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Abstract 

This paper formally models heterogeneity in credit unions’ production technologies as 
evidenced by (endogenously selected) differing output mixes. We show that failure to account 
for this observed heterogeneity is likely to lead to biased, inconsistent estimates of credit unions’ 
technology and potentially misleading results about the industry structure. The estimates are 
also likely to be biased if one overlooks unobserved credit union specific effects, as customarily 
done in the literature. To address these concerns, we develop a generalized model of 
endogenous switching with polychotomous choice that is able to accommodate fixed effects in 
both the technology selection and the outcome equations. We use this model to estimate returns 
to scale for the U.S. retail credit unions from 1994 to 2011. Unlike recent studies, we find that not 
all credit unions enjoy increasing returns to scale. A non-negligible number of large institutions 
operate at decreasing returns to scale, indicating that they should either cut back in size or switch 
to a different technology by adjusting the output mix. 
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‘All happy families are alike; every unhappy family is unhappy in its own way.’  

Leo Tolstoy, Anna Karenina. 

 

1 INTRODUCTION 

U.S. credit unions continue to prosper despite the decline in their relative advantages over 

commercial banks. Factors such as increasing availability of credit information from national 

credit-reporting bureaus, establishment of the federal deposit insurance fund for credit unions 

and the growth in credit card lending by larger financial institutions have significantly eroded 

conventional benefits of doing business at the local, small-scale level (Petersen & Rajan, 2002; 

Walter, 2006; Wheelock & Wilson, 2011). This has motivated credit unions to evolve. With the 

authorization to issue long-term mortgage loans in 1977 and the passage of the Credit Union 

Membership Access Act of 1998 which empowered them to widen and diversify their 

membership scope, credit unions have grown significantly in an attempt to compensate for the 

loss of traditional competitive advantages by capitalizing on economies of scale. The industry has 

been undergoing a wave of mergers and acquisitions: within the past decade alone there was a 

total of 2,464 mergers (2002-2011). Over these ten years, the average size of (federally-insured) 

credit unions has increased from $57.5 million to $135.8 million in assets. As of the end of 2011, 

the industry accounted for about a trillion dollars in assets and more than 92 million members 

(authors’ calculations based on NCUA, 2011). 

Several studies have investigated the performance of U.S. credit unions.1 However, to our 

knowledge, no attempt has been made to formally model credit unions’ technologies taking into 

consideration their differing output mixes. This limits our understanding of the industry 

structure, its evolution and the potential impact of alternative policies. All existing studies have 

encountered the same problem, namely, the presence of a large number of observations for which 

the reported values of outputs are zeros. This issue has been handled either by linearly 

aggregating different types of outputs into larger bundles (Fried, Lovell & Yaisawarng, 1999; 

Frame & Coelli, 2001; Wheelock & Wilson, 2011, 2013) or by replacing zero outputs with an 

arbitrarily chosen small positive number (Frame et al., 2003). There may however be concerns 

whether these methods are appropriate since they do not recognize that the existence of zero-

value outputs provides valuable information regarding the choice of the production technology 

by credit unions. 

[Insert Table 1 here] 

To preview the importance of modeling the choice of credit unions’ technology properly 

(which we discuss in detail in Section 2), consider Table 1 which presents the number of retail 

credit unions in each year between 1994 and 2011 with zero values reported for some (or all) of 

the four outputs commonly considered in the literature. All credit unions2  report non-zero values 

for consumer loans (�3) which historically have been the main product of credit unions. However, 

                                                           
1 See Wheelock and Wilson (2011, 2013) and the references therein. 
2 With the exception of a single entity. 
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there is a strikingly large number of credit unions that offer no real estate (�1) or business loans 

(�2) to their members throughout the years we consider. This evidence favors our view that not 

all credit unions are alike. Given that the output mix differs across units and over time, a 

substantial time-persistent heterogeneity might exist among credit unions.  

We view this observed heterogeneity as an outcome of an endogenous choice made by 

credit unions. They decide what range of services to offer to their members and choose the 

appropriate technology to provide them. Thus, it is likely that the production technology which 

a credit union employs varies with its output mix. To our knowledge, this technological 

heterogeneity (defined by the output mix) has been either assumed to be exogenous and/or 

completely taken for granted in all previous studies of the credit union technologies. The 

aggregation of outputs into broader categories to solve the zero-output problem, so often 

practiced in the literature, constitutes the loss of information in both econometric and economic 

senses. The results previously reported in the literature are therefore likely to be misleading since 

the used econometric models ignore the time-persistent heterogeneity arising from the 

endogenous selection of credit unions’ technologies.3 

Heterogeneity among credit unions is unlikely to be limited to the technology they use only; 

each credit union is unique in its operations. Ignoring this unobserved heterogeneity when 

estimating credit unions’ technology (which is customary in the existing literature4) may produce 

inconsistent estimates since unobserved heterogeneity is likely to be correlated with covariates in 

the estimated equation. While such credit-union-specific unobserved effects cannot be accounted 

for in a cross-sectional setting due to the incidental parameters problem, we address this issue in 

our case by taking advantage of the panel structure of the U.S credit union data. 

In this paper, we address the above concerns by developing a unified framework that allows 

estimation of credit union technologies that is robust to (i) misspecification due to an a priori 
assumption of homogenous technology, (ii) selectivity bias due to ignoring the endogeneity in 

                                                           
3 We acknowledge that the issue of heterogeneity among credit unions has been also addressed (although from a 

somewhat different perspective) in Wheelock and Wilson (2011) who estimate credit unions’ cost function via kernel 

methods, thus avoiding any functional specification for the underlying technology and obtaining observation-specific 

estimates of the cost function. A kernel regression indeed permits credit unions’ technologies to be completely 

heterogeneous with respect to covariates included in the regression. However, the aggregation of all types of loans into 

a single output, which Wheelock and Wilson (2011) resort to, does not allow them to account for the heterogeneity 

resulting from differing output mixes which this paper emphasizes. The authors do include two indicator variables in 

their regressions to control for zero-value (disaggregated) outputs. While the latter partly resolves the issue, the 

information on output-type-specific variation is still being lost which is likely to affect the results on scale economies 

reported in the paper. More importantly, similar to the rest of the literature, Wheelock and Wilson (2011) do not 

consider a likely possibility of differing output mixes being endogenously determined by credit unions which, as we 

show in this paper among other things, may result in severely distorted results due to the unaddressed selectivity bias. 

That is, the above-mentioned indicator variables used by Wheelock and Wilson (2011) are likely to be endogenous. 
4 To our knowledge, Frame et al. (2003) is the only study which attempts to estimate (homogenous) credit unions’ 
technology using panel data while allowing for unobserved heterogeneity among unions. However, the latter is 
modelled as random effects under a strong assumption of its exogeneity which is unlike to hold in practice. 
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technology selection, and (iii) endogeneity (omitted variable) bias due to a failure to account for 

unobserved union-specific effects that are correlated with covariates in the estimated equations. 

However, the estimation of such a model is not trivial. As we demonstrate in Section 2, the 

data indicate that 99% of all U.S. retail credit unions employ one of the three technologies 

associated with different output mixes offered by these institutions from 1994 to 2011. This 

suggests that a credit union’s choice of technology is of a polychotomous nature. In the cross-

sectional setting, an econometric strategy appropriate for such a problem would be a switching 

regression model [Maddala’s (1983) terminology] under polychotomous choice considered by 

Lee (1978, 1982, 1983 and 1995). The latter method however does not have the ability to take into 

account unobserved effects. At the same time, the existing literature on panel data selection 

models with unobserved heterogeneity focuses mainly on binary selection, and few papers allow 

for fixed-effect type heterogeneity in both the outcome and the selection equations (see the 

references in Section 3.2). In the case of no endogeneity due to non-zero correlation between right-

hand-side covariates and idiosyncratic errors, the approaches to tackle fixed effects in static panel 

data models with dichotomous selection are those proposed by Wooldridge (1995), Kyriazidou 

(1997) and Rochina-Barrachina (1999).5 However, to our knowledge, no model of polychotomous 
choice that also allows for fixed effects in the selection and outcome equations has been 

considered in the literature. For panel models of polychotomous choice, but with no selection, see 

Honoré and Kyriazidou (2000a) or Magnac (2000).  

We contribute to the literature by extending Wooldridge’s (1995) estimator to the case of 

polychotomous selection in the spirit of Lee (1983) and applying this framework to estimate the 

returns to scale for all U.S. retail credit unions in 1994-2011. The latter has been recently brought 

into the spotlight of the scholarly discourse (Emmons & Schmid, 1999; Wilcox, 2005, 2006; 

Wheelock and Wilson, 2011). We compare our estimates to those (potentially biased and 

inconsistent) obtained by ignoring heterogeneity due to endogenous technology selection and 

unobserved effects.  

Our main finding is that not all U.S. retail credit unions enjoy increasing returns to scale. 

When controlling for heterogeneity in the output mix, endogeneity in technology selection and 

unobserved effects among credit unions, we find that 6 to 12% of large credit unions offering all 

types of loans except commercial loans operate at decreasing returns to scale.  These institutions 

should either reduce the scale of their operations or reconsider their output mixes. This finding, 

for instance, contrasts with the results in Wheelock and Wilson (2011) who find no significant 

evidence of decreasing returns to scale among all credit unions in their sample. We consistently 

fail to reject the null of exogenous technology selection among credit unions and generally find 

that ignoring endogeneity of this process or ignoring unobserved time-invariant effects across 

units leads to downward biases in returns to scale estimates. 

                                                           
5 Other methods consider dynamic panels with binary selection or allow for endogenous covariates (e.g., Vella & 
Verbeek, 1999; Semykina & Wooldridge, 2011; Kyriazidou, 2001; Semykina & Wooldridge, 2010; Charlier, Melenberg 
& von Soest, 2001; Dustmann & Rochina-Barrachina, 2007, where the last four are the extensions of the three papers 
cited in the main text). 
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However, having addressed all the concerns we raise in this paper, we find that the majority 

of credit unions (among all technology types) shows the evidence of substantial economies of 

scale which leads us to conclude that growth of the industry is far from reaching its peak. The 

industry-wide trends such as the diversification of financial services offered to members as well 

as mergers among credit unions are likely to persist over coming years. We therefore expect a 

policy debate over credit unions’ tax-exempt status as well as their special regulatory treatment 

compared with commercial banks to reignite in the near future. As these institutions grow in size 

and complexity, they may become of systemic importance for regulators and the economy. 

