kraichnan [1976]) can be used to evaluate the eddy

viscosity formulation as νt = 0.441α−3/2
√

E(κc)κ−1
c . With the Pao energy spectrum

and the expression for the total dissipation obtained earlier, one gets:

νt = 0.261

√
α

(
0.931(ksgs)3/2

∆

)2/3

κ
− 8

3
c exp(−3

2
α(κcη)

4
3 ) (82)

The exponential factor is again neglected, and since κc = π/∆, the eddy viscosity can

be evaluated:

νt = 0.261
√

α0.9312/3

π4/3

√
ksgs∆

= 0.067
√

ksgs∆
(83)

This evaluation of the closure coefficients leads to cν = 0.067 and cε = 0.931. This

constant coefficients closure has been frequently used, and shows good results in many

cases. It should be noted however that these coefficients have been evaluated for a

given assumed spectrum, with the assumption of a very high Reynolds number flow.

In particular, Lesieur and Métais [1996] discuss the scalings for spectral closures,

and point out that a spectrally averaged eddy viscosity along with the constraint of

subgrid-scale kinetic energy dissipation being equal to ε could lead to an expression for

the eddy viscosity as νt = 2/3α−3/2
√

E(κc)κ−1
c . cν would then be evaluated as 0.101,

highlighting some of the uncertainties in the determination of the closure coefficient

for subgrid terms in physical space.

2.3.2.2 Dynamic Evaluation of the Closure Coefficients

In general, it can be expected that the values for the closure coefficients depend on

the configuration, and vary in both space and time. They should then be computed

as a part of the solution. The ksgs closure model presented here has been extended

in order to evaluate dynamically these coefficients as a function of the local flow

properties. This method, the localized Dynamic ksgs Model (LDKM) was originally
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Figure 2: Representation of the subgrid and sub-testscale regions in a model tur-
bulent energy spectrum, and modeling assumptions for the dynamic procedure of
Germano et al. [1990].

developed for the simulation of incompressible flows by Kim and Menon [1995]. The

formulation of the dynamic model is hereafter presented.

The concept of dynamic modeling, introduced by Germano et al. [1990], is based

on an explicit filtering of the exact filtered equations and of the model formulation,

and is schematically illustrated in Fig. 2. Noting f̂ the explicitly filtered variable f ,

and dropping the density for clarity, the filtered subgrid stress leads to:

τ̂ sgs
ij = ̂̃uiuj − ̂̃uiũj (84)

which is re-arranged into:

τ̂ sgs
ij =

(
̂̃uiuj − ̂̃ui

̂̃uj

)

︸ ︷︷ ︸
τsts
ij

−
(
̂̃uiũj − ̂̃ui

̂̃uj

)

︸ ︷︷ ︸
Lij

(85)

The first term on the right hand side of this equation resembles a subgrid stress, but

for a filter at a new level, hereafter referred to as sub-testscale level, and τ sts
ij is the

sub-testscale stress. The second term is called the Leonard stress, and is directly
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computable from the resolved field. Assuming that the subgrid stress is modeled as

τ sgs
ij = f

(
S̃ij, ∆

)
, then 1:

̂︷ ︸︸ ︷
f
(
S̃ij, ∆

)
=
(
̂̃uiuj − ̂̃ui

̂̃uj

)
−
(
̂̃uiũj − ̂̃ui

̂̃uj

)
(86)

Furthermore, modeling the sub-testscale stress with the same closure approach, one

gets:
̂︷ ︸︸ ︷

f
(
S̃ij, ∆

)
= f

(
̂̃
Sij, ∆̂

)
−
(
̂̃uiũj − ̂̃ui

̂̃uj

)
(87)

The closure coefficient that appears in the function f(., .) can be obtained, assum-

ing it is constant within the explicit filtering. This method was first applied to the

dynamic Smagorinsky model (DSM), but the method was found ill-posed, as a di-

vision with an un-bounded denominator was involved in the final expression for the

Smagorinsky coefficient. Stabilization of this model required averaging over the ho-

mogeneous directions of the flow. This dynamic model showed improved predictions

compared to the constant coefficients Smagorinsky model. Extension of this method

to other closure models has been performed. It should be noted that a Dynamic ksgs

Model (DKM) has been developed using the same principle as in the DSM, but again,

the method for computing the closure coefficient in the momentum equation was still

performing a division with a denominator that could reach zero. This issue was again

circumvented by averaging the coefficient along directions of homogeneity.

The LDKM method has been developed in a truly localized fashion, without any

need for averaging. Rather than considering that the model used for τ sgs
ij could be

extended to the modeling of τ sts
ij , a similarity between the testscale Leonard stress Lij

and τ sgs
ij is assumed, as illustrated in Fig. 3. It should be noted that such a relation

has been experimentally observed and reported by Liu et al. [1994a]. Considering the

1The
︷̂︸︸︷
( ) symbol is used here to denote the application of the test-filter, as the hat symbol

cannot be sufficiently extended to cover the whole expression.
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Figure 3: Representation of the subgrid and testscale regions in a model turbulent
energy spectrum, and modeling assumptions for the LDKM.

Favre averaged testscale Leonard stress (the density is now included for completeness):

Lij = ρ̂

(
ρ̂ũiũj

ρ̂
− ρ̂ũi

ρ̂

ρ̂ũj

ρ̂

)
(88)

The testscale resolved kinetic energy is then given by the trace of the Leonard stress

tensor:

ktest =
1

2

Lkk

ρ̂
=

1

2

( ̂ρũkũk

ρ̂
− ρ̂ũk

ρ̂

ρ̂ũk

ρ̂

)
(89)

The similarity in form between Leonard stress at the testscale level and subgrid stress

tensor can then be expressed mathematically as:

Lij = −2cν

√
ktestρ̂∆̂


 ρ̂S̃ij

ρ̂
− 1

3

ρ̂S̃kk

ρ̂
δij


+

1

3
Lkkδij (90)

or, identically:

Lij = −2cν

√
ktest∆̂

(
ρ̂S̃ij −

1

3
ρ̂S̃kkδij

)
+

2

3
ρ̂ktestδij (91)

Lij, ktest and ρ̂S̃ij can be computed from the resolved fields of velocity and density.

cν remains the only unknown in this equation. The closure coefficient is however
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over-specified, as six independent equations are obtained from this relation. The

redundancy is removed using the least-square method proposed by Lilly [1992]. The

testscale stress tensor model error tensor Eij is defined as:

Eij = Lij + 2cν

√
ktest∆̂

(
ρ̂S̃ij −

1

3
ρ̂S̃kkδij

)
− 1

3
Lkkδij (92)

This tensor represents the differences between exact subtest-scale stresses and mod-

eled stresses. A minimization of the r.m.s. error is enforced. Mathematically, this

consists in ensuring that the derivative of EijEij with respect to the model coefficient

cν is zero. This expression reads:

∂EijEij

∂cν
= 4MijL′

ij + 8cνMijMij = 0 (93)

where:

L′
ij = Lij −

1

3
Lkkδij (94)

and

Mij =
√

ktest∆̂

(
ρ̂S̃ij −

1

3
ρ̂S̃kkδij

)
(95)

Finally, the expression for cν is obtained:

cν = −
MijL′

ij

2MijMij

(96)

The evaluation of the coefficient cν requires a division, but the denominator is a well-

defined non-zero quantity. Consequently, this dynamic formulation is stable, and can

be applied in a truly localized manner. It is also worth noting that, even though

Mij appears at both numerator and denominator, the tensorial notation MijMij

implies a distributive multiplication, hence it is not possible to cancel Mij out of the

numerator and denominator. It is also worth noting that an evaluation of the model

coefficient based on the production of ktest from exact and modeled Leonard stresses

leads to the same formulation of the closure coefficient. The two production terms

are:

Lfilter
ij

ρ̂S̃ij

ρ̂
= Lmodel

ij

ρ̂S̃ij

ρ̂
(97)
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which give:

Lijρ̂S̃ij =

(
−2cν

√
ktest∆̂

(
ρ̂S̃ij −

1

3
ρ̂S̃kkδij

)
+

1

3
Lkkδij

)
ρ̂S̃ij (98)

So that:

cν =
L′

ijρ̂S̃ij

−2Mijρ̂S̃ij

(99)

Noting that both L′
ij, appearing in the numerator, and Mij in the denominator

are traceless, it is strictly equivalent to replace ρ̂S̃ij in the previous expression by

ρ̂S̃ij − ρ̂S̃kkδij. Then,

cν =

L′
ij

(
ρ̂S̃ij − 1

3
ρ̂S̃kkδij

)

−2Mij

(
ρ̂S̃ij − 1

3
ρ̂S̃kkδij

) (100)

Multiplying both numerator and denominator by
√

ktest∆̂, one gets exactly the rela-

tion:

cν = −
MijL′

ij

2MijMij
(101)

In order to determine the closure coefficient for the dissipation of ksgs, the gov-

erning equation for ktest is used. Its derivation is very similar to the derivation of the

ksgs governing equation, and reads:

∂

∂t
ρ ktest +

∂

∂xi

(
ρ̂ũik

test
)

= Tktest + pdktest + Pktest − Dktest (102)

where the expression for the diffusion, pressure-dilatation correlation, production

and dissipation at the testscale level are fully expressed as functions of the resolved

variables and of the subgrid stresses only. In particular, the production of ktest is

Pktest = −Lij ρ̂S̃ij/ρ̂, and its dissipation is given by:

Dktest =

̂︷ ︸︸ ︷
(τij − τ sgs

ij )
∂ũj

∂xi

−
̂︷ ︸︸ ︷

(τij − τ sgs
ij )

1

ρ̂

̂
ρ
∂ũj

∂xi

(103)

Under the similarity assumption, the dissipation of ktest is modeled with the same

formulation as the dissipation of ksgs, Dktest = ρ̂cε(k
test)3/2/∆̂, where again, only the
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closure coefficient remains unknown. With the following notation:

Σ̃ij = 2

(
S̃ij −

1

3
S̃kkδij

)
(104)

the difference between filtered and subgrid stresses is given by:

τij − τ sgs
ij = µeff Σ̃ij −

2

3
ρksgsδij (105)

where µeff = µ + µt. µeff is assumed to be constant over the width of the explicit

filter. The expression for the dissipation coefficient cε is given by:

cε =
∆̂

ρ̂ (ktest)
3
2

(
µeff

ρ̂

[
ρ̂
̂̃

Σij
∂ũj

∂xi
− ̂̃

Σij

̂
ρ
∂ũj

∂xi

]
− 2

3

[ ̂
ρksgs

∂ũk

∂xk
− ρ̂ksgs

∂ ̂̃uk

∂xk

] )
(106)

In compressible flows, the closure for the energy equation plays a fundamental

role, as strong variations in the energy / temperature fields are associated with the

compressibility of the flow. The turbulent Prandtl number, used to close the energy

equation, has been shown in experimental and DNS studies to vary spatially and

temporally for a given turbulent flow. Furthermore, the statistical average of Prt

has been found to be flow-dependent. It is generally found that Prt remains of the

order of unity. Chambers et al. [1985] report an average turbulent Prandtl number

Prt = 0.4 in an experimental study of turbulent mixing layers, with spatial variations

between 0.3 and 0.6. Using direct simulations of decaying incompressible isotropic

turbulence, Moin et al. [1991] showed that Prt could be assumed approximately

constant, Prt ≈ 0.4, but that compressibility could significantly impact the theoretical

value of this closure coefficient which varies between 0.25 and 0.6. Also, Pham et al.

[2007] studied the evolution of a turbulent thermal plume using both DNS and LES,

and showed variations of Prt between 0.2 and 0.7. It appears clearly from these exact

evaluations of Prt that assuming a constant value for this closure model can be a

rather limiting approach.

In the present work, the dynamic evaluation of the closure coefficients is extended

to the local computation of the turbulent Prandtl number, using the same similarity
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assumptions as for the other closure coefficients. At the testscale level, the expression

for the temperature and velocity correlation, ni, can be computed exactly from the

resolved field.

ni =
ρ̂ũiT̃

ρ̂
− ρ̂ũi

ρ̂

ρ̂T̃

ρ̂
(107)

Using the same modeling assumption as in the subgrid term case, the testscale velocity

temperature correlation is given by:

ρ̂ũiT̃

ρ̂
− ρ̂ũi

ρ̂

ρ̂T̃

ρ̂
=

cν

√
ktest∆̂

ρ̂P rt

̂
ρ

∂T̃

∂xi

(108)

Prt is the only unknown of this system of three independent equations. Again, the

over-specification is solved using a least-square method to minimize the error vector.

Solving for the inverse of the Prandtl number, the following expression is obtained:

1/Prt = −dini

didi
(109)

where

di =
cν

√
ktest∆̂

ρ̂

̂
ρ

∂T̃

∂xi

(110)

The formulation of the model for the pressure-dilatation correlation is given in

Eqn. 74. Again, the similarity assumption is made between subgrid and testscale

pressure dilatation in order to evaluate the closure coefficient αpd. pdktest can be

expressed as:

pdktest =
̂

P
∂ũi

∂xi

− P̂

ρ̂

̂
ρ
∂ũi

∂xi

(111)

The model associated with this expression reads:

pdktest = αpdM
test
t

2


 ρ̂S̃ktest

Dktest




2

(Pktest − Dktest) (112)

A single scalar expression is obtained for the closure coefficient:

αpd =
P̂ ∂ eui

∂xi
− P̂ /ρ̂ ρ̂∂ eui

∂xi

M test
t

2

(
c
ρ eSktest

Dktest

)2

(Pktest − Dktest)

(113)
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It should be noted that the denominator depends on the departure from equilibrium at

the testscale level. If the production of ktest balances the dissipation, the formulation

is found ill-posed. The pressure dilatation correlation is expected to be relatively small

in most case, reaching 10% of the dissipation in non-equilibrium flow configurations.

This is used to bound the value of αpd and prevent divergent values of the modeled

pressure-dilatation correlation.

The other coefficients σk and Sct could also be evaluated dynamically, if needed

using a similar strategy. However, the impact of the σk is small compared to other

terms in the governing equation for ksgs, and is therefore, assumed to be constant

(σk = 1). The turbulent Schmidt number is taken to be equal to 0.9. This latter

approximation is acceptable for simulations where species play a passive role.

2.3.3 Realizability Conditions

Vreman et al. [1994] showed that if a positive semi-definite filter, such as the top-hat

filter, is used within an LES formulation, the subgrid stresses have to be positive semi-

definite. These conditions, referred to as the realizability constraints, were found to

be satisfied by the LDKM formulation most of the time during the computation of

well resolved turbulence (Nelson and Menon [1998]). However, the strong and very

localized variations induced by shocks can make this property difficult to satisfy over

certain regions of the flow. An explicit enforcement of the realizability constraints is

performed in this study. The realizability constraint is given by:

τ sgs
11 , τ sgs

22 , τ sgs
33 ≥ 0

|τ sgs
1 2 |2 ≤ τ sgs

1 1 τ sgs
2 2

|τ sgs
2 3 |2 ≤ τ sgs

2 2 τ sgs
3 3

|τ sgs
1 3 |2 ≤ τ sgs

1 1 τ sgs
3 3

det
[
τ sgs
ij

]
≥ 0.

(114)

With the closure adopted in the present study, the three intermediate relations are
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re-arranged to show:

τ sgs
1 2

2 + τ sgs
1 3

2 + τ sgs
2 3

2 ≤ τ sgs
1 1 τ sgs

2 2 + τ sgs
1 1 τ sgs

3 3 + τ sgs
2 2 τ sgs

3 3 (115)

Noting that τ sgs
ij = −2ρνtΣ̃ij + 2/3ρksgsδij, one can re-write the previous relation as:

(2ρνt)
2(Σ̃2

12 + Σ̃2
13 + Σ̃2

23) ≤ (2ρνt)
2(Σ̃11Σ̃22 + Σ̃11Σ̃33 + Σ̃22Σ̃33)

− 2
3
(ρksgs2ρνt)(Σ̃11 + Σ̃22 + Σ̃33)

+ 34
9
ρ2ksgs2

(116)

The trace of the tensor Σ̃ij is 0. Hence, the second term on the right hand side of

the equation given above can be canceled out. The first term can be re-expressed as:

Σ̃11Σ̃22 + Σ̃11Σ̃33 + Σ̃22Σ̃33 =
1

2
(Σ̃11 + Σ̃22 + Σ̃33︸ ︷︷ ︸

= 0

)2 − 1

2
(Σ̃2

11 + Σ̃2
22 + Σ̃2

33) (117)

The equation given above can then be formulated:

(νt)
2(Σ̃2

12 + Σ̃2
12 + Σ̃2

23 +
1

2
(Σ̃2

11 + Σ̃2
22 + Σ̃2

33)) ≤
1

3
ksgs2 (118)

Given that νt is given by νt = cν

√
ksgs∆, one can get an upper bound for the cν

coefficient as:

cν ≤
√

ksgs

√
3 S̃ ∆

(119)

where S̃ is the strain rate magnitude defined earlier. These constraints are explicitly

enforced everywhere.
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CHAPTER III

COMPUTATIONAL METHODS

As reviewed earlier, the computational resolution of turbulence in high-speed flows is a

challenging task, as it requires a numerical scheme that combines a fine capture of the

turbulent structures in the flow with low inherent dissipation, and a shock-capturing

capability, to resolve all discontinuities in the flow as a part of the solution. In order

to allow for such simulations, a hybrid scheme is developed in the present study that

switches dynamically and locally between two numerical schemes in different regions

of the flow. The McCormack scheme will be first presented, and its extension to

fourth order spatial accuracy will be examined. The shock capturing methodology

developed and implemented in the framework of this hybrid approach is described

afterwards. Finally, the smoothness sensor used to assess the numerical switch is

described.

3.1 Numerical Integration

3.1.1 Finite Volume Method

The governing equations described in Chap. 2 can be written in the following form:

∂Q

∂t
+

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= S (120)

where Q is the vector of conserved state variables, Fx, Fy and Fz represent the fluxes

in the x, y and z direction respectively. and the vector S contains all the source terms.

A finite volume approach is used in the current study ; the governing equations are

integrated over a control volume V (a computational cell), delimited by a surface Σ,

as follows:

∫∫∫

V

∂Q

∂t
dV +

∫∫∫

V

(
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

)
dV =

∫∫∫

V

SdV (121)
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With Green’s theorem, the previous relation is re-expressed as:

∂Q

∂t
+

1

V

∮

Σ

(Fx nx + Fy ny + Fz nz) dΣ = S (122)

where Q and S are averaged over the volume of integration, F over the cell interfaces,

and (nx, ny, nz) are the normalized Cartesian components of the elemental surface

normal vector.

In the structured framework adopted here, any computational cell of coordinates

(i, j, k) is delimited by 6 interfaces (Σl)l=1..6 located at (i ± 1/2, j, k), (i, j ± 1/2, k),

and (i, j, k±1/2). Noting more generally Fl = Fxnx +Fyny +Fznz the corresponding

fluxes evaluations, the increment in the cell-centered variable Q is computed as:

dQ = −dt

V

∑

l=1,..6

(Fl Σl) + S dt (123)

3.1.2 McCormack Time Integration

The time integration is performed using a two-stage Runge-Kutta method. As will

be presented later, the fluxes evaluation in the McCormack method differ during the

two stages of the time-integration. For this reason, the two stages are often called

predictor and corrector, and their formulation is given by:

Q(?) = Q(n) + dQ(n) (Predictor)

Q(n+1) = 1
2

[
Q(n) + Q(?) + dQ(?)

]
(Corrector),

(124)

Here, dQ(n) and dQ(?) are the increments in state variables, obtained as in Eqn.

123, based on the variables Q(n) and Q(?) respectively. This results in an explicit

methodology with second order accuracy in time. This time integration, originally

chosen as a part of the McCormack scheme, is applied to both the central and the

upwind schemes presented hereafter. The spatial accuracy of the overall scheme is

determined by the accuracy in the evaluation of the fluxes at the cell interfaces. The

smooth flow solver will be presented first, for both second and fourth order spatial

accuracies, followed by a description of the upwind shock-capturing flux computation.
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As mentioned above, the scheme used here is explicit. The increments computed at

a given sub-iteration are based on the field at that sub-iteration. The superscripts in

Q(n) or Q(?) are redundant, and are dropped in the following description of the schemes

for clarity. Also, the numerical schemes hereafter described are used to evaluate the

fluxes at the interfaces. The flux at a given i + 1/2 interface is determined from the

cell variables of varying i’s, but for fixed j and k. In order to simplify the notations,

only the index corresponding the i location will be kept, j and k being implicitly fixed.

Furthermore, it should be noted that the extension of the computational operations

described for the i-direction to the other two directions is straightforward, the indices

i, j and k being essentially interchangeable.

3.2 A Hybrid Scheme for Supersonic Turbulent Flows

In order to evaluate the state variable increment in Eqn. 123, the fluxes at the cell

interfaces must be evaluated. In order to capture both the discontinuities in the flow

and allow for the resolution of the turbulent features, a hybrid framework has been

developed. The flux evaluation is given by:

Fi+1/2 = λi+1/2F
s
i+1/2 +

(
1 − λi+1/2

)
F u

i+1/2 (125)

where F s is the flux obtained using a low-dissipation scheme adapted to the resolution

of turbulent flows, presented in Sec. 3.3, whereas F u is evaluated from a shock-

capturing scheme, described in Sec. 3.4. Rather than blending the two schemes, the

current hybrid methodology switches between them. The switch variable λi+1/2 is

then given as a Heaviside step function, according to an evaluation of the smoothness

of the local flow-field, used to determine which scheme is appropriate.

Several sensors can be found in the literature. In self-adjusting artificial diffusions,

an explicit diffusive term is integrated to the governing equations, and its strength is

dynamically computed from some characteristics of the flow variations. Harten and
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Zwas [1972] suggested the following self-adjusting parameter for shock-capturing:

θi+1/2 = κ

[ |φi+1 − φi|
maxj |φj+1 − φj|

]m

(126)

where κ and m are user-dependent constants, and φ a variable that characterizes

the discontinuity. The denominator captures the largest jump in the flow. These

coefficients were found to strongly depend on the configuration, the presence and

strength of the shocks within the simulation. More recently, the Jameson artificial

dissipation (Jameson and Baker [1983]) was designed to stabilize central schemes in

shock regions, and has been widely used. Its basis consists in evaluating the curvature

of the pressure field and to compare it to the average pressure value:

Si =
Pi+1 − 2Pi + Pi−1

Pi+1 + 2Pi + Pi−1

(127)

Identically, Lapidus [1967] described an artificial dissipation method where the artifi-

cial viscosity is a function of the velocity divergence. These artificial diffusion methods

modify the governing equation in order to stabilize the numerical scheme. The con-

cept of blending and/or switching between two numerical schemes with dispersive

and dissipative natures is somewhat more recent.

Several hybrid schemes based on ENO and WENO scheme for shock-capturing

have been presented. The design of the switching functions has varied from author to

author. Adams and Shariff [1996], Pirozzoli [2002] have used a switching formulation

based solely on the gradients in the flow. Let si+1/2 be the gradient in fluxes at a

given interface i + 1/2:

si+1/2 =
Fi+1 − Fi

∆xi+1/2

(128)

A spatial location in the flow was considered non-smooth in the study of Adams and

Shariff [1996] if the following conditions were satisfied:

1. The modulus of the gradient times grid spacing is larger than a certain threshold

si+1/2∆xi+1/2 > α
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2. The gradient attains a local maximum |si−1/2| < |si+1/2| > |si+3/2|.

The more dissipative, shock handling scheme is applied to the three surrounding

interfaces, (i − 1/2), (i + 1/2), (i + 3/2) if these two conditions are satisfied. Hill and

Pullin [2004] suggested a switch based on the smoothness factor computed in the

context of WENO schemes to define the weight coefficients of the scheme. Later, Hill

et al. [2006], Pantano et al. [2007] used a hybrid scheme that integrated a slightly

different smooth flow solver, and changed to a Jameson-type sensor, (Eqn. 127) based

on both pressure and density fields.

Other smoothness sensors are described in the literature that intend to identify

shock waves within the computation field. Ducros et al. [1999] described a sensor

based on the physical observation that, unless very high levels of compressible tur-

bulence are expected in the flow, the turbulent structures are essentially vortical,

and the bulk dilatation of the flow is associated with shock waves. The following

expression:

||~∇ · ~U ||
||~∇ · ~U || + ||~∇× ~U ||

(129)

quantifies the levels of compression and was combined to a Jameson sensor for shock

detection.

In the present study, not only shocks, but all discontinuities need to be captured

with the upwind method. Three types of discontinuities found in supersonic flows

need to be detected, namely the contact discontinuities, sharp flame fronts and shock

waves. The central scheme employed in the present study, and described in Sec.

3.3, can efficiently resolve gradients in the flow, but generates numerical oscillations

in regions where flow gradients change rapidly. Accordingly, the sensor retained for

the present implementation is based on the curvature of both the pressure and the

density fields, sufficient to ensure the detection of all three types of discontinuities.

The generic formulation of the smoothness parameter for variable φ (φ = P or φ = ρ)
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is given by:

Sφ,i =





|φi+1−2φi+φi−1|
|φi+1−φi|+|φi−φi−1| − Sth

φ if |φi+1 − 2φi + φi−1| ≥ εφφi

−Sth
φ otherwise

(130)

This formulation of Sφ,i permits a quantification of the changes in flow gradients

rather than an identification of the gradients alone. For the present study, the coef-

ficients εP and ερ are taken to be equal to 0.05 and 0.1 respectively. The threshold

values for the pressure and density switches, S th
P and Sth

ρ are equal to 0.5 and 0.25

respectively. These coefficients were found from numerical experimentations to yield

accurate simulations of turbulent flows in the presence of shocks and/or density in-

terfaces. These sensors identify the regions where the pressure and/or density fields

show rapid variations and where these variables show significant gradients. This per-

mits to only capture the heads and feet of the discontinuities. The switch function

λi+1/2 is then defined as:

λi+1/2 =





1 if max(SP,i, SP,i+1, Sρ,i, Sρ,i+1) ≤ 0

0 otherwise
(131)

3.3 A Central Scheme for Turbulent Flows

The numerical scheme employed for the resolution of the turbulent structures should

have a small intrinsic dissipation in order to capture the evolution of the fluctuations

at the right rate. As reviewed in Chap. 1, several schemes have been employed in

the context of DNS and LES. Compact schemes, for instance, have been found to

have a quasi-spectral behavior, and are as such well adapted to turbulent studies.

The high computational cost associated with these schemes, the poor behavior in

gradient regions and the complexity in the scheme formulation for highly stretched

and skewed grid make them poorly suited to practical studies. The focus of the present

study being the development of a numerical methodology for complex geometries, the

smooth flow solver integrated in the present hybrid method uses central differencing.
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High order central schemes have a low dissipation, permit a capture of turbulent

structures and have grid-conforming capability.

3.3.1 A 2nd Order Accurate Method - the Original McCormack Scheme

In order to reduce numerical dissipation, the use of central schemes is preferred.

Purely central schemes are, however, found to be unstable. Many researchers have

developed modified central schemes with limiters and/or artificial dissipation to sta-

bilize these numerical methods (e.g. Jameson and Baker [1983]). The method of

MacCormack [1969] does not add any explicit diffusion to a central scheme, but

rather uses the two stages of the time integration method to get a built-in dissipation

within the scheme. To do so, the fluxes at the cell interfaces are computed using al-

ternatively backward and forward differencing in the predictor / corrector sequence.

This combination results in a central differencing method over the entire time integra-

tion. The numerical fluxes at the interfaces are obtained from the interpolated state

variables. Noting Q+
i+ 1

2

the interpolated state variable at the interface from backward

extrapolation, and correspondingly Q−
i+ 1

2

the result of the forward extrapolation, the

fluxes are computed as:

F s
i+ 1

2
= F

(
Q±

i+ 1
2

)
(132)

In the original McCormack method, first order extrapolations are used at each step of

the sequence. The neighboring cell centers are alternatively used to get the interface

fluxes as:

Q+
i+ 1

2

= Qi+1

Q−
i+ 1

2

= Qi

(133)

The scheme stability analysis is given in App. A, where it is shown that this for-

mulation yields second order accuracy in space and time (hereafter noted O(2, 2)).

