
"In presenting the dissertation as a partial fulfillment 
of the requirements for an advanced degree from the Georgia 
Institute of Technology, I agree that the Library of the Insti
tution shall make it available for inspection and circulation 
in accordance with its regulations governing materials of this 
type. I agree that permission to copy from, or to publish from, 
this dissertation may be granted by the professor under whose di
rection it was written, or, in his .absence, by the dean of the 
Graduate Division when such copying or publication is solely 
for scholarly purposes and does not involve potential financial 
gain. It is understood that any copying from, or publication 
of, this dissertation which involves potential financial gain 
will not be allowed without written permission. 



PERIODIC SOLUTIONS OF A 

NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION 

A THESIS 

Presented to 

the Faculty of the Graduate Division 

Robert John Sacker 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Applied Mathematics 

Georgia Institute of Technology 

June, 1961 



3 C 

PERIODIC SOLUTIONS OF A 

NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION 

Approved bys 

/?. ^ / 

Date of Approval: 



ACKNOWLEDGEMENT 

I wish t o thank my t h e s i s a d v i s o r $ Dr . John A. Nohel f o r 

sugges t ing t h i s t h e s i s t o p i c and fo r t h e guidance he has given 

me. I am a l s o g r a t e f u l to Dr. F . W. S t a l l a r d and Dr. Vernon 

Crawford for r ead ing and c r i t i c i z i n g t h e manusc r ip t . I would 

l i k e to express my g r a t i t u d e t o t he Nat iona l Science Foundation 

f o r a r e s e a r c h fe l lowsh ip dur ing t h e academic yea r 1960-61. 



iii 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENT6 . . . < , • • < > . • « * o « « » e « « ii 

Chapter 

I . INTHODUCTIONo • 1 

Basic problem 
Procedure 
Work done by other authors 
Limitations 

I I . AUXILIARY CONCEPTS AND THEOREMS 6 

Definition of multiple roots. • 6 
Theorem 1 - Existence and uniqueness. • • • • 8 
Theorem 2 - Interchange of differentiation, . lh 
Theorem 3 - Periodicity criterion . . . . . . 17 

I I I . CONSTRUCTION OF PERIODIC SOLUTIONS. . . . . . 19 

JacObian with three zero elements . . . . . . 35 
Jacobian with four zero elements • 35 
Jacobian with a row of zeros. . » < > • • • o © 36 
Construction of solution. 37 
Theorem 1 - nonzero Jacobian 37 
Theorem 2 «> zero Jacobian . • » • • • • • • • 38 
Example . . . . . 39 

17. APPENDIX hh 

Definitions and theorems concerning 
functions of several complex variables 

BIBLIOGRAPHY 56 



I 

CHAPTER I 

INTRODUCTION 

Consider the differential equation 

x + x = pf ( t . x ^ p ) P ( ° = d ) (l.l) 
dt 

together with the initial conditions 

x(o) = a + p ( p ) ,p(0) = 0 (l„2) 

x(0) = b + q ( p ) ,q(0) = 0 $ 

and the generating equation obtained by letting p = 0 

x + x = 0 (1.3) 

together with the initial conditions 

x(0) = a ( l o l l ) 

x(0) = b 

where f is a given real function which is periodic in t with period 

2TX<, It is desired to construct a solution of (l.l) satisfying (l„2) 

which is periodic in t with period 2n and which for p = 0 reduces to 

the solution 

x = a cos t + b sin t 

o f (l.3) satisfying (l„U)o Hereafter this will be referred to as 
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the "basic problem" for (l.l)-(l.2). 

In this study the problem is treated by first introducing a 

phase shift in (l.l)-(l.2) in order that the second initial condition 

in (l.2) may be taken as zero. This is done by defining 

h(P) = Arc tan ^ 4 4 = 7? - Arc tan f t Pl P l r a + plpj 2 b + Q L P ; 

where p and Q are taken to be analytic functions of P at P = 0 and 

p ( P ) = o ( | P | R ) ,r> 1 

and 

q ( P ) = o( | P | S ) , S > l . 

Without loss of generality it may be assumed that either a or b 

is different from zero. For if a = b = 0 and r > s, may be put 

in the form 

p a l P
r " s + p ( P ) 

Q B 1 + Q ( P ) 

where p (0) = Q ( O ) = 0 and ^ 4 0. Similarly for r < s and Q / p . 

Hence, h ( P ) will be analytic at P = 0. Define g ( P ) = - H ( P ) . Then 

(l.l)-(l.2) take the form 

x + x = pf(t + g ( P ) , x , x , P ) (1.5) 

x(0) = A q + X ( P ) (1.6) 

5(0) = 0 
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and ( l.3 ) - ( l . U ) become 

x + x = 0 (1,7) 

x(0) = A (1 .8) o 
x(0) = 0 

The b a s i c problem w i l l be t o cons t ruc t a s o l u t i o n , x(t,P) of ( l . 5 ) 

s a t i s f y i n g ( l . 6 ) which i s p e r i o d i c in t wi th per iod 2TT and which fo r 

P = 0 reduces to t h e s o l u t i o n 

x ( t , 0 ) = A cos t 3 o 

of (1 .7 ) s a t i s f y i n g ( l . 8 ) . 

The q u a n t i t y A^ and the func t ions g and X a re t o be determined 

as func t ions of p such t h a t t h e b a s i c problem w i l l have a s o l u t i o n . 

I t w i l l be seen t h a t t h e r e can be a s o l u t i o n t o t he b a s i c problem 

only f o r c e r t a i n p a i r s (A ,g ) , c a l l e d admis s ib l e , where g = g (0). 

An admiss ib le p a i r ( A Q , g Q ) then determines a p a i r (x (O),g (O)) 

and t h i s in turn determines t h e p a i r (X' ( 0 ) , g ( 0 ) ) , and so on, 

where t h e primes denote d i f f e r e n t i a t i o n wi th r e s p e c t to p. 

The bas i c problem connected wi th t h e corresponding au ton

omous system 

x + x = PF(x,x,P) (1.9) 

x ( 0 ) = a + p(P) , p (0) = 0 (1.10) 

i ( 0 ) = b + Q(P) , q(0) = 0 



is considered by Malkin [l], Stoker [ 2 ] , Andronow and Chaikin [ 3 ] , 

Coddington and Levin son and others. Here a simple change of the 

independent variable always enables one to take the second initial 

condition in (l.lO) to be zero without changing the differential 

equation (l.9). Once a solution is found, the inverse change of 

variable yields a solution of (l.9)-(l.l0). Proskuryakov [5] 

solves the basic problem for (l.9)-(l.l0) w±th the second initial 

condition zero and with f analytic in its three arguments. In this 

work a similar method of solution is used to solve the basic problem 

for the system (l.£)-(l.6). 

After independent work was begun on this study, Proskuryakov 

[6] published the solution of the basic problem for (l.l)-(l.2). 

He constructs a solution under the assumption that f is periodic in 

t with period 2n, continuous in all its arguments, and analytic in 

(x,x,p) for each fixed t. The method of solution requires that f 

be expanded in powers of p. By treating the differential equation 

(l.l)-(l.2) as it stands (i.e., without first reducing the second 

initial condition to zero) he was able to avoid all differentiation 

of f with respect to t. However, in the differential equation 

(l,5)-(l.6) treated in this study the phase shift in the first 

argument of f makes it necessary to differentiate f with respect 

to t and hence a hypothesis stronger than continuity in t is essen

tial. In fact f is assumed to be analytic in all its arguments. 

The method of solution also requires g and X to be expanded in 

powers of p and hence these functions are assumed to be analytic 

functions of p. 



The thesis is divided into three parts„ Chapter Two is 

devoted, to an exposition of basic concepts and theorems from the 

theory of differential equations which are needed to accomplish the 

main task. Most of these are known in some sense but are included 

for the sake of completeness. Chapter Three contains an exposition 

of the main theoretical problem described above, together with an 

exampleo The appendix contains some theorems from the theory of 

functions of several complex variables pertinent to the development 

of chapters two and three„ 
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CHAPTER II 

AUXILIARY CONCEPTS AND THEOREMS 

In this chapter various basic concepts and.theorems are 

presented to support the work done in Chapter Three. The existence 

and uniqueness theorem (Theorem l) and the theorem on periodic 

solutions (Theorem 3) are basic in the theory of differential 

equations. The definition of multiple roots and the theorem on 

interchange of order of differentiation (Theorem 2) are more 

specialized to handle this particular problem. 

