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CHAFTER I
INTRODUCT ION

Given a function f(x) defined and continuous on a c¢losed and

bourded set S contained in g™ and a set of linearly independent

functions £, ..., f_ also continuous on S, 1t is desired to deter-

minre numbers 8,5 eoey A which minimize
-l

n

max | f(x) - E‘ a, fi(x)

XES 1=

o

This problem. usually referred to as the uniform approximation
problem, was first extensively treated by P. L. Tchebycheff [i]. Siznce
the advest ot high-speed digital ccmputers, various algorithms for the
rumerical solution of this probliem have appeared in journals. The pri-
mary obkjective of this investigation 1s to review some of these alge-
»ithms and relate and classify them whenever possible.

Te facilitate the presentation a brief development of nctation
as well as some elementary properties of normed linear spaces and con-

vex sets will be givern,

Defisition l: A set. L, of elements f. g, hy ... 1s called a linear

space over the real field if, and only if, it forms an abelian group
with respect to addition, and multiplication is defined between elemerts

of L anrd scalars & B. ..., such that

.



L) alf +qg) = af + ag
2) (a + B)f = af +pf

3) alBf) = (aB)f

Defivition 23 The linear space L is called a "normed linear space” if

there exists a nonnegative function, || [l which satisfies the follow-

imay  For every f.g, contained in L and any scalar a

1) s = o if, and only if, f=o0
2) et = lal £ (1-1)
3) Lf+all < liell+llgll

Surch a function will be cazlled a norme.

As 2 consequence of 2) and 3) it follows that

le-gil 2 [llell-1all (1-2)
el = Ne-g+gll < {le-gll+lgll
and hence
fe-glWl 2 Nell-1lal.
Rut
ff-gill = llg-£1 > llgl-1¢l

ard thus {I-2) 1is established.



Examples cof normed linear spaces.

1) Euglidian n-space. Let E' be the set of n-tuples of real
numbers
X = (Xl: ’ Xn) 3 y = (Yly seey Yn); e
Define x =y 1if, and only if, x. = Y3 for 1i=1,2, «esy, n. Define
a norm on E. by
|| X ”2 = . (1_3)
2) The 4P spaces (1 <p<w). Let 4P denote the set of all
sequences of real numbers
X = {xk s k=1,2, 2u0 }
which satisfy
[v0]
Z |xk‘P < Heo
k=1
Define a norm on 4P by
o 1/p
= P . -4)
ERN EN (1-4;
k=1
3) The space C(S). Let C(S) be the set of all real-valued
continuous functions defined on a closed and bounded subset S of En'
Let the norm on C(S) be given by
el = max [£(t)] . (1-5)

te$§



This noxm is commonly referred to as the "uniform norm" (or Tchebycheft

SOTM)

4} The LY spaces (1 < p <. Let LY be the set of all fu o-

tions which are Lebesgue-summable over the interval [-1,1]. so that
1
[ 18P am < 4
-1

Define & r~orm on Lpfwi_l] by

1 %/p
| = j 1£1° dm , (1€

y

Here it is tasitly assumed that f =g if, and only if, f{x) = g{x}

for all x in [-1.1] except perhaps on a set of measure zerc.

Definition 3¢ A vector g 1s saild to be a convex linear combination of

the vectors Jy» Yoo wees g if there exist scalars aq, Qgs cvap
n n

such that ay 20, 1=1,2, eosy n

and

il - LI + °
9 CI191 ¥ a2g2 * Gngn

A ser X 1is called a convex set 1f, and only if, for g,, g, ¢ 2 any
covvax Pivorar rewmhblo et los of the form

g = 394 + d:94

is aiso contained in 2 .
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, ] . . . n o,
From a geometiric polnt of view, a convex set in E ig anvy subset

I

S of E for which the line segment joining any two vectors Jyr Ios
£ 2 1s also in 2, Thus the examples Zl and 22 in Figure 1 are con-

vex sets while ZS and 24 are not.

Figure 1. Illustration of Text

A very useful example of & convex set Is a closed sphere in a
normed linear space, L, Let fo e L and let p > 0. Then a closed

sphere about the point fO is defined by
N(f ,p} = {fs+fel and || f- fo|| < o}

The sphere N{0,1) will be called the unit ball of L,
To see that N(fo,p} is convex, let f,g be any two elements

ir No Then the inéquality

Fal

das e i =g -1 Il < Iale - £ ) 00+ (1 (1 -2 (g - £
SR LR [ S O I PR N B (- EEE N | A
shows that the line segment {Af + (1 -AJg : O <A< 1} is also in N,

Definition 4: A normed linear space is strictly convex if, and only 1if,

when



hf+gli = hell+llall, for f,9#%0

holds then there exists a nonnegative number o such that
f = ag .

Gecmetrically the concept of a strictly convex linear space, L,
implies that the surface of any closed sphere centained in L cannot
contain a line segment, This property is established in the following

theorem.

Theorem 1l: A linear space, L, 1s strictly convex if, and only if, the

surface of the unit ball, N{0,1), does not contain a line segment.

Proof:s We shall prove first that strict convexity implies that the sur-
face of a unit ball cannot contain a line segment. Let us assume that

f and g are any two distinct elements on the surface of the unit ball
for which the line segment {hf +{1-Na:0<A< l} is also on the

surface of the urnit ball. Thus
L= [Ia+(-2ad < 2 ll£ll+ (-2 lail = 1.
in particular, setting X = 1/2 we have

Ne+gll = £l + gl .

If L were strictly convex, then f = ag for some a 2> 0O or
1=l f]l =allgll. This in turn implies f = g, which is a con-

tradictiones



To prove the converse we must show that if the surfzce of the unit
ball contains no line segment then L is strictly convex. Let us assume

the contrary. that 1s. that there exist vectors f, and fg for which
e, + £, = [, 0] + £, 1]

and £, # afz for all a 2 0. We may alsc assume without loss of gen-

erality that 1 = H le < H fz“ . Thus
f2
e+ lell = e+ I € 0oy + |
e, |
+ (l - ) H fEH L]
Iz, I
ok4
f. £,
e 1+ [l—"—— < |[f + I
1 : = 1
s, |l Il £ |l
fg
< el I—2|
[N
£
Letting 14 . we have
X
e ey 1= I ell+ 11l
with |l £, |l= [ f5ll= 1 and £, ¥ afy for all a20.

Since the surface of the unit kall contains no line segment we have

Iag, + (1= il < a ey ll+ (1) I1g]



for O < X\ < l. A contradiction is obtained when X = 1/2 .,

Of the examples of normed linear spaces given thus far, the ﬂp
and LP spaces for p » 1 are strictly convex. A proof of this is
given by Clarkson [2] by proving they satisfy an even stronger condition,
rramely, that of being uniformly strictly convex.

The spaces LY and C(S) need not be strictly convex. To show
this the following examples are given. Consider first the space L.

Let
1 if -1 <x<0

and dafine

It is easy to verify that
lel, = lall, =1

and that the line segment {kf + (1 -n)g=0<nK l} is also contained
on the surface of the unit ball. Hence L' is not strictly convex.
To show that C{S) 1is not strictly convex consider C(S) where

S =[0C,1] and let f and g be given by

and



Then
letsll, = max l1+xd = 2
xe [0,1]
and
lell = lall, = 1.
Therefore
lt+gll, = Whellg+llgll -

Bt f # ag for every x & [0,1] for any a > 0 3 thus c(s) 1is not

strictly convex.

Definition 23 Let M be a subset of a normed linear space, L, which

is closed (topologically). If for every f,g € M and any scalars a, B
af-l'Bg e M

thern M 1s called a "subspace™ of the space L.
The subspace M is sald to be of finite dimension if there exists
a set of elements fl, fgj 600 fn of M which form a basis for M,

Then for every g &€ M there exists a unique set of numbers a,, a;, oo,
a, such that

g = a,f, +a f, + e + anfn

The set of elemeats f,, f,, o0, f,1 is sald to span the subspace, M.

