UNIVERSIDAD

EAFIT,

e —————
Abierta al mundo

Escuela de Economia y Finanzas

Documentos
de trabajo

Economia y Finanzas

Centro de Investigacion
Economicas y Financieras

No. 13-20 An algorithmic approach for simulating .I:
2013 realistic irregular lattices CI e

Ecn Gmic: sv Fi nanc Eras

Duque Juan C.; Betancourt, Alejandro; Marin, Freddy T



An algorithmic approach for simulating realistic irregular
lattices™

Juan C. Duque'
Alejandro Betancourt®
Freddy Marin®

July 152013

Resumen/abstract

There is a wide variety of computational experiments, or statistical simulations, in which regional
scientists require regular and irregular lattices with a predefined number of polygons. While most
commercial and free GIS software offer the possibility of generating regular lattices of any size,
the generation of instances of irregular lattices is not a straightforward task. The most common
strategy in this case is to find a real map that matches as closely as possible the required number of
polygons. This practice is usually conducted without considering whether the topological charac-
teristics of the selected map are close to those for an “average” map sampled in different parts of
the world.

In this paper, we propose an algorithm, RI-Maps, that combines fractal theory, stochastic calculus
and computational geometry for simulating realistic irregular lattices with a predefined number of
polygons. The irregular lattices generated with RI-Maps have guaranteed consistency in their topo-
logical characteristics, which reduces the potential distortions in the computational or statistical
results due to an inappropriate selection of the lattices.
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1 Introduction

The complexity of computational experimentation in regional science has drastically increased in
recent decades. Regional scientists are constantly developing more efficient methods, taking ad-
vantage of modern computational resources and geocomputational tools, to solve larger problem
instances, generate faster solutions or approach asymptotics. The literature has many examples:
The first formulation of the p-median problem provides a numerical example that required 1.51
minutes to optimally locate four facilities in a 10-node network (ReVelle and Swain, 1970); three
decades later, Church (2008) located five facilities in a 500-node network in 1.68 minutes. As noted
by Anselin et al. (2004), spatial econometrics has also benefitted from computational advances; the
computation of the determinant required for maximum likelihood estimation of a spatial autore-
gressive model proposed by Ord (1975) was feasible to apply for data sets not larger than 1,000
observations. Later, Pace and LeSage (2004) proposed a procedure that was capable of comput-
ing this determinant for over a million observations. According to Blommestein and Koper (2006),
one of the first algorithms for constructing higher-order spatial lag operators, which was devised by
Ross and Harary (1952), required 8,000 seconds (approximate computation time) to calculate the
sixth-order contiguity matrix in a 100x100 regular lattice. Anselin and Smirnov (1996) proposes
new algorithms that are capable of computing a sixth-order contiguity matrix for the 3,111 U.S.
contiguous counties in less than a second.

An important aspect when conducting computational experiments in regional science is the
selection of the way that the spatial phenomena are represented or conceptualized. This aspect is
of special relevance when using a discrete representation of continuous space, such as polygons
(Haining, 2010). This representation can be accomplished in two ways: regular or irregular lattices;
the use of one or the other could cause important differences in the computational times, solution
qualities or statistical properties. We suggest four examples, as follows: (1) The method proposed
by Duque et al. (201 1a) for running the AMOEBA algorithm (Aldstadt and Getis, 2006) requires an
average time of 109 seconds to delimit four spatial clusters on a regular lattice with 1,849 polygons.
This time rises to 229 seconds on an irregular lattice with the same number of polygons. (2) For the
location set covering problem, Murray and O’Kelly (2002) concluded that the spatial configuration,
number of needed facilities, computational requirements and coverage error all varied significantly
as the spatial representation was modified. (3) Elhorst (2003) warns that the parameters of the
random effects spatial error and spatial lag model might not be an appropriate specification when
the observations are taken from irregular lattices.! (4) Anselin and Moreno (2003) finds that the
use of regular or irregular lattice affects the performance of test statistics against alternatives of the
spatial error components form.

However, returning to the tendency toward the design of computational experiments with large
instances, there is an important difference between generating large instances of regular and irreg-
ular lattices. On the one hand, regular lattices are easy to generate, and there is no restriction on the
maximum number of polygons. On the other hand, instances of irregular lattices are usually made
by sampling real maps. Table .1 shows some examples of this practice.

The generation of large instances of irregular lattices has several complications that are of spe-
cial interest in this paper. First, the size is limited to the sizes of the available real lattices. Second,
the possibility of generating a large number of different instances of a given size is also limited
(e.g., generate 1,000 instances of irregular lattices with 3,000 polygons). Third, as shown in Fig. 1,
the topological characteristics of irregular lattices built from real maps change drastically, depend-
ing on the region from where they are sampled, which could bias the results of the computational
experiments.”

This paper seeks to contribute to the field of computational experiment design in regional
science by proposing a scalable recursive algorithm (RI-Maps), which combines concepts from

I See also Anselin (1988), pg 51

2 Later in this paper, we show that the topological characteristics of Voronoi diagrams are far from
those for an “average” map sampled in different parts of the world
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Table .1 Annotated chronological listing of studies that use irregular lattices generated by sam-
pling real maps.

Study Purpose Source of irregular lattices

Mur Lacambra (1992) Compares different methods to detect spa- Spain provinces in 1985 (sizes 14 and 48
tial autocorrelation. polygons)

Anselin et al. (1996) Performance of a diagnostic test for spa- COROP and economic geographic re-
tial dependence. gions in The Netherlands (sizes 40 and 81,

respectively)

Smirnov and Anselin (2001) Performance of a new method for evalu- 921 counties (Kreise) for Germany; 3,107

ating the Jacobian term. U.S. continental counties; 3,140 U.S.
counties, and 29,762 U.S. postal zip
codes.

Anselin and Moreno (2003)  Extend the knowledge about the proper- Spatial grouping of Western U.S. counties
ties of spatial correlation tests, especially for dimensions 46, 80, 124, 264, 413 and

in empirical applications. 1,013
Duque et al. (2012) Performance of an algorithm for spatial Sacramento census tracks (403), Colom-
clustering (the max-p-regions model) bian municipalities (1,068) and U.S. cen-

sus tracks (3,085).
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(a) United States (b) Spain

Fig. .1 Examples of two instances of 900 irregular polygons.

stochastic calculus (mean reversing processes), fractal theory and computational geometry to gen-
erate instances of irregular lattices that have an unlimited size and topological characteristics that
are a good representation of the irregular lattices sampled from around the world. The use of in-
stances obtained from RI-Maps will guarantee that differences in the results in the computational
experiment will not come from differences in the topological characteristics of the used lattices
and will also make it easier to generate the unlimited number of large instances.?

The remainder of this paper is organized as follows: Section 2 introduces the basic definitions
of the polygons and lattices and proposes a consensus taxonomy of the lattices. Section 3 presents
a set of indicators that are used to characterize the topological characteristics of a lattice and shows
the topological differences between regular and irregular lattices. Section 4 presents the algorithm

3 This algorithm as well as all of the instances of RI-Maps used in this article will be publicly
available for the academic community after its publication (Duque et al., 2011b).



for generating irregular lattices. Section 5 evaluates the capacity of the algorithm to generate real-
istic irregular lattices. Finally, Section 6 presents the conclusions.*

2 Conceptualizing polygons and lattices

A polygon is a plane figure enclosed by a set of finite straight line segments. Polygons can be
categorized according to their boundaries, convexity and symmetry properties, as follows:

i) Boundary: A Polygons is Simple when it is formed by a single plain figure with no holes, and
it is Complex when it contains holes or multiple parts.’
ii) Convexity: In a convex polygon, every pair of points can be connected by a straight line
without crossing its boundary. A Concave polygon is simple and non-convex.
iii) Symmetry: A regular polygon has all of its angles of equal magnitude and all of its sides of
equal length. A non-regular polygon is also called irregular (Johnson, 2001; Coxeter, 1974).

A lattice is a set of polygons of any type, with no gaps and no overlaps, that covers a subspace
or the entire space. Next, a more formal definition: A lattice is the division of a subspace S C R"
into k subsets i C § such that U; = S and N; = ¢, where ¢ is the empty set of R” (Grunbaum and
Shephard, 2011)°. There exist different taxonomies of lattices depending on the field of study. In
an attempt to unify these taxonomies, a consensus lattice taxonomy is presented in Fig. .2. This
taxonomy classifies lattices according to the shapes of their polygons, the spatial relationships
between them, and the use, or not, of symmetric relationships to construct the lattice:”

i) According to the variety of the shapes of the polygons that form the lattice: homomorphisms
are lattices that are formed by polygons that have the same shape, and polymorphisms are
lattices that are formed by polygons that have different shapes.

According to the regularity of the polygons that form the lattice and the way in which they in-

tersect, each vertex:® Regular, lattices formed by regular polygons in which all of the vertexes

join the same arrangement of polygons (Tilley, 2006); Semi-regular, when the polygons are
regular but there are different configurations of vertexes; and Irregular otherwise (Ghyka,

2004).

iii) According to the existence of symmetric relationships within the lattice:” Symmetric, when
the lattice implies the presence of at least one symmetric relationship; and Asymmetric oth-
erwise.

iv) According to the symmetric relationship of translation: A lattice is periodic if and only if it
implies the use of translation without rotation or reflection; it is Aperiodic otherwise (Tilley,
2006).

i

=

Table .2 shows an example of each category of this consensus taxonomy.

4 A dataset of 700 RI-Maps is available at “http://www.rise-
group.org/section/Research/Publication/AnAlgorithmicAproach/”

5 Complex polygons do not refer to polygons that exist in the Hilbert plane (Coxeter, 1974).

6 This paper focuses exclusively on bidimensional lattices (i.e., n = 2)

7 An alternative category is proposed for lattices formed by fractal polygons that are informally de-
fined by Mandelbrot (1982) as rough fragmented geometric shapes that could be infinitely divided

into scalable parts.

