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THREE ESSAYS ON RISK MANAGEMENT IN ELECTRIC POWER
MARKETS

Abstract

This dissertation has arisen in the context of the electric power markets, the study of risk management
and the relations between physical production and the electricity transactions using financial contracts in
particular. Electricity is very difficult to compare with any other commodity, since it has a peculiar char-
acteristic; electricity “must be produced at exactly the same time as it is consumed”. The technological
inability to store electricity efficiently and the characteristics of marginal production costs create jumps in
the spot price. The electricity power market is heavily incomplete. Load-matching problems occur because
electricity prices show volatility because of unexpected variations due to climatic conditions and other as-
sociated risk factors.

A branch of the literature in risk management has tried to give a definitive answer to the question of how
agents in the markets with non-storable underlying asset could hedge their exposure to volatile price and
quantity. The first essay tackles the basis of this question, which is the implication of the price of risk
when forward risk premia are presented. This essay also shows how the properties and variations of forward
risk premia is explained by risk factors variations on expected spot prices, and unexpected changes on the
available quantity of water to generate electric power. Forward risk premia are the measure, hour by hour
throughout the day, of the price of risk that the agents pay to trade electric power using forward contracts.
In this essay forward premia were measured from the unregulated market segment. The results indicate that
the average expected forward risk premia could have a positive behavior in seventeen out of twenty-four
hours. These results represent the equilibrium compensation for bearing the price risk of the electric power
for one year. In the Colombian market, the risk taker is the marketer, specifically in the unregulated market
segment, because they are assuming the price risk in the long-term negotiations. The marketer, represented
by this demand, tries to ensure their future Profit and Losses P&L and so they sacrifice their premia. It is
relevant for further studies to evaluate the efficiency of this market, and the characteristics to determine why
the marketer is willing to pay forward risk premia and why the generator has a better position to receive this
bonus.

Exploring the optimization problem of portfolios my second essay asks whether the agents in the elec-
tric power market could hedge their exposure to uncertainties; price and quantity. We propose a close form
solution for the optimization problem of portfolios composed by two claims, price and weather, according
to factors influencing electric power markets such as price volatility, price spikes, and climatic conditions
that influence volume volatility. Results show a positive correlation among price, quantity, and the weather
variable.

In order to apply the optimal static hedging that includes the second claim on weather indexes for sea-
sonal countries such as United States and tropical countries such as Colombia, the third essay shows an
application of the static hedging model, using parameters from US market(PJM1), and Colombian market

1Pennsylvania, New Jersey and Maryland system; PJM



(WPMC2). For the PJM, I used weather indexes from Chicago Mercantile Exchange Group, and the hy-
drological index from WPMC which is based on the hydrological contributions of rivers on dam levels.
We verify that El Niño and La Niña phenomena also influence quantity variations, and the agents in those
markets are exposed to both price and quantity volatiles.

2Wholesale Power Market in Colombia; WPMC
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Three essays on Risk Management in
Electric Power Markets

“The revolutionary idea that defines the boundary between modern times
and the past is the mastery of risk: the notion that the future is more than

A whim of the gods and that, men and women are not passive before nature”
Peter Bernstein

The word “risk” is defined as the danger of not having the expected but adverse situations and the in-
auspicious consequences shown in loss and damages. Therefore, the concept of risk is strongly linked to
uncertainty, and consequently, to the notion of randomness and probability (Kolmogorov (1933)).

In financial terms, risk can be defined as the quantifiable probability of obtaining loss or reducing the ex-
pected profits. The risk of market, which is probably the most well-known type of risk in economy and
finance, can be explained as the risk of changing value of a financial position due to variation in the value
of underlying assets that depends on the bid, stock prices, bonds and commodity prices, among others. The
credit risk is understood as the risk of not obtaining the pending reimbursements of investments due to the
borrower’s default, whereas the impossibility of trading a financial asset quickly enough to avoid or min-
imize loss is known as liquidity risk. Thus, it is evident that the study of risk in financial markets is the
cornerstone of the portfolio theory and the starting point for future decision making in terms of financing
and investment that could provide an adequate capital structure Sharpe (2000).

The financial contracts for the trading of electricity represent one of the most complex processes in fi-
nancial securities traded, in both the appraisal and the mechanics of the transaction itself. The transaction
of a commodity that relates physical production to financial transactions through contracts presents peculiar
characteristics. It technically presents first the singularity of requiring balance between the offer and the
demand in real time and the possession of geographical limitations, and secondly, the impossibility of gen-
erating inventory that mitigates the price fluctuation, taking into account that those prices present the most
numerous peaks, jumps and fat tails. 3

Few researches are really focused on studying the uncertainty impact or risk market in the energy power
markets, and most of them have arisen in economics. The models of instrument valuation and stochastic

3Fat tail is a property of some probability distributions (alternatively referred to as heavy-tailed distributions) Figuring extremely
large kurtosis particularly relative to the ubiquitous normal which itself is an example of an exceptionally thin tail distribution.
Fat tail distributions have power law decay. More precisely, the distribution of a random variable X is said to have a fat tail if
Pr[X > x]∼ x−(1+α) as x→ ∞, α > 0 Some reserve the term “fat tail” for distributions only where 0 < α < 2 (i.e. only in cases
with infinite variance), source:Asmussen (2003).
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behavior for asset prices different from energy power propose assumptions that are not applicable in this
case, because electricity is difficult to compare with other commodities. For instance, its impossibility of
storage, among others, has several implications such as the need for electricity to be produced at the time of
consumption. This means that the non-arbitrage principle is not applicable in this case. Moreover, there are
equilibrium problems due to the variation of prices generated by volatility and unexpected variations caused
by climatic conditions and other connected risk facts. Subsequently, the energy power markets become in-
complete.

Fama and French (1987) argue that the presence of risk premium in forward prices is difficult to detect
because of the limited number of maturities in the available contracts to study and the observed premia vari-
ances are very high. Eydeland and Geman (1999) propose a valuation model that is based on assumptions of
development of forward prices of electricity based on an equilibrium focus. Pirrong and Jermakyan (1999)
observe that the non-arbitrage focus is not a consideration that could be taken into account in the case of
derivatives of energy power, also proposing the existence of a forward risk premium due to an endogenous
market price in the energy power demand. Routledge, Seppi, and Spatt (2000)also consider the fixation of
equilibrium prices for energy power contracts. They focus on the existent relations between the natural gas
and energy power market, even proposing that gas could be stored or transformed into electricity. From their
model, Routledge, Seppi, and Spatt (2000), obtain predictions of the mean-reversion of spot prices, as well
as correlations between electricity and fuel prices. Their model also proposes that electricity prices present
a positive bias.

Bessembinder and Lemmon (2002) ) similarly discuss this issue for energy power. They present an equi-
librium model that explains how electricity forward prices are biased estimates of the futures spot price,
provided that the expected demand is low and the risk perception is moderate. Correspondingly, they con-
clude that electricity forward contracts cannot be valued applying the typical cost-of-carry focus because
electricity is not storable. The authors also show evidence that the market behaves as a Contango 4 if the
expected demand or demand volatility is high due to the presence of a positive skeweness, which is induced
in the electricity price distribution. Geman and Vasicek (2001) empirically confirm findings from Bessem-
binder and Lemmon and demonstrate, using a database from The United States, that forward contracts in the
short term are a biased estimate of futures spot prices accordingly to the high volatility and risk associated
with American energy power markets.

Additionally, the verification of the normality assumption, as an enigma, is proposed. This concept assumes
that prices of financial assets and commodities are subject to random walks, verifying the hypothesis of
Random Walk 1, 2 and 3. Nevertheless, multiple empirical works have found that such assumption is not
met in reality. On the contrary, the price series in both financial assets and especially commodities present
characteristics that set them apart from being considered a normality case due to diverse factors. Firstly,
returns from different periods are not independent because they present autocorrelation and do not follow
a random walk. Secondly, the presence of extreme values suggests strong evidence of fat tails. Thirdly, the
evidence of negative skewness is weak. Campbell, Lo and Mackinlay (1998),show that financial assets are
limited responsibility; the highest loss an investor can suffer is the total investment. Losses of the investment
will show as negative returns, which are a violation of the normality assumption.

Diverse explanations have been given for the fact that these series escape the normal assumption. The de-

4Market condition in which forward or futures prices are trading above the current spot prices.
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pendence of residuals makes the white noise difficult to obtain and the heteroscedasticity provided in such.
Engle (1982) proposes GARCH models (General Autoregresive Conditional Heteroscedasticity) Bollerslev
and Tim (1986) shows a generalization of model known as GARCH (p,q). This has had some variations,
creating further proposals such as the IGARCH model (Integrated ARCH) of Bollerslev Tim and Engle
Robert (1993), EGARCH model (Exponential GARCH) of Nelson (1991), the A-PGARCH model (Asym-
metric Power GARCH) of Ding et al (1993), TARCH model (Threshold GARCH) Zakoian (1994), and
GARCH - Jump Model Duan (1997). Deng (2000) presents mean-reversion models: jump-diffusion, which
is deterministic, stochastic, and switching-regime models, and achieves an analytical solution to energy
power futures and options pricing. Other authors also suggest models based on the jump-diffusion model of
Merton (1976) that takes into account the discontinuity of stock price trajectory and incorporates a Poisson
component to represent big jumps in energy power prices.

Lucia and Schwartz(2002) model the energy power prices following an Ornstein-Uhlenbeck process (Va-
sicek (1977)) introducing a deterministic component and a stochastic factor. They also extend their model
by capturing seasonal patterns in the forward and futures curves that are directly implicated by the seasonal
behavior of electricity spot prices, which describe price behaviors in terms of those two component types.
Additionally, Lucia and Schwartz(2002) argue the importance of regular patterns in the behavior of elec-
tricity prices and the implications for derivative pricing purposes. They were focused on the Nordic energy
power market (NordPool), both in the spot and forward and futures market, and it was found that spot prices
could be highly dependent on the temporary and local conditions of the offer and demand such as the cli-
matic conditions, population habits, among others, due to the impossibility of storage and the transportation
limitation. On the other hand, the non-storability condition of the energy power significantly affects the
derivative prices, which influences the forward curve’s shape. Thus, Lucia and Schwartz(2002) apply mod-
els of one and two factors.

Pilipovic (1997) agrees with Lucia and Schwartz(2002) on the periodical seasonal behavior of electricity
prices and the mean-reversion, which is possibly non-seasonal. He presents a complete study of financial
series connected to energy, in which the spot series behavior, volatility, derivative pricing and risk policies
are analyzed. Also, he presents several energy series in which the Mid Columbia (MC) electricity spot price
stands out, which applies mean-reversion models in fuction of prices and price natural logarithms and finds
that the best adjustment is the mean-reversion model in prices. Geman and Roncoroni (2006) introduce
a calibrated market point process to calibrate the recording trajectory, statistical characteristics of energy
power markets. The processes used were jump-reversion, and they allow recording of both the trajectory
and the stochastic variability. Geman and Roncoroni (2006) utilize data from the American energy power
markets to recreate the adjustment achieved through their model.

Different authors explore the problem of risk hedging, modeling both prices and loads, taking as a start
point the stochastic modeling of energy power prices. Brown and Toft (2002) show, as an attempt to an-
swer questions like why and how companies decide to hedge, hedging strategies using vanilla and exotic
derivatives to maximize the company value against risks that could be hedged such as price risk and those
unhedged as volumetric risk. These authors suggest that in addition to using hedging for exotic derivatives
design, it is more proper to utilize derivatives such as vanilla when the correlation between prices and quan-
tities are high and the volumetric risk is substantially higher than the price risk.

The portfolio construction problem follows the model Markowitz (1952), where the investor’s goal defines
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the portfolio construction in order to maximize expected future returns given a certain level of risk. The
Markowitz model establishes that the volatility of portfolio returns measure the risk. Campbell et al (2001)
introduced a similar portfolio selection problem using Value at Risk (VaR) of the risk of potential portfolio
losses due to unexpected changes; prices of the traded assets.

In the electric power literature, several authors follow Markowitz’s methodology to address hedging strat-
egy using vanilla derivatives. Particularly, Nasakkala and Keppo (2005), who study the interaction between
stochastic consumption volumes and electricity prices, and proposed a mean-variance type model to de-
termine optimal hedging strategies. Vehvilainen and Keppo (2006) optimize hedging strategies taken into
account the Value at Risk as risk measure. Huisman (2007) introduced a one period framework to determine
optimal positions in peak and off-peak contracts in order to purchase future consumption volume. In this
framework, hedging strategy is assumed to minimize expected costs respecting to an ex-ante risk limit de-
fined in terms of Value at Risk.

In their model, Nasakkala and Keppo (2005), take as a starting point the optimal hedging rate, to sub-
sequently used this result to solve the optimal hedging timing problem. Results show that when there is a
negative correlation between forward prices and load patterns, the agents with high load volatility get hedged
after those who observed low volatility. That is, the uncertainty about the presence of high load could put off
the decision of hedging up to the point in which a better load estimate is obtained. Furthermore, the authors
suggest that a load estimate positively correlated with the forward prices generate a hedging rate higher than
one, and the negative correlation will generates hedging rate much lower than the unit. In addition to this, the
authors explain that the positive correlation has an effect of bringing hedging time forward and agents with
negative correlation seek to postpone the hedging decisions, taking the negative correlation as an additional
tool for hedging.

Oum et al (2006) present a static hedging strategy for LSE and for marketers whose objective is to min-
imize the mean-variance of their profit function on the gross profit, given the self-financing restrictions.
Provided that risk measurement is not a tradeable asset, the hedging is established through a portfolio that
is based on the financial instruments of prices of electricity, including bonds, forward contracts and a wide
variety of Call and Put options with different strike prices. The optimal hedging is jointly optimized with the
contract maturities under the price and quantity dynamic and the assumption that the hedging portfolio that
matures right in the moment of the physical delivery of electricity is purchased in only one moment of time.
The authors developed a methodology to mitigate volumetric risk, in which they work on the positive cor-
relation between the spot price of the wholesale market and the demand volume through a hedging strategy
to obtain a short position on an unknown electricity volume using energy power derivatives. The optimal
hedging strategy was developed based on the expected profit maximization, obtained from the derivation of
the optimal revenue function that represents the optimal revenue of a cost-zero, as a price function, exotic
option. Therefore, the optimal revenue of the exotic option could be replicated using a portfolio composed
by forward contracts and European options.

Oum and Oren (2008), as a modification to Oum et al (2006), introduce the concept of maximization of
expected hedged profits, which are subject to a VaR restriction under certain assumptions of distribution that
allow finding of the optimal portfolio with the VaR restriction on the efficient mean-variance frontier. The
results presented in this work were achieved due to the assumption that profits are normally distributed and
depend on the result of two correlated variables, quantity and price. The hedging strategy is characterized by
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the non-lineal function of a random variable, which is purposely done in order to find a numerical solution
to the problem.

In terms of the weather derivatives literature, authors are focused on weather derivatives pricing for in-
stance, Cao and Wei (1999) suggest an equilibrium-pricing model based on the Euler equation Stillwell
(2002) and the fact that in equilibrium both the financial market and the goods market are clear so that ag-
gregate consumption equals the dividends generated from the risky stock. Thus, they calculated a stochastic
discount factor SDF and used it to price weather derivatives. Brody, Syroka and Zervos (2002), proposed
the resolution of a partial differential equation in order to price weather derivatives. Alaton et al (1960),
use historical data to suggest a stochastic process that describes changes in temperature. Brix, Jewson and
Ziehmann (2002), Marteau et al (2004), find the expected outcome under a probability distribution adjusted
by the risk measure; they model the temperature using historical data and a Montecarlo simulation.

Platen and West (2004) provide a fairly pricing model, based on the idea that the growth-optimal portfolio is
used as a numeraire, and all derivative price processes discounted by the growth-optimal portfolio (bench-
marked) are martingales. Richards et al (2004) in a continuous time framework suggested an equilibrium-
pricing model based on temperature processes of a mean-reverting Brownian motion with discrete jumps
and autoregressive conditional heteroscedastic errors. A standard Euler equation from the Lucas general
equilibrium valuation model was applied to pricing CDD weather options. Also see Ankirchner et al (2006)
for the indifference pricing approach in continuous time.