12 :
The fundamental problem of approximaticn theory can now be con-

gidered in the following framework,



Let M be a linear subspace of a normed linear space L and
let £ be an element of L - M, Define the deviation (or distance)
of f from M by

plf) = min l[f-g|.
geM
Define the set of best approximations by

ZM(f) = {g:geM and pM(f) = qlf-qgl}.

Problem 15 Under what conditions is ZM(f) nonempty?

Problem 2: Under what conditions will ZM(f) consist of a single element”

Figure 2 below glves a gegmetric interpretation otf these problems.
The guantity pM(f} is the minimal deviation of f from M and this
deviation is the same for every element of ZM(f), While this 1llustra-
tion is of value in interpreting the problem it must be pointed out that

the gecmetry of a normed linear space 1s not always Euclidean and in fact

EM(f) can be void,

Figure 2



These problems will be considered in the following chapter via

existence and unigueness theorems.

11



CHAPTER 1I
EXISTENCE AND UNIQUENESS THEOREMS

The first thecorem given establishes the existence of best approxi-
mations when M 1s of finite dimension and is usually referred to as

"the fundamental theorem of approximation theory" [3J].

Theorem 2: Let L be a normed linear space and let M be a finite
dimensional linear subspace of L. Then for every f £ L the set Zﬂ(f)

is nonempty.

Proof: The proof 1s given in three parts.

1) Define a function & in EY by
n

Ils - Zaifi|

i=31

il

tp(al, cevs an) = |lf-gqgll

This portion of the proof will show that o is continuous.

By definition
l9(a,s wees a) = plby, eewy b)) = |2 =Y asll- -] bell |
and applying (I-2) above

[Ie =) a g - =) b 1] <71 (o -ag) 2l

Y lb, -a.l 0l

(mix |bi-ai|) z:||fi|

1A

TN

.
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But

Ylie Il = 8 < e,

Theretore

lo(a s «oo, an} = o{b,s een, bn)| < mix |bi-ai[ A

which implies that ¢ satisfies a Lipschitz condition of crder one which

i tum Implies continulty of o .
2) Detfine
(ICOPRFPRID SO B Ut PIL SRR LR W S

Ther by Part 1 above ¢ 1is continuous.

Consider ¢ on the set K given by
K = {}\_1, suas )\n :Z|}\i‘2 = l} .

Since K 1is a closed and bounded set it follows that 1 assumes a
minimum o K, Denote this minimum by p . By definition of the norm,

i 2 0. Furthermore, since f fn form a basis for M, # 0.

l? CECIE

Henze u > 0.

3) Let p 2 O be the greatest lower bound of @(al, ovos an}o
This portion of the prcof will show that in seeking a minimum it suffices
to consider o defined on a closed and bounded subset of ",

Erom {1-2) above it follows that

I
q):.-"‘l- voa e Ei‘,lxl' = w r - \i alle 2 H alfl T oeeo t g t H - H f ‘

iy
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Then
a f
olay, voer o) 2 (7 la, |20 |~ b vee 2 2B - | £ |
: n Z: N’Zia |2 ~’2|a ]2
for n
v
<Z|ai|2> fo.
i=1
Now, let
: R S N
YA,y eees A = —_———— e e e
! n NfZ]a ]2 N’EIa |2
where
a; )
N, W o ——— = 1,2, . n
i W’ 2 3
and hence,
n
2
Z Ixil = 1.
i=1

Therefore by Part 2) $(r,, ..., A ) assumes a minimum, p, on

the unit sphere of E', Thus

Cp(al: Ry an) ._>.. N2|ail2 p - “ £ “ .

Recall that p 2 O 1is by definition the greatest lower bound of

m(al, or ey an). For all vectors (al, 8,5 eors an) which satisfy

Llal® > p s lie]
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we have
1
fP(al; 95y an) > E (P + 1+ ” f ”)U- - || 3 ”

cr

q}(al, se ey an) > 4 + 1.
Hence it suffices to consider ¢ only on the closed sphere
*

1
{(als B3 eesy an) =Z Iai|2 < E (P + 1+ “‘f ”)}J

and on this set ¢ assumes a minimum. This completes the proof.

Corollary 1: Let f & C(S) and let M be a finite dimensional linear

subspace of C(S8). Then the set of best approximations Eﬁ(f) is non-

empty.

Theorem 3: Let M be a finite dimensicnal linear subspace of a normed

linear space, L. I1If f &L - M then ’
1} ZM(f) is a convex set.

1) ZM(f) consists of a single point if L 1is strictly convex.

Proof: 1) Let N(f,pM(fD be a c¢losed sphere iﬁ L. Then ZM(f)

satisfies

2,06) = N(F, p(£)) NN M.

Therefore Zﬁ(f) is convex since N(fj,pM(f)) and M are convex and
the intersection of two convex sets is convex.

2) Assume that L 1is strictly convex-and let f osey fn form

1,

a basis for the subspace M. Suppose there exist two vectors g, 9. in



1é

Z,M(f)o Then .
he-) afll = lie-gll = g0
i=2
and
le- Y onell = If-gll = pe) .
i=y

Combining these last two eguations vyields

a; * by ] 1
1 -Z(T)fill Solhe-gll+5hf-gll = p,0) .
Hence
[E: —Z(#)fiil = py(f),
a, + b,

for otherwise E}-Ahzr—i)fi would be a better approximation te £ _ than

ZIa.f.n
i"i

Now, since L 1s strictly convex and

5= ) - g_i)fi“ = 3+ "Zaifi“'{'é 16 =) el

it follows that
-
f - = -
: Zaifi a {f-) bt }.

If a¥ 1 then f can be expressed as a linear combination of
the fi contrary to the assumption that f &€ L - M, This implies

a = 1 giving in turn

z:(bi - ai) £, =0



or

a, = b,, (i = 1,2, wesy n) &

Thus ZM(f) consists of a single vector.

In Theorem 3 above 1t was established that Zﬂ(f) was nonempty
if L was a normed linear space., Now, as a result of Part 2), Theorem 3
we have a sufficient condition that Z“(f) consists of a single vector g,
the condition being that L 1is strictly convex. Thus in this case a
suffiscient condition is cbtained for uniqueness of a best approximation
to f. However, as seen earlier, the class of norms which are strictly
convex includes the LF norms for 1< p <, but does not include the
uriform norm. But the uniform norm is the one most often used for numer-
ical approximations since it gives an upper bound to the maximum devia-
tion of f from M. Hence, the remainder of this paper will be con-
cerned only with the uniform norme.

In order to have uniqueness for best approximations in the uniform

rorm further restrictions on M  are needed.

Definition 8: Let M be a finite dimensional linear subspace of a

rormed linear space C{S), so that there exists a set of vectors

fl, sooy £~ which form a basis for M. Then the function

P(x;3) = a.f . (x) + a f,(x) + **¢ +a f {x)
(9) ll() 22 nn
will be called a "generalized poclynomial™ or simply a "polynemial.”

A polynomial in ZM(f) C{5) will be called a "polynomial of least

deviation from f."
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Definition 9: A set of functions Ti5 eons fn in C{S) 1is said to be
"unisolvent™ on S if, and only if, for every set of n-distinct points

of 5. the matrix

fl(xl) fa(xi) cee fn(xl)_w
{fl,fg, ceo, fn) = fl(xg) fg(xz) coe fn(xg) {11-1)}
f:‘.(xn-J fE(XH) e fn(xn)—d

is nonsingular.
A set of functions which are unisolvent on a set S are sometimes
cailed a "Tchebycheff system" with respect to the set, S. For future

use denote the determinant of the matrix given in (I1I-1) by D(xl, Xy 5

ooy Xn>.
Theorem 4: If M Is the span of a unisolvent set of functions £,
ceus fn’ then any other basis for M wil also be unisolvent.