8 considering the vertexes to be all of the points of the lattice that intersect three or more polygons)

9 There are three types of symmetrical relationships: Translation, when the lattice is formed by
translating a subset of polygons; reflection, when there are axes of reflection in the lattice; and
rotation, when it is possible to obtain the same lattice after a rotation process of less than 27
(Radin, 1993).
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ii) Shape of polygons and
 relationships between them Semiregular :

. i) According to the existence i i
- or the absensce of any Symmetric Asymmetric

+ symmetric relationship

iv) Existence of translation
-and absence of rotation and Periodic
:reflection

i) Shape of polygons

Aperiodic

Fig. .2 Consensus taxonomy of lattices

The topological characteristics of lattices are usually summarized through the properties of the
sparse matrix that represent the neighboring relationships between the polygons in the map, the
so-called W matrix (Gould, 1967; Boots, 1982; Le Caer and Delannay, 1995; Aste et al., 1996;
Peshkin et al., 1991).!° This paper uses six indicators; the first three indicators are self-explained:
the maximum (M,,), minimum (m,) and average (i) number of neighbors per polygon. The fourth
indicator, Sparseness (S), is the percentage of non-zero elements of the W matrix. The fifth indi-
cator is the first eigenvalue of the W matrix (4), which is an algebraic tool that is frequently used
in graph theory (Garrison, 1964; Tinkler, 1972) and regional science (Gould, 1967; Boots, 1982,
1984, 1985) to summarize different aspects of the W matrix. The last indicator is the variance of
the number of neighbors per polygon (i), which measures the spatial disorder of a lattice.

Within the field of regional science, lattices are frequently used with two purposes: First, real
lattices can be used to study real phenomena, e.g., to analyze spatial patterns, confirm spatial rela-
tionships between variables, and detect spatio-temporal regimes within a spatial panel, among oth-
ers. Second, lattices can be used to evaluate the behavior of statistical tests (Anselin and Moreno,
2003; Mur Lacambra, 1992); algorithms (Duque et al., 2011a); and topological characteristics of
lattices (Aste et al., 1996; Le Caer and Delannay, 1995, 1993). In these cases, it is necessary to use
sets of lattices that satisfy some requirements imposed by the regional scientist, e.g., the number
of polygons, regularity or irregularity of the polygons and the number of instances. To accomplish
this goal, it is a common approach to use a geographical base for real or simulated data polymor-
phism irregular aperiodic asymmetric (e.g., real lattices and Voronoi diagrams) or homomorphism
regular periodic symmetric (e.g., regular lattices). The next sections focus on the second use of
lattices.

10" See Anselin (1988) for more information about this matrix.
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(c) Polymorphism
Semiregular
Periodic Symmetric.
(Ghyka, 2004)

(f) Polymorphism
Regular
Periodic Symmetric

(Penrose, 1974)

(Ghyka, 2004)

(g) Polymorphism
Irregular
Aperiodic Symmetric

(h) Polymorphism
Irregular
Aperiodic Asymmetric

(i) Polymorphism
Irregular
Periodic Symmetric

Table .2 Example Lattices

3 Topological characteristics of regular and irregular lattices

As stated above, regional scientists have the option of using regular or irregular lattices in their
computational experiments. However, this section will show that there are important topological
differences between these types of lattices.

Real lattices have topological characteristics that vary substantially from location to location.
As an example, Fig. .3 presents the topological characteristics of lattices of different sizes (100,
400 and 900 polygons) sampled in Spain and the United States. Each box-plot summarizes 1,000
instances. Important differences emerge between these two places: Spanish polygons tend to have
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more neighbors, are more disordered, and their first eigenvalues are higher in mean and variance.
These differences in the topological characteristics have direct repercussions on the performance
of algorithms whose complexity depends on the neighboring structure (Aldstadt and Getis, 2006;
Dugque et al., 2011a).

Spain United States
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Fig. .3 Topological differences of lattices from Spain and the United States

Regular lattices and Voronoi diagrams are also commonly used for computational experiments
because they are easy to generate, there is no restriction on the size of the instances (the number
of polygons in the map), and their over-simplified structure allows for some mathematical sim-
plifications or reductions (Whittle, 1954; Bartlett, 1975; Griffith, 1987). However, the topological
characteristics of these lattices are substantially different from real, irregular lattices. These differ-
ences can lead to biased results in theoretical and empirical experiments, e.g., spatial stationarity in
STARMA models (Hooper and Hewings, 1981), improper conclusions about the properties of the
power and sample sizes in hypothesis testing (Anselin and Moreno, 2003; Mur Lacambra, 1992),
and the over-qualification of the computational efficiency of the algorithms (Duque et al., 2011a;
Aldstadt and Getis, 2006), among others. Table .3 shows the topological differences between real
maps, two types of regular lattices and Voronoi diagrams.

To illustrate the magnitude of these differences, we calculated the topological indicators (M,
my, W, U, S and A) for six thousand lattices of different sizes (1,000 instances each of 100,
400, 900, 1,600, 2,500, and 3,600 polygons) that were sampled around the world at the smallest
administrative division available in Hijmans et al. (2011). As an example, Fig. .4 shows seven of
those instances. These real instances are then compared to regular lattices that have square and
hexagonal polygons and Voronoi diagrams.'! To avoid the boundary effect on M,,, m,,, u; and py,

1 Each one of the six-thousand instances of Voronoi diagrams come from uniformly distributed
points.



the bordering polygons are only considered to be neighbors of interior polygons. Last, S and 4;
are calculated using all of the polygons. Table .3 shows that regular lattices are not capable of
emulating the topological characteristics of real lattices in any of the indicators: t, = 0 and M,
my, U =4 and 6 (for squares and hexagons, respectively) are values that are far from those of
real lattices. The values obtained for A; and S indicate that regular lattices of hexagons are more
connected than real lattices, while regular lattices of squares are less connected than real lattices.
With regard to Voronoi diagrams, M, and m, indicate that they are not capable of generating
atypically connected polygons. The values of i are close to real lattices. Finally, Voronoi diagrams
are more ordered than real lattices, with values of (i close to 1.7, while real lattices report values
of U, that are close to 8.

Submap of 3600 areas

Submap of 1600 areas

Submap of 100 areas

Submap of 84 areas

Submap of 400 areas

Submap of 2500 areas

Submap of 900 areas

Fig. .4 Base map and example of a random irregular lattice obtained from it.

4 RI-Maps: An algorithm for generating realistic irregular
lattices

This section is divided into two parts. The first part introduces an algorithm that
generates irregular polygons based on a mean reverting process in polar coordi-
nates, and the second part proposes a novel method to create polymorphic irregular
aperiodic lattices with topological characteristics that are similar of those from real
lattices.
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Table .3 Average topological characteristics for real maps, regular lattices and Voronoi diagrams

Number of polygons
81 100 400 900 1,600 2,500 3,600

12.28 1322 23.22 29.55 4277 48.53 60.64
+7.52 £9.90 £29.89 +36.27 £50.59 £55.07 +£64.58

233 213 1.55 1.23 1.04 1.01 1.00
+1.11 £1.06 +0.86 +0.60 £0.22 £0.10 +0.00

557 559 567 569 570 572 572
MU 1065 £0.61 +049 045 2046 +0.37 £0.37

Real lattices 585 672 976 790 885 773  8.00
M2 413,85 +£22.58 +£28.79 +15.35 +£12.82 +9.39 +8.11

598 491 130 058 033 021 0.15

S +0.51 +0.43 +0.11 +£0.046 +£0.02 +0.01 =0.01

M 596 6.09 6.89 730 803 833 892

+0.53 +£0.65 +£1.52 +1.82 £2.42 +£2.62 +3.02

M, 4 4 4 4 4 4 4

my, 4 4 4 4 4 4 4

Reg. Lattice n 4 4 4 4 4 4 4
(Squares) 173 0 0 0 0 0 0 0

S 444 364 095 043 024 016 0.11
M 380 384 396 398 399 399 399

Reg. Lattice M, 6 6 6 6 6 6 6

(Hexagons) m, 6 6 6 6 6 6 6
I 6 6 6 6 6 6 6
o 0 0 0

S 630 519 139 064 036 023 0.16
A 555 562 588 594 596 597 598

9.15 936 1037 10.90 1126 11.49 11.71
+0.77 £0.79 £0.75 £0.74 £0.70 +0.67 =+0.68
336 326 300 3.00 300 300 3.00
1+0.48 +0.44 +0.03 £0.00 +0.00 +0.00 -£0.03
575 577 588 592 594 595 596

MU 10,07 £0.05 +0.02 +0.01 +£0.00 +0.00 =0.00
Voronoi Diagrams 168 170 175 176 176 177 1.77

B2 4031 +£027 +0.13 £0.09 +0.07 +0.05 =0.04
6.67 547 144 065 037 024 0.7
+0.08 +0.05 +£0.00 £0.00 +0.00 +0.00 =£0.00
588 596 620 626 628 629 630

& +0.05 +£0.05 +£0.03 +0.02 +0.02 +0.02 =+0.02

4.1 Mean reverting polygons (MR-Polygons)

The problem of characterizing the shape of irregular polygons is commonly ad-
dressed in two ways, that is, evaluating its similitude with a circle (Haggett, 1977)
or describing its boundary roughness through its fractal dimension (Batty and Lon-
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gley, 1994; Frankhauser, 1998).!2 In this paper, we apply both concepts in different
stages during the creation of a polygon: the similitude with a circle to guide a mean
reverting process in polar coordinates, and the fractal dimension to parameterize the
mean reverting process.

