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SUMMARY

The capacitance per unit length between a circular cylindrical

conducter and a coaxial square conductor interior to it iIs given by

C = L 5 JI(®§+®2)dxdy,
W (v, - v,) I

R

where R is the annular regicn between the conductors and qp is a har-
monic function {Q)Xx + CDWW'= 0) satisfying the prescribed boundary con-
ditions (d): VC on the circle, G)= VS on the square}. The problem con-
sidered is to determine upper and lower bounds on the gquadratic functional
representing C.

To avoid wordiness, the capacitance per unit length between two
cylindrical conductors of given c¢ross sections is referred to simply in
terms of the plane curves representing the cross sections.

It is first proved that the circle circumscribed about the inner
square, when taken with the circle representing the outer conductor,
yields an upper bound on the capacitance and, similarly, that the circle
inscribed in the inner square, when taken with the outer circle, yields
a lower bound. The difference between these bounds (and hence the un-
certainty with which their arithmetic average approximtes C) is large if
the length of the diagonal of the square is greater than one-fourth the
diameter of the outer circle. In this case the method described in the
following paragraph substantially reduces the difference between the

computed bounds.
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By extending the dizgonals cf the square till they intersect the
outer circle, the region R is divided into four congruent subregions,
one of which is mapped by f(z) = zL into a region between a circle A and
a tear-shaped closed curve B interior t¢ A. The smallest pessible circle
is cirecumscribed about B, and the largest possible circle is inscribed
in B. It is then proved that these circles, when taken with A, yield the
desired improved upper and lower bcunds on the capacitance C/h of the
original subregion. An extensicn cof the procedure gives even better
bounds 1f they are desired.

This method may be used on any capacitor formed by two concentric
cylindrical conductors, providing one is a circle and the other can be
described as follows: it is a simple, closed, piecewise smooth curve
consisting of n identical arc segments such that the terminal points of
each segment have equal moduli, these moduli being greater than that of
any point on the arc segment other than a terminal point. There are only
two changes necessary: the original transformation must now be f(z) = z-,
and the region on which f(z) is defined must be one of the n congruent
subregions into which the configuration i1s divided by radial lines drawn
from the common axis through the terminal points of the n similar arc
segments.

Finelly it is shown that the approximate soluticn of the capaci-
tance problem treated here is directly applicable tc analogous problems

in the fields of heat transfer, fluid flow, and neutron diffusion.



CHAPTER I
THE PRECBLEM AND METHOD OF SCLUTION

Two coaxial cylindrical conductors and the annulus between them
form a type of capacitor. The capacitance per unit axial length is de-
fined to be the charge per unit length divided by the potential differ-
ence between the conductors when that charge is present. The determina-
tion of upper and lower bounds on the capacitance of such a system with
a square inner cconductor and circular outer conductor is the subject of

this thesis.

The problem.--It seems intuitively cobvious thatl an upper bound on the
capacitance is obtained by replacing the inner conductor by its circum-
gseribed circular cylinder. The truth of this statement is proved in the
Appendix {Lemma 2). A lower bound is similarly obtained by replacing

the imner conductor by its inscribed circular cylinder. The arithmetic
average of these bounds is a good approximation to the capacitance when
the ratio M of the diagonal of the square to the diameter of the circle
is small. As AL increases, however, the relisbility of the approximation
quickly deteriorates because the bounds which are averaged become pro-
gressively farther apart. Thus the crux of the provlem is 1o reduce the

difference between the bounds when AL 1s large (l/lk‘(M( 1).

The method of sclution.--Let ") and [, be piecewise smooth, simple, closed

curves with no point in common and with r& interior to Tﬂg- These curves



may be thought of as cross sections normal t¢ the axes of two long cylin-
drical conducters. If end effects are neglected, the capacitance per

unit length of such a configuration is given by the expression El]

c - 1 ”(2 %) ax dy , (1)
VT, -0 Vo Byl e
R

C

where R is the annular region between the conductors and (P is a harmonic
function (QDXX 4-(byy_= 0) satisfying the prescribed boundary conditions
(P = v, on Ty, D = v, on r"l). In the special case where r‘l and r‘e
are concentric circles of radii a and b (a € b), the expression for C

reduces to [2]

1 : (2)

¢ = 2 ln(b?ai

Now consider a capacitcr where the inner conductor is sguare and
the outer conductor is circular. As menticned in the previous section,
upper and lower bounds for the capacitance per unit length can be obtained
by replacing the square first by its circumscribed circle and then by its
inscribed circle. Formula {2) provides a way to calculate these bounds.