The combination of first-order extrapolation within the predictor/corrector sequence

leads to a higher-order scheme. The backward / forward sequence is alternated in

order to prevent directional bias over the simulation.
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3.3.2 A 4th Order Extension to the McCormack Scheme

Higher order schemes are better suited to the computations of turbulent flows. The

original McCormack scheme having shown good accuracy for many practical problems

of aerodynamics and turbulence, its predictor / corrector method is a good candidate

for the design of higher order methods. Gottlieb and Turkel [1976] studied general

forms of fourth-order accurate schemes with Richtmyer and McCormack time integra-

tion methods. They proposed an extension of the basic O(2, 2) McCormack scheme

to O(2, 4) accuracy, by defining the fluxes based on the extrapolation:

Q+
i+ 1

2

= 1
6
(7 Qi+1 − Qi+2)

Q−
i+ 1

2

= 1
6
(7 Qi − Qi−1)

(134)

Nelson [1997] showed that this scheme really is O(2, 3), due to the relation that

exists between time-step and computational grid spacing, and developed a method

that truly is fourth order in space. The computation of the fluxes (method hereafter

called N24 scheme) is obtained from:

Q+
i+ 1

2

= 1
6
(2 Qi + 5 Qi+1 − Qi+2)

Q−
i+ 1

2

= 1
6
(2 Qi+1 + 5 Qi − Qi−1)

(135)

Here again, alternating the backward / forward sequence is used to prevent persistent

directional bias.

A stability analysis of the fourth-order extension to the McCormack scheme is

presented in App. A, which shows that the N24 scheme is unconditionally unsta-

ble for the resolution of the linear advection equation. It is further shown that the

highest order that can be achieved with the McCormack methodology that ensures

conditional stability is third order spatial accuracy. This theoretical analysis, based

on the resolution of the simplified advection equation is of fundamental importance,

but no conclusion can be made on the behavior of the scheme for the practical reso-

lution of the Navier-Stokes equations. This system of equations is far more complex
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Figure 4: Schematic representing the curvilinear grid spacing definitions, from Nel-
son [1997].

and non-linear. Furthermore, the presence of viscous forces stabilizes the practical

simulations. It is shown in App. A that stable fourth-order schemes may be obtained

within the McCormack formulation for the advective-diffusive equation with specific

restrictions on the grid Reynolds number. In practice, very weak numerical oscilla-

tions are observed in simulations of turbulent flows using the N24 scheme. As shown

in App. A, such oscillations are significantly reduced by alternate fourth-order nu-

merical schemes, and the method used here differs from the original scheme of Nelson

[1997], but keeps its fourth order accuracy:

Q+
i+ 1

2

= − 5
18

Qi+2 + 7
6
Qi+1 + 1

9
Qi−1

Q−
i+ 1

2

= − 5
18

Qi−1 + 7
6
Qi + 1

9
Qi+2

(136)

The formulation is extended to non-uniform grid spacings. Following the notations

of Nelson [1997], as represented in Fig. 4, the spacing between the cell center and

the interface at i+1/2 is noted ∆
(1)
i , the spacing between cell center i and cell center

i + 1 is ∆i. Grid stretching in the previous extrapolation procedure is accounted for
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as:

Q+
i+ 1

2

= −5
9

(
∆

(1)
i+1

∆i+1

)
Qi+2 + 1

9

(
7 + 5

∆
(1)
i+1

∆i+1
+ 2

∆
(1)
i

∆i

)
Qi+1

+ 2
27

(
2 − 3

∆
(1)
i

∆i
+

∆
(1)
i−1

∆i−1
− ∆i

∆i−1

)
Qi + 2

27

(
1 − ∆

(1)
i−1

∆i−1
+ ∆i

∆i−1

)
Qi−1

Q−
i+ 1

2

= −5
9

(
1 − ∆

(1)
i−1

∆i−1

)
Qi−1 + 1

9

(
14 − 5

∆
(1)
i−1

∆i−1
− 2

∆
(1)
i

∆i

)
Qi

+ 2
27

(
3

∆
(1)
i

∆i
− ∆i+∆

(1)
i+1

∆i+1

)
Qi+1 + 2

27

(
∆i+∆

(1)
i+1

∆i+1

)
Qi+2

(137)

The evaluation of Q±
i+1/2 is used to evaluate the fluxes at the interface according to

Eqn. 132.

3.4 A Flux-Difference Splitting Scheme for Discontinuity
Capturing

Shocks and contact discontinuities are common features of supersonic flows and re-

quire proper resolution. Central schemes such as the fourth-order scheme described

previously, are dispersive in nature, and create numerical oscillations around steep

gradients, strongly affecting the flow and leading to unphysical values in the computed

field. The upwind method required in the hybrid framework must be of dissipative

nature, and to capture strong gradients as a part of the solution. A flux difference

splitting has been chosen and implemented for the current study, and is hereafter

described. This approach fulfills the shock-capturing requirement, and has a rather

low computational cost and a body-conforming capability. A higher-order method

is achieved by the use of a Monotone Upstream Centered Schemes for Conservation

Laws (MUSCL) re-construction technique. The resolution of the Riemann problem

is performed using an approximate Riemann solver, leading to the evaluation of the

interface fluxes.
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3.4.1 Interface Reconstruction

In flux difference splitting (FDS) methods, every cell interface is considered as a sharp

separation between a left and a right state with different properties. The first step in

FDS consists in re-constructing this Riemann problem.

3.4.1.1 MUSCL Interpolation

The interpolation used in the current scheme uses the MUSCL approach of van Leer

[1979], in which the flow variables are assumed to have piecewise-linear variations.

The left and right states for a given interface are evaluated as:

UL
i+1/2 = Ui + ε(1−ξi)

4

[
(1 − κ) ∆+

i−1/2(U) + (1 + κ) ∆−
i+1/2(U)

]

UR
i+1/2 = Ui+1 − ε(1−ξi+1)

4

[
(1 + κ) ∆+

i+1/2(U) + (1 − κ) ∆−
i+3/2(U)

] (138)

where first order piecewise constant extrapolation is used if ε = 0, and higher order is

obtained for ε = 1. The coefficient ξi is computed from the flattening operation and

will be described later. The value for κ drives the order of the interpolation. Third

order spatial accuracy is obtained for κ = 1/3. All other values lead to a second order

interpolation. κ = 1 corresponds to a central differencing scheme, whereas κ = −1 is

a purely upwind interpolation.

van Leer [1979] introduced the concept of monotonicity in the interpolation proce-

dure: the evaluation of the states at the cell interface should not create new extrema

in the field. To enforce this condition, limiters are applied to the interpolation of

∆±
i−1/2(U). The interpolation technique uses the following differencing:

∆i+1/2(U) = Ui+1 − Ui

∆+
i+1/2(U) = ∆i+1/2(U)φ(r+

i+1/2) r+
i+1/2 =

∆i+3/2(U)

∆i+1/2(U)

∆−
i+1/2(U) = ∆i+1/2(U)φ(r−i+1/2) r−i+1/2 =

∆i−1/2(U)

∆i+1/2(U)

(139)
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where φ is the so-called limiter. The interpolation reads then:

UL
i+1/2 = Ui + ε(1−ξi)

4

[
(1 − κ) φ(r+

i−1/2)(Ui − Ui−1) + (1 + κ) φ(r−i+1/2)(Ui+1 − Ui)
]

UR
i+1/2 = Ui+1 − ε(1−ξi+1)

4

[
(1 − κ) φ(r−i+3/2)(Ui+2 − Ui+1) + (1 + κ) φ(r+

i+1/2)(Ui+1 − Ui)
]

(140)

Noting that r+
i−1/2 = 1/r−i+1/2, the overall procedure can be re-arranged into:

UL
i+1/2 = Ui + ε(1−ξi)

4

[
(1 − κ)φ(r+

i−1/2) + (1 + κ) φ( 1
r+
i−1/2

)r+
i−1/2

]
(Ui − Ui−1)

UR
i+1/2 = Ui+1 − ε(1−ξi+1)

4

[
(1 − κ)φ(r−i+3/2) + (1 + κ) φ( 1

r−
i+3/2

)r−i+3/2

]
(Ui+2 − Ui+1)

(141)

Several limiters have been developed and used in the past. Five limiters have been

identified and implemented for the current development, namely:

� Minmod Limiter

This limiter might be most common one. It can be expressed as:

φmm(r) = max [0, min(r, 1)] (142)

� Superbee Limiter

φsb(r) = max [0, min(2r, 1), min(r, 2)] (143)

The Minmod and Superbee limiters are actually part of a class of limiters described

by Sweby:

φβ(r) = max [0, min(βr, 1), min(r, β)]

1 ≤ β ≤ 2
(144)

where the minmod corresponds to β = 1 and the superbee corresponds to β = 2.

� Monotonized Central Limiter

φmc(r) = max

[
0, min(2r, 2,

1 + r

2
)

]
(145)

� Van Leer Limiter
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φvl(r) =
|r| + r

1 + r
(146)

� Van Albada Limiter

φva(r) =
r2 + r

1 + r2
(147)

All these limiters satisfy a symmetry condition:

φ(r)

r
= φ

(
1

r

)
(148)

The relation expressed in eqn. 141 is simplified for a symmetric limiter to:

UL
i+1/2 = Ui + ε(1−ξi)

2
φ(r+

i−1/2)(Ui − Ui−1)

UR
i+1/2 = Ui+1 − ε(1−ξi+1)

2
φ(r−i+3/2)(Ui+2 − Ui+1)

(149)

showing that the dependence on κ of the original interpolation procedure is lost when

symmetric limiters are used. The implication of this property is that the order of the

reconstruction depends on the local variations of the interpolated variable, and on

the limiter used for the interpolation.

A scheme is said to be Total Variation Diminishing (TVD) if the total variation

of the solution is diminishing as the simulation progresses. Limiters that satisfy the

TVD condition lead to a monotonic scheme (Harten [1983]). The limiters used in the

MUSCL technique ensure a second order TVD property if their descriptive functions

lie in the region described in Fig. 5. The implemented limiters are shown in Fig. 6

and 7. Among the limiters that have been implemented, superbee is found to be the

most anti-diffusive. It is often considered over compressive, i.e., it tends to produce

artificial compression and thus to sharpen profiles into discontinuities. Minmod is the

least compressive option, and provides a great amount of numerical dissipation. More

details about the design, the use, and the limitations of the limiters can be found in

reference books on CFD (see, e.g. Hirsch [1997], Tannehill et al. [1997])

The reconstruction, Eqn. 149 is then fully defined, and can be applied to various

sets of variables (Berthon [2005]). In the present work, the operation is performed on
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Figure 5: Region defining second order TVD schemes (shaded in grey).
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Figure 6: Characteristic curves for the Monotonized central (MC), minmod (MM)
and superbee (SB) limiters.
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Figure 7: Characteristic curves for the van Leer (VL) and van Albada (VA) limiters.

the primitive variables (ρ, ũi, P , ρk). These variables are often used in this context,

as they permit a crisp capture of the discontinuities, at a very small computational

cost.

3.4.1.2 Monotonicity of the Reconstructed States

The monotonicity of each reconstructed variable is ensured in the method described

previously by the use of TVD limiters. However, a global monotonicity of the inter-

polation procedure requires more attention.

� Conserving the Sign of the Gradients through the Interface

The monotonicity of the solution is enforced by:

max(Ui, Ui+1) ≥ U l
i+ 1

2

≥ min(Ui, Ui+1)

max(Ui, Ui+1) ≥ U r
i+ 1

2

≥ min(Ui, Ui+1)
(150)

Conservation of the sign of variations across the interface is however not ensured

by this method. The configuration shown in Fig. 8 shows that the results of the

reconstruction procedure can satisfy the monotonicity condition expressed in Eqn.

150 and violate the global variations of the interpolated variable: Ui+1 − Ui < 0 and

UR
i+1/2 −UL

i+1/2 > 0. The satisfaction of this extra monotonicity constraint is checked
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Figure 8: Schematic illustrating the gradient violation during the reconstruction
procedure.

and enforced in the current procedure. Violation of this condition is corrected by

setting:

UL,new

i+ 1
2

=
1

2
(UL,old

i+ 1
2

+ UR,old

i+ 1
2

) UR,new

i+ 1
2

= UL,new

i+ 1
2

(151)

It should be noted that the initial reconstructed field, UL,old

i+ 1
2

and UR,old

i+ 1
2

, satisfy by

construction the monotonicity expressed in Eqn. 150. This correction ensures that

UL,new

i+ 1
2

and UR,new

i+ 1
2

also satisfy this property.

� Monotonicity of secondary variables

The interpolation is performed on a selected set of variables. In the present case, as

mentioned earlier, the primitive variables are used for reconstruction. Other variables

are needed for the Riemann solver resolution and flux computation. The left and right

states of the temperature are required, for the evaluation of the speed of sound and

the evaluation of the total energy. Temperature is re-computed from the interpolated

field, rather than extrapolated itself. The monotonicity of this secondary variable:

max(Ti, Ti+1) > T L
i+ 1

2
> min(Ti, Ti+1) (152)

is strictly enforced through modifications of the pressure interpolation if needed.
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� Monotonicity of the species mass fractions

The MUSCL reconstruction is applied to the species densities, and the mass frac-

tions are recomputed on each side of the interface. This operation requires special

attention. The values of the limiters for the different species are likely to differ if the

procedure is performed independently on each one of the species. The resulting set

of mass fraction on a given side of the interface does not satisfy mass conservation,

namely:
Ns∑

k=1

Y
L/R
k 6= 1 (153)

A re-normalization of the mass fraction at the interface has often been used in the

past (Fryxell et al. [1989], Plewa and Müller [1999]). This method unfortunately leads

to non-monotonic field of species mass fractions. The method adopted in the present

study consists in reducing the order of the interpolation of the species to the most

limiting reconstruction. For the species densities, the reconstruction reads:

ρl
k,i+ 1

2

= ρk,i + ε(1−ξi)
2

min︸︷︷︸
k=0..Ns

(
φ
(
r+
i−1/2(ρk)

))
(ρk,i − ρk,i−1)

ρr
k,i+ 1

2

= ρk,i+1 − ε(1−ξi+1)
2

min︸︷︷︸
k=0..Ns

(
φ
(
r−i+3/2(ρk)

))
(ρk,i+2 − ρk,i+1)

(154)

where k = 0 refers to the reconstruction of the total density.

3.4.1.3 Flattening Procedure

Colella and Woodward [1984] showed that post-shock oscillations were found in the

resolution of strong shocks using shock-capturing schemes. This instability of the

numerical scheme is related to the self-steepening property of the shocks. Colella and

Woodward [1984] have found that reducing the order of the reconstruction in regions

of steep and strong pressure gradients could eliminate these perturbations. The flat-

tening method described in this reference is implemented in the current formulation

to evaluate the coefficient ξi in Eqn. 141, employing the same coefficients. A cell is
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identified as being part of a shock wave if the following two conditions are satisfied

dP,i =
|Pi+1 − Pi−1|

min
(
Pi+1, Pi−1

) − 1

3
> 0 (155)

du,i = ui+1 − ui−1 < 0 (156)

The shock thickness is then measured by relating the pressure gradient across two

cells to the gradient across four cells,

Sp,i =
Pi+1 − Pi−1

Pi+2 − Pi−2
(157)

ξ̃i = max

[
0, min

(
1, 10(Sp,i − 0.75)

)]
(158)

Finally, the limiting factor ξi in the reconstruction procedure, Eqn. 149 is then defined

as:

ξi =





max
(
ξ̃i, ξ̃i+1

)
, ifPi+1 − Pi−1 < 0

max
(
ξ̃i, ξ̃i−1

)
, otherwise

(159)

With this description of the flattening method, the reconstruction procedure for

the left and right states of the interface is now complete. The numerical fluxes are

then obtained from these states using a Riemann solver. The next section describes

the Riemann solver developed for the current study.

3.4.2 A Class of Approximate Riemann Solvers - HLL·

A brief description of the HLL Riemann solver family is given hereafter. The HLL

approximate Riemann solvers have first been developed by Harten, Lax and van

Leer (Harten et al. [1983]), by expressing a hyperbolic system of conservation laws

in integrand form. From an initial interface separating two constant states, it is

assumed that N waves can be formed from the characteristics evolution of the system,

separating N + 1 constant-properties regions. The knowledge of the jump relation

through the waves and the wave-speeds permits to obtain a closed form expression

for the intermediate states, and the associated fluxes. Harten et al. [1983] carried a
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full derivation for a two-waves problem, leaving the wave-speeds as sole unknowns to

the solver, and have given a mathematical description for the 3-waves problem.

The 2-waves formulation for the resolution of the Euler equations (with wave-

speeds expressions given by Einfeldt [1988], Einfeldt et al. [1991], thus called HLLE)

has been proven robust and adequate for shocks and rarefactions, but appears as very

dissipative for contact discontinuities. Toro et al. [1994] proposed a correction to the

derivation of this solver, in order to add the missing contact wave (thus called HLLC),

whose wave-speed was estimated by an approximation of the particle velocity in the

intermediate region. The formulation is closed by expressing the jump conditions

across all wave obtained from the exact Riemann solver for the Euler equations. This

formulation was further studied by Batten et al. [1997], who related the averaged

intermediate state to the HLLE evaluation, thus leading to an easy, but yet robust,

3-waves Riemann solver. It should be noted that this 3-waves solver does not follow

the original work of Harten et al, as the intermediate wave speed is estimated from

the 2-wave solver as a correction, and does not reduce to a single-wave problem

in the physical limit of an isolated discontinuity. Linde [2002] derived a 3-waves

Riemann solver (often referred to as the HLLL, of the HL3 Riemann solver) that

follows the original framework of Harten et al. [1983]. The basis of this formulation

is more general than for the HLLC solver, as no assumption is made on the equations

solved. The intermediate wave strength and jump conditions are determined from an

entropy-minimizing procedure. This alternate 3 − waves solver can be used for the

resolution of any hyperbolic system of equations. In particular, it has been shown

(Gurski [2005]) that the HLLC formulation is a specific case of the more general HLLL

formulation for the resolution of hydrodynamics problems. The increased complexity

of this solver is adapted to complex governing equations (Miyoshi and Kusano [2005]),

but is not justified in the resolution of hydrodynamics flows, where the HLLC solver

is found to yield accurate and robust solutions. The derivation that will be hereafter
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Figure 9: (x, t) diagram of an approximate Riemann problem evolution with two
characteristic waves.

presented focuses on the 2-waves formulation of the original HLL method and its

HLLC extension.

The Riemann solver developed for this study uses a combination of the HLLE

and HLLC solvers, in order to reduce the instabilities associated to contact-resolving

solvers. The simpler 2-waves HLLE will be described hereafter. Following this deriva-

tion, the wave-speeds estimates, and the modifications that lead to the HLLC solver

are given.

3.4.2.1 The 2-waves HLL Riemann Solver

The derivation of this solver is based on the assumption that an initial one-dimensional

discontinuity gives rise to 2 waves, a left-moving wave (of Eulerian speed SL), and a

right-moving one (of Eulerian speed SR). A typical (x,t) diagram for a subsonic case

is given in Fig. 9. The integral form of the Euler equations (see, eg, Toro [1999]),
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reads: ∮
[Udx − F (U)dt] = 0 (160)

where, noting q = ~V · ~n = unx + vny + wnz the interface normal velocity amplitude,

U and F (U) are given by:

U =




ρ

ρu

ρv

ρw

ρE

ρksgs

ρYk




, F =




ρq

ρuq + Pnx

ρvq + Pny

ρwq + Pnz

(ρE + P )q

ρksgsq

ρYkq




(161)

Let T be the local time step, T = tn+1− tn > 0. Note that, in all cases, SL < SR. Let

us first treat the case where SL > 0, which corresponds to a supersonic flow from left

to right. The SL wave would lie on the right of the interface, and the flux at x = 0,

F ?, is then obviously given by F (UL). Similarly, if SR < 0, the flow is supersonic,

from right to left, and F ? is given by F (UR).

Now, let us examine the case where SL ≤ 0 ≤ SR. The lengths Xl, Xr can then be

expressed as Xl = −TSL and Xr = TSR. Expressing the integral form of the Euler

equations on the system in Fig. 9 gives:

∫ −Xl

0
U(x, 0)dx −

∫ T

0
F
(
U(Xl, t)

)
dt +

∫ Xr

−Xl
U(x, T )dx

−
∫ 0

T
F
(
U(Xr, t)

)
dt +

∫ 0

Xr
U(x, 0)dx = 0

(162)

Assuming piecewise constant variables, and hence, piecewise constant fluxes, the pre-

vious relation can be re-written as:

UL.
(
SLT

)
− F L.

(
T
)

+U?.
(
(SR − SL)T

)
− F R.

(
− T

)
+ UR.

(
− SRT

)
= 0

(163)
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relation that, after re-arrangement, leads to:

U? =
F L − SLUL − (F R − SRUR)

SR − SL
(164)

This shows that once (UL, UR) is known from the reconstruction procedure, and once

the wave-speeds (SL, SR) are estimated, the variables in the ?-region are fully defined.

The integral relation applied across a given k−wave, k = L/R, results in the

Rankine-Hugoniot relations that read:

F ? = F L + SL
(
U? − UL

)

F ? = F R + SR
(
U? − UR

) (165)

From these 2 relations, one can eliminate U ? in order to determine F ? as:

F ? =
SRF L − SLF R + SLSR(UR − UL)

SR − SL
(166)

Thus, the flux evaluated at the i + 1/2 interface from the 2-waves HLL Riemann

solver reads:

F HLLE
i+1/2 =





F L if 0 ≤ SL

F ? if SL ≤ 0 ≤ SR

F R if SR ≤ 0

(167)

Once an evaluation of the wave-speeds (SL, SR) is provided, the HLL Riemann

solver is fully defined. Several wave-speeds estimates can be found in the literature

(Davis [1988], Einfeldt [1988], Einfeldt et al. [1991], Toro [1999]), leading to schemes

of different robustness and dissipation. In the present development, the wave-speeds

are estimated following the work of Einfeldt (HLLE), as:

SL = min
[
qL − cL, q̌ − č

]
SR = max

[
qR + cR, q̌ + č

]
(168)

where q̌ refers to the Roe-averaged contravariant velocity, and c is the speed of sound.
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The Roe-averaged variables are obtained from:

Ǔ =




ρ̌

ǔ

v̌

w̌

Ȟ

ˇksgs

Y̌k




=
1√

ρL +
√

ρR




√
ρL




√
ρLρR

uL

vL

wL

HL

ksgs L

Yk,l




+
√

ρR




√
ρLρR

uR

vR

wR

HR

ksgs R

Yk,r







(169)

The speed of sound č is not directly obtained from this procedure and is re-computed

from the Roe-averaged variables č = f(ȟ, ρ̌, Y̌k). These wave-speeds are related to

the characteristic wave propagation speeds on each side of the interface. It should

be noted that, for the present LES calculations, the eigenvalues of the governing

equations are not modified by the governing equation for ksgs. The estimates given

can be used for the filtered Navier-Stokes equations.

This solver has proven to be robust and accurate for hypersonic calculations and

shock capturing purposes. Its assumption of double wave is however limiting, and the

consequent numerical smearing of contact discontinuities, shear waves, etc... makes

it unsuitable for viscous and turbulent calculations. An extension of this scheme has

been developed and presented by Toro et al. [1994], where the middle wave in the

Riemann problem is taken into account in the derivation of the fluxes. This extended

Riemann solver is named HLLC (C standing for Contact), and its derivation is given

in the next section.

3.4.2.2 Restoration of the Middle Wave - the HLLC Riemann Solver

It is assumed for the derivation of the HLLC solver that a given interface separating

two states gives rise to three waves, of speed SL for the left moving wave, SR for

the right moving wave, and S? for the contact wave. These discontinuities separate
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Figure 10: (x, t) diagram of an approximate Riemann problem evolution with three
characteristic waves.

constant states of the fluid. SL separates UL from UL?, S? is the interface between

UL? and UR?, while SR separates UR? from UR. This assumption of thin interfaces is

justified for both shocks and contact discontinuities, and is an approximation in the

case of rarefactions. A typical representation of a subsonic system is shown in Fig.

10.

Let T be the local time step, T = tn+1 − tn > 0. Note that, in all cases, SL <

S? < SR. Similarly to the HLL solver, the case of a supersonic flow from left to

right, where SL > 0, leads to a flux at x = 0 given by F (UL). Again, if SR < 0,

the flux is given by F (UR). Now, let us examine the case when SL ≤ 0 ≤ SR. The

lengths Xl and Xr can then be expressed as Xl = −TSL and Xr = TSR respectively,

and similarly, XL? = T (S? −SL), X?
r = T (SR −S?). The Euler equations in integral

form, Eqn. 160, can be applied to the system represented in Fig. 10, leading to the
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relation:

∫ −Xl

0
U(x, 0)dx −

∫ T

0
F
(
U(Xl, t)

)
dt +

∫ X?

−Xl
U(x, T )dx

+
∫ Xr

X? U(x, T )dx −
∫ 0

T
F
(
U(Xr, t)

)
dt +

∫ 0

Xr
U(x, 0)dx = 0

(170)

With the same assumptions of piecewise constant variables and piecewise constant

fluxes as in the derivation of the HLL solver, the previous relation can be re-written

as:

UL.
(
SLT

)
− F L.

(
T
)

+ UL?.
(
(S? − SL)T

)

+ UR?.
(
(SR − S?)T

)
− F R.

(
− T

)
+ UR.

(
− SRT

)
= 0

(171)

relation that, after re-arrangement, leads to:

(S? − SL)UL? + (SR − S?)UR? = F L − SLUL − (F R − SRUR) (172)

This relation relates the left and right ?-variables together, and is often called the

consistency condition. Note that assuming a unique ?−state, so that UL? = UR?

recovers the Consistency Condition of the HLL solver, Eqn. 164.

The integral applied around a control volume surrounding a given k−wave leads

to:

Uk.
(
SkT

)
− F k.

(
T
)
− Uk?.

(
− SkT

)
+ F k?.

(
T
)

= 0 (173)

so that the corresponding Rankine-Hugoniot relations across the k−wave, k = L/R,

are recovered, and read:

F L? = F L + SL
(
UL? − UL

)

F R? = F R + SR
(
UR? − UR

) (174)

Identically, the Rankine-Hugoniot relation across the ?-wave reads:

F L? = F R? + S?
(
UL? − UR?

)
(175)

The relations 172, 174 and 175 give 4 relations for 4 unknowns (F L?, F R?, UL?, and

UR?). It is however straightforward to show that they are not linearly independent.
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An assumption has to be made on the intermediate states in order to solve this system

of equations.

Toro et al. [1994] closed the relation by assuming that the intermediate wave

had the same properties as a contact discontinuity. Its propagation speed is then

assumed identical to the particle velocity in the ?−region, and this wave retains the

initial discontinuity in the passive scalar field. This also implies that both convective

velocities and pressures have to match across the interface. Mathematically, those

assumption are expressed by:

(~V L? · ~n = qL?) = (~V R? · ~n = qR?) = S?

P L? = P R?

φL? = φL , φR? = φR

(176)

where φ is any passive scalar advected by the fluid (φ = ksgs, Yk, ...). Note that

the component of the velocity transverse to the interface, φk = ~V k −
(
~V k · ~n

)
~n =

~V k−S?~n, k = L/R is a passive scalar for this one-dimensional problem. As mentioned

in Toro [1999], all of these conditions are exactly satisfied by a contact discontinuity

computed from an exact Riemann solver.

With these assumptions, one can re-write the four first elements of the vectorial
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equation expressed in Eqn. 172, as:

(S? − SL)

UL?

︷ ︸︸ ︷


ρL?

ρL?uL?

ρL?vL?

ρL?wL?




+(SR − S?)

UR?

︷ ︸︸ ︷


ρR?

ρR?uR?

ρR?vR?

ρR?wR?




= SR

UR

︷ ︸︸ ︷


ρR

ρRuR

ρRvR

ρRwR



−SL

UL

︷ ︸︸ ︷


ρL

ρLuL

ρLvL

ρLwL




+




ρLqL

ρLqLuL + P Lnx

ρLqLvL + P Lny

ρLqLwL + P Lnz




︸ ︷︷ ︸
F L

−




ρRqR

ρRqRuR + P Rnx

ρRqRvR + P Rny

ρRqRwR + P Rnz




︸ ︷︷ ︸
F R

(177)

By assumption, qk? = S? for both k = L/R. Projecting the vectorial momentum

equation on the directional unit vector gives, along with the first relation, the following

set of two equations:

ρL?(S? − SL) + ρR?(SR − S?) = ρR(SR − qR) − ρL(SL − qL)
[
ρL?(S? − SL) + ρR?(SR − S?)

