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SUMMARY 

The capacitance per unit length between a circular cylindrical 

conductor and a coaxial square conductor interior to it is given by 

sidered is to determine upper and lower bounds on the quadratic functional 

representing C. 

To avoid wordiness, the capacitance per unit length between two 

cylindrical conductors of given cross sections is referred to simply in 

terms of the plane curves representing the cross sections. 

It is first proved that the circle circumscribed about the inner 

square, when taken with the circle representing the outer conductor, 

yields an upper bound on the capacitance and, similarly, that the circle 

inscribed in the inner square, when taken with the outer circle, yields 

a lower bound. The difference between these bounds (and hence the un­

certainty with which their arithmetic average approximtes C) is large if 

the length of the diagonal of the square is greater than one-fourth the 

diameter of the outer circle. In this case the method described in the 

following paragraph substantially reduces the difference between the 

computed bounds. 

R 

where R is the annular region between the conductors and (p is a har­

monic function ((J)xx

 +
 tyyy = ®^ satisfying the prescribed boundary con­

ditions ((J) = V on the circle, (J) = V on the square). The problem con-
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By extending the diagonals of the square till they intersect the 

outer circle, the region R is divided into four congruent subregions, 

one of which is mapped by f(z) = into a region between a circle A and 

a tear-shaped closed curve B interior to A. The smallest possible circle 

is circumscribed about B, and the largest possible circle is inscribed 

in B. It is then proved that these circles, when taken with A, yield the 

desired improved upper and lower bounds on the capacitance C/k of the 

original subregion. An extension of the procedure gives even better 

bounds if they are desired. 

This method may be used on any capacitor formed by two concentric 

cylindrical conductors, providing one is a circle and the other can be 

described as follows: it is a simple, closed, piecewise smooth curve 

consisting of n identical arc segments such that the terminal points of 

each segment have equal moduli, these moduli being greater than that of 

any point on the arc segment other than a terminal point. There- are only 

two changes necessary: the original transformation must now be f(z) = z11, 

and the region on which f(z) is defined must be one of the n congruent 

subregions into which the configuration is divided by radial lines drawn 

from the common axis through the terminal points of the n similar arc 

segments. 

Finally it is shown that the approximate solution of the capaci­

tance problem treated here is directly applicable to analogous problems 

in the fields of heat transfer, fluid flow, and neutron diffusion. 
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CHAPTER I 

THE PROBLEM AND METHOD OF SOLUTION 

Two coaxial cylindrical conductors and the annulus between them 

form a type of capacitor. The capacitance per unit axial length is de­

fined to be the charge per unit length divided by the potential differ­

ence between the conductors when that charge is present. The determina­

tion of upper and lower bounds on the capacitance of such a system with 

a square inner conductor and circular outer conductor is the subject of 

this thesis. 

The problem.--It seems intuitively obvious that an upper bound on the 

capacitance is obtained by replacing the inner conductor by its circum­

scribed circular cylinder. The truth of this statement is proved in the 

Appendix (Lemma 2). A lower bound is similarly obtained by replacing 

the inner conductor by its inscribed circular cylinder. The arithmetic 

average of these bounds is a good approximation to the capacitance when 

the ratio JUL of the diagonal of the square to the diameter of the circle 

is small. As JJ^ increases, however, the reliability of the approximation 

quickly deteriorates because the bounds which are averaged become pro­

gressively farther apart. Thus the crux of the problem is to reduce the 

difference between the bounds when JJ^ is large (l/h^JJ^< l). 

The method of solution.--Let P - ^ and P ^ be piecewise smooth, simple, closed 

curves with no point in common and with P - , interior to P p . These curves 
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may be thought of as cross sections normal to the axes of two long cylin­

drical conductors. If end effects are neglected, the capacitance per 

unit length of such a configuration is given by the expression £l] 

1 
Vff(V - V f J 

C S R 

(<S>1 + C) dx dy , (1) 
x J 

where R is the annular region between the conductors and ($) is a harmonic 

function ((£) + ( J ) = 0) satisfying the prescribed boundary conditions xx yy 
( ( J ) = v"c on P ^ , ( J ) = V g on P ) . In the special case where P and P ^ 

are concentric circles of radii a and b (a < b), the expression for C 

reduces to C 2~] 

C = 2 l n l b / a ) * ( 2 ) 

Now consider a capacitor where the inner conductor is square and 

the outer conductor is circular. As mentioned in the previous section, 

upper and lower bounds for the capacitance per unit length can be obtained 

by replacing the square first by its circumscribed circle and then by its 

inscribed circle. Formula (2) provides a way to calculate these bounds. 