  The rest of the paper proceeds as follows. Section 2 provides a description of the data as 

well as a discussion of how we identify heterogeneous credit union technologies. We describe 

our econometric model of polychotomous choice with endogenous selection and fixed effects in 

Section 3. Section 4 presents the results, and Section 5 concludes. 

 

2 HETEROGENEOUS TECHNOLOGIES 

In this section, we define the framework in which we examine credit union technologies. Due to 

their cooperative nature, credit unions are not profit-maximizers. Instead, they are thought of as 

maximizing service provision to their members in terms of quantity, price and variety of services 

(Smith, 1984; Fried et al., 1999). Following a wide practice in the literature (Frame & Coelli, 2001; 

Frame et al., 2003; Wheelock and Wilson, 2011, 2013), we adopt a “service provision approach” 

under which, given their production technologies,6 credit unions minimize non-interest, variable 

cost  subject to the levels and types of outputs, the competitive prices of variable inputs and the 

levels of quasi-fixed netputs. 

We consider the following four outputs: real estate loans (�1), business and agricultural 

loans (�2), consumer loans (�3) and investments (�4). We further follow Frame et al. (2003) and 

Wheelock and Wilson (2011, 2013) and include two quasi-fixed netputs to capture the price 

dimension of the service provision by credit unions: the average interest rate on saving deposits 

(��5) and the average interest rate on loans (��6). The input dimension of credit union cost is 

captured by including the price of capital (�1) and the price of labor (�2). To partially account 

for the riskiness of the credit union operations, we also include equity capital (��) as a quasi-fixed 

input to the cost function, as usually done in the banking literature. The latter has been broadly 

taken for granted by the existing credit union literature under the implicit assumption of risk-

neutral behavior of credit union managers. Including equity capital is also appropriate if one 

considers it as an additional input to the production of loans (see Hughes & Mester, 1998, 2011; 

Hughes, Lang, Mester & Moon, 1996; among many others). All of these variables are taken as 

arguments of the dual variable, non-interest cost function of a credit union, defined as 

���, �
,�, ��� = min
�
�	�′�	|	���, �, �
, ��� ≤ 1;	�
 = �
�; 	�� = ���	}	,																																																(2.1) 

                                                           
6 That is, given the mix of financial services (outputs) that credit unions opt to provide to their members. 
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where � = (�1, �2, �3, �4) is a vector of outputs, �
 = (��5, ��6) is a vector of quasi-fixed netputs 

with the corresponding vector of observed (fixed) values �
�; and � = (�1,�2) is a vector of the 

variable input prices; � = ($1, $2) is a vector of variable inputs; ��  is a quasi-fixed input with the 

observed (fixed) value ���; and ���, �, �
, ��� is the transformation function.  

The data we use in this study come from year-end call reports available from the National 

Credit Union Administration (NCUA), a federal regulatory body that supervises credit unions. 

The available data cover all state and federally chartered U.S. credit unions over the period of 

1994 to 2011. We discard observations with negative values of outputs and total cost. In addition, 

we exclude observations with non-positive values of variable input prices, quasi-fixed netputs, 

equity capital, total assets, reserves and total liabilities. Since �
 and �1 are interest rates, we also 

eliminate those observations for which values of these variables lie outside the unit interval. 

These excluded observations are likely to be the result of erroneous data reporting. For the details 

on construction of the variables from the call reports, see the Appendix. 

In this paper we focus on retail, or so-called natural-person, credit unions only. We therefore 

exclude corporate credit unions (whose customers are the retail credit unions) from the sample 

in an attempt to minimize noise in the data due to apparent non-homogeneity between these two 

types of depositories (this results in a loss of 0.7% observations in the sample). Our data sample 

thus consists of 151,817 year-observations for all retail state and federally chartered credit unions 

over 1994-2011.  

 We next proceed to the identification of heterogeneous technologies among credit unions 

in our sample. As we pointed out in the Introduction, the data indicate the presence of significant 

differences among credit unions in terms of the mix of services they offer to members. Based on 

the tabulation of zero-value observations reported in Table 1, on average, we find that 88% of 

credit unions in our sample do not offer business loans (�2) and 31% do not offer mortgage loans 

(�1) in a given year. Ignoring this observed heterogeneity in the provision of services across credit 

unions amounts to making a strong assumption that all credit unions share the same technology 

that is invariant to the range of provided services. If the choice of the output mix is endogenous 

to credit unions’ decisions, this assumption is unlikely to hold. 

[Insert Table 2 here] 

Given the four types of loans we consider in this paper, there are 15 possible technologies 

associated with unique output mixes which can be identified among credit unions. The possible 

heterogeneous technologies are those of the credit unions specialized in one (complete 

specialization), two or three types of loans (partial specialization) and of the unions that produce 

all four outputs (no specialization). Table 2 presents a summary of these technologies 

corresponding to output mixes constructed based on the non-zero-value loans reported by credit 

unions. The table shows that the majority of credit unions falls into the following three categories: 

(i) those that provide consumer loans and investments (�3, �4); (ii) those that provide real estate 

and consumer loans as well as investments (�1, �3, �4); and (iii) those that provide all types of 

outputs: real estate, business and consumer loans, and investments (�1, �2, �3, �4). Together, the 
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three groups of credit unions constitute 99% of all observations in the sample, suggesting that the 

remaining one percent likely contains either outliers or reporting errors. We omit them from our 

analysis from this point forward. We label the three above output mixes as “1”, “2” and “3”, 

respectively, and define their corresponding technologies as “Technology 1”, “Technology 2” and 

“Technology 3”. We hereafter use technology and output mix types interchangeably when 

referring to credit unions.  

[Insert Figure 1 here] 

Figure 1 shows the breakdown of credit unions in our sample by their technology type. This 

figure indicates several trends. First, there is an apparent secular decline in the number of credit 

unions over time, mainly due to mergers and acquisitions. Second, the heterogeneity among U.S. 

credit unions (as captured by the technology type) is highly persistent over time. While today 

most credit unions still operate under Technology 2 as they did back in 1994, the presence of other 

technology types has increased over these years. Third, there is a trend among credit unions to 

shift away from Technology 1 to Technology 2 and even more so to Technology 3 (as confirmed 

by an unreported analysis of technology transitions). 

[Insert Table 3 here] 

To confirm that the credit unions belonging to heterogeneous technology types are 

intrinsically different from one another, consider Table 3 which presents summary statistics of 

the variables used in the dual cost function as well as several other variables descriptive of the 

characteristics of credit unions such as total assets, reserves, etc. (we will discuss the use of them 

in Section 4). All nominal stock variables are deflated to 2011 U.S. dollars using the GDP Implicit 

Price Deflator. A comparison of sample mean and median estimates of variables shows clear 

differences among technologies. As expected, the size of the credit unions (proxied either by total 

assets, reserves or the number of members) increases as one moves from Technology 1 to 

Technology 3. This is also apparent in Figure 2 which plots kernel density estimates for the log of 

total assets tabulated by technology types. The large differences between technology types favor 

our view that the assumption of homogeneous technology across credit unions is likely to result 

in the loss of information and the misspecification of the econometric model. As we show in 

Section 4, this produces biased estimates and potentially misleading results.  

[Insert Figure 2 here] 

  

3 A GENERALIZED MODEL OF CREDIT UNION TECHNOLOGIES 

This section develops an econometric model that we employ in order to investigate underlying 

differences in heterogeneous technologies of U.S. credit unions. The model (i) avoids imposing a 

strong assumption of homogenous technology uniformly adopted by all credit unions 

irrespective of the service mix they offer to their members; (ii) explicitly accounts for the 

endogeneity of the selection of these different technologies by unions over the course of time; and 

(iii) allows for unobserved time-invariant fixed effects amongst credit unions. 
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3.1. A BASELINE MODEL 

Consider a dual cost function of a credit union i: 

�%& = '&(�%&; (&) + *%&															∀		, = 1,… , .; 	/ = 1,… ,0																																																												(3.11) 
�∗%

& = 3%4& + 5%&		,																																																																																																																																				(3.16) 
where �%& is the total variable, non-interest cost; '&(∙) is a linear (in parameters) cost function;7 �%& 
is a 8& × 1 vector of relevant variables as defined in Section 2;  (& and 4&are conformable 

parameter vectors. The superscript s denotes the technology type. 

Note that �%& is observed only if the sth technology is chosen; �∗%
& is a latent variable 

determining the technology selection, given an : × 1 vector of some relevant variables 3% which 

includes a vector of ones for the intercept (we define them in Section 4). While we later assume 

that the error terms *%& and 5%& are orthogonal to �%& (under the premise of cost minimization) and 

3%, their distributions are however allowed to be correlated, namely ;[*%&5%&|�%&, 3%] ≠ 0. Note that 

the above model is an extension of a standard endogenous selection model, also referred to as a 

switching regression model (Maddala, 1983, p. 223), to a case of polychotomous choice (Lee, 1978, 

1982, 1983, 1995; Trost & Lee, 1984).  

It is natural to think of the latent variable �∗%
& as measuring a credit union’s propensity to 

select the technology s. The technology s is selected if and only if 

 �∗%
& > �∗

%
A															∀		B = 1,… , .		(B ≠ ,)																																																																																												(3.2) 

While one can treat the switching among technologies as a system of (. − 1) dichotomous 

decision rules (Hay, 1980), we follow an alternative approach by considering the technology 

selection problem in McFadden’s (1974) random utility framework, as suggested by Maddala 

(1983, p. 275) and Lee (1983). That is, the sth technology is said to be selected if and only if 

�∗%
& > max	AFG,…,H

AI&
		J�∗

%
AK																																																																																																																																	(3.3) 

Define a categorical variable � such that �% = , if the ith credit union selects the technology s. 
Then, (3.3) can be rewritten as  

�% = ,			 ⟺		 3%4& + 5%& > max	AFG,…,H
AI&

		M3%4A + 5%
AN																																																																																	(3.4) 

For convenience, let  

O%& = max	AFG,…,H
AI&

		M3%4A + 5%
AN − 5%&																																																																																																															(3.5) 

Then it follows from (3.4) that 

�% = ,			 ⟺		 O%& < 3%4&																																																																																																																													(3.6) 

                                                           
7 In this paper, we consider the translog cost function. For more on the choice of this specification, see Section 4. 
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In order to proceed further, we need to make a distributional assumption about the error term in 

the selection equation. The assumption we make is standard to polychotomous choice models. 