]

︸ ︷︷ ︸
S? = P L − P R + ρRqR(SR − qR) − ρLqL(SL − qL)

(178)

Replacing the under-braced term in the last equation by the right-hand side of the

first equation above leads to:

S? =
P R − P L + ρLqL(SL − qL) − ρRqR(SR − qR)

ρL(SL − qL) − ρR(SR − qR)
(179)

Equation 174 is closed and the expressions for all ?-variables are obtained. One can

75



write the first four relations, for continuity and momentum:




ρk?S?

ρk?S?uk? + P k?nx

ρk?S?vk? + P k?ny

ρk?S?wk? + P k?nz




︸ ︷︷ ︸
F k?

=




ρkqk

ρkqkuk + P knx

ρkqkvk + P kny

ρkqkwk + P knz




︸ ︷︷ ︸
F k

+Sk







ρk?

ρk?uk?

ρk?vk?

ρk?wk?




︸ ︷︷ ︸
Uk?

−




ρk

ρkuk

ρkvk

ρkwk




︸ ︷︷ ︸
Uk




(180)

the first relation leads directly to an expression for the density in the star region:

ρk? = ρk Sk − qk

Sk − S?
(181)

Again, multiplying the second relation by nx, the third by ny and the last by nz,

adding those three relations, and using the expression for ρk? given in Eqn. 181 leads

directly to:

P k? = P k + ρk(qk − Sk)(qk − S?) (182)

Note that the relation expressed in Eqn. 182 is valid for both k = L/R, and satisfies

P L? = P R?. Let us define βk, αk and ωk as:

βk = S?−qk

Sk−S?

αk = βk + 1

ωk = −βk(qk − Sk)

(183)

The state vectors Uk? can then be expressed as:

Uk? = αkUk +




0

ρkωknx

ρkωkny

ρkωknz

P ?S?−P kqk

(Sk−S?)

0

0




(184)
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With these relations, the evaluation of the wave-speeds provides the description of all

states in the Riemann problem under consideration. It is then possible to describe

the fluxes at i + 1/2 interface. The general expression for these fluxes is given by:

F HLLC
i+1/2 =





F L if 0 ≤ SL

F L? = F L + SL(UL? − UL) if SL ≤ 0 ≤ S?

F R? = F R + SR(UR? − UR) if SL? ≤ 0 ≤ SR

F R if SR ≤ 0

(185)

The HLLC Riemann solver is then fully defined, and only the wave-speeds are needed

to close its expression. The estimates detailed in Eqn. 168 for the HLLE solver are

used for the evaluation of SL and SR, whereas S? is defined through relation 179.

3.4.2.3 A Hybrid Riemann Solver - HLLC/E

Two Riemann solvers of the HLL- framework have been described earlier. The HLLE

considers a 2−waves evolution to the Riemann problem constructed at the cell inter-

faces. Such Riemann solvers are called non-contact-preserving, as the intermediate

wave, the contact discontinuity, is ignored. The improvement brought to this solver

by the HLLC solver is the restoration of this wave in the problem. The latter solver if

less diffusive, and improves greatly the results in computations of viscous problems.

Solvers that simulate 3−waves problems are known to suffer from instabilities in

shock regions. The odd-even decoupling and carbuncle phenomena can lead to the

creation of oscillations in the post-shock regions, and to the deformation of shock

fronts. The HLLC solver is no exception. 2−waves solver do not suffer from these

instabilities.

In order to reduce the instabilities that can occur in shock regions, Quirk [1994]

suggested to switch to a non-contact-preserving solver within shocks thickness. It was

however found that the instabilities come from the use of contact-preserving solvers

in the directions transverse to the shock front. The hybrid solver designed for the
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present study uses this observation to combine HLLC and HLLE as follows. The

hybrid solver returns the flux evaluation of the HLLC solver by default, but reverts

to the HLLE fluxes if a shock is detected in the direction transverse to the direction

of computation. Shock detection is performed following the method given in Eqn.

155 and 156.

F u
i+1/2 =





F HLLE
i+1/2 if (dP,j < 0 and du,j < 0) or (dP,k < 0 and du,k < 0)

F HLLC
i+1/2 otherwise

(186)

The MUSCL interpolation / HLLC/E Riemann solver approach is fully described.

This scheme is adapted to the resolution of aerodynamic flows with TPG equation

of state, and can be used on curvilinear grids. The performance of this scheme on

classical test-cases is reported in Sec. 3.5.

The presentation of the upwind scheme completes also the description of the hybrid

scheme developed in the present study. A verification of this hybrid methodology on

classical and fundamental test cases is presented in App. 3.6. Also, verification of

the scheme is presented through direct numerical simulations of shock / isotropic

turbulence interactions in Chap. 4.

3.5 Verification of the Upwind Scheme

The capture of physical discontinuities is essential for the numerical simulations of

supersonic turbulent flows. A shock-capturing methodology has been developed to

achieve this goal, and its description is given in Chap. 3. The method implemented

is based on flux difference splitting, as these methods yield robust and accurate res-

olutions of shock waves and discontinuities, and have limited dissipation. However,

Riemann solvers, whether they are exact or approximate, have known instabilities

and limitations. The manifestations of these flaws are well-documented.

The proposed upwind solver is designed to show a reduced sensitivity to theses

instabilities. The reconstruction of the Riemann problem uses a flattening procedure
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which prevents under-resolved strong shocks within a computation. Also, the hybrid

Riemann solver HLLC/E switches to a non-contact preserving solver in the regions

transverse to shock front. All these methods are included to reduce the instabilities,

and the aptitude of this scheme in practical simulations will be presented hereafter.

� Unphysical Values

Approximate Riemann solvers that are based on linearized estimates of the flux

differences can lead to unphysical approximations of the total density or of the in-

ternal energy (ρ < 0, e < 0) in rarefactions. A consequence is the computation of

”rarefaction shocks”, an unphysical discontinuity computed within a rarefaction fan.

A few entropy fixes have been advised and implemented that fix this specific failure

(see Kermani and Plett [2001] for a comparison of the most common entropy fixes).

For very strong rarefaction computations (near-vacuum states), entropy fixes are not

sufficient to prevent the Riemann solver from computing unphysical solutions. HLL

solvers do not suffer from this instability, do not suffer from such instabilities. This

property of positivity preservation will be demonstrated later.

� Post-Shock Oscillations

Classical Riemann solvers along with a higher order reconstructions show an in-

stability when a shock is propagating at low grid speeds, that is, when the shock

propagation speed is small within the frame of reference of the computation. This

phenomenon, first reported by Colella and Woodward [1984] was shown to be the

consequence of the self-steepening properties of the shocks. The cure designed in this

reference paper, the flattening procedure, is implemented in the present formulation

in order to reduce such instabilities.

� Odd-Even Decoupling and Carbuncle Phenomenon
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The carbuncle phenomenon is an instability the arises in hypersonic computations,

when stagnation points create recirculation regions behind bow shocks. The curved

shock is incorrectly captured, and small kinks form along the shock front. This

phenomenon has been identified in blunt body calculations, and has been analytically

analyzed (Pandolfi and D’Ambrosio [2001], Svetsov [2001], Chauvat et al. [2005]).

Most accurate upwind methods suffer from this instability (Roe scheme, AUSM-

M, Osher scheme, etc...), whereas flux vector splitting and non-contact preserving

methods do not show this instability.

The odd-even instability occurs when shock fronts propagate with the main front

aligned with the grid. This instability is triggered by small numerical round-off errors

which grow into strong oscillations (Quirk [1994]). Again, this instability is found in

many Riemann solver, more particularly, in exact Riemann solvers. And once again,

non-contact preserving solvers do not seem affected by this perturbation.

The hybrid solver presented in Chap. 3 was specifically designed to minimize all

these perturbations. But, as the robustness of the solver should not be detrimental to

the accuracy of the resolution, the following verification study shows that the upwind

method is not subject to strong instabilities and remains accurate.

3.5.1 One-Dimensional Tests

The ability of the shock-capturing methodology to capture shocks is tested first.

Two particular aspects are considered: first, the ability to capture shock waves

at their right propagation speed is tested. This study is performed over a one-

dimensional domain, since the Rankine-Hugoniot relations are essentially expressed

in one-dimensional form. The second test focuses on the capture of oblique shocks.

Here, the extension to multi-dimensional problems over curvilinear grids is tested.

Also, the amount of post-shock oscillations can be quantified.

The very first case is that of a normal shock on a one-dimensional grid. Different
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Figure 11: Pressure profiles for M=5.2 normal shock with a Calorically perfect gas
EOS.

Mach numbers have been tested, and all simulations lead to the same conclusions.

The case of M = 5.2 is hereafter presented. A 0.1m long domain is discretized

using 100 grid cells. Initial conditions are given by (P, T, M)l = (101325., 300., 5.2)

from 0. to 0.05m, and the steady Rankine-Hugoniot relations are used for the initial

jump conditions, leading to (P, T, M)r = (3179578.5, 1859.1257, 0.4125191924) for a

calorically perfect gas with a specific heat ratio γ = 1.4. Supersonic inflow is used

at the left boundary, while a subsonic characteristics-based non-reflecting outflow is

used at the right boundary. The flow properties reach a stationary state for this

problem, and the stationary pressure profile is shown in Fig. 3.5.1. The shock is

crisply captured, with two cell in the shock thickness. The Rankine Hugoniot jump

relations are correctly captured, and the propagation speed comes out correctly. A

second test was performed using an arbitrary thermally perfect gas. The dependence

of the specific heat at constant pressure is represented in Fig. 12(a), and the pressure

profile obtained at stationary state is shown in Fig. 12(b). Here again, the Rankine-

Hugoniot relations are recovered in the simulation, and the shock is captured over

two cells.

The performance of the upwind on skewed grid is tested by simulating supersonic

flows over ramps. The capture of oblique shocks is of fundamental importance for

practical applications. The simulations performed here consist in a two-dimensional
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Figure 12: Cp(T ) for a thermally perfect gas, and pressure profiles for M=5.2 normal
shock.

(a) Computational grid (b) Pressure contours

Figure 13: Computational grid for oblique shock calculations (left) and pressure
contours for Min = 5 and a ramp angle of 15◦.

channel with an inclined lower wall, as represented in Fig. 13(a). The domain is

discretized using 80 × 36 grid cells. Supersonic inflow and outflow are used at the

left and right boundaries respectively, whereas the top and bottom boundaries use

symmetry conditions. The angle of the ramp at the bottom wall has been varied

between 5◦ and 25◦, and three different inflow Mach numbers were tested: Min = 2,

Min = 5 and Min = 10. This test was conducted for calorically perfect gases (γ = 1.4).

The accuracy of the simulation was assessed by comparing the shock angle from the

computation to the theoretical values (see, e.g. Anderson [2003]). A typical flow-

field is presented in Fig. 13(b). All shock angles were captured accurately, with
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less than 3% error on the shock angles. Small oscillations in the pressure field are

obtained close to the head of the ramp, which quickly dampen further downstream.

The present shock-capturing methodology efficiently captures shock waves at the right

propagation speed and performs well on skewed curvilinear grids.

A series of test cases for shock-capturing schemes have been proposed in the lit-

erature. These tests have been designed to assess the capacity of different numerical

schemes in resolving fundamental features of supersonic flows, as well as some par-

ticularly challenging configurations. A compilation of such tests is reported in Liska

and Wendroff [2003], and are repeated using the present shock-capturing formulation.

These tests, denoted T1 to T7, are performed over a one-dimensional domain. They

are all based on the physical evolution of an initial interface into a complex flow. All

cases have a domain that extends from 0 to 1, except case T7 which has a domain

extending from 0.1 to 0.6. The parameters for these tests are given in tables 1 and 2.

The initial physical states at the left and right of the discontinuity are given in table

1. In table 2, x0 represents the physical location of the initial interface, T is the total

physical time of computation. A calorically perfect gas EOS is used in all cases. The

specific heat ratio of the gases, γ, depends on the problems and is reported in table

2. Also, the boundary conditions used in these problems are either supersonic inflows

(i in table 2), or supersonic outflows (o in table 2).

Table 1: Initial conditions for the left and right states in the one-dimensional tests
used to validate the shock-capturing methodology.

test ρl ul pl ρr ur pr

T1 1 0.75 1 0.125 0 0.1
T2 1 -19.59745 1000 1 -19.59745 0.01
T3 1 -2 0.4 1 2 0.4
T4 1.4 0.1 1 1 0.1 1
T5 1 1 10−6 1 -1 10−6

A last test T6 was performed, where the evolution of two initial interfaces is
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Table 2: Parameters used in the one-dimensional tests used to validate the shock-
capturing methodology.

test x0 T γ resolution left boundary right boundary
T1 0.3 0.2 1.4 100 i o
T2 0.8 0.012 1.4 200 o i
T3 0.5 0.15 1.4 100 o o
T4 0.5 2 1. 100 i o
T5 0.5 1 2/3 100 i i
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Figure 14: Results of test cases T1 and T2 for the validation of the upwind method-
ology.

simulated. This interacting blast wave problem was first considered by Colella and

Woodward [1984], and is a particularly stringent configuration to simulate. For this

case, the physical domain extends from 0 to 1. The left and right boundaries are

treated as symmetry boundaries. (ρ, u, p) = (1, 0, 1000) between x = 0 and x = 0.1,

(ρ, u, p) = (1, 0, 0.01) for 0.1 ≤ x ≤ 0.9, and (ρ, u, p) = (1, 0, 100) between x = 0.9

and x = 1. The physical time for this simulation is of 0.0038.

All the results presented hereafter are compared to the results of high resolution

simulations performed using a Piecewise Parabolic Method (PPM). Tests T1 and T2

are variations on the classical shock tube test case of Sod. In T1, the initial interface
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Figure 15: Results of test cases T3 and T4 for the validation of the upwind method-
ology.

forms a right-moving shock, a left-moving rarefaction fan, and an intermediate contact

discontinuity. Specifically, the rarefaction fan contains as sonic point, a physical

feature that some linearized solver cannot resolve correctly. With the current scheme,

all waves are correctly captured at their right speed. The expansion is continuous,

and the capture of an unphysical rarefaction shock does not occur. Furthermore, the

dissipation applied to the sharp waves is relatively small: the shock is captured over

three cells, and the contact spreads over four cells. The latter is mostly dissipated

from the initial stage of the development.

Case T2 is a variation where the contact discontinuity is stationary in the course of

the simulation. The peak in density is correctly simulated, with minimal dissipation.

Again, the shock is resolved over three cells, while four cells are needed for the strong

contact discontinuity.

The test case in T3 evolves into a near-vacuum state in the center of the domain.

Both the pressure and the density reach values close to 0, but the internal energy

remains relatively high. The HLLC/E scheme is able to capture this phenomenon

without unphysical values for the internal energy. The lowest temperatures, formed

at the center of the domain, are however not fully captured.
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Figure 16: Results of test cases T5 and T6 for the validation of the upwind method-
ology.

T4 tests the ability to capture slowly moving contact discontinuities. This con-

figuration is difficult to resolve properly, as the slow motion tends to dissipate the

density front. In the current simulation, eight cells are necessary to resolve this jump

in density. The amount of dissipation is for this case significant, but comparable to

other state of the art numerical schemes (Liska and Wendroff [2003]).

Test T5 is the classical test case of Noh, where two infinite strength shocks prop-

agate outwards from the center of the domain. This test shows that, even very strong

shocks are captured at their right propagation speed, and that the fronts are resolved

over three points. The use of the flattening procedure smears slightly the shock fronts,

but permits the resolution of the problem with minimal post-shock oscillations. The

state at the center of the domain should be strictly constant. A dip in the density

profile remains from the formation of the shocks. But apart from this impact of the

initial conditions, the physics of this test problem is well captured.

The interacting blast waves problem is particularly intricate to resolve. The simu-

lations of the shock fronts crossing can lead to a strong dissipation of the intermediate

region. The scheme used here captures most of the structures correctly, and recovers
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the blast propagation speed after their interaction. The amplitude of the strongest

wave is however under-estimated by the current methodology.

These one-dimensional tests have shown that the current scheme correctly cap-

tures the shock fronts and their propagation speeds, with reduced dissipation. The

contact discontinuity are smeared over a few cells, but their behavior is otherwise

well simulated. The performance in strong rarefactions is not as good as for the other

tests. Such configurations are however not important for the type of applications

considered in the present study. Overall, this shock-capturing method is adapted to

the capture of discontinuities in supersonic flows, and compares overall well to other

numerical techniques (presented in Liska and Wendroff [2003]).

3.5.2 Two-Dimensional Cases

The good performance of the shock-capturing methodology for fundamental one-

dimensional problems has been presented. The extension to multi-dimensional tran-

sient problems can be problematic for several reasons: the instabilities reviewed at

the beginning of this appendix arise in multi-dimensional problems only. Also, the

capture of shock propagations at the right speed is fundamental in one-dimension.

The capture of shock propagation in arbitrary directions in a multi-dimensional prob-

lem is somehow more challenging. A review of the scheme performance on test cases

triggering the instabilities is given first. The resolution of spherically propagating

shocks are presented after.

The behavior of the hybrid solver on the odd-even decoupling is studied in a

test-case adapted from Quirk [1994] and Liska and Wendroff [2003]. The problem

follows the same initialization as test case T8 of Sec. 3.5.1 on a two-dimensional

grid: (x, y) ∈ (0, 1)x(0, 0.125). 800× 10 grid cells are used to discretize this problem,

and the grid is uniform except at the centerline where a very small perturbation is

generated. The spacing in the y-direction being ∆y = 0.0125, the amplitude of the
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Figure 17: Schematic of the perturbed grid used in the odd-even test.

perturbation is 2 10−7 and the formulation of the y-components at the centerlines

reads:

YCL = Ymid + (−1)i10−7 (187)

A sketch of the resulting grid, where the perturbation has been amplified for clarity,

is represented in Fig. 3.5.2 The test case has been run using five different solvers:

the Two-Shock Riemann Solver (TSRS) and the solver of Roe with Harten-Hyman

entropy correction have been considered along with the HLLC, HLLE and HLLC/E.

In all cases, the MUSCL reconstruction used a monotonized central limiter and flat-

tening. The computational fields of density right before the interaction of the two

blast waves is showed in Fig. 18. The top figure obtained with HLLE shows the

physical phenomena correctly: at the left of the domain, a right-moving shock is

followed by an expansion fan, and on the opposite side, a weaker, left-moving shock

is followed by another rarefaction fan. This problem is essentially one-dimensional

in nature. The HLLC, Roe and TSRS solvers are contact-preserving, and develop

the instability early in the course of the simulation. Before the interaction, the blast

fronts are strongly distorted. Not only do the post-shock regions show high amplitude

oscillations, but also do the main fronts show distortion. The HLLC/E solver switches

to the non-contact preserving in the direction transverse to the shock and dissipates

the small instabilities quickly. The figure shows an essentially one-dimensional flow.

Quantitatively, the maximum vertical velocities during the course of the simulations

have been recorded. The maximum horizontal velocity varies between 13 and 32. The

HLLC and TSRS get vertical velocities of 3.03 and 3.01 respectively, whereas the Roe
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Figure 18: Results of the odd-even test case using several Riemann solvers: HLLE,
Roe, HLLC, TSRS and HLLC/E solvers respectively.

solver predictions show vertical velocities as high as 8.45. The HLLC/E solver results

in vertical velocities O(10−7). The hybrid solver seems to successfully minimize the

odd-even instability.

A second test-case is the classical blunt body in hypersonic flow, which triggers

the carbuncle phenomenon. A Mach 10 flow over a circular rod is simulated. The gas

is calorically perfect, with γ = 1.4, and the rod has a circular cross-section. 80x160

grid cells are used to solve this problem. Figure 3.5.2 shows the temperature isolines

for the carbuncle problem using the HLLE Riemann solver. The stagnation region is

correctly captured, and no deformation of the leading shock is observed. The use of

more accurate Riemann solvers that do not neglect the middle wave leads to improper

captures of the curved shock, as seen in Fig. 20. The Roe solver is the most sensitive

to this instability, and results in the formation of a very strong shock deformation.

The whole interaction is changed. The other Riemann solvers are also subject to the

instability. Kinks are formed along the main shock front which lead to slip lines in the

post-shock regions. The flow-field is perturbed by the instability. The hybrid solver

reduces the impact of the instability, an are showing a slight instability as well. It is

apparent that the HLLC/E case suppresses almost completely this instability.
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Figure 19: Isolines of the temperature field for the carbuncle test case using the
HLLE Riemann solver.

(a) Roe (b) HLLC (c) TSRS (d) HLLC/E

Figure 20: Isolines of the temperature field for the carbuncle test case using contact-
preserving Riemann Solvers and the HLLC/E hybrid Riemann solver.
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The last test presented here is the point source explosion of Sedov. In this problem,

the far-field of an explosive charge is considered to reach a self-similar state. Sedov

[1959] quantified the normalized profiles behind the outgoing blast waves, and showed

that the radius of the outwards-going follows R(t) ∝ t2/(n+2), where n = 1 for a

planar explosion, n = 2 for a cylindrical one, and n = 3 for a circular explosion. The

following simulations have been performed. The initialization consists in an initial

radius of 8.5dx, where dx is the spacing of the uniform grid, of high pressure, set to

19.73. The outer environment is composed of fluid at rest, at a pressure of 10−5. The

density is set to 1 everywhere. The fluid is made of a calorically perfect gas with

γ = 1.4. 128x1x1 grid cells were used for the planar case, 128x128x1 grid cells for

the cylindrical case, and 128x128x128 for the circular case.

The temporal evolution of the radii of the blast waves was collected for all cases,

and are presented in Fig. 21. Curve-fits to these profiles show that their evolutions

follow closely the analytical result of Sedov [1959]. Furthermore, the resolution of a

cylindrical or spherical phenomenon on a Cartesian grid usually leads to a-symmetric

solutions, as, from a numerical stand point, the propagation speed in the direction

aligned with the cells and in the transverse directions is not identical. The extension

of the one-dimensional hydrodynamic solver to multi-dimensional simulations should

minimize this type of errors. Figure 22 shows the normalized pressure distribution

versus radius for every point in the domain. The reference data have been obtained

from a high-resolution one-dimensional study. The shock is captured over two to three

cells. Furthermore, the scattering of the data is smaller than one grid cell of the two-

dimensional grid, highlighting the very small anisotropy obtained in the resolution

of this cylindrical problem on a Cartesian grid, hence showing the appropriateness

of the extension of the upwind scheme to multi-dimensional simulations. Due to the

coarseness of the two-dimensional grid compared to the one-dimensional reference

simulation, the field of the coarser simulation is filtered on the grid, and averaged
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Figure 21: Radii of the blast wave fronts as a function of time for the case of planar,
cylindrical and spherical Blast waves.
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Figure 22: Sedov’s point explosion problem: pressure profiles of the one-dimensional
reference and two-dimensional simulations.

over the cell volume, so that the pressure peak is not fully recovered.

The results of these different verification studies have shown that the shock-

capturing methodology developed here can efficiently capture discontinuities in super-

sonic flows, and that its extension to multi-dimensional problems is adequate. Shocks

and contact are captured at their right propagation speeds. Smearing of the contacts

has been observed, in good agreement with other state of the art numerical methods

for supersonic flows. The sensitivity of the scheme to classical instabilities has been

shown to be considerably reduced by the hybrid Riemann solver. This numerical

method does not perform very well for very strong rarefactions, but such features are

not found in the typical applications this method is intended for.

3.6 Assessment and verification of the hybrid methodology

The hybrid numerical methodology described in Sec. 3.2 is designed to detect discon-

tinuities in the flow through the evaluation of the flow smoothness, Eqn. 130. The

numerical scheme employed to compute the interface flux reverts to a shock capturing

method if the smoothness exceeds a threshold value, see Eqn. 131. The values for the

noise factors and thresholds have been set from numerical experiments of typical flows

93



of interest, and are hereafter described. The smoothness of the pressure field is eval-

uated in order to distinguish pressure oscillations due to acoustic fields from pressure

jumps associated with shocks. The density field on the other hand, can be related to

species gradients, contact discontinuities, flame fronts or shocks. This knowledge of

typical flow conditions is used to assess the numerical scheme coefficients.

The proposed approach is validated over a series of tests. The classical Shu-

Osher testcase considers in a simplified one-dimensional configuration the interaction

between a shock and a field of turbulence. The capture of this problem requires a good

capture of the shock wave and a reduced dissipation of the turbulent field. Second, the

interaction of a vortex tube with a normal shock is examined. The problem involves

the generation of acoustic pulses (requiring smooth resolution) caused by the shock

front deformation.

3.6.1 Assessment of the Hybrid Scheme Parameters

Gradients in the pressure field can be caused by multiple physical phenomena (coher-

ent structures formation, reaction, explosion, etc...). Their evolution can be either

isentropic (rarefaction fan, acoustic wave, compression fan) or anisentropic (shock

wave). Acoustic waves that involve relatively high pressure gradients steepen into

propagating shocks due to the non-linearities of the Euler equations. Compression

fans turn into shock waves due to the self-steepening characteristic of the pressure

field. As a consequence, even rather small pressure gradients need to be detected by

the smoothness parameter. εP = 0.05 is found to permit a correct distinction between

acoustic waves and self-steepening or shock waves. With the shock capturing method

employed here, the resolution of a shock wave front extends over two to three cells.

The curvature of the pressure peaks at the head and foot of the shock wave, and the

smoothness factor has been found relatively insensitive to the value of the thresh-

old coefficient. For the present study, Sth
P = 0.5 has been chosen, but no significant
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difference in the flow resolution was observed when using S th
P = 0.2 and Sth

P = 0.8.

The numerical experiments used to determine these values were involving idealized

one-dimensional and fundamental three-dimensional shock / turbulence interactions

(see section 4.3).

The smoothness evaluation of the density field is somehow more intricate. Typ-

ically, strong density discontinuities occur in shock regions (and are then detected

by the pressure switch described above), and in mixing layers, at the interface be-

tween two fluids of different density/temperature (tip of an injector, flame fronts,

Richtmyer-Meshkov instabilities). A strong density curvature causes numerical os-

cillations. However, the density field and its variations can play a major role in the

dynamics of the flow mixing, and need to be resolved without excessive dissipation.

The experiments used to evaluate the parameters of the smoothness evaluation

for the density field are based on the simulation of a shock / shear layer interaction

problem (see section 4.4) and of a Richtmyer-Meshkov instability resolution, here-

after described. Larger variations of the density field are admissible as they do not

have a self steepening property, and hence do not contaminate the flow resolution as

pressure gradients do. The noise parameter ερ = 0.1 is found sufficient to capture

strong gradients without dissipating the smooth variations in density of a compress-

ible turbulent flow. The presence of strong gradients can, however, have a dramatic

effect on the flow field, and Sth
ρ = 0.25 is used to ensure a good resolution of the

density variations. The performance of the hybrid scheme in practical applications is

hereafter illustrated.

3.6.2 Simulation of a Richtmyer-Meshkov Instability

Richtmyer-Meshkov instabilities (RMI) involve the impulsive acceleration of a density

interface. The initial instability gives rise to a linear growth of the initial perturba-

tions. This regime is followed by a nonlinear interaction, where the deterministic
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structures emerging from the initial discontinuity break down into smaller scale fluc-

tuations, eventually leading to a fully turbulent mixing region. This transition to tur-

bulent states is enhanced if the once-shocked interface is re-shocked (by a secondary

shock following the primary shock, or, more likely from an experimental standpoint,

from the primary shock reflection at the back wall of the wind-tunnel). The present

simulation focuses on the experimental study of re-shocked RMI conducted by Vetter

and Sturtevant [1995]. An interface air and SF6 at room temperature is located at

0.62 m from the back end of a wind tunnel, and is shocked by a M = 1.5 shock. Re-

shocking is obtained from back-wall reflection of the travelling shock. A schematic of

the configuration is presented in Fig. 23.

Figure 23: Schematic of the Richtmyer-Meshkov Instability problem.

A physical domain of 0.72× 0.135m× 0.135m is discretized using 746× 140× 140

grid cells, Periodic conditions are enforced in the transverse directions. In the axial

direction, the left boundary uses supersonic inflow conditions and the right boundary

is a no-slip wall. The initial interface perturbation is imposed following the model of

Hill et al. [2006]:

xI(y, z) = a0 |sin(πy/λ) sin(πz/λ)| + a1h(y, z)

where h(y,z) is a random function which perturbs the initial interface profile to break

the symmetry and enhance the transition. a0 = 0.25 cm, a1 = 0.025 cm and λ =

0.27/14 cm were assumed.

