In presenting the dissertation as a partial fulfillment of
the reguirements for an advanced degree from the Georgia
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspecticn and
circulation in accordance with its regulations governing
materials of this type. 1 agree that permission to copy
from, or to publish from, this dissertation may be granted
by the professor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copylng or publication is solely for scholarly purposes
and does not involve potential financial gain., It is under-
stocod that any copying from, or publication of, this dis-
sertation which invelves potential financial gain will not
be allowed withoutl written permission.

7/25/68



https://core.ac.uk/display/4723806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EXAMPLES OF TOPOLQGICAL GSPACES

A THESIS
Presented to
The Faculty of the Division of Graduate
Studies and Research
by

Robert John Schaffer

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Applied Mathematics

Gecrgia Institute of Technology

July, 1870



EXAMPLES OF TCPOLOGICAL SPACES

Approved:

- st A ’ P
Chairman
D ) V. ]

. 7/ PIVIPR I S, I7

Date approved by Chairman




ii

ACKNOWLEDGMENTS

I am deeply indebted to Dr. Robert H. Kasriel Tor his advice,
interest, and time so genercusly given this thesis problem. I should
also like to thank my readers, Dr. George L. Cain, Jr., and Dr. David

L. Morgan, for their many helpful suggestions.

I would like to thank the National Science Foundation for the
Traineeship which I held for one year, during which time most of the

Wwork on this thesis was done.

I would alsc like to acknowledge my typist, Mrs. Betty Roper

Sims, for her excellent work.



iii

TABLE OF CONTENTS
Page
ACKNCWLEDGMENTS. © v v v v v v v v e e v e e o e e e e e e e e e i
LIST OF TABLES . + v v v v v v v v e e e e e e e e e e e e e e Y
LIST OF ILLUSTRATIONS. & & v v ¢ 4 4 v v v v e e e et e e e e u s v

Chapter

0. PRELIMINARIES . . v v v 4 o v o o v v o vt e v e v e e 1
I,  INTRODUCTORY EXAMPLES . . .+ « & & v v v 4 v e e e e o e e 9
IT. METRIC SPACES v v v v v v 4 4 e o o 4 4 o« s a v o « v o o 4 2B
III. NON-METRIC SPACES . . v v v v v v v e e v v e e e e e e o w37
IV, ORDER TOPOLOGIES. + v v v v v v v o o v o m o 0 o o o v v o T2

REFERENCES . . & & & o v v v b v v e v e e e e e a a e 86



Table

0-1.

LI5ST OF TABLES

iv

Page



LIST Or ILLUSTRATIONS

Figure Page

13-1 & 0 s e e e e e e e e e e e e e e e e e e e e e e e 56

B 60



INTRODUCTION

The purpcse of this paper is to supply a rich selection of
examples of topological spaces for use as counterexamples., In order to
accemplish this objective, 25 topclogical properties are examined here
for each of the 17 topological spaces included In this paper.

In Chapter 0, we are including a list of definitions of the
topological properties that we are examining, and a list of non-
standard notation that we are using. The reader should take note that
in defining these properties, we have used the definitions with the
least requirements, e.g., in many texts, a regular space 1s always a
Hausdorff space, but in this paper, this is not the case. Also, in
Chapter 0, there is a list of thecrems which relate to general topo-
logical spaces. The reader should take special note of the relationships
between the topological properties as depicted in Figure 0-1 and ¢-2,

A tabulation of the topological spaces and their properties, Table 0-1,
is located at the end of Chapter 0.

In general, Chapters I-IV are arranged in the order of increasing
difficulty. In particular, Chapter II is devoted to examples in metric
spaces and Chapter IV is devoted to examples invelving 'the order top-
ology'" on linearly ordered sets. Chapter IV alsoc contains some speci-
alized definitions and theorems.

For each example, we first define the topological space. After

each definition, there is a list of approximately ten items each of



which describes a property of the space and each is followed by a shert
proof. HNote that all of the topolegical properties which pertain to
each topological space are tabulated in Table 0-1. However, in the list
of items for each example, we have included proofs of the strongest
properties which the space has or counterexamples to the wezkest proper-
tles which the space does not have. All of those properties which are
not listed as items may easily be verified by applying Figure 0-1,

Figure 0-2, or Theorem 0-6.



CHAPTER 0

PRELIMINARIES

In the follewing definitions and theorems, (X,T) represents a
topological space. We have omitted those definitions which are uni-

versal.

Definitions
1. Let x e X. Then N is a neighborhood of x if x € N < X and there

exists a U e T such that x € U < N.

2. (X,T) is a first countable space if for each x ¢ X, there exists a

countable base for the collection of neighborhoods of x.

3. (X,T) is a second countable space if T has a countable base.

4, (X,T) 1s a Lindeldf space if each open cover of X has a countable
subcover.

5. (X,T) is a separable space if there exist a countable dense subset
of X.

6. (X,T) is a compact space if each open cover of X has a finite sub-
cover.

7. (X,T) is a locally compact space 1f each x ¢ X has a compact neigh-
berheod.

8. (%,T) is a sequentially compact space if each sequence in X has a

convergent subsequence.



10.

11.

13.

14.

15,

16.

i7.

i18.

(x,T) is a countably compact space if each countable open cover of

X has a finite subcover.

(X,T} is B.W. compact if each infinite subset of X has a limit

point in X.

If C is a cover of X, D is a refinement of C in case U is a cover
of X and, for each D ¢ D, there exists C ¢ C such that D <« C. Note

that an cpen refinement is a refinement consisting of open sets.

A family, A, of subsets of X is locally-finite if each x € X has a
neighborhood which intersects at mest a finite number of elements

of A.

A family, A, of subsets of X is point-Ffinite if each x ¢ X 1s con-

tained in at most finitely many elements of A.

(X,T) is paracompact if each open cover of X has a locally-finite,

open refinement.

(X,T) is eountably paracompact if each countable ocpen cover of X

has & locally-finite, open refinement.

(X,T) is metacormpact if each open cover of X has a point-finite,

open refinement.

(X,T) is countably metacompact 1f each countable open cover of X

has a point-finite, open refinement.

(X,7) is a regular space 1f whenever x ¢ X and K i1s a clecsed subset
of X with x % K, there exist disjoint open sets U and V such that

x € Uand K ¢ V.,



18, (X,T) is a normal epace if whenever H and K are disjoint closed
subsets of X, there exist disjoint open sets U and V such that
He U and Kc V.

20, (X,T) is a completely normal space if whenever H and K are separated
subsets of X (i.e. Hn K = Hn K = ¢, where H is the closure of H),
there exist disjeint open sets U and V such that H e U and K < V.

21. A subset H of X is called a G6 set if H is the intersection of a
countable collection of open sets.

22, (X,T) is a perfectly normal space if (X,T) is a normal space and
each closed subset of X is a GS set.

23. (X,7) is a locally-commected space if, whenever U ¢ T and x ¢ U,
the component of U which contains x is open. (This is equivalent
to the usual definition.)

24, (X,T) is a totally disconnected space if each component of X is a
one peoint set.

25. Let $ ¢ X. Then, the relative topology on S, written T/S, is given
by T/ = {Unsg: UeT}

Notation

1. Let x € X. Then, N(x) = {N : N is a neighborhood for x}.

2. P={1, 2,..., n,...}, i.e., the set of positive integers.

3. R is the set of all real numbers.

4. Q 1s the set of rational numbers in R.

5. If § < X, then T/S is the relative topology on S.



6. If A < ¥, then the closure of A is written A.
Thecrems (References are given for thecrems which are not generally
included in a first year course in Topology.)

1. Suppose S is an open subset of ¥X. If (X,T) is locally compact and

regular, then (5,T7/8) is also.

2, (a) If (X,7) is paracompact and Hausdorff, then (X,T) is regular
({127, page ©8).
(b) If (X,7) is paracompact and regular, then (X,T) is normal
([12], page 68).
(c) If (X,T) is Lindeldf and regular, then (X,T) iIs paracompact

({71, page 211 or [101, page 74).

3. The following are equivalent:
(a) (X,T) is completely normal.
(b) Each subspace of (X,T) is a normal space.

(¢) Each open subspace of (X,T) is a normal space.

4. If (X,T) is a T, space, then (X,T) is compact if it is B.W. compact

and metacompact,

5. (Uryschn's Metrization Thecrem,) If (X,T) is Tl, regular and second

countable, then (¥X,T) is also a metric space.

6. Every metric space is:
(a) TFirst countable.
{(b) Second ccuntable if and only if it is separable.
(¢) Perfectly normal.

(d)} Paracompact ([17], page 222).



7. If (X,T) is Hausdorff and locally compact, then (X,T) Is regular.

@, Figures 0-1 and 0-2,
Table 0-1 uses the following notation:
(1) "T" means the topology has that property,
(ii) "F" means the topology does not have that property, and
(ii1i) "O" means that it iIs not proven here whether or not the

space has that property.
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"T" - the topology has that property.

“F'" - the topology dees not have that property,

"O" - it is not proven here whether or not the space has that property.



CHAPTER I

INTRODUCTORY EXAMPLES

Example 1

The following topology is found on page 2u5, of [51. It is a
topology on the real line R,

Let B = {[a,») : a € R}, the collection of all semi-infinite
intervals which contain their left-hand end points. Note that if A ¢ B
and B ¢ B, then A n B ¢ B, Then, since R = u{[a,») : a ¢ R}, it follows
that B is a base for a topology T for R. Notice that

T=Bvu {R,¢} u {(a,=) : a € R}.

1. T, (i.e., (R,T} is a T_ space),

Let %,y ¢ R with x # y. We may assume x < y. Then, yv € [y,»)e T,
but x ¢ [y,=).
2. Not Tl (i.e., (R,T) is not a Tl space).

Note that any two nonempty open sets have & nonempty intersec-

tion.

3. First countable.
For each x ¢ R, B(x} = {[x,»)} is a countable base for the

neighborhood system of x.

4, Not seccnd countable.,

Suppose that D 1s a countable subcollection of T. Then D c T,
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Let A = {a : La,»}) € P} and B = {b : (b,~) € P}. Then, A U B is count-
able, Hence, there exists z € R - {(AuB). Note that [(z,~) ¢ T.

Suppcse that D e U, z € D, and D ¢ [z,#), Then, D must be of the
form {x,») or {x,*). Now, z < X since D « [z,»), and x € z since z ¢ D.
Hence, D = [z,) which is a contradiction since =z & A y B. Therefore,

I cannct be a base for T.

5. Lindelof.

Let C be an arbitrary open cover of R. Let x € R, Then there
exists n € P such that -n £ x and, since C Is a cover of R, there exists
Cn ¢ C such that -n « Cn' Note that {Cn :n ¢ P} is a countable sub-

cover of C.

6. Proposition {a): If x € R, then {x} = (-=,x].

Proof. If y ¢ R and % <y, then [y,») n {x}] = ¢. Hence
y % Tx}. If z ¢ Rand z < %, each open set containing z contains [z,=).
Note that {x} ¢ [z,*). Hence, z ¢ {xI.

Proposition (b). Suppose A # ¢ and A « R. Then, A is compact if
and only if g.i.b.A € A.

Proof. Suppose that A is compact, but g.l.b.A = a 4 A. Then,
either o = -» or ¢ ¢ R. If @ = -=», then C = {[-n,®) : n ¢ P} is clearly
an open cover of A and C has no finite subcover. Since this contradicts
A being compact, we find that o« ¢ R. But then U = {[a + %3 @) 1 ne P}

is an open cover of A and D has no finite subcaver. But this is a con-

o € A.

tradiction; therefore g.l.b.A
Suppose that o e A, Let C be an open cover cf A.  Then,

there exists C € C such that o € C. Clearly, {C! is a finite
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subcover of . Hence, A is compact,

Proposition (e). Suppose A,B < Rand An B=An 3B =¢. Then
either A = ¢ or B = ¢.

Ppoof., If A 2 ¢ and B # ¢, then there exist a,b ¢ R such that
ae€ Aandb e B. Since a # b, we may assume, without loss of generality,
that @ < b, But by the proof of Proposition (a), a ¢ (bJ. Since

{t} ¢ B, this is a contradiction.

7. B.W. Compact.

Note that, by (6(a)) (page 10), finite sets have limit points in

8. Not countably metacompact.
Let C ={{-n,») : n e P}. Then, C is a countable open cover of R.
Suppose that C has a point-finite open refinement, say F. Let
x ¢ R, Then x is contained in at most finitely many elements of F, zay
Fl,...,Fm for some positive integer m, HNote that R ¢ F. Hence, for
each n such that 1 € n € m, there exists a € R such that Fn = [an,m) or
F o= (an,m). Also, there exists a € R such that a < &, for 1 £ n £ m.

Now, there exists F ¢ F such that a ¢ F. But then x ¢ F, also. This is

impossible since T = Fn for 1 £ n<mandF F ..,Fm are the only ele-

1
ments of F which contain x. Therefore, (X,7T) is not countably metacom-

pact.

9. Locally compact.
Let % ¢ R. Then by (&6(b}) (page 10), [%,*) is a compact neigh-

borhocod of x.
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10. WNot regular.
If A and B are disjoint open sets, then & n B=AnBz= ¢ and,
by (6(c)) (page 11) either A = ¢ or B = ¢. Therefore, it is sufficient

to exhibit 2 nonempty closed set X and a polnt a such that a 4 K. Let

K= {(-=,0] and a = 1.

11. Completely normal.

By (6(c)) (page 1l1), there are no subsets of R, say A and B, such

that A 2 ¢, B# ¢, and An B = A n B = ¢.

12. Not perfectly normal and not metric.

Every perfectly normal space is regular {(see Figure 0-2).

13. Separable.

P is a countable dense subset of R.

14, Cennected and locally connected.

By {(6(c)) of page 11, no subset of R can have a separation.

Example 2

The follewing topology is found in [17], page 105.

Let Z be the set of all integers in R. Let M be the set of even
integers. Then, T = {¢,M,2} is clearly a topolegy for Z. It is obvious

that (Z,T) is second countable and compact, but not T_.

1. Proposition (a): 1f x € Z, then {x} = 2 or {x} = Z - M.
Proof. Clearly, {x} is Z or Z-M depending on whether x is even

or cdd, respectively.
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Proposition (b): If A,Bc Zand AnB=AnB=4¢, then A = ¢
or B = ¢.

Froof. This is clear by (a) above.

2. Not regular.
Note that 0 ¢ Z - M and Z - ¥ is a closed set. By (1(b)) (page
13), there are no disjoint open sets U and V such that 0 ¢ U and

Z - M <V,

3. Completely normal,

As in Example 1, there are no separated sets to check.

4. Connected and locally connected.

By (1(b)) {(page 13), no subset of Z can have a separation.

Example 3
The fellewing topology is usually called the "co-finite topology"”
and can be found in [13].