ASSUMPTION 1. For , = 1,… , . and / = 1,… ,0, the error term 5%& is independent of �%& and 3%, 
which implies ;[5%&|�%&, 3%] = 0, and is identically and independently distributed with the 

type I extreme-value distribution. 

Then, it can be shown that (Domencich & McFadden, 1975) 

Pr[�% = ,] = Pr[O%& < 3%4&] = S&(3%4&) =
exp	(3%4&)

∑ exp	(3%4A)H
AFG

		,																																																						(3.7) 

which yields a multinomial logistic O%& with the corresponding marginal distribution S&(∙). 
Also note that, for some strictly positive monotonic transformation X&(∙), condition (3.6) is 

equivalent to 

�% = ,			 ⟺			 X&(O%&) < X&(3%4&)																																																																																																														(3.8) 
We can now look at the benchmark model in (3.1) as a binary choice (sample selection) model, for 

each given technology s (Maddala, 1983, p.276). That is, we can essentially replace the technology-

selection equation (3.1b) for each , = 1,… , . with its equivalent 

�� ∗%
& = X&(3%4&) − X&(O%&)		,																																																																																																																								(3.9) 

where �� ∗%
&
 is a transformed latent variable such that �% = , if and only if �� ∗%

& > 0, i.e., condition 

(3.8) is satisfied. Following Lee (1982, 1983), we consider X&(∙) ≡ Φ]G[S&(∙)], where Φ(∙) is the 

standard normal cdf. The advantage of such transformation is that the random error X&(O%&) in (3.9) 

is standard normal by construction, which would later enable us to employ well-known results 

on the truncated moments of the standard normal. For convenience, we define O%̃& ≡ X&(O%&). 
Thus, a natural way to proceed is to specify a form of correlation between two disturbances 

in (3.1a) and (3.9), for each , = 1,… , ., which would permit the correction for selection bias in the 

outcome equation. 

ASSUMPTION 2. For , = 1,… , . and / = 1,… ,0, the error *%& is orthogonal to �%& and 3% and its 

conditional mean, given O%̃&, is linear 

;[*%&|�%&, 3%, O%̃&] = ;[*%&|O%̃&] = :[*%&|O%̃&]		,																																																																																										(3.10) 
where :[∙] denotes the linear projection operator.  

Specifically, we set 

:[*%&|O%̃&] = _&O%̃&																																																																																																																																						(3.11) 
Olsen (1980) proposes the same assumption of a linear conditional mean of *%& in the binary 

selection setting, in order to derive a selection bias correction term. Maddala (1983, p. 269) 
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parameterizes _& = `abca
bd�a

 and then normalizes ef�& to unity thus setting _& = ;[*%&O%̃&|�%&, 3%].8 Also, a 

common alternative to Assumption 2 is the assumption of bivariate normality of the two 

disturbances which also implies linearity of the conditional mean of *%& [as in Lee (1982, 1983)]; 

however, our assumption is less restrictive. 

Consider now the conditional mean of �%&, given that the sth technology is selected. From 

(3.1a) and (3.9) we get 

;[�%&|�%&, 3%, �% = ,] 	= '&(�%&; (&) + ;[*%&|�%&, 3%, �% = ,] 
																								= '&(�%&; (&) + _&;[O%̃&|O%̃& < X&(3%4&)]		,																																																			(3.12) 

where we have made use of (3.8), (3.11) and the assumption of exogeneity of �%& and 3% in the 

second equality. The truncated mean ;[O%̃&|O%̃& < X&(3%4&)] has a known form of the negative of the 

inverse Mills ratio. Thus, from (3.12) we get 

;[�%&|�%&, 3%, �% = ,] 	= '&(�%&; (&) − _&g&[X&(3%4&)]																																																																					(3.13) 

Here g&[∙] denotes the inverse Mills ratio, i.e., g& ≡ h[ia(3j4a)]
k[ia(3j4a)]

= h[ia(3j4a)]
la(3j4a)

, where m(∙) is the standard 

normal pdf. 

The model can now be consistently estimated in two stages. The first-stage estimates of 4& 

can be obtained via multinomial logit performed on (3.7), which are then used to compute the 

selection bias correction term gn&[∙].  Under the assumption of a linear (in parameters) functional 

form for '&(�%&; (&), the consistent estimates of the main parameters of interest, namely (&, are 

obtained in the second stage via performing OLS on (3.13) that includes predicted gn&[∙] in place 

of g&[∙] (for each technology s, separately). 

 

3.2. A GENERALIZED MODEL WITH FIXED EFFECTS 

We now consider a generalized model of heterogeneous technologies under endogenous 

selection which also allows for unobserved credit-union-specific heterogeneity that is correlated 

with covariates in both the selection and the outcome equations. Thus, the benchmark model in 

(3.1) can be modified as 

�%o& = '&(�%o& ; (&) + p%& + *%o& 										∀		, = 1,… , .; 	/ = 1,… ,0; 	q = 1,… , qrst																				(3.141) 
�∗%o

& = 3%o4& + u%& + 5%o& 		,																																																																																																																				(3.146) 
where (p%&, u%&) are time-invariant, credit-union-specific fixed effects which are also specific to the 

choice of technology. We also add the time subscript t to differentiate between the cross-sectional 

and temporal variations. Note a notational change from now onward: (i) �%o&  and 3%o denote 8& × 1 

and : × 1 vectors of covariates at time t, respectively; (ii) �%& and 3% are now redefined as �%& ≡

                                                           
8 Note that neither Olsen (1980) nor Maddala (1983) transform the error in the selection equation (due to a binary nature 
of switching), instead they directly assume its normality. 
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(�%G& , … , �%o& , … , �%ovwx
& ) and 3% ≡ (3%G, … , 3%o , … , 3%ovwx), respectively. All remaining variables and 

parameters are defined as before. 

The estimation of a generalized model described by system (3.14) is not trivial. While there 

has been a great interest in extending traditional limited dependent variable models to the case 

of panel data which permits controlling for unobserved effects,9 the literature on such models 

incorporated into linear regressions with selectivity mainly focuses on binary selection (for a 

comprehensive review, see Baltagi, 2008). These panel data selection models differ in their 

assumptions about the form of the unobserved heterogeneity in outcome and selection equations: 

whether random effects are assumed in both equations (Hausman & Wise, 1979; Ridder, 1990, 

1992; and Verbeek & Nijman, 1996) or a combination of random and fixed effects is modeled 

(Verbeek, 1990). Few attempts have been made to allow for fixed-effect type heterogeneity in both 

outcome and selection equations. In the case of no endogeneity due to non-zero correlation 

between right-hand-side covariates and idiosyncratic errors, the three approaches to tackle fixed 

effects in these types of econometric models are those of Wooldridge (1995), Kyriazidou (1997) 

and Rochina-Barrachina (1999). These three papers mainly consider Type 2 Tobit model 

[Amemiya’s (1985) terminology], whereas Wooldridge (1995) also explicitly talks of Type 3 Tobit. 

The extension of Kyriazidou’s (1997) estimator to all types of Tobit (1 to 5) is discussed in Honoré 

and Kyriazidou (2000b). For a concise comparison of the three estimators, see Dustmann and 

Rochina-Barrachina (2007).  

Given the research question that we posit in this paper, the model that we consider is of 

polychotomous choice with fixed effects in selection and outcome equations. To our knowledge, 

no such model has been considered in the literature. We thus fill in this void by extending 

Wooldridge’s (1995) estimator to the case of polychotomous selection.  

We first formalize the correlation between the fixed effects and the covariates in the 

selection equation (3.14b). 

ASSUMPTION 1’. For , = 1,… , . and / = 1,… ,0, the fixed effects u%& in a selection equation s 
depend on the time averages of right-hand-side covariates, i.e. 

u%& = 3y%z& + {%&																																																																																																																																						(3.151) 
;[{%&|�%&, 3%] = 0		,																																																																																																																																		(3.156) 

where 3y% is a (: − 1) × 1 vector of time averages of 3%o (excluding the unity vector); and z& 

is a conformable vector of parameters. Substituting (3.15a) into (3.14b) yields 

�∗%o
& = 3y%z& + 3%o4& + |%o& 		,																																																																																																																(3.15{) 

                                                           
9 See, for instance, Chamberlain (1980), Manski (1987), Avery, Hansen and Hotz (1983), Sickles and Taubman (1986), 
Honoré and Kyriazidou (2000a), Honoré and Lewbel (2002), Magnac (2004). 
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where |%o& = {%& + 5%o&  is independent of �%& and 3% (which implies ;[|%o& |�%&, 3%] = 0) and is 

identically and independently distributed with the type I extreme-value distribution over 

/ = 1,… ,0 and q = 1,… , qrst.10 

Assumption 1’ warrants two remarks. First, the parameterization of fixed effects as in (3.15a) is 

quite popular in panel data models with limited dependent variables (see Mundlak, 1978; Nijman 

& Verbeek, 1992; Zabel, 1992).11 It is a special case of a more general parameterization considered 

in Wooldridge (1995) who proposes estimation of the reduced form of the selection equation with 

time-varying parameters,12 which can be expressed (in our notation) as 

�∗%o
& = 3%G}oG& +⋯+ 3%ovwx}oovwx

& + |%o& 																																																																																											(3.16) 
While we acknowledge that (3.15c) is more restrictive than (3.16), we still opt for it due to its 

parsimony and computational simplicity. In particular, (3.16) would require estimation of  

.[(: − 1)qrst + 1] parameters for each time period t. In this study, given high nonlinearity of the 

objective function (the multinomial logit log-likelihood), the true values of }oo&  may not be easy to 

locate. Further, the dataset we use is an unbalanced panel, which brings yet another set of 

complications since the number of parameters in (3.16) changes with each credit union. 

Second, unlike Wooldridge (1995) who assumes normally distributed errors |%o& , the 

distributional assumption we make is Gumbel, which is dictated by a polychotomous nature of 

the choice set. Also, |%o&  is assumed to be i.i.d over i and t, while Wooldridge (1995) specifies no 

temporal dependence in errors of the selection equation.13 For instance, a similar “i.i.d over i and 

t” assumption in the case of the panel multinomial logit is made in Honoré and Kyriazidou 

(2000a) and Wooldridge (2010, p.653). 