Chaumont et al (2005) discuss the market price of risk, which is determined by a backward stochastic
differential equation that can be translated into semi-linear partial differential equations. These approaches
can be viewed as an actuarial perspective since the price of the weather derivatives are based on the exposure
of the weather derivative underwriter to weather risk. Hamisultane (2007) infers the risk-neutral distribution
by minimizing the second derivatives of the simulated risk-neutral distribution.

Other authors have investigated the effect on enterprise revenues due to weather. Dutton (2002) estimates that
one third of private industry activities, representing some three trillion dollars annually, bears some degree of
weather and climate risk. Energy, agriculture, leisure and insurance are good examples of weather-sensitive
industries.

This dissertation has been organized as follows: Chapter I is the essay “Modelling risk for electric power
markets”, which represents the starting point on risk management for the energy power markets, and studies
the risk premium that this market offers to the agents for bearing the risk. In Chapter II, the second essay is
“Optimal Static Hedging of Energy Price and Volume Risk: closed-form results”. This chapter proposes the
VaR-constrained Static Hedging Model, as a hedging strategy, using a replicating portfolio formed by two
claims; price and weather. Chapter III is the third essay “Applications of Optimal Static Hedging of Energy
Price and Volume Risk to markets in the US and Colombia”, and Chapter IV presents the final discussion of
the thesis.

6



Chapter I

Modelling Risk for Electric Power Market

Abstract

The inability to store electric power efficiently is an important consideration when analyzing the electric
power market, and prevents the use of the cost-of-carry approach, which explains the use of equilibrium
models to understand the electric power market behavior. Electric power is strongly difficult to compare
with any other commodity, since electric power has a peculiar characteristic; “it must be produced at exactly
the same time as it is consumed”. The technological inability to store electric power efficiently and the char-
acteristics of marginal production costs create jumps in the spot price. Several authors agree with the fact
that the no-arbitrage approach does not apply to electric power and notice that there are differences between
electric power forward prices and expected spot prices, which implies the presence of the Forward premia,
suggesting that the Forward premia represent compensation for bearing the risk. This chapter first presents a
study of the Forward Risk Premia FRP in Wholesale Electric Power Market in Colombia (WPMC) showing
how the FRP vary throughout the day and how its properties are explained by risk factors. Secondly, it shows
that expected forward risk premia depend on factors such as variations in expected spot prices, due to the
climatic conditions generated by the Oceanic Niño Index (ONI) and its impact on the available quantity of
water to generate electric power. The case of study is the Colombian market as an example of the emerging
markets.

Keywords: Forward Risk Premia Electric Power Markets, Conditional Volatility, Normal Backwardation,
Oceanic Niño Index (ONI), GARCH Model.

JEL Classification: G0, G13, C32.

Acknowledgements: Rich discussions with the participants to the XM seminar on November 13, 2009, and
also the participants to the 17th Global Finance Conference on June 27-30, 2010 in Poznan (Poland), are
gratefully acknowledged.
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1 INTRODUCTION

The transaction of a commodity, which relates physical production with financial transactions through con-
tracts, presents peculiar characteristics. It technically first presents the singularity of requiring balance be-
tween the offer and the demand in real time and the possession of geographical limitations; and second,
the impossibility of generating inventory that mitigates the price fluctuation, taking into account that those
prices present the most numerous peaks, jumps and fat tails. In addition, the question that has got to be
asked is if electric forward prices reflect economic fundamentals or if the traders can manipulate those
prices; moreover, the answers become extremely relevant in the market on study due to regulatory issues
and the expectations of rational agents.

In the case of a commodity as particular as electric power, the volatility presents firstly, excess of kurto-
sis, which in most cases reflects the length of tail distribution - that is, the longer the tail is, the higher the
probability of obtaining prices is extremely high or low. Secondly, discontinuous price jumps take place;
thirdly, there is evidence of volatility patterns, which are periods of high or low volatility, followed by be-
haviors that are more moderate. Finally, there is evidence of convergence that is contrary to what happens
to the underlying prices that move freely in any direction, implying that an underlying asset tends to present
average long-term volatility. Figure 1.1 shows the characteristics of non-constant volatility and prices with
jumps on the average daily spot price.

Figure 1.1: Volatility in Electric Power Prices, (XM data).

Diverse explanations have been given to the fact that these series, based upon its behavior, escape the normal
assumption. The dependence of residuals that makes difficult to obtain white noise and the Heteroskedas-
ticity provided in such. Figure 1.2 shows movements of traded prices: Sharp peaks can be observed during
some periods due to macroclimatic effects as drought periods (El NIÑO phenomenon). The histogram shows
the pattern prices and sharp peaks, these patterns cannot be associated with any specific distribution. Often,
the volatility of the electric power market takes characteristics such as: i) excess kurtosis, which means
high probability of extremely high or extremely low prices, known as “Fat tails”; ii) periods with high or
low volatility; iii) when volatility follows a mean-reversion process: the underlying asset tends to have an

8



average volatility or long-term average, known as convergence.

Figure 1.2: Daily average of prices from the Colombian Electric Power market. Fig 2(a) shows daily average
of Spot price; fig 2(b), exhibits histogram of spot price distribution.

Empirical studies about electric power markets from several authors show that there are two basic approaches
to define Risk Premia; first, the standard no-arbitrage or cost-of-carry (Brennan (1958)), and second, the
equilibrium model (Hicks (1939), Cootner (1960), Bessembinder and Lemmon (2002), and Longstaff and
Wang (2004)). Firstly, if storability of electric power was not a concrete issue, no inventories could be held,
allowing the capacity of response to cover the short position in forward contracts traded in this market;
therefore, the first basic approach cannot be applied. Thus, the second basic approach is suitable taking into
account conditions of the market on study. Secondly, Geman and Eydeland (1999) agree with the fact that
the no-arbitrage approach does not apply to electric power and noticed that there were differences between
forward prices and expected spot prices, which implied presence of the Forward Premia, suggesting that the
Forward Premia represent compensation for bearing risk. A similar approach to that of Bessembinder and
Lemmon (2002) and Longstaff and Wang (2004) is used in this paper. Foremost, this research has found
that expected Forward Risk Premia depend on factors such as variations in expected spot prices, due to the
climatic conditions generated by the Oceanic Niño Index (ONI), and implications by variations in demanded
electricity. The case of study is the Colombian market as an example of the emerging markets.

The data for this study consists of the hourly spot and forward non-delivery contracts from an unregulated
market segment in the Wholesale Electric Power Market in Colombia (WPMC) since January 1, 2000 to De-
cember 31, 2008. The sample has 24 series from a total of 3287 days. The series included the daily spot price
and settlement forward prices determined for one year, in which the delivery is to be made one year forward.

Those series of data offer an almost ideal way to study the properties of electric power prices. In order to find
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whether the mean-reverting and serial correlation conditions are present in the series on study; the unit-root
tests1 and portmanteau test "RW1" were applied. These tests essentially determine if the predictability con-
dition is presented in the explicative variables. Results showed that series are stationary and autocorrelation
should be zero. (See pag. 20 Appendix 1)

Particularly, economic effects, that are not visible with daily and monthly-level data studied at an hourly
level, could be identified. In addition, the data included the first data set of the ONI series from January
2000 to December 2008 in a monthly pattern from the National Oceanic & Atmospheric Administration
US. Thus, there is a significant correlation between the climatic variable and the volatility of electric power
prices. Figure 1.3 shows the relationship between the logarithmic average of daily electric power prices and
the El niño phenomenon.

The ONI is based on Sea Surface Temperatures (SST) departures from average in the Niño 3.4 region,
which is the principal measure for monitoring, assessing, and predicting the NIÑO phenomenon. Three-
month running-mean SST departures in the Niño 3.4 region are defined and departures are based on a set
of improved homogeneous historical SST analyses (Extended Reconstructed SST. v2)2. pag. 21 Appendix
2 shows i.) the el Niño and la Niña phenomena presented in the average surface temperature shown in the
ONI, ii.) the climatic effects on spot price due to el Niño behaviour, and iii.) the climatic effects on spot
prices due to la Niña behavior.

Figure 1.3: Logarithmic Average of Daily Electric Power Prices (blue) in COP3 per Kilowatts from WPMC4

in Colombia since January 1, 2000 to December 31, 2008 and ONI (green) from NOAA. U.S, since January
01, 2000 to December 31, 2008.

1Augmented Dickey-Fuller, Phillips-Perron and Kwiatkowski-Phillips-Schmidt-Shin tests statistic
2The methodology is described in Smith and Reynolds, 2003, J. Climate, 16, 1495-1510
3COP: International Code of Currency from Colombian Peso
4In Spanish: M.E.M ("Mercado de Energía Mayorista")
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Several el niño studies (e.g., Barnston and Glantz (1999); Barnston and Chelliah (1997); Barnston and Ro-
pelewski (1992)) have shown significant effects on a number of economically critical climate variables in
North and South America, climatic effects producing drought periods, and rainfall along the Pacific and At-
lantic Coasts. The correlation between the volatility prices and the ONI is explained by the fact that tropical
countries such as Colombia have coastal areas at least in one of both oceans and the electric power produc-
tion system is hydraulic dependent. On the other hand, the hourly pattern shows differences throughout the
day between the expected spot price and the forward prices. Moreover, expected spot prices are higher than
forward prices, which is consistent with classical literature (e.g., Hicks (1939), Cootner (1960)) and recent
studies by Bessembinder and Lemmon (2002), and Longstaff and Wang (2004).

In this chapter, particular features about forward premia in the WPMC were found, which are consistent
with the aforementioned classical literature. For instance, in this work, expected forward premia of unreg-
ulated markets show twenty one significant values. According to statistics, values also vary throughout the
day and display a minimum of -9.97% early in the morning and a maximum of 26.77% in the evening.
Positive forward premia reach high values between 2.36% and the maximum percentage, which means that
the expected spot prices are greater than the forward prices. On average, forward premia across the day are
near to 2.13% (see pag. 26Appendix7).

Nonetheless, the electric power prices show a particular behavior: both mean and median of spot prices
for a 24 hour period, except from 18:00 to 21:00, when they are lower than the mean of forward prices. The
relationship between spot and forward price behavior, which allows seeing that the spot price in a daily pat-
tern is volatile and the forward price exhibits smooth (Fig. 1.4). Thus, it could be hypothesized that agents
try to determine forward prices rationally as a risk-averse action. Then, forward premia represent compen-
sation by bearing risk due to electric power prices, which are subject to sudden sharp upward jumps because
of several conditions. Longstaff and Wang (2004) and Bessembinder and Lemmon (2002) reached the same
conclusions about Forward Premia; on the wholesale electric power market of Pennsylvania, New Jersey,
and Maryland “PJM”.

Figure 1.4: Average Daily Electric Power Prices (blue) in COP5 per Kilowatts from WPM6, and Forward
Prices (red), since January 1, 2000 to December 31, 2008.
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Longstaff and Wang (2004) found that there are significant risk premia in electric power forward prices and
suggest that risk-averse economic agents determine forward prices rationally. Bessembinder and Lemmon
(2002) present an equilibrium model of electric power spot and forward prices. Other papers focusing on
energy contracts include Routledge, Seppi, and Spatt (2000), Geman and Eydeland (1999), Pirrong and Jer-
makyan (1999), Kellerhals (2001), and Lucia and Schwartz(2002). This research shows that, in emerging
markets as well as in the Colombian WPMC, Forward premia for electric power prices have peculiar condi-
tions related to their own characteristics and conditions.

This chapter is organized as follows.In section 2 describes the wholesale electric power market in Colombia
and the interaction between physical production of electricity and the financial contracts to trade it. Sec-
tion 3 presents the data used in the empirical work. Section 4 discusses the empirical work and section 5
concludes.

2 WHOLESALE ELECTRIC POWER MARKET

The wholesale electric power market started in Colombia in the late nineteenth century and its development
was the result of a private investment initiative that aimed at the generation, distribution, and commercial-
ization of electric power. In the mid twentieth century this scheme started changing and, the privately owned
companies were nationalized. In the 1990s, the electric power sector was in bankruptcy due to poor opera-
tional and financial management, which resulted in national electric rationing from 1991 to 1992. Since the
approval of the new Colombian Constitution in 1991, new regulations have been established for the entry
of private investors to the electric generation business. The government was authorized to make decisions
related to the construction of new electric generation plants and their guarantees. Thus, the government au-
thorized the involvement of governmental agencies to sign buying and selling contracts of electricity in the
long term with the companies selected for that aim.

The Regulatory Commission for Gas and Electricity (CREG) was created by statutes, and its function is
to regulate the entrepreneurial, commercial, technical, and operational aspects of this new structure of the
electric power sector. This includes the generation, transmission, and distribution/commercialization of elec-
tric power. Regulation in the WPMC also created the figure of the “pure marketer”, which is an intermediary
agent whose purpose is to make competition dynamic and to provide the final customers with different ways
to access competitive prices in the electric market of wholesalers. Regulation in Colombian market allows
these agents to sell electric power to their customers through contracts that have no “steady electric power
to endorse”, that is, that endorsed by the electric generators to guarantee supply to these users. Moreover,
these agents can take endless risks and, in the case of bankruptcy, they do not have assets to lose.

Electric power generators have warned of the risk that the existence of certain agents, who have agreed
on long-term contracts without a real electric endorsement and used the electric financial market as an in-
strument to comply with their contractual obligations, could have on the future feasibility of the electric
wholesale market. In times of low prices, the "pure marketers" have probably not had any difficulty to com-
ply with their obligations with the electric financial market and signed contracts. On the contrary, in times
of high prices caused by phenomena such as el niño or a poor equilibrium between supply and demand,

5COP: International Code of Currency from Colombian Peso
6In Spanish: M.E.M (“Mercado de Energía Mayorista”)
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these agents would be surely facing financial difficulties due to their losses and would opt out of businesses
regardless of the purchases already made to the wholesale market and their customer supply. In 2008 the
installed capacity of electric power generation in Colombia (13.4 GW) was 67% hydro (including small
hydro), 27% natural gas, 5% coal, and 0.3% wind and cogeneration.

Colombia’s electricity supply system is severely affected by adverse weather systems. Drought periods due
to El Niño events can last for many months. El Niño periods between 1951 and 2007 are shown in Table
2.1, with the most severe periods of the last 20 years highlighted in blue. The effect of these droughts on
water availability for electric power generation is demonstrated in Figure 2.5 for the 2002-2003 events, when
waters levels in hydroelectricity dams fell much more than the normal seasonal fluctuation.

Table 2.1: El NIÑO events in Colombia, 1951-2007.

Start Finish Months Start Finish Months
01/07/1951 01/01/1952 6 01/04/1982 01/07/1983 15
01/03/1957 01/07/1958 14 01/07/1986 01/03/1988 20
01/06/1963 01/02/1964 8 01/04/1991 01/07/1992 15
01/05/1965 01/05/1966 13 01/02/1993 00/01/1900 6
01/10/1968 01/06/1969 8 01/03/1994 01/04/1995 13
01/08/1969 01/02/1970 6 01/04/1997 01/05/1998 13
01/04/1972 01/02/1973 10 01/04/2002 01/04/2003 12
01/08/1976 01/03/1977 7 01/01/2004 01/03/2005 8
01/08/1977 01/02/1978 6 01/08/2006 01/02/2007 6

Figure 2.5: Water levels (M3/sec) in hydroelectricity dams in Colombia, 2002 - 2008.

In the Colombian system, the electric power generators would be obliged to supply electric power by the
regulatory institution even if they were impaired by agents who did not comply with the secondary markets.
These generators cannot assume this additional risk, because it is not part of their activity. If this situation
were to occur, it would not only impair them financially, but it would also make them turn to the Justice
system to determine who must assume liability for the resulting impairments. Hence, one of the Authority’s
demands for electric generators is that they must insure themselves against price volatility risks. This opens
up the opportunity of using derivative instruments in the Colombian electric sector in the foreseen future.
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By Decree 055/2005, CREG had promoted the project to create a futures and options market. In 2007, the
clearing house was created and started functioning in September 2008 in cooperation with The Colombian
Stock Market to offer Treasury Bonds future contracts. In October 2010, the first future contracts of electric
energy were offered. This is the beginning of this kind of contract and it will reinforce the need to create a
system of margin risk analysis, which basically depends on the forward prices of electricity, volatility, and
interest rates, among other factors. Thus, it is necessary to determine which volatility model adjusts best to
the characteristics of electric prices throughout time for the Colombian electric market.