Proofs Any two bases f_, f_, «.s, fn and 9,5 9ys eees 9 of M

17 e? n
are related by

(f19f2) ey fn) A = (gl’gg, ooy gn)

where A 1s a nonsingular n x n matrix. If fl,f cee fn is uni-

2’

solvent then the identity

fo0xy)  fulx) »oe £(x)7 m9alxy)  golxy) --- gn(xl)'w
Il(xg) :Fg(xg) v fn(xg) A= ‘ 91(X2) gg(xg) te gn(xg)
L) gux) e £ (x)- 91(x,)  galx,) »oe g (x)d
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implies that gy,95, eee; 9y 1s also unisclvent.

Dafinition 10: If M has a basis which is unisclvent then M will be

sald to be a unisclvent subspace.
The following result, due to A. Haar [4], gives & necessary and

sutfficient condition for unigueness of the polynomial of least deviation

Theorem 2 {Haar's condition): The best approximation in the uniform
norm is unique for every f & C(S) if, and only if, M is a unisolvent

subspace.

Proof: The first portion of the proof will sheow the necessity of Haar's
condition. Assume M is not unisclvent. Then there exist n distinet

points X 3%ys oowy X in S such that

D(X sowy xn) = 0.

17 %90

This implies that the row vectors of the matrix given in (II-1) are
lirearly dependent. Therefore, there exists a nontrivial set of numkers

C,yC_y sse C_ such that
1" 2 1

c fj(xl) + cgfj(x

. ) e oo fj(xn) = 0

b

for j = 152, savy Ile Then

l [E.f(x

1i
O

mo0a d_ o

for any set a ,a
ny 1’922 ? %y
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Interchanging the order of summation gives

n n
Y e, [Zaj £i(x)] = 0
31 j=1
or in other woxrds
Z:Ci P(xiga) = 0 (11-2)

holds for any polynomial P{x;F) .
The assumption D(xl,ng cucy xh) ={0 implies the existence of
a nontrivial polynomial, P(x;b), such that P(xi;B) =0 for i=

152, soey, No Then since P{x;b) is continuous on S there exists a

sonstant N # o for which

In P(x3b)| < 1.

It is now possible to use A P(x;g) toc construct a function
f £ C{S) and then show that there exist infinitely many polynocmials
which are best approximations toc f. The construction of f 1is as
followse

Let h(x) be any continuous function on S satisfying

1) max |h(x)| =1
X €38
23 h(xi) = sign ., (1= 1,2, seesy NJ.
The function
£(x) = h(x) { 1- |xPlxsB)[} ,

will also satisfy properties 1) and 2).
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Hencea
ptt) < e - A Plap)|l = 1
since
[£(x;) - P(xi;_b)l = 1, (i = 1,2, eoes n)
and
1£(x} - A PGB < 120G+ In P(xsb) |
= |h(x) } 1 - | P(X§E)‘}| + |\ P(x3b) |
< 1= InPlxzo)] + InPlxb)] = 1.
If on the other hand there exists a polynomial P{x33d) such that
pM(f} -1 then
G - Pla® ] = [nle) {1 - I PlesB) 3 - Pk <1

mast hold.

But from P(xigg} = O and h(xi) = sign ¢, it follows that
|sign c, - P(xi;a)[ <1l

This implies that

sign ¢, = sign P(xi;E)
which contradicts {II-2), Therefore, pM(f) =1 and X\ P(x;g) is a
polynomial of least deviation from f on S.

Next let |e| < 1 and consider e\AP(x3b) as a candidate for a

polynomial cf least deviation from £ on 5.
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Then

|£(x) - enP(xzb)| < |£(x)| + |enP(x;Db)]

i

1= | aelxsh)| + |el | aP(xsb)|

1-{1-]e]) [aPlxsB)| <1,

it

Thus any polynomial of the form

eXP(x3b), le] <1
15 a best approximation to f on §.

2} The proof of the sufficiency of Haar's condition followse.
First consider the following lemma which is of interest in itself since
it shows that a polynomial of least deviation form f on S assumes its

maximum deviation pM(f} on at least n points of S.

Lemma 1: Suppose f ,f ; «ous f = satisfy Haar's condition on § and

let P(x:3) be a polynomial of least deviation from f & C(S). Then
pylf) = [£(x) - P(x53)} (11-3)

holds for at least n peoints of 5.
The proof is by contmadiction. Suppose (II-3) holds only for

X3 Xgs esoy X where m < ne Then choose m -n points of S5

14 "o’

~ + s 3
g2 oeer %p such that the combined set X3 X5 sees Xn constitute

rn  distinct points of S. Then by Haar's condition, the nonhomogeneous

system cf eguatilons
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c, fl(xi) + ¢, fg(xi) +oeee doc fn(xi) = f(xi) - P(xi;E) s
(i # 1,2, see. n) has a unigue nontrivial solution for C.3Cyy ouey S
Let
R{x) = f(x) - P{x;3)
and shoose a closed neighborhood N, about each point x (k = 1,2,00.,m)
such that
by min |R(x)| > 0O
X ENk
and
, py(f)
min  |P{x3T)] 2 M2 o
*® ENK
Let
A = max |P(xjc)l,
X eNk
A = max |[P(x;3c)l,
x eN
and
plf) = max |R{x)|
x ¢N
where M
N = S - \_/J N o
k=1 k
Then
po= pM(f) -p{f) > 0.
Now, choose & such that
~ - - ' E‘ El.. .}'_L.Il} T — Lo
¢ < o« < min g PO VERRERTY } and let b=a + ¢¢C.
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m
For each x € kuJ Nk the following hold,

k=1
|£(x) - P(x;b)| = [f(x) - P(x33) - & P(x:0)]|
= |rR(x) - & P(xsc|
. e P(x;%)
< Jr(x)) L1 e ]
< opylf) L1 - %] < pylfl.
When x g N
|£(x) - P(xsb] = |£f(x) - P(xsa) - & P{xzc)]
= |R(x) - & P(x;c) ]
< [RGA | + g]P(x3T
< p(E) +en < p () .
Therefore,
max |f(x)‘- P(X;E)I < pM(f)
X &S

which is a contradiction to the hypothesis that P{x:a) 1is a polynomial
of least deviation from f on S.

Now return to the proof of the sufficiency of Haar's condition,
Suppose there exist two polynomials P{x;3), P(x3b) of least deviation.
Then

ath,

]f(x) - P(X§ 2

| < é [£{x) - P(x;3)| + %If(x) - P(X;E)!,
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which implies that P(x; ==—) is also a polynomial of least deviation.

Hence, by Lemma 1 there exist n points of S where

ath :

If(xi) - P(xi; a2 o= pM{f), (17 1,25 0aoy 1) &
or

1 — —_

5 |f(xl) - P(xi;a)I + = If(xl) - P(Xlib)| = PM(f) »
which implies that

f(xi) - P(x33) = f(xi) - P(xi;b) = 4 pM(f).
But this yields
P(x.; a-b) = 0, (i =1,2, auu, 1)

1

which contradicts Haar's condition. This completes the proof.

Thus far S has been defined as a compact set in En. As a
result of Haar's condition it is now important to characterize those
compact sets, S, of E' for which C(S) contains a T-system con-
taining two or more functicns.

When S 1is a finite interval in El, say S = (-m,m] the func-
tions 1, cos X, sin X, sss, cOs nx, sin nx will form a T-system with
respect to S. Likewise the monomials 1, x, X2, ... X" form a T-system
on any set S which centains more tman n  points., Hence, for every
compact set S<C”E’ there exists a set of functions in C(S) which
form a T-system with respect to S.

The following example illustrates the difficulties which arise

when SCLE for r > 1. The example is an adaptation of one given

by R. C. Buck [6].



26

Let SCE? be defined by

s = Ly Ut

where
L, = {{xy) : 0<x<1, y=0}
L, = {(xy) 1-1< x<0, y=0}
L, = {luy) s x=0, 0<y<1}.

Choose a set of n points U, suu, U such that wu ,u_ &€ L
1 n 1’7 a 3

and |ul[ > |u2| and the remaining points are contazined in Lf and Lg.