Following our steps from the previous subsection, the sth technology is said to be selected 

by a credit union i in the time period t if and only if 

�∗%o
& > max	AFG,…,H

AI&
		J�∗

%o
A K																																																																																																																													(3.17) 

Redefine variable � so that �%o = , if a credit union i switches to technology s in the time period t, 
and let [analogous to (3.5)] 

O%o& = max	AFG,…,H
AI&

		M3y%zA + 3%o4A + |%o
A N − |%o& 		,																																																																																								(3.18) 

where we have made use of (3.15c). With this, we obtain [analogous to (3.6)] 

�%o = ,			 ⟺		 O%o& < 3y%z& + 3%o4&																																																																																																									(3.19) 

                                                           
10 Since both 3y% and 3%o contain unities, clearly it is only the sum of intercepts in z& and 4& that is identified. 
11 Note that such approach to a fixed-effect type of heterogeneity is also widely referred to as “correlated random 
effects”, which purely is a matter of terminology. In this paper, we follow Wooldridge (1995), whose method we extend, 
in calling the effects “fixed”. 
12 See his Assumption 2 (p.124). 
13 We partly compensate for this by including the time trend in the set of covariates 3%o. 
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Given that |%o&  is i.i.d with a Gumbel distribution, it follows that O%o&  is multinomial logistically 

distributed over i and t with the corresponding marginal distribution S&(∙) 

Pr[�%o = ,] = S&(3y%z& + 3%o4&) =
exp	(3y%z& + 3%o4&)

∑ exp	(3y%z& + 3%o4&)H
AFG

																																																							(3.20) 

 Similar to the cross-sectional case before, we treat a polychotomous switching model as a 

set of dichotomous choice models for each technology s. Using the X&(∙) transformation, we can 

replace (3.14b) for each , = 1,… , . with its equivalent [analogous to (3.9)] 

�� ∗%o
& = X&(3y%z& + 3%o4&) − X&(O%o& )		,																																																																																																					(3.21) 

where �� ∗%o
&

 is a transformed latent variable such that �%o = , if and only if �� ∗%o
& > 0, i.e. the 

following equivalent of condition (3.19) is satisfied  

�%o = ,			 ⟺		 X&(O%o& ) < X&(3y%z& + 3%o4&)																																																																																											(3.22) 
 We next make an assumption about the form of correlation between two disturbances in 

(3.14a) and (3.21) which enables us to correct for selection bias in outcome equations.14 For 

convenience, we define O%̃o& ≡ X&(O%o& ). 
ASSUMPTION 2’. For , = 1,… , . and / = 1,… ,0, the following holds for the sth outcome 

equation 

(i) ;[*%o& |�%&, 3%, O%̃o& ] = ;[*%o& |O%̃o& ] = :[*%o& |O%̃o& ]																																																																																		(3.231) 
(ii) ;[p%&|�%&, 3%, O%̃o& ] = :[p%&|�%&, 3%, O%̃o& ]																																																																																																(3.236) 

The first equality in Assumption 2’ (i) states that the error *%o&  is mean independent of �%& and 3% 
conditional on O%̃o& . This assumption holds if *%o&  and O%̃o&  are independent of �%& and 3% ― a standard 

assumption made in the sample selection models (which we have also made in the previous 

section, partly motivating by the cost minimization behavior). Unlike Wooldridge (1995), we 

condition the expectation of *%o&  on 3% as well. This is necessary because we allow outcome and 

selection equations to have different covariates and non-zero (cross-equation) correlation 

between fixed effects. Further, note that (3.23a) does not impose any restrictions on temporal 

dependence of *%o&  or on the relationship between *%o&  and O%̃o& . 

Similar to (3.11), we specify the linear projection of *%o&  on O%̃o&  in (3.23a) as 

:[*%o& |O%̃o& ] = _o&O%̃o& 	,																																																																																																																																		(3.24) 
where the parameter _o& is now allowed to be time-varying, thus emphasizing the presence of 

temporal dynamics in the relationship between *%o&  and O%̃o& . 

 In order to account for fixed effects in outcome equations, Assumption 2’ (ii) specifies the 

structure of unobserved heterogeneity. One can consider a general form of (3.23b) such as  

:[p%&|�%&, 3%, O%̃o& ] = �%G& �oG
& +⋯+ �%ovwx

& �oovwx
& + 3%G�oG

& +⋯+ 3%ovwx�oovwx
& + �o

&O%̃o& 						(3.25) 

                                                           
14 For a counterpart in Wooldridge (1995), see his Assumption 3’ on p.126. 
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However, using the law of iterated expectations, one can easily show that under Assumptions 

(1’) and (2’) the parameters on �%o&  and 3%o in (3.25) are necessarily constant over t.15 Thus, (3.23b) 

simplifies to16 

;[p%&|�%&, 3%, O%̃o& ] = �%G& �G
& +⋯+ �%ovwx

& �ovwx
& + 3%G�G

& +⋯+ 3%ovwx�ovwx
& + �o

&O%̃o& 								 

																= �%&�& + 3%�& + �o
&O%̃o& 																																																																																										(3.26) 

We are now ready to proceed to the derivation of the selection bias corrected cost function that 

also controls for unobserved effects. Taking the conditional mean of �%o&  from (3.14a), we obtain 

;[�%o& |�%&, 3%, �%o = ,] = '&(�%o& ; (&) + ;[p%&|�%&, 3%, �%o = ,] + ;[*%o& |�%&, 3%, �%o = ,]		 
																																							= '&(�%o& ; (&) + �%&�& + 3%�& + (�o

& + _o&);[O%̃o& |�%&, 3%, �%o = ,] 
																																							= '&(�%o& ; (&) + �%&�& + 3%�& + 

																																												+	(�o
& + _o&);[O%̃o& |O%̃o& < X&(3y%z& + 3%o4&)]		,																																									(3.27) 

where we have used (3.24) and (3.26) in the second equality, and (3.22) and the exogeneity of �%& 
and 3% in the last equality. Given that O%̃o&  is standard normal by construction, the expected value 

term in (3.27) equals the negative of the inverse Mills ratio. Therefore, the selection bias corrected 

outcome equation with unobserved heterogeneity simplifies to its final form 

;[�%o& |�%&, 3%, �%o = ,] = '&(�%o& ; (&) + �%&�& + 3%�& − �o&	g&[X&(3y%z& + 3%o4&)]		,																			(3.28) 

where �o& ≡ (�o
& + _o&) and g&[∙] ≡ h[ia(3yjza�3j�4a)]

la(3yjza�3j�4a)
. 

 The generalized model is consistently estimated via a two-stage procedure. The first stage 

is the (pooled) multinomial logit with fixed effects as specified in (3.20), the estimates of which 

are then used to compute gn&[∙]. The second stage consists of estimating (3.28), in which predicted    

gn&[∙] is used in place of g&[∙], via pooled OLS (for each technology s, separately) after an 

assumption of a linear (in parameters) form for '&(�%o& ; (&) is made. Note that the outcome 

equations now also include 3% which is a consequence of allowing selection and outcome 

equations to be determined by different sets of covariates.  

 

4 ESTIMATION AND RESULTS 

We estimate both the benchmark and generalized models described in Section 3. For this, we need 

to specify the set of variables 3 which enter selection equations (3.1b) and (3.14b) that govern 

endogenous switching between technology types by credit unions. These variables must be 

relevant to a credit union’s decision about the range of services it seeks to offer to its members.17 

As noted in Section 2, the data particularly suggest considering covariates that correlate with the 

                                                           
15 See Wooldridge (1995) for details. 
16 Note again that since both of �%o&  and 3%o contain unities, the 2qrst intercept parameters in �o& and �o& are not identified 
individually, although their sum is identified. 
17 Recall that we define technology types based on the output mixes endogenously chosen by credit unions. 
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size of a credit union such as its total assets and other variables reflecting credit union’s financial 

strength and potential for growth. After carefully examining the existing literature for potential 

candidates, we settle on the following set of variables: total assets, reserves, leverage ratio,18 the 

number of current and potential members, indicator variables for federally accredited, state 

accredited and federally insured,19 and multiple-bond credit unions. Table 3 provides their 

summary statistics.  

We use the total value of assets and the number of current members of the credit union to 

capture the size of credit unions (Goddard et al., 2002); one can naturally expect a larger credit 

union to seek the diversification of its output mix and thus switch to a less specialized technology. 

We proxy the credit union’s potential for growth using the reported level of reserves (Bauer, 2008, 

2009) and the size of the field of membership, i.e., the number of potential members (Goddard et 
al., 2008). The intuition here is as follow. The larger a credit union’s field of membership is, the 

more likely it is to consider offering a wider range of services to its members and thus changing 

its technology. Similarly, the selection equation includes the leverage ratio to control for the level 

of financial constraint a credit union may be subject to, which can directly influence its growth. 

We also condition the choice of technology on whether a credit union can draw its members from 

a pool of people with single or multiple associations. This is crucial since multiple-bond credit 

unions have a substantial advantage over single-bond ones due to their ability to grow in size 

and diversify credit risks more easily (Walter, 2006). For instance, a single-bond credit union that 

is authorized to draw its members from a pool of employees of a single plant only is susceptible 

to any economic shock that this plant it subject to. Dummies for federally and state accredited 

credit unions are used to control for possible intrinsic differences between the two types of 

entities. We also include the vector of ones for the intercept term and the time trend to capture 

temporal dynamics in technology switching.20  

In order to analyze the consequences of the failure to accommodate heterogeneity in 

technologies resulting from endogenous selection as well as the presence of unobserved effects 

amongst credit unions, we estimate several auxiliary models in addition to those developed in 

Section 3. For the ease of discussion, all the models we estimate are defined below. 

Models Ignoring Unobserved Effects: 

Model 1. The baseline model of heterogeneous technologies with endogenous switching; 

given by (3.1) and estimated in two stages as described in Section 3.1. 

Model 2. The model of heterogeneous technologies under the assumption of exogenous 

(ignorable) switching; estimated via pooled OLS using (3.1a) separately for each technology. 

We estimate this model to investigate the degree with which results change if one does not 

                                                           
18 Defined as the ratio of total debt to total assets. 
19 While all federally accredited unions are insured, the same however cannot be said about all state accredited unions. 
20 All continuous variables are logged to allow for some degree of nonlinearity as well as to scale down the values of 
covariates. 
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recognize the endogeneity of technology selection by credit unions. Any differences 

between Models 1 and 2 are attributed to selection bias in the latter. 

Model 3. The model of homogeneous technology. This model is most widely estimated in 

the existing literature by specifying two outputs instead of four in order to eliminate zero-

value observations. The two outputs are the linearly aggregated loans (�1 + �2 + �3) and 

investments (y4). The model is estimated via pooled OLS using the whole sample ignoring 

a credit union’s technology type. 