{U: Ue R and

Consider R, the set of real numbers, with TF

either (R-00) is a finite set or U = ¢},

1. TF is a topology for R.
(1} ¢ « TF by definition. R ¢ TF since (R-R) is finite.
(ii) Suppose A and B are in TF' Then, if A= ¢ or B = ¢, An B =
b € TF' Otherwise, R - A and R - B are finite sets. Hence,
R - (AnB) = (R-A)} u (R-B) is finite, and thus A n B ¢ TF'
(1ii) Suppose Au € TF for each a ¢ A. If Aa = ¢ for each a ¢ A,

then U {A(1 rae A =90 e T Otherwise, there exists B ¢ A

.
such that {(R-A) is finite. But then R - v {Aa o e A} =
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n {R - Au : o€ A} ¢ R - AB. Therefore, R -~ U {Aa :ae A}

is finite and u {AOL pa e A} e TF'

Let x,v ¢ E with x # y. Then x ¢ R - {x} and y ¢ R - (x].

R - {x} € TF since R - (R - {x}) = {x}.

3. Froposition (a): I1f A is a closed subset of R, then A& Is finite
or A = R.

Procf. R - A € TF'

Proposition (bJ): R contains no disjoint, nonempty open sets.

Proof. If A # ¢ and A e T R - A is finite. If B ¢ R and

F!
AnB =¢, then B is finite and thus B 4 TF unless B = ¢.
Propogition (¢): Let A and B be nonempty subsets of R. Then,

ANnB=AnB=¢ if and only if (AUB) is finite and A n B = o,

Procf. Suppose An B =AnB = ¢, Clearly, A2 R and B = R,
By (a) above, A and B are finite. But then A u B is finite.
Suppose A U B is finite and An B = ¢. Then A and B are each

finite and therefore closed. Hence, AnB =An3B=¢ and A n B =
AnB-=g¢.

Proposition (d): Let K be a nonempty subset of R. Then K is
connected if and cnly if K has exactly cne element or K is infinite.

Proof. Suppose K has more than one element. By (c) above, K has
a separation if and only if K is finite,

Propogition (e): Each subset of R 1s compact.

Proof. Let A c R. If A = ¢, there is nothing to prove. Suppose

a e A and C is an open cover of A. Then, there exists C ¢ C such that
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a e C. Since C is open, R - C is finite. Obviocusly, there is a finite

subcover of C,

14), R does not contain two disjoint, nonempty open sets.

5. Not regular.
Note that 2 4 {1} and {1} is a closed set. Apply (3(b)) on

page 1k,

6. Not normal.
Since (R,T) is 7, and not regular, it is not normal. (See

Figure 0-2).

7. Connected.

Since R is infinite, R is connected. See (3(d)) on page 14.

8. Locally connected.
Since each ncnempty open subset of R is infinite, each such sub-
set is connected. Therefore, components of open sets are open (Theorem

0-6).

9. Separable.
Let D be any countably infinite subset of R. By (3(a)) (page

14), D is dense in R since D = R.

10. Not first countable.
Let X € R. Suppose that B(x) = {Bn :n e P} is a countable sub-
set of TF such that x ¢ Bn for each n € P. It suffices to show that B(x)

is not a base for N(x).
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B # ¢ for each n ¢ P. So by definition of TF’ R-B is finite
for each n € ?. Therefore, v {R - Bn :n e P} is countable. There
exists a ¢ R - u {R - Bn : ne Pl such that a # x. Then, a ¢ Bn for each
n e P.

Clearly, R - {a}l ¢ T_, x € R - {a}, and B is not a subset of

F’
R - {a} for any n € P. Therefore, B(x) is not a base for N(x).
11. Compact.

See (3(e)) on page 1lb,

12. Sequentially cocmpact.
Let {an : n e P} be a sequence in R. If there exists a
b e {a.l_1 :ne P} such that b = a; for infinitely many i € P, then there

exists a subsequence {a k € P} such that =2 = b for each k € P,

n{k)

= a. for only finitely many i € P,

n(k)
Otherwise, for any fixed N € P, ay
Let x ¢ R, Then, each open set which contains x contains all but a

finite subcollection of {an : n e P}, Therefore, {an i n e P} converges

to X.

Example 4

The following topology is usually called the "co-countable topol-
ogy" and may be found in [13].

Recall that R is the set of all real numbers. Let TC =
{U : U <R and either U = ¢ or (R-U) iIs a countable set}l. Note that,

if TC is a topology for R, then TF c TC'

1. TC is a topology for R.

(1) Clearly, ¢, R ¢ TC.



3.

b.

(ii)

(iii)

Since TF IS TC and (R’TF) is T

Not T,.

2

17

Suppose A, B ¢ TC. IfA=¢orB=¢,AnBz=¢ce TC'

Otherwise, (R-A) and (R-B) are countable sets. Hence,

R - (AnB) = (R-A) v (R-B) is countable and A n B ¢ TC'

Suppose A, € TC for each o ¢ A, If Aa = ¢ for each

¢ e A, then U {Aa : o e A = ¢ ¢ T, Otherwise, there

C
exists B € A such that (R_AS) is countable. Thus
R -u {Aa tae A = n {R - Aa :a e A} © (R—AB). Therefore,

u{A toe A} e T..
o C

1* (R,TC) is Tl.

Clearly, there are no disjoint, nonempty, open sets in (R,Tc).

Not first countable.

In the proof of {10) of Example 3, substitute TC and countable

for TF and finite, respectively.

5.

Not separable.

Suppose D is a countable subset of R, Then R - D 1s a nonempty

open set with D n (R-D)} = ¢.

6.

able.

Proposition (a): 1f A is a closed subset of R, then A is countable

or A

R.

Proof. If A 2 R, then, since R - A is open, R - (R-A) is count-

Note A = R - (R-A).

Propogition (b): R contains no disjoint, nonempty open sets.
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Proof, 1f A # ¢ and A ¢ TC’ R - A is countable. If B < R and
BnA=4¢, then B is countable and thus B { TC unless B = ¢,
Proposition {e¢): Let A and B be nonempty subsets of R. Then,

AnB=AnDB-=¢ if and only if (AuB) is countable and A n B

¢.

Proof. Suppose An B =AnB = ¢. Clearly, A 2 R and B # R,
By (a) above, A and B are countable. But then A u B is countable.
Suppose A U B is countable and A n B = ¢. Then, A and B are
each countable and therefore closed. Hence, An B =4aAnB=An3B = ¢.
Proposition (d): Let K be a nonempty subset of R. Then K is con-
nected if and only if K has only one element or K is uncountably in-
finite.
Proof. Suppose K contains more than one element. By (c) abecve,
K has a separation if and only if K is countable.
Propesition (e): No infinite subset of R 1s compact.
Proof. Let Al be an infinite subset of R. Let A be a ccuntably
infinite subset of A, Let D(x) = {x} u (R~A) for each x ¢ A. Then
C = {D{x) : x ¢ A} is an open cover of Al and C has no finite subcover.
7. Not regular.

Note (8(e)), page 18, and the fact that 1 4 {2} and {2} is a

closed subset of R.

8. Lindeldf.
Let C be an open cover of R. Then there exists C ¢ C such that
1 € C. Recall that R - C is countable. Therefore, C has a countable

subcover.
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9. Not locally compact.

Note that all (nonempty) neighborhoods are uncountably Iinfinite

sets and hence not compact by (6(e)), page 18.

10. ©Not B.W. compact.
F, the set of positive integers, 1Is an infinite subset of R.
Let x € R. Then {x} u (R-P) is a neighborhood of x which dces not

intersect P - {x!.

11l. Connected.

See (6(d)), page 18.

12. Locally connected.

Open sets are connected (see (6(d)), page 18).

13. Not countably metacompact.

Let D be a countably infinite subset of R. For each x ¢ D, let
B(x) = {x} u (R-D). Clearly, C = EB(x) : x € D} is a countable open
cover of R. Let F be an open refinement of C. It suffices to show
that F is not a point-finite system.

Since F is an open cover of R and (R,T ) is a Lindeldf space,
there exists a countable subcover of F, say F_. Without loss of gener-
ality, we may assume that F # ¢ for each F ¢ Fo. It will be sufficient
to show that Fo is an infinite subcollecticon of F and that there exists
w ¢ R such that w ¢ F for each I ¢ F_.

Let x,v € D with x 2 y. Recall that y ¢ B(x) = {x} u (R-D).
There exists F ¢ F_ such that x € F. The only element of C which can

contain F is B(x). Since v ¢ B(x), v ¢ F. Therefore for each x ¢ D,
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there 1s at least one [ ¢ FO such that % ¢ F. Thus, Fo is infinite.

Since ¢ 4 FO and FD c T . ,Fe¢ Fo implies that (R-F) is countable.

c®
Hence, there exists w e R - v {R - F : Fe F } since F_ is also count-
able. Note that w € F for each F e F_ as desired.

Therefore, € is a countable cpen cover such that each open

refinement of C 1Is not a point-~finite system; l.e., (R,TC) is not count-

ably metaccmpact.

ExamEle 5

The feollowing topoleogy is found in [10], page 23, where it is
referred to as the "lower-limit topology."
Let B = {[a,b) : - ® < 2 <b < =}, (Recall that [a,b) =

{x e R:a=<x<bl}.)

1. B is a base for a topolegy L on R.
(i) <Clearly, R = u {[-n,n) : n ¢ P} c u B,
(ii) Let [al,bl), [a2,b2) ¢ B and let x ¢ [al’bl) n [aQ’bQ)’ Then
a, £ x<b and a, £ x <b, Letp = max{ag,bl} and q =
min{bl,bQ}. Obviously, x € [p,q) € B and [p,q) © [al,bl) n
[aQ,bz).
2. TFirst countable.

Let x ¢ R, Then, clearly, B(x) = {[x, x + %J :ne P} is a

countable base for N(x).

3. Proposition {(a): E c L (recall E is Euclidean tcpology).
Proof. It suffices to show that base elements of E, i.e. open

intervals, are elements of L, Let (a,b) ¢ E (assume a < b). Then,
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there exists N ¢ P such that a + %-< L. Note (a,b) =
v {[a + %3 b) : me P, n = N} e L.

Propogition (b): Let K ¢ R. Let K'(wrt L) be the set of limit
points of K with respect to L. Then x ¢ K' (wrt L) if and only if
[=,%x + %J n (K - {x}) #= ¢ for each n ¢ P.

Proof. Recall x € K' (wrt L) if and only if each neighborhood of
®x Intersects K - {x}, and then note (2), page 20.

Propogition (¢): Let K c R. Then K' (wrt L) ¢ K' (wrt E).

FProof. MNote that x ¢ K' (wrt E) if (= ~ %3 ® + i& n K=¢ for
each n ¢ P.

Proposition {(d}: If Ue B, then R - U ¢ L.

Proof. 1If U e B, then U = [a,b) for some a,b ¢ R such that
a<b. LetA=vu{[amn,a):ne?P}and B=u {[b,btn} : n € P}. Then

A, B,AuBel, and R-U =R - [a,b) = (-»,a) u [b,») = A u B e L.

Since £ ¢ L and (R,E) is Tg’ (R,L) is TQ'
5. GSeparable.

Consider @, the set of rationals in R. If [a,b) ¢ L, thenb > a

and (a,b) ¢ E. Then ¢ # Q n (a,b) < Q n [a,b). Hence, Q is dense in R,

6. Not second countable.

Let D be a base for L. It suffices to show that P is not count-
able.

Let x ¢ R. Then there exists D(x) € U such that x € D(x) c

[x,x+1) since D is a base for L. Let D_ = {D(x) : x € R}. Let x,y € R
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with x # y. If x <y, x ¢ D(y) and x > y, then y ¢ D(x). In either
case, D(x) # D(y) for each x,y ¢ R with x # y. Thus U and hence D is

uncountable since R is.

7. Not metric.

(R,L) is separable but not second countable (see Theorem 0-6(b)).

8. Lindelcf.

It suffices to consider open coverings of R with base elements
of L,

Let € be an open cover of R such that € < B. Then elements of C
have the form [a,b) where -» < a <b <=, Let C = {(a,b) : [a,b) ¢ C}
and let T = v Co

(R,E) is a Lindelcf space. It follows that (T, E/T) is a
Lindelcf space. Then there exists a countable subcover of CO, say Fo.

We shall now show that R - T is countable., Let x ¢ R - T. Then
there exists t(x) € R such that [x, t(x)) ¢ C since { covers K. Note
that {(x, t(x)}) : x ¢ R - T} is a collection of nonempty, disjoint
intervals each of which is open in (R,E). This is a contradiction un-
less R - T is countable since Q is countable and there is at least one
element of Q in (x, t(x)) for each x ¢ R - T.

It should now be clear that F = {[a,b) : (a,b) ¢ F_} v

{[x, t(x)) : x e R - T} is a countable subcover of (.

9. Normal.
Let K and L be disjoint, nonempty closed subsets of (R,L). Then

for each x € K, there exists e(x) » 0 such that {x,x + e(x)) n L = ¢
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since x is not a limit point of L. Also, for each y € I, there exists
e(y) » 0 such that [y,y + e(y)}) n K = ¢, Let U = u {[x,x + e(x))
x € K} and let V = u {[y,y + e(y)) : y ¢ L}. Note that K< U ¢ L and
L Ve l. We shall show next that Un V = ¢,

Let x ¢ Kand y € L. Suppose 2 € [x,x + e(x)) n [y,y + e(y)).
Then it must be that y € [x,x + €(x}) or that x € [y,y + e(y)). If
either case were true, it would contradict the way in which e(x) and
e(y) were chosen. Hence, if x € K, then [x,x + e(x)) n [y,y + e(y)) =
¢ for each vy € L. Therefore, if x ¢ K, [x,x + e(x)) n V = ¢. It follows

that U n V = ¢ as required,

10. Paracompact.

(R,L) is Lindelof and regular (see Theorem 0-2(c}).

11. Perfectly normal.

It will suffice, by (9) on page 22, to prove that each closed set
is the intersection of a countable collection of open sets.

Let K be a nonempty closed subset of (R,L). Let L be the closure
of XK with respect tc the Euclidean topology on R; L = K u [K' (wrt E)].
Since (R,E) is a perfectly normal space (see Theorem 0-6(c)), there
exlists a countable collecticn of Euclidean open sets, C, such that
n C=1L. Note that K< L and, since Ec L, C ¢ L for each C ¢ C. 1In
the next paragraph, we shall exhibit a countable collection of open
sets whose Intersection contains K but does not contain a point of
L - K= [K' (wrt E)] - K.

Let x € L - K. Then, since x 4 K and x ¢ K' (wrt L) (see 3(c)),

by (3(b)) on page 21, there exists t(x) ¢ R such that t(x) > x and
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[x,t(x)) n K = ¢. Let x,y ¢ L - Kwith x # y. Assume that (x,t(x))
n {y,tly)) = ¢. Then, either x ¢ (y,t{y)) or y € (x,t(®)). Suppose
®x ¢ (y,t(y)). Then (y,t(y)) is a Buclidean open set which contains a
limit point of K with respect to the Euclidean topology. Therefore,
(y,t{y)) also contains a peint of K. Since this contradicts the way in
which t(y) was chosen, it must be that x € {y,t(y)). Note that this is
also a contradiction, hence (x,t{x)) n (y,t(y)} = ¢ for each x,y ¢ L - K
with x # y. Then {(2,t(x)) : x ¢ L - K} is a collection of ncnempty
disjoint Euclidean open subsets of R. Recall that this is a contradic-
tion unless L - K i1s countable. Hence, L - K is countable.