4.1.1 Mean reverting process in polar coordinates

Different indexes are used to compare irregular polygons with a circle: Elongation
ratio (Weeitty, 1969), form ratio (Horton, 1932), circularity ratio (Miller, 1953),
compactness ratio (Gibbs, 1961; Cole, 1964; Richardson, 1961), ellipticity index
(Stoddart, 1965) and the radial shape index (Clark, 1964). As Chen (2011) states,
all of these indexes are based on comparisons between the irregular polygon and its
area-equivalent circle. Under this relationship, an irregular polygon can be concep-
tualized as an irregular boundary with random variations following a circle, which
lead us to use a mean reverting process in polar coordinates to create irregular poly-
gons. A mean reverting process is a stochastic process that takes values that follow a
long-term tendency in the presence of short-term variations. Formally, the process x
at the moment 7 is the solution of the stochastic differential equation (.1), where U is
the long-term tendency, « is the mean reversion speed, o is the gain in the diffusion
term, x(#p) is the value of the process when t = 0 and {B; },> is an unidimensional
Brownian (Mao, 1997). Equation (.2) shows the general solution; however, for prac-
tical purposes, hereafter we use the Euler discretization method, which is given by
equation (.3), where & is white noise.

dX, = a(u —X;)d; + odB; @)

1 t
x(t) = ¢ l—10) (x(to) + [ e ouds+ ea(“SO)GdB(s)> , (.2)

fo fo

X=X 1+o(u—X,_1)A +0\Ag (.3)

Algorithm 1 presents the procedure for generating an irregular polygon P in polar
coordinates using, as a data generator, a mean reverting process (X;). This algorithm
guarantees that the distance between two points in X;, following the process X;, is
equal to the distance between the same two points in P when following the process
P counterclockwise. The purpose of this equivalence is to preserve the fractal di-
mension of X; in P. The angles Ag and ¢; in algorithm 1 are the result of solving the
geometric problem in Fig. .5. These two angles are used in equation (.4) to establish
the location of the next point in P. The points of P are denoted as Py, with 6 between
0 and 27.

Py +Ar  if Xp14, > Xt
P9+¢1 - { Py —Ar if Xt+AZ < Xt. (4)

12 Chen (2011) established a relationship between these two approaches.
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(@) X; > Xi—a, (b) X <X;_a,

Fig. .5 Geometric problem to preserve the length and the fractal dimension of the mean reverting
process when it is used to create an irregular polygon

Algorithm 1 MR-Polygon: Mean Reverting Polygon

1: function MEANREVERTINGPOLYGON(¢, 0, i, Xo, Ar)
2 Xi—a, = Xo > Initial point of the mean reverting process
3 P =(0,Xo)] > Irregular polygon in polar coordinates
4 while 6 < 27 do
5: & < RandomNormal (0,1)
6: X =Xi—a +a(L—Xi—p,)A + 0VAE
7 d < distance(X;,X;_a,)
8 Ry + Last radius of the irregular polygon
2Rg—A}
9 ¢ = arccos (;’Tg‘)
10: if Xt > X;_,, then
11: AR:d(cos (arcsin (%cos (%‘))fsin (%) %))
12: else
13: Agp = —d (cos (arcsin(%cos(%‘))-ﬁ-sin(%‘) %))
14: end if
15: R9+¢] =Ry + AR
16: Add (9+¢1,R9+¢])tOP
17: Increase 0 in ¢;

18: end while

19: Replace last point of P to (0,Xp)
20: return P

21: end function

Because the process P depends on the parameters &, (t and o, it is worthwhile
to clarify their effect on the shape of polygon P: « is the speed at which the process
reverts to the circle with radius u, and o is the scaling factor of the irregularity of
the polygon. High values of ¢ and low values of o generate polygons that have
shapes that are close to a circle with radius u. Finally, A, is utilized to preserve the
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fractal dimension of both processes, X and P, and determines the angular step, ¢
(see Fig. .5).

4.1.2 MR-Polygon parameterization

The process of establishing the values for o, i, ¢, A; and Xy is not an easy task,
and their values must be set in such a way that the shape of P is similar to a real
irregular polygon. However, how do we determine whether a polygon P satisfies this
condition? In this case, the fractal dimension appears to be a tool that offers strong
theoretical support to assess the shape of a given polygon.

According to Richardson (1961), the fractal dimension D of an irregular polygon
(such as a coast) is a number between 1 and 2 (1 for smooth boundaries and 2
for rough boundaries) that measures the way in which the length of an irregular
boundary L (equation .5) changes when the length of the measurement instrument
(€) changes. The fractal dimension in given by equation (.6), where C is a constant.

In general, an object is considered to be a fractal if it is endowed with irregular
characteristics that are present at different scales of study (Mandelbrot, 1982). For
practical purposes, D is obtained using equation (.6) and is given by 1 minus the
slope of log(L(g)). This procedure is commonly known as the Richardson plot.

L(e)
log(L(¢)) =

In almost all cases, the Richardson plot can be explained with two line segments
that have different slopes; then, two fractal dimensions can be obtained: textural,
for small scales, and structural, for large scales (Kindratenko and Treiger, 1996).
As illustrated, Fig. .6 shows a segment of the United States east coast taken from
Google maps in two resolutions. Note that as the resolution increases, some irregu-
larities that were imperceptible at low resolution become visible. In this sense, it can
be said that irregularities at low resolution define the general shape and are related
to the structural dimension, while irregularities at high resolution capture the noise
and are related to the textural dimension. Regional scientists tend to use highly sam-
pled maps, which preserve the general shape but remove the small variations. This
simplification does not change the topological configuration of the maps (Douglas,
1973). Fig. .7 presents the Richardson plot of the external boundary of the United
States and its textural and structural fractal dimension.

In the field of stochastic processes, some approaches, which are based on dif-
ferent estimations of the length, have been made to characterize them through their
fractal dimension. In our case, an experimental approach based on the fractal di-
mension of real polygons is proposed to select an appropriate combination of the
parameters @ and ¢ to generate realistic irregular polygons. Because our interest
is on general shape rather than small variations, we account only for the struc-

Ce!~P (.5)
(1-D)log(e) —log(C) (.6)
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Fig. .6 Illustrative example of irregularities explained by the structural and textural dimension.
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Fig. .7 Richarson plot to estimate the textural and structural dimension of the external boundary
of the United States.

tural dimension'®> The parameterization process is divided into two parts: in the
first part, the frequency histogram of the fractal dimensions of the real polygons is
constructed. In the second part, we propose a range of possible values for ¢ and o,
given U, Xp,A;, which generates fractal dimensions that are close to those obtained
in the first part. Because the level of the long-term tendency u does not affect the
length of X and because algorithm 1 guarantees that the length is preserved, u can
be defined as a constant without affecting the fractal dimension. Hereafter, it is as-
sumed that 4 = X = 10. The value of 4; is set to be 0.001 to properly infer both of
the fractal dimensions.

The empirical distribution of the fractal dimension of the irregular polygons is
calculated over a random sample of 10,000 polygons from the world map used in
section 3. The result of this empirical distribution is presented in Fig. .8.a. To find
the fractal dimension of the MR-Polygons, we generate a surface of the average
dimensions as a function of the values of ¢ and ¢, which range from 0.01 to 5 with

13 To calculate the structural dimension, we use the EXACT procedure, which is devised by Allen
et al. (1995), with a small value for A;. Next, both of the dimensions were determined by using a
k-means clustering algorithm over the cloud of points on the Richardson plot.
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steps of 0.1 (Fig .8.b.). The resulting surface indicates that the fractal dimension is
mainly affected by o, especially when looking at small dimensions. Additionally, it
is found that fractal dimensions close to 1.23 are obtained when o takes on values
between 1.2 and 1.5, regardless of the value of «.

Fig. .9 presents some examples of polygons using different values of ¢ and ©.
The polygons in the second row, which correspond to ¢ = 1.5, produce irregular
polygons that have a realistic structural fractal dimension. Additionally, in the same
figure, both the original (gray line) and sampled (black line) polygons reinforce the
fact that sampling a polygon does not affect the structural dimension. From now on,
we will use sampled polygons to improve the computational efficiency.
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(a) Fractal dimensions of real polygons. (b) Fractal dimension of simulated polygons as a function
of o and ©.

Fig. .8 Stages to find the values of o and ©.

4.2 Recursive Irregular maps (RI-Maps)

Up to this point, we were able to generate irregular polygons with fractal dimen-
sions that are similar to those from real maps. The next step is to use these poly-
gons to create irregulars lattices of any size whose topological characteristics are
close to the average values obtained for these characteristics in real lattices around
the world. For this step, we formulate a recursive algorithm on which an irregular
frontier is divided into a predefined number of polygons using MR-Polygons. Our
conceptualization of the algorithm was made under three principles: (1) Scalabil-
ity: Preserving the computational complexity of the algorithm when the number of
polygons increases; (2) Fractality: Preserving the fractal characteristics of the map
at any scale; and (3) Correlativity: Encouraging the presence of spatial agglomer-
ations of polygons with similar sizes, which is commonly present in real maps in
which there are clusters of small polygons that correspond to urban areas.
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Fig. .9 Examples of stochastic polygons generated using (Algorithm 1) with different values of &
and o.

Algorithm 2 presents the RI-Maps algorithm to create polymorphic irregular ape-
riodic asymmetric lattices with realistic topological characteristics. This algorithm
starts with an initial empty irregular polygon, pol, (the outer border of the RI-Map)
and the number of polygons, #, to fit inside. In a recursive manner, a portion of the
initial polygon pol starts being divided following a depth-first strategy until that
portion is divided into small polygons. This process is repeated for a new uncov-
ered portion of pol until the whole area of pol is covered. Because the recursive
partitions are made by using MR-Polygons, we take the values of o and o from a
uniform distribution between 0.1 and 0.5 and 1.2 and 1.5, respectively, which cor-
respond to the ranges of values that generate realistic polygons (see section 4.1).
Regarding u, Xp and A;, these variables take the same values proposed in section
4.1. Last, to guarantee the computational treatability of the geometrical operations,
each polygon comes from a sampling process of 30 points.
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To ensure a full understanding of the RI-Maps algorithm, we summarize in Fig.
.10 its main steps, which indicates the link between the figure and the lines in the
RI-Maps algorithm.

The RI-Maps algorithm has three unknown parameters:

e p;: Because each polygon is created by the MR-Polygons using a polar coordi-

nate system that is unrelated to the map being constructed with RI-Maps, it is

necessary to apply a scaling factor, %jg’f”, that adjusts the size of the

MR-Polygon before being included into the RI-Map.

e py: When a new polygon is used to divide its predecessor, its capacity to contain
new polygons (measured by the number of polygons) is proportional to its share
of the unused area of its predecessor. However, to enforce the appearance of
spatial agglomerations of small polygons, the number of polygons that the new
polygon can hold is increased with a probability of p,.

e p3: When p; indicates that a new polygon will hold more polygons, the number
of extra polygons is calculated as the p3 percent of the number of missing poly-
gons that are expected to fit into the unused area of its predecessor polygon. The
number of extra polygons is subtracted from the unused area to keep constant the
final number of polygons (n).