Models Accounting for Unobserved Effects: 

Model 4. The generalized model of heterogeneous technologies with endogenous switching 

and fixed effects; given by (3.14) and estimated in two stages as described in Section 3.2. 

Model 5. The model of heterogeneous technologies under the assumption of exogenous 

(ignorable) switching with fixed effects; estimated via pooled OLS using (3.28) with 

selection bias correction terms omitted (separate regressions for each technology type). In 

order to facilitate direct comparability between the models, here we account for fixed effects 

in the same fashion as in Model 4, i.e., by parameterizing the correlation between 

unobserved effects and the right-hand-side covariates in the spirit of Assumption 2’ (ii).21 

Model 6. The model of homogeneous technologies with two outputs and fixed effects; 

estimated via pooled OLS using observations for credit unions of all technology types. 

Similar to the argument above, here we also control for fixed effects by parameterizing the 

correlation between unobserved effects and the right-hand-side covariates. 

For all models, we use the translog form22 of the dual cost function '&(∙), onto which we impose 

the symmetry and linear homogeneity (in input prices) restrictions. In the first-stage estimations 

of Models 1 and 4 (i.e., multinomial logit), parameter vectors z& and 4& are normalized to zero for 

, = 3.  To conserve space, we do not report the results from the first stage (they are available upon 

request) and thus directly proceed to the discussion of the main results. 

The left pane of Table 4 reports the summary statistics of the point estimates of returns to 

scale based on Models 1 through 3, over the entire sample period of 1994-2011. When computing 

these statistics, we omit the first and the last percentiles of the distribution of the returns to scale 

estimates, in order to minimize the influence of outliers. However, the omitted estimates 

                                                           
21 An alternative would be to estimate Model 5 via the within estimator that assumes no form of correlation between 
fixed effects and regressors in the cost function equation. Instead, the fixed effects are parameterized in spirit of (3.26) 
as ;[p%&|�%&] = :[p%&|�%&] = �%&�&. Here, we do not condition on the error or covariates from the selection equation since 
Model 5 ignores endogenous selectivity. 
22 While we emphasize the heterogeneity in credit unions’ production technologies due to their differing output mixes, 
we acknowledge that ideally one would also prefer to allow the technology to be heterogeneous among credit unions 
for a given output mix. In this paper, we assume such heterogeneity away, which is an undeniable limitation of our 
analysis. One could extend our model to allow the cost function to be credit-union specific by, say, employing semi- or 
nonparametric methods (although controlling for fixed effects in that case may require a different approach). Here, we 
opt for the parametric specification (translog) mainly for expository purposes as well as its tractability. We leave the 
extension of our model to an even more general setup for future research. 
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correspond to the same observations across all six models, in order to keep the results 

comparable. We still can cross-reference results of different models on the credit union level. 

[Insert Table 4 here] 

In Table 4, we break down the results by the technology type of credit unions. Note that 

although Models 1 and 2 estimate credit unions’ cost functions for each technology separately, 

we also report the statistics for the whole distribution of credit unions obtained by pooling the 

results (over technology types) after the estimation. Similarly, we are able to break down the 

estimates of returns to scale from Model 3 by technology types after fitting a single homogeneous 

cost function for all credit unions. The credit-union-specific estimates of returns to scale are 

obtained using the formula that takes into account the quasi-fixity of equity capital (Caves, 

Christensen & Swanson, 1981) 

�. =
1 − � ����

� ��� �� 	

∑ � ����
� �����A

		,																																																																																																																																						(4.1) 

where �A ∈ � are the outputs a credit union produces.  

The empirical evidence suggests that, when compared to a benchmark Model 1, Models 2 

and 3 tend to underestimate the returns to scale across all three technology groups (more so for 

Technologies 1 and 3). One can see it in Figure 3 which plots kernel densities of the estimated 

returns to scale from these models. Biases (due to ignored selectivity and/or heterogeneity among 

technologies) in returns to scale estimates from Models 2 and 3 tend to be downward for credit 

unions operating under Technologies 1 and 3, whereas we cannot unambiguously claim the sign 

of these biases in the case of Technology 2.  

[Insert Figure 3 here] 

We perform a formal test for selection bias on the coefficient of the inverse Mills ratio in 

Model 1 [equation (3.13)], i.e., a t test of ℍ�:		_& = 0 for , = 1,2,3. The tests reject the null of no 

selection bias with the p-values of less than 10-4 for all three technology groups, confirming that 

the switching is not exogenous and hence not “ignorable”. The latter validates the proposition 

that the estimates from Models 2 and 3 are subject to selection bias. Similarly, we test the 

proposition of non-homogenous technologies across credit unions with different output mixes. 

The multiple-restriction Wald test of ℍ�:		(& = (A for , = 1,2,3		(, ≠ B) on the coefficients of (3.13) 

strongly confirms the presence of heterogeneity in credit union cost structures: the p-value is less 

than 10-75. Note that in order to conduct this inference we need to estimate the variance-covariance 

matrix for Model 1, which is complicated due to its two-stage estimation procedure. To overcome 

this complication, we follow Newey’s (1984) suggestion and rewrite the (two-stage) model in a 

multiple-equation GMM framework which permits derivation of an asymptotic variance-
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covariance matrix of the estimator.23 We perform a similar exercise when computing the variance-

covariance matrix for the generalized Model 4. 

The qualitative differences between the models are more transparent when credit unions 

are grouped into three returns to scale categories: decreasing returns to scale (DRS), constant 

return to scale (CRS) and increasing returns to scale (IRS). We classify a credit union as exhibiting 

DRS/CRS/IRS if the point estimate of its returns to scale is found to be statistically less 

than/equal to/greater than unity at the 95% significance level.24  

[Insert Figure 4 here] 

Figure 4 depicts the 95% confidence intervals of the returns to scale estimates from Model 

1, based on which the right pane of Table 4 is partly populated.25 These confidence intervals, 

which correspond to each observation (credit-union-year) over the 1994-2011 period, are 

represented by vertical line segments that are sorted by the lower bound. Based on the results 

from Model 1 (also see Table 4), we find that virtually all credit unions with Technologies 1 and 

3 operate under IRS. We however cannot say the same with respect to credit unions operating 

under Technology 2. Here we find that 10,626 out of 85,381 credit-union-years (12.4%) exhibit 

DRS and 2,626 (3.1%) exhibit CRS.  

It might seem at first glance that the results do not differ that much across the three models 

qualitatively, at least in the case of Technology 1. For this technology group, Models 2 and 3 

classify 98.1% and 99.8% of the subsample, respectively, as operating at IRS (43,444 and 44,183 

out of 44,274 credit-union-years, respectively). However, (unreported) Spearman’s rank 

correlation coefficients of the returns to scale estimates between the three models reveal that there 

is an astonishingly weak, if any at all, correspondence in rankings of credit unions between Model 

1 and Models 2 and 3 (the correlation coefficients of 0.035 and 0.105, respectively).  

Both Models 1 and 2 however produce relatively similar results for the credit unions 

operating under Technology 3. The one that stands out here is Model 3, according to which 22.9% 

of the subsample (4,081 out of 17,757 credit-union-years) exhibits DRS (see Table 4). Expectedly, 

there is weak rank correlation (equals to 0.262) between the rankings of credit unions of this 

model and the benchmark Model 1. The only instance when Model 1 predicts a larger number of 

credit unions operating under DRS than the remaining two models is for Technology 2 (12% of 

observations). 

[Insert Table 5 here] 

                                                           
23 The estimated variance is robust to heteroskedasticity in the cost functions. 
24 We use the delta method to construct standard errors for the returns to scale estimates. 
25 Similar figures for the other two models are available upon request. 
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However, the above results are still likely to be misleading because of endogeneity bias due 

to the ignored fixed effects among credit unions. We thus proceed to the models that explicitly 

control for unobserved effects.26  

 [Insert Figure 5 here] 

Figure 5 plots the kernel densities of the returns to scale estimates from Models 4 through 6 

(see Table 5 for the summary statistics of these estimates). The evidence again suggests that the 

models which ignore endogenous switching (Models 5 and 6) tend to underestimate the returns 

to scale at which credit unions operate across all three technology groups. The kernel densities of 

estimates from Model 4 are generally shifted leftward compared to those of estimates from 

Models 5 and 6. Thus, the biases in returns to scale estimates produced by Models 5 and 6 

generally appear to be of negative sign (with some ambiguity in the case of Technology 2).  

The Wald tests of ℍ�:		�G& = ⋯ = �o& = ⋯ = �ovwx
& = 0 for , = 1,2,3 performed on (3.28) again 

confirm the presence of selection bias in Models 5 and 6 (the p-values of less than 10-90 for all three 

technology groups). Similarly, we again reject the null of homogenous cost function across 

different technology groups. The p-value corresponding to the Wald test of ℍ�:		(& = (A for , =
1,2,3		(, ≠ B) on the coefficients of (3.28) is less than 10-100. 

[Insert Figure 6 here] 

Figure 6 shows the differences between Models 4 through 6 that account for credit union-

specific fixed effects and those that ignore this unobserved heterogeneity (Models 1 through 3). 

The figure plots kernel densities of the returns to scale estimated by all six models. The evidence 

indicates the presence of a negative bias in the returns to scales estimates obtained from Models 

1 through 3: the kernel densities from these models are to the left of those produced by the 

corresponding models that control for unobserved effects. The biases appear to be the largest in 

the case of Technology 3. The shift in the estimated returns to scale of credit unions can also be 

seen in Figure 7 which plots the 95% confidence intervals of the returns to scale estimates from 

the generalized Model 4. The estimated intervals have shifted upwards for Technologies 2 and 3, 

compared to those plotted in Figure 4. The above result emphasizes the importance of taking 

unobserved effects into account when quantifying credit union technologies. 

[Insert Figure 7 here] 

As expected, Models 4 to 6 predict a smaller number of credit unions with non-IRS across 

all technology groups than Models 1 to 3, respectively (compare right panes of Tables 4 and 5). 

Several issues, however, warrant a further discussion. Although all three Models 4, 5 and 6 

strongly support the evidence in favor of IRS almost universally exhibited by credit unions 

operating under Technology 1, the rankings of these credit unions is strikingly different across 

                                                           
26 Following equation (3.28), we parameterize fixed effects in cost functions as linear projections of (i) all continuous 
variables included in the first-stage selection equation and (ii) all unique variables in the cost functions, except for the 
time trend. Thus, we do not include squared and cross-product terms from the translog cost functions into the set of 
variables onto which fixed effects are assumed to project. Doing the latter would be redundant. 
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these models (similar to the case of Models 1 through 3). In particular, we find that the 

(unreported) correlation coefficients of rankings of credit unions in terms of their returns to scale 

between Models 4 and Models 5 and 6 are weak (if not close to zero): 0.060 and 0.341, respectively. 