Definition of Multiple Roots for a System of Equations.— For the 

equation h(x) = 0 5 the definition of multiple roots is quite simple. 

Suppose h is sufficiently smooth so that there is no question about 

differentiability„ The equation is said to have an n - fold root 

at x = x if h(x ) =h !(x ) = ... = h^n " 1^(x ) = 09 but h ^ ( x ) 4 0. 0 0 0 o 9 o 
In the case of a system 

f(x, y) = 0 
St 

g(x5 y) = 0 

one considers the two curves in the (x, y) plane determined by 

f(x, y) = 0 and g(x5 y) = 0. Let (Xq5 y ) be a point at which 

f(x . y ) = g(x , y ) = 0 o In a neighborhood of (x , y ) f(x, y) = 0 0 0 0 0 0 0 
defines y as a function of x<, y = y^(x). and g(x5 y) = 0 defines y as 

a function of xs y = y?(x)„ The system S is said to have an n - fold 
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root at (x , y ) if o o 

D y (x ) = D y (x ) for k = 1,2,...,n - 1 
J l O ^2 0 3 3 3 

and 

Dnv, (x ) 4 Dny„(x ) , where " 1 o 2 o ' 

D̂" is the operator d^ . 
dx 

Note that the definition for the system S reduces to the simpler 

case above when f (x, y) = y - h(x) and g(x, y) = y. 

To illustrate the concept of multiple roots the case of 

double roots will be considered. Suppose S has a double root at 

(x , y ) and further suppose that f and g are different from zero, o ' o 7 7 

By the definition of double root it must be true that 

dy f x g x (2 .1) 

dx f g 
7 7 

at (x , y ) and 
o 5 ^o 

-(f ) ~ 2 [f (f + f |SL) - f (f + f (.2.2) 

y y xx xy dx x xy yy dx 
4 - (g )" 2|> ( F + g ^ - ) - g (p + e 
^ V Lgy gxx gxy dx y Vgxy gyy dx J]* 

Note that ( 2 . 1) is equivalent to saying that the Jacobian 

a £ u d _ = 0 . 
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Using (2.l) in (2.2) one sees that for the case of double roots, 

f [ g 2 f - 2 g g f + g a f ] - ( 2 .3 ) 
y 6y xx 5x by xy &x yy 

g j f J g_ - 2 f J „ g _ + f v
2 g^] ̂  0 . -y y ~xx x y xy x 

The following general existence and uniqueness theorem for 

complex systems is needed. 

Theorem 1 . - - Let 

1 . I be the region |p - p | < c, c > o, where p is the vector 
p - o 
p = (p 1 ? p n ) , p ± , i = l,...,n complex^ 

2. I be the interval |g - g | < c 5 , c1 > o, g realj 

3 . D be a domain of (t, w) space, t real and w the vector w = 

(w^,...,wn), w^ complex i = 1 , n j 

lu be the set of points (t, w, p) such that (t, w) eD and 

pel and1 
P 

5. D be the set of points (t + g.w, p) such that (t,w,p) cD , gp ' ' ' 9 p' 

g e l g . 

Further, let f(s,w,p) be continuous in (s,w, p) on D and for 
gp 

each fixed s let f be analytic in (w,p), where f = (f^,.,.,f ). 

For p = p let p(t,g ,p ) be a solution of 

w 1 = f(t + g 3w,p ) o' 9 o 

on some interval It a < t < b [i.e. (t,p(t,g , p Q)) eD for tel] 
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satisfying p(IR) = W q where -rel. 

Then there exists a 6 > o such that for any (w, P, g) eU^, 

U
GP

S I* - W
0I + LG ' G

0' + 'P " P
0' < 6> 

there exists a unique solution 

h = h(t,g,w,P) of 
w« = f(t + g,w,P) 

for tel with h(r, g,w,P) = w„ Moreover, h is continuous in 

(t,g,w,P) and for each fixed t and g, h is analytic in (w, P). 
Proof,— Choose a 8^ such that the closed (t + g,w,P) region 

R 
GP 

= [ (t + g,w,P) : a < t < b, |w - w Q| + |P - PQ| + |g - gj< «1J 

is in D . Let 

R'V = { (T,g,W,P) : a < t < b, |w - W Q| + JP - PQ| + |g - gQ|< 61J 

Define the successive approximations h^• by 

o * o o o 

h •N + 1̂
T,T,G5w,P) = w + ( 2 . 5 ) 

t 
/ t f (s + g,hn(s,r,g,w,P),P) ds 

Since p is a solution of a differential equation on [a,b], 

p is a continuous function of t on [a,b] and from ( 2 . h ) it is seen 

that h is continuous in (t,g,w,P) for t on [a,b] and any choice 
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of the other variables. In particular then, h Q is continuous in 

(t,g,w,p) on Rn. Similarly for each fixed te[a,b], h Q is analytic 

in (w, p) and hence this is true at least on R". 

As an induction hypothesis assume that h n is continuous for 

("t,g,w, p) eR'f and that for each fixed t and g, h n is analytic in 

(w,p). By Theorem 3 of the appendix h^ + is a continuous function 

of (t,g,w,p) in R", and by Theorem 5 of the appendix for each fix:ed 

t and g 9
 n

n + i s analytic in (w,p). Hence all the iterants possess 

the desired property. The next step is to show the uniform conver

gence of the series 

[h - h . .] on R* n n - l 
n = 1 

From (2 .U) , 

hQ(t,T,g,w,p) - p(t,go,pQ)| = |w - wQ| (2 .6 ) 
and 

h^t^g^p) - hQ(t,T,g,w,p) = 

t 
/t f(s + g, h Q(s, r,g,w,p), p) ds - [p - WQ]. 
t t 

But p - w = / p» (s) ds = / f (s + g , p(s), p ) ds. 

O T T O O Thus, 

(̂-b, -r,g,w,p) - ho(t,x,g,w,p)| = (2 .7) 
t 

|/t f(s + g, hQ(s),p) - f(s +g Q,p(s), P q ) ds|. 
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Since f i s cont inuous on t h e compact s e t R , i t i s uniformly con-
gp 

t i nuous so t h a t given e > o, t h e r e e x i s t s a 6 such t h a t 

|f(s + g, h ( s ) , P ) - f(s + g Q , p ( s ) , p e)| < e (2.8) 

fo r a < s < b and 

|w - w | + |g - g | + |p - p i < m i n ( 8 N , 8 ). (2.9) 
O O O JL £ 

Using (2 .8 ) i n ( 2 . 7 ) , one o b t a i n s 

I L L ^ t . T . G . w . P ) - h o ( t , T , G , w , P ) | < e | t - T| 

provided (2 .9 ) h o l d s . Now s ince f i s a n a l y t i c i n w, f i s continuous 

on the compact s e t R and hence i s bounded; If I < K. Also s ince 1 gp 9 1 w1 ~ 
i s convex, t h e mean va lue theorem may be app l i ed t o show t h a t 

f s a t i s f i e s a L ipsch i t z condi t ion in w on R uniformly wi th r e s p e c t 
gP 

to i t s o t h e r arguments . Note t h a t s i nce f and w a r e v e c t o r s , f i s 
w 

a mat r ix A = (a ) , and the norm i s defined by t h e r e l a t i o n 
J 

n 
|A| = 5 1 |a |. 

i , j = 1 J 

As an induc t ion hypothes is assume t h a t f o r some n 

n - l | I n 
h - h _ | < eK | t - T | 

n n - 1 ' - ni 

where K i s t h e L ipsch i t z cons tan t f o r f. 

Then 
t 

| h n + 1 " h J - / l f ( s + g* V p ) " f ( s + g ' h n - r p ) | d S 

T 

K L h n ' h n - LL D S ± ^ « * " ' " ^ I R 1 " D S 

T T 
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vn
 1 + IN + 1 EK I t - T 

n + 1 J » 
< e K n ( b - a ) n + 1

( 

I n + 1 ) ! 