Table .4 illustrates the effect of the parameters p, and p3 on the topological
characteristics of RI-Maps. In the first row, p» and p3 equal 0, which generates
highly ordered lattices without spatial agglomerations. The second and third rows
are more disordered than the first row and have spatial agglomerations, with those
in the second row less frequent and evident than those in the third row. As will be
shown in the next section, lattices in the third row are more realistic in terms of their
topological characteristics.

To find a combination of pj, p,, and p3 that generates realistic RI-Maps in
terms of their topological characteristics, we use a standard genetic algorithm,
where the population 7 at iteration i, denoted as ¥/, is formed by the genomes
¥, =[P}, P, Pl,), where p’, p , and p’, are real numbers between 0 and 1, rep-
resenting instances of pp, p2, p3, which are denoted as phenomes. In this case, i € N
between 0 and 20 and j € N between 0 and 100. To evaluate the quality of each

genomes fitness function, F (7’;) is defined in equation (.7), where 0 is a set of poly-

gons, @ is the relative importance for a map of k polygons, and fk(y]’») is a func-
tion given by equation (.8) that measures the average difference between the values
of the topological indicators of real lattices and those values of RI-Maps formed
by k polygons using the phenome y; For the sake of simplicity, in equation (.8),

Y, = [My,,my, 11, U, S, A1] denotes the vector of real indicators, and ‘Pk(y;) denotes
the vector for the mean values of RI-Maps with k polygons using y} The superindex

[ is used in ‘Pkl and ‘Iﬁ(y;) to refer to the /'" indicator in the real and simulated val-
ues, respectively. Finally, ns is the number of simulations to be generated with each
genome.
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Algorithm 2 RI-Map: Recursive Irregular Map

1:
2
3
4
5:
6.
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:

function RECURSIVEIRREGULARMAP(n, pol)
(Qmin s Omax, Omins Omax, U, X0, 4¢) = (0.1,0.5,1.2,1.5,10,10,0.001)
JARS R=P2 € R:P3 €R
if n > 2 then

missingPolygons < n
uncoveredPolygon < pol
coveredPolygon < ¢

polygons + ||

scalingFactor < WL”(”Z"I)
XX

while area(uncoveredPolygon) >—0.03 do

area(pol)
uncovered2select < Bigger part of uncoveredPolygon

area(uncovered2select)
area(uncoveredPolygon) <= L5 then

polygons. put (uncovered2select)
coveredPolygon < coveredPolygonUuncovered2slect
missingPolygons < missingPolygons — 1

else
o < RandomUni form(Omin, Onax)
0 < RandomU ni form(Gmin, Omax)
pol; <~ MEANREVERTINGPOLYGON(, 0, 1, X, A)
pol; <~ Multiply each ratio of pol; by scalingFactor
pol; < Center pol; randomly into uncovered2select
pol; < (pol; — coveredPolygon) N pol
pol; < Bigger part of pol;

if missingPolygons x

n; < missingPolygons x area(uncoveredPolygon)

if Uniform(0,1) < p, then
n; = n; + missingPolygons X p3
end if
n;i < Round(ny)
if n; > 1 then
polygons; <— RECURSIVEIRREGULARMAP(n;, pol;)
polygons < polygons U polygons;
coveredPolygon < coveredPolygonU polygons;
missingPolygons < missingPolygons — n;
end if
end if
uncoveredPolygon < pol — coveredPolygon
end while
Append interior holes of coveredPolygon to polygons
coveredArea < | polygons
while /ength(polygons) < n do
Append the smaller polygon to its larger neighbor
end while
while length(polygons) > n do
Divide the larger polygon
end while

else if n = 1 then

polygons < [pol]

else

poly, pol, < Divide pol in 2
polygons < [poly, pol]

end if
return polygons

53: end function

> Recursive step

> Terminating case

> Terminating case
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Fig. .10 Diagram of the main steps of the RI-Maps
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Table .4 Examples of RI-Maps of 400, 1,600 and 3,600 polygons using different combinations of
parameters
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The algorithm starts with an initial random population of 100 genomes to obtain
the best four genomes. The subsequent populations are composed of two parts. The
first 64 genomes are all of the possible combinations of the last best 4 genomes, and
the other 36 genomes are random modifications of those 64 genomes. Because of
the computational time required to evaluate equation (.7), only lattices of 400 and
1,600 were used, with an importance of ¢400 = 1 and ¢; 600 = 2, respectively. The
algorithm reached the optimal value after 13 iterations with p; = 0.010, p, = 0.050,
and p3 = 0.315.

5 Results

Fig. .11 presents a graphical comparison of the topological characteristics of real RI-
Maps and Voronoi diagrams. The values for the RI-Maps were obtained from 100
instances. The results show that RI-Maps have a maximum (M,) and a minimum
(m,,) number of neighbors that are very close to the values found in the real lattices.
Regarding the average number of neighbors, both RI-Maps and Voronoi diagrams
show similar values that are slightly higher than those observed in real lattices;
however, because the number of neighbors is an integer value, it can be concluded
for all three cases that the average number of neighbors is 6, which verifies the
findings by Weaire and Rivier (2009) in irregular lattices. Regarding L, RI-Maps
are a better approach to simulate the level of disorder found in real lattices. To
facilitate the visualization, the values of S are reported as S * \/n. The results show
that RI-Maps replicate the values of real lattices at any size, while Voronoi diagrams
report higher values that tend to increase with the number of polygons. Last, RI-
Maps have values of A; that are closer to the values of real lattices, especially for
large instances.

Table .6 presents the average and standard deviation of RI-Maps under the opti-
mal parameters (p; = 0.010, p» = 0.050, p3 = 0.315) found in the previous section.
This table completes the topological information on lattices presented in Table .3.

6 Application of RI-Maps

In this section, we present an example of the use of RI-Maps based on the com-
putational experiments designed by Duque et al. (2011a) to compare the efficiency
of the improved AMOEBA algorithm. To present the results, Duque et al. (2011a)
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Fig. .11 Comparison of the topological characteristics of real lattices, RI-Maps and Voronoi dia-
grams.

Table .5 Average topological characteristics for RI-Maps

Number of polygons
81 100 400 900 1,600 2,500 3,600

26.500 33.100 30.460 41.870 46.760 49.730 54.396
+12.765 £14.751 +13.664 £16.035 £16.429 +16.886 +15.156
1.260  1.140  1.510 1.200  1.040  0.950  0.979
+0.691 +0.513 +0.847 =£0.550 +0.374 +0.261 =40.204
5.347 5388 5.855 5909 5937 5952 5.957
M 10333 £0304 +£0.093 £0.052 +£0.036 +0.032 £0.027
17.397 21.313  9.722 10.708 10.426 10.443 11.276

M2 113734 114729 +6.189 £3.831 +2.277 £1.506 =£1.229
5974 4879 1372 0.620 0353 0.226  0.157
+0.324 £0.219 +0.020 +0.006 +£0.002 =+0.001 =0.001
7431 7969 7931 8.724 8993  9.299  9.449
+0.804 +0.808 +0.979 +£0.962 +0.960 =+0.957 +£0.798

proposed 3 computational experiments; one of them reports the running time of
AMOEBA as the number of polygons of regular lattices increases. In this paper, we
will run the same algorithm not only for regular lattices but also for real irregular
and simulated irregular lattices (RI-Maps). First, we want to see whether running
the computational experiment on regular lattices only is a good representation of
the performance of the algorithm. (Can the conclusions that are obtained for regular
lattices be extrapolated to irregular lattices?) Second, we want to see whether the
results from using RI-Maps are also valid for real irregular maps.
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For the experiment that we generated, for each type of lattice, there were 30
instances with 1,600 polygons. For each instance, we generated a spatial process
that had four clusters, each using the methodology proposed by Duque et al. (2011a).
Last, the instances for real maps were obtained from sampling the same world map
that was used in previous sections. Fig. .12 presents the distribution of the running
times obtained for each type of lattice, and Table .6 compares the distributions with
the two-sided Kolmogorov-Smirnov test (George Marsaglia and Wang, 2003). The
null hypothesis of the Kolmogorov-Smirnov test is that the two samples come from
the same probability distribution. Regarding the first question, it is clear that using
a regular lattice for testing the algorithm can lead to underestimating the execution
times of the algorithm. On the other hand, the distribution of the running times
obtained for real and RI-Maps is statistically equal, which shows the benefits of
using RI-Maps because it can automatically generate instances without limits on
their sizes.

Table .6 Kolmogorov-Smirnov test to compare the distributions of AMOEBA execution times
using different lattices

|Regular Lattices RI-Maps Real Maps
Regular Lattices [0.00 (p=1) 0.51 (p=0.0e~%) 0.61 (p=2.8¢7)
RI-Maps 0.51 (p=0.0e~*) 0.00 (p=1) 0.19 (p=0.607)
Real Maps ~ |0.61 (p=2.8¢7°) 0.19 (p=0.607) 0.00 (p=1)
[N
5 ]
S — Regqular
--- RlI-Maps
= 4\ | Real lattices
©
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Fig. .12 Execution times of AMOEBA over regular lattices and RI-Maps of 1,600
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7 Conclusions

This paper introduces an algorithm that combines fractal theory, the theory of
stochastic processes and computational geometry for simulating realistic irregular
lattices with a predefined number of polygons. The main goal of this contribution is
to provide a tool that can be utilized for geocomputational experiments in the fields
of exploratory spatial data analysis, spatial statistics and spatial econometrics. This
tool will allow theoretical and empirical researchers to create irregular lattices of any
size and with topological characteristics that are close to the average characteristics
found in irregular lattices around the world.

As shown in the last section, the performance of some geocomputational algo-
rithms can be affected by the topological characteristics of the lattices in which these
algorithms are tested. This situation can lead to an unfair comparison of algorithm
performances in the literature. With the algorithm proposed in this paper, the dif-
ferences in the computational performances will not be affected by the topological
characteristics of the lattices.