When p L is large, the area between the square and its circumscribed 

circle is appreciable compared to the area between the square and the outer 

conductor; a similar comment applies to the area between the square and its 

inscribed circle. This circumstance suggests the possibility of obtaining 

better bounds by replacing the circumscribed and inscribed circles by other 

suitably chosen curves which, while lying respectively outside and inside 

the square, approximate the square more closely than the circles do. Such 

curves may be obtained as explained in the following paragraphs. 
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Figure 1 is a representation in the z-plane of one-half of a cross 

section of the actual capacitor. The diagonals of the square represent­

ing the inner conductor have been extended until they intersect the circle 

representing the outer conductor. The extended diagonals thus divide the 

annular region between the conductors into four congruent subregions, one 

of which is labeled S. The boundaries of S are L ^ , a segment of the outer 

circle; and L ^ , segments of extended diagonals; and L ^ , one side of 

the square. 
4 

Under the mapping w = z , where z = x + iy and w = u + iv, S is 
t I I I I 

mapped onto S and L ^ , L ^ , , onto L ^ , L ^ , L ^ . is the tear-shaped 

closed curve in Figure 2, and is the segment of the u-axis joining the 

cusp of with L ^ . The mapping and its inverse are one-to-one and ana­

lytic, provided the domain of definition in the z-plane is S + + L ^ , + 
i i i t 

and the domain of definition in the w-plane is S + + + where 
i 

is considered as a cut. The following facts should be noted: 

1. the cusp of is the image of the point (a,a) in the z-plane, 

where a is the half-side of the square, and the distance of the cusp from 
. 4 

the origin is 4a 

2. the point of intersection of with the positive u-axis is 

the image of the point (a,0) in the z-plane, and the distance of this 
4 

intersection from the origin is a • 
Thus the extremities of on the u-axis are unequally distant from the 

origin. This geometrical fact motivated the construction of the curves 

% and c f ^ shown in Figure 4. 



Figure 3 . 
Bounding Curves in 

the z-plane 

Figure h. 
Bounding Curves in the w-plane 
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In that figure, k^ is the image of the circle k^ inscribed in the 
t 

square in the z-plane, and k^ is the image of the circle k^ circumscribed 

about the square in the z-plane. ^ is the largest circle which can be 

inscribed in L y and Q 2 is the smallest circle which can be circumscribed 

about it. A critical examination of the methods of constructing ^ and 

I f ^ is included in the next chapter. 
Since | w ^ ^ | ̂ : | w^^" | i m P l i e s I z - j _ I — \ z

2 I t where = and 
l A Y ' ' ' 

z 2 = w 2 ' ^ e c u r v e * 2' l y i n g between L^ and k^ in the w-plane, will have 

its inverse image ^ e r rtirely between L^ and k^ in the z-plane, as shown 

in Figure 3- Then, by Lemma 2, the value of the integral (l) over the 

region bounded by )£^> a n ( i i s l e s s ' t n a n "the value of this inte­

gral over the region bounded by k 2, L^, L^, and L^. In Figure 3 it can 

be seen that ^ more closely approximates L^ than k^ does so that pre­

sumably ^ will yield a greater lower bound than k^. This is later sub­

stantiated numerically. 

By Lemma k it is known that there exists a one-to-one analytic 

mapping, p = L(w), which takes the circles %^ and L^ into concentric 

circles in the p-plane. 0 and L^ can be similarly mapped into concen­

tric circles in the p-plane. By applying Formula (2) to the two systems 

of concentric circles in the p-plane, new upper and lower bounds on the 

capacitance of the actual system can be found, since it is shown in the 

next section that under an analytic one-to-one transformation the inte­

gral (l) remains invariant. As will be seen subsequently, the new bounds 

are a substantial improvement over those obtained by using the inscribed 

and circumscribed circles. 