Thus fo r a l l n 

|h - h _ | < eK: 
1 n n - 1' — 

1 1 - 1 l t - x l n 

ni 

Thus, 

|h - p | < |h - h n I + |h _ - h 0 | + . . . 
1 n ^ ' - 1 n n - l 1 ' n - l n - 2 ' 

+ \ \ - h Q | + | h Q - p | < 

EJ [K(b - a ) ] " + [K(b - a ) ] n " 1 
+ . . . + K(b - a ) 

J n» (n - 1)1' 

/ K(b - a ) -i \ i _ 
< E \e - 1J + 8 

Now l e t c be given such t h a t e ( e K ^ a ^ - l ) < 8 ^ 

+ 6 

Then choose 

K 

6 < 8 , • F i n a l l y l e t t h e 8 i n t h e s ta tement of t he theorem be 
£ 1 

equal t o 5 . Hence (h^ - p | < 6 ^ f o r a l l n and the p o i n t 

( t , h n ( t , T , g , w , p ) ) remains in t h e region £ a < t < b , | w - p | < 8 - ^ 

fo r a l l ( T . W , O ) 6 D . 

' P 

The s e r i e s 

h + 
o n = 1 

[h - h _] = l im h n n - l rr*» n 

i s majorized by t h e s e r i e s f o r e ^ ^ ~ a ^ and hence converges 
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uniformly to a limit function 

lim h = h(t , T,g,w , p ) . 

n-x° 

Since the convergence is uniform, h is continuous in (t,g,w, p ) on 

R"- and by Theorem 6 of the Appendix^ h is analytic in (w, p ) for 

each fixed t and g 0 

To see that h is a solution let f = f ( s + g , h , p ) . Then 
for any r and for n sufficiently large, 

lfn " fn + rl ~ | f ( s + g>Vp) " f ( s + g> hn + r>p)l 
< K | h - h ^ i < e — 1 n n + r' 

for all (t,g,w,p) eft* since h n -> h uniformly in R*. Thus, 

t t t t 
lim J f ds = f lim f ds = / f (s + g,lim h , p)ds = / f (s + g,h,p)ds. 
n-**5 T T n-*30 T rH°° T 

Thus, in ( 2 .5 ) "the limit may be taken on both sides to obtain 

t 
h(t ,T,g,w ,p ) = w + / f(s + g,h(s) ,p) ds 

x 
which is equivalent to 

h« = f (t + g , h , p ) . 

Uniqueness of h is obtained as in Coddington and Levinson [ 7 ] , 

Corollary.— In the previous theorem if f is assumed to be 

analytic in all its arguments then the solution 

h = h(t,g,w,p) 

will be analytic in all its arguments. 

Proof.-- This follows from the uniform convergence of the successive 

approximations and Theorem 6 of the Appendix. 



Theorem 2.-- Consider the differential equation 

x + x = pf(t + g ( p ) 5 x s x s p ) 

x(t = o) = A + X o 

x(t = o) = o 

where x = x(t,A ,g s \ $ p) and f (s,x,x, p) is analytic in (s5x5x 

Suppose that the solution x can be written as 

x(t 5A Q 5g, X,p) = (A + X) cos t + 

+ 2L- J C (t.A,/g) + d°n x + 1 "^n X 2 

« = 1 ? n ° a x 2 a x 2 

with its first derivative given by 

x(t,A ,g , \ , p ) = - ( A Q + x) sin t + 

• 2 # 

+ 2_ j 0 ( U , g ) + a C n x + 1 9 ° n x 2 + 

Then in (2.11) and (2.12), differentiation with respect to X 

replaced by differentiation with respect to A^ at p = X = o, 

a x(t sA o Sg 5o 3oj _ a xit,Ao9g,o,o) 
m n . m n 

a x ap aA Q ap-

m,n > o and similarly for x . 
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Proof.— Let 

pf(t + g(p), x(t,AO,G,X,p), x(t,AO,G,X,p), P) 

= P? (MO,G,X,p). 

Now expand pf about p = X = 0 
OO 

Pf = X _ i a m + NF(t , A o > g > o , o ) x m p n + 1 
ra»n = 0 ml n j 3Xm ap" 

Substitute (2.11;) and (2.1L) into (2.10) and equate coefficients of 
m n + 1 , , X p to get 

m + n + 1 *• /, A ^ m + n + 1 /. . „ _ \ A x (t,AO,G,o,o; + A x(t,AO,G,o,oJ (2.15) 
m n + l m n + 1 QX dp AX 3p 

= (n + 1) a f^,A 0,g ?
0, 0^ 

m n AX AP 
Using the fact that x(o,A .G.X̂ p) = A^ + X and x(o,A ,G,X̂ p ) = o 

the following initial conditions for (2.15) must be satisfied, 

m + n + 1 / . \ m + n + 1 # / . \ a x(o,Ao,g,o3o) = a x(o,Ao,g,o,o) = q ( 2 # i 6 ) 

m n + 1 m n + 1 AX AP AX AP 
By variation of parameters, the solution of (2.15) and (2,L6) is 

m + n + 1 /, . \ 
A x(t,Ao,g,o,o; _ (2.17) 

n + 1 
AX DP 
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(n + 1) / 
o 

a m + n f(s,A ,g,o,o) s . n ( t _ s ) d s 

,m n ax ap 

Now to s t a r t an induc t ion argument, n o t i c e from (2.11) and (2 .12) 

t h a t (2 .13) i s t r u e fo r n = o and a l l m. As an induc t ion s t e p 

assume t h a t (2 .13) i s t r u e fo r n = 152,...,K and a l l m. Then 

mk 

m + k — /, A \ 5 f-(t,Ao,g,o,o) = 

m̂ k ax ap 

m + k 
ax_» ax ^ . . . a x • ax ^ ax . . . • 

(2.18) 

. in k . aA ap ap aA 
O r r 0 

m + k 0 5 

o • o a x ^ g^ g 0 0 . 

A
 m k aAn a P

K 

m + k — /. . \ a f_ (t,Ao,g,o,o) 

p = X = O 

a A ap o r 

Upon s u b s t i t u t i n g (2 .18) under t h e i n t e g r a l s ign i n (2 .17) one g e t s 

m + k + 1 
a x(t,A Q ,g,o,o) 

ax dp 

m + k + 1 / x . \ a x ( t , A , g s o s o ) 

O 

Since t h e procedure was independent of m, i t has been shown t h a t 

(2 .13) now holds f o r n = k + 1 and a l l m. This completes t h e 

i n d u c t i o n . 

The fo l lowing c r i t e r i o n fo r p e r i o d i c s o l u t i o n s of n o n l i n e a r 

systems i s needed. 
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Theorem 3» — Consider the following system of differential equations 

and initial conditionsI 

x' = f(t,x ,p) ( 2 . 1 9 ) 

x(o) = X 

0 

where x and f are real vectors and p is a parameter. Suppose that 

f is periodic in t with period 2n and that f and f are continuous 
in (t,x,p) for - 0 0 < t < 0 0

 s |x| < a, | p | < p Q where a and p Q are 

constants. Let x(t,x Q , p ) , or simply x(t), be a solution of ( 2 , 1 9 ) 

defined on - 0 0 < t < °°. Then a necessary and sufficient condition 

that x(t) be periodic with period 2n is that 

x(o) = x ( 2 n ) . ( 2 . 2 0 ) 

Proof.— First assume that x(t) is 2n periodic, i.e., x(t + 2n) = 

x(t) for all t. Then in particular for t = o, ( 2 . 2 0 ) holds. 