At the initial stage of the interaction, the shaped interface evolves and leads to

the formation of finger-like structures of air that penetrate the SF6 region, and the
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fluids start mixing, as presented in Fig. 24(b) and 24(b). These structures result

from the hydrodynamic instability of the flow, and a good discontinuity capturing

method is needed to capture the interface growth with limited dispersion. Figure

24(c) shows the regions of average switching (1/3(λi+1/2,j,k +λi,j+1/2,k +λi,j,k+1/2)) for

this initial stage. The normal shock is captured with the shock capturing, as visible

on the right side of the picture. Figure 24(b) shows the contours of the product of

(a) Density Field (b) YairYSF6

(c) λ

Figure 24: Richtmyer-Meshkov Instability simulation at an early stage of the inter-
action. (a) density field, (b) mass fractions product and (c) switch function.

mass fractions, Yair ×YSF6, and highlights the regions where mixing is occurring. The

regions where mixing occurs are resolved using the central scheme, hence achieving a

proper resolution of the process. The neighboring zone, where the gradients with the

unmixed fluids are still high are resolved with the shock-capturing scheme.

After reshock, the transition to turbulence of the mixing region is enhanced. Fig-

ures 25(a) and 25(b) show the density field and the Yair × YSF6 field after turbulent

transition. The presence of density gradients in the mixing region is clearly visible,
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(a) Density Field (b) YairYSF6

(c) λ

Figure 25: Richtmyer-Meshkov Instability simulation at a late stage of the interac-
tion. (a) density field, (b) mass fractions product and (c) switch function.

although these features are not as sharp as during the initial stages. Rather, they

show the boundaries of large scale vortical structures that entrain the fluids into the

mixing region, and correspond to the interfaces between mixed and fresh fluids. In

the mixing zone, large scale vortices coexist with smaller scale turbulent eddies, and

the variations in density are more diffuse. The shock capturing scheme is employed

in the regions of strong density variations, but overall, the turbulent zone is mostly

resolved using the central scheme.

3.6.3 Shu-Osher Interaction

The Shu-Osher problem (Shu and Osher [1989]) consists in a one-dimensional shock

front propagating into a sinusoidal density distribution. As the shock passes through,

it is immediately followed by a region of rapid, high amplitude oscillations. These
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short wavelengths oscillations decay further downstream of the shock, forming a re-

gion of longer wavelength oscillations which steepen into shocks, forming an N-wave

pattern. A complete resolution of the entire phenomenon and all wavelengths requires

a fairly high resolution. Furthermore, an accurate computation of shock propagation,

at the right speed, and a smooth capture of the short-wavelength variations that form

in the post-shock region is needed to resolve all the physical features of this flow. This

makes this simple test particularly relevant to the problem of shock / turbulence in-

teraction.

The initial conditions for this problem are as follows: a shock initially located at

x = 2 propagates in the x > 2 direction. The density profile is given by:

ρ(x) =





3.857142 x < 2

1 − 0.2 sin(5x) x ≥ 2
. (188)

while pre-shock pressure and velocity are 1 and 0, respectively. The post-shock values

for pressure and velocity are constant and equal to 10.333333 and 2.629369, respec-

tively. The domain extends from x = 0 to x = 10. The left boundary is treated as a

supersonic inflow, and the right boundary is an outflow. The gas obeys a calorically

perfect gas equation of state with an adiabatic index γ of 1.4. The simulation is

finalized at a time of 1.872. Uniform one-dimensional grids are used for these com-

putations. The reference converged solution is classically obtained by performing a

highly resolved simulation of this same configuration (noted Ref in the figures).

The purely upwind approach cannot capture to short wavelength oscillations when

200 grid cells are employed (figure 26), and in this region, the dominant wavenumber

of the N-wave pattern appears as the smallest resolved wavenumber. A simulation

using exclusively the smooth flow solver did not converge for the present resolution.

The oscillations around the shock front generate unphysical values for the energy.

The hybrid method leads to a crisp capture of the shock front using the upwind

scheme, while the smooth flow solver is used to resolve the post-shock region. As a
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Figure 26: Density profile at the final time for the Shu-Osher shock / entropy Wave
interaction. Ref —, Hybrid method (N=200)- - -, pure upwind (N=200) · · ·, Hybrid
method (N=400) �, pure upwind (N=400) ◦ .

consequence, despite the fact that the full amplitude of the oscillations is not totally

recovered, the short wavelengths are obtained in the post-shock region at this low-

resolution simulation.

As the resolution is increased to 400 grid cells (Fig. 26, 27), the simulation based

on a purely upwind approach captures all the wavelengths of the problem, but the in-

herent dissipation of the scheme prevents this approach from capturing the oscillations

amplitude. A purely central scheme simulation converges at this resolution, although,

in the course of the simulation, pressure and density fields reach very small values.

The non-physical oscillations formed around the shock front, modify the behavior of

the post-shock region, but permit a capture of the oscillations. The self-steepening

waves, however, are not correctly captured, and lead to the formation of numerical

oscillations. The hybrid approach combines the advantages of both schemes, leading

to a proper capture of the main shock, and a very good resolution of the post-shock

oscillations. Furthermore, the oscillations around the N-wave pattern are rather small

and do not amplify.
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Figure 27: Density profile at the final time for the Shu-Osher shock / entropy Wave
interaction using the central, upwind and hybrid schemes.

The observations made for a resolution of 400 grid cells are still valid for an exten-

sion to a resolution of 800 grid cells, presented in Fig. 28. The hybrid scheme captures
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Figure 28: Density profile at the final time for the Shu-Osher shock / entropy Wave
interaction. Ref —, Hybrid method (N=800) �, pure upwind (N=800) ◦ .

the physical phenomenon with limited dissipation. The main front is captured at the
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right propagation speed, and the formation of the short wavelength oscillations is

well simulated with the hybrid approach. Again, the N-wave pattern formed by the

self-steepening pressure gradients, is initially resolved with the smooth flow solver.

Small amplitude oscillations are formed around the discontinuities, which remain

small throughout the simulation. Overall, the hybrid scheme shows good capture of

this one-dimensional shock / turbulence interaction.

3.6.4 Shock / Vortex Interaction

The passage of a vortex through a shock wave is a problem of fundamental inter-

est. It has been extensively studied experimentally (e.g. Dosanjh and Weeks [1965],

Cattafesta and Settles [1992], Chang et al. [2004]), analytically (Ribner [1954a, 1985],

Mahesh et al. [1997]) and numerically (Ellzey et al. [1995], Inoue and Hattori [1999],

Dexun and Yanwen [2001]), with a particular emphasis on the noise production

through the interaction. The passage of large coherent vortices through compression

wave contributes significantly to the shock-associated noise that is found in jet engines.

Experimental observations and numerical simulations have permitted to identify the

physical mechanisms involved in the sound generation during the interaction. The

shock deformation and the subsequent localized compressions and expansions lead to

the formation of a series of acoustic waves which propagate radially from the point of

interaction. Their strength is a function of the angle. The first wave generated is re-

ferred to as the precursor directly followed by the second sound wave. The shock wave

distortion and its relaxation to the undisturbed position often lead to the formation

of third and more waves.

The ability of the present numerical approach to capture shock / vortex interaction

and the sound generation is hereafter tested. The numerical set-up used here is

similar to that of Inoue and Hattori Inoue and Hattori [1999]. A standing normal

shock, corresponding to a free-stream Mach number Ms is initialized at a location
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x = 0. The un-shocked fluid at x > 0 has a static pressure and temperature Pu and

Tu respectively. The right boundary is treated as an inflow with constant properties.

The shocked flow is on the left side of the interface and has pressure and temperature

Ps and Ts. The left, top and bottom boundaries are subsonic outflows. Noting R the

radius of maximum velocity in the initial vortex, the domain extends from −20R to

8R in the x-direction, and from −12R to 12R in the y-direction. A vortex is initialized

x = 2R, y = 0, with a velocity profile prescribed as:

vθ(r) = vmax
r

R
e

1
2

“
1− r2

R2

”

The pressure within the vortex is obtained from the relation:

dP

dr
=

ρv2
θ

r
(189)

Defining the vortex Mach number Mv as the ratio between vmax and the free-stream

un-shocked speed of sound au, the integration of the previous equation for an isen-

tropic flow gives:

P (r) = Pu

(
1 − γ − 1

2
M2

v e1− r2

R2

) γ
γ−1

T (r) = Tu

(
1 − γ − 1

2
M2

v e1− r2

R2

)

The simulation conducted for the present study is based on the experimental study

of Dosanjh and Weeks Dosanjh and Weeks [1965]. The mean flow Mach number is

Ms = 1.29, and the vortex Mach number is Mv = 0.39. Following the study of Inoue

and Hattori Inoue and Hattori [1999], the Reynolds number based on the un-shocked

density, velocity and viscosity, and on the vortex radius is set to Re = 800. Figure

29(a) represents the density field at a time T = 10.3R/au. This field shows the

structure of the waves generated from the interaction in the shocked region. Two

reflected shocks are formed, that propagate outwards, and the triple points that

result from the main shock / reflected shocks interaction lead to the formation of

slip-lines, that connect the vortex to the triple points. The circumferential pressure
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distribution at this time is collected for the precursor (Pp(θ) at r/R = 10.3) and for

the second sound wave (P2(θ) at r/R = 8.3), where θ is the angle from the horizontal,

taking the vortex as the origin. Their behavior is typical of the quadrupolar nature

of the phenomenon. The angular variations of the normalized pressure difference

(P2 − Pp)/Ps) is then computed and compared to experimental and other numerical

(Ellzey et al. [1995], Inoue and Hattori [1999])

(a) Density Field
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Dosanjh (1965)
Present Study - 560x480
Present Study - 280x240
Inoue (1999)
Ellzey (1995)

(b) precursor to secondary acoustic wave pres-
sure difference

Figure 29: (a) Instantaneous density field showing precursor and second sound waves
and (b) angular variations of the normalized pressure difference between precursor
and second acoustic waves for the shock / vortex interaction problem - comparison
with experiments Dosanjh and Weeks [1965] and other numerical methods (Ellzey
et al. [1995], Inoue and Hattori [1999]).

The domain has been discretized using uniform Cartesian grids, and two resolu-

tions have been studied. A first simulation is conducted with a grid resolution of

560 × 480 grid cells. The resolution is decreased to 280 × 240 for the second sim-

ulation. Figure 29(b) shows the normalized pressure difference. The behavior of

the pressure fields reproduces the physical phenomena observed in the experiments.

Moreover, both simulations are in excellent agreement with the results of previous,

more refined, numerical simulations. The lower resolution study reproduces the sound
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generation with good accuracy. Small oscillations start appearing at this resolution

for very negative angles (θ < −120◦), but do not contaminate the solution, and the

physical features remain properly resolved. The shock-capturing scheme is used in

the main flow direction within the shock thickness which extends over two cells, and

up to three cells during the interaction. The shock-capturing scheme is also activated

in the transverse direction when the vortex distorts the shock front. The vortex core

and the acoustic pulses are entirely resolved with the smooth flow solver.

The present switch formulation is based on the evaluation of the curvature of the

pressure and density fields, as described earlier. This approach is found to permit a

good capture of the problems considered in the present study. The set of parameters

employed in the present formulation cannot, however, be considered universal. Their

range of applicability is limited to supersonic flows with moderate density gradients.

Their applicability to hypersonic configurations or flows with very large variations

in the density field should be assessed. Furthermore, these parameters are flow-

dependent by definition, and a dynamic evaluation of the parameters as a function of

the flow field could be considered as an extension to the present hybrid methodology.

3.7 Other Computational Issues

3.7.1 Viscous Fluxes

The overall scheme for the convective and pressure forces resolution is fourth-order

accurate away from the discontinuities, and switches to the upwind scheme in regions

of discontinuity. There, the accuracy is flow dependent, and can vary between third

and first order accuracy, depending on the smoothness of the flow. The evaluation

of the viscous fluxes, subgrid terms and source terms for the ksgs evolution requires

the evaluation of first derivatives. A standard finite difference methodology is used

for those evaluations, with second-order spatial accuracy for first derivatives, and
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overall fourth-order accurate resolution of the second derivative of the diffusion equa-

tion. Calling (ξ, η, ζ) the standard computational directions of increasing i, j and k,

respectively, the physical derivatives are obtained from:

∂u

∂xi
=

∂u

∂ξ

∂ξ

∂xi
+

∂u

∂η

∂η

∂xi
+

∂u

∂ζ

∂ζ

∂xi
(190)

where ∂ξ/∂xi, ∂η/∂xi and ∂ζ/∂xi are computed from the grid directly, and are fixed

in the course of the simulation. ∂u/∂ξ is obtained from the flow variables as follows:

derivatives evaluated at the cell centers are computed as:

(
∂u

∂ξ

)

i,j,k

=
1

12
(−ui+2,j,k + 8ui+1,j,k − 8ui−1,j,k + ui−2,j,k) (191)

ξ−derivatives at an i + 1/2 interface will be obtained from:

(
∂u

∂ξ

)

i+1/2,j,k

=
1

12
(−ui+2,j,k + 15ui+1,j,k − 15ui,j,k + ui−1,j,k) (192)

The ξ−derivative evaluated at a j+1/2 interface is based on the extrapolated variables

(Eqn. 136), and reads:

(
∂u

∂ξ

)

i,j+1/2,k

=
1

12

(
−u±

i,j+2,k + 8u±
i,j+1,k − 8u±

i,j−1,k + u±
i,j−2,k

)
(193)

An identical formulation is used to compute a ξ−derivative at a k+1/2 interface. Fur-

thermore, it is straightforward to extend the formulation given here for ξ−derivatives

to the η− and ζ− directions.

3.7.2 Time-Step Determination

Convection and viscous forces both contribute to the propagation of the information

from one cell to its neighbors. The maximum characteristic speed for the convection

is given by |u| + c, the viscous diffusion speed is 2ν/∆x, where ν is the kinematic

viscosity, ν = µ/ρ, and the thermal diffusion speed is 2κ/(ρcv∆x) = 2γν/(Pr∆x).

The propagation time can be defined for each cell in the domain as:

∆tpijk =
V

uiΣi + cΣ + 2γν
Pr

Σ
2

V

(194)

106



where Σ is the average surface of the cell boundaries, and the viscous diffusion speed

has been neglected to the thermal diffusion speed (γ > 1, Pr < 1). In order to

get a time-explicit method, the most restrictive propagation time of all cells, ∆t
p
, is

obtained

∆t
p

= min
i,j,k

(
∆tpijk

)
(195)

The actual time-step imposed for the time integration of the governing equation

is determined from stability considerations as:

∆t = NCFL ∆t
p

(196)

The CFL number, NCFL, is used to ensure the stability of the computation, and is

scheme-dependent. In the current approach, a CFL number NCFL = 0.25 is imposed.

3.7.3 Boundary Conditions

Typically, temporally evolving problems are configurations with at least one, and

often up to three directions of homogeneity. The use of periodic boundary conditions

in these directions is a rather standard approach. Other boundary conditions for

temporal problems include no-slip walls and symmetry boundaries. Spatial problems,

on the other hand, require the integration of inflow and outflow boundary conditions

into the problem. In the present study, both temporal and spatial problems are

considered. Each boundary condition type is independently addressed in the following

paragraphs.

� Periodic BC

Periodic BCs are used for simulating flows that have at least one direction of

homogeneity. In a homogeneous flow, the evolution of a characteristic volume of fluid

is statistically identical to the evolution of a neighboring volume of fluid. It can then

be assumed that, for simplicity, the neighboring volume of fluid evolves exactly as the

considered volume.
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Under this assumption, the periodicity of the solution is used to reproduce the

interior of the domain at the boundaries, at the end of every integration sub-step

(predictor and corrector). This operation is not computational, but rather a copy

handled by communication.

� Inflows

In supersonic flows, the flow velocity is greater than the local speed of sound, and

no characteristic can propagate upstream of the flow. Hence, all the flow properties

are prescribed for supersonic inflows.

The superposition of turbulent fields on the average inflow profiles is performed

assuming that the Taylor hypothesis can be used, that is, that the spatial location of

a turbulent field obtained from a temporal simulation can be converted into a time-

varying profile at the inflow of a spatial problem. The instantaneous velocity field

at the inflow x = 0 of a spatial problem is then the superposition of a mean profile

Ūi(y, z) and of a fluctuating field u′
i, obtained from a frozen turbulent field following:

Ui(x = 0, y, z, t) = Ūi(y, z) + u′
i(x = −Uct, y, z) (197)

This assumption is valid in the studies presented here, as the turbulent intensities

encountered are relatively small, and mostly solenoidal (Lee et al. [1992]).

This approach cannot be used for simulations involving wall-bounded supersonic

flows, and alternate inflow approaches need to be used. In the current study, a

recycling rescaling methodology (RRM) is used to generate the turbulent inflow.

Originally proposed by Lund [1998] for incompressible flows, this method uses the

similarity in the turbulent structures at different downstream locations of a bound-

ary layer to construct a self-developing turbulent inflow. While a boundary layer

cannot be treated as a homogeneous flow in the direction of propagation, the scaling

laws of the inner and outer layers of the boundary layer are used to rescale these

turbulent fluctuations. This method has later been extended to compressible flows
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by several researchers. A review of the most commonly used RRM is given in Knight

[2006]. In the present study, the RRM technique of Stolz and Adams [2003] is chosen

for its simplicity and good convergence (Knight [2006]).

Let γ be the ratio of inflow and recycling friction velocities, γ = uτ,in/uτ,rec, it

is assumed that the friction velocity depends on the boundary layer thickness as

uτ ∝ δ1/8. Given the classical scaling laws of the boundary layer, Ū/uτ is a function

of y+ = yuτ/ν in the inner layer, and (U∞ − Ū)/uτ a function of η = y/δ in outer

layer. Extending this scaling to the fluctuating velocities u′/uτ , v′/uτ and w′/uτ , the

relation between inflow plane and recycling plane in the inner layer of the boundary

is given by:

u′
in(yinuτ,in/ν)

uτ,in

=
u′

rec(yrecuτ,rec/ν)

uτ,rec

where yinuτ,in/ν = yrecuτ,rec/ν (198)

so that:

u′
in(yin) = γu′

rec(γyin) (199)

In the outer layer, the scaling reads:

u′
in(yin/δin)

uτ,in
=

u′
rec(yrec/δrec)

uτ,rec
where yin/δin = yrec/δrec (200)

and:

u′
in(yin) = γu′

rec(γ
8yin) (201)

The scaling obtained for the mean value of the axial velocity Ū is similar. The

averaged variables are estimated using a Butterworth filter to obtain sliding time

averaged quantities, similar to Stolz and Adams [2003].

These relations hold for the velocity fluctuations and the mean axial velocity.

The mean transverse velocity, along with the mean and fluctuating thermodynam-

ics variables are assumed to have universal scaling laws independent of the fric-

tion velocity, and solely functions of their freestream value (V∞, T∞, ρ∞), of y+ and

eta. For instance, the temperature field is rescaled using T ′/T∞ = f(y+) so that
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T ′
in(yin) = T ′

rec(γyin) in the inner layer, and T ′/T∞ = f(η), and T ′
in(yin) = T ′

rec(γ
8yin)

in the outer layer.

The scalings described above are valid in their respective layer, and a blending

is necessary to transition from one rescaling approach to the next. The weighting

function W (η) given by:

W (η) =
1

2

(
1 + tanh

(
α(η − b)

(1 − 2b)η + b

)
/ tanh(α)

)
(202)

where α = 4 and b = 0.2, is used to blend these two scalings, and, noting β =

W (γ8y/δrec), the field at the inflow of the spatial problem is obtained following:

uin(y, z, t) = β [γurec(γ
8y, z, t) + (1 − γ)U∞]

(1 − β) [γurec(γy, z, t)]

vin(y, z, t) = β
[
γvrec(γ

8y, z, t) + (1 − γ)V̄ (γ8y, t)
]

(1 − β)
[
γvrec(γy, z, t) + (1 − γ)V̄ (γy, t)

]

win(y, z, t) = β [γwrec(γ
8y, z, t)]

(1 − β) [γwrec(γy, z, t)]

Tin(y, z, t) = β [Trec(γ
8y, z, t)]

(1 − β) [Trec(γy, z, t)]

ρin(y, z, t) = β [ρrec(γ
8y, z, t)]

(1 − β) [ρrec(γy, z, t)]

(203)

� Outflows

Outflow boundary conditions are imposed using a standard extrapolation method

for supersonic flows. Again, in supersonic flows, the characteristics are all out-going,

and all the properties in the boundary cells can be imposed from the interior of the

domain. For subsonic outflows, a characteristics-based formulation is used (Poinsot

and Lele [1992]). In the cases considered in the present studies, perfectly absorbing

outflows are used, as the acoustic coupling between the flows and the exits should

be avoided. The use of a sponge layer before the outflow, similar to the numerical

110



method of Mahesh et al. [1997], is used for the fundamental study of shock / isotropic

turbulence interaction, in order to dampen the large velocity and thermodynamics

fluctuations created by the interaction. This method consists in modifying the gov-

erning equations of motion in a small layer at the outflow of the domain, in order to

add a relaxation to the fluctuating field. The governing equations read then:

∂Q

∂t
= −∂Fi

∂xi
+ S − σ(x1) (Q − Qref ) (204)

where X1 is the mean flow direction, and Qref are the flow properties in the absence

of turbulent structures. σ(x1) is a damping factor, and varies as:

σ(x1) =





As
c2ref

νref

(
x1−xs

Lx−xs

)n

if x1 ≥ xs

0 otherwise
(205)

where cref and νref are reference values of the speed of sound and dynamic viscosities,

Lx is the domain length, and As, xs and n are parameters of the sponge layer method.

� Walls

No-slip walls are modeled as adiabatic, no-slip, acoustically reflecting boundaries.

This ensures that the interpolated velocity vector is zero at the boundary, and that

the gradients in pressure, density and species mass fractions are zero at the boundary.

Very fine resolutions are needed close to walls to capture the turbulent statistics

in the turbulent boundary layers and often, when the resolution of the turbulent

statistics in the boundary layer is found not to be critical to the overall flow evolu-

tion, slip walls, or symmetry boundaries, are used. These boundaries are adiabatic,

acoustically reflecting. The conditions of non-penetration and of conservation of the

tangential momentum are applied to the velocity field.

3.7.4 Parallelization

The developments presented here have been integrated in a parallel solver. Parallel

communication is implemented using a standardized Message-Passing Interface (MPI)

111



protocol. The resulting numerical code is portable and has been used on multiple

platforms with different architectures (Intel PC linux cluster, Cray XT4, IBM SP4

clusters, ...). The performance of the implementation on parallel clusters depends on

the domain decomposition, and the amount of switching between numerical schemes

inside a given domain. The implementation of both the upwind and central schemes

independently have been found to scale well, almost linearly, for up to 1024 processors,

on multiple architectures (Masquelet et al. [2008]).

The stencil of the central scheme considered here extends over two cells on each

side of the interface. The MUSCL reconstruction of the shock-capturing requires two

levels of information on each side of the interface as well. The flattening method,

on the other hand, requires the evaluation of the shock thickness at the cell centers

within two cells from every interface, and has a stencil of two, yielding a total of four

levels of communication. Finally, the computation of the filtered rate of strain, needed

for the dynamic closure model, imposes three levels of communication. Overall, four

levels of communication are necessary for the current methodology.
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CHAPTER IV

SIMULATION OF SHOCK / TURBULENCE

INTERACTION

The shock / turbulence interaction problem is of fundamental importance. The pres-

ence of shock waves in high speed flows cannot be avoided, and a correct treatment

of their impact on turbulence evolution is critical in the development of this LES

methodology for compressible flows. Three cases of shock / isotropic turbulence have

been chosen in the present study, representative of the different regimes of the inter-

action: as reviewed earlier, the interaction of a field of homogeneous turbulence with

a normal shock wave leads to different behaviors depending on the incoming Mach

number. An increase in the turbulent intensity is observed through the interaction,

that increases as the Mach number is increased, and saturates for a Mach number

above 3. The amplification of the streamwise velocity fluctuations increases until a

Mach number M ≈ 2, decreases afterward, and saturates at M = 3.

An M = 1.29 interaction is studied first, similar to the case ‘1.29A’ of Mahesh

et al. [1997]. The other two cases are for Mach numbers of 2 and 3, and are similar

to the configurations denoted ‘B’ and ‘C’ in Lee et al. [1997]. These three cases

are simulated first in direct simulations. Though an exact match with the reference

data cannot be expected, due to differences in numerical schemes and actual initial

conditions, these simulations are used to verify the capability of the present hybrid

methodology in reproducing the physical features of the interaction with minimal dis-

sipation, and should reproduce the qualitative and, to a large extent, the quantitative

characteristics of the interaction.
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Direct simulations are performed in two stages. First, a field of isotropic turbu-

lence is generated. A field of velocity fluctuations is initialized according to a fixed

energy spectrum, and a simulation of isotropic turbulence decay is conducted, so that

the artificial initial field gains physical correlations. This procedure will be described

first. This turbulent field is used at the inflow of a spatial problem of shock / turbu-

lence interaction. The domain of computation is attached to the shock front, and a

statistical study of the interaction is obtained. Comparison of the present simulations

with other reference DNS data shows the correct capture of the physical phenomena

associated with this type of interactions at all regimes. These direct simulations are

used to perform an a-priori study of the LDKM closure model for this interaction,

followed by an LES of this canonical test case, to assess the performance of the closure

model in a-posteriori analyses.

4.1 Initial Field of Isotropic Turbulence

The generation of an initial field is performed following the procedure given in Knight

et al. [1998]. The steps of this initialization are:

� Generate a random field of velocity fluctuations and compute its Fourier trans-

form,

� Subtract the divergent part of the field,

� Compute the energy spectrum in Fourier space associated with these initial

random fluctuations,

� Scale all Fourier coefficients, using the ratio between expected and actual energy

in the wavenumber mode this coefficient contributes to,

� Re-construct the velocity field using inverse Fourier transform.

This procedure initializes a field of isotropic, dilatational-free turbulence accord-

ing to a given energy density spectrum. It should be noted that the velocity field only
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is initialized with this method. All thermodynamics variables are assumed constant.

In the context of compressible turbulence studies, more realistic field generation ini-

tialize the thermodynamics fluctuations associated with the velocity field (see, e.g.,

Ristorcelli and Blaisdell [1997]). In the scope of the present study however, the field

of turbulence is free of thermodynamics fluctuations, similar to the reference studies

to which this study compares.

In the initial spectrum, two parameters can be chosen independently, namely the

energy density and the rate of dissipation, through the following relations:

∫∞
0

E(κ)dκ = k
∫∞
0

2νκ2E(κ)dκ = ε
(206)

The Reynolds number of the initial field is related to these two parameters through

the relation:

Rλ =

√
20

3

k√
νε

(207)

Several analytic model spectra exist that mimic some features of real turbulent spec-

tra. The Pao spectrum is often used for high Reynolds numbers flows. Its formulation

explicitly includes an inertial range with a −5/3 law, and both the energy containing

and dissipative ranges. This model spectrum is however a poor representation for

low Reynolds number flows, and the following von Karman model spectrum is often

preferred (see, e.g. Lee et al. [1997]):

E(κ) =
32

3

√
2

π

k

κ0

(
κ

κ0

)4

exp

[
−2

(
κ

κ0

)2
]

(208)

where κ0 is the most energetic wavelength. It is straightforward to show, using the

second relation in Eqn. 206 that this most energetic wavelength is related to the

Taylor micro-scale through the relation:

κ0λ = 2 (209)

Following the work of Mahesh et al. [1997], the initial energy spectrum follows the

model spectrum given in Eqn. 208. The initial turbulent Mach number is Mt = 0.22
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Figure 30: Temporal evolution of the velocity skewness (left) and turbulent Mach
number (right) in the simulation of isotropic decaying turbulence.

and Rλ = 39.5. The most energetic wavelength is given by k0 = 6. The domain of di-

mensions 6π×2π×2π is discretized using 243×81×81 grid cells with uniform spacing.

Periodic BCs are applied on all sides of the domain. The simulation is performed us-

ing the hybrid methodology, but no switching occurs during the computation, entirely

resolved with the fourth-order central scheme.

The simulation of turbulent decay is conducted until a Rλ = 19.1 is obtained.

This corresponds to a non-dimensional time of tu′/λ = 3.2, where u′ = urms/
√

3 is

the amplitude of the initial velocity fluctuations. The skewness Si of the i−component

of the velocity field is an indicator of the coherence of the turbulence.