This paper also shows that the topological characteristics of regular lattices (with
squared and hexagonal polygons) and Voronoi diagrams (commonly used to emulate
irregular lattices) are far from the topological characteristics that are found in real
lattices.
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Resumen/abstract

There is a wide variety of computational experiments, or statistical simulations, in which regional
scientists require regular and irregular lattices with a predefined number of polygons. While most
commercial and free GIS software offer the possibility of generating regular lattices of any size,
the generation of instances of irregular lattices is not a straightforward task. The most common
strategy in this case is to find a real map that matches as closely as possible the required number of
polygons. This practice is usually conducted without considering whether the topological charac-
teristics of the selected map are close to those for an “average” map sampled in different parts of
the world.

In this paper, we propose an algorithm, RI-Maps, that combines fractal theory, stochastic calculus
and computational geometry for simulating realistic irregular lattices with a predefined number of
polygons. The irregular lattices generated with RI-Maps have guaranteed consistency in their topo-
logical characteristics, which reduces the potential distortions in the computational or statistical
results due to an inappropriate selection of the lattices.
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1 Introduction

The complexity of computational experimentation in regional science has drastically increased in
recent decades. Regional scientists are constantly developing more efficient methods, taking ad-
vantage of modern computational resources and geocomputational tools, to solve larger problem
instances, generate faster solutions or approach asymptotics. The literature has many examples:
The first formulation of the p-median problem provides a numerical example that required 1.51
minutes to optimally locate four facilities in a 10-node network (ReVelle and Swain, 1970); three
decades later, Church (2008) located five facilities in a 500-node network in 1.68 minutes. As noted
by Anselin et al. (2004), spatial econometrics has also benefitted from computational advances; the
computation of the determinant required for maximum likelihood estimation of a spatial autore-
gressive model proposed by Ord (1975) was feasible to apply for data sets not larger than 1,000
observations. Later, Pace and LeSage (2004) proposed a procedure that was capable of comput-
ing this determinant for over a million observations. According to Blommestein and Koper (2006),
one of the first algorithms for constructing higher-order spatial lag operators, which was devised by
Ross and Harary (1952), required 8,000 seconds (approximate computation time) to calculate the
sixth-order contiguity matrix in a 100x100 regular lattice. Anselin and Smirnov (1996) proposes
new algorithms that are capable of computing a sixth-order contiguity matrix for the 3,111 U.S.
contiguous counties in less than a second.

An important aspect when conducting computational experiments in regional science is the
selection of the way that the spatial phenomena are represented or conceptualized. This aspect is
of special relevance when using a discrete representation of continuous space, such as polygons
(Haining, 2010). This representation can be accomplished in two ways: regular or irregular lattices;
the use of one or the other could cause important differences in the computational times, solution
qualities or statistical properties. We suggest four examples, as follows: (1) The method proposed
by Duque et al. (201 1a) for running the AMOEBA algorithm (Aldstadt and Getis, 2006) requires an
average time of 109 seconds to delimit four spatial clusters on a regular lattice with 1,849 polygons.
This time rises to 229 seconds on an irregular lattice with the same number of polygons. (2) For the
location set covering problem, Murray and O’Kelly (2002) concluded that the spatial configuration,
number of needed facilities, computational requirements and coverage error all varied significantly
as the spatial representation was modified. (3) Elhorst (2003) warns that the parameters of the
random effects spatial error and spatial lag model might not be an appropriate specification when
the observations are taken from irregular lattices.! (4) Anselin and Moreno (2003) finds that the
use of regular or irregular lattice affects the performance of test statistics against alternatives of the
spatial error components form.

However, returning to the tendency toward the design of computational experiments with large
instances, there is an important difference between generating large instances of regular and irreg-
ular lattices. On the one hand, regular lattices are easy to generate, and there is no restriction on the
maximum number of polygons. On the other hand, instances of irregular lattices are usually made
by sampling real maps. Table .1 shows some examples of this practice.

The generation of large instances of irregular lattices has several complications that are of spe-
cial interest in this paper. First, the size is limited to the sizes of the available real lattices. Second,
the possibility of generating a large number of different instances of a given size is also limited
(e.g., generate 1,000 instances of irregular lattices with 3,000 polygons). Third, as shown in Fig. 1,
the topological characteristics of irregular lattices built from real maps change drastically, depend-
ing on the region from where they are sampled, which could bias the results of the computational
experiments.”

This paper seeks to contribute to the field of computational experiment design in regional
science by proposing a scalable recursive algorithm (RI-Maps), which combines concepts from

I See also Anselin (1988), pg 51

2 Later in this paper, we show that the topological characteristics of Voronoi diagrams are far from
those for an “average” map sampled in different parts of the world
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Table .1 Annotated chronological listing of studies that use irregular lattices generated by sam-
pling real maps.

Study Purpose Source of irregular lattices

Mur Lacambra (1992) Compares different methods to detect spa- Spain provinces in 1985 (sizes 14 and 48
tial autocorrelation. polygons)

Anselin et al. (1996) Performance of a diagnostic test for spa- COROP and economic geographic re-
tial dependence. gions in The Netherlands (sizes 40 and 81,

respectively)

Smirnov and Anselin (2001) Performance of a new method for evalu- 921 counties (Kreise) for Germany; 3,107

ating the Jacobian term. U.S. continental counties; 3,140 U.S.
counties, and 29,762 U.S. postal zip
codes.

Anselin and Moreno (2003)  Extend the knowledge about the proper- Spatial grouping of Western U.S. counties
ties of spatial correlation tests, especially for dimensions 46, 80, 124, 264, 413 and

in empirical applications. 1,013
Duque et al. (2012) Performance of an algorithm for spatial Sacramento census tracks (403), Colom-
clustering (the max-p-regions model) bian municipalities (1,068) and U.S. cen-

sus tracks (3,085).
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(a) United States (b) Spain

Fig. .1 Examples of two instances of 900 irregular polygons.

stochastic calculus (mean reversing processes), fractal theory and computational geometry to gen-
erate instances of irregular lattices that have an unlimited size and topological characteristics that
are a good representation of the irregular lattices sampled from around the world. The use of in-
stances obtained from RI-Maps will guarantee that differences in the results in the computational
experiment will not come from differences in the topological characteristics of the used lattices
and will also make it easier to generate the unlimited number of large instances.?

The remainder of this paper is organized as follows: Section 2 introduces the basic definitions
of the polygons and lattices and proposes a consensus taxonomy of the lattices. Section 3 presents
a set of indicators that are used to characterize the topological characteristics of a lattice and shows
the topological differences between regular and irregular lattices. Section 4 presents the algorithm

3 This algorithm as well as all of the instances of RI-Maps used in this article will be publicly
available for the academic community after its publication (Duque et al., 2011b).



for generating irregular lattices. Section 5 evaluates the capacity of the algorithm to generate real-
istic irregular lattices. Finally, Section 6 presents the conclusions.*

2 Conceptualizing polygons and lattices

A polygon is a plane figure enclosed by a set of finite straight line segments. Polygons can be
categorized according to their boundaries, convexity and symmetry properties, as follows:

i) Boundary: A Polygons is Simple when it is formed by a single plain figure with no holes, and
it is Complex when it contains holes or multiple parts.’
ii) Convexity: In a convex polygon, every pair of points can be connected by a straight line
without crossing its boundary. A Concave polygon is simple and non-convex.
iii) Symmetry: A regular polygon has all of its angles of equal magnitude and all of its sides of
equal length. A non-regular polygon is also called irregular (Johnson, 2001; Coxeter, 1974).

A lattice is a set of polygons of any type, with no gaps and no overlaps, that covers a subspace
or the entire space. Next, a more formal definition: A lattice is the division of a subspace S C R"
into k subsets i C § such that U; = S and N; = ¢, where ¢ is the empty set of R” (Grunbaum and
Shephard, 2011)°. There exist different taxonomies of lattices depending on the field of study. In
an attempt to unify these taxonomies, a consensus lattice taxonomy is presented in Fig. .2. This
taxonomy classifies lattices according to the shapes of their polygons, the spatial relationships
between them, and the use, or not, of symmetric relationships to construct the lattice:”

i) According to the variety of the shapes of the polygons that form the lattice: homomorphisms
are lattices that are formed by polygons that have the same shape, and polymorphisms are
lattices that are formed by polygons that have different shapes.

According to the regularity of the polygons that form the lattice and the way in which they in-

tersect, each vertex:® Regular, lattices formed by regular polygons in which all of the vertexes

join the same arrangement of polygons (Tilley, 2006); Semi-regular, when the polygons are
regular but there are different configurations of vertexes; and Irregular otherwise (Ghyka,

2004).

iii) According to the existence of symmetric relationships within the lattice:” Symmetric, when
the lattice implies the presence of at least one symmetric relationship; and Asymmetric oth-
erwise.

iv) According to the symmetric relationship of translation: A lattice is periodic if and only if it
implies the use of translation without rotation or reflection; it is Aperiodic otherwise (Tilley,
2006).

i

=

Table .2 shows an example of each category of this consensus taxonomy.

4 A dataset of 700 RI-Maps is available at “http://www.rise-
group.org/section/Research/Publication/AnAlgorithmicAproach/”

5 Complex polygons do not refer to polygons that exist in the Hilbert plane (Coxeter, 1974).

6 This paper focuses exclusively on bidimensional lattices (i.e., n = 2)

7 An alternative category is proposed for lattices formed by fractal polygons that are informally de-
fined by Mandelbrot (1982) as rough fragmented geometric shapes that could be infinitely divided

into scalable parts.