Now assume that (2.20) holds. Define x(t) = x(t + 2 t i ) , 

The solution of ( 2 . 1 9 ) satisfies 

x(t) = x + / f(s,x(s),p) ds 
T 

and therefore 
t + 2 n 

x(t) - x + / f(s,x(s) ,p) ds. 
T 

The new function x(t) satisfies the differential equation in ( 2 . 1 9 ) 

since 

x' (t) = f (t + 2n$ x(t + 2 n ) , p ) 

= f (t,x(t) ,p) 
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and furthermore 

2n 

o 
o 

However, (2.20) implies that 

2n 
/ f(s,x(s),p)ds = o 
o 

so that 

x(o) = x • o 

Thus x(t) and x(t) satisfy the same differential equation and initial 

conditions and by uniqueness x(t) = x(t), or 

x(t + 2TI) = x(t) # 

The last relation states that x(t) is a 2n periodic solution. 

x(o) = x + / f (s,x(s),p)ds. 
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CHAPTER I I I 

CONSTRUCTION OF PERIODIC SOLUTIONS 

In t h i s chap te r a procedure f o r t h e c o n s t r u c t i o n of p e r i o d i c 

s o l u t i o n s i s p re sen ted and t h e r e s u l t s a r e summarized near the end of 

t h e c h a p t e r i n t h e form of two theorems. An example i s worked a t t h e 

end t o i l l u s t r a t e t h e c o n s t r u c t i o n p r o c e d u r e 0 

Consider t he d i f f e r e n t i a l equa t ion 

x + x = pF(t + g(p) ,x ,x ,p) (3.1) 

wi th i n i t i a l cond i t ions 

x(o) = A + x(p) (3.2) 
o 

o 

x(o) = 0 o 

Suppose the fo l lowing hypotheses a re s a t i s f i e d : 

F i s p e r i o d i c i n t w i th per iod 2n 

(Hg) F ( s , x , x s p ) i s a n a l y t i c i n ( s , x , x , p ) 

(H ) g(p) and x(p) a re a n a l y t i c f u n c t i o n s of p 

i n some neighborhood of p = o, g(o) = g , 

and x(o) = o . 

The genera t ing equat ion (p = o) i s 

x + x = o (3.3) 

wi th i n i t i a l cond i t ions 
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x(o) = A (3.U) o 
x(o) = o 

which has the solution 

x(t.A ) = A cos t. (3.5) 
9 o o 

It is required to find a periodic solution of (3*1) which for p = o 

reduces to the solution (3.5) of ( 3 . 3 ) . It is known by Theorem 1 of 

Chapter I that the solution x(t,A \9p) of (.3.1) exists for 

o < t < 2n and is analytic in X and p in some neighborhood of X = p = o 

and thus may be expanded in powers of X and p. 

x(t,A o,g,X,p) = X q + B 1 X = ( 3 .6 ) 

C l P + D 1Xp + B 2 X 2 + 

where the coefficients are appropriate derivatives of x evaluated at 

X = p = o and are functions of t ,A ,g and various other derivatives 
9 0 * 0 

of g. Since at X = p = o 5 x = A Q COS t $ it must be the case that 

x = A cos t in expression ( 3 . 6 ) . o o 
Expand F in terms of p and X and substitute (3 .6) into (3.l). 

Notice that since every term on the right of ( 3 . 1) has at least one 

factor of p 9 the following set of relations must holds 

B (t) + B (t) = o, n = 1 , 2 , . . . 

Since at t = o, (3 .6) must reduce to A Q + X3 the following set of 

initial conditions must holds 

B1(o) = 1 B (o) = o 

Bn(o) = o B n(o)=o , n = 2,3,... 
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Hence B (t) = cos t and ̂ (t) = o for n = 2 , 3 , • •• o Now apply Theorem 

7 of the Appendix to rewrite the solution (3 .6) as 

x(t,AQ5g,X5p) = ( A Q + X ) cos t + 

K ( M 0 , E ) + ^ X + ^ X 2

 + I p

n, 
C * 1 9 ^ A X 2 A X 

n = 1 

where all the coefficients are evaluated at X = p = o and 

c ~ 1 ax 
nl ap 

Applying Theorem 2 of Chapter II, one readily sees that the solution 

may finally be written as 

x(t,A ,g,X,p) = (A + X) cos t + (3 .7) 

n = 1 L aA 2 aA 
^ x2 + ^ n 

_ X + . . . y p . 
2 aA 2 

0 

Note that 

x(t,A ,g,X,p) = -(AQ + X) sin t + 

00 

n = 1 

2° ? , a c , , l ac _2 , / n 
n
 + n X + _ n X + . . . I p , 

aA 2 aA 2 J o o 

From (3 .7) one sees that it is necessary only to calculate the 

c n, n = 1 , 2 , . . . J the remaining terms may be obtained by differentiation 
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with respect to A q # 

Now expand F in terms of p. 

PF = X /d nF\ 1 p n + 1 (3 .8 ) 

n = 0 I RII . 
\ dp / o nl 

where the subscript (o) indicates that the term in parentheses is to 

be evaluated at p = X = o, i.e., 
( f ) = F(t + g , A COS t n >- A sin t t o). 

O 07 O 1 0 
Note that 

d F \ / a F 

dp 

The coefficient of p" in (3.8) i s 

H ( t ) = 1 fdn - 1 1 \ . (3.9) 
11 ( n - D J . U " " 1 A 

Substitute ( 3 .8 ) and (3 .7 ) into (3 .1) and equate to zero the coeffi-" 

cients of p n . The result is 

[ c n + \ + c . . ] + [ c n + fjn_ X + . . . ] = H n ( t ) , 
aA aA o o 

but since this must hold for all X in a neighborhood of X = o. it holds 

also for X = o with the result, 

c (t) + © (t) = H (t) . (3 .10) 
n n n 
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Since at t = o, x(o,A ,g,X,p) = A + X one sees from (3 .7) that 
7 ' O 7 ' o 

cn(o) = cn(o) = o, n = l , 2 , . . . (3.11) 

It should be realized that c is actually a function of t, A q and 

d1g(o) , i = 1 , n - l . However for the present it is not 

dp 1 

necessary to show this dependence explicitly. It will be shown later 

just how the parameters d1g(o) can be handled. 
dp 1 

The solution of (3 .10) and ( 3 . 1 1) is, for n = 1 , 2 , . . . , 

t 
© (t) = / H (s) sin (t - s) ds (3.12) n n o 

t 
! (t) = / H (s) cos (t - s) ds , 
n o n 

A few of the H will now be calculated, n 

H (t) = F(t + g , A cos t, - A sin t, o) (3 .13) 1 o' o 7 o 

H (t) = (F ) g'(o)+(F) c(t)+(F.) c (t) + (F ) (3.1U) 2 t o x o l x o l p ° 

H3(t) = 1 ( F t t ) Q [g'(o)]2
 + ( F t x ) Q c x g'(o) + ( F t x ) Q \ g'(o) + (F ) o • 

(o) + 1 (F. ) g"{o) + 1 (F ) c 2 + (F ;) c -C- + (F ) c + (F ) • 2 t o 2 xx o 1 x x o l l x p l x ° 
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c 9 + 1 ( F ^ ) C l + (F.a ) c + (F ; ) c ? + 1 (F ) . (3 .15) 2 ^ x x ° l xp » 1 x o 2 ^ pp o 

H^( t ) = 1 ( F t ) 0 g M ! (o) + . . . 

H , ( t ) = 1 (F.) gik)(o) + . . . 
5 2 

The next s tep i s t o expand X and g in powers of p and t o d e t e r 

mine t h e c o e f f i c i e n t s i n t h e i r expans ions . 

x( P) = X A P
n (3.16) 

n = 1 n 

g ( P ) = g o + 5 1 0 / = X P n ( 3 - 1 ? ) 

n = 1 n = ° n ' ldp 1 1 / 

Since p e r i o d i c s o l u t i o n s of (3 .1) a r e des i r ed one may now impose some 

p e r i o d i c i t y cond i t ions on x and x . By Theorem 3 of Chapter I I , i t 

i s enough to r e q u i r e t h a t X(2TC) = x(o ) and x(2n ) = x ( o ) . Express ing 

t h e f a c t t h a t x(2n) = x ( o ) , one ob t a in s 

2 *) 
[ c (2n) + d c n X + I 9 c

n X 2 + . . . ( p

n = o (3.18) 
n 2 J 

o o 
n = 1 

S u b s t i t u t e (3 .16) i n t o (3 .18) and equate to zero t h e c o e f f i c i e n t s of 

l i k e powers of p to o b t a i n the fo l lowing : 

c (2n) = o 
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c2(2n) + A 1 = o 

o 

c (2n) + A 2 c + l 4 c U A + A o 2 A = 0 (3.19) 
o 2 o o o V2 n )

 + A
3

C 1 A + A 1 A 2 ° U A
 + i J t l c l A A A + A1°3A + A 2 ° 2 A + 

o O O O 0 0 0 o o 

+ i Al C2A A = 0 

2 o o 

2 
where ^ = °1 etc. 