CHAPTER II 

MATHEMATICAL JUSTIFICATION OF THE METHOD 

It will be shown that 

y ' i A 

1 . the inverse image of 0 ̂  under z = w ' lies exterior to L, 
in the z-plane; 

y ' l A 

2 . the inverse image of 0 ^ under z = w ' lies interior to L^ 

in the z-plane; 

3- there exists a linear transformation which takes % ̂  a n ^ ^ 

( }J and L^) into two concentric circles in the p-plane; 

h. the value of the integral (l) remains invariant under the 

analytic one-to-one mappings considered. 
To verify 1 . it will be proved that ^ 2

 l i e s exterior to L^ and 
l A 

therefore, since the mapping w = z ' maintains modular inequalities, ( 

lies exterior to L^. 

Let z = re 1^ and w = se 1 C* . The equation of L^ is r = a sec © 

where - T ( / K < © — ^ A ; and therefore the equation of L^ is, since 

o t = KE , 

w = r^e^® = a ^ s e c \ o < A ) C cos o( + isinoiQ. 

Suppose, as will be verified later, that the equation of $ ̂  is 
\ w + 1 . 5 a j = 2 . 5 a . 
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and % ̂  "will intersect when 

k 
a \ a ^ s e c ^ A ) [cosot + isino<] + 1 . 5 a ^ | = 2 . 5 

Simplification of this equation and use of the relation 

H P cose* = 8 cos ( * A ) - 8 cos ( ° < A ) + 1 

yield 

[ c o s 2 ( < X A ) _ i ] Q c o s 2 ( < X A ) - 1 / 2 ] [ . 1 0 c o s \ * A ) +
 3 c o s 2 ( * A ) + l] = 0. 

The only real solutions of this equation are = 0, + 4 f t , + 8 ^ • • . and 

0 ( ^ = + * f t , + 3 T f , • Since - T T < — T T , and # 2 intersect only when 

= 0 and C < = T t . When c * = T T / 2 the moduli of and p 2 are 

8 a V ( 3 + 2 v f 2 ) and 2 a \ Thus, since 2 > 8 / ( 3 + 2 / 2 ) , # ' is exterior to 

at 0 < = T T / 2 . By continuity and symmetry, Q 2 is exterior to every­

where in the w-plane, and 1 . is proved. 

To prove 2 . it is first necessary to construct £ F . The function 

which gives the perpendicular distance of a point on from the u-axis 

is D(oC) = \ a ^ s e c ^ ( ° < A ) sinoCJ . By maximizing D ( O ^ ) it is found that the 

points on which are furthest from the u-axis have coordinates 

[^ai+seci|( T T / 6 ) c o s ( 2 T T / 3 ) , +a^sec\TT /6) s i n ( 2 l Y / 3 ) " ] . The common abcissa 

of these points determines the center of % ̂ , and the ordinate of either 

point determines the radius. Hence the equation of is 

I w - a^sec \ T T / 6 ) c o s ( 2 T T / 3 ) \ = a ^ s e c ^ C T T A ) s i n ( 2 T T / 3 ) , (k) 

and the same technique used to prove 1 . also proves 2 . 
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Before proving 3* it is necessary to define what is meant by sym­

metric points with respect to a circle whose center is on the real axis. 

Definition.--Let F he a circle with center at (g,0) and radius h. Let 

(m, 0) be any point on the real axis with m ^ g. The point (p,0) is said 

to be the symmetric point of (m, 0) with respect to F if, and only if, 

(m - g)(p - g) = h . 