8 considering the vertexes to be all of the points of the lattice that intersect three or more polygons)

9 There are three types of symmetrical relationships: Translation, when the lattice is formed by
translating a subset of polygons; reflection, when there are axes of reflection in the lattice; and
rotation, when it is possible to obtain the same lattice after a rotation process of less than 27
(Radin, 1993).
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ii) Shape of polygons and
 relationships between them Semiregular :

. i) According to the existence i i
- or the absensce of any Symmetric Asymmetric

+ symmetric relationship

iv) Existence of translation
-and absence of rotation and Periodic
:reflection

i) Shape of polygons

Aperiodic

Fig. .2 Consensus taxonomy of lattices

The topological characteristics of lattices are usually summarized through the properties of the
sparse matrix that represent the neighboring relationships between the polygons in the map, the
so-called W matrix (Gould, 1967; Boots, 1982; Le Caer and Delannay, 1995; Aste et al., 1996;
Peshkin et al., 1991).!° This paper uses six indicators; the first three indicators are self-explained:
the maximum (M,,), minimum (m,) and average (i) number of neighbors per polygon. The fourth
indicator, Sparseness (S), is the percentage of non-zero elements of the W matrix. The fifth indi-
cator is the first eigenvalue of the W matrix (4), which is an algebraic tool that is frequently used
in graph theory (Garrison, 1964; Tinkler, 1972) and regional science (Gould, 1967; Boots, 1982,
1984, 1985) to summarize different aspects of the W matrix. The last indicator is the variance of
the number of neighbors per polygon (i), which measures the spatial disorder of a lattice.

Within the field of regional science, lattices are frequently used with two purposes: First, real
lattices can be used to study real phenomena, e.g., to analyze spatial patterns, confirm spatial rela-
tionships between variables, and detect spatio-temporal regimes within a spatial panel, among oth-
ers. Second, lattices can be used to evaluate the behavior of statistical tests (Anselin and Moreno,
2003; Mur Lacambra, 1992); algorithms (Duque et al., 2011a); and topological characteristics of
lattices (Aste et al., 1996; Le Caer and Delannay, 1995, 1993). In these cases, it is necessary to use
sets of lattices that satisfy some requirements imposed by the regional scientist, e.g., the number
of polygons, regularity or irregularity of the polygons and the number of instances. To accomplish
this goal, it is a common approach to use a geographical base for real or simulated data polymor-
phism irregular aperiodic asymmetric (e.g., real lattices and Voronoi diagrams) or homomorphism
regular periodic symmetric (e.g., regular lattices). The next sections focus on the second use of
lattices.

10" See Anselin (1988) for more information about this matrix.
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(c) Polymorphism
Semiregular
Periodic Symmetric.
(Ghyka, 2004)

(f) Polymorphism
Regular
Periodic Symmetric

(Penrose, 1974)

(Ghyka, 2004)

(g) Polymorphism
Irregular
Aperiodic Symmetric

(h) Polymorphism
Irregular
Aperiodic Asymmetric

(i) Polymorphism
Irregular
Periodic Symmetric

Table .2 Example Lattices

3 Topological characteristics of regular and irregular lattices

As stated above, regional scientists have the option of using regular or irregular lattices in their
computational experiments. However, this section will show that there are important topological
differences between these types of lattices.

Real lattices have topological characteristics that vary substantially from location to location.
As an example, Fig. .3 presents the topological characteristics of lattices of different sizes (100,
400 and 900 polygons) sampled in Spain and the United States. Each box-plot summarizes 1,000
instances. Important differences emerge between these two places: Spanish polygons tend to have
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more neighbors, are more disordered, and their first eigenvalues are higher in mean and variance.
These differences in the topological characteristics have direct repercussions on the performance
of algorithms whose complexity depends on the neighboring structure (Aldstadt and Getis, 2006;
Dugque et al., 2011a).

Spain United States
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Fig. .3 Topological differences of lattices from Spain and the United States

Regular lattices and Voronoi diagrams are also commonly used for computational experiments
because they are easy to generate, there is no restriction on the size of the instances (the number
of polygons in the map), and their over-simplified structure allows for some mathematical sim-
plifications or reductions (Whittle, 1954; Bartlett, 1975; Griffith, 1987). However, the topological
characteristics of these lattices are substantially different from real, irregular lattices. These differ-
ences can lead to biased results in theoretical and empirical experiments, e.g., spatial stationarity in
STARMA models (Hooper and Hewings, 1981), improper conclusions about the properties of the
power and sample sizes in hypothesis testing (Anselin and Moreno, 2003; Mur Lacambra, 1992),
and the over-qualification of the computational efficiency of the algorithms (Duque et al., 2011a;
Aldstadt and Getis, 2006), among others. Table .3 shows the topological differences between real
maps, two types of regular lattices and Voronoi diagrams.

To illustrate the magnitude of these differences, we calculated the topological indicators (M,
my, W, U, S and A) for six thousand lattices of different sizes (1,000 instances each of 100,
400, 900, 1,600, 2,500, and 3,600 polygons) that were sampled around the world at the smallest
administrative division available in Hijmans et al. (2011). As an example, Fig. .4 shows seven of
those instances. These real instances are then compared to regular lattices that have square and
hexagonal polygons and Voronoi diagrams.'! To avoid the boundary effect on M,,, m,,, u; and py,

1 Each one of the six-thousand instances of Voronoi diagrams come from uniformly distributed
points.



the bordering polygons are only considered to be neighbors of interior polygons. Last, S and 4;
are calculated using all of the polygons. Table .3 shows that regular lattices are not capable of
emulating the topological characteristics of real lattices in any of the indicators: t, = 0 and M,
my, U =4 and 6 (for squares and hexagons, respectively) are values that are far from those of
real lattices. The values obtained for A; and S indicate that regular lattices of hexagons are more
connected than real lattices, while regular lattices of squares are less connected than real lattices.
With regard to Voronoi diagrams, M, and m, indicate that they are not capable of generating
atypically connected polygons. The values of i are close to real lattices. Finally, Voronoi diagrams
are more ordered than real lattices, with values of (i close to 1.7, while real lattices report values
of U, that are close to 8.

Submap of 3600 areas

Submap of 1600 areas

Submap of 100 areas

Submap of 84 areas

Submap of 400 areas

Submap of 2500 areas

Submap of 900 areas

Fig. .4 Base map and example of a random irregular lattice obtained from it.

4 RI-Maps: An algorithm for generating realistic irregular
lattices

This section is divided into two parts. The first part introduces an algorithm that
generates irregular polygons based on a mean reverting process in polar coordi-
nates, and the second part proposes a novel method to create polymorphic irregular
aperiodic lattices with topological characteristics that are similar of those from real
lattices.
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Table .3 Average topological characteristics for real maps, regular lattices and Voronoi diagrams

Number of polygons
81 100 400 900 1,600 2,500 3,600

12.28 1322 23.22 29.55 4277 48.53 60.64
+7.52 £9.90 £29.89 +36.27 £50.59 £55.07 +£64.58

233 213 1.55 1.23 1.04 1.01 1.00
+1.11 £1.06 +0.86 +0.60 £0.22 £0.10 +0.00

557 559 567 569 570 572 572
MU 1065 £0.61 +049 045 2046 +0.37 £0.37

Real lattices 585 672 976 790 885 773  8.00
M2 413,85 +£22.58 +£28.79 +15.35 +£12.82 +9.39 +8.11

598 491 130 058 033 021 0.15

S +0.51 +0.43 +0.11 +£0.046 +£0.02 +0.01 =0.01

M 596 6.09 6.89 730 803 833 892

+0.53 +£0.65 +£1.52 +1.82 £2.42 +£2.62 +3.02

M, 4 4 4 4 4 4 4

my, 4 4 4 4 4 4 4

Reg. Lattice n 4 4 4 4 4 4 4
(Squares) 173 0 0 0 0 0 0 0

S 444 364 095 043 024 016 0.11
M 380 384 396 398 399 399 399

Reg. Lattice M, 6 6 6 6 6 6 6

(Hexagons) m, 6 6 6 6 6 6 6
I 6 6 6 6 6 6 6
o 0 0 0

S 630 519 139 064 036 023 0.16
A 555 562 588 594 596 597 598

9.15 936 1037 10.90 1126 11.49 11.71
+0.77 £0.79 £0.75 £0.74 £0.70 +0.67 =+0.68
336 326 300 3.00 300 300 3.00
1+0.48 +0.44 +0.03 £0.00 +0.00 +0.00 -£0.03
575 577 588 592 594 595 596

MU 10,07 £0.05 +0.02 +0.01 +£0.00 +0.00 =0.00
Voronoi Diagrams 168 170 175 176 176 177 1.77

B2 4031 +£027 +0.13 £0.09 +0.07 +0.05 =0.04
6.67 547 144 065 037 024 0.7
+0.08 +0.05 +£0.00 £0.00 +0.00 +0.00 =£0.00
588 596 620 626 628 629 630

& +0.05 +£0.05 +£0.03 +0.02 +0.02 +0.02 =+0.02

4.1 Mean reverting polygons (MR-Polygons)

The problem of characterizing the shape of irregular polygons is commonly ad-
dressed in two ways, that is, evaluating its similitude with a circle (Haggett, 1977)
or describing its boundary roughness through its fractal dimension (Batty and Lon-
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gley, 1994; Frankhauser, 1998).!2 In this paper, we apply both concepts in different
stages during the creation of a polygon: the similitude with a circle to guide a mean
reverting process in polar coordinates, and the fractal dimension to parameterize the
mean reverting process.

4.1.1 Mean reverting process in polar coordinates

Different indexes are used to compare irregular polygons with a circle: Elongation
ratio (Weeitty, 1969), form ratio (Horton, 1932), circularity ratio (Miller, 1953),
compactness ratio (Gibbs, 1961; Cole, 1964; Richardson, 1961), ellipticity index
(Stoddart, 1965) and the radial shape index (Clark, 1964). As Chen (2011) states,
all of these indexes are based on comparisons between the irregular polygon and its
area-equivalent circle. Under this relationship, an irregular polygon can be concep-
tualized as an irregular boundary with random variations following a circle, which
lead us to use a mean reverting process in polar coordinates to create irregular poly-
gons. A mean reverting process is a stochastic process that takes values that follow a
long-term tendency in the presence of short-term variations. Formally, the process x
at the moment 7 is the solution of the stochastic differential equation (.1), where U is
the long-term tendency, « is the mean reversion speed, o is the gain in the diffusion
term, x(#p) is the value of the process when t = 0 and {B; },> is an unidimensional
Brownian (Mao, 1997). Equation (.2) shows the general solution; however, for prac-
tical purposes, hereafter we use the Euler discretization method, which is given by
equation (.3), where & is white noise.

dX, = a(u —X;)d; + odB; @)

1 t
x(t) = ¢ l—10) (x(to) + [ e ouds+ ea(“SO)GdB(s)> , (.2)

fo fo

X=X 1+o(u—X,_1)A +0\Ag (.3)

Algorithm 1 presents the procedure for generating an irregular polygon P in polar
coordinates using, as a data generator, a mean reverting process (X;). This algorithm
guarantees that the distance between two points in X;, following the process X;, is
equal to the distance between the same two points in P when following the process
P counterclockwise. The purpose of this equivalence is to preserve the fractal di-
mension of X; in P. The angles Ag and ¢; in algorithm 1 are the result of solving the
geometric problem in Fig. .5. These two angles are used in equation (.4) to establish
the location of the next point in P. The points of P are denoted as Py, with 6 between
0 and 27.