For each x ¢ L - K, let D{x) = (-=,x) u {x,»). Note that
K < D(x) and D(x) € L for each x ¢ L - K. It follows from the preceding
discussion that K = n {A : A e C or & = D(x) for some x ¢ L. - K} and that
{A:AeCorA=D(x) for some X ¢ L - K} is a countable collection of

open sets with respect to topology L.

12. Not locally compact.

Let x € R. Suppose N is a compact neighborhood of x. There
exists B ¢ B such that x ¢ B and B ¢ N. By (3(d)) on page 21,
R - Be¢ L[, Therefore, B is closed and, since B < N, B is compact.
There exists a,b € R with a < b such that B = [a,b). Note that
C = {[la,b - %J tnte Pandac<h - %} is an open cover of B and that

C has no finite subcover. Therefore, x has no compact neighborhoods.

13. Not B.W. compact.

Clearly, P i1s an infinite subset of R with no limit points in R.



14, Totally disconnected.

Suppose that K © R and that K contains more than one pcint.
a,b ¢ Kwith a# b, Let U= (-»,b) and V = [b,»}. Then U,V ¢ L .oz
UnV=4¢., It is clear that {Un K, V n K} is a separation for K.
Hence, if A is a connected subset of R, then A contains at mest one

point.

15, Not locally connected.
It is sufficient to note that components of open sets are cne

point sets and that one peint sets are not open,
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CHAPTER II

METRIC SPACES

ExamEle 3]

The following topological space is due to Niemytzki according to
[17], page 41.

Let Z be the set of all integers in R. Tor each x ¢ Z and each
p € P, define Ni = {y v =x+7rp, r e Z} and let B = {Ni : X e 74,

p e Pt

1. B is a base for a topelogy T on Z.

(1) Note that Né = {y:y=r,re 2} =%, Thus v B = Z.

Then, for some 1 r, €

(ii) Suppose Ni, Ng e B and z € Ni n NE. 10 Ty
Z = rp t X = .9 +y. Let t = pg. Note z € N; ¢ B since
t e« P and z = (0}t + 2. HNext, we shall prove that NE c Ni 0

NY,
y

Let u ¢ N;. Then, for some r ¢ 2, u = rt + z. Then u =
rpq t 7 = rpg t ryp t X = (rq + rl)p + ¥ o€ Ni since rgq +
r. € Z. Also,u=rpgtr,gq+y=((p+r)qg+ye N4,
1 ' ’ 2 2 ¥
Hence, Nt < NP n N3,
z X v

Let x,y ¢ Z with x #2 y. ©Note that if t = |xl + iyl + 1, then t

dces not divide (y-x) since t > |y—x|. Clearly, x € Ni € Band y ¢

t
N; e B, Furthermore, we shall prove that Ni n Ny = ¢,
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t t
Suppose h ¢ Nx n Ny' Then, for some r,s € Z, h = rt + ® =

st + y. It follows that (r - s)t =y - x. Now, r # s since y # x.
This implies that t divides (y - x) and contradicts the way in which t

t T
was chosen. Hence, NX nN" = ¢.

y

3. Second countable.

It is evident that B is countable.

Y. Proposition {a): If Ni € B, there exists a ¢ 4 such that 0 € a < p
and NP = N¥.
X a

Proof. If 0 < x < p, let a = x. Otherwise, x < 0 or x 2 p.

Suppose x < 0. Then for some unique n ¢ P, 0 < np + ¥ < p. Let
a =np + x. Then, if w ¢ NE, for some r € Z, w = rp + a and thus w =
rp+np t x=(r+n)ptxe Ni since r + n ¢ Z. Also, if w ¢ Ni, for
some s € Z, w = sp+ x=sp+ (a-np)=1(s~-nlp+ac Ng since

s - n e Z. Therefore, Ni = Ng and 0 £ a < p.

A

Suppose % 2 p. Then, for some unique m ¢ P, O -mp + X < p.

Let a = - mp + x. Then, if w € N§= for some » ¢ 7, W rp + a=rp +

{(-mp + xy = {(r - m)p + % € NZ since (r - m) ¢ 2. Also, 1f w ¢ Ni, for

some S € Z, Ww = sp + X = sp + (a + mp) (s +m)p + ac NS since
s +me Z., Therefore, NE = Ng and 0 = a < p.
Propogition (b): If Ni e B, Ni is a closed set.

Proof. By (a) above, we may assume that 0 £ x

A
o

Suppose p = 1. Then Ni = Ni ={y:y=r+x,re =27
Hence, Ni is a closed set.
: PP p
Utherwise, p e P and p » 1. Now, NO’ Nl’ cea, Np-l are all cpen

sets. Recall that, if z € Z, then there exist unique integers r and t
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such that z = rp + t and 0 £ t < p. Therefore, if z € Z, z 1is in

exactly cne of NP N?, Cees P

) . It follows that Z - NF =
O p-1 X

u {Ni : 0 £y <p-1andy # x! and that 2 - Ni is open. Thus, Ni is

closed.

5. Regular.

Let ®x ¢ Z and let K be a closed subset of 2 with x 4 K. Then,
Z - K e N(x) and there exists B € B such that x ¢ B and B ¢ 2 - K,
Let U=Band V=2 - B. Then, x e U, Kc V, UnV =4, UceT and, by

(4(p)) on page 27, Ve T.

6. Metric.

(7Z,T) is T, second countable, and regular {Thecrem 0-5).

7. Totally disconnected.

Let A be a subset of Z consisting of more than one point. Let
a,b € A with a2 b. Let d = 2]b - a|. Then a e Ni and Ni is both open
and closed. Suppose b e Ng. Then there exists r € Z such that b =
rd + a. Thenb - a=rd = 2r|b - a| and since b = a, 1 = 2|r|. But
this is a contradiction since r e€ Z. Hence, Ng and Z - Ni are disjoint
open sets such that a « Nj and b ¢ Z - Ni. Obviously, {A n Ng,
AnlZ - Ni]} is a separation for A. Therefore, components of 7 are

singleton sets; il.e. sets containing exactly cne point.

B. Not locelly ccnnected.

Note that components of cpen sets are singleton sets which are

not cpen {(Thecrem 0-7).
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8. Not compact.

Recall that each integer which is not 1 cor -1 may be written as
the product of an integer and a prime number and that there are
infinitely many prime numbers (recall that 1 is not a prime number and

that prime number are necessarily positive Integers).

7

—l} U

Suppose that (Z,T} were a compact space. Let C = {NZ’ N
{Ng : p is a prime number}. Clearly, C is a collecticon of open sets in
(z,T). Since 1, -1 € u C and Ng ={z :2z=mnp, ne 3}, C is an open
cover of Z. Therefore, € has a finite subcover F which Includes NZ and
le, say F = {NI’NEl} U {Ng : p e A}, where A is a finite subset of the
set of the prime numbers. Note that 7 ¢ A since 7 is not an integer
multiple of 3, 5, or any integer larger than 7. Let t be that positive
integer which is the product of those elements of A which are numbers
larger than 2; i.e., t > 0 and the set of integers which divide t is
{1,-1,t,-t} v {x : ae A - {2} and either x = a or x = -a}. Now, let
s =t+ 2. Note s e Z,

Since 7 divides t, s = “n + 2 for some integer n. Hence,
s 4 N;lu Nl. Now, since F is a cover of Z, s ¢ Ng for some p ¢ A.
But, 5 = t + 2 and t is not divisible by 2. Therefore, s is not
divisible by 2, Hence, p # 2. However, if p is an element of A - {2},
then p divides t but, since p dees not divide 2, p dces not divide s.
Hence, s is an element of 2 - U F. Therefore, F 1s not a cover of Z.

Hence, € has nc finite subcover and, therefore, (Z,T) is not a compact

space.
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Example 7

The following metric topology on R2 may be found in [1%], page
4g.

Let d be the Euclidean metric on Rz. Let N(z;p) =
{w ¢ R . d(w,z) < p}. Then, e : R2 + R is defined by: Iif p, q ¢ RQ,
then (1) e(p,q) = d(p,q) if p, q, and (0,0) are collinear or (ii)
e(p,q) = d(p,(0,0)) + d[q,(0,0)) if p, q, and (0,0) are not collinear.
Let Te be the topology generatsd by e,

Let p ¢ R’ and ¢ » 0. Then, U= {q: qc¢ R and e(p,q) < ¢}
will be one of the following sets of points: (i) if p = (0,0}, then U =
N(g;e), (ii) if p={(0,0) and d[p,(0,0)] z g, then U Is an open Interval
centered at p on the line which passes through p and (0,0), or (iil} if
p = (0,0) and d[p,(0,0)] < g, then U is an open Interval centered at p
cn the line which passes through p and (0,0) plus N[(0,0);

e ~ d(p,(0,0))j. (See Figure 7-1.)

l. e is a metric for RQ.

(a) e(p,q) 2 0 for each p,q ¢ R? since d{p,q) 2 0, d(p,(0,0)] 20,

and d[q,(0,0)J = 0.
(b) Clearly, e(p,g) = 0 if and only if p = q.

(c) Clearly, e(p,g) = e(q,p) for each p,q € R,

(d) Let %, y, z € RZ. (i) Suppose x, y, 2, and (0,0) are collinear.
Then, e(x,y) = d(x,y) € d(x,z) + d(z,y) = e(x,z) + e(z,y).
(ii) Suppose only %, y, and (0,0) are collinear. Then,

e(x,y) = d(x,y) = d{x,00,0)) + d(y,(0,0)] < d(x,(0,0)) +
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"X (a) {q€R2 : e[(0,0),q] < e}

{(b) {qeR2 1 e(p,gl) < €}

S — ¥ (c) {qeR2 : e(p.q) < e}

Figure 7-1
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d[z,(0,0)J + d[y,(0,0)J + d[z,(0,0)) = e(x,z) + elz,y).
(iii) Suppose only x, z, and (0,0) are collinear. Then,
e(x,y) = dlx%,(0,0)) + dafy,(0,0)) < d{x,2z) + d{=z,(0,0)] +
d[y,(0,0)] = e(x,z) + e(z,y). (iv) Suppose only y, =z, and
{2,0) are collinear. This is a corollary of case (1ii).

(v) Suppose no three of the points are collinear, Then,
e(x,y) = d[x,(0,0)J + d[y,(0,0)] < d[x,(0,0)J + d(z,(0,0)] +

d[y,(0,0)] + d[z,(0,0n = e(x,z) + e{z,v).

2. Not separable.

Let A be a countable subset of RQ. Then there exists a line
through the origin which does not Intersect A - {{0,0)}. Let p be on
this line such that p = (0,0). Then {z : z ¢ R and el(p,z) <

e(p,(0,0))] is open, nonempty, and does not intevsect A.

3. Not Lindeldf.

Let N (x p) = {T e{x,z) < p} for each x ¢ R and p > 0. Let
C = <N {(0,0); 1 u 11 [p, (£,(0,0))] : pe R - {(0,0)}Jz Then C
is an open cover of RQ. It is evident that any countable subcollection

of C cannot cover more than countably many lines through the origin in
addition to the interior of the unit disk. Since there are uncountably

many lines thru the corigin, (RQ,TE) is not Lindelof.

k. Connected.
Let L be a line through the origin. Then the subspace (L,e) has
the Euclidean topolcgy and hence is connected. It follows that L is a

connected set in the space (R2,e). Note that R2 is the union eof all
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lines which pass through the origin. Clearly, R2 ig connected.

5. Leceally connected,
Recall that {N (z;p) : z € R, p > O} is a base for Te. It suf-
fices to note that each of these base elements 1s a connected set, for

then components of open sets are open.

6. HNot locally compact.

It may be noted that the origin is the only point of R% which
does not have a compact neighborhocd.

Suppose, however, that N is a compact neighberhood of the origin.
There exists p » 0 such that N*((0,0) : 29) < N. Let K= {z ¢ R2
e[Z,(0,0)] < Zp}. The reader may easily verify that the closure of
N*((0,0) : 20} is K. Then, K ¢ N since N is closed and K is compact
since N is compact. Let C = 1N*[(O,O); p]J>U N*(z; e[z,(0,0)]
zZ € R2 - {{0,03}p> . Then, C is an open cover of R® and hence C is an

open cover of K. Clearly, C does not contain a countable subcover,

Therefore, the origin has no compact neighborhood.

7. Not B.W. compact.

Note that A = {(n,0) : n ¢ P} is an infinite subset of RQ. Note
that for each z ¢ R2, N*(z;l) is an open set which contains z and does
not intersect A in more than one point. Since (R,Te) is Hausdorff, this

implies that A does not have any limit peints in R?.

Example 8
The following metric topology on R? may be fecund in [7], page 173.

This topelogy has the same topological properties as Example 7, although
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neither topclogy contains the other as a subccllection.

} be points of R2. Then

Let 2 = (Xl,yl) and Z, = (x2,y2
2 . . . _ _
p ¢ R™ + R i1s defined by: if Xy T Xy, then 0(21,22) = ]yl - Yy and
p(zl,z ) = ]yl] + |y2| + ]xl - X%, if X, ARSY Base elements of the
topology generated by p are depicted in Figure 8-1.
T
A ~ T~ Eal
. l/ /» -
- - p Lf—T\ ‘-‘1’_5\ &X
Nt NH 4
Q/ v
Figure 8-1
. . 2
l. p is a metric for R™.
2
>
{a} Clearly, p(zl,zg) > 0 for each 2,5 2y € R™.

(b)Y o((x,y), (x,y)) = |y - y| = 0 For each (x,y) e R,

(c) p[(xl,yl), (x2,y2)) = 0 ilmplies either %, = R, and |yl - y2|

or [yl| + |y21 + |xl - xg[ = 0. But in either case, (Xl’yl) =

).

(XQ JYQ

Z, € R2.

(d) Obviocusly, p(zl,zz) = p(zg,zl) for each 205 2,

), and z., = (x } be points of

(e} Let z, = (Xl’yl)’ Zs = (x 3 3273
2 X - -
R°. (i) Suppose Xy T Ky T X

2277
5 Then, p(zl,zz) = Iyl - y2| =

lYl - Y3| + ]YS - yzl = 0(21,23) + 9(23,22)- (ii) Suppose



35

®] = X, # %, Then, p(zl’ZQ) = ‘yl - yzl < }yl| + |y2' <
(Iyll + 1y3l + |X3 B Xll) + (!y2| + |y3| t [X3 - X2|) =

p(zl,z3) + p(z4,2,). (ill) Suppose x, # x, = x

1 5 Then,

3
S S P I e S B B I T
([yl' + ’Y3' + |Xl = Xa[) + [yz - ySI = Q(leza) + 9(23522)-

(iv) Suppose X, # X = X5, This is a corollary to (iii).

(v) Suppose X1 » Xp» X5 are distinet numbers. Then, p(zl,zz) =

+

lyl' + |y2‘ + le - le = |yl| + |y2| + |Xl - X3| + |X3 - X2|

2yl = Uyl + Iyl Iy = xgl+ Clyyl+ Dygl + Iy - %D
plz .2} + 0lz,,2,).
2. Not separable.
Let D be any countable subset of R2. Since there are uncountably
many vertical lines in R2, there exists & € R such that the line x = a
contains no peint of D. Note that {(x,y) : x = a, y » 0} is open, non-

empty, and does not intersect D. Hence, D is not dense in R2.