When }L is large, the area between the sgquare and its circumscribed
circle is appreciable compared to the area between the sguare and the outer
conductor; a similar comment applies to the area between the square and its
inseribed circle. This circumstance suggests the possibility of obtaining
better bounds by replacing the circumscribed and inscribed circles by other
suitably chosen curves which, while lying respectively ocutside and inside
the square, approximate the square more closely than the circles do. BSuch

curves may be obtained as explained in the following paragraphs.



Figure 1 is a representation in the z-plane of one-half of a cross
section of the actual capacitor. The diagonals of the square represent-
ing the inner conductor have been extended until they intersect the circle
representing the outer conductor. The extended diageonals thus divide the
annular region between the conductors into four congruent subregions, cne

of which is labeled 8. The boundaries of 8 are L., a segment of the outer

l’

circle; L2 and Lh’ segments of extended diagonals; and L cne side of

3}
the sqguare.

Under the mepping w = z , where z = x + iy and w = u + iv, S is

1 1 1

[} t
mapped onto S and Ll’ Lg, L3 onto Ll, L2, L3. L3 is the tear-shaped

I
closed curve in Figure 2, and L2 is the segment of the u-axis joining the

f 1
cusp of L3 with Ll' The mapping and its inverse are one-to-one and ana-

lytic, provided the domain of definition in the z-plane is S + Ll + L2 +

T 1 ! !
L., and the domain of definition in the w-plane ig 8§ + L. + Lg + L, where

3 1 3

f

L2 is considered &5 a cut. The fcollowing facts should be noted:

i

1. +the cusp of L3 is the image of the point (a,a) in the Z-plane,
where a is the half-side of the square, and the distance of the cusp from

the origin is La ';

H
2. +the point of intersection of L3 with the positive u-axis is

the image of the point (a,0) in the z-plane, and the distance of this
4

intersection from the origin is =& .

3

origin. This geometrical fact motivated the construction of the curves

J

Thus the extremities of L, on the u-axis are unequally distant from the

1

]
, end 52 shown in Figure L,
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In that figure, kl

is the image of the circle kl inscribed in the

1

square in the z-plane, and k2 is the imsge of the circle k2 circumscribed

I
about the square in the z-plane. X 1 is the largest circle which can be

1 t
inscribed in L3, and 8’2 is the smallest circle which can be circumscribed
I
about it. A critical examination of the methods of constructing Kl and

1
8 is included in the next chapter.

2
Since \WELL/H < IW%/H implies |z, | £|z5| , where z, = W:lL/h and
t i T
Zy = wé/u, the curve KE? lying between L3 and k2 in the w-plane, will have

its inverse image 622entirely between L3 and k2 in the z-plane, as shown
in Figure 3. Then, by Lemma 2, the value of the integral (1) over the
region bounded by Bgy Ll’ L2, and Lh is less than the value of this inte-
gral over the region bounded by k2’ Ll’ LE’ and Lh' In Figure 3 it can
be seen that K&_more closely approximates L3 than kl dees so that pre-
sumably Kl will yield a greater lower bound than kl. This is later sub-
gstantiated numerically.

By Lemms 4 it is known that there exists a one-to-one analytic
mapping, p = L{w), which takes the circles Ké and Li into concentric
circles in the p-plane. K i and Li can be similariy mapped into concen-
tric circles in the p-plane. By applying Formula {2) to the two systems
of concentric circles in the p-plane, new upper and lower bounds on the
capecitance of the actual system can be found, since 1t is shown in the
next section that under an analytic one-to-one transformation the inte-
gral (1) remains invariant. As will be seen subsequently, the new bounds

are a substantial improvement over those obtained by using the inscribed

and circumscribed circles.