Suppose now that U, is moved down on L8 and to the left on L, and

that U, is moved down on L3 and to the right on L, . Next return

u, and u, to L_ so that |u2| > |u1 . This process amounts to an

1 2

exchange of two rows of the determinant, D(ul, e0ey un) without any

two points Ui’uj coinciding and therefore the sign of D(ul, esey un)
must change. But since the function D is continuous this implies that
there exists a set of points v,, ..., v, of § such that D(vyssnes vn)
=0 and v, s v for i ¥ j; hence, Haar's condition is not satisfied

on S by any set of continucus functions fl, avey T &

n
From the above example, and the fact that S 1is a closed set, it
follows that the r-dimensicnal set S cannet contain any intericr points
for r2 2.
This discussion will be concluded with the statement of a theorem
of Mairhuber [7] which gives a necessary and sufficient condition on S

such that f seey fn form a T-system on S,

1?2
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Definition 11: A set S1 is homeomorphic to a set 82 if there

exists a function ¢ with domain S, and range 82 such that

1) ¢ 1is a continuous mapping of S1 onto 82 .

2) ¢ 1 exists and is continucus on its domain S,

Theorem 6: A compact subset S of ET containing at least n points,
1 2> 2, may serve as the domain of definition of a set of real-valued con-
tinuous functions fl, sooy fn which satisfy Haar's condition on $ if,
and only if, S 1s homeomorphic to a closed subset of a finite interval.
If n 1is even then S may also be the homeomorphic image of the circum-
ference of a circle,

In Lemma 1 it was shown that the error function, R(x) = f(x) -
P(x;a), assumed its maximum value for at least n points of S when
P(x33) is a polynomial of least deviation from f & C(S). Anocther use-
ful property of P(x;a) is that of oscillation in sign of the error

function. Before proving a general theorem on oscillation a related

idea 1s given in the following lemma.

Lemmg 2: Let f s0es T form a T-system with respect te the closed

1? n

interval [A,BJ. Then for each set of n - 1 distinct points

in [A,B], the function

x, < oxy Ko< ox

(%) £ (x) e faix) 4
D(x) = £,(xg) fo(xq) =+ f{xg)

Lf (x ) f.(x Jeee f{x )],
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satisfies
1) D(xi) = Q, (i = 1,2, 4ee, n-1)

2) D{(x) changes sign in passing through x; if x, is an

intericr point of [A,B].

Proof: The proof of 1) follows directly from the fact that two rows of
the determinant defining D{(x} are the same for x = x, when i

{192, ooy n—l}.

To prove 2) consider D(x) on the open subintervals (A,xl),

(xl,xg), cess (xn_l,B}, D{x) ¥ 0 for x ¢ (xk_l,xk) by virtue of

Haar's condition. Suppose there exists an 1 ¢ {1,23 ceos n—l} such
o
that D(x) does not change sign in passing through x; . Then, either

o
D{x} >0 or D(x) <0 for every x & (xio_l, xid+1) and x F xio.

Assume D{x) > O and let
D(x) = D(x, Xis swes Xi _13 Y5 Xi 4qs een xn_l)
0 0
where here also vy # Xiq but v € (xio_l, Xio+l}' It is easy to verify
that D(x) is also nonnegative for all x in (xj —15 %3 41). Thus
0 o

there exists an & > 0O such that
D{x} -¢&D(x)

has at least n-zeros in [A,BJ]. But this implies a contradiction to
Haar's condition. Here, D(x) must change signs in passing through

X: o A similar result holds for D(x) < O.
0



29

Theorem 7: Let f P fn form a T-system with respect to the interval

1,
[4,B] and let f e C[A,B]. Then if X = {x,, +es, Xp4,} is a set of
n+ 1 points of [A,B], the polynomial, P(x;3), of least deviation

from f on X satisfies

1

1) |f(xi) - P(xi;E)l = px(f), (i = 1,2, veee, ntl), and

1!

2) sign R(xi) = - sign R(xi+l), (1 = 1,2, eve, NJa

Proof: The proof which follows is similar tc that given by 5. Karlin
[s].
To prove 1) suppose there exists an xio £ {xl,xz, cvoy Xn+1}

such that

[£(x; ) = P(x; 53)[ < pyulf) (11-4)

o}

Then for Jj = 1,2, s.e, ntl but j # i construct a polynomial Dj(x)

as Lemma 2, 1.2.,

Dj(}() — D(X,Xl, *e w3 Xio—l, Xio+1, *FSY Xj_l, Xj“l"l, LR ] xn-l-l)
and

Dj(xi) = 0 for i= 132, vewy n+l,

but 1 F io and 1 F j. Note also that it is possible to construct

Dj(x) such that

D.{x, > 0,
J(XJ)

Next let Ej be checsen so that
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ign £, = sign [fix,) - Plx.;% .
slg 3 g |: ( J) ( 37 ):l
Then by (II-4) above it is possible to choose |Ej| so small that

lf(xi ) - P(Xi 53) - £, D.(xi

)| < {f) .
o o e Px

From which it fellows that

lf(xj) - P(xj;ﬁ) - Ej Eﬁ{xj)i < pX(f)

while
[£0x,) - P(x;53) - &5 Dilx;) |
= [f(x) - Plx33) | < pylf) .
Therefore b1
l£(x,) - P(x33) - z e, Dylx)| < p
j=1

for (i = 1,2, e.., n+l).
But this contradicts the assumption that P(x3a) is a polynomial
of least deviation; hence 1) is established.

To prove 2} let x; , X; 4, be two consecutive points of x

&) e

15

.o me that
Xgz wees X L. and assume tha

) > 0 and R(x. > 0.

1 +l)
0]

Define

D, (x) = DlX;X5 eeesr X _y» xio+2, cees X 4y)
o
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so that D, (x) >0 for xe (x; _, x, ,5) . Then for &>0 suffi-
o

i+
o) 0
ciently small the polynomial

P(x;a) - € D.l (x)
)

will yield the same absolute maximum for the error function

R(x) = f(x) - P(x;3) - ¢ D {(x)

since Dy (x,) =0 for ie {1,2, vuey ntl} but 1% i, and 1%
o]

i+ 1.
o)
But

R(xi
[}

) < PX(f) and R(xi6+1) < px(f)
contradicts Part 1) of the theorem. This completes the proof.
This development will be cconcluded with g generalization cof a

well-known theorem due t¢ P. L. Tchebysheff.

Thegrem 8: Let fl, cnesy fn form a T-system with respect to the
interval [A,B] and let f & CLA,B]. Then the polynomial, P(x;3),
of least deviation from f on [A,B] is uniquely characterized by

the property that the error function, R(x) = f(x) - P(x;a), assumes

its maximum value, p[A B](f) =p, on at least n + 1 points of LA, B]
b

and alternates in sign on these n + 1 points,

Proof: (Note that the existence and uniqueness of P(x33) follows from

Theorems 2 and 5). To prove the sufficiency of the condition let
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x, <x, < eee<x .. be n+l points of [A,B] and let P(x3a) be

a polynomial defined on [A,B] such that
[R(x.)] = »p, (i = 1,2, ev., ntl)

and R(x) alternates in sign on x eeey X .« Suppose there exists

1? n+1

a polynomial P{x;b) with

|£(x) - P(x;B)| < p

for every x £ [A,B]. Then between each pair of points X s Xpqy the

two polynomials P(x;3), P(x;b) intersect. Hence, the polynomial
[£(x) - P(x;3)] - [£{x) - P(x3B)] = Plx;b) - P(x;3)

has at least n distinct zeroes in [A,B] which contradicts the

assumption that f , ..., f  formed a T-system on [4,B] .

Next consider the necessity of the condition. Let P(x3a) be
the pclyncmial of least deviation and suppose it does not satisfy the
given property. Then there exist k points (k < n), Y, < Yq L oove
< v, at which |R(yi)| =0, and R(yi) alternates in sign. There
then exist k - 1 points X,9%5s weny Xy at which R(xi) = 0
with

ALy, < X, < Yy, < 0o < Xpo, < Yy <B
and so that the inegualities
-p < f(x) - P{x53) < p-u

-p-u < f{x) -P(x3) < p



are satisfied in cyclic order in the intervals

and for some u sati

If k=n

P(x;b) = D(x,xl, ceer X

[a,x, 1y [xpox,], oun [y, E]

sfying 0 < uX< p/2 .

then define

)

1

and choose the sign of & such that

Then for

for every

sign

le| suffic

x € [A,B].