Si =
∂ui

∂xi

3

∂ui

∂xi

2
3/2

(210)

As reported in Mahesh et al. [1997], a skewness −0.6 < Si < −0.4 indicates a well-

developed turbulent field. The temporal evolution of the average velocity skewness

S and of the turbulent Mach number during the course of the isotropic turbulence

decay is shown in Fig. 30. At the end of this simulation, the turbulent Mach number

has decayed to Mt = 0.14. The initially constant thermodynamics field evolves in the
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Figure 31: Schematic of the shock / Isotropic turbulence interaction configuration.

course of the simulation, and small temperature and density fluctuations are present

in the flow (ρrms/ρ ≈ 0.01). This initial field is used at the inflow of the shock / tur-

bulence interaction problem of M = 1.29 described hereafter. A similar procedure is

performed to generate the initial turbulent field for the two other interactions. The

final fields have a Reynolds number of Rλ = 20, and Mt = 0.11.

4.2 Direct Simulations of Shock / Isotropic Turbulence In-

teraction

The fields of well-developed turbulence are superposed on a mean velocity at the

inflow of a spatial problem. Figure 31 shows a sketch of the shock / isotropic tur-

bulence interaction studied here. In the first simulation, a M = 1.29 standing shock

is initialized at x = π/2 from the Rankine-Hugoniot relations based on the mean

incoming thermodynamic state. The spatial problem extends over 4π × 2π × 2π, and

231× 81× 81 grid cells are used to discretize this configuration. The grid generation

is performed following the stretching function given by Mahesh et al. [1997] for the

same problem, so that a refined grid is obtained around the mean location of the

shock front. The two high Mach number cases are solved with the same resolution,

231× 81× 81 grid cells. The physical domain dimensions are (2π +1)× 2π× 2π. The

grid is clustered close to x = π, mean location of the shock.

For all three cases, the coordinate system of reference is attached to the mean shock

location, and supersonic inflow and characteristic outflows are used. Periodicity is
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imposed in the transverse directions. A sponge layer method is applied before the

outflow of the domain in order to damp the turbulent oscillations. This method is

described in section 3.7.3, and the values of the parameters in this method follow the

study of Mahesh et al. [1997], As = 5, n = 3 and (Lx − xs)/Lx = 0.14.

The coordinate system of reference is attached to the mean shock location. Super-

sonic inflow and non-reflecting characteristic-based outflow conditions (Poinsot and

Lele [1992]) are applied. All cases are simulated by solving the non-filtered Navier-

Stokes equations, since the resolution permits a capture of all the physical scales

involved in the problem, except within the shock. Using a shock-capturing method-

ology leads to a shock with a finite thickness. The computation of the viscous terms

within this thickness being questionable, only the inviscid part of the governing equa-

tions have been solved within this region, both for the present DNS calculations and

for the LES computations presented later in this study.

Statistics are collected for two flow-through-times, after the first two flow-through-

times have been discarded to wash out initial transients. The profiles of statistically

averaged Reynolds stresses in the normal and transverse directions are plotted in Fig.

32(a), 32(b) and 32(c), and compared to their respective reference DNS simulations. It

should be noted that the profiles for the Reynolds stresses in the transverse directions

show slight differences between u2 and u3 statistics, similar in amplitude to that

reported by Lee et al. [1997] for the same cases. Hence, for clarity, the averages

of those two profiles are plotted each time. The statistics in the shock region are

strongly perturbed by the shock oscillations, and a high value is obtained for the axial

Reynolds stress from the temporal averaging operation. These velocity fluctuations

are not of turbulent nature, and this region should be disregarded for all physical

interpretations, as also noted by other authors, e.g. Mahesh et al. [1997], Lee et al.

[1997].

It is known from previous studies that the interaction of a shock wave with a
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Figure 32: Longitudinal and transverse Reynolds stress profile in the direct sim-
ulation of the shock / isotropic turbulence interaction problems, with normal Mach
numbers of 1.29, 2.0 and 3.0.
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turbulent field leads to a corrugation of the front which, through its oscillations and

the formation of localized compressions and expansions, generates acoustic energy

(Ribner [1954b]). Downstream of the shock, the evanescent acoustic waves transfer

the acoustic energy into turbulent kinetic energy, hence leading to an overall amplifi-

cation of the turbulence levels. It is inferred from the capture of the Reynolds stresses

behavior that this energy transfer is correctly captured by the present DNS study.

Analysis of the behavior of the hybrid algorithm shows that the upwind scheme is

used for less than 3% of the normal flux evaluations and less than 2% of the transverse

flux evaluations. The turbulent features are then mostly resolved using the smooth

flow solver. The flux difference splitting shows a good capture of the shock front and

of its corrugation. The acoustic energy generation as well as the transmitted turbulent

kinetic energy are correctly simulated by the hybrid method. Good agreement with

the reference DNS data is obtained, with less than 5% differences in the amplitude

of the Reynolds stresses profiles.

The relevance of the hybrid methodology is assessed in these direct simulations.

The inadequacy of upwind methods for turbulent simulations was noted by Lee et al.

[1997], who reported a significant dissipation of the turbulent field in shock / isotropic

turbulence interactions, resolved with a 6th−order ENO scheme. This is illustrated

in the present study of shock / turbulence interaction through the resolution of the

same problems, using purely upwind schemes. The flux-difference splitting method

developed in the context of the present hybrid method (noted FDS in the following)

is employed first. Also, an alternate higher-order upwind method has been used:

the Piecewise Parabolic Method (PPM, Colella and Woodward [1984]) is a higher-

order flux difference splitting scheme, commonly used in astrophysical simulations,

and previously employed for DNS studies (Mirin et al. [1999]). The implementation

used for the present calculations is identical to that of the FLASH code (Fryxell

et al. [2000]), except no artificial dissipation was employed for these simulations, in
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order to reduce the numerical dissipation. The contours of Reynolds stresses for the

three Mach number flows considered here are presented in Fig. 33. These profiles

are compared to the hybrid scheme simulations, since this approach performed well

for the resolution of the shock / turbulence interaction problems, and showed a good

capture of the turbulent statistics. The initial turbulent decay in the pre-shock region

is correctly captured by the upwind methods, but the statistics in the post-shock re-

gion do not represent the turbulence evolution correctly. The transfer from acoustic

to kinetic energies is reproduced for the lowest Mach number, where both upwind

methods show a reasonable resolution of the turbulent statistics. For higher Mach

number cases, however, the rates of decay are strongly over-predicted. The amplifi-

cation of the turbulent levels due to the acoustic energy transfer is better predicted

using the PPM approach, but the subsequent excessive decays are similar for both

upwind methods. As a consequence, the physical behavior of the configurations is not

captured correctly, and the upwind methods are found unadapted to the resolution

of such problems. The following analysis focuses on the results obtained with the

hybrid methodology only.

The flow being homogeneous in the y− and z− directions, a spectral analysis is

performed in the radial direction. The energy density spectrum of a given variable

f at the transverse wavenumber kt =
√

ky
2 + kz

2 is computed as:

Ef2(kt) =
∑

ky,kz

1

2
f̂(ky, kz)f̂

?(ky, kz) for
√

ky
2 + kz

2 = k2
t (211)

where f̂(ky, kz) is the discrete Fourier transform of the variable f, and f̂ ?(ky, kz) its

conjugate. Figure 34 represents the energy spectra for the axial (Eu2) and transverse

(Ev2,w2) velocities, for all three Mach number configurations, at three locations: just

before the shock (k0x = 8.5 for M = 1.29, k0x = 11.5 for M = 2.0 and M = 3.0), at

the location of minimum longitudinal Reynolds stress behind the shock (k0x = 10.5

and k0x = 13), and at the peak of longitudinal Reynolds stress (k0x = 13.5 and k0x =
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Figure 33: Longitudinal and transverse Reynolds stress profile in the direct sim-
ulation of the shock / isotropic turbulence interaction problems using the hybrid
methodology, the flux-difference splitting and the Piecewise Parabolic Method, for
normal Mach numbers of 1.29, 2.0 and 3.0.
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17). It is observed in Fig. 34(e) that the compression exerted by the shock reduces the

fluctuations of axial velocity in the low wavenumbers, but enhances the fluctuations at

higher wavenumbers. The amplification of the stress further downstream is known to

be the result of evanescent acoustic waves formed by the shock oscillations. Those act

mostly on the low wavenumbers. The global budget for the longitudinal fluctuations

is an increase in the level of turbulence, more pronounced at high wavenumbers.

The spectra for the transverse velocities, shown in Fig. 34(f), are globally amplified

between k0x = 11.5 and k0x = 13. Further downstream, the transverse fluctuations

are reduced at low wavenumbers and amplified at higher wavenumbers. Overall, the

amplification is more pronounced at higher wavenumbers. This is in accordance with

the findings of previous DNS simulations, where a decrease in most characteristic

length-scales of turbulence was observed (Lee et al. [1997]).

The results of these direct numerical simulations are filtered in order to evaluate

the driving terms in the evolution of the subgrid turbulent kinetic energy in the

context of shock / turbulence interaction. A coarser grid is generated: 106× 32× 32

grid cells are used to resolve the same computational domains. Following the study of

Garnier et al. [2001], the grid spacing in the shock normal direction is refined at the

mean shock front to recover the minimum spacing of the DNS study. Fig. 35 shows

the profile of volume ratios between DNS cells and LES cells for the M = 2.0 and

M = 3.0 cases. The coarsening results in volume ratios greater than 16 everywhere

but in the shock region, where it is decreased to around 6.5. Fields from the direct

simulation are filtered onto the LES grid using a top-hat filter.

A statistical average of the filtered field (taken over 40 instantaneous realizations)

is obtained and used to study the behavior of the closure model for this configura-

tion. Also, the dynamic Smagorinsky model (DSM) is analyzed during this a−priori

study. The DSM closure has been found to perform well in many fundamental stud-

ies of turbulence. In particular, this closure was found by Garnier et al. [2002] to
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Figure 35: Ratios of the grid cell volumes between LES cells and DNS grids for the
M = 2.0 and M = 3.0 shock / isotropic turbulence cases.

reproduce the physics of the shock / turbulence interaction in LES studies. It is used

in the present fundamental study for comparison purpose, but it should noted that

the application of the DSM for practical flows is rather limited, as the formulation

is ill-posed, and requires an averaging of the closure coefficient, over homogeneous

directions or in a Lagrangian sense, in order to yield stable resolution.

As noted by Dubois et al. [2002], a high correlation between exact and modeled

turbulent features in a priori studies does not necessarily imply superior performance

by the model in a posteriori studies, but rather shows that the model is able to mimic

some of the physical features of the turbulent flow. Typical profiles of the correlation

coefficient for the subgrid stresses using the LDKM and the DSM closure approaches

are shown in Fig. 36 for the different shock / turbulence interaction cases. The DSM

approach is known to have poor correlations in a − priori studies of turbulence, and

also observed in Fig. 36. The a priori behavior of the LDKM for the subgrid stress

shows a good correlation with the exact stress. Furthermore, the production of ksgs

using LDKM has a correlation coefficient above 0.8 almost everywhere.

The main terms of the exact governing equation for the subgrid turbulent kinetic

energy are computed from the filtered DNS field, and their profiles are represented

125



0 10 20 30 40
k0x

0

0.2

0.4

0.6

0.8

1

σ(
τ ij)

LDKM
DSM

(a) M = 1.29

0 10 20
k0x

0

0.2

0.4

0.6

0.8

1

σ(
τ ij)

LDKM
DSM

(b) M = 2.0

0 10 20
k0x

0

0.5

1

σ(
τ ij)

LDKM
DSM

(c) M = 3.0

Figure 36: a − priori correlation coefficients profiles for the subgrid stresses with
LDKM and DSM models of the M = 1.29, M = 2.0 and M = 3.0 shock / isotropic
turbulence interaction cases.
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Figure 37: Profiles of the ksgs budget in M = 1.29 and M = 3.0 shock / isotropic
turbulence interactions

in Fig. 37. The convection of ksgs is balanced everywhere by the production and

the dissipation, except in the post-shock region close to the shock front. Very close

to the shock front the pressure dilatation correlation plays a role in re-distributing

the thermal energy into fluctuating energy. This region is localized, adjacent to the

shock average location, and its overall impact is small compared to the diffusion of

ksgs due to pressure fluctuations, which plays a more important role over a broad

region. This latter term is often neglected in the modeling of the governing equation

for the subgrid kinetic energy and is explicitly modeled in the LDKM formulation
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given in Chap. 2. Furthermore, the turbulent Prandtl number, the closure coefficient

for the diffusion due to subgrid pressure fluctuations, is computed dynamically, as

shown in Sec. 2. The other terms in the governing equation for ksgs that arise

from compressibility effects, the pressure-dilatation correlation and the compressible

turbulence, were found negligibly small for these cases, and are thus neglected in the

current modeling approach.

4.3 LES of Shock / Isotropic Turbulence Interaction

The three cases of shock / turbulence interaction studied by direct simulations are

repeated in the context of LES. The resolutions and grids for these studies are identical

to that used in the a − priori analysis described above. Three different modeling

approaches have been tested: under − resolved simulations are performed first, that

is, simulations without any closure model. Next the LDKM closure model presented

earlier is employed. Finally, the dynamic Smagorinsky model (DSM) is used. The

implementation followed the formulation given in Moin et al. [1991]. A dynamic

evaluation of Prt is used along with that model as well, with an averaging procedure

over the homogeneous directions of the computation to maintain stability. However,

the LDKM model does not require any averaging in all the reported results. A filtered

instantaneous field from the DNS simulation is used to provide the initial condition

for the LES simulations. Also, the field of isotropic turbulence used at the inflow

plane is filtered onto a grid of uniform spacings. The problem is simulated for one

flow through time, and statistics are collected for another two flow through times.

Figures 38(a), 38(c) and 38(e) represent the Reynolds stresses in the shock-normal

direction for the three LES, along with the results from the filtered DNS data. The

under-resolved simulations do not capture the rate of decay of the resolved turbulent

energy in the pre-shock region, and lead to an over-estimation of the level of turbulence

in the post-shock region. The closure of the subgrid terms should mimic the energy
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2.0

0 5 10 15 20 25
k0x

0.5

1

1.5

2

<u
i"u

i">
/<

u i"u
i">

pr
e-

sh
oc

k

filtered DNS
No-Model
LDKM
DSM

(d) Transverse Reynolds stress profile,
M = 2.0
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Figure 38: Profiles of Reynolds stresses from the LES calculations, and comparisons
with the filtered DNS fields, for the M = 1.29, M = 2.0 and M = 3.0 shock / isotropic
turbulence cases.
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dissipation that occurs in the high wavenumbers of the energy spectrum. In the

absence of subgrid scale models, the only source of extra dissipation can be the

numerical dissipation. In these LES computations, about 5% of the axial fluxes

and 3% of the transverse fluxes are evaluated using the dissipative scheme. Those

interfaces are localized within the mean shock thickness. Thus, it appears that the

current solver’s numerical dissipation has only a minimal effect on the turbulent decay

in the pre- and post- shock regions. This is an important requirement for a LES solver

to demonstrate without any subgrid model.

The peaks of normal Reynolds stresses are recovered by the under-resolved DNS

simulations presented for M = 1.29 and M = 2.0, but not for M = 3.0. The location

for this peak in the highest Mach number case is captured, but the amplitude is

under-predicted. This is attributed to the grid coarsening, and the subsequent loss of

corrugation, already observed by Garnier et al. [2002]. This effect is more pronounced

at higher Mach numbers, as the induced corrugation is reduced.

The closure models mimic the influence of the small, unresolved scales onto the re-

solved field, and this leads to a better capture of the resolved turbulent decay in both

the pre- and post- shock regions. Figures 38(a), 38(c) and 38(e) show that both closure

approaches perform well in the pre-shock regions, reproducing the pre-shock turbu-

lent decay. In the post-shock regions, the peak of axial stresses is under-estimated

by both methods. The LDKM closure however shows a better recovery of the tur-

bulent fluctuations in that region, with a reduced dissipation compared to the DSM

closure. Further downstream, it is noted that, independently of the absolute levels

of turbulence, both closures give the right rate of decay of turbulence. The trans-

verse fluxes are represented in Fig. 38(b), 38(d) and 38(f). Again, the under-resolved

simulation does not capture the decay of resolved turbulence. The amplitudes in the

post-shock regions are better simulated by the DSM approach for those quantities.

However, both the LDKM and the DSM simulations show comparable results for
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the decay rates, which are correctly captured for all three cases. The energy spectra

are computed from the LES field before the interaction (k0x = 8.5 for M = 1.29,

k0x = 11.5 for the two other Mach numbers) and at the peak of Reynolds stresses

in the post-shock region (k0x = 13.5 and k0x = 17). These spectra are shown in

Fig. 39, along with the spectra computed from the filtered DNS fields. The physical

processes are well captured by the LES simulations. The axial velocity fluctuations

spectral distribution is significantly changed even at the smallest Mach number, and

the small wavenumbers are reduced whereas the larger wavenumber fluctuations are

amplified through the interaction. The transverse velocity fluctuations are amplified

for the higher Mach number cases, and the amplification is uniform over the span of

wavenumbers. The LES simulations show a slight over-prediction of the transverse

velocity fluctuations at the small scales. This leads to an overestimation of the level

of transverse fluctuations in the post-shock region, but does not affect the capture of

the turbulent decay that follows.

Within the LDKM formulation, the closure coefficients are computed dynamically

based on the resolved fields, and vary significantly in both space and time during

the course of the simulations. The statistical averages profiles of cν and Prt are

presented in Fig. 40 for the lowest and highest Mach numbers simulated here. The

closure coefficient for the subgrid stresses varies spatially, and increases as the grid

is clustered close to the mean shock locations to account for the reduced grid size.

Consequently, the eddy viscosity decreases continuously as the flow approaches the

shock. Downstream of the interaction, the subgrid stress coefficients vary spatially

following the turbulence amplification and reach a constant value further downstream,

as the turbulence reaches a state of homogeneity dominated by the turbulent decay.

A slight decrease in the average value for cν is found as the mean Mach number is

increased.

Similar to the behavior of cν, Prt decreases as the grid is refined close to the
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Figure 39: Velocity spectra of the filtered DNS field and of the LES field for the
M = 1.29, M = 2.0 and M = 3.0 shock / isotropic turbulence cases.
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Figure 40: Profiles of the closure coefficients cν and Prt for the shock / isotropic
turbulence interaction for the M = 1.29 case (left), M = 2.0 case (center) and
M = 3.0 case (right).
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mean shock location, and reaches a stationary state downstream of the interaction.

The values of this closure coefficients do not change significantly in the lowest Mach

number case, but a stronger reduction in Prt is obtained for M = 2.0 and M = 3.0.

Prt is close to 0.7 in all cases before the shock, and decreases to 0.4 in the region of

homogeneous turbulence for the higher Mach number cases, leading to an enhanced

diffusion of the energy. This effect is particularly important for the higher Mach

number cases as the levels of temperature fluctuations are increased through the

interaction with the stronger shock waves.

These conditions were found to be satisfied in more than 95% of the computational

cells away from the shocks. Within the shock region, the fulfillment of these conditions

dropped to 75%. Even when these realizability conditions were violated, the difference

between the computed subgrid stress closure coefficient and the highest admissible

value for cν remained small.

This fundamental study of shock / turbulence interaction has showed that the

numerical scheme developed for the resolution of turbulence in supersonic fields per-

mits the capture of both turbulent fields and discontinuity within one scheme, with

minimal dissipation. Furthermore, the LDKM closure model is found to be well

adapted to the modeling of the turbulent field in such configurations, showing a good

reproduction of the turbulent statistics evolution across the interaction.

4.4 LES of Shock / Turbulent Shear Layer Interaction

The interaction of a shock with a shear layer is a very common flow feature in super-

sonic flows. Sonic and supersonic jets give rise to a complex cellular structure, where

shocks and expansions interact with the turbulent outer shear layer. Shock waves are

inherently present in scramjet intakes and combustors, and interact with the shear

layers formed from the injection systems. Occurrence of shock waves in supersonic

combustors induces pressure losses that cannot be avoided. However, the impact of
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shock interactions with mixing regions is of considerable importance and needs to

be understood.Past studies show that mixing is significantly reduced in free shears

as the convective Mach number is increased. This consideration led Drummond and

Mukunda [1989] to study the gain in mixing and combustion efficiency obtained by

simulating a dual shock interaction with a reacting free shear layer, but observed

moderate improvements only. This configuration was later considered analytically

by Buttsworth [1996] who estimated the vorticity gain through the interaction to

be only about 16%. The original study of Drummond and Mukunda [1989] was a

two-dimensional simulation, and the shocks impacted the shear layer before it had

developed a fully unstable and self-similar state. Also, the analytical method treated

the flow in the laminar limit, so that the turbulence amplification that occurs during

the interaction was not included. This configuration is revisited in the present three-

dimensional LES study, with a particular focus on the turbulence evolution during

and after interaction with the shock waves.

The geometry and flow conditions for the present configuration are hereafter de-

scribed and represented in Fig. 41. A primary grid of 250 × 80 × 40 cells is used

(a) Configuration of the base mixing layer (b) Configuration of the shocked mixing
layer

Figure 41: Schematic of the base Mixing layer configuration.
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to discretize the domain of 17 cm × 10 cm × 3 cm. The grid is clustered towards

the centerline, to provide a proper resolution of the mixing layer, with a minimum

spacing in the vertical direction of 0.1 mm, following the spatial resolution reported

in the numerical simulation of Drummond and Mukunda [1989]. A refined simulation

is performed to assess the accuracy of the coarser resolution. This secondary grid has

a resolution of 400 × 140 × 60 cells, reaching a minimum spacing of 0.04 mm at the

centerline.

The upper stream (hereafter denoted with a subscript u) is a mixture of N2/H2,

with 10% hydrogen in mass, a static temperature of 2000K and a static pressure of

1 atm, flowing at Mach 2.0 (that is, a velocity of 2672 m/s with the thermally perfect

gas EOS employed for this simulation). The lower stream (hereafter denoted with a

subscript l) is an airflow with static temperature and pressure set to match that of the

upper stream. The Mach number is also set to 2.0, which corresponds to a velocity of

1729 m/s. The convective velocity for this flow is about Uc = 2100 m/s. The mean

velocity profile at the inflow of the domain is given by a hyperbolic tangent:

Ū(y) =
Uu + Ul

2
+

Uu − Ul

2
tanh

(
2

y

δ0
ω

)
, V̄ (y) = W̄ (y) = 0 (212)

where δ0
ω is the initial vorticity thickness for the profile, here set to δ0

ω = 0.4 mm. The

temperature profile at the inflow is set as a function of the imposed velocity profile

following the Crocco-Busemann relation (Vreman [1997], Doris et al. [2000]).

T (y) = 1
2Cp

(U(y)2 − UuUl + U(y)(Uu + Ul))

+(Tu − Tl)
U(y)

Uu−Ul
+ TlUu−TuUl

Uu−Ul

(213)

The convective Mach number for the flow under consideration is Mc = 0.43, which

makes it moderately compressible, with turbulent structures that still resemble those

of the incompressible mixing layer.

In order to trigger transition, a velocity perturbation is added to this mean profile

(Fortuné et al. [2004], Fu and Li [2006]). The fluctuating velocity field has an energy
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spectrum that follows eqn 208. The most energetic wavelength for this spectrum

is chosen such that κ0δ
0
ω = 2, and the amplitude of the fluctuations is such that

urms represents 4% of the convective velocity for the current problem. The forcing

described above is applied in the region of the mixing layer only, according to:

U(x = 0, y, z, t) = Ū(y) + u′(x = −Uct, y, z)exp

(
−
(

y

δ0
ω

)2
)

(214)

The top and bottom boundaries are treated as subsonic outflows for the reference

un-shocked mixing layer. For the shocked mixing layer, shocks corresponding to a

10◦ turning angle are imposed numerically by setting appropriate inflow conditions

to the upper and lower boundaries. The right boundary is a supersonic outflow, and

periodicity is imposed in the spanwise direction. After allowing five flow-through-

times of initial simulation, statistics are collected for another five flow-through-times.

The incompressible mixing length growth rate is often given by the spatial-growth

model of Dimotakis Dimotakis [1986]:

δ′ ≈ cδ
(1 − r)

1 + r
√

s

(
1 +

√
s − 1 −√

s

1 + 2.9(1 + r)/(1 − r)

)
(215)

where ε is a constant independent of the velocity ratio (r = Uu/Ul) and of the density

ratio (s = ρu/ρl), with cδ ≈ 0.36 Slessor et al. [2000] (although empirical correlations

and curve-fits suggest 0.25 < cδ < 0.45). This coefficient diminishes as the com-

pressibility within the mixing layer increases. A mixing layer compressibility is often

quantified solely based on the convective Mach number (Papamoschou and Roshko

[1988]), though some modified parameters have been suggested (Πc in Slessor et al.

[2000] is a modification to Mc for varying γ flows). Goebel and Dutton Goebel and

Dutton [1991] studied a Mc = 0.453 mixing layer, and the growth rate parameter

was estimated to be cδ = 0.21 (Slessor et al. [2000]). In the present simulation,

where r = 0.647, s = 2.370 and the convective Mach number is Mc = 0.43, the

mixing growth rate is found to follow δ′ = 0.228cδ, and the value for the coefficient
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found from the vorticity thickness evolution cδ,ω = 0.206, which closely matches the

experimental value.

The turning angle imposed at the top and bottom boundaries induce shocks with

very similar properties (shock angles, pressure ratios across the shocks, density ratios

across the shocks, etc...). They intersect on the centerline at an axial location of

X = 6.2 cm. The velocities in the post-shock region are then found to be essentially

horizontal, U = 2030 m/s, M = 1.35 in the upper stream, and U = 1310 m/s,

M = 1.35 in the lower stream. The velocity and density ratios across the mixing

layer are almost unchanged (r = 0.645, s = 2.40). The post-shock convective Mach

number is Mc,ps = 0.29.

In the early stage, the development of the mixing layer differs between coarse and

fine resolutions simulations, but stabilizes within a few centimeters from the inflow.

The flow evolution and turbulent statistics obtained from the coarser grid simulations

were found to match closely those obtained with the refined grid. All results given

hereafter are based on the coarser grid simulation.

Figure 42 shows a top view of the iso-surfaces of the Q−criterion for the base mix-

ing layer and its shocked counter-part. This variable is defined as the second invariant

of the velocity gradient tensor and is well-suited to vortical fields identification (Du-

bief and Delcayre [2000]). Those snapshots are taken at the same physical time, after

10 flow-trough-times have elapsed. The forcing imposed on the mean profile at the

inflow of the spatial simulation leads to a fast transition to turbulence. The spanwise

vortices develop early, and the ribs structures connecting the different rollers show the

three-dimensionality of the configuration. The vortical structures that pass through

the shocks are being compressed, and the post-shock structures resemble more two-

dimensional rollers than the un-shocked mixing layer structures. Later downstream,

those structures re-develop a strong three-dimensionality. The fast growth of the

structures after the interaction affects the mixing layer growth rate. The thickness
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Figure 42: Iso-surface of the Q-criterion (Q = 109s−2) for the base mixing layer
(top) and the shocked mixing layer (bottom), colored by the local Mach number –
flow is from left to right.

based on the 90%-H2 mass fraction is shown in Fig. 43(a) for the reference mix-

ing layer along with that of the shocked shear layer. A reduction of the thickness
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Figure 43: Mixing Layers growth rate based on a 90% H2 mass fraction, and mass
entrainment within the mixing layer thickness.

is observed as the shocks interact with the mixing region. This evolution is due to

the spatial compression of the mixing region by the two shocks, and is not related a

reduction in mixing efficiency. On the contrary, the growth rate of the shocked layer
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is significantly increased right after the interaction. This observation is confirmed by

the profile of mass entrained by the mixing layer, showed in 43(b). In this figure,

the results of both resolution studies are represented, showing the essentially grid-

independent flow evolution after the interaction. The rate of momentum exchange

between the two layers is significantly increased due to the shock / shear interaction.

Within 6 cm from the location of the interaction, the growth rate steadies out at

the level of the undisturbed mixing layer growth for that convective Mach number.

It should be noted that this growth rate is 6% higher than its unshocked counter-

part, as the decrease in convective Mach number associated with the shocks leads

to a reduction in compressibility effects. The forcing imposed on the velocity and

temperature profiles at the inflow of the simulation enhance the transition to a fully

turbulent shear layer. Statistically averaged velocity correlation have been collected

at several downstream locations along the domain. Figures 44(a) and 44(d) show the

normalized statistics of urms and < u′v′ > respectively, showing that self-similarity is

reached from x = 8 cm on. The normalized profiles of vrms and wrms show some small

variations with downstream locations, essentially recovering the self-similar state.