CHAPTER II

MATHEMATICAL JUSTIFICATTION OF THE METHOD

It will be shown that

! b
1. the inverse lmage of 32 under z = wl/ lies exterior to L3
in the z-plane;
. . ¥ /M X
2. the inverse image of 1 under z = w lies interior to L3

in the z-plane;

1 t
3. there exists a linear transformaticn which takes 32 and Ll

T

1 and Ll) into two concentric circles in the p-plane;

(¥
4. the value of the integral (1) remains invariant under the

analytic one-to-one mappings considered.

T 1
To verify 1. it will be proved that 32 lies exterior to L, and

3
: . W . s X
therefore, since the mapping w = z maintains modular inequalities, o
lies exterior to L3.
Let z = rele and w = Sela . The equation of L3 is r = a sece ,

where -TT/L L © = Tr/l\t, and therefore the equation of L,

is, since

o= Lo,
i 4 . .
W o= rueule = ausec (/L) [ cosot + isin &].
!
Suppose, as will be verified later, that the equaticn of 62 is

\w + l.Saa\ = 2.5au.



1

t
L. and 82 will intersect when

3

\ahSecu(N/h) [cosct + isino] + l.5a4 = 2.5a4.

Simplification of thisg equation and use of the relation

cosok = 8 cosu( X /L) - 8 cosg("(/h) + 1

yield
Ceos2( /1) = [ cos®(2¢/b) - 1/2]{ 20 cos™(% /4) + 3 cos(ot/u) + 1] - o.

The only real solutions of this equation are & = 0, +4f{, +817, ... and

] t
o= +1T, +3T7, ... . Since -Tr& < 'TT, L3 and 32 intersect only when

1

3

8au/(3 + 2y?2) and 28.]4-. Thus, since 2 > 8/(3 + 2y2), Jé

1
R =0and =T". When & = TY/2 the moduli of L, and 82 are

1s exterior to

T r 1

L3 at oA = T\‘/E. By continuity and symmetry, 3 o is exterior to L3 every-
where in the w-plane, and 1. is proved.

To prove 2. it is first necessary to construct ai The function
wnich gives the perpendicular distance of a pocint on Lé from the u-axis
is Dlot) = | ahsecu(ﬁ/h) sinO(\ . By meximizing D(ek) it is found that the

'
points on L, which are furthest from the u-axis have coordinates

3
[ausech(ﬂ/@ cos(2TT/3), iahsech('rr/@ sin(ETr/?))] . The common sheisss

T
of these points determines the center of § ,» and the ordinate of either

!
point determines the radius. Hence the equation of b’l is

\w - ausech('ﬁ/@ cos(2ﬂ‘/3)\ = ahsecu(ﬂ/@ sin(2%Y/3), {4)

and the same technique used to prove 1. also proves 2.



Before proving 3. it is necessary to define what is meant by sym-

metric points with respect to a circle whose center is on the resl axis.

Definition.--Let F be a circle with center at (g,0) and radius h. Iet
(m,O) be any point on the real axis with m # g. The point (p,O) is sgid
to be the symmetric point of (m,O) with respect to F if, and only if,
(m - g)(v - g) = n°
Lemma 3 guarantees that there is one, and only one, pair of points
which is symmetric with respect to both circles of an eccentric pair of
circles, one of which is entirely inside the other. Lemma U4 exhibits
the transformztion which takes this eccentric pair intc two concentric

circles. This proves 3.

Repeated application of Lemma 5 proves k.



CHAPTER IIL

SAMPLIE CALCULATICNS AND RESULTS

Sample calculations.--A numerical example will be worked out to illustrate

the above method. BSuppose Ll is the circle with center at (0,0) and radius
one, and L3 is the square with half-side one-third centered at (0,0). Let

the region 8 be that shown in Figure 1. w = z maps Ll onto the unit

T 1

4
circle L, and L, onto Ly, where L, intersects the u-axis at (-4/81,0)

end (1/81,0). The equation of Kpi is, from equation (3),
|w+1.5/81) =2.5/81 ;

and the eguation of b’i ig, from equation (4),
\w +8/729| =8(y3/729 .

r I
Let the symmetric pcoints of Ll and ngbe (s,0) and (t,0). These points

must satisfy the two relationships

{s +1.5/81)(t + 1.5/81) = (2.5/81)2 ;

The solution of this system is s = -0.0185 and £ = -53,9485, The linear
1 1
transformation which takes Ll and Xzzinto concentriec circles in the p-plane

is, from Lemma 4,

_ {w +0.0185)(-0.0185 - 1)
P = % +53.9885)(1 + 53.9885) -
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From the second part of Lemma 4, the ratio of the radii in the p-plane

is

2.5 -53.9485
81 | -53.9L85 + (1.5/81)

= 0.0309 ;

and by equation (2) the upper bound capacitance of the L - b’e capacitor
is

1
O = Tl /sy = 0.143 .

This result, when multiplied by four, yields the upper bound 0.572 for
the capacitance per unit length of the actual capacitor. The same pro-
cedure yields, for the Ll - Kl system, the lower bound C = Q.505.