3 DATA SET

The main data for this work consists of the hourly spot and forward non-delivery contracts from an unregu-
lated market segment in the WPMC since January 1, 2000 to December 31, 2008. The sample has 24 series
from a total of 3287 days. The series included the daily spot price and settlement forward prices determined
for one year, in which the delivery has to be made one year forward.

The results of this study show that the mean of electric power spot prices varies throughout the day; the
lowest price is $56.43 COP/KWh obtained in the morning (04:00) and $87.05 COP/KWh the highest price
in the evening (20:00). Pag. 22Appendix 3 shows the pattern of hourly spot series for the most representative
hours, particularly during peak demand hours, for instance from 19:00 to 22:00. The statistics summary and
figure shown in pag. 22Appendix 3 allow observing that there is time series variation in the spot price for
the peak hours, and the distribution of electric power spot prices is highly right-skewed7 For instance, the
maximum spot price during peak hours is around $440 COP/KWh and the standard deviation for the spot
prices for the same hours exceeds $34 COP/KWh, which is nearly 50% of the mean value.

Pag. 23 Appendix 4 shows a summary of the statistics for the electric power forward prices, which are
expressed in COP/KWh in the same units as spot prices. The forward prices patterns exhibit smoothness
which is also supported by the fact that the average forward prices are comparable in magnitude to the av-
erage spot prices. The standard deviations of the forward prices are uniformly lower than the corresponding
standard deviation for the spot prices, which are volatile. The average skewness of the forward prices shows
that there is no presence of the extreme variations or peaks, such as spot prices that show right skewness,
and that spot prices tend to display greater prices than forward prices.

A less volatile pattern can be observed in forward prices, whereas spot prices show erratic behavior, which
is verifiable with the standard deviation pattern. On the other hand, maximum forward prices are lower than
the maximum spot prices. In addition to the basic data, the data on electric power load, spot price and the
weather variable (dam level variation) were included and used to construct a set of explanatory variables in
order to forecast the changes in the expected spot price and the changes in the expected load, throughout
Vector Auto-Regression (VAR).

In order to measure the risk of unexpected price and load quantity changes, the VAR framework (Sims
(1980)) combined with GARCH model (Engle (1982)) were adopted and followed. Firstly, the set of ex-

7This dominant feature of Electric power spot prices was established by Routledge, Seppi, and Spatt (2000), Longstaff and
Wang (2004).
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planatory variables including the spot price, load quantities and the Dam levels for the wholesale power
market in Colombia were used. Secondly, VAR provides forecast price change in the spot price from day
t to t + 365 using information available on day t. Then, conditional volatility of unexpected spot price
changes was estimated using the GARCH (1,1) model. Thirdly, the VAR framework to forecast the ex-
pected load quantity from day t to t + 365 was used again to obtain a measure of volumetric risk, taking
into account information available on day t from the Neon system of the wholesale electric power market in
Colombia. Subsequently, a GARCH (1,1) model was fitted to obtain the innovations of unexpected changes
in load. Fourthly, the dummy variable was also included to capture the climatic impact during the drought pe-
riods due to the el Niño phenomenon, which are highly related to the Dam levels. Finally, GARCH variables
and the dummy ONI variable were used to capture the impact on unexpected quantity and price changes.
The constructed set of forecast series was used to predict the FRP throughout OLS Model. pag. 24Appendix
5 reports the R2 for the VAR Model which forecasts changes price and load quantity.

4 EMPIRICAL WORK

Following the general approach used in the literature in which the model of forward prices is based on
equilibrium (e.g.,Hicks (1939); Cootner (1960); Bessembinder and Lemmon (2002); Longstaff and Wang
(2004)) this chapter is focused on the existence of FRP, or the difference between forward prices and ex-
pected spot prices. The Forward Risk Premia could be seen such as a ratio or percentage forward premia
(French (1986); Fama and French (1987); Longstaff and Wang (2004)). From this work it is evident that
market behavior depends on whether FRP are positive or negative. Positive premia are referred to as normal
backwardation; negative premia are referred to as contango. Throughout this paper, FRPj,t will represent the
FRP obtained in the hour “j” of the day “t”. SPj,t+365, will stand for the forward price in the hour j of day t,
for delivery during day t +365. Therefore, the FRP are defined by:

FRPj,t = Et

[
SPj,t+365−FWj,t

FWj,t

]
(4.1)

In order to construct an empirical analysis, the FRP were studied to determine their existence, and, if so, the
kind of characteristics could take at an unconditional level of economic risk measure in the electric power
market. The analysis of the expected FRP at conditional level are presented, and the impact of the drought
periods due to ONI as a quantity risk measure is explored.

In order to verify if FRP are zero on average, the mean of the FRP were calculated hour by hour and it
was found that the percentage forward premia (2.14%) out of 24 are positive. Results are consistent with the
classical literature that expected spot prices should be higher than forward prices, and this is consistent with
Longstaff and Wang (2004) results. Thus, the FRP vary systematically throughout the day with significant
behavior related to an hourly demand. Equation (4.1) shows that the forward risk premia can be expressed as
a conditional form (Longstaff and Wang (2004)), which includes the unexpected component of the realized
FRP presented in equation (4.2) and denoted by ξ j,t+365.

SPj,t+365−FWj,t

FWj,t
= E

[
SPj,t+365−FWj,t

FWj,t

]
+ξ j,t+365 (4.2)
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Based on equation (4.2), the regression model to estimate the forward risk premia for the t + 365 period
could be established hour-by-hour as well as ex-post occurrence of Conditional Forward premia in elec-
tric power markets. This estimate of forward risk premia depend on risk measures that capture unexpected
changes on prices, demands and risk preferences.

Using the time series from WPMC, Neon System, registered hour by hour, the spot prices and settlement
forward prices of bilateral contracts on day t to be delivered on day Using the time series from WPMC,
Neon System, registered hour by hour, the spot prices and settlement forward prices of bilateral contracts
on day t to be delivered on day t + 365 at the same hour. Three variables were included; firstly, the condi-
tional volatility of expected changes on the spot prices, expressed by CVj,t or conditional volatility in the
hour j of the day t. Secondly, the innovations of expected changes in load quantities, expressed by IIN j,t ,or
innovations in the hour j of the day t. Finally, the dummy ONI variable is denoted by δ_Niño j,t . The ONI
variable was used as a dummy variable that takes a value of one for drought periods and zero in all other
cases. The first and second variables were obtained using GARCH (1,1) model to estimate expected spot
prices according to volatility and expected changes in load. The third variable, due to technical conditions of
electric power markets, is strongly related to climatic effects on load, which implies effects on prices. These
explanatory variables permit forecasting Forward Risk Premia (FRP), using the Ordinary Least Square OLS
regression model. pag. 22 Appendix 3 presents statistics for three statistically significant risk factor.

FRPj,t = β0 j +β1 jCVj,t +β2 jIIN j,t +β3 jδ_Niño j,t +ξ j,t+365 (4.3)

Pag. 23 Appendix 4 shows that the economic risk factors are highly significant in statistics. In the Colombian
Wholesale Electric Power Market, the volatility also varies directly with FRP every hour throughout the
day, except for a few hours early in the morning. In addition, the risk premia is positive from 9:00 to 22:00,
which are the hours with medium or high demand, and strongly positive from 19.00 to 21.00, which are
hours with high demand. Therefore, when peak demand increases at those hours, long positions on forward
markets obtain higher premia but the sensitivity of volatility in those hours is negative. pag. 25 Appendix
6 shows the summarized statistics of the FRP, including the Breusch-Pagan and Cook-Weisberg test for
Heteroskedasticity.

Figure 4.6: Expected Forward Risk Premia for Electric Power Market Using climatic effects
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5 CONCLUSIONS

This chapter presents new evidence about Forward Premia and includes new significant conditions that are
relevant in wholesale electric power markets (WPMC). These results are perceptible in electric power spot
prices and derivative prices for markets in tropical countries, where there are no seasons but climatic con-
ditions such as el Niño phenomenon. Using the hourly spot and forward non-delivery contracts data set, it
could be verified that the FRP take place and has the characteristics of an economic risk measure of the
market agents.

This chapter focused on the percentage FRP as shown in French (1986), Fama and French (1987), Bessem-
binder and Lemmon (2002) and Longstaff and Wang (2004). According to empirical results, the average
expected forward risk premia can have a positive behavior in seventeen out of twenty-four hours, with a
2.14% on average for all the hours in a range from -9.97% to 26.77%. These results represent the equi-
librium compensation for bearing the price risk of the electric power for one year. The median or Typical
Forward premia is positive and very near to the average forward premia (2.12%) this is an opposite result to
that of Longstaff and Wang (2004), who found that median is negative. Our results suggest that the forward
premia represents compensation for bearing the risk in the Colombian case.

In the Colombian electric power market the risk taker is the marketer, particularly in the unregulated market
segment, because they are assuming the price risk in the long-term negotiations. The marketer represented
by this demand, tries to insure their future revenues and so they sacrifice their premia. It is relevant for
further studies to evaluate the efficiency of this market, and the characteristics which determine why the
marketer is willing to pay FRP and why the generator is in a better position to receive this bonus.

From the above, it applies that sellers assume the FRP for unregulated markets and so they have to pay
for long-term contracts in order to guarantee future sales. For the unregulated market segment, the natural
sellers are the marketers who pay the premia and assume the risk as well. The WPMC shows normal back-
wardation behaviour, probably due to the large opportunity cost related to electric power markets, which are
characterized by high hydraulic dependence.

It was examined whether the FRP reflect compensation for risk taking by market agents throughout sev-
eral risk measures. One way to obtain these measures is suggested by very interesting works proposed by
Longstaff and Wang (2004) and Bessembinder and Lemmon (2002). These include volatilities of unexpected
spot changes, volatilities of unexpected load changes and the weather variable, to capture price uncertainty,
quantity uncertainty and climatic effects. Such variables play a significant role in explaining the FRP in the
Colombian Market.
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Appendix 1:Unit Root Tests Statistic

This table presents the summarized statistics for unit-root test (Augmented Dickey and Fuller (1982),
Phillips and Perron (1988) and Kwiatkowski-Phillips-Schmidt-Shin (1992) tests statistic). Critical values
for Augmented Dickey and Fuller (1982) and Phillips and Perron (1988) tests statistic(-2.86209) are used
at the 95% level, Asymptotic critical value for Kwiatkowski-Phillips-Schmidt-Shin (1992) test statistic is
0.463 at the 95% level.
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Appendix 2:Oceanic Niño Index - ONI

The ONI is based on SST departures from average in El Niño 3.4 region, which is a principal measure for
monitoring, assessing, and predicting El Niño phenomenon. It is defined as the three-month running-mean
SST departures in the Niño 3.4 region; departures are based on a set of improved homogeneous histor-
ical SST analyses (Extended Reconstructed SST - ERSST.v2). The methodology described by Smith and
Reynolds (1999) is used to place current conditions in historical perspective. NOAA’s operational definitions
of El Niño and La Niña are key to the ONI index. El Niño strengthened during December 2006, with above-
average sea surface temperatures (SST) encompassing the central and eastern equatorial Pacific Ocean (Fig.
5.7).

Figure 5.7: Climatic effects on prices, average sea surface temperature (SST) anomalies (◦C) 2000-2008. Fig
A2.1, Log of Spot price and ONI index. Fig A2.2a, price behavior during El Niño phenomenon. Fig A2.2b,
Price behavior during La Niña phenomenon. Source: Author (NOAA/National Weather Service Data)

21



Appendix 3:Hourly Spot Prices

This table presents summarized statistics for hourly electric power spot prices reported by WPMC, prices are
reported in COP’s per Kilowatt/Hour. The sample consists of daily observations for each of the twenty-four
hourly spot prices from January 01, 2000 to December 31, 2008.

Figure 5.8: Electric power spot prices reported by WPMC, prices are reported in COP’s per Kilowatt/Hour
from January 01, 2000 to December 31, 2008. Fig A3.1, Spot price plot including the most representative
hours in this market; such as 2:00, 4:00, 8:00, 12:00, Fig A3.2, Hours 16:00, 19:00, 22:00 and 24:00.
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Appendix 4:Hourly Forward Prices

This table presents summary statistics for the hourly day-ahead Forward prices reported by WPMC. Prices
are reported in COP’s per kilowatt-hour. The sample consists of daily observations for each of the twenty-
four hourly forward prices since January 1, 2000 to December 31, 2008.

Figure 5.9: Electric power Forward prices reported by WPMC, prices are reported in COP’s per Kilo-
watt/Hour from January 01, 2000 to December 31, 2008. Fig A4.1, Forward prices plots including the most
representative hours in this market; such as 2:00, 4:00, 8:00, 12:00, Fig A4.2, Hours 16:00, 19:00, 22:00 and
24:00.
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Appendix 5:Values of R2 for VAR forecasting price and load quantity changes

This table reports the R2 from the VAR model used to forecast the hourly spot electric power prices and load
quantities. The VARs forecast t+360 for spot price and quantity includes the spot and quantity at time t and
their lags, and the weather variable that represents hydrology of the market on study, called dam variations.

Spi,t+365 = γ0 + γ1

24

∑
i=1

Qi,t + γ2

24

∑
i=1

Spi,t−1 + γ3

21

∑
i=1

Spi,t−2 + γ4

22

∑
i=1

Qi,t−2 + γ5VarDlt +ut+360

Qi,t+365 = γ0 + γ1

24

∑
i=1

Qi,t + γ2

24

∑
i=1

Spi,t−1 + γ3

21

∑
i=1

Spi,t−2 + γ4

22

∑
i=1

Qi,t−2 + γ5VarDlt + vt+360 (5.4)
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Appendix 6:Results from Regressions of Realized Percentage Forward pre-
mia

This table presents summarized statistics from a regression model from individual hourly time-series in-
cluding three variables: i) the conditional volatility of unexpected spot price changes (expressed by CVj,t or
conditional volatility on hour j of day t); ii) the innovations or GARCH standardized returns of unexpected
changes in load (denoted by INN j,t , innovations on hour j of day t), and finally iii) the ONI, expressed by the
dummy variable δ_Niño j,t . The first and second variable were obtained using GARCH (1,1) model from
VAR expected spot price and VAR expected Load.

FRPj,t = β0 j +β1 jCVj,t +β2 jIIN j,t +β3 jδ_Niño j,t +ξ j,t+365 (5.5)
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Appendix 7:Results from regressions of realized percentage forward premia
based on economic risk measures
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Chapter II

Optimal Static Hedging of Energy Price and
Volume Risk: Closed-Form Results

Abstract

As an extension of the VaR-constrained hedging, we propose a closed- form solution to the problem of
optimizing portfolios, based on price and weather. For electric power companies, price and quantity are
volatile, and in hydro-electricity generation quantity can be related to weather conditions. An optimum port-
folio is derived from expected utility maximization problem, including weather indices to minimize losses.
The main approach to this problem is shown, the independence case, in which price and weather index are
uncorrelated. Due to electric power features, agents in this market are facing price and volumetric risks,
the difficulty to storage efficiently electric power cannot permit to mitigate volumetric risk and alternatively
weather instruments can be used in order to hedge unexpected changes in weather; the purpose of weather
derivatives is to smooth out the temporal fluctuations in the company’s revenues. For electric power compa-
nies price and quantity are volatile, and quantity is correlated to the weather conditions. Moreover, exposures
to price and volume risks make necessary the inclusion of the weather pay-off. Thus, we derive the optimal
portfolio from the expected utility maximization problem including vanilla and weather derivatives whose
payoffs will minimize losses.

Keywords: Static Hedging, Energy Risk Mitigation,Volumetric Hedging, Incomplete Markets.

JEL Classification: G0, G13, C32.

1 INTRODUCTION

Electric power markets are going through an infancy period compared with other more developed markets
such as fixed income securities, stocks and currencies. In addition, the energy market is a special market
case given that it has some added complexities. Electric power needs real time balancing between supply
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and demand because electricity is consumed at the same time as it is produced; inventories cannot be held to
compensate price and quantity fluctuations. Electricity is unlike other financial products. The technological
inability to store electric power efficiently and marginal production costs create jumps in the spot price, so
that arbitrage arguments have been difficult to deal with. All these specifications make classical dynamic
hedging theory impossible to apply. It is clearly not possible to dynamically hedge an asset when you can-
not know whether the quantity that you had contracted is the capacity that you have. Thus, because of the
"virtual" storability of electricity, agents face volumetric risk.