Lemma 3 guarantees that there is one, and only one, pair of points 

which is symmetric with respect to both circles of an eccentric pair of 

circles, one of which is entirely inside the other. Lemma k exhibits 

the transformation which takes this eccentric pair into two concentric 

circles. This proves 3-

Repeated application of Lemma 5 proves k. 
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CHAPTER III 

SAMPLE CALCULATIONS AND RESULTS 

Sample calculations.--A numerical example will be worked out to illustrate 

the above method. Suppose L-̂  is the circle with center at ( 0 , 0 ) and radius 

one, and L^ is the square with half-side one-third centered at ( 0 , 0 ) . Let 
k 

the region S be that shown in Figure 1 . w = z maps L^ onto the unit 

circle L-̂ , and L^ onto L^, where L^ intersects the u-axis at ( - 4 / 8 l , 0 ) 

and ( l / 8 l , 0 ) . The equation of # 2 is, from equation ( 3 ) , 

\ w + 1 . 5 / 8 1 \ = 2 . 5 / 8 I ; 

and the equation of jf* is, from equation (k), 

\v + 8 / 7 2 9 I = 8 7 7 / 7 2 9 • 

Let the symmetric points of L^ and q ̂  be ( s , 0 ) and ( t , 0 ) . These points 

must satisfy the two relationships 

(s + 1 . 5 / 8 l ) ( t + 1 . 5 / 8 1 ) = ( 2 . 5 / 8 1 ) 2 ; 

s t = 1 . 

The solution of this system is s = - O . O I 8 5 and t = - 5 3 - 9 4 8 5 . The linear 

transformation which takes L-̂  and into concentric circles in the p-plane 

is, from Lemma k, 

(w + O . O I 8 5 ) ( - O . O I 8 5 - 1 ) 
P " (w + 5 3 - 9 ^ 8 5 ) ( 1 + 5 3 . 9 ^ 5 ) ' 
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From the second part of Lemma h, the ratio of the radii in the p-plane 

is 

"Bl | - 5 3 - 9 ^ 5 + ( 1 . 5 / 6 1 ) I " ° - ° 3 0 9 ' 

and by equation ( 2 ) the upper bound capacitance of the L^ - capacitor 

is 

C = I ln(b/a) " ° - 1 4 3 • 

This result, when multiplied by four, yields the upper bound 0 . 5 7 2 for 

the capacitance per unit length of the actual capacitor. The same pro­

cedure yields, for the - system, the lower bound C = 0 - 5 0 5 -

The upper bound for the - kg system is, from equation ( 2 ) , 

C ' 2 1 n ( 3 / 7 7 ) ° ° - 6 7 ° ' 

and, similarly, for the L^ - k system C = O.h^. 

In summary, 

upper bound calculated using the circumscribed circle k^ = O . 6 7 O ; 

upper bound calculated using the curve ^ =
 0 . 5 7 2 ; 

lower bound calculated using the curve )F^ = O . 5 0 5 ; 

lower bound calculated using the inscribed circle k^ = 0 . 4 - 5 5 • 

Results.--The following curves are depicted in Figure 5 ' 

a. kg-L^ upper bound versus }JL ; 

b. IF'2~^1 u P P e r ^ound versus/X ; 

c. ^i--*-1! l ° v e r bound versus^/JL ; 

d. k.. -L.. lower bound versus T/*A+ . 



Figure 6. - Arithmetic Averages and Per Cent Error 
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Figure 6 contains the following curves: 

e. the arithmetic average of a and d versus ^ / J L ; 

f. the arithmetic average of b and o_ versus/JL ; 

g. the possible per cent error associated with e; 

h. the possible per cent error associated with f, 

where g and h are plotted using the right ordinate and e_ and f using 

the left ordinate-

Since the arithmetic averages are virtually the same, one may 

well ask whether all the effort which has gone into improving the bounds 

was worth while. The answer to this doubt lies, of course, in the fact 

that the difference in the arithmetic average and either bound is a 

measure of the uncertainty of the average as an approximation to the 

true result. This uncertainty has been sizably reduced by bringing the 

bounds closer together. 
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CHAPTER IV 

EXTENSIONS AND ANALOGIES 

Extensions to other configurations.--This method may be used on any 

capacitor formed by two concentric cylindrical conductors, providing 

one is a circle and the other can be described as follows: it is a 

simple, closed, piecewise smooth curve consisting of n identical arc 

segments such that the terminal points of each segment have equal 

moduli, these moduli being greater than that of any point on the arc 

segment other than a terminal point. There are only two changes nec­

essary: the original transformation must now be f (z) = z11, and the 

region on which f(z) is defined must be one of the n congruent sub-

regions into which the configuration is divided by radial lines drawn 

from the common axis through the terminal points of the n similar arc 

segments. 