o o P 
aA 
o 

Now expressing the fact that x(2n) = x(o), one obtains in the 

same way 

^ [cn(2Ti)+ x + 1 l^n X2 + . . J p n = o (3-20) 
n = 1 ̂  a& 2 aA 2 , w 

o o 

and 

c1(2n) = o 
c2(2n) + J^c = o 

o 

=3 ( 2n )+VlA +
 ± 4 ° 1 A A + V 2 A = ° o 2 o o o 

V2n)+VlA +AlVlAA + i A l = ! A A A 
0 O O O 0 0 0 

(3.21) 
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+ A xc + A 2 c 2 A + 1 4 c 2 A A = o 
o o 2 o o 

2» 
where A = ^1 , etc, 

0 0 aA2 

o 

Equations ( 3 . 1 9 )
 a n d ( 3 . 2 l ) thus form a set of necessary and sufficient 

conditions for the existence of a periodic solution of ( 3 . 1 ) • 

Some relations will now be derived showing explicitly the 

dependence of c on dXg(o) , i = 1 , 2 , . . . , n - l . Let D be an 
n i ^ dp 

operator which takes the total derivative with respect to P of a 

function holding g fixed, i.e., 

D F = £ O X + D F A X + D F , 

dX D P dX D P D P 

where 
n . . _n . = N J E a x | = nJ E , / a x 

A P N / o [ A P N J 
t , 

E = / H' (s) sin (t - s) ds, n n 9 

o 

E = / H" (S) C O S (t - S ) ds, n n ' 

and 

H* = 1 / D 1
 F ) 
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Note that the E are functions of t, A , and g . The c and E now n
 9 o9

 o n n 

satisfy the following relationships: 

C l(t) = E (t) 

c?(t) = g' (o) E + E (t) 
go 

c = 1 lg(o)f E + g'(o) E + 
* 2 go 

+ 1 g'1(o) E + E 
2 ± g o * 

c u = l[g'(o)] 3
E + 1 [g'(o)]2E + 

O OOOc 00 
+ 1 g" (o) E + g'(o) E + 

2 go ^ go 

+ 1 g' (o) g"(o) E, + l g l ! l ' ( o ) E , + E, 
2 l g o g o 6 l g o U 

(3 .22) 

and similarly for the c . Use of the relations (3 .22) to rewrite 

conditions (3.19) and ( 3 . 2 1) yields the following: 

V2*, go> V = ° 
(3 .23) 

\ { 2 n > go> A o } = 0 ' 

E 2 ( 2 T I > go> V + Gl \g + A 1 E - = 0 -g 1 IA o o 
(3.2U) 



E (2n, g A ) + G L E + A E = o , 
o o 

2 E + G E + 1 G E + G E + 3 2 lgQ i 1 lg og o 1 2gQ 

+ A 2 E U + i A l E l A A + A1 E2A. + A l G l E U g = ° o 2 o o o o o 

E + G ! + 1 G2 EL „ + G B + 
3 2 lg 0 j 1 l g o g o 1 2 g o 

+ A2 E1A + i A l E l A A + A 1 E 2 A + W u g = ° ' o 2 o o o o o 

E, + A E + G E + 1 G ^ E + \ A3 1Ao 3 1g 0 | 1 lg 0g 0g 0 

+ 1 G2 E„ + G E + G E + G, G E + 
k 1 2 g o g

0

 2 2 g o 1 3 g o 1 2 l g o 8 o 

V 2 E 1 A A + i A l E1A A A + ( A2 G1 + A 1 G
2

) Elg A o o o o o o o o 

+ A2 E2A + i A i G l E U A g

 + i 4 E 2 A A + 

o d o o o 2 o o 

+ I ^ X g o g o + ^ V o + = ° 

K + A 3 E U + G3 Elg Q
 + \ Gl h W o

 + 



+ 1 G E + G E + G E + G G E + \ 1 2gQgo 2 2gQ 1 3g0 12 lgQgo 

+ \ V l A A + l A l V i + (A2°1 + AlV Kg A + 

O O O O O O 0 0 

+ A2*2A + i 4 V l A A g + i A 1 ^ 2 A A + 

o 2 o o o 2 o o 

+ \ Vl W + AlV2AogQ

 + \ V = ° 
<L 0 0 0 0 0 O 

Hjnuations (3 .23) form a system for the determination of g and A . 
0 0 

If (3.23) has simple roots (see definition in Chapter II) then the 

Jacobian 

J = a(Ei* V + 0 
a ( A o * S o } 

and the system (3.2ij.) may be solved for a unique pair A ,̂ G^. 

Substitute these values of A^ and G^ into (3.25) and note that 

there results a linear system for the determination of A^ and G . 

The determinant of coefficients is again J and (3.25) may be solved 

for a unique pair A^ and G . Now looking at formulas (3 .9) and 

(3.15) and also noting that 

d C l ( t ) =/* DXF sin (t - s) ds 
9 go 
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where DF(t,x,x,p) = aF 9 one sees t h a t c^(2n) w i l l con ta in terms 
at 

i n G G . . . G_, Gn and a te rm 9 C 1 G _ which, due t o n - 29
 n - 3 2* 1 n - l 5 

9 g o 

(3 .22) i s equal t o 1 G . Moreover, i t i s seen t h a t c (2ft) 
i n - l * n 

a g o 
w i l l con ta in no o ther terms i n G . Now cons ide r (3.16) and 

n - l 

(3 .18) and n o t i c e t h a t upon c o l l e c t i n g t h e c o e f f i c i e n t s of p n one 

o b t a i n s 

c (2n) + Q c l A _ + o t h e r terms i n A 0. .... A_,A_ n n - l n - 2* 9 2' 1 
aA 

o 
and fur thermore a c l A^ ^ i s t h e only term i n A^ ^ . Again 

aA 
o 

ac aE * 
due t o ( 3 . 2 2 )

 o c l = ^ 1 . The same comments apply t o c and 
aA aA o o 

t h e s e r i e s ( 3 . 2 0 ) . 

Hence, j u s t as (3.2lj.) and ( 3 . 2 5 ) g ive r e c u r s i v e l i n e a r systems 

(with de terminant J ) fo r t he de te rmina t ion of A , G^ and k^9 G^, t h e 

system obtained by equat ing t o zero t h e c o e f f i c i e n t s of p n i n (3 .18) 

and (3 .20) g ives a l i n e a r system (with de terminant J ) f o r t he 

de te rmina t ion of A _ and G _ # Thus t he c o e f f i c i e n t s A and 
n - 1 n - 1 n 

G^ may be un ique ly determined i n a r e c u r s i v e manner. 

I t should be noted t h a t the J^cobian J above i s t h e same as 

t h e c r u c i a l Jacobian i n t h e work of Coddington and Levinson [8] fo r 
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t h e case of a second order equa t ion , and t h a t throughout t h e i r work 

t h i s Jacobian does not v a n i s h . 

I f t h e system (3.23) has double r o o t s then the Jacobian J 

vanishes f o r these r o o t s and t h e procedure j u s t descr ibed f a i l s . The 

vanish ing of the Jacobian J g ives r i s e t o some supplementary cond i 

t i o n s which must be s a t i s f i e d . 

I t i s we l l known t h a t t he equat ion 

*1A Elg 
o o 

E E 
> o ^ 

G. 

E, 

E, 

which i s j u s t equa t ion (3.21;) i n mat r ix form, w i l l have a s o l u t i o n 

i f and only i f t h e r ank of 

E IA 

J1A 

E, 

E 
l g 

oJ 

(3 .27) 

i s equa l t o the rank of 

E U Elg E2 o o 

IA l g 2 J o o 

(3.28) 

But , s ince t h e de te rminant of (3 .27) i s j u s t t h e zero Jacobian J , 

t h e ma t r ix (3 .28) must have rank < 2 . Thus, every 2 X 2 sub-mat r ix 

of (3 .28) must have determinant z e r o . 
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Hence, 

X = X = " 2 (3 .29) 

E1A Elg E 2 
o & 0 

must be satisfied, 

A procedure will now be described for solving (3 .25) for A^. 