Furthermore, the market participants, who can be generators, marketers or load serving entities (LSE), who
are not the end-users of electricity, have to sell or buy electricity at a price set by the supply and demand
equilibrium when the final users consume the electricity at a fixed regulated price. In addition, the regulated
demand is inelastic and residential customers must be serviced at all times. A LSE unit has the obligation to
deliver electricity on demand at a fixed price without fail, whatever it costs.

The difficulty of storing electric power efficiently does not allow mitigation of volumetric risk. Weather
derivatives can be used in order to hedge unexpected changes in weather. Weather derivatives are based on
indexes of temperature, such as the indexes from Chicago Mercantile Exchange (CME), such as Cooling-
Degree-Days (CDD), or Heating-Degree-Days (HDD). Sometimes insurance companies trying to transfer
their climate-related risk to capital markets need to transform non-tradable risk into tradable financial secu-
rities such as weather derivatives.

Weather derivatives were first launched in 1996 in the United States as a mechanism of protection against
weather anomalies. The purpose of weather derivatives is to smooth out the temporal fluctuations in the
company’s revenues. There are a number of financial and commercial reasons why this is beneficial (Jew-
son (2004)). Companies hedge their portfolios against unexpected weather variations using contracts that
are not correlated with classical financial assets. For instance, the El Niño phenomenon was responsible for
weather anomalies that took place over thirteen months between April 1997 and May 1998 and over one
year between April 2002 and April 2003 in South and North America. Chicago Mercantile Exchange Anon
CME. (2005) started offering the first standardized weather derivatives in September 1999, with the purpose
of increasing liquidity and accessibility on this kind of contract. The market was accepted this and grew
quickly.

CME offers weather futures and options. Contract specifications include: type, contract size, product de-
scription, tick size, period and the settlement procedure (Anon CME. (2005) 2010). The daily average
temperature Tj is defined as the arithmetic average of the maximum and minimum temperature recorded
between 12:01 a.m. and 12:00 a.m. midnight as reported by MacDonald Dettwiler and Associates (MDA)
information System, Inc.

Tj =
T max

j +T min
j

2
(1.1)

For each day during winter, Heating-Degree-Days (HDD) is the maximum between zero and 65 degrees
Fahrenheit (∼ 18 degrees Celsius) minus the daily average temperature Tj. For each day during summer,
Cooling-Degree-Days (CDD) is the maximum between the daily average temperature Tj minus 65 degrees
Fahrenheit (∼ 18 degrees Celsius) and zero (Anon CME. (2005)). Weather derivatives are basically a spec-
ulative security because those indexes are not a tradable commodity or a delivery asset. Due incomplete
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characterization, the weather derivatives market still does not have an effective pricing model.

Several authors have proposed pricing models for weather derivatives in continuous time framework. Richards
et al (2004) presented an equilibrium pricing model based on temperature processes of a mean-reverting
Brownian motion. Chaumont et al (2005) considered that under an equilibrium condition, the market price of
risk is uniquely determined by a backward stochastic differential equation, and they translate these stochas-
tic equations into semi-linear partial differential equations. They then choose two simple models for sea
surface temperature. Lee and Oren (2009) derived an equilibrium pricing model for weather derivatives and
measured risk hedging, including weather derivatives, in a volumetric hedging strategy.

Volumetric risk in electric power markets has significant dimensions when quantity is affected by weather
conditions; in countries with seasons, random movements in temperature affect electric power demand.
Some tropical countries are also affected by hydrological conditions and the correlation between the load
volatility and the weather variable. In general, power generation is affected by hydrological variables when
production system uses hydro generation. It has been empirically shown that the most important factor af-
fecting the quantity of power generation is the climatic conditions, and load is correlated to the weather. Eco-
nomic earnings obtained by industries which are weather-sensitive are affected by weather anomalies which
is the case of energy industries (Dutton (2002)). The volumetric risk faced by electric power companies is
correlated with unexpected changes in weather or hydrology which cause demand and price fluctuations.

As an extension of the VaR-constrained hedging introduced in Oum and Oren (2008), this chapter pro-
poses a new way to hedge a LSE’s profit based on the constitution of an optimal portfolio composed by two
claims: standard contracts on price and weather derivatives. The most important risks faced by the market
participants are price risk and quantity risk. Variations in weather conditions affect quantity; price risk is
caused by extreme high volatility, and the volumetric risk is determined by the uncertainty of final con-
sumption.

The main purpose of this chapter is to derive the hedging portfolio based on two claims: price and volu-
metric hedging instruments. We derive the optimal portfolio from the expected utility maximization prob-
lem using vanilla and weather derivatives whose payoffs will minimize losses. This proposal is based on
the independence assumption between both claims that means that price and weather are not correlated.
In this case we derived the optimal payoff functions, and found evidence that the inclusion of two payoffs
generates incremental improvements over agent’s revenues and minimizes risk measures. Evidence shows
that the profit after hedging is significantly better than before hedging, increasing the mean of revenue and
minimizing risk measure.

This chapter is organized as follows. In Section 2 we provide an overview of the problem statement and
Section 3 we show the theoretical results. In Section 4 we illustrate these results, and Section 5 concludes.

2 Problem Statement

LSE has to provide electric power on demand at a fixed price but faces uncertainty about the quantity
of electric power to supply and the price it will pay. Hedging strategy allows the agents throughout the
derivatives-contracts payoffs to mitigate losses caused by unexpected changes in price and quantity. We de-

29



rive the hedging portfolio including the weather derivatives whose payoffs will minimize these losses. The
portfolio construction problem follows Markowitz’s (1952) model, where an investor’s goal defines the port-
folio construction in order to maximize expected future returns given a certain level of risk. The Markowitz
model establishes that the volatility of portfolio returns measures the risk. Campbell et al (2001) introduced
a similar portfolio allocation problem using VaR as a risk measure. In the electric power literature, several
authors follow Markowitz’s methodology to address hedging strategy using vanilla derivatives. Nasakkala
and Keppo (2005), and Woo et al (2004),studied the interaction between stochastic consumption volumes
and electricity prices, and proposed a mean-variance type model to determine optimal hedging strategies.
Vehvilainen and Keppo (2006) optimized hedging strategies taking into account the Value at Risk as risk
measure. Huisman (2007) introduced a one-period framework to determine optimal positions in peak and
off-peak contracts in order to purchase future consumption volume. In this framework, hedging strategy is
assumed to minimize expected costs relating to an ex-ante risk limit defined in terms of Value at Risk.

The main assumption about VaR techniques is that of normality, which is strongly accepted in the case
of financial markets. Specific characteristics of electric power markets are price and load spikes, and the
corresponding effect is Fat Tails distribution than normal, except for very large number of periods in the
planning horizonHull and White (1998). However, VaR captures the case of normality but other cases such
as Student-t, Weibull, among other distributions.

The Markowitz (1952)concept of efficient frontier also applies to electricity, but previous authors did not
consider the effect of volumetric risk exposure in their optimization solutions. Volumetric risk exposure
can be a potent component of portfolio losses due to adverse movements in quantity in the electric power
market. Authors cited above have tried to solve the Markowitz problem, but the portfolio is only composed
in order to hedge price risk exposure. Oum and Oren (2008) developed a self-financed hedging portfolio
consisting of derivatives contracts, and they obtained the optimal hedging strategy in order to hedge price,
and volumetric risk maximizing the expected utility of hedge profit for the Load Serving Entities (LSE).
But this work shows that their hedging position can be improved including weather derivatives in order to
complete the hedging over volumetric risk exposure.

3 Theoretical Results

This chapter was developed under an independence assumption in which there is no correlation between
price and the weather index, but quantity and the weather index are strongly correlated, this assumption will
be proof statistically in Chapter III using real data from electric power markets in US and Colombia. Thus,
let y(p,q) be the LSE’s profit from serving the customers’ demand q at the fixed retail rate r at time T,x(p)
is a function of the Spot price at time T,z(ι) is a function of the weather at time T and Y is the overall profit.
The hedged profit

Y (p,q,x(p),z(ι)) = y(p,q)+ x(p)+ z(ι) (3.2)

Where, y(p,q) = (r− p)q

This portfolio considers that an LSE has to provide electric power on demand at the difference between the
fixed price r and the spot price on the wholesale market p. The LSE’s preference utility is characterized by
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a concave utility function U defined over the total profit Y (p,q,x(p),z(ι)) at time 1. Let f (p,q) be the joint
density function for positive p and q defined on the probability measure P which represents the beliefs on
the realization of p and q. let Q be a risk neutral probability measure which is not unique since the electric
power market is incomplete and g(p) the density function of p under Q. Then the problem can formulated
as follows:

max
x(p),z(ι)

E[U(y(p,q),x(p),z(ι))] (3.3)

s.t EQ[x(p)] = 0

EQ[z(ι)] = 0

VaR constraint could be expressed such as:

VaRy(Y (x∗(p),z∗(ι)))≤V0

It costs zero to construct a portfolio at time 0, where E[.] and EQ[.] denote expectations under the probability
measure P and Q, respectively.

3.1 Optimal pay-offs of the hedging strategy

Here we give an explicit solution to the optimization problem showed in (3.3). We obtain an optimal pay-off
of the hedging strategy which depends on the utility function that describes the LSE’s preferences.
The LSE’s hedging problem of price and volume risk under VaR criteria has been considered by Oum
and Oren (2008), Kleindorfer and Li (2005), Woo et al (2004), and Wagner et al (2003). VaR defined as
a maximum possible loss with (1− γ) percent confidence, is considered such as risk measure in practice.
Furthermore, the optimization problems with the VaR risk measure are hard to solve analytically without
very restrictive assumptions more in the case of both price and quantity are volatile.

Optimality condition

Let x(p) the pay-off of the hedging strategy against price risk, z(ι) the pay-off of the hedging strategy against
volumetric risk, and U is the utility function that describes the LSE’s preferences. Thus, the optimal pay-
offs of the hedging strategy against price and volumetric risk is the solution of the following optimization
problem:

max
x(p),z(ι)

E[U(y(p,q),x(p),z(ι))]

s.t EQ[x(p)] = 0
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EQ[z(ι)] = 0

VaRy(Y (x∗(p),z∗(ι)))≤V0

The optimal pay-offs x∗(p) and z∗(ι) are:

E
(
U ′(Y (p,q,x∗(p),z(ι))|p)

)
= λ

∗
x

gx(p)
fx(p)

E
(
U ′(Y (p,q,x∗(p),z(ι))|ι)

)
= λ

∗
z

gz(ι)

fz(ι)

Where λ is the Lagrange multiplier, and for an agent who maximizes mean-variance expected utility of
profit,

U(Y ) = Y − 1
2

a(Y ∗−E[Y ∗]2)

Theorem 1. Based on Kleindorfer and Li (2005) and Oum and Oren (2008), the assumption in this part is
that VaR(Y (x,z)) is determined by PrXt ≥−VaR = γ, where Xt denotes the typical daily cash flow. There-
fore, VaRt = z(γ)σt − µt , where z(γ) is the z-score of a standardized normal random variable. There ex-
ists a continuous function η : (E,Σ,γ)→ R, and that the function is strictly increasing in σ and where
Varγ(µ,σ,γ) = η(µ,σ,γ)−µ is non-increasing in µ, then:

P
(
Y (x,z)≤ µγ−η(µ,σ,γ)

)
≡ 1− γ

If Y (x,z) is normally distributed, then the risk aversion assumption is satisfied with η(µ,σ,γ) = Z(γ)σ, where
Z(γ) is the standard z-score at the confidence level. Where η(µ,σ,γ) is continuous and increasing in σ and
the VaR function VaRγ(µ,σ,γ) is non-increasing in µ for µ = E[Y (x,z)] and σ2 = var(Y (x,z)). Therefore, if
x∗(p)+ z∗(ι) solves the problem (4), then it can hold that:

i. If (x∗(p),z∗(i)) is on efficient frontier of the (E −V ) space, then it can hold that any feasible pair
(x(p),z(i)) is mapped to a corresponding point (V (Y (x,z)),E[Y (x,z)]).

ii. We can assume that fixed a ≥ 0, let Y (x,z) = Y (xa,za) be the portfolio obtained by maximizing (E−
aV ), therefore Y (xa,za) is on the border of the feasible set in (E−VaRγ) space, and for any feasible
portfolio Y ′(x,z) for which E[Y ′(x,z)] = E[Y (xa,za)] and VaR[Y ′(x,z)] ≥ E[Y (xa,za)], there exists
a≥ 0 such that (x∗(p),z∗(ι)) solves maxx(p)∈x(p),z(ι) E[Y (x,z)]− 1

2 a∗ var(Y (x,z)).
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Proof of Theorem 1.

The proof of Theorem 1, is provided in pag. 49 appendix 1.

Proposition 1. Based on Oum and Oren (2008) we will show how the solution to the mean-variance problem
can be used to approximate the solution to the VaR-constrained problem

(xa(p),za(ι)) = argmaxx(p)∈X(p),z(ι)∈Z(ι)E[Y (x,z)]−
1
2

a∗ var(Y (x,z))

s.t. EQ[x(p)] = 0

EQ[z(ι)] = 0

Then E[Y (xa(p)+ za(ι))] and var(Y (xa(p)+ za(ι))) are monotonically non-increasing in a

Proof of Proposition 1.

Proof. Let a2 > a1 > 0 and specify that Y (xai + zai) = Yi f ori = 1,2, then

E(Y1)−a1var(Y1)≥ E[Y2]−a1var(Y2)

E(Y2)−a2var(Y2)≥ E[Y1]−a2var(Y1)

Adding the last two expressions gives

(a2−a1)var(Y1)≥ (a2−a1)var(Y2)

Then var(Y1)≥ var(Y2)

We can hold that E[Y1]−E[Y2]≥ a1(var(Y1)− var < (Y2))≥ 0

Proposition 2. :Closed-Form Results for the Independence Case Based on Id Brik (2011) closed-form re-
sults for the independence case is derived, the Independence case is the case in which there is no correlation
between price and the weather index, but quantity and weather index are strongly correlated.
Maximizing the mean-variance utility function on profit,

E[U(Y )] = E[Y (x,z)]− 1
2

a∗ var(Y (x,z))

For maximizing mean-variance expected utility the optimal solution x∗(p) and z∗(ι) to problem

max
x(p),z(ι)

E[U(y(p,q),x(p),z(ι))]

s.t. EQ[x(p)] = 0

EQ[z(ι)] = 0
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That is given by:

x∗ =
1
a
−E[y(p,q)|p]−E[z∗|p]+

(
E[y(p,q)]− 1

a

)
gx(p)
fx(p)

+(E[x∗]+E[z∗])
gx(p)
fx(p)

z∗ =
1
a
−E[y(p,q)|ι]−E[x∗|ι]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)
+(E[x∗]+E[z∗])

gz(ι)

fz(ι)

Under the Independence assumption that p, and ι are uncorrelated then we can establish that:

E[z∗|p] = E[z∗]

E[x∗|ι] = E[x∗]

And, finally we have:

x∗ =
[

1
a
−E[y(p,q)|p]+

(
E[y(p,q)]− 1

2

)
gx(p)
fx(p)

]
+E[x∗]

[
gx(p)
fx(p)

]
+E[z∗]

[
gx(p)
fx(p)

−1
]

(3.4)

z∗ =
[

1
a
−E[y(p,q)|ι]+

(
E[y(p,q)]− 1

2

)
gx(ι)

fx(ι)

]
+E[x∗]

[
gx(ι)

fx(ι)

]
+E[z∗]

[
gx(ι)

fx(ι)
−1
]

(3.5)

Where,

E[x∗] =

[
1
a −E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

) gx(p)
fx(p)

]
gz(ι)
fz(ι)[

gz(ι)
fz(ι)
−1
][

gx(p)
fx(p) −1

]
−
[

gx(p)
fx(p)

][
gz(ι)
fz(ι)

]
−

[
1
a −E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

) gz(ι)
fz(ι)

][
gx(p)
fx(p) −1

]
[

gz(ι)
fz(ι)
−1
][

gx(p)
fx(p) −1

]
−
[

gx(p)
fx(p)

][
gz(ι)
fz(ι)

] (3.6)

E[z∗] =

[
1
a −E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

) gz(ι)
fz(ι)

]
+
[

gz(ι)
fz(ι)
−1
]

[
gz(ι)
fz(ι)

]([
gz(ι)
fz(ι)
−1
][

gx(p)
fx(p) −1

]
−
[

gx(p)
fx(p)

][
gz(ι)
fz(ι)

])
([

1
a
−E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

)
gx(p)

fx(p)

]
EQ
[

gz(ι)

fz(ι)

]

−

[
1
a
−E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)

][
gx(ι)

fx(ι)
−1
])

. (3.7)

Proof of Proposition 2.