[e P(x;b)] = sign [f(y,) - P(y,;53)].
iently small
|£(x) - P(x33) - € P{x30)| < o5

But this contradicts the assumption that

P(x3;3F) is a polynomial of least deviation.

If k < n,

then let

If m 1is even, choose a sufficiently small neignborhood, N,

X-q SO that

fer all x & N. Then

If m 1is cdd, chcose

and let

X

: Bl

n=1

|£{x) - P(x;3)] <=

chcose m points of N, x, , x

k, k+l, sy X

m -1 points Xk’ Xk+1’ eesy X in

akbout

33



34

When m 1is even, there exists an & for which
| #(x) - P(x33) - € P{x;b)| < Py
for every x € [A,B]. When m is odd it is possible that at x = B
|£(B) - P(B;3) - ¢ P(B;b)| = Po
However, if another polynomial P(x;T) is used where
p(B;c) [£(B) - P(B;3)] 2> O,
then for beth €, 81 sufficiently small

[£(x) - P(x53) - & P(x3b) - € P(x5)| < p

for x & [A,B]. 1In either case a contradiction is obtained., This com-

pletes the proof.



CHAPTER III
BASIC ALGORITHMS

The first algcrithm given is a variation of the second method of
Remez as presented by E, L. Stiefel [9, 10] and called by him "the ex-
change method.," It includes as a special case the method of E., N. Novod-
varskii and I. Sh. Pinsker [12] as given by A. Schenitzer [13].

The outline of the theory, in particular the proof of the exchange
thecrem, given by Stiefel is constructive in the sense that it is a pro-
cedure for the solution of the uniform approximation problem. For this
reason the theory will be developed first.

let £ voes frl form a T-system with respect to the closed and

l,
bounded set S and let f & C[S]. Then the problem is to develop an

algorithm which will determine a set of coefficlents a,, ..., a which

minimize

max |f(x) - Ej a, f.(x)

Xes i=
Let X = {xl, sves Xn+1} be a set of n + 1 distinct points of

S and let P(x33) be a polynomial on S. Then there exists a set of

numbers {al, eres an+1} such that
qlp(xl;ﬁ) + agP(xg;E) oy P(xn+1:3) = 0 (111-1)

This follows from the fact that f., ..., fn satisfy Haar's con-

1?

dition on S and is easily verified by expanding the determinant
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f,(x,) ses fn(xl) P(x,:3)

*

by the elements of the last column, Since the last ¢olumn is a linear
compination of the first n c¢olumns, the determinant 1s zero., Further-
more, each a, is different from zero since the coefficients of Equation
(III-1) as obtained by the expansion are the signed cofactors of the
elements in the last column, which by Haar's condition must be nonzero.
Note also that the a, are independent of the polynomial P{x;3).

Hence, (III-1) is satisfied for every P(x33).

Definition 11: A polynomial P{x33) is called a reference function with

respect to the reference set X 1f the deviaticn p; = f(xi) - P(xi;E)

corresponding to the elements X, € X satisfy

i

sign ps sign a,
or (111-2)

Y

sign p; - sign a
for 1=1,2, «as, ntl.
The existence of reference functicns is easily established. In
fact, if Ps is the deviation of a polynomial P(xj;a) at the point
X € X, then a reference function can be obtained by solving the systems

of equations on the following page for by, ..., b . Then P(x;b) is

a reference function with respect toc X.
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PN 2 r ] B
fl(xl) fn(xl) |pl| sign «, bl f(xi)
. v : : = . (111-3)
_fl(xn+1) e £ O lentdsion any b, £(xn+41)

Definition 123+ A reference function P(x3b) is called a levelled ref-

erence function if the deviations Py have the same absolute value at

each pecint X, € X. The absolute value cf p at these points is called

the reference deviation.

A levelled reference function can be obtained from (III-3) by
setting |pi| =p for 1i=1,2, «.., n+tl and solving the resulting

system for bl, ey bn’ p o

Suppose now that the equaticn
p; = f(xi) - P(xi;a) (I11-4)

is solved for P(xi;“é‘) and substituted into (III-1). The result is

nti
), as L) - ps) = 0
i=1
or n+1i n+i
Z a; Py = Z ay £(x;) - (111-5)
i=1 i=1

Then if P(x3a) 1is a reference function (III-5) becomes

n-l'j_ n+i

Z la. | lp.] = = Z a; £(x,) (111-6)

1 1
i=1 i=1
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From this we may conclude that the deviations of all reference functions
corresponding to a fixed reference set (and function f)} form a bounded
set.,

For a levelled reference function let
pi = p sign ai
in (III-B) and solve for p. Then

b} a, f(xi)
p = ———— (I11-7)
Z |a.|
i
Thus the value of the reference deviation for the levelled reference
function can be obtained using (III-7) and polynomizl interpolation.
Note that the levelled reference function is not dependent on a particu-
lar reference function.
If (III-4) is solved for f(xi) and the result substituted into
(I11-7), one obtains

- b ai[pi + P(xi;a)]
z ]ai| '

ol Tp, |
2 la. P
]Pl - —d 71 (III‘"S)
Elail

But this implies that |p| is a weighted average of the ]pi| and
thus

min |p, |

: [l < max o, (111-9)
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Therefore, if P(x:F) 1is any reference polynomial with reference

deviations p. then from (III-8) it follows that

lpl < max |p.] . (1II-10)
i 1

Let P{x3a! be a levelled reference function with reference de-

viation p on the reference set X, and let y € S be such that

[£(y) - P(ys3)] = max [f(x) - P(xs3)] > p .
XxES

Then there exists an X; € X such that if X5 is "exchanged" for vy

in X, P(X;Eﬁ will be a reference function on the new reference set

Xk = X - {xi} + {y} « The proof of this will be given later in Theorem 9,
It follows from (III-8) that the new levelled reference functions

P(x3b) obtained by levelling P(x3a) on the reference set X¥ will have

a reference deviation p* which is strictly greater than p. Thus this

process can be repeated and a sequence (which might terminate) of devia-

tions {p? ¢ J= 1,2, ,.o} will ke obtained that satisfy the inequali-

ties

pf < pf < % <

Now suppose S 1s a discrete set cof points XisXgy weey X
where m > n+1l. Then by Thecrem 5 there exists a polynomial P(x;¢)
of least deviation from f on 5. Furthermore, S being a discrete

set implies that the seguence {p?} will terminate, since there are

only a finite number of distinct reference sets X¥, and a reference
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set cannot be repeated since p* < p§+l . Hence the last element X
J

of the sequence {pf} will satisfy
J

no< gy (f) (I1I1-11)
where
pytf) = max £(x) - P(x;3)] .
XES

If » < pM(f) then there exists a levelled reference function
P(x;2a) such that

max |£(x) - P(x;3)| = » {(111-12)
XES

since otherwise it would be possible to obtain a p* > A. But (III-12)
would imply that P(x3C) was not a polynomial of least deviation from
f on S. Therefore, X\ = pM(f) and the iterative procedure used to
obtain N converges to the polynomial of least deviatien from f on §,
subject of course to the proof of the exchange thecrem.

This procedure applies egually well when S is a finite interval
(see E. N. Novodvarskii and I. Sh. Pinsker [12]), but for the development
of algorithms for numericzl applicaticn the discrete case is sufficient,
Fer & a countable compact set in EY the proof has been given by
E. W. Cheney and A, A. Geldstein [14].

The exchange theorem follows.

Theorem 9: Let P(x33) be a levelled reference function with reference
deviation p on a reference set X. Suppose there exists a vy £ S such

that
[£(y) - P(x;3)| > p.
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Then there is an x. € X such that, if vy 1is exchanged for X: s

P(x;a) will be a reference function on the nonreference set X* =

£ - {Xi} + iy} .