The shocks impact increases the relative levels of turbulence in the shear layer.

Figure 45 shows the profiles of turbulent velocity correlations downstream of the in-

teraction. The axial and cross-wise autocorrelations are amplified by the shocks close

to the point of interaction. Figures 45(a) and 45(c) show that their relaxation to the

undisturbed, self-similar states is achieved over a very short distance, less than 3 cm.

A more significant increase in the level of turbulence is observed for the transverse

velocity fluctuations. This gain persists over a larger distance, and relaxes to the sta-

ble level 7 cm downstream of the point of interaction. The Reynolds stress < u′v′ >

also shows this trend: largely amplified by the waves, it relaxes to its undisturbed

level within a distance from the interaction that is greater than that for urms. The

turbulence evolution in the shock / shear interaction is found to be mostly affected
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Figure 44: Normalized profiles of turbulent statistics (urms and < u′v′ >) at several
locations along the reference mixing layer.

by two competing phenomena. The initial amplification of the turbulent levels is

similar to the shock / isotropic turbulence interaction studied earlier. The turbulent

eddies corrugate the shock fronts, and generate local compressions and/or expansions.

Furthermore, the large scale coherent structures of the shear layer contribute to the

shock oscillations. The shock corrugation and its motion lead to the formation of

local acoustic waves, and evanescent pressure waves transfer the acoustic energy into

kinetic energy. The motions of the two shocks, while traversing the mixing layer, are

to a large extent dictated by the large scales of the flow, and are then out of phase.

As a consequence, the levels of vrms and < u′v′ > are particularly increased by the
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Figure 45: Normalized profiles of turbulent statistics (urms, vrms, wrms and < u′v′ >)
at several locations along the shocked mixing layer.

interaction.

The level of vorticity is increased by the compression of the mixing layer. A lam-

inar calculation for this case showed a 25% increase in vorticity across the shocks, in

relatively good agreement with the analytical predictions of Buttsworth Buttsworth

[1996], where a 16% increase was predicted. The three-dimensional turbulent cal-

culation shows only a 11% gain in mean vorticity. The presence of turbulence and

large-scale coherent structures does not modify the overall vorticity budget signifi-

cantly for the interaction. Despite the gain in vorticity, the fast growth of the mixing
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layer decreases the mean rate of strain across the mixing layer and consequently re-

duces the mean production of turbulence across the mixing layer. The high levels

of fluctuations are not maintained by the external flow. The normalized turbulent

statistics, vrms/∆U and u′v′/∆U2 shown in Fig. 45(b) and 45(d), relax to the self-

similar profiles. The reduced convective Mach number leads to higher values of the

turbulent correlations once stationary state is reached, compared to the un-shocked

case. The compressibility effects are significantly reduced, and the statistics across

the layer show a behavior close to incompressible mixing layers.

Overall, the mixing improvement obtained from the shock / shear interaction is

localized, but high. Furthermore, the increase in static temperature associated with

this method can be beneficial to the combustion efficiency as well. Pressure losses

are however induced by the shocks, and their interaction with the shear layer. The

stagnation pressure is easily obtained in this thermally perfect gas flow by integration

of the isentropic condition:

dS = −R
dP

P
+ cP

dT

T
= 0 (216)

between static and stagnation temperatures and pressures. It is found that the inter-

action between the shocks and the mixing layer has a very little contribution to these

losses. A 2.5% total pressure loss is induced by the two shocks, in the free-streams,

as seen in Fig. 46. The amplification of the losses through the interaction is very

small compared to the losses solely due to the shocks alone.

The statistically averaged model coefficients profiles across the mixing layers for

the reference and shocked mixing layers are presented in Fig. 47 and 48 respectively.

They exhibit a self-similar-like behavior. The closure coefficient for the subgrid

stresses peaks at the mixing layer centerline and decreases towards the edges, con-

sistent with the peaks of Reynolds stresses at the centerline observed in Fig. 44(a)

and 44(d). The coefficient for the subgrid dissipation peaks at the edges of the mix-

ing layer, where the value of ksgs is smaller. The turbulent Prandtl number profiles
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Figure 47: Profiles of the LDKM closure coefficients for the reference mixing layer.
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Figure 48: Profiles of the LDKM closure coefficients for the shocked mixing layer.

follow the trends of the subgrid stress closure coefficient, peaking at the centerline,

and decreasing towards the edges. The turbulent diffusion of energy at the centerline

is associated with the coherent vortices of the mixing layer, and the subgrid contri-

bution is found relatively weak, with a higher Prt. Closer to the edges of the layer,

the subgrid contribution to the energy budget is more important, as the turbulent

Prandtl number decreases significantly.

The interaction with the shock wave induces a scattering of the closure coefficients

at the edges of the mixing layer, where the turbulent motions are lesser. Within the

layer thickness however, their behavior is not strongly modified, showing essentially
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the same variations and the same amplitude as in the reference mixing layer case. In

these computations again, the realizability constraints were found satisfied in more

than 95% of the computational cells away from the shocks. Within the shock region,

the fulfillment of these conditions dropped to about 80%.

The present study has showed that the shock / shear layer interaction leads to

a turbulent amplification in the post-shock region, which can significantly enhance

the mixing rate and/or the combustion efficiency. The gain in mean vorticity due to

the interaction is found to follow the analytical prediction (Buttsworth [1996]) to a

good extent, despite its limitation to laminar flows with mean shear. The coherent

structures and turbulent fluctuations strongly affect the growth of the layer, but have

a limited influence on the average vorticity. The evolution of the turbulent shear layer

downstream of the interaction is dictated by a relaxation process to the self-similar

state of the new mixing layer. In particular, the reduction in velocity difference across

the layer leads to a reduced mean production, and the levels of turbulence decrease

with downstream location.
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CHAPTER V

SONIC JET IN SUPERSONIC CROSS-FLOW

A fast and efficient mixing of fuel and oxidizer is a requirement in most operational

non-premixed combustion systems. This is of primary importance, and one of the

biggest design challenges, especially in supersonic combustion systems, where the

residence in the combustion chamber is very short. To achieve this goal, a good pene-

tration of the fuel into the free-stream and high levels of mixing are required. Further-

more, in order to sustain and stabilize a flame, efficient re-circulation of hot products

is needed to anchor and to continuously initiate the reaction in the mixed fluids.

Several injector designs have been studied experimentally that generate high levels

of mixing, sustain the flame, and minimize pressure losses throughout the process.

Cavity-based (Gruber et al. [1999]) or strut-based (Waidmann et al. [1995]) injections,

swept ramp injectors (Gruber et al. [2000]) and wall-normal injection (Ben-Yakar and

Hanson [1998]) are some of the well studied designs.

Probably the simplest among all the injection designs, the jet in cross-flow (JICF)

is an efficient method for supersonic mixing of fuel and oxidizer and for supersonic

combustion, as it allies all the properties required in an efficient injector. A schematic

of the JICF shown in Fig. 49 highlights some of the features observed during the

interaction (Gruber et al. [1996], Dickmann and Lu [2006]). A blockage of the free-

stream flow is induced by the transverse momentum of the jet, and a bow shock

is formed ahead of it. Under the influence of the shock, the incoming turbulent

boundary layer separates, and the thickening of the boundary layer in the near-jet

region creates a λ−shock pattern, and leads to the separation of the incoming layer

and the formation of a re-circulation region. In reacting flows, these regions can
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Figure 49: Schematics of the supersonic JICF interaction.
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trap hot radicals and products, hence anchoring the flame. The under-expanded jet

expands suddenly as it penetrates into the low pressure cross-stream and a high-

speed shear layer is formed between the ambient air and the jet. Furthermore, as the

expansion fan generated at the edges of the injector interacts with the shear layers,

the boundaries of the jet are deflected inwards, and compression waves from these

shear layers deflection form the barrel shocks. Finally, a Mach disk normal to the

jet flow compresses the injected fluid. As the jet penetrates into the free-stream, a

high pressure region is created by the shock ahead of the jet (on the windward side),

whereas downstream, a low pressure region exists at the base of the jet as a result of

the jet expansion.

Instantaneous flow fields and vortical structures of JICF in lower-speed flows have

been the topic of many experimental and numerical studies (see, e.g. Andreopoulos

[1985], Yuan et al. [1999], Lim et al. [2001], New et al. [2003]). Past experimental

studies of JICF in supersonic crossflows have suggested that some of these vortical

structures were also observed in supersonic JICF (VanLerberghe et al. [2000], Ben-

Yakar et al. [2006]). The jet shear layer is at the interface between the high-speed jet

and the low-velocity re-circulation on the windward side, and the separated region on

the leeward side. Kelvin-Helmholtz instabilities (KHI) are generated, due to the high

levels of shear, evolve into large-scale vortices that propagate along the jet boundaries,

and contribute to the mixing process. Furthermore, a pair of counter-rotating axial

vortices is formed in the plume region. These vortical features are regarded as the

main phenomena for mixing the fluids in JICF. Horseshoe vortices are generated by

the interaction between the incoming boundary layer and the jet, and remain close to

the wall of injection. These vortices do not interact with the jet, and do not participate

in the mixing process. Finally, vertical wake vortices form between the wall boundary

layer and the jet plume, downstream of the injection. Their contribution to the mixing

process is uncertain (Gruber et al. [1997]). Although simple from a conceptual point

149



of view, it can be inferred from the above observations that this injection methodology

leads to a rather complex flow pattern.

The jet shear vortices, the counter-rotating vortex pair and the wake vortices

have clearly been identified in actual supersonic JICF experiments (VanLerberghe

et al. [2000], Ben-Yakar et al. [2006]). However, a detailed capture of all the physical

features of the flow is difficult, due to the intense fluctuations, the high levels of

unsteadiness, and the flow speed. RANS, LES and hybrid RANS/LES simulations,

on the other hand, have been used to isolate some of the key average and instantaneous

features of this interaction (e.g., Tam et al. [1999], Dickmann and Lu [2006], Peterson

et al. [2006], Sriram and Mathew [2008], Kawai and Lele [2008]). In particular, some

vortical structures typical of the high-speed interaction have been highlighted in these

studies. Shock induced separations and horseshoe vortices have been identified. Some

studies (Peterson et al. [2006], Kawai and Lele [2008]) have shown the particular

nature of the KHI in supersonic JICF, related to the unsteady deformation of the

barrel shock in response to the pressure oscillations within the incoming boundary

layer (Kawai and Lele [2008]). All these phenomena add some complexity to the

dynamics of the flow. Other vortical structures, such as the hanging vortices (Yuan

et al. [1999]) or the windward vortex pairs (New et al. [2003]), found in subsonic

JICF, have not been clearly identified in supersonic flows.

A LES of supersonic JICF is performed to resolve the time-averaged and unsteady

features of this interaction. The present study focuses on the JICF configuration

studied experimentally by Santiago [1995] and Santiago and Dutton [1997]. Detailed

velocity fields have been obtained using LDV measurements, in the centerplane of

the streamwise direction, and in two cross planes downstream of the injection. Mean

velocities in the axial and transverse directions, and statistics of the fluctuating veloc-

ities are available for comparison. In addition to comparing with these experimental
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data, another focus of the present study is the investigation of the unsteady fea-

tures of this interaction, and the impact of the free-stream Mach number and jet to

free-stream momentum ratio on the flow dynamics.

5.1 Configuration and Parameters for the JICF Study

The present study focuses on the physics of a sonic jet injected into a supersonic

crossflow. The configuration reproduces the experimental study presented in Santi-

ago [1995], Santiago and Dutton [1997] and VanLerberghe et al. [2000], where time-

averaged and fluctuating velocity profiles from LDV measurements, PLIF imaging

and analysis of the mixing have been reported. The experimental conditions are as

follows. Air is injected through a choked nozzle with an exit diameter d = 4 mm

located at the bottom wall of a wind-tunnel. The free-stream in the wind tunnel is

a M = 1.6 airflow. Stagnation conditions for the injector and the main stream are

given in Tab. 3. The test section has a width of 76 mm and a height of 36 mm.

Table 3: Experimental parameters for the jet in cross flow experiment of Santiago
and Dutton [1997].

Case A
free-stream jet

Mach number 1.6 1.0
Pstag (kPa) 241 476
Pstatic (kPa) 57 251

Pnorm shock (kPa) 160 —
Tstag (K) 295 295

ρstatic (kg/m3) 1.05 3.55
velocity (ms−1) 446 315

ρU2 (kg m−1s−2) 2.03 105 3.52 105

J = (ρU2)jet / (ρU2)∞ 1.73

PR = Pt,jet/P∞ 8

Noting (x, y, z) = (0, 0, 0) the center of the injection port, the computational do-

main used for the present study extends from x = −16.5d to x = 7d in the streamwise
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direction, and from y = 0 to y = 9d in the transverse direction. The spanwise depth of

the experimental facility has not been fully simulated for computational savings, and

extends from z = −6.3d to z = 6.3d. This domain extent is sufficient to capture all

the physical processes, allows comparisons with the experimental data and prevents

the wave reflections from the side of the domain from interacting with the regions of

interest. Two grid resolutions have been used to resolve this configuration. A coarse

grid consists of 300 × 150 × 100 cells with grid stretching to refine the resolution

close to the injector and close to the lower wall of the wind tunnel. The resulting

resolution is finest at the tip of the injector, where ∆x/d = 0.023, ∆y/d = 0.022 and

∆z/d = 0.032. Peterson et al. [2006] found that the inclusion of the injection plenum

chamber in the domain of the simulation improved the jet flow rate, and therefore,

this section is simulated and resolved using a 23 × 60 × 23 grid. A finer grid is also

used to assess grid independence of the reported simulations. This grid employed

600 × 225 × 200 cells in the test-section, and 46 × 90 × 46 grid cells in the injection

chamber.

The test-section inflow conditions at x = −16.5d are generated using the rescaling -

recycling method described in Stolz and Adams [2003]. At every instant, the temporal

fluctuations in velocity, temperature and density are extracted from the recycling

plane located at x = −5d, rescaled, and reintroduced at the inflow plane, x = −16.5d.

This method permits the self-generation of an inflow boundary layer with turbulent

structures. The boundary layer displacement thickness at the recycling plane was

constrained to match that obtained in the experimental study, δ? = 0.59 mm. The

inflow in the plenum chamber uses a stagnation condition-based characteristic inflow.

The outflow at x = 7d is a standard supersonic extrapolation. The bottom boundary

of the wind-tunnel, as well as the sides of the plenum chamber are treated as no-

slip adiabatic walls, whereas symmetry conditions are applied to the top wall of the

section. Periodicity conditions are used in the spanwise direction. After washing
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Figure 50: Profiles of mean axial and transverse velocities in the centerplane at four
locations downstream of the injection. Comparison between numerical and experi-
mental results (at x/d = 3 and x/d = 5, 3 sets of experimental data for U and 2 for
V , 1 set of data otherwise - Santiago and Dutton [1997]).

out the transients due to the initial conditions, statistics are collected for over 5

flow-through-times.

5.2 Comparisons with Experiments

The mean velocity profiles collected in the centerline plane at four different stations,

x/d = 2, x/d = 3, x/d = 4 and x/d = 5 are compared to the experimental velocity

fields in Fig. 50 for both grid resolutions. Similarly, profiles of velocity fluctuations

are compared to the experimental profiles in Fig. 51. For both the second and last

locations, velocity profiles have been acquired from centerplane measurements and
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Figure 51: Profiles of fluctuating axial velocity statistics in the centerplane at four
locations downstream of the injection. Comparison between numerical and experi-
mental results (at x/d = 3 and x/d = 5, 3 sets of experimental data for urms and 2
for vrms, 1 set of data otherwise - Santiago and Dutton [1997]).
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from cross-plane acquisitions. Consequently, 3 sets of data for the axial velocity and

2 sets of data for the transverse velocity are available for these locations, and have all

been used for comparison in the following plots. Some of the experimental uncertainty

is highlighted in the scatter of the velocity fields obtained for different acquisitions.

However, to a very good extent, the global behavior and the amplitude of the profiles

are reproduced from one realization to the next. Note that the turbulent statistics

in the free-stream do not go to 0 in the experimental data, probably due to some

perturbations in the free-stream, and/or due to experimental noise.

The axial velocity predictions from the LES simulations show a fairly good agree-

ment with the experiments, and the wake of the jet plume is correctly captured. The

peak of vertical velocity is over-estimated at the first station, but decays quickly with

downstream location and reaches amplitudes in good agreement with the experimen-

tal data. The velocity fluctuations are related to the boundary layer turbulence, to the

wake of the jet and to the shear vortices (examined in more details later). The profiles

and amplitude of urms match quite well the experimentally measured fluctuations. At

the last station, a noticeable difference is seen with one set of experimental measure-

ments. It should be noted, however, that the agreement with the other two sets of

measurements is satisfactory. The transverse velocity fluctuations are overestimated

in the near-jet region, but relax to the experimental profiles further downstream. For

vrms again, a fair agreement with one set of data is obtained, whereas the agreement

with the other experimental acquisition is less satisfactory.

As mentioned above, mean and fluctuating velocity profiles have been collected at

two cross-sections downstream of the injector, at x/d = 3 and x/d = 5. A comparison

of the contours obtained from experiments with the numerical result is presented in

Fig. 52. The kidney-shaped vortices observed in the section of the counter rotating

vortex pair (CVP) are highlighted in these plots The overall shape is correctly cap-

tured by the numerical simulation. At the first cross-plane, the width of the mixing
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(a) urms at x/d = 3 (b) vrms at x/d = 3 (c) < u′v′ > at
x/d = 3

(d) < u′w′ > at
x/d = 3

(e) urms at x/d = 5 (f) vrms at x/d = 5 (g) < u′v′ > at
x/d = 5

(h) < u′w′ > at
x/d = 5

Figure 52: Contours of Reynolds stresses in two cross-planes downstream of the
injection (x/d = 3.0 and x/d = 5.0). Comparison between experimental (left) and
numerical (right) results.

region, estimated using the field of urms, is slightly over-estimated by approximately

0.2d. The core of the CVP and the amplitude of the fluctuations are, however, in good

agreement with the experimental field. At x/d = 5, the predictions on the jet plume

extent and on the amplitude of fluctuations match the experimental observations.

The present simulation overall compares favorably to the experimental data. The

statistics in mean and fluctuating velocities in the centerplane and at two different

cross-sections show similar trends and amplitude, and the structures of the flow are

recovered. A more systematic look at the time-averaged and instantaneous vortical

structures developed in this interaction is examined next. The reference case described

above (Case A) is complemented by two other cases: a sonic jet into an M = 2

crossflow (Case B) and a case where the jet to freestream momentum ratio, J =

(ρU2)jet/(ρU2)∞, is increased to J = 5 for a M = 1.6 crossflow (Case C), compared

to J = 1.6 for Cases A and B. The stagnation conditions of Cases B and C are also

given in table 3. The geometry is identical to the reference case and the boundary
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Table 4: Numerical parameters for two jets in crossflow simulation: (a) free-stream
Mach number M = 2 and (b) jet to freestream momentum ratio J = 5.

Case B Case C
free-stream jet free-stream jet

Mach number 2.0 1.0 1.6 1.0
Pstag (kPa) 284 476 241 1428
Pstatic(kPa) 36 251 57 754

Pnorm shock(kPa) 160 — 160 —
Tstag (K) 295 295 295 295

ρstatic (kg/m3) 0.77 3.55 1.05 10.65
velocity (ms−1) 514 315 446 315

ρU2 (kg m−1s−2) 2.03 105 3.52 105 2.03 105 10.56 105

J = (ρU2)jet / (ρU2)∞ 1.73 5.20

PR = Pt,jet/P∞ 13 25

conditions are also kept identical for Case B. For Case C, an extrapolation boundary

condition is used at the top boundary, in order to prevent the stronger bow shock

from reflecting and interacting with the jet mixing region.

The computational results for case A, shown in Figs. 50 and 51 demonstrate a

good grid independent behavior and are in good agreement with experimental data.

Furthermore, spectral analyses of the energy densities at some key locations, shown

in Fig. 53, show an energy decay that scales with the inertial range scaling ω−5/3.

Similar energy spectra are obtained from the finer resolution simulation, showing the

appropriateness of the computational grid to the resolution of this turbulent problem.

Based on this observation, and consistent with the LES philosophy of using as coarse

a grid as possible to capture the features of interest, the coarser grid results are

analyzed in more details in the next sections, and the coarser grid is employed for

cases B and C listed in table 3.
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Figure 53: Energy spectra at three locations of the centerplane: (a) along the
developing jet shear layer (x/d = −0.83, y/d = 0.4), (b) in the wake of the jet
(x/d = 2.35, y/d = 2.6) and (c) further downstream in the jet wake (x/d = 4,
y/d = 2.7).

5.3 Time-Averaged Flow Features

Some of the well documented time-averaged structures of JICF have been reviewed

earlier, and are revisited here in the context of the present simulations. Figure 54

shows the pressure contours and some streamlines of the incoming flow for the three

cases considered here. The mean flow blockage due to the jet leads to the formation of

a primary strong shock wave ahead of the jet and induces a separation of the boundary

layer. The weak shock generated by the subsequent thickening of the layer causes the

formation of a λ−shock structure, as visible in Fig. 54. A primary recirculation

region is formed ahead of the jet, centered at around x/d = −1.31, y/d = 0.13 for the

reference case, in good agreement with the experimental observations x/d = −1.25

and y/d = 0.13. This region has a triangular shape, and interacts with the jet shear

layer from (x/d = −0.5, y/d = 0) to (x/d = −0.67, y/d = 0.59). A smaller anti-

clockwise rotating recirculation is formed between the primary recirculation and the

jet boundaries. As seen in Fig. 54(b), the bow shock in front of the jet is weaker than
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(a) M = 1.6, J = 1.7

(b) M = 2, J = 1.7

(c) M = 1.6, J = 5

Figure 54: Pressure field, temperature gradient contours and streamlines in the
centerplane for the three JICF cases. The flow is from left to right.
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in the other two cases, and the boundary layer separation is weaker. As a consequence,

the primary re-circulation is smaller, and its center is located at x/d = −1.35 and

y/d = 0.09. Due to a higher momentum, the jet in case C penetrates further into

the crossflow, and the bow shock is much stronger than in the two other cases. The

boundary layer separation is moved upstream, and the recirculation region is located

at x/d = −1.9, y/d = 0.25.

The expansion of the jet increases the Mach number of the injected gas, and a

maximum velocity of 690 m/s is reached at a location x/d = 1.2, y/d = 1.3 for

the reference case. Santiago and Dutton [1997] report a maximum velocity location

of x/d = 1.25, y/d = 1.38, but estimated the maximum velocity to be 589 m/s.

The penetration of the jet depends strongly on the momentum ratio, but also on the

effective back pressure (Everett et al. [1998]). Despite an identical post normal-shock

pressure of 160 kPa in the freestream for all three cases, the pressure increase through

the λ−shock depends on both the strength of the separation and the jet pressure.

As reported earlier, the bow shock for case B is weaker than in the other cases, and

the effective back pressure is lower, leading to a greater penetration of the jet into

the crossflow, leading to a greater penetration of the jet into the crossflow, and the

maximum velocity is reached at x/d = 1.52, y/d = 1.48. The jet in case C penetrates

further into the mean flow, and creates a stronger bow shock, leading to a higher

effective back pressure and a higher pressure drag. The highest velocity for Case C

occurs at x/d = 1.88, y/d = 2.52.

For all cases, most of the injected fluid is found to pass through the windward and

lateral barrel shocks, and across the Mach disk. A small amount only of jet fluid passes

through the leeward barrel shock and remains over-expanded. As a consequence, two

shocks are formed: a strong shock at the tip of the Mach disk compresses the jet fluid

that passes through the leeward barrel shock and penetrates into the free-stream

(most visible for case C pressure contours in Fig. 54). A weaker shock is generated
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(a) Shear-dominated structures ; Q =
−8 × 109s−2

(b) Vorticity-dominated structures ; Q =
7 × 108s−2

Figure 55: Vortical structures in the JICF configuration represented by the iso-
contours of Q variable (Dubief and Delcayre [2000]). Flow is from left to right

from the re-attachment point at the wall, which propagates into the freestream.

The key observable three-dimensional structures in the JICF are illustrated in Fig.

55 for the reference case. Similar time-averaged features are observed for the other

cases, and are not repeated here, for brevity. The second invariant of the velocity

gradient tensor, often denoted Q, is well-suited to vortical fields identification (Dubief

and Delcayre [2000]). An iso-surface of negative Q is shown first in Fig. 55(a),

highlighting the shear-dominated regions of the average flow, and identifying the

regions of high velocity gradients. The complex shock pattern in the centerplane

discussed earlier leads to the formation of three-dimensional re-attachment shocks.

These structures propagate outwards, interacting with the jet wake and the boundary

layer.

An iso-surface of positive Q, highlighting the regions dominated by vorticity over

strain (Q criterion), is shown in Fig. 55(b). The impact of the bow shock onto the

boundary layer induces separation, and the vortical recirculation region follows the

curved shock. Along the side of the jet, hanging vortices are formed by the skewed

mixing layer between the streamwise flow and the vertical jet (Yuan et al. [1999]).
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The origin of the hanging vortices lies between the bottom wall and the boundaries of

the laterally expanding jet, as shown in Fig. 56(a). The center of these vortices moves

up with downstream location along the jet boundaries, as shown in the evolution from

Fig. 56(a)-56(c). Although presented here for a statistically averaged field, it should

be noted that these structures are observed to remain quasi-steady in the course of

the simulations. Further downstream, a counter-rotating vortex pair is formed in the

wake of the jet. In the present context of supersonic flows, the formation of this

vortex pair is found to be the result of several simultaneous phenomena. The jet

column is deformed by momentum, pressure of the crossflow at the windward side,

and is sheared along the lateral edges, giving a kidney-shape to the initially circular

jet cross-section, as visible in Fig. 57. After being deflected by the jet, the main

stream expands along the sides of the jets and swerves back towards the centerplane

of the wind tunnel. Actually, the circulation induced by the hanging vortices enhances

this flow convergence towards the centerplane, as seen in Fig. 56(b)-56(c). As the

flow converges, a higher pressure region is formed and the pressure increase leads to

the formation of two outwards moving shocks, and of a strong upwash velocity which

penetrates into the jet plume, and creates the circulation of the counter-rotating

vortex pair (Chenault et al. [1999]). This phenomenon is illustrated in Fig. 56(d)

and 56(e). On each side of the centerplane, hanging vortices and vortices of the CVP

rotate in the same sense, and the hanging vortices quickly weaken. The CVP, on the

other hand, is amplified in the plume of the jet, enhancing the mixing of free-stream

and injected fluid.

Iso-surfaces of the Q variable are shown in Fig. 58 for all three JICF cases and case

B and C show features similar to that of case A described above. Again, the hanging

vortices formed on the side of the jets are clearly visible in the three results. For Case

A, the centres of the hanging vortices form an angle of 18o with respect to the bottom

wall. In the second case, the free-stream flow loses less momentum through the bow
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(a) x/d = 0.5 (b) x/d = 1.5

(c) x/d = 2 (d) x/d = 2.5

(e) x/d = 3

Figure 56: Average velocity vectors at five cross sections downstream of the injector
for the reference JICF (background is the pressure field).
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(a) y/d = 0.5 (b) y/d = 1

Figure 57: Contours of the average injected mass flux for two vertical planes for the
reference JICF.

(a) Case A (b) Case B

(c) Case C

Figure 58: Iso-surface of Q = 108s−2 highlighting the hanging vortices for the three
JICF cases.
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shock in front of the jet, and the skewed mixing layer is more inclined towards the

streamwise direction. The angle formed between the centre of the hanging vortices

and the bottom wall is decreased down to 14o. The opposite occurs in Case C, where

the very high momentum of the jet creates a hanging vortex with a higher angle to

the bottom wall, reaching 24o.

Another type of vortical structures is observed in these iso surfaces, present in all

three cases but particularly visible for case C. A pair of vortices generated on the

windward side of the jet, close to the point where the upper tip of the recirculation

region ahead of the jet interacts with the shear layer, evolves along the side of the

jet, above the hanging vortices, as visible in Fig. 58. These vortices closely resemble

the Windward Vortex Pairs (WVPs) reported by New et al. [2003] in the studies

of low-speed elliptical JICF. The under-expanded jet expands at the nozzle, and

blocks a large portion of the incoming boundary layer. As a direct consequence,

the recirculation zone formed ahead of the jet is large, and the pressure increase,

significant. The windward side of the jet, initially circular, is deformed, leading

to a concave warping of the jet boundary, and of the subsequent vortex sheet. The

momentum impact of the recirculation region decreases at the spanwise location where

the boundary layer flow gets around the jet core.