The proof of Proposition 2, is provided in pag. 51 appendix 2.
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Proposition 3

Let (p;q) and (ι;q) be each a 2-dimensional random vector. p is the price the LSE pays when it buys
electricity and ι is the weather index used to optimize hedging. q is the quantity of electricity purchased, if
(p;q)and (ι;q) follow a log-normal / normal distribution where,

(log p,q)∼ N(µp,q,Σp,q)

Under assumption that (p,q) are correlated, the density function of q, is given by:

µpq =

(
µp

µq

)
,

∑
pq

=

[
σ2

p ρp,qσpσq

ρp,qσpσq σ2
q

]

(log p,q)∼ N(µp,µq,σ
2
p,σ

2
q,ρp,q)

q|p∼ N
(

µq +ρp,q
σq

σp
(ln p−µp),σ

2
q(1−ρ

2
p,q)

)
The Independence case is special case of this expression and we can establish that when (p,q) are indepen-
dent the density function of q, is given by:

q∼ N(µq,σp)

And in the case of (ι,q) they are correlated so that

µιq =

(
µι

µq

)
,

∑
ιq

=

[
σ2

ι ρι,qσισq

ρι,qσισq σ2
q

]

(log ι,q)∼ N(µι,µq,σ
2
ι ,σ

2
q,ρι,q)

q|p∼ N
(

µq +ρι,q
σq

σι

(ln ι−µι),σ
2
q(1−ρ

2
ι,q)

)
Then the density function of q knowing ι is given by:
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Proof of Proposition 3.

Proof. The density function of an n-dimensional normal vector, whose mean is µ and variance-covariance
matrix is ∑, is given by:

f (x) =
1

(2π)
n
2

1√
det(Σ)

e−
1
2 (x−µ)′Σ(x−µ)

We consider a 2-dimensional normal vector (u,v), but, the density function of u knowing v is equal to the
joint density of (u,v) divided by the marginal density function of v,

fu|v(u|v) =
fuv(u,v)

fv(v)

In the case of ι, because (ι,q) are correlated, the variance-covariance matrix is:

Σ =

[
σ2

ι ρι,qσισq

ρι,qσισq σ2
q

]
The determinant is:

detΣ = σ
2
ι σ

2
q−ρ

2
ι,qσ

2
ι σ

2
q = σ

2
ι σ

2
q(1−ρ

2
ι,q)

Hence, the inverse of variance-covariance matrix is given by:

Σ
−1 =

1
(1−ρ2

ι,q)σ
2
ι σ2

q

[
σ2

q −ρι,qσισq

−ρι,qσισq σ2
ι

]
The joint density of (ln(p);q) is defined by:

f (x) =
1

2π

1

σισq

√
1−ρ2

ι,q

e
− 1

2
1

σ2
ι σ2q(1−ρ2

i,q)
M

Where M is can be formulated such as:

M =

[
log ι−µι

q−µq

]′[
σ2

q −ρι,qσισq

−ρι,qσισq σ2
ι

][
log ι−µι

q−µq

]
We also have the marginal density of ln(ι):

f(ln ι)(ln ι) =
1

2π

1
σι

e−
1
2(

log ι−µι

σι
)

2

Then we deduce the density function of q knowing ln(ι):
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fq| ln(ι)(q| ln(ι)) =
1

2π

1
σισq
√

1−ρ2
ι,q

e
− 1

2
1

σ2
ι σ2q(1−ρ2

ι,q)
M

1√
2π

1
σι

e−
1
2(

log ι−µι

σι
)

2

Therefore

fq| ln(p)(q| ln(p)) =
1√
2π

1

σq

√
1−ρ2

ι,q

e−
1
2 N

Where N is defined by:

N =
M

σ2
ι σ2

q(1−ρ2
ι,q)
−
(

log ι−µι

σι

)2

=
1

σ2
q(1−ρ2

ι,q)

[
q−
(

µq +ρι,q
σq

σι

(ln ι−µι)

)]2

We finally obtain:

f {ln ι}
q (q) =

1√
2π

1

σq

√
1−ρ2

ι,q

e
− 1

2
[q−(µq+ρι,q

σq
σι

(ln ι−µι))]
2

σ2q(1−ρ2
ι,q)

In other words,

q|ι ∼ N
(

µq +ρι,q
σq

σι

(ln ι−µι),σ
2
q(1−ρ

2
ι,q)

)

Finally the marginal distribution of p, ι and q are as follows:

Under P:

ln p∼ N(µ1p,σ
2
P)

q∼ N(µq,σ
2
q)

ln ι∼ N(µ1ι,σ
2
ι )

Corr(ln p,q) = ρp,q

Corr(ln ι,q) = ρι,q

37



Under Q:

ln p∼ N(µ2p,σ
2
P)

ln ι∼ N(µ2ι,σ
2
ι )

From a density function of log-normal distribution, we have:

gx(p)
fx(p)

= e
µ2p−µ1p

σ2
P

ln p+
µ12

p−µ22
p

σ2
P

gz(ι)

fz(ι)
= e

µ2ι−µ1ι

σ2
ι

ln p+
µ22

i −µ12
ι

σ2
ι

EQ
[

gx(p)
fx(p)

]
= e

(
µ2p−µ1p

σP

)2

EQ
[

gz(ι)

fz(ι)

]
= e

(
µ2i−µ1ι

σι

)2

where,

gx(p)
fx(p)

=

1√
2π

1
σp

e−
1
2

(
log p−µ2p

σp

)2

1√
2π

1
σp

e−
1
2

(
log p−µ1p

σp

)2

= e
1
2

(
log p−µ1p

σp

)2
− 1

2

(
log p−µ2p

σp

)2

= e
µ2p−µ1p

σp log p− 1
2
(µ2p)2−(µ1p)2

σ2 p

Under Q,

µ2p−µ1p

σp
log p− 1

2
(µ1p)

2− (µ2p)
2

σ2 p
∼ N

(
µ2p−µ1p

σp
µ2p +

1
2
(µ1p)

2− (µ2p)
2

σ2 p
,

(
µ2p−µ1p

σp2

)2

σp2

)

Then

EQ
[

gx(p)
fx(p)

]
= e

µ2p−µ1p
σp µ2p+

1
2
(µ1p)2−(µ2p)2

σ2 p
+ 1

2

(
µ2p−µ1p

σp2

)2
σp2

= e
(

µ2p−µ1p
σp

)2
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Then, under a bivariate log-normal distribution, we can compute the next mathematical means:

E[y(p,q)|ι] = (r− p)E(q|ι) = (r− p)
(

µq +ρι,q
σq

σι

(ln ι−µι)

)

E[y(p,q)] = E[(r− p)q]

= rµq−E[pq]

= rµq−µqeµP+
1
2 σ2

p

Hence,

EQ[E[y(p,q)]] = µq

(
r− eµ2P+

1
2 σ2

p

)

EQ [E[y(p,q)|ι]] =

(
r− exp

(
µ2ι +

1
2

σ
2
ι

))(
µq +ρι,q

σq

σι

µ1ι

)
+ρι,q

σq

σι

(
rµ2ι− (µ2ι +σ

2
ι )exp

(
µ2ι +

1
2

σ
2
ι

))

3.2 The replication of pay-offs

Carr and Madan (2001) showed that any continuously differentiable functions x(p)and z(ι) can be written
in the following form: for an arbitrary positive s,

x(p) = [x(s)− x′(s)s]+ x′(s)p+
∫ s

0
x′′(K)(K− p)+dK +

∫
∞

s
x′′(K)(p−K)+dK

z(ι) = [z(s)− z′(s)s]+ z′(s)ι

In this case, if Fp is the forward price of electricity and Fι is the forward weather-related claim, the property
proved by Carr and Madan (2001) has the next interpretation:
f (p,q) = (r− p)q+ x(p)+ z(ι),

x(p) = x(Fp).1+ x′(Fp)(p−Fp)+
∫ Fp

0
x′′(K)(K− p)+dK +

∫
∞

Fp

x′′(K)(p−K)+dK

z(ι) = z′(Fι)(ι−Fι)+
∫ Fp

0
x′′(K)(K− p)+dK +

∫
∞

Fp

x′′(K)(p−K)+dK

z(ι) = z′( fι)(ι− fι) (3.8)

To replicate in continuous time a hedging strategy against price risk and quantity risk, the LSE should have
a position on:
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• x(Fp) units of bonds

• x′(Fp) units of forward price

• z′(Fι) units of forward weather-related claim

• x′′(K)dK units of put options with strike K for K < Fp

• x′′(K)dK units of call options with strike K for K > Fp

In practice, we do not have a continuous set of strike prices and we need to work in discrete time. Thus, by
assuming we have n strike prices for put options and m strike prices for call options such that 0 < K1 < Kn <
Fp < K′1 < K′2 < · · ·< K′m, replicating the hedging strategy should require a position on:

• x(Fp) units of bonds

• x′(Fp) units of forward price

• z′(Fi) units of forward weather-related claim

• 1
2(x
′′(Ki+1)− x′′(Ki−1)) units of put options with strike (Ki, i = 1, · · ·n)

• 1
2(x
′′(K′i+1)− x′′(K′i−1)) units of call options with strike (K′i , i = 1, · · ·n)

In this approximation scheme, the error will be small if x′′(p) is a constant in each interval between two
consecutive strike prices, and when price realizations p are close to the discrete strike prices.

4 Empirical Work

4.1 Implementation Algorithm

The issue is to know how many forwards and options at a given strike price the LSE should purchase.
Note that the hedging portfolio also includes money market accounts, letting the LSEs borrow money to
finance hedging instruments. It is a one-period model where the hedging portfolio is built at time 0 for a
delivery at time 1. The feasible set of the VaR-constrained problem is restricted to the solution of mean-
variance problem for varying a (see Theorem 1 and Proposition 1). Thus, the solution to VaR-constrained
optimization problem can be obtained in the next algorithm:

i Fix parameters including range for a (min, max and steps).

ii Fix number of simulations numtrab "large".

iii Generate random price p, load q and weather variable w, using a multivariate normal distribution.

iv Compute the payoff x∗(p) and z∗(ι) (Equations 4 and 5).
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v We can obtain (xa(p), za(ι)) that maximizes:

E[Y (x,z)]− 1
2

a∗ var(Y (x,z))

vi For each a, calculate associated VaR(a)≡VaR(Y (xa,za)) such that P{Y (xa,za)≥−VaR(a)}= γ

vii Find smallest a(aopt) such that VaRγ(Y (xa,za))≤V0

viii Using aopt in order to find Y (x(aopt), z(aopt)). Y (·), be the profit distribution of the expected utility
maximizing solution, under Optimal Static Hedging including the weather claim (see figure 4.3)

ix Using the payoff functions x(aopt), and z(aopt), and based on Carr and Madan (2001) we can define
the replication of payoff (Equation (3.8)), (see figure 4.4).

This algorithm above permits us obtain the optimal static hedging profit distribution using two claims and
the concerning replication payoff function.

4.2 Empirical Result

Computing an approximate optimal VaR-constrained volumetric hedging problem according to the above
development, we will show two groups of results: results under the independence assumption, and also under
the general case. In both we will present the comparison of different possibilities, which are: without-hedge,
hedging using x∗(p) following Oum and Oren’s model, and my proposal using [x∗(p)+ z′∗(ι)]; note that
x∗(p) 6= x′∗(p), because x∗(p) corresponds to Oum and Oren model. Following the same application made
by Oum and Oren (2008), the hedging strategy for an LSE that maximizes the expected pay-off with VaR
constraint of -$60.000 is composed by a hypothetical LSE that charges a flat retail rate of $120 per MWh.
The spot price p at which the agent has to buy electric power, the weather-index ι and the quantity q is the
load at which the LSE supplies in a fixed interval; the three variables, price, temperature and quantity are
volatile and these variations affect the agents’ revenues; that is the problem that agents will try to solve using
an optimal static hedging solution. In order to obtain the solution of the mean-variance problem for varying
a we assume that P and Q distributions are different. All of three variables are distributed according to a
bivariate distribution in log price and quantity, and the log weather-index and quantity, as follows:

Independence Case:

Under P: lnp∼ N(4,0.72) q∼ N(3000,6502) logi∼ N(2.2,0.08212)
Corr(lnp,q) = 0 Corr(lnι,q) = 0.5
Under Q:lnι∼ N(4,0.72) logι∼ N(2.1,0.08212)

Taking in account the last parameters, and the normal bivariate probability distribution, we fitted Monte-
Carlo simulation technique to generate spot price, load and weather index patterns. Figure 4.1 shows the
spot price, load and weather index patterns. Using the normality assumption on the volume of consumption
and on the logarithm of spot prices, we go easy with the volatility exerted on these two variables. Thus,
despite an average of 67.86 U.S. $/MWh in the spot price, it can reach heights up to 58 U.S. $/MWh, which
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is actually quite well the reality of the market. The same applies to the trading volume that varies between
10 MWh and 1818 MWh with an average of 516 MWh.

Figure 4.1: Simulated patterns using Oum and Oren’s parameters for independence case. (a) Load, (b)
Weather-index, (c) Spot Price.
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Figure 4.2: Distribution of profit without hedging y(p,q)=(r-p)q assuming r=$120/MWh (a) Normal bivariate
distribution of profit. (b) Quantile plot without hedging.
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Figure 4.2 shows the basis of the problem; profit distribution without hedging, considering the distribution of
parameters. The profit without hedging only considers the LSE fixed rate, the spot price and quantity denoted
by y(p,q) = (r− p)q. Without hedging, 1205 simulations of 10000 are negative. So there is a probability
of 12.10% of have a net loss for the LSE. Moreover, the VaR is estimated at 5%, -1.78E05. In the end, the
average of simulations equals to −1.49E05.

Due to P distribution being different from Q, for various levels of risk aversion a there exists a mean-variance
problem solution. We restrict the set of solutions using the VaR-constrained problem (see theorem 1) in order
to find the optimal one.

Figure 4.3 shows the comparison of different possibilities, which are: without-hedge, hedging using x∗ (p)
following Oum and Oren model, and my proposal using [x′∗(p)+ z′∗(ι)], for the independence case.

Figure 4.3: Profit distributions under three cases: without-hedge, Oum and Oren results and my proposal
[x′∗(p)+ z′∗(ι)].

Figure 4.3 compares profit distributions under different scenarios of hedging. I could notice that Oum and
Oren profit distribution improves in terms of mean, standard deviations and the VaR measure the scenario
without hedging, and the independence case profit distribution improved by mean and standard deviation
what had been already achieved by Oum and Oren, (see Table 4.1).

Figure 4.4 shows the optimal mean-variance hedging strategy corresponding to optimal a∗. I show the opti-
mal payoff function obtained as an approximation for VaR-constrained problem (Equation (3.8))
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Figure 4.4: Hedging Strategy for an LSE that maximizes the expected payoff with VaR constraint. Black
line represents the hedging position; dashed line represents the payoff linear in price, and the red line exhibit
the weather payoff.

Figure 4.4 shows the expected payoff functions according to different claims to hedge. We could notice that
the sum of payoffs x∗(p)andz∗(ι) result improves in terms of value the individual payoffs result, and the
independence case profit plus the sum of payoffs improved by mean and standard deviation what had been
already achieved by the scenario without hedging.

Table 4.1 shows the percentiles for the cases shown in the figure 4.4.

Table 4.1: Percentiles when fewer than three cases occur: without-hedge, Oum and Oren results and my
proposal [x′∗(p)+ z′∗(ι)] for independence.