The upper bound for the Ll - k2 system is, from eguation (2),

1

C=W=O.6TO,

and, similarly, for the L, - k, system C = 0.455,

1

In summary,

upper bound calculated using the circumscribed circle k2 = 0.670;

upper bound calculated using the curve 32 ————————————— = 0.572;
lower bound calculated using the curve Xl ------------- = 0.505;
lower bound calculated using the inscribed circle k. ---- = 0.455.

1
Results.--The following curves are depicted in Figure 5:

a. kQ_Ll upper bound versus M ;

b. XE_L upper bound versus AN ;

1
C. a’l—Ll lower bound versus Al ;

d. k;-L, lower bound versus AA.



1.3

1.1

0.9
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Figure 5. - Comparison of Upper and Lower Bounds

Figure 6. - Arithmetic Averasges and Per Cent Error
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Figure 6 contains the following curves:

e. the arithmetic average of s and d versus AL;

versus Ak ;

g. the possible per cent error associated with e;

f. the arithmetic average of b and

|

h. the possible per cent error associated with f,

where g and h are plotted using the right ordinate and ¢ and f wusing
the left ordinate.

S8ince the grithmetic averages are virtually the same, one may
well ask whether all the effort which has gone into improving the beounds
was worth while. The answer to this deubt lies, of course, in the fact
that the difference in the arithmetic average and either bournd is a
measure of the uncertainty of the average as an approximation tc the

true result. This uncertainty has been sizably reduced by bringing the

bounds closer together.
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CHAPTER IV

EXTENSIONS AND ANATCGIES

Bxtengions to other configurations.--This method may be used on any

capacitor formed by two concentric cylindrical conductors, providing
one is & circle and the other can be described as follows: it is &
simple, closed, plecewise smooth curve consisting of n identical arc
segments such that the terminal points of each segment have equal
mcduli, these moduli being greater than that of any point on the arc
segment other than a terminal point. There are only two changes nec-
essary: the original transformation must now be flz) = zn, and the
region on which f(z) is defined must be cne of the n congruent sub-
regicns into which the cenfiguration is divided by radial lines drawn
from the common axis through the terminal points of the n similar arc

segments.

Improvement cf results by successive application of the method.--Al-

though the new bounds differ from their arithmetic average by less than
twelve per cent for most reasonable configurations, there may be times
when closer estimates are required. Such estimates may be obtained by
regpplication of the methcd to the images of L, and L3 in the p-plane,
since this system satisfies all the conditions stated in the previous
secticn. By first applying the mapping g(p) = pg, 0 £ arg p <17 , and
then a suitable linear transformetion, the desired better bound can be

found.



Analogies.--The function @ in equation (1) has been considered only as
representing electrostatic potential. As will be shown, it can also be
conglidered as temperature, neutron flux, and fluid velocity potential.
To make clear the analogies, a remark is necessary concerning Green's

Theorem, which in two dimensions can be writterLEBJ ,

[3e- [fovan ffolaus,

S S

where 8§ 1s a doubly connected region, - F“l + F‘z is its boundary, and

GD hag the necessary differentiability and integrability properties. If

V2®=O in §, ®:®l on rll’ and ®:®2on rlga then

dt)l f%%ds+¢2f§a-%ds= f((®§+¢§)dxdy=l(¢)- (5)
r rlz 5

1

Now suppose the closed region 8 + [ satisfies the conditions stated
in the first section of this chapter. By different interpretations of the
symbols involved, the varicus physical problems mentioned in the first para-
graph of this section will be shown to be mathematlically equivalent.