A bifurcation of the incoming streamlines occurs at x/d = −0.6, y/d = 1.2 and

z/d = ±0.75, characterizing the separation between streamlines that get into the

recirculation region ahead of the jet and streamlines that wrap around the jet. These

locations, shown in Fig. 59, correspond to the location where windward vortices are

formed. As these structures are convected downstream, they interact with the CVP

and weaken. These vortices breakdown quickly for cases A and B. They evolve further

away from the CVP for case C, hence survive longer.

The convergence of the freestream towards the centerplane downstream of the

jet creates a circulation in the near wake region, and two steady wake vortices are
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Figure 59: Iso-surface of Q = 108s−2 and streamlines from the upper boundary
layer.

generated. Also, horseshoe vortices are formed downstream of the injector, close to

the wall in the wake of the jet. These vortices, also visible in Fig. 56(d) and 56(e)

along the bottom wall, rotate in a direction opposite to the CVP above them. Again,

in the cases of supersonic JICF presented here, and unlike the subsonic JICF, the

formation of the horseshoe vortices is closely related to the outwards motion of the

shock pair created in the centerplane and discussed earlier.

As expected, the averaged fields show a rather complex flow evolution in this JICF

problem: many sources of vorticity have been identified, and could play a role in the

overall mixing between jet and freestream. In order to gain understanding in the

dynamics of this interaction, these steady features are revisited using the unsteady

data from the simulations in the next section.

5.4 Unsteady Features and Flow Dynamics

Images of the injection region have been acquired using PLIF by VanLerberghe et al.

[2000] in the same experimental facility, and under similar experimental conditions
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(a) (b)

(c) (d)

Figure 60: Large scale structures for the reference JICF, case A: (a) and (c) ex-
perimental observation by acetone PLIF of VanLerberghe et al. [2000], (b) and (d)
numerical snapshots of the passive scalar field and density gradient contours.

as the study of Santiago and Dutton. Large scale unsteady vortices generated on

the windward side of the jet and convecting along the jet boundary and along the

jet plume have been identified in this study. Some of the snapshots acquired in this

experimental study are reproduced in Fig 60 along with some instantaneous contours

obtained from the present simulation (case A). In these figures, the boundaries of the

under-expanded jet are delimited by the contours of temperature gradients. Similar

large scale structures are known to exist even in low-speed JICF due to Kelvin-

Helmholtz instabilities (KHI) (Fric and Roshko [2004]) of the vortex sheet created at

the jet nozzle. These KHI occur along the windward and the lateral sides of the jet,

forming a circumferential vortical structure rather than a vortex ring, as originally

thought (Lim et al. [2001]).

In high speed JICF, the large scale vortices are also observed in the centerplane,
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but their generation is more complex than in the low-speed case. Figure 61 represents

a time-series of the temperature gradient magnitude in the centerplane of the refer-

ence case, showing the highly unsteady nature of the interaction. The phenomenon

is enhanced in the present supersonic interaction by the unsteady deformation of the

barrel shock illustrated in the time-series. The vortical structures and pressure fluc-

tuations of the incoming boundary layer interact with the jet at the nozzle exit. The

intensity of the pressure fluctuations inside the recirculation region reaches 13 kPa

and unsteady compressions are generated within the jet flow. The formation of a

compression is illustrated in Fig. 61 over a time interval of 8 µs. The wave steepens

into a localized shock wave as it penetrates into the jet and propagates along jet

boundary. The moving shock finally reconnects the barrel shock further downstream

of the injection and creates a kink in the jet boundary at the reattachment point , at

x/d = 0.75, y/d = 1.55 (seen at t = 16 µs, Fig. 61(c)). A pocket of unshocked jet

fluid is then detached from the jet.

Figures 61(d)-61(f) show close-up views of the jet windward jet boundary repre-

senting the Mach number field at the same three instants. The pockets of jet fluid

formed by the unsteady shock motion within the jet leads to the ejection of high

Mach number fluid that interacts with the recirculation region. The highly unsteady

nature of the windward barrel shock impacts the time-averaged Mach number field

(Fig. 61(g)), which shows a very diffuse windward-side barrel shock.

The pockets of jet fluid ejected through this process are submitted to high levels

of shearing, and the vortical structures formed by KHI show intense levels of vorticity.

Due to the higher vertical velocity of the jet fluid, the vortices formed through the

interaction, and visible in Figs 61(a)-61(c), rotate counter-clockwise, are convected

along the jet boundaries and break-down into smaller scale turbulence further down-

stream at the boundaries of the jet plume. Distortion of the windward barrel shock

at the centerplane is also reported in the PLIF visualizations of VanLerberghe et al.
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(a) t = 0µs (b) t = 8µs (c) t = 16µs

(d) t = 0µs (e) t = 8µs (f) t = 16µs

(g) Time-averaged field

Figure 61: Contours of the temperature gradients magnitude (a-c) and of the Mach
number field with density gradient contours (d-f) at three consecutive instants. (g)
time-averaged Mach number field.
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Figure 62: Contours of the temperature gradients magnitude in the x/d = 0 cross-
plane at t = 8µs of the reference JICF.

[2000] (reproduced here in Fig. 60) where kinks in the upstream jet boundary are

observed. Also, the unsteady formation of shock waves within the under-expanded

jet, in the centerplane, was also observed and reported in other numerical study (Pe-

terson et al. [2006], Kawai and Lele [2008]). This perturbation of the jet is found to

be strongly three-dimensional. The unsteady compression is formed at the windward

side, where the pressure fluctuations in the region ahead of the jet are the strongest,

and extend along the jet boundary and to the lateral sides.

In Fig. 62, contours of temperature gradient in the cross-plane x/d = 0 are

represented at the same instant as for Fig. 61(b), showing that the compression

wave that propagates within the jet is actually curved. The pocket of unshocked

fluid ejected through this process wraps around the jet, leading to the formation

of a circumferential vortex due to KHI. The formation of unsteady compressions

along the lateral sides of the jet is also observed during the unsteady evolution of

the jet. The shocks that result from this interaction are found to be weaker than

those due to windward compressions, and do not penetrate the jet significantly. As a

consequence, these perturbations do not wrap around the jet, and KHI vortices are

formed asymmetrically on the sides.

The deformations of the jet boundary due to the unsteady dynamic pressure of
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the incoming boundary layer is also observed for cases B and C. Despite an identical

jet to freestream momentum ratio, the transverse jet in case B expands more at the

nozzle exit, as reported earlier. The Jet Mach number along the boundaries is higher

than in the reference case, and the penetration of the compression waves, lower. As a

consequence, smaller pockets of fluid are ejected in case B. For the same reasons, the

higher jet momentum of case C is less sensitive to the incoming perturbations in the

boundary layer, and the penetration of the compression waves into the jet is smaller.

The jet distortion described above and the vortices formation generate strong

acoustic waves that propagate upstream into the subsonic region and interact with

the bow shock. The shock front appears wavy and unsteady, as observed in the

temperature gradient snapshots, and in experimental Schlieren images (Gruber et al.

[1995], Ben-Yakar et al. [2006]). The shock motion results in an unsteadiness of the

boundary layer separation, and a deformation of the λ−shock structure ahead of the

jet is observed in the present simulations. Pressure fluctuations are responsible for the

jet boundary deformation, and this phenomenon could lead, through a self-exciting

mechanism, to the periodic formation of shear layer vortices. Actually, in a recent

study, Won et al. [2008] performed a Detached Eddy Simulation (DES) of a JICF and

showed the very periodic formation of vortical structures from the jet front, probably

a consequence of such a self-excitation mechanism. In the present calculations, no

fundamental mode of excitation is found from the pressure and vorticity spectra

computed ahead of the jet. It is likely that this difference in behavior comes from

the levels of turbulence in the incoming boundary layer : very small amounts of

turbulence in the incoming boundary layer was reported by Won et al. [2008] in their

DES simulation, whereas the present calculations carry turbulent, and non periodic,

structures in the incoming layer.

The vortices due to fluid ejection and/or by KHI are formed along the jet bound-

ary. The three-dimensional evolution of these structures is highlighted through the
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iso-surface of the passive scalar (injected from the jet), as shown in Fig. 63 for the

three cases. Figs. 63(a), 63(c) and 63(e) show large circumferential vortices that

wrap around the jet and create a large roll up. These structures form symmetrically

in a vertical plane. The windward part of the roll-up is convected upwards along

the boundary of the jet, whereas the side vortices are carried along the jet plume.

The initially planar structures tilt and fold around the jet. These structures engulf

large amounts of freestream fluid, and a mixing of jet and free-stream fluids at the

large scales is achieved at the periphery of the jet. Further downstream, these vor-

tical structures break down into small scale turbulence, hence enhancing the mixing

process.

The formation of vortices on the lateral sides of the jet is also observed, as illus-

trated in Figs. 63(b) and 63(d) for cases A and B, respectively. The higher velocity

of the jet leads to the formation of a roller with positive x-vorticity, and again, carries

some of the freestream fluid towards the centerplane in the wake of the jet. These

instabilities remain on the sides of the jet, and do not evolve circumferentially around

it. Their generation is related to the lateral jet compression and to KHI along the

skewed mixing layer. The impact of the quasi-steady hanging vortices in these regions

is however difficult to assess. Such vortices are found in case C as well, but are less

frequent and intense than in the other two cases. Windward vortices, on the other

hand, can be clearly identified on the instantaneous flow structure of case C.

Figure 63(f) shows a vortical structure formed at the tip of the recirculation, at

x/d = −0.7, y/d = 1.25 and z/d = 0.75. This feature extends along the jet boundary

and is deflected towards the streamwise direction, tilting to a vortical structure with

positive x-vorticity. Furthermore, the instabilities of the vortex sheet are observed

along the path of this structure, as illustrated in Fig. 64. The wavy structure of the

WVP is clearly visible in the iso-surface of passive scalar. The superposition of an

iso-surface of Q shows that small vortex tubes wrap around the WVP, due to vortex
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(a) (b)

(c) (d)

(e) (f)

Figure 63: Iso-surface of the passive scalar injected from the jet (Y2 = 0.3) colored
by the vorticity magnitude, highlighting the formation of vortical structures due to
localized and/or circumferential Kelvin-Helmholtz instabilities: (a) and (b) case A,
(c) and (d) case B, (e) and (f) case C.
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(a) (b)

Figure 64: Visualization of an instantaneous windward vortex. Iso-contour of the
passive scalar, and superposition with an iso-surface of positive Q.

sheet instability. Again, these WVP are found for all three cases, but have significant

amplitude for case C only.

On the leeward side of the jet, the dynamics of the flow is much less coherent.

Pressure fluctuations of the order of 4 kPa also induce barrel shock fluctuations, but

the strong deformations that lead to the ejection of fluid pockets on the windward

side are not observed here. Rather, small amplitude KHI vortices breakdown as they

pass through the shock that is connected to the Mach disk. These structures induce

high levels of velocity fluctuations in the jet plume, and do not influence the jet wake

significantly.

A significant part of the injected fluid passes through the Mach disk of the under-

expanded jet. This injected fluid does not carry a significant amount of turbulence.

However, the jet boundary unsteadiness provoke an oscillatory motion of the Mach

disk, and velocity fluctuations are generated. Furthermore, the Mach disk induces

a significant flow deceleration, as already observed in Fig. 50. The large coherent

structures that develop along the jet boundary (circumferential, lateral and leeward

KHI vortices, windward vortices) are strongly sheared as they propagate along the jet
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plume, and breakdown to smaller scale turbulence. Further downstream of the jet,

mostly two types of coherent structures remain. The CVP creates a large scale circu-

lation which mixes the freestream fluid with the injected fluid. Then, the turbulence

in the wake region permits a good mixing at the molecular level. Also, intermittent

wake vortices are formed and connect the CVP to the bottom wall boundary layer. A

series of wake vortices is visible in fig. 64(b) for case C. These structures are formed

on the lateral sides of the jet, and were found not to participate in the mixing process

of this interaction, as they do not carry any of the jet fluid.

5.5 Computational Performance and Model Analysis

The simulations of JICF presented here have required about 10, 000 single CPU hours

of computation to wash out all the transients of the initialization, and the statistics

have been collected over five flow through times, which have required around 15, 000

hours for each coarse case. The finer resolution of the JICF case A required over

80, 000 single CPU hours before to reach statistically stationary state, and to collect

statistics. 8% of the streamwise fluxes and 5% of the spanwise and crosswise fluxes

have required the use of upwinding. The switching of the hybrid method being local-

ized, the upwind fluxes were evaluated when necessary only, and the computational

overhead due to the hybrid scheme is rather limited.

The closure coefficients have been computed dynamically using the LDKM closure

model described in section 2.3.2. These coefficients vary significantly in both space

and time during the course of the simulations. This is illustrated in Fig. 65, where

instantaneous and time-averaged fields of the subgrid turbulent kinetic energy and of

the closure coefficients are presented.

On the instantaneous fields, it is clear that the jet shear layer is a region of

intense turbulent activity. The model coefficients reach rather high values on both

the windward and leeward sides, and peak significantly close to the Mach disk, due to
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(a) Instantaneous ksgs (b) Average ksgs

(c) Instantaneous cν (d) Average cν

(e) Instantaneous cε (f) Average cε

(g) Instantaneous cν/Prt (h) Average cν/Prt

Figure 65: Closure coefficient contours for case A of the JICF - Instantaneous and
time-averaged fields.
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the high levels of fluctuations of the jet boundary. The coefficients correlate with the

coherent structures elsewhere in the flow. More particularly, cν reaches relatively high

values in the plume and wake of the jet. The dissipation of ksgs remains relatively

small in these regions, and peaks very locally. The variations of cν/Prt show how the

turbulent diffusion of total and turbulent energy is increased in the regions of shock

waves, and along the jet shear layer, where high gradients of temperature are present.

Despite these high levels of unsteadiness, the dynamically computed model coef-

ficients reach a statistically stationary behavior. As observed in the instantaneous

fields, the levels of turbulence are quite high in the jet shear, and the closure coef-

ficient for the subgrid stress and the dissipation of ksgs reach relatively high values,

cν approaching 0.15, and cε reaching its peak value above the Mach disk. The field

of cν/Prt shows that the diffusion of energy is also important in the jet shear region.

The average turbulent Prandtl number in this region varies between 0.45 and 0.7. In

the separated boundary layer, a diminution of the dissipation coefficient is obtained.

This region is a recirculation, where turbulent structures of the incoming boundary

layer are being sheared by the upper boundary layer and the jet shear. Furthermore,

diffusion of ksgs due to pressure fluctuations is induced by the shock / boundary layer

interaction. Overall, there is an accumulation of subgrid kinetic energy in this region

which plays a fundamental role in the dynamics of the interaction.

In the present calculations, the closure for the pressure dilatation correlation was

found to remain very small throughout the calculation, representing less than 1% of

the dissipation everywhere except within the shock thickness. There the dilatational

field is associated with the shock wave, and is not related to the compressible turbulent

field. This term, like all viscous and ksgs terms, is not explicitly computed within the

shock thickness.

The impact of the closure on the flow evolution is assessed by repeating the sim-

ulation of Case A, performed as an under-resolved DNS (no-model simulation), and
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Figure 66: Profiles of mean axial and transverse velocities in the centerplane at
four locations downstream of the injection. Comparison between no-model, classical
LDKM (denoted LDKMNCC) and the coarse grid results presented earlier.

using the LDKM closure model without compressibility corrections (Following previ-

ous studies, the turbulent Prandtl is set to Prt = 0.9, and this closure is hereafter

noted LDKMNCC), and comparing these results to the simulation presented earlier

(the closure model with compressibility corrections will be simply noted LDKM). The

profiles of mean and fluctuating velocities for all cases are shown in Fig. 66 and 67,

respectively. The predictions of the mean flow velocity profiles are not significantly

affected by the closure model. All three simulations show similar captures of the

velocity defect in the jet plume and in the wake. The differences are, however, clearly

visible in the profiles of fluctuating velocities. The fluctuations in axial velocity at
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Figure 67: Profiles of fluctuating axial velocity statistics in the centerplane at four lo-
cations downstream of the injection. Comparison between no-model, classical LDKM
(denoted LDKMNCC) and the coarse grid results presented earlier.
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the first station are under-estimated by the no-model and LDKMNCC simulations,

whereas the present LDKM approach correctly captures the peak in urms that occurs

in the jet plume. Further downstream, the under-resolved simulation over-estimates

the levels of fluctuations, and does not capture the turbulence evolution in the jet

plume. The other numerical simulations recover the amplitude of the velocity fluctu-

ations and compare well. It should be noted, however, that the turbulent statistics

within the boundary layer are not captured by either model, but that the simulation

using LDKM shows a peak in axial velocity fluctuations within the boundary layer,

in agreement with the experimental observations.

The fluctuations in transverse velocities show a more significant impact of the

closure model. At the first station, the simulation using LDKM over-predicts the

peak in vrms more significantly than the other numerical resolutions. The trend is

however inverted further downstream, as the simulation with LDKM does recover

the amplitude of vrms in the jet plume, and shows a better capture of the transverse

velocity fluctuations evolution than the other two approaches.

The differences between the LDKM and the no-model simulations can be easily

conceived from the lack of dissipation in the under-resolved simulation. In this case,

the rates of decay of the fluctuations is under-estimated, and the jet penetration is

over-estimated. To assess the differences between LDKMNCC and LDKM, it is in-

teresting to compare the time averaged fields of ksgs for the two simulations, shown

in Fig. 68 The turbulent Prandtl number obtained through the dynamic procedure

is smaller than in the classical LDKM approach, and leads to a higher diffusion of

the energy across the shear layers. Furthermore, the diffusion of ksgs due to pressure

fluctuations can clearly be observed in Fig. 68, where the contours of subgrid kinetic

energy in the mean barrel shock location are more diffuse. Furthermore, the intensity

of ksgs in the recirculation region at the windward side, and at the leeward bound-

ary of the jet, is higher for the LDKM simulation. As a consequence, the LDKM
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(a) LDKMNCC (b) LDKM

Figure 68: Contours of time averaged ksgs for the simulation of Case A using
LDKMNCC and LDKM.

closure model shows a better capture of the turbulent decay in the wake of the jet.

Furthermore, despite the rather coarse resolution of the bottom wall, the LDKM sim-

ulation captures an increase in the levels of ksgs in the near-wall region, whereas the

LDKMNCC fails to capture that phenomenon.

5.6 Conclusion of the Jet in Crossflow Dynamical Study

The vortical structures of a sonic jet injected into a supersonic crossflow have been

studied using a Large Eddy Simulation methodology, adapted to the resolution and

modeling of turbulence in compressible flows. The present approach has been vali-

dated by comparisons with a series of experimental data (Santiago [1995], Santiago

and Dutton [1997]) and the relevance of the grid resolution assessed. This base case

has been complemented by two other operating conditions, designed to assess the

impact of the free-stream Mach number and of the jet to momentum ratio on the

flow average and dynamic vortical structures.

Six types of vortical structures have been identified in the time-averaged fields.

The bow shock in from the jet provokes the separation of the boundary layer, and two

recirculation regions are formed in the separated zone. This vortical structure is found

at the bottom wall all along the bow shock trajectory in the spanwise direction. A pair
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of windward vortices is generated at the tip of the recirculation region, and extends

along the upper jet boundary. This feature is present in all the cases considered in

the present study, but is more clear for high jet to freestream momentum ratios. On

the lateral sides of the jet, hanging vortices are formed along the expanding jet, and

remain quasi-steady in the course of the interaction. On the leeward side of the jet,

a pair of steady wake vortices is generated by the rapid re-centering of the mean flow

towards the centerplane behind the jet. As the streams impact at the centerplane,

a high pressure zone is created, which generates two outwards moving shocks and a

strong upwash velocity. The shocks interact with the boundary layer and generate

horseshoe vortices through local separation. The upwash velocity penetrates the jet

plume, and generates the counter-rotating vortex pair in the wake of the jet.

The flow dynamics resembles the subsonic jet in cross flow behavior as large vor-

tices are formed on the windward side of the jet due to Kelvin-Helmholtz instabili-

ties. This phenomenon is however enhanced in the present supersonic flow. The flow

expansion at the nozzle of the jet varies in response to the large pressure fluctua-

tions of the separated boundary layer, and the intermittent formation of compression

waves within the under-expanded jet occurs. These waves propagate into the jet and

strengthen into shocks. Finally, after reconnecting to another portion of the barrel

shock further downstream, large pockets of jet fluid are ejected, with a high vertical

velocity, hence generating intense vortices along the jet boundary. These jet shocks

are three-dimensional and the vortical structures generated by this phenomenon wrap

around the jet. Similarly, unsteady compression waves form along the sides of the

jet, hence generating lateral vortices. These structures also engulf large amounts of

freestream fluid, and carry it in the jet plume and wake regions. Their strength is

found weaker than their circumferential counterpart. Windward vortices are observed

in the instantaneous fields, and are subject to vortex sheet instability, but do not ini-

tiate strong vorticity, and do not contribute significantly to the mixing occurring
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during the interaction.

The mixing of jet and freestream fluids is achieved in the wake and plume of the

jet. The counter-rotating vortex pair creates a large circulation and efficiently induces

mixing at the large scales. The unsteady vortices generated in the close-jet region

breakdown into smaller scale turbulent as they interact with the low velocity jet plume

and achieve a fine mixing at the molecular level. The unsteady wake vortices that

connect the mixing region to the bottom wall boundary layer were found to play no

role in the mixing process in the cases considered in the present study.
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CHAPTER VI

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

The main goal of this thesis was to develop a Large Eddy Simulation methodology

adapted to the resolution of supersonic turbulent flows in complex geometries. To

achieve this goal, two key objectives have been identified and addressed.

The development of a numerical tool adapted to the resolution of turbulent struc-

tures on body-conforming structured grid in supersonic flows was considered first.

The simulation of turbulent flows with explicit turbulence modeling usually relies on

the use of numerical schemes with low levels of intrinsic dissipation. These schemes

behave poorly in the presence of shock waves, contact surfaces and other discontinu-

ities. Upwind and shock capturing schemes, on the other hand, are too dissipative to

be used for the resolution of turbulent flows. A hybrid numerical scheme was designed

to circumvent these limitations. In this hybrid framework, the resolution of the flow

structures is performed using a fourth-order central scheme while flow discontinuities

are captured using an upwind shock-capturing method. The reduced amount of nu-

merical dissipation of the central scheme and its small stencil formulation make it an

ideal candidate for simulating turbulent flows in complex geometries. The developed

upwind shock-capturing method was carefully designed to reduce numerical instabil-

ities and yet to yield accurate capture of shocks and contact surfaces. Furthermore,

this upwind scheme is adapted to body-conforming grids and can thus be used in

complex geometries. The hybrid formulation uses a smoothness sensor in order to

identify the discontinuous regions of the flow. Numerical fluxes are evaluated using

the fourth-order central scheme but locally revert to the shock capturing method
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when the smoothness constraint is violated.

The second development focused on the closure approach used to model the effect

of subgrid turbulence on the resolved scales in compressible flows. The need for such

development stemmed from the fact that closure models employed in compressible

LES formulations have usually not been assessed for compressible turbulence, but

rather have been calibrated in the incompressible flow limit. In the present work, the

Localized Dynamic ksgs Model (LDKM) is re-derived for compressible flows, and the

dynamic formulation of the closure coefficients re-assessed. The model is extended to

include the dynamic evaluation of the coefficient required for the closure of the energy

equation, important in compressible flows. Finally, the turbulent diffusion associated

with subgrid pressure fluctuations, which plays a major role during shock / turbulence

interactions, and the pressure dilatation correlation are modeled and their closure

coefficients are dynamically evaluated in the context of the LDKM closure.

The present study focuses on the resolution of turbulent flows in supersonic envi-

ronment. The parameters used for the switch formulation of the hybrid methodology

were designed to capture flow discontinuities locally in supersonic and hypersonic en-

vironments, and even though not universal, the present choice of switch parameter

shows a satisfactory resolution of practical problems in supersonic flows. The modi-

fications to the closure approach are based on analytical studies of turbulence states

in compressible flows. The contribution of the dilatational mode of turbulence, the

evaluation of the pressure dilatation correlation and the negligible contribution of the

dilatational dissipation remain valid for small turbulent Mach numbers (Mt < 0.3),

a condition satisfied in supersonic flows, but not necessarily for higher flow speeds.

Based on these limitations, the present numerical methodology is applicable from low

compressible to supersonic flows.

Direct numerical simulations of shock / isotropic turbulence interactions for low,
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intermediate and high Mach numbers have been conducted and show the good per-

formance of the numerical scheme. The use of upwinding is limited to the regions

of strong gradients whereas the turbulent structures are resolved with the central

scheme. As a consequence, the characteristic evolution of the turbulent field is cor-

rectly captured. The resolution of these problems on a significantly coarser grid

using the LDKM model with compressibility correction successfully reproduces the

statistics of turbulence.

After validation in the fundamental configuration of shock / turbulence interac-

tions, this LES methodology was employed to study problems of practical importance.

In particular, two mixing techniques for high-speed flows have been investigated in

this study. First, the efficiency of a shock / turbulent shear layer interaction as a mix-

ing enhancement technique was investigated. It was found that the passage of large

vortical structures and smaller vortical turbulence across the shocks significantly in-

creases the levels of turbulence in the post-shocks region, resulting in an increase of

the mixing growth rate. On the other hand, the turbulence production across the

mixing layer remains rather low, and the increase in mixing and turbulent dynamics

is not sustained downstream of the interaction. The improvements in mixing are thus

very localized in space, and the mixing growth rate quickly decays to its undisturbed

value.

The second case considered in the present work is that of a sonic jet injected

normally into a supersonic crossflow. This injector design for scramjet applications

shows a good penetration of the fuel into the cross stream, and an efficient mixing

of the fluids is achieved due to the high levels of turbulence observed downstream of

the jet. The numerical study of jet in crossflow presented in this thesis reproduce

the velocity defect and high levels of turbulent fluctuations observed experimentally

in the plume of the jet, and showed a fair agreement with the available experimental

data. Having validated the LES approach for a given jet in crossflow, two other
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configurations were investigated to assess the impact of the free-stream Mach number

and of the jet to free stream momentum ratios on the flow dynamics. In all the cases

considered, the ejection of large pockets of unshocked jet fluids is identified, due to

unsteady compressions and localized shock waves within the jet core. The vortical

structures that result from this phenomenon show high levels of vorticity, and mix

jet and freestream fluids at the large scale. Due to a higher jet expansion, the cases

of higher momentum ratio and higher Mach number show a lower penetration of the

shock waves into the jet core, and smaller pockets of unshocked fluid. The counter-

rotating vortex pair formed in the wake of the jet also contributes to the large scale

mixing. High levels of turbulence in the plume and wake of the jet permit mixing

to occur at smaller scales. Finally, quasi-steady hanging vortices are formed during

these high-speed interactions, and windward vortex pairs are clearly identified in the

higher momentum ratio jet in crossflow. Their contribution to the mixing remains

rather low.

All cases reported in this study demonstrate the accuracy and strength of the im-

plemented approach. The use of an hybrid formulation provided the required method-

ology for the capture of shock waves and other discontinuities locally in space, while

minimizing their impact on the turbulent field, as illustrated by the direct simula-

tions of shock / turbulence interaction. The closure model explicitly accounts for two

major terms that arise in turbulence of compressible flows, namely the subgrid pres-

sure fluctuations and the pressure dilatation correlation, and the LES simulations of

shock / turbulence interactions show a good capture of the flow physics. This method-

ology allowed for an in-depth study of shock / shear interaction and high-speed jet

in crossflow configurations.
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6.2 Recommendations for Future Work

In problems involving shock / turbulence interactions, turbulence enhancement is

achieved in the post-shock region as a consequence of the shock deformation. The

localized expansions and compressions formed by the shock corrugation increase the

energy in the acoustic mode, and amplify the levels of turbulent stresses through an

energy transfer. The capture of these phenomena requires a proper capture of the

shock fronts and of their distortion. A good resolution of the shock fronts was pos-

sible for the configurations studied in the present thesis, but this requirement might

not always be easily satisfied for more complex and larger geometries, given that

computational power remains limited. The implementation of a Local and Adaptive

Mesh Refinement technique can be a useful complement to the developments pre-

sented here. In this method, the spatial resolution can be increased locally to resolve

some parts of the flow that require higher grid refinements. The connectivity between

blocks of different resolution is based on higher order interpolation techniques. The

implementation of such a method in the context of LES is more intricate than for

classical hydrodynamics problems. The flow variables are, by definition, spatially

averaged, and a simple interpolation procedure might be insufficient. This is of par-

ticular importance for the ksgs variable, which depends by definition on the local grid

size, and cannot be simply interpolated. Nevertheless, the development and imple-

mentation of such a technique for LES would be beneficial, for the practical resolution

of high-speed turbulent flows and for many more applications.