Improvement of results by successive application of the method.--Al­

though the new bounds differ from their arithmetic average by less than 

twelve per cent for most reasonable configurations, there may be times 

when closer estimates are required. Such estimates may be obtained by 

reapplication of the method to the images of L-̂  and L^ in the p-plane, 

since this system satisfies all the conditions stated in the previous 

section. By first applying the mapping g(p) = p , 0 arg p < T T , and 

then a suitable linear transformation, the desired better bound can be 

found. 
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Analogies. --The function CJ^ in equation (l) has "been considered only as 

representing electrostatic potential. As will he shown, it can also he 

considered as temperature, neutron flux, and fluid velocity potential. 

To make clear the analogies, a remark is necessary concerning Green's 

Theorem, which in two dimensions can he written ̂ 3 L > 

A S - Jl$V2$ dx A Y - Jj^L + < P 2 ) TA D Y , 

S S 

where S is a doubly connected region, P = P - ^ + P 2 is its boundary, and 

0 ^ has the necessary differentiability and integrability properties. If 

V 2 $ = O in S, < D = D ) 1 on P , and ( J ) = (& 2 on P 2 , then 

( 5 ) 

Now suppose the closed region S + P satisfies the conditions stated 

in the first section of this chapter. By different interpretations of the 

symbols involved, the various physical problems mentioned in the first para­

graph of this section will be shown to be mathematically equivalent. 

If the electrostatic problem is considered and the medium M enclosed 

between P ^ and P 2 has permittivity one [^k] , then 
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where and Q 2
 a r e the charges on P̂  and P2 P e r unit axial length „ 

For S + P , Q 2 = t̂ l so that equation ( 5 ) becomes 

Q i _ i(») 

The quantity Q 1 / ( ^ 2 " i s t h e c a P a c i t y o f t n e system, and may be 

thought of as the charge per unit length on P ^ per unit of potential 

difference between P̂  and P̂. This last relation is identical with 

equation (l). 

In the thermal problem suppose that M has thermal conductivity k, 

and let ($) represent the temperature function T. If Q is the quantity of 

heat transferred across S per unit length per unit time in steady state, 

then t6l 

T l / |f dS +
 T 2 / U d S = k ( T 2 " V •• 

and from equation ( 5 ) 

Q k l(T) 
(T 2 - T x) (T 2 - T 1 ) 2 

Now the quantity Q/(T 2 - T^) may be thought of as the quantity of heat 

transferred per unit length per degree of temperature difference. 

In the case of neutron diffusion, consider a medium M which neither 

absorbs nor scatters neutrons but has diffusion coefficient D. If 

represents the neutron flux function, and if the steady state neutron 

current through S is J, then 
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and from equation ( 5 ) 

J = D l ( Q > ) 

( 0 2 - ^ ~ « D 2 " ^ 

Here the quantity J / ( Q > 2 " ^ ] _ ) ^ s ^ e n e u"tron current per unit length 

per unit difference in the neutron flux function* 

Finally, for the fluid flow analogy, let the conductors be thought 

of as a source and a sink, and suppose that the flow between them is at 

right angles to the common axis. The fluid is incompressible and has 

density (0 . If W is the steady state weight flow per unit length across 

S, then t 8 3 

and from equation ( 5 ) 

W = P I(V) 
( V 2 - V 1 ) ( V 2 - V 1 ) 2 

where V is the velocity potential function. The quotient W/(V 2 - V^) is 

the weight transfer per unit length per unit difference in the velocity 

potential. 
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APPENDIX 

Lemma_l<,--Suppose ($)(x,y) is harmonic in a simply connected region R 

and continuous on P , the positively oriented, closed, piecewise 

smooth "boundary of R. Then \_3~] 

R R 

Corollary,--Suppose R is the doubly connected region between the two 

simple, closed, piecewise smooth curves C^ and C ^ . If <£)(x,y) is har­

monic in R and continuous on C^ and C ^ , then [ 9 ] 