If the electrostatic problem is considered and the medium M enclosed

between ‘rﬂl and r% has permittivity one Lh] , then

f a.ad‘)n ds = -hTrQl and ‘%—QH ds = 'MTQE ’

"y M
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where Ql and Q‘E are the charges on "\"‘l and r'-g per unit axial length.

For 8 + , Q2 = -Ql [5] so that equation (5) becomes

1 _ 1(®)

The quantity Ql/( ¢'2 - G)l) is the capacity of the system, and may be
thought of as the charge per unit length on F‘l rer unit of potential
difference between F‘l and I_'E. This last relation is identical with
equation (1}.

In the thermal problem suppose that M has thermal conductivity k,
and let @ represent the temperature function T. 1f Q is the quantity of

heat transferred across S per unit length per unit time in steady state,

then {6

Tlf% ds + T, f—a—T— dsz%—(T -1
™. My

and from equation (5}

Q B k I{T)
— = - 5
(T, - T,) (T, - T,)
Now the quantity Q/(T2 - 'Il) may be thought of as the quantity of heat

transferred per unit length per degree of temperature difference.

In the case of neutron diffusion, consider a medium M which neither
absorbs nor scatters neutrons but has diffusion coefficient D. If q;
repregents the neutron flux function, and if the steady state neutron

current through S is J, then [7]
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26
o, [32 u.0, [ 38w t0, 6.
. "

and from equation (5)

7  _ _DpiQP)
(@, - &) (®,- )7

Here the gquantity J/(q%g- a%) is the neutron current per unit length
per unit difference in the neutron flux function.

Finally, for the fluid flow analogy, let the conductors be thought
of as a source and a sink, and suppose that the flow between them is at
right angles to the common axis. The Tluid is incompressible and has
density P . If W is the steady state wzight flow per unit length across

s, then [ 8]

v, f % ds + V, f % ds:—g(vz-Vl)s
. s

and from equation (5)

W p I(V)
.2 ’
(VE - Vl) (V2 - V)

where V is the velocity potentizl function. The quotient'W/(V2 - Vl) is

the weight transfer per unit length per unit difference in the velocity

potential.
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APPENDTIX

Lemms 1.--Suppose (D(x,y) is harmonic in a simply connected region R
and continuous on [ , the positively oriented, closed, piecewise

smooth boundary of R. Then [3]

() - /ﬂd)i*CD? dx dy = /Q)gdl ds
R T

Corvllary.--Suppcse R is the doubly connected region between the two
simple, closed, piecewise smooth curves Cl and an If (D(x,y) is har-

monic in R and continucus on Cl and Cg, then [9]

f/(®i+®§)dxdy= ICD%% ds
R

W+,

(]

Lemma 2. --Let Cl, 02, and Cq be simple, closed, pilecewise smocth curves,

where Cy is contained in Cl’ C. 1s contained in 02, and Cl and (32 have

3

nc points in common. Call ng the region between Cl and CE’ and Rl3 the

region between €, and C3o Let (D (x,y) and ¥(x,y) be harmonic functions,

defined on R13 and ng respectively. Also suppose d} = w‘ =V >0 on Cl’

CD:OOHC and ¥ = C on C,,. Then I (w‘)%l (&),

Procf: From the corcllary to Lemmsa 1,
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Therefore this lemma will te proved if it can be shown that

_gﬁ 5
/311 an)d"ou

Let Fix,y) = (D(x,y) - Ylx,y) in ng + Cj_ + C,. F is harmonic; F = O on

C 13 and F = q> on C Since CP is harmonic in Rl3j q) attains its minimum

on the boundary of R13 [lO] . Therefore CDZO on 02 since CE is contained

. ; > : , > .
in Ryo. Then ¥ 2 0 on C, and, vy [109], F 0 in Ry,

Cn C1

lim  Fx,y) - F(x ,y )
3
An-»Q An

Q)‘Q./
5 [

7
where (X,y) lies on Cl’ (x , ¥ ) lies on the inward normal constructed to
. P . . § Er
¢, at {x,v), and A n is the distance from (x,y) to {x ,¥ ). Since F = 0
> .
on Cl and ' 2 ¢ in R]_E’

OF 1lim (negative quantity)
_ < 5
o0  An-sO(positive guantity)

But gi:%d‘; —aég 50 %g-% 25 and f(—a'—g—‘a%)ds >0 .
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Lemma 3.--Let Cl be the circle | z| =1 and C, the circle \z - a\ = R,