We attribute these differences to selection and misspecification biases present in Models 5 and 6. 

In the case of Technology 3, however, we find that both Models 4 and 5 produce similar results: 

virtually every single credit union enjoys IRS. Model 6 is the one that stands out. It predicts that 

3,212 out of 17,757 credit-union-years (18.1%) still exhibit non-IRS.  

We find most agreement in the results across the models in the case of Technology 2: the 

(unreported) rank correlation coefficients are the largest in this case (around 0.9). However, based 

on the estimated generalized Model 4, we still find a relatively large number of credit unions that 

exhibit DRS and CRS (4,836 and 2,133 out of 85,381 credit-union-years, respectively). Figure 9 

shows that these credit unions are the largest in the group. The latter, for instance, contrasts the 

results in Wheelock and Wilson (2011) who generally find no evidence of DRS and CRS among 

credit unions in their sample. These differences can be attributed to several reasons. First, the 

sample periods differ: we consider the period of 1994-2011, whereas Wheelock and Wilson (2011) 

examine the 1989-2006 period. Second, Wheelock and Wilson (2011) obtain their returns to scale 

estimates from an admittedly more flexible nonparametric cost function whereas our estimation 

approach is parametric. Third, they aggregate outputs in order to eliminate zero-value 

observations, and their cost function does not include equity capital as one of the inputs. Fourth, 

Wheelock and Wilson (2011) do not explore the possibility of endogeneity in a credit union’s 

choice of the output mix.  Lastly, while controlling for time effects, Wheelock and Wilson (2011) 

however do not address the issue of unobserved time-invariant heterogeneity among credit 

unions in the panel. All of these issues can potentially result in differences between Wheelock 

and Wilson’s (2011) and our results. 

[Insert Figure 8 here] 

We find unexpected results when analyzing the relationship between returns to scale of a 

credit union and its size (proxied by total assets). Normally, one would expect to see an inverse 

relationship between the two. We do confirm it when looking at the entire sample. However, as 

Figure 8 shows, this result is not uniform across all technology groups. We find that the estimated 

returns to scale do largely fall as one moves from small to larger credit unions that operate under 

Technology 2. However, there is hardly any change in returns to scale among credit unions in the 

third technology group. Moreover, the returns to scale appear to increase with the size for credit 

unions operating under Technology 1. For instance, the estimates of returns to scale from Models 

5 and 6 fall with the asset size regardless of the technology (not reported to conserve space). While 

these findings look puzzling at the first glance, there is an intuitive explanation to them.  

Recall that the asset size of the credit unions increases as one moves from Technology 1 to 

3 (see Table 3 and Figure 2). Therefore, given that the credit unions which operate under 

Technology 1 are already small in size altogether, an increase in available resources as a credit 

union grows enables it to adopt new information processing technologies that are initially quite 
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expensive to install but, once installed, are substantial cost-savers. The example of such 

technologies would be internet banking, automated teller machines, use of electronic money as 

well as an access to members’ credit history through the credit rating bureaus. Given that 25% of 

credit unions in the first technology group are as small as an entity with only 1 full-time 

equivalent employee, many of them are not financially capable of adopting the abovementioned 

technologies until they grow in size. The impact of these financial constraints however wears out 

as credit unions continue to grow which we indeed observe in the case of entities that move to 

the operation under Technology 2.  

A potential explanation why the relationship between the size and returns to scale breaks 

down for depositories in the third technology group is greater diversification enjoyed by these 

larger credit unions. On average, credit unions in this group have a four times larger number of 

members than those belonging to the second technology group (an average of 12,700 vs. 3,600 

members, respectively). The diversification comes not only through a larger membership pool, 

but also through a larger range of services provided to members as well as an opportunity to 

engage in more advanced financial operations (Wilcox, 2005). The latter is partly due to 

economies of diversification enjoyed by credit unions as they move from one technology to 

another (recall that technologies are nested). The data suggest the presence of non-negligible 

economies of scope, which is a matter of substantial interest on its own. We leave the discussion 

of it for a future paper. Lastly, larger credit unions can also protect their market positions by 

erecting entry barriers thus partly mitigating the decline in returns to scale as they grow.  

 

5 CONCLUSION 

A trillion dollar worth credit union industry takes up a significant portion of the U.S. financial 

services market, catering to almost a hundred million people in the country. Given the dramatic 

growth of the industry over the past few decades, there has been a substantial interest in formally 

modeling the technologies of credit unions. However, the econometric approaches widely used 

in the existing literature somewhat limit our understanding of the structure, dynamics and future 

evolution of the credit union industry. 

Faced by the presence of an overwhelming number of observations for which the reported 

values of credit unions’ outputs are zeros in the data, the existing studies of credit union 

technologies have mainly resorted to the linear aggregation of different types of outputs into 

broader categories. We believe this procedure leads to a loss of information in both econometric 

and economic senses. The presence of zero-value observations is not merely a data issue but a 

consequence of substantial time-persistent heterogeneity amongst credit unions’ technologies as 

captured by differing output mixes. This heterogeneity is likely to be an outcome of an 

endogenous choice made by credit unions. Models that a priori impose homogeneity and/or 

overlook credit unions’ endogenous technology selection are likely to produce biased, 

inconsistent and thus misleading estimates. The results are also likely to be biased due to 

unobserved effects which are widely ignored in the credit union literature. 
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In this paper, we address the above concerns by developing a unified framework that allows 

estimation of credit union technologies that is robust to (i) misspecification due to an a priori 
assumption of homogenous technology, (ii) selectivity bias due to ignoring the endogeneity in 

technology selection, and (iii) endogeneity (omitted variable) bias due to a failure to account for 

unobserved union-specific effects that are correlated with covariates in the estimated equations. 

To accommodate the above concerns, we develop a generalized model of endogenous switching 

with polychotomous choice and fixed effects by extending Wooldridge’s (1995) estimator. We 

note that the developed model is not tailored to the analysis of credit unions only. The framework 

can be applied to any other panel data study (with fixed effects) where polychotomous selection 

applies.  Some examples would be studies of electric or water utilities, which often include both 

specialized and integrated companies that operate under non-homogeneous technologies. 

 Our main finding is that not all U.S. retail credit unions seem to uniformly enjoy increasing 

returns to scale. When controlling for heterogeneity in the output mix, endogeneity in technology 

selection and unobserved effects among credit unions, we find that a non-negligible number of 

large credit unions (6 to 12% of those offering all types of loans but commercial) operates at 

decreasing returns to scale. The latter implies that these institutions should potentially reduce 

their size or reconsider their output mix. We consistently fail to reject the null of exogenous 

technology selection among credit unions and generally find that ignoring endogeneity of this 

process produces negative biases in the estimates of returns to scale. We also document 

downward biases in the return to scale estimates when the model fails to account for unobserved 

time-invariant effects.  

 After addressing all the concerns we raise in this paper, we find that the majority of credit 

unions (among all technology types) operate under substantial economies of scale which leads us 

to conclude that the growth of the industry is far from reaching its peak. Thus, the industry-wide 

trends like the diversification of the range of financial services offered to members as well as 

mergers and acquisitions among credit unions are likely to persist over the coming years. Our 

results can therefore contribute to the policy debate over credit unions’ tax-exempt status as well 

as their special regulatory treatment compared with commercial banks. As these institutions 

grow in size and complexity, they may become of systemic importance for regulators and the 

economy.  

 

 

 

 

 

 

 



   
 

 23  

 

REFERENCES 

Amemiya, T. (1985). Advanced Econometrics. Cambridge: Harvard University Press. 

Avery, R.B., Hansen, L.P., Hotz, V.J. (1983). Multiperiod Probit Models with Orthogonality Condition Estimation. 
International Economic Review, 24, 21-35. 

Baltagi, B. (2008). Econometric Analysis of Panel Data. Wiley, John & Sons Inc.  

Bauer, K. (2008). Detecting Abnormal Credit Union Performance. Journal of Banking and Finance, 32, 573-586. 

Bauer, K.J., Miles, L.L., Nishikawa, T. (2009). The Effect of Mergers on Credit Union Performance. Journal of 
Banking and Finance, 33, 2267-2274. 

Caves, D.W., Christensen, L.R., Swanson, J.A. (1981). Productivity Growth, Scale Economies, and Capacity 
Utilization in U.S. Railroads, 1955-1974. American Economic Review, 71 (5), 994-1002. 

Chamberlain, G. (1980). Analysis of Covariance with Qualitative Data. Review of Economic Studies, 47 (1), 225-238. 

Charlier, E., Melenberg, B., von Soest, A. (2001). An Analysis of Housing Expenditure Using Semiparametric 
Models and Panel Data. Journal of Econometrics 101, 71-107. 

Domencich, T.A., McFadden, D. (1975). Urban Travel Demand. Amsterdam: North-Holland Publishing. 

Dustmann, C., Rochina-Barrachina, M.E. (2007). Selection Correction in Panel Data Models: An Application to 
the Estimation of Females’ Wage Equations. Econometrics Journal, 10, 263-293. 

Emmons, W.R., Schmid, F.A. (1999). Credit Unions and the Common Bond. Federal Reserve Bank of St. Louis 
Review, 81, 41-64. 

Frame, W.S., Coelli, T.J. (2001). U.S. Financial Services Consolidation: The Case of Corporate Credit Unions. 
Review of Industrial Organization, 18, 229-242. 

Frame, W.S., Karels, G.V., McClatchey, C.A. (2003). Do Credit Unions Use Their Tax Advantage to Benefit 
Members? Evidence from a Cost Function. Review of Financial Economics, 12, 35-47. 

Fried, H.O., Lovell, C.A.K., Yaisawarng, S. (1999). The Impact of Mergers on Credit Union Service Provision. 
Journal of Banking and Finance, 23, 367-386. 

Goddard, J.A., McKillop, D.G., Wilson, J.O.S. (2002). The Growth of US Credit Unions. Journal of Banking and 
Finance, 26, 2327-2356. 

Goddard, J.A., McKillop, D.G., Wilson, J.O.S. (2008). The Diversification and Financial Performance of US Credit 
Unions. Journal of Banking and Finance, 32, 1836-1849. 

Hausman, J.A., Wise, D. (1979). Attrition Bias in Experimental and Panel Data: the Gary Income Maintenance 
Experiment. Econometrica, 47, 455-473. 