+ Oy) to dy = J 0 | 4 ds . 
E C 1 + C £ 

Lemma 2.--Let C^, C^, and C^ be simple, closed, piecewise smooth curves, 

where is contained in C^, C^ is contained in C ^ , and and C^ have 

no points in common. Call R 1 2 ^he region between C^ and C ^ , and R the 

region between C-̂  and C . Let ( J ) (x,y) and l^(x,y) be harmonic functions, 

defined on a n d- R
1 2

 r e sP e ctively.. Also suppose ( J ) = ^ = V > 0 on C^, 

(fa = 0 on C 0, and ^ = 0 on C 0. Then I_ (̂ ) £ I ( ( B ) . 
3 2 R 1 2 R 1 3 

Proof: From the corollary to Lemma 1, 

X R W = V / A £ D S A N D ^ ( = V / ^ 7 D S ' E 1 2 C 3 N E L 3 C * N 
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Therefore this lemma will be proved if it can be shown that 

/ - M . ) ds ^ 0 

Let F(x,y) = (J)(x ;y) - ̂ (x,y) in R 2 + C + C 2- F is harmonic; F = 0 on 

C^; and F = (|) on C 2 * Since <$) is harmonic in R , C j ) attains its minimum 

on the boundary of R-,Q Therefore (̂) - 0 on C 2 since C 2 is contained 

in R 1 3 - Then F ^ 0 on C p and, b y [ l o ] , F ^ 0 in E 1 Q . 
1 2 ' 

On C 
1 

c)F = lim F(x,y) - F(x?,y') 
3 n ^ A n &n->0 

where (x,y) lies on (x , y ) lies on the inward normal constructed to 

C-̂  at (x,y), and ^ n is the distance from (x,y) to (x ,y ). Since F = 0 

on C-^ and F ^ 0 in R ?, 

<frF _ lim (negative quantity) 
ĵ n An-*0(positive quantity) ^ 0 

But | £ = . p . so M . | 4 > * o and ( (M - U-) ds > £n 3 n 3 n £ n j ^n 9 n y — 
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L j 5 m m a _ 3 • - - L e t " b e t h e c i r c l e | z | = 1 a n d t h e c i r c l e | z - a ^ = R , 

w h e r e a i s r e a l , 0 < \ a | <• 1 , a n d | R + a \ <. 1 ( i . e . l i e s e n t i r e l y i n ­

s i d e C ^ ) . T h e n t h e r e e x i s t s o n e a n d o n l y o n e p a i r o r p o i n t s \ ^ ( s , 0 ) , ( T , 0 \ \ 

s u c h t h a t ( t , 0 ) i s t h e s y m m e t r i c p o i n t o f ( s , 0 ) w i t h r e s p e c t t o b o t h 

a n d C g - F o r d e f i n i t e n e s s , l e t ( s , 0 ) b e t h e p o i n t i n s i d e C ^ . 

P r o o f : F r o m t h e d e f i n i t i o n o f s y m m e t r i c p o i n t s , a l l s u c h p o i n t s w i t h 

r e s p e c t t o m u s t s a t i s f y s ^ t = 1 . S i m i l a r l y , f o r C ^ , ( s ^ - a ) ( t ^ - a ) 

2 

= R m u s t b e s a t i s f i e d . , A n y s e t w h i c h i s s y m m e t r i c w i t h r e s p e c t t o C 

a n d w o u l d s a t i s f y b o t h t h e a b o v e r e l a t i o n s . S u c h a s e t , u n d e r t h e 

r e s t r i c t i o n t h a t ( s , 0 ) i s i n s i d e C , i s [_ ( , s , 0 ) ( t , 0 ) " ] , w h e r e 

| - ( E 2 - a 2 - l ) + J[(R - a ) 2 - l ] [ (E + a ) 2 - l ] ' J 

^ - ( R 2 - a 2 - 1) - J[(R - a ) 2 - l ] [ (R + a ) 2 - lj'} 

T h e q u a n t i t y u n d e r t h e r a d i c a l i s p o s i t i v e , s i n c e \ R ± a \ <. 1 , a n d t h e r e -

f o r e s a n d t a r e r e a l . I f | _ ( s , 0 ) , ( t ,0)J w a s a n o t h e r s u c h s e t , s a n d 

t w o u l d a l s o h a v e t o s a t i s f y t h e f i r s t t w o r e l a t i o n s s i m u l t a n e o u s l y , w h i c h 

w o u l d y i e l d s = s a n d t = t , p r o v i d e d t h e p o i n t i n s i d e i s c a l l e d 

( s \ o ) . 