Percentiles
Without Hedging Oum-Oren Case Parameters Independence Case

1% -5.18E+05 -4.81E+04 2.74E+04
5% -1.49E+05 3.61E+04 3.57E+04
10% -2.21E+04 5.87E+04 2.31E+04
25% 1.01E+05 8.44E+04 9.36E+04
50% 1.80E+05 1.27E+05 1.34E+05
75% 2.32E+05 1.75E+05 1.64E+05
90% 2.73E+05 2.20E+05 2.14E+05
95% 2.96E+05 2.49E+05 2.43E+05
99% 3.40E+05 3.04E+05 3.39E+05

Mean 1.41E+05 1.26E+05 1.83E+05
Std. Dev 1.62E+05 6.93E+04 6.51E+04
Skewness -2.99E+00 -1.06E+01 4.65E+00
Kurtosis 1.71E+01 4.75E+00 1.39E+01
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Table 4.1 shows diverse percentiles that compare the different scenarios of hedging. We could note that Oum
and Oren methodology sharply the scenario without hedging; whoever the independence case improved by
mean and standard deviation what had been already achieved by Oum and Oren. For instance, the inde-
pendence case shows a mean of 1.83E +05 whereas Oum and Oren is 1.26E +05. Regarding the standard
deviation, the independence case is 4.2E +03 below Oum and Oren.

5 Conclusions

Transfer of climatic risk exposure to capital markets allows transforming of non-tradable risk into financial
assets which are, of course, tradable. Using forward contracts over weather offers to agents the chance to
hedge their volumetric risk exposure in electric power markets. While the optimal electric power portfolio
is an open problem in stating specific conditions to define the payoff structure of portfolios according to
the agents’ exposure, this chapter presents closed-form results that permit the second claim to complete the
market.

As an extension of Oum and Oren (2008), this chapter proposes a method to mitigate price and volumetric
risk, exploiting significant correlation among price, quantity and weather-index. I developed the optimiza-
tion problem of portfolios composed of two claims, price and weather, according factors featured in electric
power markets such as price volatility, price spikes, and climatic conditions that influence quantity volatility.
Our results arose due to the inclusion of the weather variable, and the hedging position was improved by
minimizing the risk and increasing mean according to positive correlation among price, quantity, and the
weather variable. For the electric power market, wholesale spot price and quantity are volatile, and the latter
is correlated with weather conditions. Results confirm that the weather payoff allows adjustment of hedge
strategy with the price payoff in order to hedge the double exposure of the agents. Table 4.1 shows statistics
of all of the cases and also confirms that general case hedging is better than the no-hedging scenario and
Oum-Oren model. Limiting the problem using a VaR-constrained solution permits to address the solution
against the non-linearity condition of the hedging strategy. The hedging portfolio is solved using the price
and weather payoff functions that represent the payoff of electric power derivatives and the payoff of the
forward weather-related index, solving those payoffs we obtain a hedging portfolio in realistic conditions.
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Appendix 1:Proof of Theorem 1.

I am taking into account, as an assumption, that the portfolio once composed, won’t be changed during the
whole horizon-time, and under the Risk Aversion assumption1 on the left-tail of the Y (x,z) distribution, let
Y (x,z) be a random variable (representing the profit of the agents) whose probability distribution function is
continuous with mean µ, and standard deviation σ.

Proof. i. (x∗(p),z∗(ι)) is the optimal solution to (3.3) and is on the efficient frontier of (E −VaRγ)
plane. Then considering the alternative (x∗(p),z∗(ι)) ∈ X(p),Z(ι) that reduce the variance with-
out reducing the mean of the Y (x(p),z(ι)) distribution, then µ ≥ µ∗ where µ = E[Y (x(p),z(ι))] and
µ∗ = E[Y (x∗(p),z∗(ι))] and σ2 < σ∗2 where σ2 = V [Y (x(p),z(ι))] and σ∗2 = V [Y (x∗(p),z∗(ι))] then
η(µ,σ,γ) which is increasing in σ and non-increasing in µ.

VaRγ(Y (x(p),z(ι))) = η(µ,σ,γ)

≤ η(µ∗,σ,γ)< η(µ∗,σ∗,γ)

=VaRγ(Y (x∗(p),z∗(ι)))

Thus, the statement shows before contradicts the assumption that (x∗(p),z∗(ι)) is on the efficient
frontier in the (E−VaRγ) plane. This implies that for a fixed γ a feasible perturbation on (x∗(p),z∗(ι))
that solves (3.3) cannot reduce the variance of the Y (x(p),z(ι)) distribution without increasing the
mean. Hence, (x∗(p),z∗(ι)) is also on the efficient frontier in the (E−V ) plane.

ii. Let Y (x(p),z(i)) be an electric power portfolio on the efficient frontier in (E−V ) space; the equation
(E = aV + c) defines a straight line for any constant c.
Thus, maximizing E{Y (x(p),z(ι))}−aV{Y (x(p),z(ι))} is equivalent to maximizing (E−aV ). Then,
any Y (x(p),z(ι)) maximizing E{Y (x(p),z(ι))}− aV{Y (x(p),z(ι))} must be on the efficient frontier
in (E−V ) space. This same Y (x(p),z(ι)) must clearly also be on the efficient frontier in (E−σ) space,
due to any portfolio Y ′(x(p),z(ι)) with the same or equal expected payoff and smaller variance, having
smaller standard deviation: if Y (x(p),z(ι)) has expected profit µ1 and standard deviation µ1. Whether
there is a portfolio with expected profit and VaR, say µ2, and VaR2 such that µ1 = µ2 and VaR2 <VaR1,
thus η(µ2,σ2,γ)− µ2 < η(µ1,σ1,γ)− µ1 and hence we have η(µ2,σ2,γ) < η(µ1,σ1,γ) by the which
the monotonicity of η in σ implies σ2 < σ1. Which is impossible since Y (x(p),z(ι)) was assumed
to be on the E−σ frontier. Then, Y (x(p),z(ι)) be on the left border of the feasible set in (E−VaR)
space.
Sharpe (2000) establishes that taking in account the linear constraints, the efficient frontier in (E−σ)
space is concave. Furthermore, if for any portfolio ι we have (Ei,σi),(Ei+1,σi+1) and (Ei+2,σi+2)
are on the efficient frontier and Ei+2 = δEi +(1− δ)Ei+1 for some δ, with 0 < δ < 1, then σi+2 ≤
δσi +(1−δ)σi+1. We can see that the fronties in (E−V ) space is also concave. That is, for the same
portfolios we show σ2

i+2 ≤ δσ2
i +(1−δ)σ2

i+1 then σ2
i+2 ≤ δ2σ2

i +(1−δ)2σ2
i+1 +2δ(1−δ)σiσi+1

Hence, σ2
i+2− [δσ2

i +(1− δ)σ2
i+1] ≤ δ2σ2

i +(1− δ)2σ2
i+1 +2δ(1− δ)σiσi+1− [δσ2

i +(1− δ)σ2
i+1] =

(δ2−δ)(σi−σi+1)
2 < 0

Therefore, σ2
i+2 < δσ2

i +(1−δ)σ2
i+1 from the concavity of efficient frontier in (E−V ) space, we can

see that if Y (x(p),z(i)) is on efficient frontier in (E−V ) space, there will be a straight-line tangent to
1See Sharpe (2000) and Kleindorfer and Li (2005)
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the frontier curve at Y (x(p),z(i)). Choosing a as the slope of this line, and maximizing (E−aV ) will
result in the (E−V ) of the portfolio Y (x(p),z(i))
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Appendix 2:Proof of Proposition 2

The Lagrange function for the constrained optimal problem is given by,

∂(x,z) =
∫∫

R2
U (Y |p, ι) fp,ι(p, ι)d pdι−λx

∫
R2

x(p)gx(p)d p−λx

∫
R2

z(ι)gz(ι)dι

−−→
grad (L(x,z)) =~0

With the Lagrangian multipliers λx, λz and the marginal density functions fx(p) of p and fz(ι) of ι under P,
by differentiation of L(x(p)) with respect to x(p) and L(z(ι)) with respect to z(ι) results in

∂L
∂x

= E
[

∂Y
∂x

U ′(Y )|p
]

fx(p)−λxgx(p) = 0 (5.1)

∂L
∂z

= E
[

∂Y
∂z

U ′(Y )|ι
]

fz(ι)−λzgz(ι) = 0

By the Euler equation from (1) and substituting ∂Y
∂x = 1 and ∂Y

∂z = 1 from (1) yields the first order conditions
for the optimal solutions x∗(p) and z∗(ι) as follows:

E
[
U ′(Y (p,q,x∗(p),z∗(ι))|p

]
= λ

∗
x

gx(p)
fx(p)

E
[
U ′(Y (p,q,x∗(p),z∗(ι))|ι

]
= λ

∗
z

gz(ι)

fz(ι)

For an agent who maximizes mean-variance expected utility of profit,

U(Y ) = Y − 1
2

a(Y ∗−E[Y ∗]2)

Then, by substituting U ′ = (1−aY ∗), the optimal condition is given by:

1−aE [Y ∗|p] = λ
∗
x

gx(p)
fx(p)

1−aE [Y ∗|ι] = λ
∗
z

gz(ι)

fz(ι)

Equivalently,

fx(p)−aE [Y ∗|p] fx(p) = λ
∗
xgx(p)

fz(ι)−aE [Y ∗|ι] fz(ι) = λ
∗
z gz(ι)
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Integrating both sides with respect to p and ι from−∞ to ∞, we obtain λ∗x = 1−aE[Y ∗] and λ∗z = 1−aE[Y ∗]
by substituting λ∗x , λ∗z and Y ∗ = y(p,q)+ x∗(p)+ z∗(ι) gives,

fx(p)−a(E[Y ∗|p]+E[x∗|p]+E[z∗|p]) fx(p) = [1−aE[Y ∗]]gx(p)−a(E[x∗]+E[z∗])gx(p)

fz(ι)−a(E[Y ∗|ι]+E[x∗|ι]+E[z∗|ι]) fx(ι) = [1−aE[Y ∗]]gz(ι)−a(E[x∗]+E[z∗])gz(ι)

Then,

fx(p)−a(E[y(p,q)|p]+ x∗(p)+E[z∗|p]) fx(p) = (1−aE[y(p,q)]−a(E[x∗]+E[z∗]))gx(p)

fz(ι)−a(E[y(p,q)|ι]+ z∗(ι)+E[x∗|ι]) fz(ι) = ([1−aE[y(p,q)]]−a(E[x∗]+E[z∗]))gz(ι)

By rearranging we obtain:

x∗ =
1
a
−E [y(p,q)|p]−E[z∗|p]+

(
E[y(p,q)]− 1

a

)
gx(p)
fx(p)

+(E[x∗]+E[z∗])
gx(p)
fx(p)

z∗ =
1
a
−E [y(p,q)|ι]−E[x∗|ι]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)
+(E[x∗]+E[z∗])

gz(ι)

fz(ι)

If p and ι are uncorrelated then we can establish that:

E[z∗|p] = E[z∗]

E[x∗|ι] = E[x∗]

Finally we have:

x∗ =

[
1
a
−E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

)
gx(p)
fx(p)

]
+E[x∗]

gx(p)
fx(p)

+E[z∗]
[

gx(p)
fx(p)

−1
]

z∗ =

[
1
a
−E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)

]
+E[z∗]

gz(ι)

fz(ι)
+E[x∗]

[
gz(ι)

fz(ι)
−1
]

In order to obtain the final formula for the optimal payoff function under mean-variance utility the next
system of equations could be utilized:

x∗ = b1(p)+a11(p)E[x∗]+a12(p)E[z∗]

z∗ = b2(ι)+a21(ι)E[x∗]+a22(i)E[z∗]

We take expectation under Q
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0 = EQ[b1(p)]+EQ[a11(p)]E[x∗]+EQ[a12(p)]E[z∗] (5.2)

0 = EQ[b2(ι)]+EQ[a21(ι)]E[x∗]+EQ[a22(ι)]E[z∗] (5.3)

And subtract Eq.(5.3)*EQ[a12(p)] from Eq.(5.2)*EQ[a22(ι)]

0 = EQ[b1(p)]EQ[a22(ι)]−EQ[b2(ι)]EQ[a12(p)]

+
[
EQ[a11(p)]EQ[a22(ι)]−EQ[a21(ι)]EQ[a12(p)]

]
E[x∗]

Where,

E[x∗] =
EQ[b1(p)]EQ[a22(ι)]−EQ[b2(ι)]EQ[a12(p)]

EQ[a21(ι)]EQ[a12(p)]−EQ[a11(p)]EQ[a22(ι)]
(5.4)

By substituting E[x∗] in Eq. (5.3) we obtain,

E[z∗] =−
EQ[b2(ι)]+EQ[a21(ι)]

EQ[b1(p)]EQ[a22(ι)]−EQ[b2(ι)]EQ[a12(p)]
EQ[a21(ι)]EQ[a12(p)]−EQ[a11(p)]EQ[a22(ι)]

EQ[a22(ι)]
(5.5)

Moreover, Eq.(5.4) and Eq.(5.5) could be expressed as follows:

E[x∗] =

[
1
a −E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

) gx(p)
fx(p)

]
gz(ι)
fz(ι)[

gz(ι)
fz(ι)
−1
][

gx(p)
fx(p) −1

]
−
[

gx(p)
fx(p)

][
gz(ι)
fz(ι)

]
−

[
1
a −E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

) gz(ι)
fz(ι)

][
gx(p)
fx(p) −1

]
[

gz(ι)
fz(ι)
−1
][

gx(p)
fx(p) −1

]
−
[

gx(p)
fx(p)

][
gz(ι)
fz(ι)

] (5.6)

E[z∗] =

[
1
a −E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

) gz(ι)
fz(ι)

]
+
[

gz(ι)
fz(ι)
−1
]

[
gz(ι)
fz(ι)

]([
gz(ι)
fz(ι)
−1
][

gx(p)
fx(p) −1

]
−
[

gx(p)
fx(p)

][
gz(ι)
fz(ι)

])
([

1
a
−E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

)
gx(p)

fx(p)

]
EQ
[

gz(ι)

fz(ι)

]

−

[
1
a
−E [y(p,q)|ι]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)

][
gx(ι)

fx(ι)
−1
])

. (5.7)

For maximizing mean-variance expected utility the optimal solution x∗(p) and z∗(ι) to problem (5.4) is given
as:
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x∗ =

[
1
a
−E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

)
gx(p)
fx(p)

]
+E[x∗]

[
gx(p)
fx(p)

]
+E[z∗]

[
gx(p)
fx(p)

−1
]

z∗ =

[
1
a
−E [y(p,q)|p]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)

]
+E[z∗]

[
gz(ι)

fz(ι)

]
+E[x∗]

[
gz(ι)

fz(ι)
−1
]

54



Chapter III

Applications of Optimal Static Hedging of
Energy Price and Volume Risk to markets
in the US and Colombia

Abstract

The optimal hedging strategy proposed in Chapter II is applied to the real markets, to the Pennsylvania,
New Jersey and Maryland system (PJM) in United States and the Wholesale Power Market in Colombia
(WPMC). Parameters for price and quantity were obtained from each market, weather indexes for the PJM
market were obtained from the Chicago Mercantile Exchange (CME) and hydrological indexes were ob-
tained from Colombian market. The hydrological index is based on the hydrological contributions of the
rivers to dam levels. El Niño and La Niña have also influenced the quantity variations, and the agents in
those markets are exposed to both price and quantity volatilities.

Keywords: Static Hedging, Hydrological Indexes, Volumetric Hedging, PJM System, Wholesale Electric
Power Market in Colombia.

JEL Classification: G0, G13, C32.

1 Introduction

Weather affects the habits, preferences and consumption of resources by people so that some industries are
affected by and become sensitive to unexpected variations in the weather. Industries such as energy, agricul-
ture, and insurance are examples of weather sensitive industries. They may lose trillions of dollars annually
due to weather (Dutton (2002)). Some productive sectors are exposed to weather and volumetric risks such
as hydro-generated electric power, and uncertainty caused by climate variables is the main source of the
volumetric risk exposure which affects the agents’ revenues.
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The profit function for electric power agents has two random components, spot price and quantity, which
imply that they are facing two types of risk, price risk in the spot markets and volumetric risk caused by
quantity fluctuations. Together, price and quantity uncertainty are a potent combination for the electric power
markets even when hydro plants do not contribute a large proportion of a region’s electricity generation. In
the energy sector, volumetric risk is becoming increasingly important given the nature of electric power
and the strong links between physical production of electricity and the financial operation market. Physical
production is affected by variations due to climatic conditions.