3. Not Lindelcf.
b3 2 2

Let N (x3;e) = {z : z ¢ R® and p(x,z) < ¢} for each x ¢ R” and
each € > 0. TFor each a € R, let U_ = {(a,y) : v # 0} and note U, is
open since u, = {N“((a,y) ; IyJ) i v e Rand y = 0}.

Let C = {NN[(a,O); 1) : ae¢ R} U {Ua : ae R}. Then, C is an
cpen cover of RQ. Furthermore, no countable subcollection of C can
cover more than U {N"((a,o); l) : a ¢ R} and countably many vertical

line segments more.

4. Not locally compact.
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No point on the X-axis has a compact neighborhood,

Let a € R and suppeose that N is a compact neighborhood of
{a,0). Then there exists € > 0 such that N*((a,o); 25] c N. Let
K= {z € R? : p((a,O), ZJ < 2e}. The reader may easily verify that
the closure of N*[(a,O); 26) is K. Then, K ¢ N since N is closed
and K is compact since N is compact. Let F = {N*[(a,o); e}l u
{Ua : a e R}. Then, F is an open cover of K and F does not have a

finite subcover., Therefore, {(a,0) has no compact neighborhood.

5. Connected.

The tcpology on the X-axis as a subspace is Euclidean and hence
the X-axis is connected as a subset of R2. The topology con any vertical
line as a subspace is Euclidean and hence any vertical line 1s connected
as a subset of Rz. Since each vertical line has a point in commen with

the ¥-axis, and R2 is the union of all such lines, R2 is connected.

6. Locally connected.
. . 2 “
It is easily seen that for each x ¢ R” and each e > 0, N (x;e)

is connected. Hence, components of open sets are open.

7. Not B.W. compact.

Note that 4 = {(n,0) : n € P} is an infinite subset of R?.
Since, for each z ¢ R2, N*(z;l) iz an open set which contains z and
does not intersect A in more than one point, A does not have any limit

. . 2
points 1in R .
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CHAPTER III

NON-METRIC SPACES

BxamEle 3

The following topclogy may be found in [7] on page 107 where
credit is given to an example considered in a paper by P. Alexandroff
and P. §. Urysohn [2].

Consider the fcllowing subset of R2 ; X o= Cl U C2 where Ci =

{(x,y) : 0 £ x <1,y =1} for i = 1,2. The topolegy on X is to be
generated by a collection of neighborhoods. If z ¢ C2, let B(z) =

{{z}} ., If z ¢ Cl and z = (x,1), let B(z) = {Uk(z) : k € P} where

Uk(Z) = {z} u {(x",y") + (x',y") e Xand 0 < [x - x'| < %&. Let B =

L {B(z) : z ¢ X},

1. B is a base for a topology T on X.

(a) Clearly, X = v {B : B ¢ B}l.

(b} Let Bl,B € B and suppose z ¢ Bl nB,. If z e C,., then

2 2 22

Otherwise, z € Cl and there

Um[(a,2)] and

{z} ¢ B and z ¢ {z} < Bl n BQ.

exist a,b ¢ [0,1] and m,n ¢ P such that Bl
B, =10 ((b l)). Let z = (x,1). Then 0 < |a - x| < L and
2 n 3 L] m
. 1
0 < |b - x| < %n There exists N € P such that 0 < |x - yl <
. . 1
implies that 0 < ’a - y| < %-and 0 < |b - y| <o It follows

that z ¢ UN(Z) ¢ B and UN(Z) S Um((a,l)] n Un((b,l)).
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This 1s ocbvious.

3. First countable.

Indeed, if z € X, then B(z) is a ccuntable base for N(z).

4. Not second countable.
Any base for T must contain the following uncountable collection

of open sets, {{z} : z ¢ C2}'

5. Not separable.

et D be a countable subset of X. There exists z € C2 such that

z ¢ D. But {z} =2 ¢, {2z} ¢ T, and {2} n D = ¢, Hence, D is not dense

in X.

6, Compact,
Let F be an open cover of X. It suffices to assume that F < B.
(This proof may be found in [7], page 107.)

Note that U = {F n Cl : F ¢ F} is an open cover of Cl

to the Euclidean topology on Cl' Then 0 has a finite subcover, say

veuy [ F., i i < i<
Fl g Cl’ > B N Cl where ; 18 not a one point set for 1 i n,

since Cl with the Euclidean topoleogy is compact. Then, there exist

k(i} € P and X, € [3,1] for 1 € 1 € n such that P, = ((xi,l)) for

k(1)
1<4is<mn. Alsc, there exist G, € F such that (xi,2) € G, for

1 <i<mn. Thus, {F G,y wues Gn] is a finite subcover of F,

l’ “ey n) l’
7. Proposition: Every open subspace of (X,T)} is a paracompact space.
Proof. Let A be an open subset of (X,T). Recall that T/A is

the relative topology on A and that B/A = {Bn A : B € B} is a base for

with respect
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T/A. Note that T/A < T and B/A < B since A is open.

Let F be an open (wrt T/A) cover of A in the space (A,T/A). Let
D ={F n C,: Fe F}. Then, in the space (& n Cl, T/8 n Cl)’ P is an
open cover of A n C . Note that (A n Cl’ T/8 n Cl) is a subspace of
the metric space (Cl’ T/Cl) and hence is metric. By Theorem 0-6(d),

(Anc ,T/an Cl) is paracompact. Therefore, there exists a locally-

l’
finite open (wrt T/A n C,) refinement R of D.

Note that each element R of R is open in (A n Cls T/4 n Cl) and

that v R = A n Cl' For each R ¢ K, define R' = {(x,y} : (x,1) € R and

{(x,vy) € A}. Clearly, for each R ¢ R, R' ¢ T/A. Tor each R ¢ R, there

exists an F ¢ F such that R« F n Cl. For each R € R, define R =

1,

R' n F. Then, R ¢ T/A since F e T/A.
Next, let B = A - U {R : R e R}. Note that B c CQ. I claim
that R = {{z} : z € B} u {R" : Re R} is a locally-finite open

{wrt T/4) refinement of F.

First, note that A = u R* and therefore R is clearly a refine-
ment of F. It is also clear that R* is an open (wrt T/A) refinement of
F.

let z ¢ A. If z € B, then {z} is an open (wrt T/A) set which
intersects only finitely many elements of R*. If z e A - B and

z = (x,y), then there exists U e T/A n C., such that (x,1) € U and that

1

U intersects only finitely many elements of R, Let S {((=,y)

(x,1) ¢ U and (x,y} € A}. Then, U o« T/A,z € U“, and clearly U inter-

sects only finitely many elements of R". Therefore, R is a locally-

finite cpen (wrt T/A) refinement of F. Hence, (A, T/A) is paracompact.
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8. Completely normal.

Since each open subspace is T, and paracompact, each subspace is

2
normal by Thecrem 0-2(a)} and (b). See also Theorem 0-3.
9., Not perfectly ncrmal.

In particular, Cl is not the intersection of a countable collec-
tion of open sets. OSuppose U is an open set which contains Cl' By the
proof of (b) on page 38, X - U is finite. For otherwise, {V : V = U or
Vv = {z} for some z ¢ CQ} is an open cover of X with no finite subcover.
Since X - U is finite, if Cl = An and An € T for each n ¢ P, X -

n {An :ne P} =y {X - A ime P} is at most countable. 1t follows

that C. e« n {A :n e P}
1. n

10. Not connected.
1 e e
Note that {(%32)} and (X - (532)J are disjoint open sets whose

union 1z X.

11. Not totally disconnected.

Note that C, is connected in the metric space (Cl, T/Cl). Hence,
Cl is connected in (X,T).
12. Not locally connected.

Since we have shown that Cl is connected and not open, it suf-
fices to prove that Cl is a component of X.

Suppose D 1s a connected subset of X and Cl ; D with (x,2) € D.

Note that {(x,2)} and ¥ - {(x%,2)} are disjoint cpen sets., Clearly,

{{(X,Q)}, Dn (X - {(X,Q)}]} would then be a separation for D.
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ExamEle 10

The following topology first appeared in [1]. It also may be
found in [7], page 10¢.

Let 5 be the following subset of R2, S = {(m,n) : m,n are
integers}. A base B for the topology S on S is to be defined here.
If (m,n) ¢ 8 - {(0,0)}, {(m,n)} ¢ B. If B is & subset of § with
(0,0) € B, then B € B if and only if B is S minus at most (i) the points
on a finite number of lines parallel to the axis y = 0 and (ii) a finite
number of points on each of the remaining lines parallel toc the axis
y = 0. Note that (ii) allows the removal of a finite number of lines
parzllel to the axis x = 0, although (ii) certalinly allows more than

removing these lines.

1. B is a base for a topolegy S on S.

{i) Note that S € B.

(ii) Let Bl’ B2 e B. It is clear that Bl n B2 is an element of

B.

Let %, v € § with x # y. Without loss of generality, assume

y # (0,0). Then, {y} and § - {y} are the required disicint open sets.

3. GSeparable.

Any countable space is separable.

4. Lindelof.

Any countable space ls Lindelof.
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5. Proposition (a): Let K ¢ S. Then K is compact only if K is finite.

Proof. Suppose K is an infinite subset of S. Either (0,0) ¢ K
or (0,0) € K. Suppose (0,0) ¢ K. Then, C = {{x} X € K} is an cpen
cover of K and C has no finite subcover. Suppcse (0,0) ¢ K. Then
either K contains an infinite set A of points on a line y = k for some
integer k or else K contains an infinite set B consisting of at least
one point from an infinite collection of lines parallel to the axis
y = 0. If there is such a set A and if k corresponds to A as in the
definition of A above, then U = {{0,0)} v [§ - {(m,k) : m is an inte-
ger}] is open and F = {U} v <d{x} : x ¢ & - {{0,0)}7 is an open cover of K
such that F has no finite subcover., Otherwise, there is a set B as
defined previcusly. Now, V = {(0,0)} u [S-B] is open and H = {V} u
<{x} : x ¢ B - {(0,0)}} is an open cover of K such that H has no finite
subcover.

Proposition (b}: Any subset of S is paracompact.

Proof, Let A ¢ S and C be an open cover of A in the space
(a, T/AY. 1If (0,0) € A, there exists U ¢ C such that (0,0) € U. Other-
wise, define U = ¢. We claim that R = {U} u={{x} : x e A - U} iz a
locally-finite open refinement of C. If y ¢ A, theny ¢ Uory e A - U.
if v e U, then U is an open set which contains y and intersects exactly
one element of K. If y ¢ A - U, then {y} is an open set which inter-
sects only finitely many elements of R. It is clear that R is a collec-

ticn of open sets and that R is a refinement of C.
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Proposition (¢): Each closed subset of S is a G, set.

Procf. Notice that if B € B, then S - B ¢ S, Let K be a closed
subset of 5. If (0,0) € K, define A_ = ¢. Otherwise, (0,0) 4 K and
there exists A_ e B such that (0,0) « A, <8 - K. In either case,

§ - A_ e S5. Note that S - (K v {(0,0)}) is countable and write
S - (Ku {(0,0)D) ={xn :ne P, Let An = {xn} for each n ¢ P. Then
S - An e 8§ for each n € P since An € B for each n ¢ P. It is now

apparent that K is the intersection of a countable collection of open

sets; in fact K = n {5 - An :n=0c¢crne P}

6. Paracompact.

see (5(b)), page 42.

7. Normal.

Each paracompact, Hausdorff space is normal [see Theorem 0-2(a),

(b)].

8. Perfectly normal.

This follows from {5(c)) on page #3, and (7) on page 43.

8. Totally disconnected.

Let A be subset of S which conzists of mere than one peint. Let
x € A with x # (0,0), Note that {x} and (§ - {x}) are disjoint open
sets. Then, if A consists of more than one peint, {{x}, S - {x}} is a

separation for A.

10. UNot lecally connected.

{(0,0)} is a component of S and {(0,0)} is not an open set.
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1li. Not B.W. compact.
Let A = {(n,1) : n is an integer}. Then A 1s an Infinite subset
cf 5 and A 1Is a closed set. Clearly, no point of A is a limit polint of

A since x ¢ A implies {x} e S.

12. Not first countable.
Suppose that {Bn : n e P} is a collection of neighborhoods of
(0,0). It suffices to prove that {Bn :n e P} is not a base for N(0,0).
We will now construct a neighborhocd U of the origin for which
u - Bn #z ¢ for each n e P; i.e., Bn is not a subset of U for each n ¢ P.
Without less of generality, we may assume Bn e B for each n ¢ P,
Since Bl is 5 minus at most finitely many lines parallel to y = 0 and
finitely many points on each of the remaining lines parallel tec v = 0,

there exists (m nl) € Bl - {(0,0)}. Suppose that (ml,nl),...,(mk,nk)

l,
have been chosen so that (mj,nj) € Bj - {(0,0)} fer 1 £ § = k and

n, # D for 1 # j. Then since Bl is & minus at most finitely many
lines parallel to vy = 0 and finitely many points on each of the remain-
i ] - L) . €1 = i P}) is an open
ing lines, (Bk+l {(m,nl) (m,nl) € 5,1 <1<k, ieP}) I

) €

set which contains the origin. Therefore, there exists (mk+l’ T
Bk+1-{(m,ni) : (m,ni) ¢ S5,1=1<%,1i¢e P}. The above process induc-
tively defines a sequence of points {(mk,nk) : kX € P}, none of which

is (0,0) and no two of which belong to the same line y = p for any

integer p. It follows that U = § - {(mk,nk) i k € P} is the desired

neighborhood of (0,0); 1.e., Bn is not a subset of U for each n e P.

13. Not metric.

Every metric space i1s first countable.
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1%, Not locally compact.

Let U be any closed neighborhood of the origin. It suffices to
show that U is not compact.

Hote that U is obvicusly an open set since U contains an open
nelghborhood of the crigin and, if z € U - {(0,0)}, then {z} is open.
One can easily see from the definition of S that there exists an infinite
set A with (0,0) ¢ A such that A contains exactly one point on those
lines y = m paralliel to the axis y = 0 such that U centains a point
(n,m). Clearly, U - A is open and, if C = {U - A} v {{z} : z € A}, then

C is an open cover of U with no finite subcover.

Example 11

The following topology is due to R. H. Bing {3}, This topological
Space is an example of a connected countable Hausdorff space.

Let Z be the set of points in the plane which are on or above the
¥X-axis and for which both co-ordinates are rational.

Define p : 2+ R and q : Z + R by p[(x,y)) = x - :%:y and
q((x,y)] = x + j;-y for each (x,y) € 7. HNote that (i) p[?x,y)] and

V3

q[(x,y)] are raticnal if and only if y = 0 and (ii) if z ¢ Z, then z,
{p(z),O), and (q(z),O) are the vertices of an equilateral triangle.

Let B = {N(z;e) : z ¢ Z, £ > 0} where N(z:e) = {2z} v {(r,0)

r € Q and either |r - p(z)}| < e or jr - q{z)| < e} for each z € Z and

e > 0.

1. B is a base for a topology T on Z.

(i) Clearly, Z = u B.
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(ii) Suppose N(zlgel), N(Z2;EQ) € B and z ¢ N(Zl;el) n N(ZQQEQ).