Since J = o, we may eliminate A^, G^ ^ r o m the relations (3 .25) 

in the following manner. Multiply the first equation in (3.25) by 
* 2 2 
(E ) and the second by (E ) . Then from (3.2l±) substitute f o r 

go go 
G and finally multiply the first equation by E , the second by 

go 

E , and subtract thesecond from the first. The result is the 
go 

following quadratic expression for the determination of A^ : 

Po Al + PA + P 2 = 0 ( 3 * 3 0 ) 

where 

? o - x i v o v 0 - 2 X X V „ + x x ^ -
E [ E 2 E - 2E E E . + E 2 E 1 . lg L lg IA A "lg aiA *lg A "lA lg g J » 

o too o o & o o & o o o & o o 

• 2 
P = E [E E - E E E 1 lg 2A *lg *2g lg IA 

& o o & o & o b o o 

- E„ E E - E E E ] *2 *1A g \ g n *2 *1A g IA J 

O O O 0 0 o 
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O • p o 

E [ E E - E E E lg 1 2A lg 2g lg 1A o o &o &o too o 

and 

" E 2 E1A g Elg - E 2 \ g ELA ] > 
0 0 o o o o 

E [ E E 2 _ E. E„ En + 1 E 2 E. „ ] . 
lgQ 3 lg 0 2 2g o lgQ ? 2 X g o 

If it happens that both E and E are zero, t h e n an analogous 
go go 

o 

procedure using E_ and E_^ yields a quadratic in B . 

o o 

Having determined A^ from ( 3 . 3 0 ) , one may obtain G^ from one 

of the relations (3 . 2 l i ) . 

Since it was assumed t h a t (g . A ) is a double root of ( 3 . 2 3 ) , 
o ' o ' 

equation (2 .3) holds and thus P q =j= o. Hence, ( 3 . 3 0) determines two 
values for A^. In the case that the roots of (3 .30) are complex 

conjugate, no real solution exists. Even in the case of real roots 

they might be distinct giving rise to two separate determinations 

of X and g as functions of p and hence two separate solutions. Note 

that this does not contradict the uniqueness theorem since there is 

one and only one solution for each set of initial conditions, 

x(o) = A + x x(o) = o. o y 

There is however no guarantee of finding a unique solution to the 
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basic problem as stated in the introduction, i.e., there may be 

several periodic solutions of ( 3 . 1) -which for p = o reduce to the 

solution (3.5) of the generating equation ( 3«3) . Moreover, since 

(3*23) may have several distinct real roots, there may be several 

available solutions of the generating system. 

Having obtained and G one may calculate the quantities 

A^ and G^ in the following manner. Multiply the first equation of 

(3 .26) by and the second by E^ and subtract the second from the 

first. This eliminates A^ and G^ and leaves one equation in the 

two unknowns, A^ and G . Another equation in A^ and G^ is 

obtained by adding the two equations in ( 3 . 2 5 ) . The system is 

now linear in Ag 9 Ĝ  with determinant 

A = (E + E j A 
1 

where 

A , -

• • • • 
E E - E E - E E + E E + 

2 A o l g o l g o 2 Ao U o 2 g o U o 2 go 

A [ E E , - E E „ - E E + E E 1 + V lg 1A A ^lg ^lA A ^lA 1A g 1A 1A g J 

o 0 0 o 0 0 O O O o 0 0 

G_ [ E_ E . - K E . - E n A E n + E„ „ E n ] . I lg 1A g lg 1A g U lg g lkn lg g 0 0 0 o 0 0 0 0 0 0 0 0 
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Jacobian with three zero elements,,"— Suppose here, without loss of 

generality, that the Jacobian 

B ( a o , b 0 ) 

vanishes at (A ,g ) with E_ . + 0 and E i A = e-, ~ E_ = o. The o* o IA 1 IA lg lg o o &o o 

first equation of (3.21;) may be solved for A^ with the supplementary 
condition that E^ = o. With this value of A_̂ , the second equation 

of (3 .25) may be solved for G^, The first equation of (3 .25) may 

then be solved for A^ and the second equation of (3 .26) for G^ and 

so on. If, however, all the coefficients of G^ in the second 

equation of (3 .25) are zero another supplementary condition, 
• 

E^(2TI) = o, arises and the second equation of (3 .26) must be used 

to determine A . 
Jacobian with four zero elements.--Suppose that the Jacobian J 

vanishes at (A . g ) with four zero elements. Then from (3.2U) o o 
it is seen that the two supplementary conditions 

E 2 ( 2 " , g 0,A Q) = o 

Ki2K> g o ' A o ) = 0 

must be satisfied. Equations (3 .25) now give a system of two 

non-linear equations in the two unknowns A^ and G^„ As another 
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supplementary condition, assume that these nonlinear equations can be 

solved for a pair(A^,G ). Substituting these values of A^ and G^ into 

equations(3.26) one obtains a linear system for the determination of 

A^ and G^ and so on. If, however, all the coefficients of A^ and G^ 

in equations ( 3 . 2 5 ) are zero then the supplementary conditions 

E 3 ( 2 l l > go> V = 0 V2ll> go> V = ° 
must be satisfied and A^, G^ may be determined from equations (3»26). 

Jacobian with a row of zeros.— Suppose the Jacobian J vanishes at 
« e 

(A . g ) with E_ . = E_ = 0 but E_ A. 4= o and E_ 4= o . This gives o* o IA lg UL 1 lg 1 & 

o &o o o 
rise to the supplementary condition 

E2 ( 2 l t> so> V = 0 

which must be satisfied. The second equation in ( 3 . 2 1 ; ) and the 

first in ( 3 . 2 5 ) now provide a non-linear system for the determina

tion of A^ and G^. Substituting these values of A^ and G into the 

second equation of ( 3 . 2 5 ) and the first equation of (3.26), one 

obtains a linear system for A^ and G^ and so on. If, however, in the 

first equation of ( 3 . 2 5 ) the coefficients of A_ and G are all z e r o 

1 1 
then the supplementary condition 

E3(2n, g Q j A Q) = 0 

must be satisfied and A^ and G^ may be determined from the first 

equation of ( 3 . 2 6 ) and the second equation of ( 3 . 2 U ) . 
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Construction of solution.-- Having determined the coefficients A^ 

and G one may now construct the solution of ( 3 d ) . Collecting 

coefficients of like powers of p in (3 .7) one obtains 

x(t,p) = X Q(t) + x^t) p + x 2(t) p 2 + . . . 

where 

x (t) = A cos t o o 

x1(t) = ^ cos t + E 1(t) 

x2(t) = A 2 cos t + E (t) + CLE (t) + A^E^ (t) 
GO o 

xJt) = A0 cos t + E (t) + G0E_ (t) + 1 GTE. w (t) + 
3 3 3 2 !g 0 2 1 l go go 

+ G L E 2g ( T } + V L A ( T } + 1 \ E1A A + A1 E2A ( T } + W L A G 
O O d O q o 0 0 

The principal results OF this investigation may be summarized 

in the following two theorems. 

Theorem 1.— Consider the differential equation (3.1) with initial 

conditions (3 .2) and suppose that H^, H 2 and H^ stated after formula 

(3 .2 ) are satisfied. Suppose that the Jacobian J evaluated at 

(A , g ) is different from zero. Then it is possible to determine the o' o 

coefficients A^ and G^ recursively and to construct a unique solution 

of ( 3 d ) satisfying (3 .2) which for p = o reduces to the solution OF 
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(3 .3 ) which satisfies (3 .U). 

Remark.— The solution is unique in the sense that given a root (A^9gQ) 

of (3.23) there is one and only one solution of (3.l) which for p = o 

reduces to (3.5). This corresponds exactly to the case discussed in 

Coddington and Levinson [9] where it is assumed that the Jacobian does 

not vanish. 

Theorem 2.— Consider the differential equation (3 .1) with the initial 

conditions (3 .2) and suppose that H^, H^, and stated after formula 

(3 .2) are satisfied. Suppose that the Jacobian J evaluated at (A ,g Q) 

vanishes in one of the following ways: 

1 . (A . g ) is a double root of (3.23)5 
0 0 7 

2:. J has a row of zeros, the other row consists of non-

zero elements1 

3 . J has three zero elements, the other element is non

zero 1 

km J has four zero elements. 

Also assume that all of the supplementary conditions imposed by the 

vanishing of J are satisfied. Then it is possible to determine re

cursively the coefficients A and G and to construct a solution (not 
n n 

necessarily unique) of ( 3 . 1) which satisfies (3 .2) and which for p = 0 

reduces to the solution of (3 .3) which satisfies (3 .U). 