L e m m a 4 . - - L e t a n d b e t h e c i r c l e s o f L e m m a 3 - T h e n t h e r e e x i s t s a 

l i n e a r t r a n s f o r m a t i o n w = L ( z ) w h i c h m a p s a n d o n t o c o n c e n t r i c c i r c l e s 

i n t h e w - p l a n e i n s u c h a w a y t h a t t h e i m a g e o f i s e n t i r e l y i n s i d e t h e 

i m a g e o f C ^ . I f ( t , 0 ) i s t h e s y m m e t r i c p o i n t o f t h e C ^ C ^ s y s t e m l y i n g o u t ­

s i d e o f C ^ , t h e n t h e r a t i o o f t h e r a d i i o f t h e i m a g e s o f a n d i n t h e 

w - p l a n e i s R \ t / ( t - a ) | • 
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Proof: Such a transformation will "be exhibited. It is known £ll] that 

a linear transformation from the z-plane to the w-plane is uniquely deter­

mined if any three distinct points in the z-plane are chosen to he mapped 

into three distinct points in the w-plane< Choose the domain points to 

be (s,0) and (t,0) of Lemma 3, and (l,0), and the corresponding image 

points to be (0,0), OO , and (1,0). w = L(z) can be written down: 

__ (z - s)(l - t) 
W = ( Z - t)(i - I T 

Any point on can be represented by z = e i© Since s = l/t, 

( 6 ) 

W 
s - z 
sz-1 

i © 

i e , 
se - 1 

^ (s-cos © ) - isin© I 
(s cos© -1) + is(sine) ~ ' 

so maps onto the unit circle in the w-plane-
i© 2 • 

With z = a + Re and s = a + R / ( t - a), it follows from equation 
(6 ) that 

[ R e i Q -R2/(t-afl [l-t] 
[a+Re 1 9 -t] [l-a-R2/(t-aj] | [a+Re 1 0 -t] [(1-a)(t-a)-R 2J 

R [ e i e (t-a)-R] [lt\ 

1-t 
{1-a)(t-a)-(s-a)(t-a) R = R I r r - ^ — r 

t ( l - t ) 

T t ^ T J T t ^ a " 
R = t 

t-a R = ± 
1-as R , 

Thus, maps onto the circle |w| = R |t/t.t-a) | . Since is entirely 

within C 1 , | 1-a| > R. Also \s \ < I, so \ 1-as | > R, or R/' \ l-as| < R/R 

Therefore the image of li-es entirely inside the image of C o 
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Lemma 5---Let (J)(x_,y) be harmonic in the simply connected region R„ Let 

x - x(u,v) and y = y(u,v) map R in a one-to-one fashion onto the region 

S in the u-v plane * Also suppose u = v and v = ~u « Then 
x y x y 

//[* 
R 

(x,y) + (^y(x,y)]dx dy = 

/j[(J)^(x(u,v),y(u,v)) + $^(x(u,v),y(u,v))]dudv. 

Proof: The lemma will be proved by simply carrying out the indicated trans­

formation of variables. 

(j> + <b = (<b u + d) v ) +1 <$) -u + <b v ) 
x ~ y ~u x ~v x ^u. y ^ v y' 

((b u + (b v ) t ( . jj v + cb u. 
' ^ U X • V X T u X T V X ' 

> v 2 A 2 , , 2 2 -<D + 0 ) l u + v 
' X X 

From ^ 1 2 * } , the Jacobian of the transformation can be written 

J = ^ u £v 

_dy dy 
3 u £v 

u V - U V x y y x 

d* }y 

dv dv 
"Jx dy 

1 

2 
u + 

X 

2 
V 

X 

So (J) 2 + (J) 2 = ( + (jj)2) J'j, and the lemma is proved, 
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