)

If z, = 2., then N(zl;El) n N(22;€

1 N(zl;e) where g =

2

min{e ,62}. If z. 2 z

N N x then N(zl;al) n N(ZQ;EQ) consists of

cpen intervals of rationals along the X-axis, i.e., unions of

elements of B.

2. Proposttion (al: If 215 2, € 2 and 2, * z,,

then p(zl) z p(zz) and
q(zl) z q(zz).
£ = = - =
Froof. Let =z, (Xl’yl) and z, (X2°y2)' Then, p(zl) p(zQ)

(Xl_x2) - 5% (yl—yz),and the quantity on the right of this equation is
rational if and only if Y = Vg Therefore, p(zl) = p(zQ) if and only
if X, = %, and y, =y,. Similarly, q(zl) = q(zQ) if and only if z, =

Propogition (b): A subset of Z is not compact if it contains
infinitely many points (x,y) where y > Q.

Froof. Let K be a subset of Z and suppose {(x,y) € K : y > 0}
is infinite. Let z ¢ Z and note that N(z;l) contains at most one point
(x,y) such that y > 0. It follows that C = {N(z;1) : z € K} is an open
cover of X and that C has no finite subcover.

Proposition (e¢): Let b > a and let U = {(r,0) : r € (a,b)}. If
K = {(x,y) € Z : either Y3 (x-b) < y < V3 (x-a) or - V3 (x-a) <y <
- V3 (x-b)}, then K = U.
Proof. Let (x,y) € K. Suppose V3 (x-b) £ y < /3 (x-a). It

fecllows that a € % - QL-y <£b and a = p[(x,y)] £ b, {Clearly,

/3
N[(x,y);g] nU# ¢ for each € > 0. Therefore, (x,y) € U. Suppose
- V3 (x-a) <y < - VY3 (x-b). Then, a < x + #k-y < b and thus

/3
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a < q[(x,y)) < b. Again, N[(x,y);e] nU=4¢ for each € > 0, Thus
(x,y) € U, Hence, K c U.
Let (x,y) € S - K. Then, (i} y < /3 (x-b), or (ii) y <

- V3 (x-a), or (iii) - V3 (x-b) < y and ¥3 (x-a) < y (see Figure 11-1).

R4
0Logee8:
IR

Figure 11-1

(It should be ncted that for each (a,b) € 7, p[(a,b)) < q[(a,b)).) In

case (i), b < x --ﬁi y = p[(x,y)) < q((x,y)), so let e, = p((x,y)] - b.
3
In case (i1), p((x,y)} < q((x,y)) = x + :%:y < a, so let €, =@ -
3

a{(x,y)). 1In case (iii), b < q{(x,y)) and p[(x,y)) < a, so let
e, = min{q[(x,y)) -b, a- p[(x,y)]}. Then, N((x,y);ei] niv=¢ for

i = 1,2,3. Thus, (x,y) € & - U. Therefore, S - K c & - U, Since

: 1
Let 2,2, € 2 with z, # z,. Let ¢ = 3 mln{‘p(zl) p(zQ)l,

lq(zl) - q(22)[, [p(zl) - q(zz)[, lq(zl) . p(z2)|}. Then, N(z ;e) and
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N(z,;e) are the required disjoint open sets.

2
4. BSecond countable.
It is clear that {N(z;%& : z e Z,n e P} is a countable base

for T.

5., Not regular.

Let (r,0) ¢ Z and let U = {(x,0) : (x,0) € Z}. Note that
(r,0) ¢ Uand U ¢ T. It suffices to show that, if (r,0) ¢ V and
VeT, thenV - U= ¢. However, [Z(C)] on page 46 shows that, if
(r,0) ¢ V and V € T, then V contains points above the X-axis and thus

V- U2 ¢.

6. Not locally compact.

Every locally compact, Hausdorff space is regular. (See Theorem

7. Not countably paracompact.
Since (Z,T) is Hausdorff but not regular, (Z,T) is not paraccm-
pact [see Theorem 0—2(a)]. Since (Z,T) is Lindeldf by (4) of page 48,

(Z,T) is not countably paracompact.

8. Connected.

Suppose {A,B} is a separation for Z. Then, A &nd B are each ncn-
empty, open, and closed subsets of Z. Without loss of generality, assume
that A contains a point a = (x,0) for some x € R. Suppose (x,0) ¢ A& for
each x ¢ R. It would then follow from [2(c)], page 46, that A = R since
A 1s closed. This contradicts {A,B} is a separation for Z. Therefore,

B contains a peint b = (y,0) for some y e R. Note that A and B are
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closed neighborhoods of a and b, respectively. From (2(c)] of page ub,
Figure 11-1, and Figure 11-2, it is geometrically obvious that A n B %

$. Therefore, Z has no separation; i.e., Z 1s connected.

Figure 11-2

9. Not locally connected.

Note that singleton sets are not open. It 1s sufficient to show
that {{(0,1)} is a component of N[(O,l);l).

Let X be a subset of N{(O,l);lJ which contains (0,1). Suppose
(r,0) ¢ X for some {(r,0) € 2. Let ¢ = min {|r - p((O,l)]‘,
lr - q[(O,l)]|}. Then ¢ > 0 since p[(O,l)] and q((O,l)) are irrational
whereas r i1s rational. Let 6 € Q be such that 0 < § < ¢, It is now

almost obvious that {N[(0,1);8), N((0,1);1) - N((0,1);8)) is a
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separation for N[(O,l);l). It follows that {K n N((O,l);é),

k n [¥((o,

1);1) - N{(0,1);6)]} is a separation for K. Thus {(0,1)} is

& component of N[(O,l);l).

Example 172

The following topology may be found in [15], page 88.

Recall that R is the set of real numbers, ( is the set of ra-

tional numbers, and R- Q is the set of irrational numbers. Let I be the

set of intervals in E, i.e., I = {(a,b) : a, b € R and a < b}. Then,

the topology T on R is givenby: T = {G : G ¢ R and if p € G, there

exists I € I such that pe I and I n Q < G}. Note that G is open if

and only if each peint of G is contained in an open {(wrt E) interval of

raticnal peints which is itself contained in G.

1. T is a topology for R.

(i)
(i)

(iii)

Clearly, ¢ ¢ T and R e T,

Suppose G,,G, € T and p « G n G,. Then there exists

Il’IQ € I such that p € Il nI,, I n Q< Gl and I,n Q< G,-

But then p e G, nG,, I, n I, ¢ I, (Il n I?) nQeG nd

2?71 2 2

and hence G, n G, € T.

Suppose G ¢ T for each @ ¢ A. Then let G = v {Ga : o e A},
If pe G, then p ¢ Ga for some a € A. There exists I ¢ I such
that pe I and I n Q ¢ Gu' But then I n @ € G and hence

GelT.

2. Proposition (a): E < T.

Proof. This assertion is obvious. For if U e &, then U is the
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unicn of a collectien of Euclidean open intervals where Iintersection
with Q i1s certainly contained in U. Hence, U € T and therefore E < 7.

Propogition (b): Let G e T. Then there exist U e € and K ¢ R- Q
such that KX ¢ U and G = U - K.

Proof. For each g € G, there exists I{g) ¢ I such that g ¢ I{g)
and I(g) n Q © G. Let U=u {I(g) : g€ G}. Then G < Uand Un Q = G.
Let K= U - G. Then since Un Q¢ G, KcU-Q<R-Q. Also, G =
U - K.

Proposition {¢): In the notation of (b) above, G(wrt T) =
U (wrt E). (The reader should recall that G (wrt T7) is the closure of
G with respect to topology T.)

Proof. We shall first show that G (wrt T) < U (wrt E). Since
EcT, it follows that G (wrt T) ¢ G (wrt £). But G (wrt E} =
(U-K)(wrt E} and it is easily seen, since U ¢ E, that (U-K)(wrt E) = -
U (wet E). Thus, G (wrt T) © U (wrt E).

Now, we shail show that U (wrt E) ¢ G (wrt T). Since G = U - K
and Kc R - Q, Uc &8 (wrt T) and U (wrt T) € G (wrt T). Therefore, it
will suffice to show that U (wrt E) < U (wrt T). Let x ¢ U (wrt E).
Recall that U ¢ E,and hence there exists a sequence of raticnals
{rn :ne P} in U - {x} which converges (wrt E) to x. Now, let x € V
and V ¢ T, There exists I € I such that x e I and T n Q V. But then
gsince I € E, there exists N ¢ P such that r., € I for each n ¢ P with
n = N. It follows since I n Q < V that r € V for each n ¢ P with n = N.
Therefore, V n (U - {x}) 2 ¢. Hence, x ¢ U {wrt T} and U (wrt E} c

U (wrt T) as required.
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Note that we have shown G (wrt T) ¢ U (wrt E) and U (wrt E) c

G (wrt T). Thus, G (wrt T) = U (wrt E).

Since E © T and (R,E) is Hausdorff, (R,T) is Hausdorff.

4, DNot Lindelof.
Note that Q v {x} ¢ T for each x ¢ R. Then, C = {Q v {x}
¥ € R-Q} is an cpen cover of R and C has no countable subcover. In

fact, C has nc proper subcover,

5. TFirst countable.
1 1
Let x ¢ R. Let In = (x - o ox EJ for each n ¢ P. Note that
In e I for each n € P. Hence, Un = {x} v (In n Q) is open {wrt T) for
each n € P, It is evident that {Un :n e P} is a countable base for

N{x}.

6. Not B.W. compact.

Recall that (R,E) is nct B.W. cempact.

7. Separable,.

Obvicusly, Q9 is a countable dense subset of R.

8. Not locally compact.

Let x ¢ R and let {Un : n € P} be the countable base for N(x)
constructed in (5), page 52. Since (R,T) is Hausdorff, it suffices to
show that Gn is not compact for each n € P. By [Q(C)), page 51, Gn =
[x - %3 ® o+ %J for each n e P. Letne P. Then C = {Q u {x} : = e R}

is an open cover of Dn and C has ne finite subcover. Thus Un is not

compact for each n e P.
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9. Not regular.
Let I = (n-1, n+1) € I, Let U = {r} u (Q n I). Suppose V is an
open set such that m ¢ V and V « U. It suffices to show that V - U = ¢,
There exists I ¢ I such that m ¢ I and I n Q< V. Now, I = (a,b)
for some a,b € R with a < b. Also, by [2(0)) cn page 51, I (wrt E) < V,
Note I (wrt E) = [a,b]l. Since the only irraticnal number centained in U

is 7, we see that ¢ # [a,b] - U c V - U as desired.

10. Connected.
Suppose {A,B} is a separation for R, Then, A and B are each non-
empty, closed and open subsets of (R,7). Then, by [Q(b)J on page 51,

there exist U e E and K ¢ K - § such that K < U and A = U - K, By

[Q(C)), page 51, U (wrt E) = A (wrt T). But & (wrt T) = A since A is

a closed set in (R,T). Since U (wrt E) = A = U - K, it follows that

i

(wrt £) = U; i.e., U is an open and closed set in (R,E). Therefore,
U=4¢ orU=R., Now, U=z ¢ since Az ¢ and A = [ - K, Then U = R.

But this implies that B © R-{Q which means that B ¢ T which is also a
contradiction. Hence, R has no separation in the space (R,T); l.e.,

(R,T) is connected.

11, Net locally connected.

Note that singleton sets are not open. Since Q is open, it suf-
fices to show that components of Q are singleton sets.

Let X be a subset of @ and suppose x,y € K with x # y. There
exists t € R- Q such thét X<t <<yory <t <zx, It is clear that
{Kn (==,t), Kn (t,»)} is a separation for K. Hence, components of Q

are singleton sets.
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12, Not countably paraccmpact.

Let z € R- Q¢ and let {zn :n e P} be a subcollection of (R-Q)
such that (i) z = z_ only if m = n and (ii) lim d(z,z ) = 0, where d is

m e n

the Euclidean metric. Furthermore, let K = (R-Q) - {zn :ne Pl

Now, C = {K U {zn} U Q:ne P} is a countable open cover of R.
Let F be an arbitrary open refinement of {. It suffices to show that F
is not a locally-finite system. Toward thls end note that, if F ¢ F,
then I contains no more than one point of {Zn :ne Pl, Hence, for each
n € P, there exists I_ ¢ F such that z « F and it must be that F_ # F

n n n n m

if m # n.

Let V be any open set containing z. There exists (a,b) € I such
that z € {a,b) and (a,b}) n Q ¢ V. Since 1im d(z,z ) = 0, there exists

N ?

N ¢ P such that n =2 N implies that z, € (a,b). Note that n = N implies
that Fn n (a,b)} contains a rational since Fn and (a,b) are open sets
which contain Z_- It follows that if n = N, Fn nvc Fn n[(a,b) n Q] =
$. Since V was an arbitrary open set containing z, we have shown that
each open set containing z intersects infinitely many distinct F e F.

Thus F is not a locally-finite system. Therefore, C has no locally-

finite open refinements.

13. Not metacompact.

Let C = {Qu {t} : t € R - Q}. Then € is an open cover of R,
Let F be an open refinement of C. It suffices to show that F is not a
point-finite system. Note that, for each t € R - Q, there exists
F(t) ¢ F such that t € F(t) and, by construction of C, F(s) = F(t) if

if s,t e R-Q and s = t,
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Now, for each t € R - Q, there exists &{(t) > 0 such that
(t - 6(t), t + &(t)) nQc F(t). For each t € R - Q, let V(t) = {t} u
fan [t - &0t), t + 6(t)}]. It follows that V{t) is not a subset of
F(s) if s,t € R - Q and s # t. Hence, Vis) =z V(t) if s,t ¢ R - Q and
s 2 t. It will be sufficient to show that there exists r ¢ K such that
r € V(t) and hence r ¢ F(t) for an infinite collection of points t of
R - @, for this would mean that F is not a point-finite system.

For each n € P, let An = {t : teR-GQand §(t) > %}. Since
§{t) > 0 foreach t ¢ R -Q, R -Q =u {An : n e F}. Hence, there
exists N ¢ P such that AN is uncountable. Then, there exists p € R

such that p Is a limit peint (wrt E) of A Therefore, there exists an

N
infinite set B with B ¢ A such that t € B implies that d(p,t) < =

N 2N°
There is also a rational point r € R such that d{p,r) < é%n Now, for
each t ¢ B, d{t,r) < d{t,p) + d{p,r) < L4 2 =2 ana, since B e a
? ? B ’ ? 2N 2N N : N

and r is rational, r e V(t) = {t} u [Q n [t - &6(t), t + &(t))]. Thus,
r e V(t) for each t ¢ B, an infinite collection. Also, r e F(t} for
each t ¢ B. Hence, F is not a point-finite system since {F(t) : t e B}
is an infinite collection of elements of F and r is a point of R such
that r € F(t) for each t ¢ B. Thus, C has no point-finite cpen refine-

ment.

Example 13

The following topology may be found in [15], page 89.

Let H be the X-axls and let U be the set of pcints in the plane
above the X-axis. Let Z = U u H. The topology, TP for Z will be defined

in terms of a base Bl for Tl'
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Let E be the Euclidean topclogy on Z and, for each t € Z and each
£ > 0, let N{t;e) be the set of points in Z whose Euclidean distance
from t is less than .