Remark.— The vanishing of J with two zeros in one column or by simple 

cancellation of its terms is treated in Case 1 . 
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Example.— 

Consider the following equations 

x + x = p(ax + dx + bx + c cos t) 

x(o) = I + p(p) o 

x(o) = B q + q(p) 

where p is a small parameter. By introducing the phase shift g, one 
o 

may assume that x(o) = o. Thus the equation under consideration is 

O O 

X + x = p(ax + dx 2 + bx 3 + c cos [t + g(p)]) 

x(o) = A Q + \(p) (3.31) 

x(o) = O O 

Suppose 

a = U b = -U (3.32) 

c = - 16 d = \TT . 
T 10 

After carrying out the necessary integrations, one sees that 

E_ (2T0 = T I C sin g (3 .33) 1 o 

E_, (2n) = TT(aA + 3bA + c cos g ) . 1 o r* o o 

Now substitute (3.32) into (3.33) and equate both expressions of 

(3.33) to zero so that relations (3.23) may be satisfied. The result 

is 



ho 

and 

with roots 

- 16 n sin g = o -
ii ( I 4 A - 3A - 16 cos g ) = o o o ^— 0 

g o = o (3.3U) 

A Q = 2 / 3 , 2 / 3 , - i i /3 • 

Now suppose that it is desired to construct a solution of ( 3 . 3 1) which 

for p = o reduces to 

x(t, o) = 2/3 cos t, 

corresponding to the double root 2 / 3 , 

The four elements in the Jacobian J are 

E = TIC cos g (3 .35) j.gQ 

E1A B o 

o 

EL = - TIC sin g lgQ o 

2 EU =ni a + g b Ao } • o ^ 

For the values ( 3 .32 ) , g = 0 , and A = 2/3 the first expression in 
' o ' o 

(3 .35) is different from zero and the last two expressions vanish. 

Hence this is the case discussed in chapter two in which the Jacobian 

J vanishes with three zero elements and the new condition E ^ ^ T I ) = o 
must be satisfied. After a little calculation, one finds 



ILL 

E 2 ( 2 n ) = 

nA3 { 576A d 2 - (a + 3 bA 2) d + (ab + 3 h2 A2 ,( °L ° 3 H ° 32 ^bAo^j (3.36) 

which indeed vanishes for the values (3 .32), g = o.and A = 2 / 3 . 
9 o ' o 

The first equation of ( 3 . 2 4 ) reduces to 

E 2 ( 2 n ) + OjE^ = o 

and upon calculating E 2 it is seen that E 2 ( 2 n ) 2 o. Hence = o 

and the second equation of (3*25) reduces to 

2 0 0 o 

from which A^ may be determined. For the example under consideration, 

E (2n) = nA3 (K A^ + K 0A 3 + K„A2 + K, A + K j 3 o l o 2 o 3 o 4 0 5 

where 

219 b 3 + 12 
(6U)2 2U 

763 bd2 - 5 
384 18 

1 bd2 -
16 9 

201 ad2 

LLIII 

2 2 I - 113 db^ 
256 

1̂ 65 ab 2 - 255 
6lhk 576 



U2 

*V = 3 a b - l a d . 
5 H12 9 E_ . A =9 Tib A , 1A A 1 o> o o 2 

and 

E_ = TIA3 (5 d 2 - 3 bdA +3 b 2A ) . 2Aq o j 2 0 32 ° 
It is easy to show that (3o37) will have real roots if the values 
(3«32), g Q = o, and A q = 2/3 are used. 

3 2 
The calculated value for E_ is En(t) = 1 bA cos t sin t + 

1 1 o o 

8 

3 
o ( 2 - cos t - cos t)i 

It is now possible to write down the first two terms in the expanded 

solution. 

x(t,p) = A cos t + ' o 

3 2 + p[An cos t + 1 bA cos t sin t + 
1 8 0 

3 

( 2 - cos t - cos t)] + ••• 

Higher order terms may be found recursively. 

The first equation in (3.25>) reduces to 
Eo(2T0 + G E = o 3 2 lgQ 



1.3 

and upon carrying out the necessary calculations one sees that 

E^(2TI) = O o Hence G^ = o and the expansion of g in powers of p 

contains no powers of p less than three. 



APPENDIX 

In this appendix some theorems from the theory of functions 

of several complex variables are presented. Most of the theorems 

are well known for the case of functions of one complex variable 

and are proved in standard textbooks such as AhlforsflO] and 

Titchmarsh [ll]. For the case of functions of several complex 

variables those proofs which could not be found in the literature 

are presented here for the sake of completeness. The principle 

reference is Bochner and Martin [12]. 

Definition 1» — By the norm |w| of a complex n component vector 

w is meant the followings 

where Re w^ and Im v denote respectively the real and imaginary 

parts of \T M 

Definition 2„ —- Let F = (F ,...,F ) be a vector function defined on 

with ¥. complex. The function F is said to be analytic at a point 

2 1/2 

a region D of the n complex dimensional w space where w = (w. 

'lo'"2o'*##' no w ) if each F x;an be represented by an abso

lutely convergent power series 
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F.(w. ...,w ) = 2_ A (w - w n ) (w9 - w ) ...(w^ - w ) i l * n m-,m0...m 1 10 <i cSj n no ° in. - o 1 7 n l 
i = 1,...,n 

in some neighborhood |w - W q| < p, p > o, A function is said to be 

analytic in a domain D if it is analytic at each point of D. By a 

theorem in Bochner and Martin [13] 5 

ra+ m +... + m 
m_ m 0 .. ,i _ _ _ 
1 2 n m. m 2 m N̂ I m2L .••mNL AW1 ̂  AW2 E"...AJRN N 

An equivalent definition of analyticity is supplied by the 

following theorem which is quoted without proof from Bochner and 

Martin [lU. 

Theorem 1 , — If a function F(w^,#c.^wn)„ all complex, is continuous 

in a domain D, and if in the neighborhood of every point it is analytic 

in each variable, then F(w) is analytic in D, 

Note "F analytic in D" implies analytic in the sense of defini

tion 2. 

In all of the theorems which follow F is taken to be a 

scalar function0 The same theorem may be stated for vector functions 

since each component of F may be treated separately. 

Theorem 2 . — Let F be a scalar function of p complex vector arguments, 

F = F(w1,...,w ), w i = (w i l 5 ...,win) i = 1 , . . . , p . Suppose F is 



he 

defined and analytic on a region D of space of np complex 

"be a region i 
k = 1,•...n 

dimensionso Let G j = l,,,.,p be a region in the w plane. Let 
Jk j k 

the boundary of G be a closed curve c ., which is piecewise dif f er-Jk jk 

entiable. Define 

c — c__ X c_0 X ... X c and 
11 Id np 

G = G n X G 1 2 X ... X G n p 

where the symbol X denotes topological product. Suppose C U G C D 

Then for (wp.,,^) eG, Cauchy»s integral formula takes the 

following forms 

F ( v . . . , v ) = / 1 p / / . . . (1) 
ci c2 

F(wlftw2,...w ) d" (w^.Wg, ,..,w ) 

P (w * w_ ) (w-* w 0 ) . . . (w * w ) 
1 1 2 2 P P 

y ~ y i . . . y 
Cj °J1 CJ2 Cjn 

(w.* w ) = (w.- - w._ )(w - w. 0) ... (w. - w. ) 
J J jl jl j2 j2 jn jn 
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and 

d" (w , . # # , w n ) = dw where 
3k 

j - l,...,p 

k = l,...,n 

the symbolic product may be arranged in any order, i.e., the integra

tion may be carried out in any order. 

Proof.— Since F is analytic in D, it is analytic in each variable 

separately for all combinations of the other variables. By repeated 

application of Cauchy's integral formula for functions of one complex 

variable, one may write 

\ 2 n i / 

np 

F(wn,...,w ) = / x j " / d wll / d Wl2 Cll w ^ - w n
 c12 w l 2 - w l 2 

- w 
np np 

c n P 
v w - w 

dw 
np 

Now since F is continuous on the manifold c, it is uniformly 

continuous and bounded on c and thus the integration may be carried 

out in any order. 