Proof: Since P(x33) is a levelled reference function on {xl, Xos sy

xn} there exist numbers gy ewey Oopg which satisfy

a, P(x;53) + *** + apy, Plx33) = 0O {111-13)
and
sign a, = & sign [f(xi) - P(xisg)]
for 1 = 1,24 eswy ntl,
Next consider the set of points {xl, ceey X v} . P(x;a) is
a polynomial on S and hence there exists a set of numbers B, ...,

7 - - ! s
Bn+1 satisfying ﬁi #E)(l T 152, seey ntl) and
L P(xp33) + oor 4+ B P(x53) + By P(y33) = O,
for all polynomials. Then dividing by Bé+1 gives

B, P{xl;g) + e + ﬁn P(xn;g) + 0*P(xy+438) + Plyza) = 0.
(I111-14)

(B, - 8a,) P(xg,a) + »»» + {8 - 8a ) P(x ;3)

- 3) + P(y:a) =
8 @, P(xn+l,a) (yi13) 0

by subtracting from III-14, 6 times III-13.
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If  f(y) - P(ysa) >0 and sign a; = sign {f(xi) - P(xi;E)}
or if f(y) - P(y;a) <0 and sign o, = -sign {f(xi) - P(xi;g)}
i
then define
B
min =, i=1,2, ess, n
6, = min * (T11-15)
0
If eo = 0 then sign Bi = sign a, and replace X 4q by y. If
GO = Bi /ai then
o o
Bio Bi X
T < a; for i =1,2, o.ey 1
0 i F 1
and sign (Bi - eoai) = sign a,; 1 + 1 with ﬁio- 8, @ ] = 0. Thus
replace Xy by v
o)
On the other hand if f(y) - P(vysa) > 0 and sign a, = - sign

{f(xi) - P(xi;ﬁ)} or if f(y) - P{y;3) < 0 and sign a, = sign {f(xi) -

P(xi;E)} then define

i .

max E;’ 1= 1,2, esey n

90 = max (111-16)

O
If eo = (O then sign Bi = - sign a, and replace X 41 by vy. If
6, =8, /a, then

o o
g,
> P for 1 =1,2, eee, n

|
[y
o Q
[N

iF i
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and sign a, = - sign {Bi - eo ai} with Bio - 60 aio = Q, Thus in

this case replace Xy by v. This completes the proof.
o)

It was assumed earlier in the proof of the convergence of the
seguence {pk} that S was a discrete set of points or had been re-
placed by & discrete set. In what fcllows it will be assumed that 3
is a discrete set of points unless stated otherwise.

In order to give an algorithm based on the exchange theorem, a
starting procedure is needed to obtain a levelled reference function and

the numbers Qys ey O « The first step 1s 1o select a set ¢cfn + 1

n+1
points of S, The best choice of these n + 1 points would be a set
which yielded the largest reference deviation p for the starting ref-
erence function. In general a method of determining such a reference
is not known. However, a good a priori choice when § 1s an interval

is given by the local extreme points of the Tchebysheff polynomial

Tn(x) on S. For the internal [-1,1] these are defined by

X = - Co5 %, i = O_,l, ey n . {iii"l?)

A heuristic motivation for such a choice can be made when fl(x) =1,
fz(x) = Xy een, fn(x) = x""1, Suppose f(x) is a polynomial of degree
n {or at least can be clesely approximated by such a polynomial}. Then

the error function at least deviation

R(x) = f{x) - Pn(x)



1s proporticnal to the Tchebysheff polynomial of degree n wnich assumes
its maximum value at these n + 1 points. However, it must be pointed
out that for S5 a discrete set this choice may not be possible. 1In

this case choose those points nearest the Tchebysheff abscissae.

This choice was used by W. Fraser and J. F. Hart [15] in their
work with raticnal approximations using an algorithm similar to Stiefel's
exchange theorem. They reported that good results were obtalned even
though the above argument does not apply for rational functions.

With the initial xi’s chosen the ai's can be obtained by set-

ting Uoys = 1 and solving the system of equations,
fl(xl) i fi(xn) O:l - fl(xn‘l'l)
: : : = : (111-18)
1Cn(xl) te fn(xn) 9y B fn(xn+l)

for Uys woey Op o

Equation (III-18) has & unigue nontrivial solution since fl, cves

f is a T-system con {xl, saay xm} . Furthermore each a. # O3 hence

Next let A, = sign a, (i = 1,2, +44, ntl) and consider the

system of equations on the feolleowing page.
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r l -0 ] [ 7 B -T
1 Y, 1
Ny fl(xl) AR W fl(xn+l) . 0 | (111-19)
SENER s L0 || ©
. 4 n -
Letting
]Gj|
vy = s (3= 1,2, .o, ntl) (111-20)
by |a.|
i=1 1

it follows that

n+1 I |
a.
— R R _
z"fj = Z n+1 - l .
JF1 L. Z |a |
1= 1
Also
nt i nti
Z Ry f.l(xj) = n—;'l“—r—l- E ?\j|aj|fi(xj) = 0.
j=1 2 a j =1
k=1 k
Therefcre ] |
[s A
Y5 = —d (3 =1,2, vee, n)
z |a, |
i

is a solution to (III-19).

It can now be shown that the Yys eees Y4 0TS unique ana there-
fore the matrix in (III-19) is nonsingular. To do this assume Bl’ ceny

B.py 1s another solution to (III-19) such that at least one Bi’ say,

Bi satisfies
0
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Substituting B., ¥; into (I1I-19) gives

(I11~21]

1
o

) B Dn, Plx,53)]
and

) s Dny Plx53)] (111-22]

!
Q

for any polynomial P(x;a) .
Then multiplying (III-21) by <3 and (III-22) by B; and sub-
o] o}

tracting one chtain

(yB: - viBy) O P(x;E) )+ -
0 0

* (Yn+1Bio T Y Bn+1) (kn+1p(xn+1;a)) = 0.

Note that the coefficient of Xy P(xi 33) is zero in this equation.
0 0

Therefore all the coefficients must be zero since otherwise f,, ..., fn

would not ke & T-system on {xl, reey xm} . Thus

ﬁio
Bi = ;;— Yi s (i = 1,2, wes, ntl)
o
and hence +
n+i1 n+i1
Bio Bio
_ZBiMYiZYi_Yi'
1=1 o i=1 0
n+i

But E} B, = 1 by Equation (I11-19) from which it follows that
i=1

Bi = Tia (1 = 1,2, sesy ﬂ+l) .
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rrom thls 1t is easily seen that the matrix

— ]

1 .. 1
B = Ay fl(xl) T Ny fl(xn+l)
kl fn(xl) Tt Kn+1 fn(*n+1)

is nonsingular.

It would be possible now to present an algorithm based on the
Exchange Theorem., However, for notational purposes the Exchange Theorem
will be reformulated before giving the algorithm.

Let o = sign {f(Y) - P(y,E)} and let Yl’Ye’ cees Yoy be the

solution of the linear system

1 cav 1 Y, W 1
N, f(x)) AN fl(xn+1) Yo o £,(y)
xl £ (xl) ’ Kn+l fn(xn+1) Yn+1 ¢ fn(Y)

where Ki = sign a . Thus

vy N P(x5F) + o by 0 P(x 4 57) = o P(y;E) (I11-23)

holds for all polynomials, in particular for P{x33}. Equation (III-13)

can be written in the form

la | N P(x33) + oo + o) ap4,Pxpy53) = 0« (I11-24)
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Now choose iO so that

Y3
O

% | o, |

Multiplying {III-24) by +y; and (III-23) by a; and then substituting
0 o]

the resulting equations gives

(r; lag) = oy Ty MPGo,a) 4 mme o+ (yy oy
o c 0 o

= lag Iy o) ng Plx, _j58) 4 ony Pxg 52)

o Tot o o 0 o
t (Yi |ai+ll - Iai | Y +1)P(Xi+l§5) + e
o o ) 0 0
+ (Yi g | —]ai [ ¥nt1) An+ePUxnty3)
0 o
+ clai |P(y,3) = 0. (I11-25)
0
From
i v, vy lagl = vylag |
0 < . o _ i _ 0 0
%] oyl s |- Ty
0
it follows that
0 £ . .
= Yloiail - Yi]aioi for 1= 1,2, sua, ntl.