Py +Ar  if Xp14, > Xt
P9+¢1 - { Py —Ar if Xt+AZ < Xt. (4)

12 Chen (2011) established a relationship between these two approaches.
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(@) X; > Xi—a, (b) X <X;_a,

Fig. .5 Geometric problem to preserve the length and the fractal dimension of the mean reverting
process when it is used to create an irregular polygon

Algorithm 1 MR-Polygon: Mean Reverting Polygon

1: function MEANREVERTINGPOLYGON(¢, 0, i, Xo, Ar)
2 Xi—a, = Xo > Initial point of the mean reverting process
3 P =(0,Xo)] > Irregular polygon in polar coordinates
4 while 6 < 27 do
5: & < RandomNormal (0,1)
6: X =Xi—a +a(L—Xi—p,)A + 0VAE
7 d < distance(X;,X;_a,)
8 Ry + Last radius of the irregular polygon
2Rg—A}
9 ¢ = arccos (;’Tg‘)
10: if Xt > X;_,, then
11: AR:d(cos (arcsin (%cos (%‘))fsin (%) %))
12: else
13: Agp = —d (cos (arcsin(%cos(%‘))-ﬁ-sin(%‘) %))
14: end if
15: R9+¢] =Ry + AR
16: Add (9+¢1,R9+¢])tOP
17: Increase 0 in ¢;

18: end while

19: Replace last point of P to (0,Xp)
20: return P

21: end function

Because the process P depends on the parameters &, (t and o, it is worthwhile
to clarify their effect on the shape of polygon P: « is the speed at which the process
reverts to the circle with radius u, and o is the scaling factor of the irregularity of
the polygon. High values of ¢ and low values of o generate polygons that have
shapes that are close to a circle with radius u. Finally, A, is utilized to preserve the
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fractal dimension of both processes, X and P, and determines the angular step, ¢
(see Fig. .5).

4.1.2 MR-Polygon parameterization

The process of establishing the values for o, i, ¢, A; and Xy is not an easy task,
and their values must be set in such a way that the shape of P is similar to a real
irregular polygon. However, how do we determine whether a polygon P satisfies this
condition? In this case, the fractal dimension appears to be a tool that offers strong
theoretical support to assess the shape of a given polygon.

According to Richardson (1961), the fractal dimension D of an irregular polygon
(such as a coast) is a number between 1 and 2 (1 for smooth boundaries and 2
for rough boundaries) that measures the way in which the length of an irregular
boundary L (equation .5) changes when the length of the measurement instrument
(€) changes. The fractal dimension in given by equation (.6), where C is a constant.

In general, an object is considered to be a fractal if it is endowed with irregular
characteristics that are present at different scales of study (Mandelbrot, 1982). For
practical purposes, D is obtained using equation (.6) and is given by 1 minus the
slope of log(L(g)). This procedure is commonly known as the Richardson plot.

L(e)
log(L(¢)) =

In almost all cases, the Richardson plot can be explained with two line segments
that have different slopes; then, two fractal dimensions can be obtained: textural,
for small scales, and structural, for large scales (Kindratenko and Treiger, 1996).
As illustrated, Fig. .6 shows a segment of the United States east coast taken from
Google maps in two resolutions. Note that as the resolution increases, some irregu-
larities that were imperceptible at low resolution become visible. In this sense, it can
be said that irregularities at low resolution define the general shape and are related
to the structural dimension, while irregularities at high resolution capture the noise
and are related to the textural dimension. Regional scientists tend to use highly sam-
pled maps, which preserve the general shape but remove the small variations. This
simplification does not change the topological configuration of the maps (Douglas,
1973). Fig. .7 presents the Richardson plot of the external boundary of the United
States and its textural and structural fractal dimension.

In the field of stochastic processes, some approaches, which are based on dif-
ferent estimations of the length, have been made to characterize them through their
fractal dimension. In our case, an experimental approach based on the fractal di-
mension of real polygons is proposed to select an appropriate combination of the
parameters @ and ¢ to generate realistic irregular polygons. Because our interest
is on general shape rather than small variations, we account only for the struc-

Ce!~P (.5)
(1-D)log(e) —log(C) (.6)
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Fig. .6 Illustrative example of irregularities explained by the structural and textural dimension.
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Fig. .7 Richarson plot to estimate the textural and structural dimension of the external boundary
of the United States.

tural dimension'®> The parameterization process is divided into two parts: in the
first part, the frequency histogram of the fractal dimensions of the real polygons is
constructed. In the second part, we propose a range of possible values for ¢ and o,
given U, Xp,A;, which generates fractal dimensions that are close to those obtained
in the first part. Because the level of the long-term tendency u does not affect the
length of X and because algorithm 1 guarantees that the length is preserved, u can
be defined as a constant without affecting the fractal dimension. Hereafter, it is as-
sumed that 4 = X = 10. The value of 4; is set to be 0.001 to properly infer both of
the fractal dimensions.

The empirical distribution of the fractal dimension of the irregular polygons is
calculated over a random sample of 10,000 polygons from the world map used in
section 3. The result of this empirical distribution is presented in Fig. .8.a. To find
the fractal dimension of the MR-Polygons, we generate a surface of the average
dimensions as a function of the values of ¢ and ¢, which range from 0.01 to 5 with

13 To calculate the structural dimension, we use the EXACT procedure, which is devised by Allen
et al. (1995), with a small value for A;. Next, both of the dimensions were determined by using a
k-means clustering algorithm over the cloud of points on the Richardson plot.
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steps of 0.1 (Fig .8.b.). The resulting surface indicates that the fractal dimension is
mainly affected by o, especially when looking at small dimensions. Additionally, it
is found that fractal dimensions close to 1.23 are obtained when o takes on values
between 1.2 and 1.5, regardless of the value of «.

Fig. .9 presents some examples of polygons using different values of ¢ and ©.
The polygons in the second row, which correspond to ¢ = 1.5, produce irregular
polygons that have a realistic structural fractal dimension. Additionally, in the same
figure, both the original (gray line) and sampled (black line) polygons reinforce the
fact that sampling a polygon does not affect the structural dimension. From now on,
we will use sampled polygons to improve the computational efficiency.
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Fig. .8 Stages to find the values of o and ©.

4.2 Recursive Irregular maps (RI-Maps)

Up to this point, we were able to generate irregular polygons with fractal dimen-
sions that are similar to those from real maps. The next step is to use these poly-
gons to create irregulars lattices of any size whose topological characteristics are
close to the average values obtained for these characteristics in real lattices around
the world. For this step, we formulate a recursive algorithm on which an irregular
frontier is divided into a predefined number of polygons using MR-Polygons. Our
conceptualization of the algorithm was made under three principles: (1) Scalabil-
ity: Preserving the computational complexity of the algorithm when the number of
polygons increases; (2) Fractality: Preserving the fractal characteristics of the map
at any scale; and (3) Correlativity: Encouraging the presence of spatial agglomer-
ations of polygons with similar sizes, which is commonly present in real maps in
which there are clusters of small polygons that correspond to urban areas.
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Fig. .9 Examples of stochastic polygons generated using (Algorithm 1) with different values of &
and o.

Algorithm 2 presents the RI-Maps algorithm to create polymorphic irregular ape-
riodic asymmetric lattices with realistic topological characteristics. This algorithm
starts with an initial empty irregular polygon, pol, (the outer border of the RI-Map)
and the number of polygons, #, to fit inside. In a recursive manner, a portion of the
initial polygon pol starts being divided following a depth-first strategy until that
portion is divided into small polygons. This process is repeated for a new uncov-
ered portion of pol until the whole area of pol is covered. Because the recursive
partitions are made by using MR-Polygons, we take the values of o and o from a
uniform distribution between 0.1 and 0.5 and 1.2 and 1.5, respectively, which cor-
respond to the ranges of values that generate realistic polygons (see section 4.1).
Regarding u, Xp and A;, these variables take the same values proposed in section
4.1. Last, to guarantee the computational treatability of the geometrical operations,
each polygon comes from a sampling process of 30 points.
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To ensure a full understanding of the RI-Maps algorithm, we summarize in Fig.
.10 its main steps, which indicates the link between the figure and the lines in the
RI-Maps algorithm.

The RI-Maps algorithm has three unknown parameters:

e p;: Because each polygon is created by the MR-Polygons using a polar coordi-

nate system that is unrelated to the map being constructed with RI-Maps, it is

necessary to apply a scaling factor, %jg’f”, that adjusts the size of the

MR-Polygon before being included into the RI-Map.

e py: When a new polygon is used to divide its predecessor, its capacity to contain
new polygons (measured by the number of polygons) is proportional to its share
of the unused area of its predecessor. However, to enforce the appearance of
spatial agglomerations of small polygons, the number of polygons that the new
polygon can hold is increased with a probability of p,.

e p3: When p; indicates that a new polygon will hold more polygons, the number
of extra polygons is calculated as the p3 percent of the number of missing poly-
gons that are expected to fit into the unused area of its predecessor polygon. The
number of extra polygons is subtracted from the unused area to keep constant the
final number of polygons (n).