Let {(x,y) ¢ U. If 0 < g <y, define N*((x,y);a] = N((x,y);e].
Let (x,0) € H. For each € » 0, define N*((X,O);EJ = {((x,00} v
[N((X,O};EJ n J]. (See Figure 13-1.) Let Bl = {N*[(x,y);e] : {x,y) € Z

and (i) vy = 0 and € > 0 or (ii) € > 0 and £ < y}.

Figure 13-1

1. Proposition: 1If V e E, then V is the unicn of a subcollection of
elements cf Bl'
Proof. It suffices to show that N[(a,b);r], where {(a,b) ¢ Z
and r > 0, 1s the union of a subcollection of elements of Bl'
(i) Suppose r < b. Then, N((a,b);r] = N*[(a,b);rJ € Bl'
(ii) Suppose b = 0. Let N = N[(a,b);r]. Then, N =
U {N*((X,O);EJ : (i) x = aand € = r or (ii) (x,0) ¢ N,
e > 0, and N[(X,O);E) c N}, Hence, N is the unicn of a

subcollection of elements of By,
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(iil) Suppese 0 <b < r. Let N = N((a,b);r). Then, N =

U {N"[(x,y);e) : (1) (x,y) e N, 0 <y < g, and
N[(x,y);e} = N or (ii1) (x,y) e N, y = 0, € > 0, and
N[(x,y);a) c N}. Hence, N is the unicn of a subcollection

of elements of 31.

Notice that, if Bl generates a topology Tl’ then £ ¢ Tl'

1
(1}
(i1}

3. is a base for a topology Tl on Z.

Clearly, 2 = U Bl'

), N (TQQPQ) € Bl' If t. = ts then let r =

Let N (t N

1771

min {r ,r2} and N (tl;rl) n N (t,;r.) =N (tl;r) € Bl' If

1 272

- B i . %t ) N S )
tl tos then it is easily seen that ¥ (tl,rl) n (t2,r2)

is open (wrt &) and, by (1) of page 55, is the union of a

subecollecticn of elements of 81.

Since E < Tl and (R,E} is Hausdorff, (R’Tl) is Hausdorff.

First countable.

Let (x,y) ¢ Z. If y = 0, then {N”((X,O);%] : ne P} is a count-

able base for N[(X,O)]. If y » 0, then {NJ((x,y);%ﬂ :ne P and %—< )

is a countable base for N((x,y)).

Separable.

It is clear that each element of Bl contalins a non-empty set

which is open in the Euclidean topology. Hence, the set of points in Z

with beth ccordinates rational is a countable dense subset of Z,
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6. Not Lindeldf.
Let C = {N“(z;l); z € Z}, Then, C is an open cover of Z. Note
that for each z ¢ 2, N"(z;l) contalns at most one point of the X-axis.

Hence, C has no countable subcover,

7. MNot regular.
Let N = NW[(O,O);l]. Then (0,0) € N and N € Tl' Suppese U is
an open neighborhood of (0,0) and U ¢ N, It suffices to show that U is

not contained in N. There exists € > 0 such that N"{(0,0);e] < U. It

is clear that N*[(0,0);e] = N((0,0);E] and that (%‘E,O) € N[(0,0);E) c

U, but (%—E,O) ¢ ¥. Hence, (Z’Tl) is not regular. *

8. Nect locally compact.
Every locally compact, Hausdorff space is regular. (See Theorem

0-7.)

9. HNot compact.

This follows from (8), page 58.

10. Connected.
Note that Tl/U is the Euclidean topology on U, the upper half
plane. Since U is ceonnected in (U, Tl/U)’ U is connected in (Z,Tl).

Since Z = U, Z is connected.

11. Locally connected.

It suffices to prove that elements of Bl are connected. Let
B« Bl' Then, B contains a2t most one point on the X-axis. Let D =
B - H. Clearly, Tl/D is metric and D is connected in (D, Tl/D)' Now,

since D ¢ B ¢ D, B is connected.
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12. Not metacompact.

Let C = {Uu} u {N*(z;l) : z € H}. Then, C is an cpen cover of 7.
We claim that, if F is an open refinement of C, then F is nct a point-
finite systemn.

Suppose F 1s an open refinement of C. Then for each z ¢ H, there
exists I'(z) € F such that z ¢ I'(z). Furthermore, since F(z) is open,
N*(z;%J < F(z) for some n ¢ P. Let z,w € Hwith 2z 2 w. It focllows that
z ¢ F(w) since F(w) < N*(w;l).

For each n ¢ P, let An = {z : z e H and N*(z;%J c F(z)}. Note
that {An : n € P} is an increasing sequence such that H = u {An: n ¢ P},
Thus, there exists N ¢ P such that AN is uncountably infinite. Consider
H with the Euclidean topology. Ay has a limit point, say t = (x,0), in
H with respect to the Euclidean topology on H. Then, there exists
B < A. such that B is infinite and, if s ¢ B, then d(s,t) < gﬁ where d
is the Euclidean metric on H,

Now, consider the point z ¢ 7 where z = (x,éﬁ). Note that, if

1 1 1

s € B, then d(s,z) < d(s,t) + d(t,z) < 5t oow < e ands since B © Ay

)

Nd(s;%J c F(s) which implies that z ¢ I'(s). Thus, z € F(s) for each
s € B. 8ince F(s) = I'(v) for r,s ¢ H with » # 5 and since B is infinite,
it follows that {F(s} : s ¢ B} is an infinite subcollection of F with
the property that z ¢ F(s) for each 5 ¢ B. Therefore, F is not a peint-

finite system and C has no point-finite open refinement.

13. Not B.W. compact.
Note that H is an infinite, clcsed subset of (Z,Tl) and that

(H, Tl/H) iz the discrete topology.
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ExamEle 14

The following topology on the upper half plane may be found in
[15], page 90, and [17], page 109. Wolfgang J. Thron gives credit for
this example to "Niemytzki."

Az In Example 13, let H be the X-axis, let U be the set of points
(x,y} € R® with v > 0, and let Z = U u H. Furthermcre, E 1s the
Euclidean topology on Z, d is the Euclidean metric on Z, and N(z3E)} =
{w e Z2: dlz,w) < g} for each z ¢ Z and each & > 0,

For (a,b) e Uand 0 < € < b, define N*[(a,b);e].= N[(a,b);e].
For (a,b) ¢ Uand b = ¢, define N*[(a,b);e) = {(a,0)} u N((a,b);s].
Then, let 32 = {N*((a,b);s) : (a,b) e Uand 0 < € £b . The topology,
Tg’ on Z is to have 82 as base. (See Figure 14-1 for pictures of

typical base elements.)

Figure 1H-1

Recall that Bl is the base for the topology of Example 13. The

reader should note that if B € B then B is the union of a subcollec-

11

tion of elements of B2. Hence, Tl = T2 and, since E ¢ Tl’ Ec T2.
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1. 82 is a base for a topology T. on Z.

2
(i) Clearly, 7 = u BQ.

(ii) The intersection of any two elements of 32 is easily seen to

be the union of a subcollection of elements of BQ.

2. T, and not Lindelof.

Since (Z,Tl) is T, and not Lindelof and since Tl T (Z,TQ) is

2)
T, and not Lindelof.
3. Tirst countable.
W 1 1 .
Suppose {(a,0) ¢ H. Then, {N ((a,EJ; EJ : ne P} is z countable

base for N((a,O)J. Suppose (a,b) € U. Then, [Nd((a,b); %] : %—( b and

n ¢ P} is a countable base for N{(a,b)].

4. GCeparable.
It is clear that each element of 82 contains a non-empty set
which is open in the Euclidean topolegy. Hence, the set of rational

points in Z is a countable dense subset of Z.

5. Ccmpletely regular.

Let t € Z and let K be a closed set with t ¢ K. Then, either
(i) t € H or (ii) t ¢ U.

(i) Suppose t = (a,0) ¢ H. Then, there exists & > 0 such that

N*[(a,s); e] < 2 - K.

For each r ¢ R with r » 0, let C_ = {z : 2z e U and
d[z, (a,r)) = r} (note t ¢ Cr for each r » 0). HNote that, if z ¢ U,
then z € Cr for exactly one r > 0 (note that: (xo,yc) € Cr if and only

if (x_,y, ) € U and the center of the circle C, is located at
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Yo

(a, — + 1
> 2 2y

[xo—aJQ)J.

G

Define f : (Z,T2) -~ ([0,1], El) (where El is Euclidean topology

on [0,11) by: if z € Z, then

0, if z = t

1, if z ¢ H - {t}
f(z) = <
=r, if z € Cr and r £ ¢

1, if =z ¢ CP and r > €,

where € is the one I have already chosen so that N*[(a,s); e) c Z - K.

Clearly, f is a function and £(t) = 0. It is not hard tc see
that f[K] < {1}. To verify that f is continuous, it suffices to show
that if 0 < m < 1, then f-l[go,mg} and f-l[(m,l]] are open (wrt TQ),
since f_l[ U {Aa t o e A}Y] = u {f-l[Au] : o e A} and f‘l[A nB] =
£a3 0 £ B,

Let A={z¢? :2=1tor2c Cr with r < me}. Note, A ¢ T2
since A = u {N*[(a,r); r) : 0 <r <mel. Let z e A. Then if z = t,
f{z) = 0. Also, if z ¢ Cr with r < me, then £(z) = %—r < %—(ms) = .
Hence,

c f“l[EO,mEJ. Suppose w € 2 - A. Then, if w € Cr with r» 2 me,

A
- L
f(w) = -

{r) = %—(me) =mif r<eor f(z) = 1 if r > €. Also, if

we H - {t}, then f(w) = 1. Hence, Z - A ¢ Z - f—l{EO,mE} and there-

fwe,fiﬁOmﬂ :Ae'%.

Let B={zeZ :z¢€eH-1{t}or ze Cr with r » me}. Note that

Z - N[(a,me);me] (where closure is taken with respect to &) is an ele-

ment of £ and hence is an element of T2. Then, B « T2 since



B =7 - N[(a,me);me) (where closure

then f(z)

z € B. If ze H- {t},

then f(z) = E- %

g
(m,li}.

with » € me, then

(me} = m if v =

-1

Becf Suppose w € Z - B,

welC f(w} =

F‘m|P

-1

(m,li} and therefore,

(ii) Suppose t = (a,b) € U.
t 4 K. There exists §
N*[(a,b);éj < Z - K.

Define g : (Z,TQ) > ([O,l],El) by:

1
E - d(Z,t),

g(z) = <
1,

Clearly, g is a function, g{t) = 0, and g[K] < {1}.

ho: (2,E) + ([0,11,EY) is defined by h(z) =

is easily seen to be continuous.

6. Connected.

63

is taken with respect to E). Let

l. Also, if z ¢ Cr with r > ne,

g or f(z) = 1, if » » €. Hence,
If w = £, then f{w) = 0, Also, if
< H-(me) =m, Thus Z - B c

m

o] xe.

Recall that K is a closed set with

> 0 such that ¢ < b and

if z € Z, then

if d(z,t) < &

if d(z,t) > §.

If

glz) for each 2z ¢ Z, then h

But then g i1s continuous since E ¢ T2.

Note that T2/U is the Euclidean topology on the upper half plane.

Since U is connected in (U, TZ/U)’

nected since 72 = U.

7. Locally connected,

It suffices to show that elements of B are connected sets,

B « B.

U is connected in (Z,TQ).

7 1s con-

Let

Then (B n U) is connected in (Z,TQ) since T2/(B n U) is the
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Euclidean topeclogy on B n U and B n U is connected in (B n U, T2/B nul.

It follows that B is connected in (Z,TQ) since B nUc B cBn U,

8. Not locally compact.

Since (Z,Tz) is Hausdorff, it suffices to show that N*[(O,Qg);QeJ
is not compact for each € > 0.

Suppose that there exists e > 0 such that N Is compact where
N = N*[(O,ZE);QEJ. Let & = {{x,y) e 2+ y > %} for each n ¢ P. Note
that An ¢ E for each n € P and hence An € T2 for each n ¢ P. Let
¢ = {An :ne P} u {N*[(O,E);EJ}. It is clear that C is an open cover

of N and that C has no finite subcover. Since this contradicts "N is

compact,” it follows that (0,0) has no compact neighborhocod.

9. Not metaccmpact.

Let C = {U} u {N"[(x,l);l} : (x,0) € H}. Then, C is an open
cover of Z. It suffices to prove that, whenever F is an open refinement
of {, F is not a point-finite system.

Let F be an open refinement of C, For each (x,0) € H, there

. : N : % 1, 1
exists F(x) ¢ H such that (x,0) « F(x}. DNow, N ((X,EJ; ;ﬂ < F(x) for
some n € P since F(x) is an open set containing (x,0). Let (a,0),
{5,0) ¢ Hwith a # b. It follows that (a,0) ¢ N“[(b,l);l) and thus
(a,0) ¢ F(b) since F(b) « N ((b,1);1).
2, 1.1

For each n € P, let An = {{x,0) : {x,0) € Hand N ((X,EJ; EJ c
F(x)}. Note that {An : ne P} is an increasing sequence such that
H=u {An :n e P}. Hence, there exists N ¢ P such that AN is uncount-

ably infinite. Consider H with the Euclidean topclogy. AN has a limit

peoint, say t = (a,0), in H with respect to the Euclidean topology on H.
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Then, there exists B ¢ AN such that B is infinite and, if (s,0) ¢ B,

then d[(S,O), (a,O)) < %-where d is the Euclidean metric cn H.

Now, consider the point z € Z and that z = (a,%ﬁ. If (8,0) € B,

then d((s,%&, (a,%)) = d((s,O), (a,O)J < %u Therefore, z = (a,%& €

% 1 1 . . .
N [(s,ﬁd; ﬁJ for each (5,0) ¢ B which implies that z ¢ F(s) for each

. . * 1 1
y and (s,0) ¢ Ay implies that N ((S,EJ; Eﬂ

T(s)). Since I(s) # I(r) for each (r,0), (5,0} ¢ Hwith r # s and

(s,0) € B (since B c A

since B is infinite, it feollows that {F(s) : (s5,0) ¢ B} is an infinite
subcollection of F with the property that z € F(s) for each (s,0) ¢ B.
Therefore, F is not a point-finite system and C has no point-finite

open refinement.

10. Not normal.

I have included here two proofs of the fact that (Z,TQ) is not a
normal space. Of the proofs which appear in the literature, these are
perhaps the least involved. The first proof utilizes Baire Category
Theory and the proof was presented to me by Dr, William R. Smythe,
Junior, of the Georgia Institute of Technology Mathematics faculty. The
second proof makes use of an extension theorem for functions and the
proof is suggested in (9], page 50, problem 3K.

For either proof, one must first observe that H is a closed sub-
set of Z and that TQ/H is the discrete topology on Hy i.e., {z} ¢ TQ/H
for each z ¢ H.

(a) One of the Baire Category Theorems states: If (X,d) is a
complete metric space and {Di : i e P} is a countable collection of open

subsets of X, each dense in X, then n {Di : i ¢ P} is dense in X
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(see [16], page 97). We will use the following alternate version of
this theorem,

Suppose {En : n e P} is a countable collectlion of closed subsets
of X and u {En :ne P} =X. Then, there exists N € P such that EN con-
tains a nonempty open subset of (¥X,d). For, otherwise, (X - En :ne P}
is a countable collection of open dense subsets of X whose intersection
is empty; hence not dense in X.