Theorem 3 . ~ - Let D be a region of (g,w,z) space and let D be a region 

of £ space where w = (w^,...,wn) and z = (z^,...,zn) and w^, z^, £ 

are complex. Let c be a rectifiable path lying in D with T as one 
S _L 

endpoint and T as a variable point on c. Define 



D^s = £(s + w, z):(^ w, z) eD, S eD g j 

and suppose F(t,w,z) is continuous at each point of where F is 

a scalar function. Then 

T 
G(T,£,W,Z) = / F(s + £,w,z) ds 

Tl 
is continuous at each (t, £,w,z) ec X. D. 
Proof.— Let (t ,£ ,w „z ) be an arbitrary point of c X D and define • o'^r 0*0 ^ 
the set 

V = £(s + S 0,w 0,z 0) « secj . 
Now V is a compact subset of the open set and hence there exists 

a compact subset K of D with V on its interior V ^ K c D . Let 

d be the distance from V to the boundary of K. Now for (x9£,w,z) 
ec X D, 

i iF(s + " F ( s + ^ z ) | | d s ' + 

c 

T 
O 

where the latter integral is taken along c. 

Continuity of F on K implies that F is bounded on K by M and 

that F is uniformly continuous on K. Hence given e > o, there exists 
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8 > o such that 

Z - r + w - w + z - z < min (E.d) ^ o o ' 

implies 

LF(s + ^ W

0 * Z

0 ^ " F ^ S + ^ W » Z ^ L < - £ F O R A 1 1 

2L 

s on c -where L is the length of c, 

Also, since the path c is regular, there exists a 8 ^ > o 

such that 
O 

f | d s | < B 

T 2M 

whenever x - T < 8 N • Hence, for o 1 * 

* - * 0 I + K - £ 0 I + |w— w Q| + |z - zj < min ( A . d . E ^ , 

G ( T O ^ O ' V Z O ) " Q ( T * & W * Z , I < 

T 
O 

/ £ | d s | + / M | d s | < t . 

c 2L T 

Since (T %r .w ,z ) is an arbitrary point of c X,D, G is continuous 
O O O O ' ' 

on c X.D. 

Corollary,-— Theorem 3 is true when D and are compact sets. 

This follows from the estimate (2) and the uniform continuity 

and boundedness of F on D . 
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Theorem U.—- Let F(z^,...,zn) be a function of n complex variables, 

Let s^ be a region in plane, i = l,...,n, and suppose that s^ 

has a rectifiable boundary curve c . Let s = s_ X s~ X •• X s and 

1 I d n 
c = X ĉ  X # #,X c n where X denotes topological product. Suppose 
that F is continuous on the manifold c. Then for all m. > 1, 

i = l,..«,n, (rru integers) 

F(ziL,...,z'n) dz ... dz n 

m_.. cm l* * n w „ l . n cn c 0 c m_ m 1 2 n /— „ \ 1 /— ^ n (z - z ) ... (z - z ) 
1 1 n n 

is analytic in s and for i = l,2,##.,n, and 

A G 

- m.G / N 

1 l - l i l + l n 8z. l 

Proof,— In view of Theorem 1 of the Appendix, it is necessary only 

to show that G is continuous in (z_,».».z ) and it is analytic m^...mn 1* * n 

in each variable separately for all combinations of the other 

variables. A proof will be given for the case n = 2 with z^ = z, 
Z 2 = w* = r, and m^ = s. Define 

grs ( z * w i z ^ ) = F(z.w) 
(z - z ) r (w - w ) s 

for z on c_. w on c„. zesn, and wes^. The function g satisfies 1* 2' 1' 2 °rs 

the hypotheses of Theorem 3 of the Appendix and the Corollary 
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following that theorem. Thus, 

g r s
 w> z) = / g r s (z, WJ z> dw 

is continuous in all its variables. Applying the theorem again to 

g5 one obtains 

G (z, w) = / 1 g^o (z, w$ z) dz" rs ' rs * ' 

°i 
as a continuous function of (z, w ) # 

Now let z e be arbitrary but fixed. Define the function 

h (z. w) = I F(z. W) dz 

For fixed z and for w on Cg, the integrand satisfies the hypotheses 

of the corollary to Theorem 3 of the appendix and thus h (z, w) is 

continuous in w on c^. Now h^ satisfied the hypothesis of Lemma 3 

in Ahlfors [l53 and thus 

C2: (w - w ) S 

for fixed z 5 is an analytic function of w for w in $ and 

— E S - - s G r (s + 1 ) • 
aw 

A similar argument applies for z by letting w be fixed. This proves 

the theorem. 

Theorem 5,— Let F(s, w^,.„ O 0 w ) be a scalar complex function of 
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(s, w-1#..,w ) for (¥n w ) eD and s on a regular contour c in s ' 1* 9 p 1* ' p 

space where w^ = ( v . p , „ ,
 w i n ^ wij c o m P l e x j a n d D is a region of 

( w ^ , w n ) space of np complex dimensions. Further let F be analytic 

in D for each s on c and continuous in (s, w_,..., w ). Then 
9 L' P 

G^,..., w ) = / F(s, W p . w ) ds 
^ c ^ 

is an analytic function of (w^,..., w^) in D, 

Proof.— By Theorem 3 of the appendix G is continuous in all its 

arguments. Since F is analytic for fixed s, it is analytic in 

for fixed s and all other w ^ fixed. By a theorem for one complex 

variable(Titchmarsh [l6]), one obtains that G is analytic in 

for any combination of the other K^. A similar argument applies 

to all the other w. . taken one at a time. Hence G is continuous 

in all its variables and analytic in each variable separately for 

all combinations of the other variables. Now apply Theorem 1 of 

the appendix to obtain the conclusion. 

Theorem 6 . - - Suppose that each member of the sequence 

j \ (»!,"•» Z p ) J 

is analytic in a region D, where the are scalar complex functions 

and z, = (z z. ) each z ., complex. Further suppose that 

F. = F(z_ z ) 
00 
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converges uniformly on every compact subset of D, Then the function 

F is analytic in D, Moreover, 

dF. dF 
1 = 

1 = 1 3 2 jk 3 2 jk 

converges uniformly on every compact subset of D, 

Proof,-- Actually each F^ is a function of the np complex variable 

z ., , j = l , # # 0 i ) p| k = 1 , n . Since each F. is analytic in all 

z.M . it is continuous in all z „ . By uniform convergence the jk* jk 

limit function F is continuous in all z „ . Consider F. as a func-
Jk I 

tion of z _ with all other z ., fixed. Now one may apply the theorem 11 Jk 

for the case of one complex variable (Ahlfors [17] ) to obtain that 

F is analytic in z_n for all combinations of the other z ., and that 
11 Jk 

dF _ ^ — dF. 
l 

sz^ I = 1 9Z]_1 

converges uniformly on every compact subset of D. A similar argument 

applies to the other z ., taken one at a time. Analyticity of F can 

now be inferred from Theorem 1 of the appendix. 

Theorem 7.-- Let F(z^, ZG) be a scalar function of two scalar 

complex variables. Suppose that F is analytic at P Q S ^z-^q9 z20^ 

and its double series expansion converges in R, a neighborhood 

of P . Then at each DOINT of R, F has the following alternative 

representations 



n = ot-
aon + aln ( zl " V + a2n ( zl " V + ...] ( z 2 - z 2 Q) 

where 

a (z_ ) = JL_ a"F on 1 • — -
nl az, 

( z p z 2 Q) 

and 

a k n = — 
K 

a a on 
az. 

K 

Proof©— Since F is analytic at P . 

z 2) = 
m.n = o 

amn ( zl " Z 1 0 r ( z2 " Z 2 0 ) D 

where 

a = mn 
1 a F ( zlO> Z 2 0 } 

t i m n mini d z 1 a z 2 

and the series (h) converges absolutely in R. Let Ps (z^, z 2 

be an arbitrary point of R and let 

h = a (z_ - z_ n) m (z~ - z 0 . ) n . mn mn 1 10 2 20 

Then 
h 

m,n = o mn 

Converges absolutely and by a theorem in Apostol [IB], 



00 oo 

F U p z 2) = ^ — h(m,n) = 
n = o ra = o 

00 
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(z2 - z 2 Q ) n j 21 a m n(z 1 - z 1 Q) 
n = o / m — o 

which is just (3) evaluated at (z^, z^) = (z^5 z^). Since P was 

an arbitrary point of R, the theorem follows. 
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