Since III-25 holds not only for P(x3;a), but for all polynomials we see
that

0 <y, iaii -y lay | for i# i
0 &)
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It follows that P{xj;a) 1is a reference polynomial on the reference set

¥ = X - {xi 1+ {v} , by observing that the coefficients of P(xi;E)
Q

in (III-25) have the proper signs.

An algorithm based on the Exchange Theorem follows.

Algorithm 1:

Input: X3 Xos wees X m>n

f(Xl),f(Xg), reny f(xm)

I= {il, ig, ceey in+1} which we shall for sim-

plicity denote by {1,2, . n+l}

a- for k=1,2, e.s, ntl

11

Step 1., Set Kk = sign a, (k 1,2, «.., n+l) and compute

Pgr @42 =o=s By using

(ppagswema) [ 1 01T

7‘1f1(x1) e kn+lfl(xn+l)
= (klf(xl),...,Kn+lf(Xn+l)).

aE (%) .. >‘n-{~lfn(xn+l)

Step 2.. Determine jO such that

|R(on)| = m?X lR(Xj)ly (5 = 152, aevy m) .

If



then the pcolynomial obtained in Step 1 is the polynomial of least de-
viation from £ on {xl, saey xm} and the algorithm stops.

Otherwise proceed to Step 3.

Step 3.. Set o = sign R(xjo) and compute &y, ..., ¥ ., using
1 " 1 sri 1
n ) e s £l | o ty(x, )
. . = (0]
Ay folx ) oo ngy Folxgy) A o £ (x5 )
L. [ - . 0 ~o

Step 4.. Select :'Lo 50 that

i Y.
e = °©- = max { 1

Step 5.. Replace io by j in I, and compute
o€ = }‘-i(elai| - Yl)’ 1 :i: lO

and

Then return to Step 1.
A close examination of Algorithm 1 with the simplex procedure

of linear programming in mind leads one to believe that it might ke

20

simply a specilal case of the linear programming formulation of the uni-

form approximation problem. It was for this reason that the Exchange
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Theorem was reformulated before giving the algorithm. In order to pursue
this idea further the development of the simplex algorithm will be given
next. It is assumed here that the reader is familiar with the theory of
linear programming as it is presented in $. Gass [16].

Let fl, vees fn form a T-system with respect to a finite point
set S = {xl, Xgs eves xm}, and let f & C(S). Then the uniform approxi-

mation problem is to determine numbers a ceey A such that

l,
p(f) = max If(xj) - P(xj;EH (II1-26)
is minimized.

Now, (III-26) can be replaced by the inequalities

TP < f(Xj) = P(in-a-) < [+ F) (J = 1,2, sasy m)

or

p + P(xj;E) > f(xj)

, (3 = 1,2, wes, m} (111-27)

p - P(xj;E) > -f(xj)

With the use of (I1I-27) the problem can be expressed in the

standard linear programming form.

Form 1: Minimize p subject to the constraints

1o (k) e ()] Te 7 [ (k)T
1 -1 (x e -1 (xy) a, - f(x,)
I SN A (111-28)
1 fi(x ) eee £ (x) £(x )
1 =f (x ) eer -f (x) a - f(x )
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The dual of this program is:

Form II: Maximize £ Gy Gy subject to the constraints

a; 2 0, (i =1,2, «u., 2m) (I11-29)
and
1 1 <o 1 I N 1]
‘ fx : _flfxl) o flfxm) “Fybxg) N 0 (I11-30)
fn(xl) -f (Xl) see fn(xm) - fn(xm) Oé ]
where
c = I:f(xl)’—f(xl)’ ey f(xm):'f(xm)] .

The standard simplex algorithm will be applied fo Form II of the

linear program.

Definition 13t A feasible sclution to the linear programming problem is

a vector O which satisfies the constraints; i1.e., T 1s a feasible

solution if it satisfies (III-29) and (III-30).

Definition 14: A basic feasible solution is a feasible solution with

no more than n + 1 nonzero elements.

In order to use the simplex procedure g basic feasible solution
must be known; i.e., a starting procedure is needed just as in Algo-
rithm 1 +to obtain a basic feasible solution. Such procedures are well
known and may be found in S. Gass [16]. The most general of these is

"

the one using an "artificial basis,”
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Since the principal concern here is the algorithm, it is assumed
that a basic feasikle sclutien is given.

Denote Equation (I11-30) by
Ag = b

and let Aj be the jth column of A. Let the nonzero elements of the

given basic feasible solution be given by the vector
- T
BO - (Bl; Bg: LR RN Bn+1)

where Bk corresponds to the ikth column of A. Let

Thus

B, = B 'b.

The simplex algerithm follows. The objective functlion will be changed

to: Minimize - Z ai ci.

Algorithm 2:

ol
N

Inputs: [—f(Xl),f(Xl), "'3'f(xm)’f{xm)]

A J= 1,2, veuy, 2m

o= {i,d, een i1 EO



Step l.. For each 3 ¢ I

compute
le |
Bla, = B8, = |3 .
B
B
Step 2.. Compute 25 = Cs for j £ 1 where
ntl
%07 ) Pk 1,
k=1
th
and ¢, is the i, component of the vector ©T.
k
Step 3.. If z, - ¢, <0 for j=1,2, ..., 20 then B, is the

minimum feasible solutlion. Otherwise proceed to Step 4,

Step 4.. Determine a jo such that

z. =-c, = max (z. - ¢c.) .
JO JO 3 J J

Step 5.. Determine an iO such that

Py

= min {

where Bi is the ith cemponent of Eo .

Step 6.. Replace io by jO in I and Ai by Aj , and return
o o
to Step 1.
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The comparison of Algorithms 1 and 2 is now pcossible. Assume
that a set of n + 1 peints {xl, P xn+1} is given and that the
a. are computed using (III-18). If the indices I = {il’ig""’in+1}

are chosen so that

T .
A = {]_, )\j fl(xj), ceey ',\j fn(xj)} s (J = 1,2, seey n+l) 3

then the matrix

B = Kl fl(xl} At fl(xn+1)

- L
. -
- .

Mo falxg) e hgag Frlnag) |

is the same as the matrix used in Step 1 of Algorithm 1., Furthermore, B

is nonsingular and

B, = B-1 b

is a basic feasible solution of the linear program. This follows from
the development of the solution of Equation (III-19). Hence both pro-
cedures determine the same polynomial P(x;3).

Next consider the selection of jo. In the linear programming

algorithm jO is determined by

where n+i
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¢, = =& f(x ), ( k=1,2, vvu, ntl) ,

and N1

Ej Bj N P(xk;E) = oP(xj;E).
k=1 k

In this last equation o = +1 depending on the selection of Aj, i.e.,

Aj = (1, Ufl(xj), cee, of(xj)f.
Thus
2, -6 = - Ejﬁjk M f(xk) - o(-f(xj))
k
or
2 - ey = - Ejgjk [hy £ )T + 08 (x))
k
But
N f(xk) = N P(xk;E) = p > O
and
f(xj) - P(xj;E) = op, > 0,
where
Py = |f(xj) - P(ina)l .
Hence
2, =5 - E:Ejk Cp + kk P(xk;i)] + o[cpj + P(xj;a)]

"

) B, - ) By M PR g 0®(x,53) -

n+1
L= d . P .« — P Y d
Now, kz; BJk 1 an é;l Bjk A (xk,a) o (xj,a) an

thereforse
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-¢c. = -p - agPix.3a) +p. + 0 Plx.33
ZJ .J P ( » ) .OJ a ( s’ )
or
ZJ - Cj = pJ - p .
Hence,
max (z, - ¢.) = max (p. - p)
J j J
where
. = |f(x.) - P(x.;a
P | (XJ) (xj,a)I

Thus jo is the same in both algorithms.