Hay, J. (1980). Selectivity Bias in a Simultaneous Logit-OLS Model. Manuscript. University of Connecticut Health 
Center.  

Honoré, B.E., Kyriazidou, E. (2000a). Panel Data Discrete Choice Models with Lagged Dependent Variables. 
Econometrica, 68 (4), 839-874. 

Honoré, B.E., Kyriazidou, E. (2000b). Estimation of Tobit-type Models with Individual Specific Effects. 
Econometric Reviews, 19 (3), 341-366. 

Honoré, B.E., Lewbel, A. (2002). Semiparametric Binary Choice Panel Data Model without Strictly Exogenous 
Regressors. Econometrica, 70, 2053-2063. 

Hughes, J.P, Mester, L.J. (1998). Bank Capitalization and Cost: Evidence of Scale Economies in Risk Management 
and Signaling. Review of Economics and Statistics, 80 (2), 314-325.  

Hughes, J.P, Mester, L.J. (2011). Who Said Large Banks Don’t Experience Economies of Scale? Evidence from a 
Risk-Return-Driven Cost Function. Working Paper No. 11-27, Federal Reserve Bank of Philadelphia.  



   
 

 24  

 

Hughes, J.P., Lang, W., Mester, L.J., Moon, C. (1996). Efficient Banking Under Interstate Branching. Journal of 
Money, Credit and Banking, 28 (4), 1045-1071. 

Kyriazidou, E. (1997). Estimation of a Panel Data Sample Selection Model. Econometrica, 65 (6), 1335-1364. 

Kyriazidou, E. (2001). Estimation of Dynamic Panel Data Sample Selection Models. Review of Economic Studies, 
68, 543-572. 

Lee, L.F. (1978). Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited 
Dependent Variables. International Economic Review, 19 (2), 415-433. 

Lee, L.F. (1982). Some Approaches to the Correction of Selectivity Bias. Review of Economic Studies, 49 (3), 355-372. 

Lee, L.F.  (1983). Generalized Econometric Models with Selectivity. Econometrica, 51 (2), 507-512. 

Lee, L.F. (1995). The Computation of Opportunity Costs in Polychotomous Choice Models with Selectivity, 
Review of Economics and Statistics, 77 (3), 423-435. 

Maddala, G.S. (1983). Limited-Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge 
University Press. 

Magnac, T. (2000). Subsidised Training and Youth Employment: Distinguishing Unobserved Heterogeneity from 
State Dependence in Labour Market Histories. Economic Journal, 110, 805-837. 

Magnac, T. (2004). Panel Binary Variables and Sufficiency: Generalizes Conditional Logit. Econometrica, 72, 1859-
1876. 

Manski, C.F. (1987). Semiparametric Analysis of Random Effects Linear Model from Binary Panel Data. 
Econometrica, 55, 357-362. 

McFadden, D. (1974). Analysis of Qualitative Choice Behavior. In P. Zarembka (Ed.), Econometrics. New York: 
Academic Press. 

Mundlak, Y. (1978). On the Pooling of Time Series and Cross Section Data. Econometrica 46, 69-85. 

National Credit Union Administration. (2011). 2011 Annual Report. 

Newey, W.K. (1984). A Method of Moments Interpretation of Sequential Estimators. Economic Letters, 14, 201-206. 

Olsen, R.J. (1980). A Least Squares Correction for Selectivity Bias.  Econometrica, 48 (7), 1815-1820. 

Petersen, M.A., Rajan, R.G. (2002). Does Distance Still Matter? The Information Revolution in Small Business 
Lending. Journal of Finance, 57 (6), 2533-2570. 

Ridder, G. (1990). Attrition in Multi-Wave Panel Data. In J. Hartog, G. Ridder, J. Theeuwes (Eds.), Panel Data and 
Labor Market Studies. Amsterdam: North-Holland Publishing. 

Ridder, G. (1992). An Empirical Evaluation of Some Models for Non-Random Attrition in Panel Data. Structural 
Change and Economic Dynamics, 3, 337-355. 

Rochina-Barrachina, M.E. (1999). A New Estimator for Panel Data Sample Selection Models. Annales d’Économie 
et de Statistique, 55/56, 153-181. 

Semykina, A., Wooldridge, J.M. (2010). Estimating Panel Data Models in the Presence of Endogeneity and 
Selection. Journal of Econometrics, 157, 375-380. 

Semykina, A., Wooldridge, J.M. (2011). Estimation of Dynamic Panel Data Models with Sample Selection. Journal 
of Applied Econometrics, 28, 47-61. 

Sickles, R.C., Taubman, P. (1986). A Multivariate Error Components Analysis of the Health and Retirement Study 
of the Elderly. Econometrica, 54, 1339-1356. 

Smith, D.J. (1984). A Theoretic Framework for the Analysis of Credit Union Decision Making. Journal of Finance, 
39 (4), 1155-1168. 



   
 

 25  

 

Trost, R.P., Lee, L.F. (1984). Technical Training and Earnings: A Polychotomous Choice Model with Selectivity. 
Review of Economics and Statistics, 66 (1), 151-156. 

Vella, F., Verbeek, M. (1999). Two-step Estimation of Panel Data Models with Censored Endogenous Variables 
and Selection Bias. Journal of Econometrics, 90, 239-263. 

Verbeek, M. (1990). On the Estimation of a Fixed Effects Model with Selectivity Bias. Economic Letters, 34, 267-
270. 

Verbeek, M., Nijman, Th.E. (1996). Incomplete Panels and Selection Bias (Chapter 8). In L. Mátyás,  P. Sevestre 
(Eds.). The Econometrics of Panel Data: A Handbook of the Theory with Applications. Dordrecht: Kluwer Academic 
Publishers. 

Walter, J.R. (2006). Not Your Father’s Credit Union. Federal Reserve Bank of Richmond Economic Quarterly, 92 (4), 
353-377. 

Wheelock, D.C., Wilson, P.W. (2011). Are Credit Unions Too Small? Review of Economics and Statistics, 93 (4), 1343-
1359.  

Wheelock, D.C., Wilson, P.W. (2013).The Evolution of Cost-Productivity and Efficiency among US Credit Unions. 
Journal of Banking and Finance, 37, 75-88.  

Wilcox, J. (2005). Economies of Scale and Continuing Consolidation of Credit Unions. Federal Reserve Banks of St. 
Francisco Economic Letter, Number 2005-29. 

Wilcox, J. (2006). Performance Divergence of Large and Small Credit Unions. Federal Reserve Banks of St. Francisco 
Economic Letter, Number 2006-19. 

Wooldridge, J.M. (1995). Selection Corrections for Panel Data Models under Conditional Mean Independence 
Assumptions. Journal of Econometrics, 68, 115-132. 

Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data. Cambridge: The MIT Press. 



   
 

26 

 

APPENDIX 

 

TABLE A1. Call Report Definitions of the Variables 

Variable NCUA Account Definition Description 
   

y1 
Acct_703 + Acct_386 

Real estate loans: first mortgage real estate loans, other 
real estate loans 

y2 
Acct_475 

Commercial loans: business and agricultural loans  
(MBLs)  granted YTD 

y3 Acct_025B - y1 - y2 Consumer loans: total loans, less real estate loans, less 
commercial loans 

y4 Acct_799 Total investments 

��5 (Acct_380 + Acct_381)/ 
Acct_018 

Average interest rate on saving deposits: dividends on 
shares, interest on deposits, divided by total shares and 
deposits 

��� (Acct_110 + Acct_131)/ 
Acct_025B 

Average interest rate on loans: total (gross) interest and 
fee income on loans, fee income, divided by total loan 
and leases 

�1 (Acct_230 + Acct_250 +  
Acct_260 + Acct_270 +  
Acct_280 + Acct_290 +  
Acct_310 + Acct_320 +  
Acct_360)/Acct_018 

Price of capital: travel and conference expense, office 
occupancy expense, office operations expense, 
educational and promotional expense, loan servicing 
expense, professional and outside services, member 
insurance, operating fees (examination and/or 
supervision fees), miscellaneous operating expenses, 
divided by total shares and deposits 

�2 Acct_210/(Acct_564A + 
0.5*Acct_564B) 

Price of labor: employee compensation and benefits, 
divided by full-time equivalent employees [Number of 
credit union employees who are: Full-time (26 hours or 
more)+0.5*Part-time (25 hours or less per week)] 

� Acct_010 Total variable, noninterest cost: total non-interest 
expenses 

�� Acct_931 + Acct_668 +  
Acct_945 + Acct_658 +  
Acct_940 + Acct_602 

Equity: regular reserves, appropriation for non-
conforming investments, accumulated unrealized gains 
(losses) on available-for-sale securities and other 
comprehensive income, other reserves, undivided 
earnings, net income 

Total 
Assets 

Acct_010 Total assets 

Leverage 

(Acct_860C + Aacct_820a +  
Acct_825 + Acct_018)/ 
Acct_010 

Total liabilities [total borrowing, accrued dividends and 
interest payable on shares and deposits, accounts 
payable and other liabilities, total shares and deposits], 
divided by total assets 

Reserves 
Acct_931 + Acct_668 Regular reserves, appropriation for non-conforming 

investments 

Current 
Members # 

Acct_083 Total number of current members 

Potential 
Members # 

Acct_084 Total number of potential members 
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IN-TEXT TABLES AND FIGURES 

 

TABLE 1. Zero-Value Observations, 1994-2011 

Year y1 y2 y3 y4 
Total 
Obs. 

Year y1 y2 y3 y4 
Total 
Obs. 

  

1994 3,670 9,063 0 3 9,783 2004 2,344 7,099 1 64 8,209 
1995 3,517 9,056 0 0 9,734 2005 2,171 6,695 1 57 7,948 
1996 3,555 9,162 0 2 9,891 2006 2,044 6,333 1 68 7,718 
1997 3,441 9,059 0 0 9,765 2007 1,952 6,101 1 59 7,506 
1998 3,269 8,811 0 0 9,561 2008 1,805 5,703 1 38 7,174 
1999 3,140 8,650 0 55 9,426 2009 1,485 5,086 1 55 6,521 
2000 2,925 8,442 0 75 9,195 2010 1,612 5,306 1 115 6,761 
2001 2,764 8,114 0 61 8,932 2011 1,539 5,212 1 61 6,591 
2002 2,601 7,739 0 61 8,611 Total 46,377 133,152 9 870 151,817 

2003 2,543 7,521 1 96 8,491       
 

NOTES: The variables are defined as follows. y1 – real estate loans, y2 – business and agricultural loans; y3 – consumer loans; y4 – 
investments. 