Let E be the Euclidean topelogy on H with d as the Euclidean
metric on H. Recall that (H,d) is a complete metric space.

Let Q_ = {{x,0) ¢ H: x ¢ Q} where Q is the set of all rational
numbers. Then Q  and H - Q_ are disjoint closed subsets of H with
respect to TQ/H and hence are closed subsets of Z (wrt Tz).

It suffices to show that whenever V and W are cpen (wrt TQ)
subsets of Z such that Q, =V and H - Q, ¢ W, then V. n W # ¢.

Since Q_ is countable, let Q_ = {(rn,O) :ne P}. Note that
{(r_,0)} is closed with respect to topolegy E on H for each n € P. For

n
each n ¢ P, let F_ = {{r_ ,0)}.
-1 n

Now, since W is an open {(wrt TQ) set containing H -~ Q_, for each
(t,0) € H ~ Q,» there exists ¢ > 0 such that N“[(t,e);eJ < W. Hence, if
E = {(x,0) e H-2Q -N*[( i)-—l-]cw}f each n ¢ P, then H - Q_ =

_— X, € o - e or eac ) o
v {E_:ne?P}). ForeachneP, let F = cl(E ) (wrt E); i.e., F_ is
n n n n
the closure of En with respect tc topology £ on H.
It feollows that {Fn :ne Por (-n) ¢ P} is a countable collec-

ticn of closed sets in the space (H,E) and that H = v {Frl :ne P or

(-n) € P}. Thus, by my alternate Baire Category Theorem, there exists



67

N e P such that F contains a nonempty open (wrt E) set L, since the
interior of F—n is empty for each n ¢ P.

Let (r,0) € Q, n L. ©Since Q < V, there exists § > 0 such that
§ < %—and N*[(r,é);ﬁ] c V. Since (r,8) € V, it suffices to show that
(r,8) e W. Now, since H - Q_ is also dense in H (wrt £), there exists
(t,0) € (H—QO) n L such that 0 < r - t < &, But then, d((t,%&, (r,é)) <
((4,3), (£,8)) + a((2,6), (£,6)) = (£ - 6) + (x-t) <= -6+ 6 =1,
Hence, (r,8) ¢ N*[(t,%); %J and N*[(t,éJ; %J < W (by choice of {t,0) € L
and since L < FN). Thus, (r,8) ¢ Vo Wand Vn W # ¢. Therefore,

(Z,TQ) is not normal.

(b) We state without proof the following theorem from [7], page
68: if (X,T) and (Y,S) are topological spaces with (Y,S) a Hausdorff
space, D is a dense subset of X, and f and g are continuous functions
mapping (¥,T) into (Y,S) such that f(x) = g(x) for each x ¢ D, then
f{x) = g(x) for each % ¢ X.

Let Q2 = {(x,y) e 2 : x,y e Q and y > 0}. Note that Q2 is a
dense subset of Z. Let Fl = {f|f : (Z,T2) + {([0,1]1,E) is continuocus},
where £ is the Euclidean topology on [0,1]. Let F2 = {f|f : (QQ,TQ/Q?)->
([0,1],E) is continuous}. Define F : Fl > F2 by F(f) is the restriction
of f to Q2 for each f ¢ Fl' Then, F is a function from Fl to F2. By
the extension theorem which we have stated, F is alsc one-to-cne. Hence,
|F

< |F,|, where if A is a set, then ‘A| is the cardinality of A. Let

1= 15,
F={f 0 (Q°.T,/Q°) » ([0,1,6)). Clearly, |F

< |F| and hence, |F | =

2| 1

[Fi.
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Recall that each subset of H is a clocsed set in (Z,Tz). If
(Z,TQ) were a normal space, then corresponding to each A € P{H) (where
P(H) is the set of all subsets of H), there would exist fA € Fl such
that £,[A] ¢ {0} and f,[H-A] c {1}. Let A,B ¢ P(H) with A = B. If

€ Fl were chosen as above, then necessarily £, # f_. Therefore,

fA’fB A B

|P(H)| < |Fl|' Note that |R| ; |P(H)|, where R is the set of real
numbers, and thus |R| : |Fl‘ and therefore, |R| < |F| if (Z,TQ) is a
normal space. Hence, to prove that (Z,Tz) is not a normal space, it
suffices to prove that |F| = |R].

Identify with each f ¢ F a unique matrix A(f) of the form

(a ) in the following way. Since Q2 is ccuntable, write Q2 =
m,l meP

{r : n e P}. Then for each f ¢ F, let A(f) = (a_ .) be given by
n m,l meP

2

a = f(r_ ) for each m ¢ P and for each m ¢ F, a is to be written as
m,l m m,l

a binary number with the following conventicns: (i) the number "1" will
be written ".111..."; (ii} if n ¢ P and f(rn) z 1, then f(rn) will be
written as .a. a. a. ... where a_ ¢ {0,1} for each n ¢ P and a_ = 0 for
1 72 73 ha! n
infinitely many indices n € P (note that this is always possible). The
reader should note that each f ¢ F is assigned a unique matrix A(f).

Let £ ¢ F. Then for each m ¢ P, the entry f(rm) in A(f) is

where a € {0,1} for each n € P (see Figure 1u4-2).

a a a ‘e
m,l m,2 m,3 .

Define ¢ : F -~ [0,1] by

o(£) = . a) 13) 53 13 5% %3191 43 3% 2% 10

where f ¢ F and f is written as above.
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91,1%1,2% 3% 1,4
a “ e
2,1%2,2%2,3% 1

ACEY = |* 93,1%3,2%3,3%3,4" 7"

a PR
1% 2% 3%y

Figure 1u4-2

Since each f ¢ F is associated with a unique matrix representa-
tion A(f), it is clear from the definition of ¢ that ¢ is a function
with demain F. Also, it is clear that the range of ¢ is included in
[0,1]. It is to be noted here that ¢ actually maps elements of F into
binary representations of numbers in [0,1]. Note that each number in
[0,1] has at most two binary representations. Hence, to prove that
|F| = |R|, it suffices to prove that ? is cne-to-cne.

Let be a number in [0,1] written in one of its

a,a,8,. ..
binary representations. If a = 1 for each n € P and f ¢ F such that

f(rm) = .111...for each m ¢ P, then it is clear that ¢_l[.a162a3...] =

{f}. If there exists N € P such that ay = 0 and S 0 for only

finitely many n € P, then is not a binary representation that

LICPLITRE
is mapped onto by ¢®. To verify this statement, suppose, instead, that

g € F and ¢(g) = Then there would exist on M ¢ P such that

I CITRR
g(rM) # .111... and therefore g(rM) in its binary representation,

according to the convention stated previously, must have infinitely many
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zeros to the right of the binary point. Clearly, this would make

“@8,8,. .. have a = 0 for infinitely many n ¢ P which i1s a contradic-

tion. Finally, if a_ = 0 for infinitely many n € P, then it is possible

that ? maps onto ®.a but if .a.,a.a,... has another binary repre-

192%3 19293
sentation, then the other representation is not mapped cnto by ¢, by the
previcus statements, Hence, each number in [0,1] has at most one binary

representation which is mapped onto by ¢, Therefore, if ¢ does map onto

P2y 858 and g € F such that A(g) is given in Figure 14-3, then it is

clear that ¢_l[.ala2a3...] = {g}. Thus, we have shown that each number

in [0,1] has at most one pre-image in F by the mapping ¢. Hence, ¢ is

one-to-one. Therefore, |F| < |R| as required.

alazaua7...

536568812...

Alg) = aGaQaLSalB"'

10%14%19%25 "

Figure 14-3

In summary, we have shown that there are more pairs (X,L) of
closed, disjcint subsets of Z than there are continuous functions from
(Z,TQ) to ([0,1],E) which map K into {0} and L inte {1}. Hence, (7,T.)

is not a normal space.



11. HNot B.W. compact.
Note that H is an infinite, clesed subset of (Z,TQ) and that

(H, TQ/H) is the discrete topology.

71
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CHAPTER IV

ORDER TOPOLOGIES

The definitions which follow are included here to prevent mis-

understanding. In each definition, it is to be understood that S is a

non-empty set and that "<" is a relation in § % S. Also, if (a,b) € <,

then we ghall write a < b.

1.

Definitions

(S,<) is a partially ordered set if "<" is transitive, reflexive,

and antisymmetric.

(8,<) is a linearly ordered set if (S,<) is a partially ordered set

and whenever a,b € 5§, then a <b or b < a.

(5,<) is a well-ordered set if for each nonempty subset A of S, A
contains a first element; i.e., there exists an a € A such that

a < x for each x € A.

Let (5,<) be a linearly ordered set. Tor each a ¢ S, let R(a) =
{xeS:a<xandazx}and L(a) = {xe S : x < a and x = a}l.
Let S = {R(a) : a e S} v {L(a) : a € S}. Then, the order topology
T cn (8,<) is defined to be that topology on S which has § as a
subbase. The base B for T which is generated by S is given by

B={¢}u {R(a) : ae s} u {L(k):beStui{Ra)nLbd):a,be S}

The theorem which follows and is proved in part is very useful in

this chapter.
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Theorem. Let S be an infinite set and let (5,<) be & linearly ordered
set. Let T be the order topocleogy on {S,<). Then:

(a) (S,T) is Hausdorff.

(b) If (8,<) is a well-ordered set, then (S,7) is a totally dis-
connected space.

(c) If S is compact, then (8,T) is a completely normal space.

(d} S is compact if and only if for each set A contained in §,
l.u.b. A exists as an element of S (recall l.u.b. A = g if and only if
(1) x < a for each x ¢ A and (iil) a < y for each y such that x < y for
each x € A).

Proof.

(a) Let a,b €« Switha#b. Then, a <b orb < a. Without
loss of genmerality, assume a < b. If there exists ¢ ¢ S such that
a<c<b,az#zcandb 2% c, then a € L{c) ¢ T, b € R(c) € T and R(c)} n
L(c) = ¢. 1If there is no such element c, then a € L(b) ¢ T, b e R(a) ¢ T
and L(k) n R(a) = ¢.

(b) Let (5,<) be a well-ordered set. Suppose that A is a subset
of § such that there exist a,b ¢ A with a 2 b. It suffices to prove
that A is not a connected set, Without loss of generality, we may
assume that a < b.

Since (5,<) is a well-ordered set and R{a) # ¢, R(a) contains a
first element, say c. Since c € R(a), a < c and ¢ # a. Now, R{(a) and
L(c) are nonempty, open, disjoint subsets of S such that 8 = R(a) v
L(c). Hence, R{a) and L(c) are also closed sets in (S,T). Clearly,
{R{a) n A, L(c) n A} is a separation for A. Hence, all components of 8

are singleton sets.
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(c¢) This conclusion of the theorem is stated in [17], page 108,
and also in [7], page 160, where a hint for the proof is given. The
proof of this part is omitted here.

(d) (i) Let S be compact and suppose there exists A < S such
that 1.u.b. A does not exist as an element of S. Let H = {x ¢ 5 : x
is an upper bound for A}. Let C = {R{x) : = ¢ H} u {L(a) : a ¢ A} and
note that C is =z collection of open sets. Let y € S, Then, either
there exists an a € A such that y ¢ L(a) or y € H. If y € L(a) for some
a€ A, theny € u C. Otherwise, since y # 1l.u.b. A, there exists an
®x € H such that x <y and x 2 y,. But then y € R(x) and thus y ¢ u C,
Hence, C is an open cover of S.

Therefore, there exists a finite subcover F of C. Clearly,
F={R(x) : x ¢ HD} u {L(a) : a e Aa} where H_ and A are each finite
subsets of H and A, respectively. Notice that we have not shown that A
has an upper bound.

Suppose there exists an upper bound for A in S. Then, since H,
is finite, let X, be its first element, i.e., x, € H and x < x for
each x € Ho. Either X, € A or X, ¢ A. If X, € A, then, since X, is an
upper bound for A, x_ = l.u.b, A which is a contradiction. Hence,
X, ¢ A. But since x_ € H, x, ¢ L{a) for each a ¢ A . S8ince F is a
cover of 5, x_ € R(x) for some x ¢ H_. But this is impossible since
X, < x for each x € H . Hence, A cannot have an upper bound in S and
thus F = {L{a) : a ¢ A_}.

Since A  1s finite, there exists an a e A such that a < a  for

each a € A . Note that this implies that a ¢ L{(a) for each a € A_ and
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hence F is not a cover of S which contradicts the way in which F was
chosen. Hence, it follows that each subset of $ has a least upper
bound in S.

(ii) Let S have the property that each subset of A has a least
upper bound in S.

To prove that 8 is compact, we refer to a subbase theorem by
Alexander, page 139 of [14], which states: "If § is a subbase for the
topology of a space X such that every cover of X by members of S has a
finite subcover, then X Is compact." A proof of this theorem appears
on that page also.

Let C be a cover of S by elements of S. Then, € = {L{x) : x € X}
U {R(y) : vy € Y} where X and Y are subsets of &,

Let x_ = l.u.b. X. Then x < x_ for each x ¢ X and hence Li{x) <
L(x_) for each x ¢ X. Note that x, 4 L{x_ ). Hence, x ¢ R(yl) for some
¥ € Y. Since ¥y, <X, and Y ® %, there exists %) € X such that
¥y <% and ¥ 2 Xy by definition of x_ = l.u.b. X.

Note that ¥y < X e X, and v,y € Y imply that

12 V17 Fe %
{R(yl), L(xl)} is a finite subcover of C. Hence, $ is compact.

BxamEle 15

The following topology may be found in [7], page 161.
The space X is [0,1) x [0,1]; 1.e., X = {(x,y} : 0 £ x £ 1 and
0 <y <1}, For (xl,yl) e X and (x2,y2) € X, "<<" is defined by
" nos . . X .. _
xl,yl) << (xQ,yQ) if and only if either (i) X, < %, or (ii) X = X,

and ¥y < ¥y It is easily seen that "<<" is a linear ordering on X.

Hence, let T be the order topology on X induced by '<<™,
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1. Compact.

By the theorem from the introduction to this chapter, it suffices
to show that 1f A < X, then l.u.b. A exists as an element of X.

Hence, let & < X, Clearly, if A = ¢, then l.u.b. A = (0,0).
Suppose then that A = ¢.

Let a = l.u.b., {x : (x,y) € A for some y ¢ [0,1]}, where the
least upper bound is taken with respect to the usual order on [0,1].
Clearly, 0 < a < 1. If (a,y) ¢ A for each y ¢ [0,1], then let b = 0.
Otherwise, let & = l.u.b. {y : (a,y) € A} where the least upper bound
is taken with respect tc the usual order on [0,1]. We claim that
l.u.b. A = (a,b).

Suppose {(a,b) is not an upper bound for A. Then, there exists
(x,,y,) € A such that (a,b) << (x_,y_) and (a,b) = (x_,y_). Then,
either a < x ora=x andb <y . Ifa<zx,then a# l.u.b, {x
(x,y} € A for some y € [0,1]} which is a contradiction. Hence,
a=x_ and b <y_. But thenb # l.ub. {y : (a,y) = (x_,y) ¢ A} which
is a contradiction. Hence, (a,b) is an upper bound for A.