2
where a is real, 0 < Yal < 1, and \ R + a\ < 1 {i.e. 02 lies entirely in-
side ;). Then there exists one and only one pair or points [ (s,0),(t,0))
such that (t,0) is the symmetric point of (s,0) with respect to both ¢,

and an For definiteness, let (s,0) be the point inside Cl"

Proof: From the definition of symmetric points, all such points with

respect to Cl must satisfy s 1. Similarly, for CE’ (52 - a)(t2 - a)

1% =
2
= R must be satisfied. Any set which is symmetric with respect to Cl

and 62 would satisfy both the above relations. Such a set, under the

restriction that (s,0) is inside C.,, is [(S,O)(t,@)] , where

l}

s=§$ {-(Rg—a2~l)+ f[?R-a)E-l]L (R+a)2-1]1}
vog 6P - (T 0® -] SRR

The guantity under the radical is positive, since \R ta \<1 1, and there-

i

fore s and t are real. If [(s ,0), (t ,O)] was another such set, s and
t would also have to satisfy the first two relaticns simultaneously, which
t t

would yield s = 5 and © = %, provided the point inside Cl is called

(SVJO)-

Lerma k4. --Tet Cl and 02 be the circles of Lemma 3. Then there exists a

linear transformetion w = L{z) which maps Cl and 02 onto concentric circles
in the w-plane in such a way that the image of 62 is entirely ingide the
image of Cl' If (t,O) is the symmetric point of the 0102 system lying out-

gide of Cl’ then the ratio of the radii of the images of 02 and C1 in the

w-plane is R \ t/(t - a)\
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Proof: BSuch a transformation will ke exhibited. It is known [ll] that
a linear transformation from the z-plane to the w-plane is uniquely deter-
mined if any three distinct points in the z-plane are chosen to be mapped
into three distinet points in the w-plane. Choose the domain points to
be {5,0) and {t,0) of Lemma 3, and (1,0), and the corresponding image

points to be (0,0), 0@ , and (1,0). w = L{z) can be written down:

oz - 2301 -t
K AR TSRy (&)
Any point on C, can be represented by z = e™® | Since s = 1/t,
lWi _ |5 -z - 5 - ele_ _ {(s-cos®) - isin@ 1.
s5z7-1 i _ ts co2@ -1, + 1s(s1n@ ) ’
g0 Cl maps cnto the unit circle in the w-plane.
. ie 2 b - .
With z = a + Re and s = a + R /(t - &), it foliows from equation
(6} that

r [™® (3-a)-8] [1-1)

v | [Re::Le B/ (t-a)] [1-¢] [ _
Ea-%Rele -t] [l—a—Re/'(‘c-‘a)] l

1-1
(1-a)(t-a)-(s-a)(t-a)

i-1
-* | it

-t R - } t | R = l__'f_.
T (e-1)(t-a) B t-a B l-as
Thus, 02 maps onto the circle \wl = R\t/(twa)l . Since CE is entirely

within ¢, |1-2] > R. 4Also Ys}< i, so |i-ss|{> R, or B/ |1-as| &« B/R

Therefore the image of Ca lies entirely 1nside the image of 01“

Xai-Rele -] [{1-8) {t-s) F ]

1.
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Lemma 5. -~-Let ¢(X,y) be harmonic in ths simpiy connzcted region R. Let
x = x(u,v) and ¥y = y(u,v) mep R in a one-to-cne fashion onto the region

5 in the u-v plane. Also suppose U, T Vy and Ve = ‘uy“ Then

[¢2(X:Y‘) + (ngx/y\ dx 1y =
* ¥

R

fﬁ@i(xi«;_,vl,y(u,v)) + (bs(x(u,v),y(u)vj)] dudyr.
5]

Proof: The lemma will ke proved bty simply carrying out the indizated trans-

formation of variables.

d)i + q)i = (q)uux + vvsz = @u + d) v )€

ol @9x @x{ . ___ 1
- | 9= g2 -
9. du
oy 2y gx v
au v
ov v
% y
B 1 _ 1
_ A S
u_w_ o= Vix T v

50 @i + d>§, = (@5 + Qi) <, and the lemma is proved.
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