The electric power sector is highly dependent on weather conditions; therefore, price, quantity and weather
are all correlated; thus, unexpected changes in any of the three variables which affects one or all of others.
For instance, the effect of the weather can be seen adverse movements in price and volume which result
in the presence of severe price and volumetric risk exposures. This volume exposure is perhaps the most
complicated kind of exposure. However, agents in the market misjudge their volume risk exposure, possibly
leading to unexpected losses not backed by generation.

Evidence from the Colombian and USA markets show that climate variation affects spot price and quan-
tity behavior. The wholesale spot price in Colombia exhibits volatile behaviour, for instance in November
2010 average daily price per KWh was 22.7 COP less than in November 2009 due to La Niña phenomenon
(138 COPs per KWh in November 2010, and 160.7 COPs per KWh in November 2009). About generation,
there was 19.8% more capacity in 2010 after the El Niño effect of 2009 had diminished (75.2% in 2010 and
55.4% in 2009). The spot price in PJM Market reached $246 per MWh in the fall of 2006. At that time the
normal price range was around $ 23-$ 101. In the winter of 2002 load in the PJM system was 183200 MW.
At that time the normal load range was around 40000 MW - 138000 MW.

In the United States the Chicago Mercantile Exchange (CME) offers standardized weather derivatives with
the purpose of increasing liquidity and accessibility in these kinds of contracts. Information about atmo-
spheric conditions is provided by the National Oceanic and Atmospheric Administration (NOAA), which
conducts research and gathers data about the oceans, atmosphere, space and sun and applies this knowledge
to the service of the markets. NOAA provides the Heating-Degree-Day-Data, Cooling-Degree-Day-Data,
and Oceanic Niño Index Data (ONI). Temperature indexes reflect the sum of the US averages from the start
of the year until the current week. Cumulative indexes are normally calculated from January 1 to December
31. In the Colombian market, there are no weather derivatives, which the hedging strategy makes compli-
cated. Since, the most important generation system is hydro plants, hydrology is the variable that needs
attention in order to understand the quantity uncertainty.

Weather derivatives based on indexes of temperature such as Cooling-Degree-Days (CDD) and Heating-
Degree-Days (HDD) from CME could be used in order to hedge unexpected changes in the weather trans-
ferring climatic uncertainties to the capital markets. Financial securities such as weather futures and options
allow compensation for volumetric risk. The purpose of the weather derivatives is to smooth out the tempo-
ral fluctuations in expected earnings obtained by the agents. The hedging of portfolios against unexpected
weather variations could be done by financial contracts that allow compensation for losses. Climatic factors
such as El Niño and La Niña are responsible for anomalies that affect the price and quantity volatilities and,
consequently, the agents’ revenues.

Here we show that the model presented in Chapter II can be applied by using real parameters from the
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electric power markets PJM in US, and WPMC in Colombia. Secondly, we show that this model, optimal
static hedging general case, can accurately capture the correlation structure and allow hedging of price and
volumetric risk. Thirdly, we present results of the application the model including weather derivatives and
compare the performance in two different scenarios: without hedging and the hedging strategy for each of
PJM and WPMC. For the Colombian case we had to establish a hydrology index based on river contributions
to dam levels in the Colombian hydro-electrical system.

In this Chapter, Section 2 describes the problem statement and solution algorithm, Section 3 presents the
market characteristics and parameters, Section 4 shows empirical results, and section 5 concludes

2 Problem Statement

This case study aims to discuss the implications of the volumetric and price exposures caused by the trans-
action of electricity generated by water when the agents try to ensure future revenues. We illustrate the
applications of the optimal static hedging strategy when investors deal their portfolio composed by price
and weather derivatives, and when countries such as Colombia are exposed to fluctuations of dam levels due
to El Niño and La Niña phenomena, in the same way countries such as a US are exposed to temperature
variations. We demonstrate the hedging technique proposed in Chapter II of this thesis.

The problem of optimal static hedging was solved in Chapter II using derivation of payoff functions for
the case of independence, in which price is not correlated with the weather variable. In this chapter we pro-
pose the application of the optimal static hedging, based on the development proposed in Chapter II, on the
real markets in two different countries, conditions and features; the electric power markets PJM in US, and
WPMC in Colombia. Thus, the traditional hedging strategy using vanilla derivatives becomes completed
using weather derivatives which can be used as a measure to mitigate volumetric risk exposure.

In modern finance, the portfolio construction problem follows Markowitz (1952) model which provides
specific solution in order to maximize expected future returns given a certain level of risk. Campbell et
al (2001) introduced a similar portfolio allocation problem using VaR as a risk measure. In the electric
power literature, several authors follow Markowitz’s methodology to address hedging strategy using vanilla
derivatives. Nasakkala and Keppo (2005), and Woo et al (2004) studied the interaction between stochastic
consumption volumes and electricity prices, and proposed a mean-variance type model to determine opti-
mal hedging strategies. Vehvilainen and Keppo (2006) optimized hedging strategies taking into account the
Value at Risk as risk measure. Huisman (2007) introduced a one-period framework to determine optimal
positions in peak and off-peak contracts in order to purchase future consumption volume. In this framework,
hedging strategy is assumed to minimize expected costs relating to an ex-ante risk limit defined in terms of
Value at Risk. Oum and Oren (2008) developed a self-financed hedging portfolio consisting of derivatives
contracts, and they obtained the optimal hedging strategy in order to hedge price, and volumetric risk maxi-
mizing the expected utility of hedge profit for the Load Serving Entities (LSE).

Finally, Chapter II of this thesis shows that Oum and Oren solution could be improved including weather
derivatives in order to complete the hedging over volumetric risk exposure, proposing the Optimal static
hedging model for the independence case assumption.
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Proposition 2 in Chapter II established that electric power agent’s problem could be summarized as fol-
lows:

Maximizing the mean-variance utility function on profit,

E[U(Y )] = E[Y (x,z)]− 1
2

a∗ var(Y (x,z))

For maximizing mean-variance expected utility the optimal solution x∗(p) and z∗(ι) to the problem

max
x(p),z(ι)

E[U(y(p,q),x(p),z(ι))] (2.1)

s.t EQ[x(p)] = 0

EQ[z(ι)] = 0

2.1 Model and Solution Algorithm

In order to improve optimal static hedging solution and address price and volumetric risk mitigation, Chapter
II proposes a new way to hedge a LSE’s profit based on the constitution of an optimal portfolio composed
by two claims: standard contracts on price and weather derivatives. Closed-form results proposed in Chapter
II define the follow equations:

x∗ =
1
a
−E[y(p,q)|p]−E[z∗|p]+

(
E[y(p,q)]− 1

a

)
gx(p)
fx(p)

+(E[x∗]+E[z∗])
gx(p)
fx(p)

(2.2)

z∗ =
1
a
−E[y(p,q)|ι]−E[x∗|ι]+

(
E[y(p,q)]− 1

a

)
gz(ι)

fz(ι)
+(E[x∗]+E[z∗])

gz(ι)

fz(ι)
(2.3)

More precisely optimal static hedging implementation procedure requires following the next algorithm:

i Collecting historical data of markets on study.

ii Computing historical and simulated parameters from PJM-system and WPMC-system.

iii Computing descriptive statistics of variables from PJM and WPMC markets compare to the corre-
sponding average value of real market over the value of simulated trials.

iv Constructing a hydrological index that characterizes hydrological contributions of the rivers during a
period of time.

v Fix parameters including range for a(min,maxandsteps).

vi Fix number of simulations numtrab "large".
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vii Generate random price p, load q and weather variable w, using a multivariate normal distribution.

viii Compute the payoff x∗(p) and z∗(ι) (Equations (2.1) and (2.3)).

ix We can obtain (xa(p),za(ι)) that maximizes:

E[Y (x,z)]− 1
2

a∗ var(Y (x,z))

x For each a, calculate associated VaR(a)≡VaR(Y (xa,za)) such that P{Y (xa,za)≥−VaR(a)}= γ

xi Find smallest a(aopt)suchthatVaRγ(Y (xa,za))≤V0

xii Using aopt in order to find Y (x(aopt),z(aopt)).Y (.), which is the profit distribution of the expected
utility maximizing solution, under Optimal Static Hedging including the weather claim (see Figures
8 and 9)

xiii Using the payoff functions x(aopt), and z(aopt), and based on Carr and Madan (2001) we can define the
replication of payoff using Equation (2.4) (see Figures 4.10 and 4.11).

f (p,q) = (r− p)q+ x(p)+ z(ι),

x(p) = x(Fp).1+ x′(Fp)(p−Fp)

+
∫ Fp

0
x′′(k)(k− p)+dk+

∫
∞

Fp

x′′(k)(p− k)+dk (2.4)

z(ι) = z′(Fι)(ι−Fι)

The algorithm above permits us obtain the optimal static hedging profit distribution using two claims and
the concerning replication payoff function for each market on study.

3 Market Characteristics

This chapter aims to present an application of the Optimal Static Hedging Model in the real market from
two different zones and conditions. PJM market in US use the CME to trade energy throughout contracts
and allows hedging of price and volume volatility. WPMC in Colombia is less developed than PJM. The
Colombian market will be studied further as an example of an emerging market. In this section, we present
the features of PJM and WPMC to see why optimal static hedging strategy is possible in the context.

3.1 PJM Interconnection System

PJM Interconnection system coordinates the continuous buying, selling and delivery of wholesale electricity
through the energy market. In its role as market operator, PJM balances the needs of suppliers, wholesale
customers and other market participants and monitors market activities to ensure open, fair and equitable
access. The PJM system has since expanded into the deregulated electric power markets in the world. PJM
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has generation capacity for nearly 167,454 Megawatts per year, and an all-time peak demand of 144,644
Megawatts. Its main fuel types are coal (74%), natural gas (22%) and others (4%), (2009 data). The PJM
system covers a large region in US: Pennsylvania, New Jersey, Delaware, Maryland, Virginia, Ohio, West
Virginia, New York, and Washington D.C.

PJM’s energy market operates much like a stock exchange, with market participants establishing a price
for electricity by matching supply and demand. The market uses locational marginal pricing (LMP), that
reflects the value of the energy at the specific location and time it is delivered. If the lowest-priced electricity
can reach all locations, prices are the same across the entire grid. When there is transmission congestion,
energy cannot flow freely to certain locations. In that case, more-expensive electricity is ordered to meet that
demand. As a result, the locational marginal price is higher in those locations. The energy market consists
of Day-Ahead and Real-Time markets. The Day-Ahead Market is a forward market in which hourly LMPs
are calculated for the next operating day based on generation offers, demand bids and scheduled bilateral
transactions.

Since, the wholesale spot price is referred to a locational marginal price, location influences price be-
havior due to the cost of transportation as well as other commodity markets. This feature adds volatility
to the wholesale prices. The Real-Time Market is a spot market in which current LMPs are calculated at
five-minute intervals based on actual grid operating conditions. Real-time prices are available. PJM settles
transactions hourly and issues invoices to market participants monthly.

Figure 3.1: PJM market variables. (a) Wholesale spot price, (b) PJM load, (c) Weather index for PJM, source:
Data from PJM system (Bloomberg).
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Figure 3.1 shows patterns of behavior of the whole variables trajectories and the market features that estab-
lish prices and loads experienced in several events where peaks are identifiable.

Optimal static hedging strategy assumes the independence assumption. Thus, we show that for the PJM-
system case, price and the weather index are uncorrelated. Using the Granger test for causality (Granger
(1969)), we also test that price and weather index are not related. We found that the test accepts the null
hypothesis and then, both price and weather index in the PJM market is no related or weather index doesn’t
cause price. Furthermore, correlation between price and hydrological index is Corr(p, ι) =−0.0116. Figure
3.2 shows correlation between price and weather index in US.

Figure 3.2: Market correlations between price and weather index, US market.

Market parameters

The data set used consisted of 3765 observations of spot prices, loads and weather index from PJM sys-
tem and NOAA from January 1, 2000 to February 22, 2010. Seven descriptive statistics of daily pattern
were calculated over fous simulated sample paths. Table 3.1 shows the empirical average, median, standard
deviation, skewness, kurtosis, minimum and maximum calculated for the real and simulated data.
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Table 3.1: Percentiles when fewer than two cases occur: without-hedge, and optimal static hedging applica-
tion [x′∗(p)+ z′∗(ι)] for PJM-system and WPMC-system.

Spot Sim Load Sim Log P. Sim Log Weather Sim Log Sim
Price Sp P. Load Price Index Windx Widx Log Widx

Mean 58,38 58,4 2053 2039,6 3,994 3,996 2,409 2,7 0,53 0,396
Median 53,44 54,1 1040 2040,9 3,979 3,991 1,7 1,491 0,4 0,399

S. Deviat. 23,69 23,2 539,8 440,74 0,378 0,378 2,173 4,238 1,099 1,094
Skeewness 1,61 1,37 0,212 0,028 0,13 0,066 1,501 0,891 -0,626 -0,017

kurtosis 5,47 3,73 5,382 -0,114 0,181 -0,01 2,597 16,28 -0,126 2,846
Min 21,14 15,4 800 474,48 3,051 2,732 0,1 0,042 -2,303 -3,179
Max 246 231 18320 3632 5,505 5,443 12,5 11,52 2,526 4,747

3.2 Wholesale Power Market in Colombia WPMC

Colombia has a rich endowment of energy sources: natural gas, coal, oil and a hydroelectricity potential. Its
hydropower capacity of approx 67% of the total capacity represents 13.5 GW. Other sources are natural gas
27%, coal 5%, and 0.3 per cent other sources.Thus, this market is mainly hydro and climatic events such
as El Niño can have a large effect. The total power demand in 2009 was 9 GW, meaning that capacity was
around 30 per cent greater than demand (UPME (2009)). Regulation, dispatch system and an unbundled
scheme generated an excellent environment making the Colombian electricity market mature very quickly.

The Regulatory Commission for Gas and Electricity (CREG) was created by statutes and its function is
to regulate the entrepreneurial, commercial, technical, and operational aspects of the present structure of
the electric power sector. This includes the generation, transmission, and distribution/commercialization of
electric power. Regulation in the WPMC also created the figure of the “pure marketer”, which is an interme-
diary agent whose purpose is to make competition dynamic and to provide the final customers with different
ways to access competitive prices in the electric market of wholesalers.

Regulations in the Colombian market allow these agents to sell electric power to their customers through
contracts that have no “steady electric power to endorse”, that is, that endorsed by the electric generators to
guarantee supply to these users. Moreover, these agents can take endless risks, and, in the case of bankruptcy,
they do not have assets to lose, discarding their obligations effortlessly.

In the Colombian system, the electric power generators are obliged to supply electric power by the reg-
ulatory institution even if they were impaired by the agents who did not comply with the secondary markets.
These generators lack valid arguments to assume this additional risk, because it is not part of their activity.
If this situation was to occur, it would not only impair them financially, but it would also make them turn
to the Justice system to determine who must assume liability for the resulting impairments. Hence, one of
the authority’s demands for electric generators is that they must insure themselves against price volatility
risks. This opens up the opportunity of using derivatives instruments in the Colombian electric sector in the
foreseen future.
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Figure 3.3: the whole variables trajectories and the market features. Fig. 2(a) shows price behavior in the last
years from January 1, 2000 to February 22, 2010. Fig. 2(b) exhibits load pattern in the same period of prices
and shows us convergence to the minimum load and negative correlation between prices and loads. Fig. 2(c)
presents the hydrology-index pattern that was used to complement hedging strategy, source: Derived from
Neon system.

Figure 3.3 shows market variables of the collecting data from Colombian market from January 1, 2000 to
February 22, 2010. Data was obtained from Neon-system of Experts on Markets (XM) in Colombia.

Optimal static hedging strategy assumes the independence assumption. So, we show that for the WPMC-
system case, price and the hydrological index are uncorrelated. Using the Granger test for causality (Granger,
1969), we also test that price and hydrological variable are not related. We found that the test accepts
the null hypothesis and then, both price and hydrological index in the WPMC market is no related or
hydrological index doesn’t cause price. Furthermore, correlation between price and hydrological index is
Corr(p, ι) = 0.0074. Figure 3.4 shows correlation between price and weather index in Colombia.
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Figure 3.4: Market correlations between price and weather index, Colombian market.