Suppose that (x )} is an upper bound for A znd that (xl,yl) <<

1°Y1

(a,b) and (xl,yl) # (a,b). Then, either'xl <aorx =a and v < b.

In the case that X, < a, it fellows, by definiticn of a, that there

exists (x,y) € A such that X, < X £ a. But then (x,y) ¢ A and

(xl,yl) << (x,y) with (xl,yl) # (x,y) which contradicts the choice of

(Xl’yl)' In the case that X, = a and ¥y < b, it follows, by the defi-

nition of -, that there exists y ¢ [0,1] such that (x ) << (a,y) =

1°¥1

) << (xl,y) with (xl,yl) :(xl,y)

(xl,y). But then (xl,y) € A and (xl,yl
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which contradicts the choice of (x ). Hence, Lf (xl,yl) is an upper

1°Y1

bound for A, then (a,b) << (x }. Hence, (a,b) = l.u.b. A.

l,yl
2. Hausdorff and completely nocrmal.
These properties follow from the theorem in the introduction to

this chapter.

3. Not separable.

Let D be any countable subset of X, It suffices to show that D
is not dense in X.

For each a ¢ [0,1], define X, = {Ca,y) : 0 <y < 1}. Note that
Xa = R[(a,O)) n L((a,l)) ¢ T for each a ¢ [0,1]. Also, if a,b € [0,1]
with a # b, then Xa n Xb = ¢. Hence, {Xa : a2 e [0,1]} is an uncountable

collection of disjoint, nonempty, open subsets of X. Therefore, there

exists ¢ € [0,1] such that D n Xc = ¢. Thus, D is not dense in X.

4, First countable,
. 1 1
We state without proof that {L((O,EJJ :n e P} and {R[(l,l—EJJ
n ¢ P} are countable bases for N[(0,0)] and N((l,l)), respectively.
Let (a,b} € X with a € (0,1). Then, b ¢ (0,1} or b € {0,1}.

. . . 1
Now, there exists N_ e P such that n 2 N_ implies that a - =« (0,1).

Also, if b ¢ (0,1), then there exists Nb ¢ P such that n = Nb implies
that b - %—e (0,1 and b + %-e {0,1).
We claim that {R((a- %3 l))n L[(a,%)) :neP,nz2 Na},
1 1 1
{RUaﬁ-Eﬂ nLUa¢-+EH: neP,nZI%},aﬁ{RUaA—Hn n
1
L[(a t s O)] tne P, n 2 Na} are countable bases for N((a,O)), N((a,b))

where b ¢ (0,1), and N((a,l)], respectively. We shall prove the claim
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for N((a,O)) and note that the proofs for N((a,b)] where b € (0,1) and
N[(a,l)) are not more complicated.

Let (a,0) € X with a € (0,1). Suppose that (a,0) ¢ U and U e T.
Then, there exists (51’52), (tl’tQ) € X such that (a,0) € R((Sl,SQ)) n
L[(tl,t2)] c U, since B is a base for T (see Definition 4 in the intro-
duction to this chapter). It follows that (51,52) << {a,0) <« (tl,tQ).

Then, s, < a and either a < tl or a = tl with t2 > 0., In either case,

5, <a and there exists ty € {0,1) such that (a,ta) << (tl,t2).

Now, s, < a implies there exists Nl ¢ P such that N_ = Na and, if

1 1

€ P

€ (0,1}, there exists N2

1 .
n=z Nl’ then Sl < a - o Also, since t

such that N2 =2 N

3

4+ Hence, (51’52) <<

. 1
1 and, if n 2 N2, then H-< t

(a - j;, 1) << (a,0) << (a,-j;) << {a,t.) << (t,,t,) and therefore
N2 N 3 1°°2
(a,0) ¢ R((a - §L3 l)] n L[(a, ﬁLJJ c U as required to verify that
2 2

{R{(a - %3 1)) n L((a, %J) :me P, n 2N} is a countable base for

N{(a,0)).

5. Proposition: If S e 8§, then S is connected.
Proof. 1If 8 € §, then there exists t ¢ X such that either
8 = R(t) or S = L{(t). We shall show that, if S = L{t), then S is con-
nected and then note that the proof is similar in the case that & =R(t).
Suppose {A,B} is a separation for L(t)}. Then, since A n B =
AnB=4¢, Aand B contain, respectively, their limit points which are
also in L(t) [since AUB= L(t)). We may assume (that S # ¢ and) that
(0,0) ¢ A, Let a = l.u.b. & and note that a« < t. Suppose a < t. Then,

since a i1s clearly a limit point of A with o < t, it follows that o € A.

But then o would be a limit point of B and this would imply that o € B
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which is a contradicticen. Therefore, it must be that a = t. Let B =
l.u.b. {p : pe A and p << b for each b ¢ B}. Note that B ¢ A. But,
since B is also a limit peint of B, B € B which is a contradiction.
Hence, L(t) cannct have a separation {A,B}. Therefore, S = L(t) is

cennected.,

6. Connected.
Note that L[(l,l)] and R((0,0)] are each connected sets,
L{(1,1)) n R{(0,0)) = ¢ and X = L{(1,1)} v R((0,0)}. Hence, X is con-

nected.

7. Locally connected.

Recall, from Definition % in the introducticn to this chapter,
the definition of the base B for T. It is clear by (5), page 78, that
B € B implies that B is connected. 1t follows that components of open

sets are open.

8. (The following propositions are useful in proving that (X,T} is not
a perfectly normal space.)

Proposition (a): Suppose U ¢ T and (x,1) € U for some x ¢ [0,1].
Then, there exists (u,v) « R {(i.e., an interval on the real line) such
that u < x < v and ¢ # {(x,y) : (x,y) ¢ (u,v) and y € [0,1]} < U.

Proof. There exist (sl,52), (tl’tQ) € X such that {(x,1) €

R((Sl,s2)) n L((tl,tQ)) c U. Note that s, < x < t;. Suppose that

(a,b) € X and 5, <ac<t). Then, (a,b) ¢ R[(Sl’SQ)] n L[(tl,tQ)].

Hence, if u = s, and v = t., then u £ x < v and ¢ # {(x,y) : x € (u,v)

1 1?
and y € [0,1]} < U.



80

Proposition (b): Suppose U € T and (x,0) ¢ U for some x ¢ [0,1].
Then, there exists (u,v) © R such that u < x £ v and ¢ = {(x,y)
x ¢ (u,v) and y € [0,1]} < U.

Proof. There exist (81,82), (tl,t2) € X such that (x,0) ¢

R((sl,sz)] n L[(tl,t2)) c U. Note that s, < X £ t Suppose that

1 1°

(a,b) € X and s, <a < t;. Then, (a,b) € R[(sl,sz)) n L((tl’tg))'

Hence, if u = s, and v = t., then u < x £ v and ¢ 2 {(x,y)

1 1’

x € (u,v) and y ¢ [0,1]} c U,

Proposition (¢): Let K = {(x,y) : x e (0,11 and y ¢ {0,1}}. Let
Ue T such that X ¢ U. If B = {x : (x,y) ¢ U for each y ¢ [0,1]}, then
B is an open dense subset of ([0,1], E) where E is the Euclidean top-
clogy on [0,1].

Proof. Let x e [0,1]. Now, (x%,0) € K and (x,1) € K. Hence,
(x,0) € U and (x,1) € U. By Propositions (a) and (b) above, there exist
u,v € R such that u < x < v, {u,x) ¢ B, and (%x,v) <« B. If x ¢ B, then
x ¢ (u,v) ¢ B and, therefore, B is open in ([0,1], E). If x ¢ B, then

it is clear that each open set in ([0,1], E) containing x intersects

B and, therefore, B is dense in ([0,1], E).

9. Not perfectly normal.
Let ¥ € [0,1]. Note that ¢ # R[(x,O)] n L[(x,l)) e T. Hence,
ifv=u {R((x,O)] n L((x,l)) : x e [0,1]}, then V ¢ T. Note that
X - V = X where K is defined in [8(c)) above. Hence, K is closed.
Let {Un :n e P} be a countable collection of open subsets of
{X,T) such that K ¢ Un for each n € P. For each n € P, let Bn =

{x: (x,y) € u, for each y ¢ [0,1]}. Then, by [8(c)] above, B_ is
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an open dense subset of ([0,1], E) for each n € P. By the Baire Category
Theorem on page 65, n {Bn : n e P} is dense in ([C,1]1, E}. In particu-
lar, there exists b € n {Bn :n e P}, It follows that {(b,y)

vy ¢ [0,1]} ¢ U for each n ¢ P. Hence, ¢ = {{(b,y) : v € [C,1]1} <

n {Un :ne P}, Therefore, K < n {Un :ne P}, Hence, K is a closed
subset of (X,T) such that K is not the intersection of a countable col-

lection of open subsets of (X,T).

10, Not metric.

Every metric space is perfectly normal.

Example 16

The following topology may be found in [10], page 17. The space
of Example 17 is a subspace of the space of this example.

The construction of this space depends on the Well-Crdering
Theorem which is also known as Zermelo's Theorem (see [10], page 17
or [11], page 52-53). The Well-Ordering Theorem states that if X is a
set, then there exists a well-crdering for ¥.

By the Well-Crdering Theorem, there exists a well-ordering
“<o” for the set R - P, where R is the set of real numbers. Now, let
a = R and extend "< " to another ordering "<" by agreeing that:
(a) x <y for each x,y € R - P where x <_y, (b) n <mn + 1 for each
nelP, (c)n < xwhenever ne Pand x € R - P, and (d} x < o whenever
x € R, The reader should have no difficulty in verifying that "<" is a
well-ordering for R u {cal.

Note that o has uncountably many predecessors (with respect to
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the ordering "<"). Hence, there exists an @ € R u {a} such that Q is
the first element of R u {a} which has uncountably many predecesscrs.

If  is the set of predecessors of @ in R v {o}, then the space
Q% for this example is given by Q% = Qu {q}. Let W* be the order
topology on Q%.

Let A be a nonempty subset of Q%. Since (Q%,<) is a well-ordered
set, A has a first element, say a. We shall use the notation a =

f.e.o. A, to be read "a is the first element of A."

1. Compact.

By the thecrem in the introduction to this chapter, it suffices
to prove that if A < Q%, then 1.u.b. A exlists as an element cof Q#. Let
A c Q%. Clearly, if @ € A, then l.u.b. A = (. Otherwise, & is an
upper bound for A and l.u.b., A4 = f.e.c. {x ¢ Q% i a < x for each

x ¢ A}. Hence, l.u.b. A exists as an element of Q .

2, T2, completely normal, and totally disconnected.
These properties follow from the theorem in the introduction to

this chapter.

3. Propositiom: Let A be a countable subset of . Then, l.u.b. A ¢ Q,
Proof. Note that, by definition of 9, each element of § has at
most countably many predecessors. Let Al = {xe @ : x < a for some

a € A}. Then, Al is countahle. Note that l.u.b. A, = l.u.b. A and that

1
a < ) for each a ¢ Al. By definition, £ has uncountably many predeces-
sors. Therefore, if t = f.e.o. {y e § : a<yora=y, for each

ae Al}, then t < 2, i.e., t € Q. Because "<" is a well-ordering, a < t

for each a « Al'
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If £t # 1l.u.b. A, there exists s ¢ @ such that s < t and 2 £ s for
each a € A. But then for each a ¢ Al, a £ s. This contradicts the def-
inition of t as the first element of a certain set. Hence, t = l.u.b. A

and t ¢ Q.

4. DNot first countable.

In particular, there is no ccuntable base for N(Q).

Suppose that {Bn : ne P} is a countable subcollection of N{Q).
Recall, from the intreoduction to this chapter, the base B* for w*. Note
that there exists {bn : ne P} c § such that R(bn) c Bn for each n € P.
By (3), page 82, if b = l.u.b. {bn :ne P}, thenb ¢ 0. It follows that
there exists d ¢ @ such that b < d. Note that R(d) e N(Q) but that B
is not a subset of R{(d) for each n ¢ P. Hence, {Bn :ne P} is not a

base for N{(Ql). Therefcre, N(f) has no countable base.

5. Not separable.

Let D be a countable subset of Qé. It suffices to show that D is
not dense in Q*.

Note that D - {Q} is a countable subset of (. Hence, if b =
l.u.b. (D - {Q}), then b € @. Clearly, ¢ = R(b) n L(Q) and

Dn [R{B) n L{W] = ¢.

6. Not perfectly normal.

Since (Q*,w*) is Hausdorff, {9} is a closed set. In (4), page
83, suppose {Bn : n e P} is also a subset of B. Then, {2} <
n {Bn :n e P}. It follows that {Q} is not the intersection of a

)

countable collection of open subsets of Q".
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7. HNot metric.

All metric spaces are perfectly normal.

8. DNot locally connected.
Since (Qf,w“) is totally disconnected, it suffices to show there

exists a singleton set which is not open. Clearly, {2} is not open.

9. Sequentially compact.

This follows from the proof of (3) on page 82.

Example 17
The space for this topology is (Q,W} where @ 1s described in the
previous example and W = wh/Q. It is trivial to show that the order

topology generated by "<" on @ is wH/Q.

1. T2, completely normal, and totally disconnected.

These properties are inherited from (Q",w").

2. Not Lindelof.

Let C = {L(x) : x € ). Then, C is an open cover of @ since
l.u.b. @ = @&. Note that L(x) is a countable set for each x € {. Sup-
pose that D is a countable subcollection of C. Then, since v D is &

countable set, u ¥ 0. Therefore, C has no countable subcover.
z

3. Not separable,

This follews from (5} of Example 16.

4, First countable.
Note that {L(2)} is a countable base for N{(1). Let {x} ¢ Q@ - {1}.

Since x has only countably many predecessors in @, let {xn :ne T} for

.
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some T © P be a list of the predecessors of x. Let y = f,e.,o. {z ¢ 0:
x < z}. It is easily seen that {R(xn) n L(y) : n ¢ P} 1s a countable

base for N(x).

5. B.W. compact.

Let A_ be an infinite subset of {. Let A be a countably infinite
subset of A . Then l.u.b. 4 ¢ 0.

Let b = f.e.o. {g ¢ @ : there exists an infinite subset A(q) of
A such that a < q or a = g, for each a ¢ A(q)}. Suppose b is not a
limit point of A. Then, there exist c,d € @ such that b € R(c) n L(d)
and [(R(c) n L{(d)] n [A - {b}] = ¢. But then, A(k) is an infinite col-
lection of predecessors of ¢ in A. This contradicts the definition of

b. Thus, b is a limit point of A and hence b is a limit point of A .

6. Locally compact.
Recall (Q i) is locally compact and regular and that @ is an

open subset of ¢ . By Theorem 0-1, (Q,W) is locally compact.

7. Not metacompact.
Any T,-space which is B.W. compact and metacompact is compact

(see Thecrem 0-4),

8. Not metric.

A1) metric spaces are paracompact [see Theorem 0—6(d)).

9. Not locally connected.

Since {Q,W) is totally disconnected, it suffices to prove that
nct all singleton sets are open. If all singleton sets were open, then
(2,0) would clearly have to be metacompact. Hence, there exists a ¢ Q

such that {al is not open.
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