As reviewed earlier, the closure model developed during the present work aims at

the resolution of turbulent compressible flows. Even though the mean flow might be

compressible, it is stressed that turbulence is only weakly compressible in nature, and

that compressible turbulence does not play a major role in most practical applications

until hypersonic speeds are reached. For this reason, the current developments have

solely focused on the modeling of turbulent diffusion due to pressure fluctuations and
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to the pressure dilatation correlation. In particular, the dilatational dissipation was

neglected, as this phenomenon is important in low Reynolds number, high turbulent

Mach number flows only. It can be expected that in hypersonic flows or in the study

of post explosion turbulence, the amount of compressible turbulence might not be

negligible anymore and may require a separate modeling approach. Furthermore,

another source of turbulent dissipation comes from the presence of eddy shocklets.

These small scales and localized shock waves, observed in experiments of very high

speed shear layers, form in the presence of compressible turbulence and interact with

both solenoidal and dilatational turbulence. A stochastic model to account for these

phenomena might be needed as well.

Also, the present study has focused on the resolution and modeling of turbulence in

high-speed, non-reacting flows. In the context of reacting flows, the treatment of the

scalar fields requires particular attention, as the interaction between turbulence and

flame fronts plays a fundamental role in the combustion processes and on the overall

efficiency. Closure models for the subgrid species diffusion and filtered reaction rates

are often valid in the incompressible limit, but might not be assessed for supersonic

flows. Improvements on scalar closure models are a necessity to the future of scramjet

simulations. The extension of the Linear Eddy Mixing model, for instance, to flows

with significant variations in the pressure field would provide an efficient numerical

tool for scramjet flow simulations.
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APPENDIX A

STABILITY OF FOURTH-ORDER SCHEMES IN THE

MCCORMACK FRAMEWORK

The goal of this appendix is to study extensions to the McCormack scheme with higher

orders of spatial accuracy. First, fourth-order schemes with a compact support are

considered. It is shown that no conditionally stable fourth-order accurate scheme can

be obtained for the advection equation, using the McCormack formulation on a short

stencil. The analytical formulation for numerical schemes with arbitrary orders of

accuracy in space are then studied. Finally, the resolution of the advection-diffusion

equation is studied in the context of the fourth-order accurate schemes considered

previously.

A.1 Extension of the McCormack Scheme to Fourth-Order
Spatial Accuracy for the Advection Equation

The truncation error of the original McCormack scheme is obtained by analysis of

the scheme behavior on a simpler linear advection equation:

∂Q

∂t
+ A

∂Q

∂x
= 0 (217)

The scheme is defined by:

Q+
i+ 1

2

= Qi+1

Q−
i+ 1

2

= Qi

(218)

Replacing the discrete formulation by the Taylor expansions of the derivatives, it is

straightforward to show that:

EMC = −∆t2

6

∂3q

∂t3
− A∆x2

6

∂3Q

∂x3
+

A2∆t∆x2

24

∂4Q

∂x4
(219)
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which shows that the scheme is second order in both time and space. The extension

proposed by Gottlieb and Turkel [1976] is formulated as:

Q+
i+ 1

2

= 1
6
(7 Qi+1 − Qi+2)

Q−
i+ 1

2

= 1
6
(7 Qi − Qi−1)

(220)

The truncation error of this method (GT), comes out to be:

EGT = −∆t2

6

∂3Q

∂t3
+

A∆x4

30

∂5Q

∂x5
− A2∆t∆x2

18

∂4Q

∂x4
(221)

The third term in the truncation error shows a ∆t∆x2 dependence. In this explicit

numerical method, the time step size is not independent of the space size. They are

linearly related through the CFL condition:

∆t = Na
CFL

∆x

A
(222)

where A is the wave speed of the linear advection problem. This scheme really

is strictly third order accurate only due to this last condition. Strict fourth order

accuracy is only obtained as the local CFL number tends to zero. The N24 method

of Nelson [1997] follows the formulation:

Q+
i+ 1

2

= 1
6
(2 Qi + 5 Qi+1 − Qi+2)

Q−
i+ 1

2

= 1
6
(2 Qi+1 + 5 Qi − Qi−1)

(223)

and the truncation error for this scheme is:

EN24 = −∆t2

6

∂3Q

∂t3
+

A∆x4

30

∂5Q

∂x5
− A2∆t∆x4

30

∂6Q

∂x6
(224)

The scheme devised by Nelson [1997] is truly O(2, 4).

In order to examine the conditional stability of the schemes, a von Neumann

stability analysis is performed, which can be used to evaluate the maximum value

Na
CFL in Eqn. 222. Such an analysis is performed by looking at the amplification

of an arbitrary signal. Through Fourier decomposition, the signal is a superposition
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of sinusoidal fluctuations. As the problem is linear, the amplification rate can be

obtained from the evolution of the single sine waves separately. Let us then consider

a function given by

Qn
j = Gne−Iκjx (225)

where Gn is the amplitude of the wave at iteration n, κj is the wavenumber of the

wave, κj = j2π/L, and I =
√
−1 is the imaginary unit number. Let us note θ = κjx

for brevity. The numerical scheme will be stable is Gn+1 is smaller or equal to Gn.

For the original McCormack scheme, ensuring that Gn+1/Gn ≤ 1 is equivalent to

ensuring that:

A∆tMC

∆x
≤ 1 (226)

In other words, Na
CFL in Eqn. 222 can be set to any value lower than 1 and ensure

stability of the scheme for the linear advection problem. For the GT scheme, stability

is ensured by:

A∆tGT

∆x
≤ 6.

√
14cos(2θ) − 128cos(θ) + 114 − (8sin(θ) − sin(2θ))2

(−7cos(2θ) + 64cos(θ) − 57)2
(227)

The time step size that ensures stability is a function of θ. The angular variations

of the right hand side of the previous equation is represented in Fig. 69 for the GT

scheme. It is found that the GT scheme is unconditionally stable for N a
CFL < 2/3.

Carrying the same analysis to the N24 scheme, the time step restriction is given by:

A∆tN24

∆x
≤ 6.

√
4cos(3θ) − 18cos(2θ) − 36cos(θ) + 50 − (8sin(θ) − sin(2θ))2

(−2cos(3θ) + 9cos(2θ) + 18cos(θ) − 25)2
(228)

Again, the polar plot for the variations of the allowable time-step of the N24 scheme

is shown in Fig. 69. The scheme N24 scheme is found unconditionally unstable for

the resolution of the linear advection equation.

A more general study of fourth-order accurate numerical schemes in the predic-

tor/corrector framework is carried for the advection equation. Considering an extrap-

olation procedure that uses a stencil of four points, centered on the i + 1/2 interface,
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Figure 69: von Neumann stability curves for the Gottlieb-Turkel and Nelson 2-4
schemes.

the formulation can be generally written as:

Q+
i+ 1

2

= a Qi+2 + b Qi+1 + c Qi + d Qi−1

Q−
i+ 1

2

= d Qi+2 + c Qi+1 + b Qi + a Qi−1

(229)

where (a, b, c, d) are general extrapolation coefficients. Since the extrapolated variable

is a linear combination of cell-centered variables,

a + b + c + d = 1 (230)

From the truncation error dependence on (a, b, c, d), it can be shown that a fourth

order of the spatial derivative is obtained for:

7a + b + c + 7d = 0 (231)

Let us note that the scheme GT, given by (−1/6, 7/6, 0, 0), and the N24 scheme

(−1/6, 5/6, 1/3, 0) both satisfy those two relations. Finally, the built-in diffusion of

the McCormack scheme will be of order ∆t∆x4 if:

−27a2 + (−18b + 6)a + (−3b2 + 2b − 1/3) = 0 (232)

Equations 230, 231 and 232 can be simplified into

3a + b = 1/3 (233)

193



Equation 233 is satisfied by N24 and not by GT. Truly fourth-order McCormack-

based scheme are fully defined by the extrapolation coefficients (a,−3a + 1/3, 3a +

5/6,−a − 1/6). The truncation error for this class of schemes is independent of the

choice of the parameter a, and is given by:

Ea,b,c,d = EN24 = −∆t2

6

∂3Q

∂t3
+

A∆x4

30

∂5Q

∂x5
− A2∆t∆x4

30

∂6Q

∂x6
(234)

The von Neumann stability analysis leads to:

A∆ta,b,c,d

∆x
≤ f(θ) =

√
−2(f(θ) + 1/36(8sin(θ) − sin(2θ))2

f(θ)2
(235)

where

f(θ) = ω1cos(4θ) + ω2cos(3θ) + ω3cos(2θ) + ω4cos(θ) (236)

and 



ω1 = −a2 − a/6

ω1 = 8a2 + 4/3a − 1/18

ω1 = −28a2 − 14/3a + 1/4

ω1 = 56a2 + 28/3a + 1/2

ω1 = −70a2 − 35/3a − 25/18

(237)

The solution admits a point of symmetry for a−1/12. Hence, let us just consider the

solution corresponding to a ≤ −1/12. Fig. 70 shows the polar profiles of the stability

curves for different values of the scalar a, and for GT scheme. One can note that all

truly fourth-order schemes of the McCormack type with the stencil from Eqn. 229

are unconditionally unstable.

The point of symmetry a = −1/12 is unstable at all wavelengths. The extrapola-

tion coefficients for this value of a are a = d = −1/12, b = c = 7/12, and the resulting

scheme is centered. Except for that case, relative stability can be defined as a function

of the wavenumber for all the schemes considered. Intermediate values of |a| show

the biggest regions of stability. Two cases have been highlighted, namely the case
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Figure 70: von Neumann stability curves for the Gottlieb-Turkel and general 4th-
order schemes.

when a = −5/18, characterized by the extrapolation coefficients (−5/18, 7/6, 0, 1/9),

and a = −7/18 where (−7/18, 3/2,−1/3, 2/9). Both those cases have a significantly

smaller region of instability than N24, and will be considered in further details in Sec.

A.3.

A.2 Arbitrary Order of Accuracy

In the scope of developing a stable fourth-order scheme, the influence of the sten-

cil’s width can be studied. To take a more general aspect to the study, we shall

consider an arbitrary stencil and an arbitrary spatial order of accuracy. Let us first

recall the formulation of the McCormack scheme. The scheme consists in combining

a predictor/corrector time integration to a upwind/downwind spatial discretization

technique. The resolution of the advection equation using the McCormack framework

reads:

Q∗
i = Qn

i − ∆t
∆x

(
Qn,+

i+1/2 − Qn,+
i−1/2

)

Qn+1
i = 1/2(Q∗

i + Qn
i ) − ∆t

2∆x

(
Q∗,−

i+1/2 − Q∗,−
i−1/2

) (238)

where Qn,+
i+1/2 and Qn,−

i+1/2 denote the upwind and downwind extrapolations respectively,

based on the use of the variables at stage n. In the present case of the simple advec-

tion problem considered here, those can be written as a function of the neighboring
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elements as:

Qn,+
i+1/2 =

N+1∑

j=−N

αjQ
n
i+j (239)

Q?,−
i+1/2 =

N+1∑

j=−N

α1−jQ
?
i+j (240)

The coefficients (αj)j=−N..N+1 define the interpolation procedure. Since N is arbitrary

at this stage, let us define an extension of this set of coefficients (αj)j=−2(N+1)..2(N+1),

where the new elements are set to zero. Note that the sum of the elements in this

set of coefficients reaches unity from consistency constraints. For the linear advection

problem, the scheme can be summarized into a single expression that relates Qn+1
i to

Qn
i directly:

Qn+1
i = Qn

i −
A∆t

∆x

N+1∑

j=1

βj

(
Qn

i+j − Qn
i−j

)

︸ ︷︷ ︸
?1

+

(
A∆t

∆x

)2

ω0Q

n
i +

2(N+1)∑

j=1

ωj

(
Qn

i+j + Qn
i−j

)



︸ ︷︷ ︸
?2

(241)

where the coefficients βj and ωj can be uniquely expressed as a function of the set

(αi)i as:

βj =
1

2
(αj − α−j − α1+j + α1−j) (242)

ωj =
1

2

N+1∑

n=−(N+1)

(α1−n − α−n) (αj−n − αj−n+1) (243)

The Taylor expansions for the term Qi+j around the value Qi reads:

Qi+j = Qi +

∞∑

n=1

jn

n!
∆xn ∂nQ

∂xn
(244)

Hence, Qi+j − Qi−j can be expanded as:

Qi+j − Qi−j = 2

∞∑

n=1

j2n−1

(2n − 1)!
∆x2n−1 ∂2n−1Q

∂x2n−1
(245)

so that the term ?1 in eqn. 241 can be re-arranged into:

?1 =

∞∑

n=1

(
2

N+1∑

j=1

βj
j2n−1

(2n − 1)!

)

︸ ︷︷ ︸
Ln

∂2n−1Q

∂x2n−1
∆x2n−1 (246)
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where the series (Ln) has been introduced. Let us note that the first element of this

series, L1, is given by:

L1 = 2
∑N+1

j=1 j 1
2
(αj − α−j − α1+j + α1−j)

=
∑N+1

j=−N αj = 1
(247)

The other elements of (Ln) depend on the choice for the set (αi). The general ex-

pression for ?1 is then given by:

?1 =
∂Q

∂x
∆x +

∞∑

n=2

Ln
∂2n−1Q

∂x2n−1
∆x2n−1 (248)

Similarly to what has just been performed, one can express Qi+j + Qi−j as:

Qi+j + Qi−j = 2Qi + 2
∞∑

n=1

j2n

2n!
∆x2n ∂2nQ

∂x2n
(249)

and the term ?2 in eqn. 241 can be re-arranged into:

?2 =


ω0 + 2

2(N+1)∑

j=1

ωj


Qi +

∞∑

n=1


2

2(N+1)∑

j=1

ωj
j2n

2n!




︸ ︷︷ ︸
Dn

∂2nQ

∂x2n
∆x2n (250)

Note that the first element of this expression is the sum of the elements of (ωj), and

is strictly 0. Also, the first term of the set (Dn), D1, is given by:

D1 = 2

2(N+1)∑

j=1

j2

2
ωj =

1

2

(
N+1∑

−N

αj

)2

=
1

2
(251)

So that the expression for ?2 is:

?2 =
∂2Q

∂x2

∆x2

2
+

∞∑

n=2

Dn
∂2nQ

∂x2n
∆x2n (252)

The expansion in Taylor series of the time derivative reads:

Qn+1
i = Qn

i +

∞∑

n=1

∆tn

n!

∂nQ

∂tn
(253)

So that the arbitrary scheme reads:

Qn+1
i = Qn

i +∆t∂Q
∂t

+
∑∞

n=2
∆tn

n!
∂nQ
∂tn

= Qn
i −A ∆t

∆x

(
∆x∂Q

∂x
+
∑∞

n=2 Ln∆x2n−1 ∂2n−1Q
∂x2n−1

)

+
(
A ∆t

∆x

)2 ( 1
2
∆x2 ∂2q

∂x2 +
∑∞

n=2 Dn∆x2n ∂2nQ
∂x2n

)
(254)

197



After identification of the governing equation, one gets the truncation error for the

present scheme:

TE = −1
2

∂2Q
∂t2

∆t − 1
6

∂3Q
∂t3

∆t2 −
∑∞

n=4
1
n!

∂nQ
∂tn

∆tn−1

−A
∑∞

n=2 Ln
∂2n−1Q
∂x2n−1 ∆x2n−2

+
A2∆t

2

∂2Q

∂x2︸ ︷︷ ︸
?3

+A2
∑∞

n=3 Dn
∂2nQ
∂x2n ∆t∆x2n−2

(255)

The term highlighted above as ?3 can re-arranged using the governing equation (Eqn.

217) to lead to:

A2∆t
2

∂2Q
∂x2 = ∆t

2
A ∂

∂x

(
A∂Q

∂x

)
= ∆t

2
A ∂

∂x

(
−∂Q

∂t

)

= −∆t
2

∂
∂t

(
A∂Q

∂x

)
= ∆t

2
∂2Q
∂t2

(256)

Hence, the term ?3 cancels the ∆t dependence of the truncation error. Also,

noting that ∆t and ∆x are related through the definition of the CFL number, by the

relation A∆t = Na
CFL∆x, the expression of the truncation error now reads:

TE = −
∑∞

n=3
1
n!

∂nQ
∂tn

∆tn−1

−
∑∞

n=2

(
ALn

∂2n−1Q
∂x2n−1

)
∆x2n−2

+
∑∞

n=2

(
A Na

CFL Dn
∂2nQ
∂x2n

)
∆x2n−1

(257)

The spatial order of the scheme then depends on the values taken by (Ln) and (Dn).

Let B and C be such that:

{Ln = 0 for n ≤ B ; LB+1 6= 0} (258)

{Dn = 0 for n ≤ C ; DC+1 6= 0} (259)

The spatial order of accuracy for the current scheme is obtained from the truncation

error as min(2B, 2C +1). For instance, the original second order McCormack scheme

has L2 6= 0, so that B = 1, hence leading to a second order scheme. The scheme

proposed by Gottlieb and Turkel [1976] verifies L2 = 0, but D2 6= 0, so that B = 2,

and C = 1. This scheme truly is third order accurate. The schemes presented earlier,
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and described by a set of scalars (a, b, c, d), were all satisfying L2 = 0 and D2 = 0,

B = 2, C = 2, hence leading to a truly fourth order spatial scheme.

A von Neumann analysis is performed for the considered schemes to assess their

theoretical stability limits. The method described earlier is applied to the current ar-

bitrary scheme. Replacing Qn
j by Gne−Iθ in the global scheme formulation, expressed

in 241, leads, after straightforward simplifications, to the relation:

G = 1− A∆t

∆x

N+1∑

j=1

βj

(
ejiθ − e−jiθ

)
+

(
A∆t

∆x

)2

ω0 +

2(N+1)∑

j=1

ωj

(
ejiθ + e−jiθ

)

 (260)

So that the norm of G is given through:

|G|2 =


1 +

(
A∆t

∆x

)2

ω0 + 2

2(N+1)∑

j=0

ωjcos(jθ)






2

+

(
2
A∆t

∆x

N+1∑

j=1

βjsin(jθ)

)2

(261)

The scheme is linearly stable if the amplification factor G does not exceed 1. Ex-

pressing |G|2 − 1 < 0 leads to the following stability condition:

(
A∆t

∆x

)2

< −
2
(
ω0 + 2

∑2(N+1)
j=1 ωjcos(jθ)

)
+
(
2
∑N+1

j=1 βjsin(jθ)
)2

(
ω0 + 2

∑2(N+1)
j=1 ωjcos(jθ)

)2 (262)

This inequality should be satisfied for all θ. In particular, it should be verified when

θ− > 0. Recalling that the sine and cosine functions are given in terms of series by:

cos(x) =
∞∑

n=0

(−1)nx2n

2n!
(263)

sin(x) =

∞∑

n=0

(−1)nx2n+1

(2n + 1)!
(264)

Then, one gets the following relations:

ω0 + 2
∑2(N+1)

j=1 ωjcos(jθ)

= ω0 + 2
∑2(N+1)

j=1

[
ωj

(∑∞
n=0(−1)n (jθ)2n

2n!

)]

= ω0 + 2
∑2(N+1)

j=1 ωj +
∑∞

n=1

[
(−1)n

(
2
∑2(N+1)

j=1
j2n

2n!
ωj

)]
θ2n

=
∑∞

n=1(−1)nDnθ2n

= − θ2

2
+
∑∞

n=C+1(−1)nDnθ2n

(265)
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Where the facts that the sum of the (ωj)j is 0 and that D1 = 1/2 have been used.

Similarly:
∑N+1

j=0 βjsin(jθ)

=
∑N+1

j=0 βj

(∑∞
n=1(−1)n−1 (jθ)2n−1

2n−1!

)

=
∑∞

n=1(−1)n−1
(∑N+1

j=1
j2n−1

2n−1!
βj

)
θ2n−1

=
∑∞

n=1(−1)n−1Lnθ2n−1

= θ +
∑∞

n=B+1(−1)n−1Lnθ2n−1

(266)

Using those relations in the stability relation expressed in eqn. 262 leads to:

(
A∆t

∆x

)2

< −
−θ2 + 2

∑∞
n=C+1(−1)nDnθ2n +

(
θ +

∑∞
n=B+1(−1)n−1Lnθ2n−1)

)2
(
− θ2

2
+
∑∞

n=C+1(−1)nDnθ2n
)2

(267)

so that, as θ tends to 0, the leading terms is given by:

(
A∆t

∆x

)2

<
θ2ξ

θ4
(268)

where ξ = min(B + 1, C + 1). The scheme is conditionally stable if either B = 1 or

C = 1. As a consequence, the McCormack method for the advection equation can be

at best third order accurate in space, when B > 1 but C = 1.

As an illustration of higher-order extensions to the McCormack scheme, let us

consider the extrapolation developed by Bayliss et al. [1985], which reads:

Q+
i+ 1

2

= 37
30

Qi+1 − 8
30

Qi+2 + 1
30

Qi+3

Q−
i+ 1

2

= 37
30

Qi − 8
30

Qi−1 + 1
30

Qi−2

(269)

This scheme is called a O(2, 6) extension to the original McCormack scheme. The

truncation error of this scheme is given by:

EBayliss = −∆t2

6

∂3q

∂t3
− A∆x6

140

∂7Q

∂x7
− 9A2∆t∆x2

200

∂4Q

∂x4
(270)

So that, again, the scheme is found to be O(∆t2, ∆t∆x2, ∆x6).
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Figure 71: von Neumann stability curves for the 2-6 scheme of Bayliss along with
the curves for the Gottlieb-Turkel and Nelson 2-4 schemes.

A.3 Fourth-Order Accurate Schemes for the Advection-Diffusion

Equation

The resolution of the Navier-Stokes equations requires an evaluation of the convective

fluxes along with the viscous forces. The previous analysis focused on the resolution of

the advection equation, which is a simpler form of the convective terms. To assess the

accuracy of the scheme to the resolution of the Navier-Stokes equation, let us consider

first the diffusion equation, and then the simplified advection-diffusion equation. The

diffusion equation is given by:

∂Q

∂t
− ∂

∂x

(
ν
∂Q

∂x

)
= 0 (271)

First derivatives are computed as:

∂Q

∂x

∣∣∣∣
i+1/2

=
−Qi+2 + 15Qi+1 − 15Qi + Qi−1

12∆x
(272)

This formulation is second order accurate. Its use for the resolution of the diffusion

equation leads to an overall fourth-order accuracy. The truncation error is given as:

E = −∆t2

6

∂3Q

∂t3
+

ν∆x4

90

∂6Q

∂x6
+

ν2∆t∆x4

90

∂8Q

∂x8
(273)
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Figure 72: Maximum CFL number as a function of Re∆ for stable calculations of
the advection-diffusion equation with fourth-order McCormack schemes

Furthermore, von Neumann analysis shows that the formulation is stable if the fol-

lowing condition is satisfied:

ν∆t

∆x2
<

3

8
(274)

Hence, defining the CFL condition for the diffusion equation, N v
CFL ≤ 3/8 ensures

stability.

The advection-diffusion equation is given as:

∂Q

∂t
+ A

∂Q

∂x
− ∂

∂x

(
ν
∂Q

∂x

)
= 0 (275)

The analytical formulation for this equation being significantly more complex, the

following study focuses on the fourth-order accurate scheme examined in Sec. A.1

for the advection combined to the discretization of the viscous terms given above. A

von-Neumann analysis of the scheme shows that a conditional stability is achieved as

a function of the grid Reynolds number:

Re∆ =
A∆x

ν
(276)

The dependence of the maximum allowable N a
CFL on Re∆ is given in Fig. 72 All truly

fourth order scheme lose stability as the grid Reynolds number is increased. However,
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a wide region of stability is obtained. The timestep computed as:

∆t = min

(
Na

CFL

∆x

A
, Nv

CFL

∆x2

ν

)
(277)

Choosing Na
CFL = Nv

CFL = 0.25 permits stable calculations for (grid) Reynolds num-

bers up to 5000 for the a = −5/18 scheme.

A.4 Resolution of the Euler and Navier-Stokes Equations

and Illustration of the Fourth Order Schemes

The analysis conducted previously focused on the schemes stability for the resolution

of the advection and advection/diffusion equations. The study of this dissertation

is based on the resolution of the Euler and Navier-Stokes equations. Even though

the stability of the numerical scheme for simplified equations is of fundamental im-

portance, it should be emphasized that the conclusion drawn previously cannot be

directly extended to the actual governing equations due to their non-linear charac-

teristic. In practice, the N24 and other fourth-order schemes have been observed to

create small amplitude oscillations in the solution, but not large amplitude instabil-

ity. This section illustrates the use of such schemes for the resolution of practical

problems of hydrodynamics, and their behaviors are compared.

The simulation of a temporal mixing layer (TML), with eight initial vortices,

and three consecutive pairings, has been conducted first. The initial conditions are

generated as in Miller and Bellan [1999]. A mean velocity profile is given from an

error function:

Ū =
U0

2
erf

(√
πy

δω

)
(278)

and a vorticity perturbation is superposed to this profile:

ω(x, y) = F
λ1U0

Γ
f1(x)f2(y) (279)

203



where

f1(x) = A0

∣∣∣∣sin
(

πx

λ1
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∣∣∣∣sin
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πx

2λ1
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∣∣∣∣sin
(

πx
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∣∣∣∣sin
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8λ1
− π

2
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(280)

and

f2(y) = exp

(
−π

(
y

δω

)2
)

(281)

In these relations, A0 = 1, A1 = 0.5 and A2 = A3 = 0.35. The vorticity thickness

δω is related to the most unstable wavelength λ1 through λ1 = 7.29δω. 8 instabilities

are initialized. The convective Mach number is Mc = 0.14 and the Reynolds number

is set to 100. The domain is discretized using 50 × 150 grid cells. The mechanism of

development of the instability and its later stage evolution are not within the scope of

this discussion, and more details can be found in reference papers (see e.g. Metcalfe

et al. [1987], Moser and Rogers [1993]). This configuration is chosen for the high

levels of instability, and the large amount of vorticity within the flow. Contours of

vorticity magnitude are shown in Fig. A.4 with the same scale for the N24 scheme

along with the a = −5/18, the a = −7/18 and the GT schemes. N24 generates

spurious oscillations of vorticity around the main structure, of high amplitude. The

other three numerical schemes capture the large-scale physical phenomenon as crisply

as the N24 scheme, but do not generate strong oscillations in vorticity.

The second configuration used to illustrate the use of fourth-order schemes is the

Shu-Osher shock-turbulence interaction. This simulation resolves a travelling shock

which interacts with a sinusoidal density perturbation. This problem is More details

about the numerical set-up and physics of the problem for this test case are given

in Sec. 3.6.3. Results obtained with N24 and a = −5/18 are presented in Fig. 74.

Again, It is seen on the density profile that large amplitude spurious oscillations are

generated with the N24 scheme. The a = −5/18 scheme produces much lower para-

sitic oscillations in the shocked region, and a good capture of the physical oscillations

is achieved, even without the use of a shock capturing approach. The a = −7/18
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Figure 73: Vorticity contours for a TML at the same instant of time, using different
fourth-order approaches.

205



4 5 6 7 8
X

3

3.5

4

4.5

5

ρ

Reference solution
N24
a = -5/18

Figure 74: Behavior of two 4th-order schemes on the Shu-Osher test case.

scheme did not converge for the present test-case.

The choice of a influences the behavior of the scheme for short waves. A greater

amplification of the oscillations is obtained from N24 than for a = −5/18 and a =

−7/18. The Shu-Osher test case also shows that the performance on flows with

strong gradients can differ significantly. Based on these tests, a fair compromise can

be obtained using the scheme defined by (a = −5/18, b = 7/6, c = 0, d = 1/9), and

this extrapolation is used throughout the present study.
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