Market parameters

We dispose also full data set of quoted spot prices, loads and hydrological contributions from Colombian
power market; starting from January 1, 2000 to February 22, 2010. The data set comprises 3765 observa-
tions exhibiting varying path properties over time.

The data set used consisted of 3765 observations of spot prices, loads and hydrological contributions from
WPMC system from January 1, 2000 to February 22, 2010. Seven descriptive statistics of daily pattern
were calculated over fous simulated sample paths. Table 3.2 shows the empirical average, median, standard
deviation, skewness, kurtosis, minimum and maximum calculated for the real and simulated data.

Table 3.2: Descriptive statistics of variables from Colombian market compare to the corresponding average
value of real market over a number of simulated trials.

Spot Price Simul Spot P Load Simul_Load Log_Price Simul_Log_P
Mean 77.07 74.650 1685 1697.773 4.25 4.223
Median 68.31 67.359 1692 1698.000 4.22 4.210
S. Deviat 38.66 32.741 345 349.813 0.42 0.425
Skewness 2.21 1.185 -0.38 -0.035 0.58 -0.002
Kurtosis 6.87 1.974 -0.76 0.078 0.47 -0.196
Min 28.84 16.860 502 528.700 3.36 2.825
Max 326.77 241.050 2288 2956.900 5.79 5.485
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3.3 Hydrological index for Colombian Market

There are several reasons that will be required for structuring a contract over hydrology or climate. Further-
more, the index represents fluctuations of the observed variables and the profit function (Caballero, et al.
2002).In Colombia, We needed to construct a hydrological index that characterizes hydrological contribu-
tions of the rivers during a period of time called "time of impact", and this index could be used in order
to structure the optimal static hedging strategy. The hydrological index known as Hyidx and is related to
rainfall levels that determine the contributions, drought periods and periods of excessive rainfalls. Following
the same methodology as CME, the index will be discriminated for each case based on the average level of
contributions for a period of average or typical behavior of the Colombian hydrology. To define a period of
a typical performance in hydrology, we have used the Oceanic Niño Index (ONI), which measures ocean
temperatures to define drought periods or El Niño events or rainfall periods or La Niña events (data for this
index were obtained from NOAA in November, 2010). The average performance period was the period from
January 2004 to December 2006. Figure 3.5 shows the behavior of the ONI index Pacific 3.4 which is most
appropriated for Colombian market (Vergara et al., (2010)).

Figure 3.5: Oceanic Niño Index ONI pacific 3.4, base period 1992-2011, source: Plot were obtained from
NOAA in February, 2011 .

The hydrological index is normally an accumulation of the Drought Period-Days DPDs or Rainfall Period-
Days RPDs during the time of the event. For El Niño events, the hydrological contributions will be lower
than the average performance denoted by hycont∗, thus, the function for drought periods can be defined as
follows:

DPDi = max(hycont∗−hyCi,0) (3.5)

Where hyCi denoted the average hydrological contribution for day i and it is defined as:
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hyCi =
hyCmax

i −hyCmin
i

2
(3.6)

From Equation 3.6 and the average of typical performance hycont∗, RPDi for day i is given by:

RPDi = max(hyCi−hycont∗,0) (3.7)

The index defines the total number of DPDs or RPDs over the impact period for the n days.

Id =
n

∑
i=1

DPDi and Ir =
n

∑
i=1

RPDi (3.8)

4 Empirical Results

In Chapter II of this dissertation, we suggest one possible way to solve the constrained optimization problem.
In this chapter we apply the optimal static hedging closed-form solution using two examples of the different
characterized real markets. We consider different conditions, different locations and levels of development,
the PJM and WPMC markets. The first of these is in the US, highly developed and supported by CME, one
of the most developed, mainly commodities markets in the world. The second is located in Colombia, and
at the end of 2010 the first standardized contract over electric power was offered: Futures contracts. This
market is considered as an emerging market case, and the main power source is water which implies specific
characteristics and high hydrologic dependence.

We illustrate the optimal static hedging with numerical examples based on the VaR-constrained mean-
variance utility function, and we apply the model to two cases; first, the US market characterized by presence
of seasons which means that the temperature is the climatic variable that produces anomalies and, conse-
quently, volumetric risk exposure. Second, the Colombian market is one of the most interesting electric
power markets in South America, characterized by high hydro-electric generation, and it is affected climat-
ically by drought or rainfall periods defined by El Niño and La Niña. High hydro-dependence implies that
hydrology is the critical variable that produces anomalies that affect the agent’s revenues.

Taking in account that weather derivatives are not available in Colombia, this chapter designed a hydrology-
related index that is used as the underlying asset of the forward contracts that allows to the agents to perform
the hedging strategy over its exposure to unexpected climate changes from events related to El Niño and La
Niña. Equations 3.5 and 3.7 allow calculating, respectively, the rates for drought and rainfall daily events
during the impact-period. Equation 3.6 derived the average hydrological contributions for day i, and it will
be compared against the average or typical performance denoted by hycont∗ which characteristics the neu-
tral hydrological-period in which there is no presence of hydrological phenomena (El Niño or La Niña).
Equation 3.8 allows calculation of hydrological indices which are normally calculated as the accumulation
of days in drought and rainfall day periods.

Table 4.3 shows the average o typical performance denoted by hycont∗ determined between January 2004
and December 2006.
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Table 4.3: Average of typical behavior of hydrological contributions.

Descriptive Statistics Average Typical Behavior
01/012004 - 01/12/2006

KWh MWh
Min 33535200 33.535200
Max 406477000 406.477000
Average 186,470,900 186.4709

In Table 4.4 we show the historical and simulated statistics for the hydrological index from WPMC. Five
descriptive statistics of daily pattern were calculated for two simulated sample paths.

Table 4.4: Descriptive statistics of hydrological index from Colombian market compared to the correspond-
ing average value of real market over a number of simulated trials.

Hyd_Index Simul_Hyindx Log_HyIndex Simul_Log_Wldx
Mean 63.018454 63.198 4.018218427 4.376
Median 70.522 65.861 4.305453318 4.385
S. Deviat 58.903 63.851 0.995413685 0.504
Skewness -0.8710621 1.523 -2.149440435 -0.076
Kurtosis 1.0250601 3.944 6.900005491 -0.133

Figure 4.6 shows indexes calculated from WPMC system, determined between January 2004 and December
2006. This index was used in order to complete the optimal hedging strategy for the Colombian market.

Figure 4.6: Hydrological Indexes DPDs and RPDs for Colombian market.
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We consider that the variables price, quantity and the weather index exhibit correlation among them, which
is that (p,q) and (ι,q) are correlated, for the PJM market (p,q) exhibits negative correlation, and positive
for (ι,q). This behavior is taking into account that the period of study is from January 2002 to April 2010.
For the Colombian market case, the same period is evaluated and exhibits a significant positive correlation
between price and quantity and negative for quantity and hydrological index.

Figure 4.7: Market correlations between price, quantity and climatic index. (a) Correlation spot price and
load PJM system, (b) Correlation load and weather index PJM system, (c) Correlation spot price and load
WPMC, (d) Correlation load and hydrological index WPMC, source: Developed using data from PJM sys-
tem, and WPMC system.

Figure 4.7 shows the relationship among variables for each market on study, we could note that for the PJM
market correlation between spot price and load strongly the relationship between load and weather variable.
The same result exhibit the variables correlation for the Colombian market which it could explain due to the
independence assumption that states independence between price and weather variable, which was showed
in Figure 3.4.

The spot price p at which the agent has to buy electric power, the weather-index ι is the climatic vari-
able, and the quantity q is the load at which the LSE supplies power in a fixed interval. The three variables,
price, temperature and quantity, are volatile and variations affect the agent’s revenues. This is the problem
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that agents will try to solve using the optimal static hedging solution. In order to obtain the solution of the
mean-variance problem for varying a we assume that P and Q distributions are different. All three variables
are distributed according to a bivariate distribution in log price and quantity, and the log weather-index and
quantity, as follows:

4.1 Market Probability Distribution Parameters

PJM-system

Under P:ln p∼ N(3.99,0.382) q∼ N(2053,5402) log ι∼ N(0.53,1.102)
Corr(p, ι) =−0.0116 Corr(ln ι,q) = 0.24
Under Q:ln p∼ N(3.98,0.382) ln ι∼ N(0.40,1.102)

WPMC-system

Under P: ln p∼ N(4.25,0.422) q∼ N(1685,3452)
Corr(p, ι) =−0.0074 Corr(ln ι,q) =−0.26
Under Q: ln p∼ N(4.22,0.422) ln ι∼ N(4.39,0.52)

Table 4.5: Percentiles when fewer than two cases occur: without-hedge, and optimal static hedging applica-
tion [x′∗(p)+ z′∗(ι)] for PJM-system and WPMC-system.

Percentiles
Without WPMC-

Without PJM-System Hedging system
Hedging Optimal WPMC Optimal

PJM-System Hedging system Hedging
1% -2.1E+04 -2.5E+04 -5.4E+05 -7.6E+04
5% 4.6E+04 5.5E+04 -1.5E+05 -4.0E+04
10% 7.1E+04 7.1E+04 -2.4E+04 -2.4E+04
25% 1.0E+05 9.5E+04 1.1E+05 -6.0E+02
50% 1.3E+05 1.4E+05 1.8E+05 2.3E+04
75% 1.5E+05 1.9E+05 2.2E+05 4.7E+04
90% 1.7E+05 2.4E+05 2.6E+05 6.9E+04
95% 1.9E+05 2.7E+05 2.8E+05 8.1E+04
99% 2.1E+05 3.2E+05 3.1E+05 1.1E+05

Mean 1.2E+05 1.4E+05 1.4E+05 1.2E+05
Std. Dev 4.5E+04 4.0E+04 1.7E+05 3.8E+04
Skewness -9.9E-01 -8.2E-02 -4.5E+00 -4.5E-01
Kurtosis 6.2E+00 6.0E+00 3.9E+01 5.2E+00

Table 4.5 shows diverse percentiles that compare the different scenarios of hedging for both markets PJM and
WPMC. We could note that for the PJM market optimal static hedging methodology sharply the scenario
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without hedging; whoever the hedged scenario improved by mean and standard deviation what had been
already achieved by Chapter II in this thesis. For instance, the hedged scenario shows a mean of 1.4E +05
whereas without hedging is 1.2E +05. Regarding the standard deviation, the hedging scenario is 5.0E +04
below without hedging. For the Colombian market hedging scenario improves by standard deviation but not
by mean. Regarding mean and standard deviation, the hedged scenario is 2.0E +04 below without hedging
in mean and 1.32E +05 in standard deviation.

Figure 4.8: PJM-system profit distributions under two cases: without-hedge, and application of optimal
static hedging model[x′∗(p) + z′∗(ι)]. (a) Quantile - without hedging. (b) Quantile -Optimal hedging. (c)
Profit distribution.

Figure 4.8 compares profit distributions under two scenarios of hedging for the PJM market. We could notice
that optimal static hedging profit distribution improves in terms of mean, standard deviations and the VaR
measure the scenario without hedging what had been already achieved by Chapter II in this thesis, (see Table
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4.5).

Figure 4.9: WPMC-system profit distributions under two cases: without-hedge, and application of optimal
static hedging model [x′∗(p)+ z′∗(ι)]. Quantile - without hedging. (b) Quantile -Optimal hedging. (c) Profit
distribution.

The WPMC system’s profit distribution function is shown without and with hedging in Figure 4.9. By using
two claims (price and hydrological variable), the closed-form solution proposed in Chapter II allows com-
pletion of hedging so that agents can reduce variance and improve the mean of the utility function.

Figure 4.9 compares profit distributions under two scenarios of hedging for the Colombian market. We
could notice that optimal static hedging profit distribution improves in terms standard deviations and the
VaR measure the scenario without hedging but not in terms of mean, (see Table 4.5).
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Figure 4.10: Optimal payoff [x∗(p)+z∗(ι)] of the Optimal Static Hedging Portfolio. (a) PJM-system optimal
payoff function for the independence case respect to spot price; dashed line represents the profit without
hedging, blue line represents the hedging payoff of price claim and red line represents the payoff as a sum
of price and weather. (b) PJM-system optimal payoff function for the independence case respect to weather
variable; dashed line represents the profit without hedging, blue line represents the hedging payoff of the
weather claim and red line represents the payoff as a sum of price and weather.
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Figure 4.11: Optimal payoff [x∗(p) + z∗(ι)] of the Optimal Static Hedging Portfolio. (a) WPMC-system
optimal payoff function for the independence case respect to spot price; dashed line represents the profit
without hedging, blue line represents the hedging payoff of price claim and red line represents the payoff as
a sum of price and weather. (b) WPMC-system optimal payoff function for the independence case respect to
weather variable; dashed line represents the profit without hedging, blue line represents the hedging payoff
of the weather claim and red line represents the payoff as a sum of price and weather.

Figures 4.10 and 4.11 show the optimal payoff function of the portfolios composed by two claims for the
Colombian market system under independence assumption. We can show that for different values of the
claim for instance spot price payoff improves the hedging position of the agents that use electricity and
weather derivatives to hedge their positions.
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5 Conclusions

Under VaR-constrained mean-variance utility function, in this chapter we aim to apply the optimal static
hedging, closed-form results presented in Chapter II to two different types of electric power markets, one in
the US and the second in Colombia. The first case is one of the most representative electric power markets
that uses a secondary market, Chicago Mercantile Exchange (CME). Furthermore, United States of America
is a seasonal country that is affected by the temperature variations which implies that temperature is a critical
variable at the hour of measurement of volumetric risk exposure. The second case, the Colombian market, is
characterized by being highly hydroelectrically dependent due to the main source of generation being water,
and, only two seasons can clearly be identified, drought and rainfall. The aforementioned descriptions define
two especial cases to be applied in the model.

Constructing the hydrological index for the Colombian market is an important contribution and this in-
dex could be use by the agents in order to complete the hedging strategy.

Numerical developments using Monte-Carlo simulation including specific characteristics of each market
in the study shows that the optimal payoff functions allow completion of a hedging scheme under correla-
tions among price, weather and quantity. Furthermore, it can be shown through numerical development that
hedging strategy improves the agents’ profit distributions for both PJM and WPMC. According to the market
features, can be structured optimal payoff functions under specific conditions defined by the mean-variance
utility function for the market agents that permit them to improve through weather instruments. Applica-
tions to real markets allow verification that optimal static hedging allows hedging of volumetric exposure
and diversify capability.

Taking into account the differences between the PJM system and WPMC system, results confirm that the
weather index and, in the Colombian case, hydrological index allow completion of the market and adjust-
ment of the hedging strategy, improving the hedging agent’s position under independence assumption.
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Chapter IV

Final Discussion

The original question aimed to find out whether the energy power market takes into account the risk factor
in diverse transactions, which could be indicated by the existence of a forward risk premium; this is assumed
by generators and marketers and reflects the tradable energy quantity taking on the price volatility fluctu-
ations. The greatest problem that agents have to face in this type of market is the capacity to compensate
for possible losses when taking short and long positions on the future through financial contracts, whose
settlement would generate a profit equivalent to the loss caused in such an operation.

In the Colombian market, the risk taker is the marketer, specifically in the unregulated market segment,
because they are assuming the price risk in the long-term negotiations. The marketer represented by this de-
mand tries to insure their future revenues, and so they sacrifice their premia. It is relevant for further studies
to evaluate the efficiency of this market, and the characteristics to determine why the marketer is willing to
pay forward risk premia (FRP) and why the generator is in a better position to receive this bonus.

In the simplest case, we may think of an electric power agent (generator or marketer) that could take posi-
tions over the financial contracts against unusual climatic behavior during a certain period of exposure, and
the payoff function could be entitled to a cash payment which could be negatively correlated to the agents’
income. Therefore, agents’ risk exposure can be reduced by trading the weather derivative contract, which
means transferring climatic risk exposure to capital markets or secondary markets.

Beyond the financial markets, this dissertation aims to encode the interrelations generated between the
physical production of electricity and the financial contracts to trade. We aimed to find how an agent, either
generator or marketer, can utilize financial contracts in order to transfer their risk exposure to the financial
markets. Volumetric price risk exposures state specific conditions to built portfolio’s payoff structure ac-
cording to the agent’ features. Results from modeling forward risk premium and optimal static hedging and
its applications allow understanding and offer a solution to the mean-variance utility function problem.
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