 

 

 

TABLE 2. Tabulation of All Possible Heterogeneous Technologies 

Technology Obs. Unique CUs Technology Obs. Unique CUs 
  

-             Complete Specialization             - -         Three-Output Specialization         - 
  

y1 5 1 y1, y2, y3 20 10 
y2 0 0 y1, y2, y4 0 0 
y3 673 328 y1, y3, y4 87,122 11,764 
y4 0 0 y2, y3, y4 526 306 

  

-          Two-Output Specialization          - -                  No Specialization                   - 
  

y1, y2 0 0 y1, y2, y3, y4 18,118 4,466 
y1, y3 171 113    
y1, y4 4 1    
y2, y3 1 1    
y2, y4 0 0    
y3, y4 45,177 9,446    

 

NOTES: The variables are defined as follows. y1 – real estate loans, y2 – business and agricultural loans; y3 – 
consumer loans; y4 – investments. 
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TABLE 3. Summary Statistics, 1994-2011 

Variable Mean Min 1st Qu. Median 3rd Qu. Max 
 

-                                                    Technology 1                                                    - 
 

Cost 171.8 0.7 47.6 101.2 205.3 9,866.0 
y3 2,648.0 0.9 680.4 1,566.0 3,284.0 16,387.6 
y4 1,547.0 0.0 167.9 580.3 1,635.0 262,500.0 
��5 0.028 0.000 0.017 0.029 0.038 0.056 
��� 0.100 0.000 0.082 0.095 0.110 0.993 
�1 0.026 0.000 0.016 0.023 0.031 0.695 
�2 32.9 0.0 20.1 32.2 43.3 266.3 

�� 687.6 0.6 175.9 386.7 826.0 54,030.0 
Total Assets 4,712.0 22.3 1,215.0 2,769.0 5721.0 373,600.0 
Leverage 0.009 0.000 0.002 0.004 0.010 0.842 
Reserves 198.8 0.0 47.6 100.2 214.0 18,270.0 
Current Members # 1,127 27 401 745 1,378 43,560 
Potential Members # 4,389 1 700 1461 3,000 10,000,000 
Multiple Bond CU 0.321      
Federal CU 0.625      
State CU (insured) 0.360      

 

-                                                    Technology 2                                                    - 
 

Cost 2,244.0 3.2 333.4 767.5 1,965.0 580,500.0 
y1 15,780.0 0.0 675.0 2,850.0 10,290.0 6,501,000.0 
y3 24,750.0 3.0 3,767.0 8,172.0 20,090.0 9,126,000.0 
y4 18,290.0 0.0 1,683.0 4,859.0 13,300.0 4,620,000.0 
��5 0.026 0.000 0.016 0.027 0.036 0.194 
��� 0.091 0.000 0.079 0.089 0.100 0.973 
�1 0.026 0.000 0.016 0.023 0.031 0.695 
�2 46.6 0.0 37.8 45.2 54.1 6,187.0 

�� 7,338.0 0.8 1,080.0 2,477.0 5,955.0 2,587,000.0 
Total Assets 65,750.0 116.0 8,908.0 20,580.0 51,300.0 24,090,000.0 
Leverage 0.010 0.000 0.002 0.005 0.010 0.351 
Reserves 2,638.0 0.0 294.7 707.5 1,800.0 2,563,000.0 
Current Members # 8,859 5 1,754 3,570 8,276 2,451,000 
Potential Members # 72,790 1 3,500 9,000 32,430 27,000,000 
Multiple Bond CU 0.427      
Federal CU 0.610      
State CU (insured) 0.378      
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TABLE 3. (cont.) 

Variable Mean Min 1st Qu. Median 3rd Qu. Max 
 

-                                                    Technology 3                                                    - 
 

Cost 10,030.0 18.3 1,306.0 3,619.0 10,230.0 1,448,000.0 
y1 119,400.0 1.0 8,314.0 29,230.0 94,810.0 18,940,000.0 
y2 5,831.0 0.0 163.7 710.9 3,577.0 874,500.0 
y3 98,490.0 13.0 10,260.0 29,440.0 84,190.0 14,340,000.0 
y4 66,820.0 3.0 4,599.0 14,620.0 48,050.0 12,360,000.0 
��1 0.024 0.000 0.015 0.023 0.033 0.067 
��� 0.083 0.000 0.072 0.082 0.093 0.873 
�1 0.026 0.000 0.016 0.023 0.031 0.695 
�2 51.6 0.2 42.2 49.9 58.7 324.4 

�� 32,970.0 10.0 3,902.0 10,250.0 29,870.0 5,079,000.0 
Total Assets 326,400.0 224.0 35,860.0 98,320.0 288,600.0 46,930,000.0 
Leverage 0.023 0.000 0.004 0.009 0.021 0.439 
Reserves 11,880.0 0.0 1,106.0 2,956.0 8,159.0 4,906,000.0 
Current Members # 32,070 119 4,972 12,570 33,070 3,867,000 
Potential Members # 365,800 250 15,000 66,500 250,000 28,000,000 
Multiple Bond CU 0.307      
Federal CU 0.523      
State CU (insured) 0.457      

 

NOTES: The variables are defined as follows. Cost – total variable, non-interest cost; y1 – real estate loans, y2 – business 
and agricultural loans; y3 – consumer loans; y4 – investments; �	5 -  average saving pricing; �	6 – average loan pricing; w1 

– price of capital; w2 – price of labor; 
�  – equity capital; Leverage – the ratio of total debt to total assets; Multiple Bond, 
Federal, and State (insured) CU – indicator variables that take value of one if a CU is multiple-bond, federally accredited, 
or state-accredited (but federally insured), respectively. The remaining variables are self-descriptive. Cost, y1, y2, y3, y4, 

w2, 
� , Assets, Reserves are in thousands of real 2011 US dollars; �	5, �	6, w1, Leverage are interest rates and thus are unit-free. 
The numbers of Current and Potential Members are in terms of number of people. Despite that minima of several variables 
are reported to be zeros (due to rounding), they are not exactly equal to zeros. 
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TABLE 4. Summary of Returns to Scale Estimates, Models 1 through 3 

 Point Estimates of RS Categories of RS 

Model Mean St. Dev. Min 1st Q Median 3rd Q Max DRS CRS IRS Total 
 

-                                                                   Technology 1                                                                 - 
 

(1) 1.780 0.247 1.095 1.607 1.744 1.918 3.048 0 1 44273 44274 
(2) 1.217 0.133 0.845 1.132 1.197 1.277 3.143 359 471 43444 44274 
(3) 1.156 0.072 0.886 1.107 1.144 1.192 1.989 35 56 44183 44274 

 

-                                                                   Technology 2                                                                 - 
 

(1) 1.115 0.105 0.801 1.040 1.111 1.184 1.636 10626 2626 72129 85381 
(2) 1.076 0.053 0.868 1.038 1.074 1.111 1.481 3981 3041 78359 85381 
(3) 1.080 0.059 0.877 1.037 1.074 1.115 1.511 4535 2132 78714 85381 

 

-                                                                   Technology 3                                                                 - 
 

(1) 1.075 0.041 0.879 1.053 1.071 1.090 1.804 13 215 17529 17757 
(2) 1.059 0.040 0.866 1.037 1.055 1.074 1.781 29 659 17069 17757 
(3) 1.035 0.053 0.889 0.999 1.026 1.061 1.438 4081 1153 12523 17757 

 

-                                                                  Whole Sample                                                                - 
 

(1) 1.310 0.347 0.801 1.067 1.155 1.554 3.048 10639 2842 133931 147412 
(2) 1.117 0.107 0.845 1.049 1.089 1.153 3.143 4369 4171 138872 147412 
(3) 1.097 0.075 0.877 1.044 1.089 1.140 1.989 8651 3341 135420 147412 
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TABLE 5. Summary of Returns to Scale Estimates, Models 4 through 6 

 Point Estimates of RS Categories of RS 

Model Mean St. Dev. Min 1st Q Median 3rd Q Max DRS CRS IRS Total 
 

-                                                                   Technology 1                                                                 - 
 

(4) 1.921 0.364 1.033 1.664 1.845 2.103 3.609 0 1 44273 44274 
(5) 1.252 0.191 0.874 1.160 1.227 1.312 3.617 128 272 43874 44274 
(6) 1.195 0.102 0.922 1.132 1.178 1.239 3.776 11 28 44235 44274 

 

-                                                                   Technology 2                                                                 - 
 

(4) 1.137 0.095 0.857 1.070 1.134 1.200 1.589 4836 2133 78412 85381 
(5) 1.107 0.060 0.922 1.063 1.102 1.145 1.510 911 1397 83073 85381 
(6) 1.106 0.071 0.905 1.055 1.097 1.146 1.628 2335 1306 81740 85381 

 

-                                                                   Technology 3                                                                 - 
 

(4) 1.209 0.064 1.056 1.165 1.208 1.244 1.944 0 2 17755 17757 
(5) 1.102 0.041 0.959 1.078 1.101 1.120 1.755 0 23 17734 17757 
(6) 1.056 0.060 0.895 1.014 1.047 1.086 1.457 2206 1006 14545 17757 

 

-                                                                  Whole Sample                                                                - 
 

(4) 1.381 0.414 0.857 1.115 1.204 1.598 3.609 4836 2136 140440 147412 
(5) 1.150 0.133 0.874 1.079 1.122 1.189 3.617 1039 1692 144681 147412 
(6) 1.127 0.093 0.895 1.063 1.115 1.174 3.776 4552 2340 140520 147412 
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FIGURE 1. Tabulation of Credit Unions  
                  by Technology Type 
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FIGURE 2. Kernel Densities of (log) Total Assets  
                  Tabulated by Technology Type, 1994-2011 
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FIGURE 3. Kernel Densities of Returns to Scale Estimates 
                  from Models 1 through 3. 
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FIGURE 4. The 95% Confidence Intervals of Returns to Scale Estimates  
                  from Model 1. 
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FIGURE 5. Kernel Densities of Returns to Scale Estimates  
                  from Models 4 through 6. 
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FIGURE 6. Kernel Densities of Returns to Scale Estimates from Models 1 through 6. 

 

 

 



38 
 

 

 

FIGURE 7. The 95% Confidence Intervals of Returns to Scale Estimates 
                  from Model 4. 
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FIGURE 8. Returns to Scale by (log) Total Assets Quintiles;  
                  Estimates from Model 4. 
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