Table .4 illustrates the effect of the parameters p, and p3 on the topological
characteristics of RI-Maps. In the first row, p» and p3 equal 0, which generates
highly ordered lattices without spatial agglomerations. The second and third rows
are more disordered than the first row and have spatial agglomerations, with those
in the second row less frequent and evident than those in the third row. As will be
shown in the next section, lattices in the third row are more realistic in terms of their
topological characteristics.

To find a combination of pj, p,, and p3 that generates realistic RI-Maps in
terms of their topological characteristics, we use a standard genetic algorithm,
where the population 7 at iteration i, denoted as ¥/, is formed by the genomes
¥, =[P}, P, Pl,), where p’, p , and p’, are real numbers between 0 and 1, rep-
resenting instances of pp, p2, p3, which are denoted as phenomes. In this case, i € N
between 0 and 20 and j € N between 0 and 100. To evaluate the quality of each

genomes fitness function, F (7’;) is defined in equation (.7), where 0 is a set of poly-

gons, @ is the relative importance for a map of k polygons, and fk(y]’») is a func-
tion given by equation (.8) that measures the average difference between the values
of the topological indicators of real lattices and those values of RI-Maps formed
by k polygons using the phenome y; For the sake of simplicity, in equation (.8),

Y, = [My,,my, 11, U, S, A1] denotes the vector of real indicators, and ‘Pk(y;) denotes
the vector for the mean values of RI-Maps with k polygons using y} The superindex

[ is used in ‘Pkl and ‘Iﬁ(y;) to refer to the /'" indicator in the real and simulated val-
ues, respectively. Finally, ns is the number of simulations to be generated with each
genome.
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Algorithm 2 RI-Map: Recursive Irregular Map

1:
2
3
4
5:
6.
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:

function RECURSIVEIRREGULARMAP(n, pol)
(Qmin s Omax, Omins Omax, U, X0, 4¢) = (0.1,0.5,1.2,1.5,10,10,0.001)
JARS R=P2 € R:P3 €R
if n > 2 then

missingPolygons < n
uncoveredPolygon < pol
coveredPolygon < ¢

polygons + ||

scalingFactor < WL”(”Z"I)
XX

while area(uncoveredPolygon) >—0.03 do

area(pol)
uncovered2select < Bigger part of uncoveredPolygon

area(uncovered2select)
area(uncoveredPolygon) <= L5 then

polygons. put (uncovered2select)
coveredPolygon < coveredPolygonUuncovered2slect
missingPolygons < missingPolygons — 1

else
o < RandomUni form(Omin, Onax)
0 < RandomU ni form(Gmin, Omax)
pol; <~ MEANREVERTINGPOLYGON(, 0, 1, X, A)
pol; <~ Multiply each ratio of pol; by scalingFactor
pol; < Center pol; randomly into uncovered2select
pol; < (pol; — coveredPolygon) N pol
pol; < Bigger part of pol;

if missingPolygons x

n; < missingPolygons x area(uncoveredPolygon)

if Uniform(0,1) < p, then
n; = n; + missingPolygons X p3
end if
n;i < Round(ny)
if n; > 1 then
polygons; <— RECURSIVEIRREGULARMAP(n;, pol;)
polygons < polygons U polygons;
coveredPolygon < coveredPolygonU polygons;
missingPolygons < missingPolygons — n;
end if
end if
uncoveredPolygon < pol — coveredPolygon
end while
Append interior holes of coveredPolygon to polygons
coveredArea < | polygons
while /ength(polygons) < n do
Append the smaller polygon to its larger neighbor
end while
while length(polygons) > n do
Divide the larger polygon
end while

else if n = 1 then

polygons < [pol]

else

poly, pol, < Divide pol in 2
polygons < [poly, pol]

end if
return polygons

53: end function

> Recursive step

> Terminating case

> Terminating case
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Fig. .10 Diagram of the main steps of the RI-Maps



4 RI-Maps: An algorithm for generating realistic irregular lattices 19

Table .4 Examples of RI-Maps of 400, 1,600 and 3,600 polygons using different combinations of
parameters
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The algorithm starts with an initial random population of 100 genomes to obtain
the best four genomes. The subsequent populations are composed of two parts. The
first 64 genomes are all of the possible combinations of the last best 4 genomes, and
the other 36 genomes are random modifications of those 64 genomes. Because of
the computational time required to evaluate equation (.7), only lattices of 400 and
1,600 were used, with an importance of ¢400 = 1 and ¢; 600 = 2, respectively. The
algorithm reached the optimal value after 13 iterations with p; = 0.010, p, = 0.050,
and p3 = 0.315.

5 Results

Fig. .11 presents a graphical comparison of the topological characteristics of real RI-
Maps and Voronoi diagrams. The values for the RI-Maps were obtained from 100
instances. The results show that RI-Maps have a maximum (M,) and a minimum
(m,,) number of neighbors that are very close to the values found in the real lattices.
Regarding the average number of neighbors, both RI-Maps and Voronoi diagrams
show similar values that are slightly higher than those observed in real lattices;
however, because the number of neighbors is an integer value, it can be concluded
for all three cases that the average number of neighbors is 6, which verifies the
findings by Weaire and Rivier (2009) in irregular lattices. Regarding L, RI-Maps
are a better approach to simulate the level of disorder found in real lattices. To
facilitate the visualization, the values of S are reported as S * \/n. The results show
that RI-Maps replicate the values of real lattices at any size, while Voronoi diagrams
report higher values that tend to increase with the number of polygons. Last, RI-
Maps have values of A; that are closer to the values of real lattices, especially for
large instances.

Table .6 presents the average and standard deviation of RI-Maps under the opti-
mal parameters (p; = 0.010, p» = 0.050, p3 = 0.315) found in the previous section.
This table completes the topological information on lattices presented in Table .3.

6 Application of RI-Maps

In this section, we present an example of the use of RI-Maps based on the com-
putational experiments designed by Duque et al. (2011a) to compare the efficiency
of the improved AMOEBA algorithm. To present the results, Duque et al. (2011a)
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Fig. .11 Comparison of the topological characteristics of real lattices, RI-Maps and Voronoi dia-
grams.

Table .5 Average topological characteristics for RI-Maps

Number of polygons
81 100 400 900 1,600 2,500 3,600

26.500 33.100 30.460 41.870 46.760 49.730 54.396
+12.765 £14.751 +13.664 £16.035 £16.429 +16.886 +15.156
1.260  1.140  1.510 1.200  1.040  0.950  0.979
+0.691 +0.513 +0.847 =£0.550 +0.374 +0.261 =40.204
5.347 5388 5.855 5909 5937 5952 5.957
M 10333 £0304 +£0.093 £0.052 +£0.036 +0.032 £0.027
17.397 21.313  9.722 10.708 10.426 10.443 11.276

M2 113734 114729 +6.189 £3.831 +2.277 £1.506 =£1.229
5974 4879 1372 0.620 0353 0.226  0.157
+0.324 £0.219 +0.020 +0.006 +£0.002 =+0.001 =0.001
7431 7969 7931 8.724 8993  9.299  9.449
+0.804 +0.808 +0.979 +£0.962 +0.960 =+0.957 +£0.798

proposed 3 computational experiments; one of them reports the running time of
AMOEBA as the number of polygons of regular lattices increases. In this paper, we
will run the same algorithm not only for regular lattices but also for real irregular
and simulated irregular lattices (RI-Maps). First, we want to see whether running
the computational experiment on regular lattices only is a good representation of
the performance of the algorithm. (Can the conclusions that are obtained for regular
lattices be extrapolated to irregular lattices?) Second, we want to see whether the
results from using RI-Maps are also valid for real irregular maps.
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For the experiment that we generated, for each type of lattice, there were 30
instances with 1,600 polygons. For each instance, we generated a spatial process
that had four clusters, each using the methodology proposed by Duque et al. (2011a).
Last, the instances for real maps were obtained from sampling the same world map
that was used in previous sections. Fig. .12 presents the distribution of the running
times obtained for each type of lattice, and Table .6 compares the distributions with
the two-sided Kolmogorov-Smirnov test (George Marsaglia and Wang, 2003). The
null hypothesis of the Kolmogorov-Smirnov test is that the two samples come from
the same probability distribution. Regarding the first question, it is clear that using
a regular lattice for testing the algorithm can lead to underestimating the execution
times of the algorithm. On the other hand, the distribution of the running times
obtained for real and RI-Maps is statistically equal, which shows the benefits of
using RI-Maps because it can automatically generate instances without limits on
their sizes.

Table .6 Kolmogorov-Smirnov test to compare the distributions of AMOEBA execution times
using different lattices

|Regular Lattices RI-Maps Real Maps
Regular Lattices [0.00 (p=1) 0.51 (p=0.0e~%) 0.61 (p=2.8¢7)
RI-Maps 0.51 (p=0.0e~*) 0.00 (p=1) 0.19 (p=0.607)
Real Maps ~ |0.61 (p=2.8¢7°) 0.19 (p=0.607) 0.00 (p=1)
[N
5 ]
S — Regqular
--- RlI-Maps
= 4\ | Real lattices
©
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S -
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Fig. .12 Execution times of AMOEBA over regular lattices and RI-Maps of 1,600
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7 Conclusions

This paper introduces an algorithm that combines fractal theory, the theory of
stochastic processes and computational geometry for simulating realistic irregular
lattices with a predefined number of polygons. The main goal of this contribution is
to provide a tool that can be utilized for geocomputational experiments in the fields
of exploratory spatial data analysis, spatial statistics and spatial econometrics. This
tool will allow theoretical and empirical researchers to create irregular lattices of any
size and with topological characteristics that are close to the average characteristics
found in irregular lattices around the world.

As shown in the last section, the performance of some geocomputational algo-
rithms can be affected by the topological characteristics of the lattices in which these
algorithms are tested. This situation can lead to an unfair comparison of algorithm
performances in the literature. With the algorithm proposed in this paper, the dif-
ferences in the computational performances will not be affected by the topological
characteristics of the lattices.

This paper also shows that the topological characteristics of regular lattices (with
squared and hexagonal polygons) and Voronoi diagrams (commonly used to emulate
irregular lattices) are far from the topological characteristics that are found in real
lattices.
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