The comparison will be complete if it can be shown that the deter-
minaticn of io is the same in both algorithems. To see this, multiply
Equation (III-25) by l/Yi to obtain

o]

(lagl = %) MPGsa) + 200+ (lag 0] - 0%y —4) A 4P(xg - 457)
0] o] (0] o)

- * T LN
+ (lay g | = 0%y L0 a4, P(x, 4 57) 4 + (la,, |
Q o) o] o]
= 0% L) Ny PUx 433) + o 8% P(y;a) = O,

where

|aio|

p* = .
Yy
o
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Next, comparing the equations of Step 1 of the iwo algorithms and chserv-

ing the starting procedures, it is seen that

la;| = B,
and
Yi - Bj 1.
Thus
Yy B;
max = min { 5 . Bj N >0 }
|ai| J Jol 0
|l |
= min { — ¥y >0 }
] Yi

and hence io is the same in both algorithms,

A close examinaticn of the Exchange Theorem will show that the
choice of jO by

|R<xjo)| = m3X IR(xj)I

does not necessarily yleld the maximum increase in the reference devia-
tion p. But in view of the equivalence of the two algorithms this is
to be expected since

max Lz. = C.
o g - o)

does not yield the maximum increase in the objective function for the
simplex algorithm., If the two algorithms were modified to obtain this

maximum increase the resulting algorithms would still be equivalent, but
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the number of computations necessary during each iteration would be
sharply increased. Experience wiih the simplex procedure indicates
that this modification does not, in general, decrease the number of

iterations sufficiently to be of much practical value, Gass [16].



CHAPTER IV
MCDIFICATION OF THE BASIC ALGORITHMS

The first modification considered concerns the starting procedure
for Algorithm 1. It is due to E. W. Cheney and A. A. Goldstein [14].
The procedure which they use chooses a set of peints {xl, evey xn} and
adds an "artificial vector" constructed from these n points te complete
the basis. It does not require the initisl computation of the Qgs eess

a « The matrix used 1is

n+i

1 eee 1 _—
folx) e f () =) E () (1v-1)
5=
(k) e E ) =) E )|
- le s

the artificial vector being

n

- T
Popy = (=) £ 00)s e =) £ GOTL (10-2)
J=1 J=1

Associated with this artificial vector is a number b which takes the
place of f(xn+1)’ so that if the algorithm converges with the artificial
vector still in the basis then b 1is increased and the algorithm is

started over. This process is repeated until the algerithm converges

with the artificial vector removed. The paper shows that if b is
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increased indefinitely then the ma§5|R(x)| is unbounded and no solu-
XE
tion exists.

While this starting procedure has the advantage that the program-
ing necessary to ccmpute Oys weey Opty 1s not needed, additional compu-
tation would be needed to remove the artificial vecior. Furthermore, if
it becomes necessary tc increase b, then ithe additionzl computatiion
would exceed the computation t¢ obtain Gy sevs Opiyy since then the
algerithm must be started over from the first step.

The second modification 1s obtained by restricting the set S 1o

be a finite interval, [c¢,d]. Then the set of points {xl, viey X}
m

may ke indexed so that
¢ £x, < x, < = < x £ d.

Thus applying Thecrem 8 ii{ follows that the pclynomial of least deviation
from f on S 1s characterized by the property that the error function
R(x) alternates in sign on n + 1 points of § and assumes its maximum
on these n + 1 peints. Furthermore, if {xl, seey Xn+1} is any ordered
set of n+1 points of S, then the polynomial of least deviation from
f on {xl, cway xn+1} is uniquely characterized by the same properties
(see Theorem 7).

Thus for every ordered set of n + 1 points {xl, coay xn+1}’
the pclynomial of least deviation from f on these n + 1 points

satisfies

sign R(xi) = - sign R(xi+l) {(1v-3)
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and

]R(xi)| = constant, (i =1,2, vo., ntl) .
But
sign a; = A\, = =z sign R(xi), (i = 1,2, «es, n¥l)

1

and hence Equation (IV-3) implies

ign g. = = sign o, .
819 al ¢ i+1

Therefore the matrix given in Step 1 of Algerithm 1 becomes

[ 1 1 1
D I N O R G NCA
1 1t1 n+1
i (xll) - f“(x11+1) cee (-1) fl(x1n+1i_ .

Hence it is no longer mandatory to have a starting procedure to compute

Uy woes Oy o
In addition, the determination of the io tc be replaced by jo
as in Step 4 can ke changed to the selection of an io such that when
j, 1is replaced by 1 the error function R(x) alternates in sign on
the resulting set of points.
The algorithm which resulis from these changes 1s a modification

of the one given by A. Shenitzer [13].
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Algorithm 3:

Input: x., f(x.), (1 =1,2, vau, m)
I = (1,2, +.., ntl)

Step 1.. Solve

1

—_
.
4

—

]

1
I

(p,al,...,an) 1 [f(xl)---f(xn+l)]

fer p, Bis seey e

Step 2.. Determine jO so that

IR(X. )| = max |R(x.)| .
JO 3 J
Step 3,. If |R(xj )| = max {|R(xj)| : j ¢ I}, then P(x;3) Iis
8]

the polynomial of least deviaticn from f on {xl, eeey xm}. Otherwise

proceed to Step 4.

Step 4.. For convenience in notation assume I = {1,2, crey n+l}.

Then, if there exists an i, 1+ 1 €& I such that xjo £ (xi’xi+1)’

replace i by jO in I when sign R(xj ) = sign R(xi); otherwise
o}

replace I +1 by j_. If X & [c,x,], then replace 1 by i,

Q
in I when sign R(xj ) = sign R(xl); otherwise replace n + 1 by j .
o

If x. & (x , d], then replace n+ 1 by j_  in I when
JO n+i1 o
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sign R(on): sign R(xn+l); otherwise replace 1 by i -

An aliernate approach to the uniform approximation preoblem is to
solve the system of equations of Step 1, Algorithm 3 for p in terms of
xl, weey xn_l_1 using Cramer's rule. The problem then becomes one of
maximizing a function of n + 1 wvariables. This approach fcr the case
in which fi(x) =xi"%, i=1,2, ..., ntl has been developed and applied
by P. C. Curtiss, Jr., and W. L. Frank [17]. A restricted version of
their method 1s given below in Algorithm 4. An outline of the theory
follows.

Let f be a continuous function defined on a finite interval
[c,d]. Let f, = x1"1 g5 that f is to be approximated by the functions
1,%,%%, +esy x'. Then replace [c,d] by an ordered set of points
{xl, Xy wens xm}; ey, %y $x5 < vee < x o Assuming 1 =0,1, ...,ntl

the system of equations for p, G reersdy becomes

2 4 e n v o _
1Xj + azxj + + anxj + (-1) p f(xj), (Iv 4)

a + a
o]
j = 1’2’ ..., n+2 .

Now, suppose (IV-4) is solved for p wusing Cramer's rule. Then

nt+i
z (-1} f(xj) Cj(xo, cees Xoy)
Bl s vees Xppy) = 12 —
E: Cj(x 3 weey Xn+1)
j=o

where
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C.(x X, ) = Z: |x. - x -t
jtPe? T Tndt T i j ’

Then, if a subset Yor¥ys eees yn+l of {xl, couy xm} is determined so

that p(yo, cees yn+1) is maximum over all possible subsets of n + 2

elements of {xl, cony Xm}’ solving the system of equations in (IV-4)

using Yos wres ¥ for the x?

N1 will yield the polynomial of least

deviation from f on {xl, ceny xm}. The proof of this last result is
given in the paper by P. C. Curtiss, Jr., and W. L. Frank [17].

In the exchange process of Algorithm 3 it was necessary to treat
2s a special case the exchange of jo for some 1 £ 1 when on was
contained in a cne-sided neighborhood of an endpcint (i.e., when

3 [c,xl] or (x dJ]). A similar treatment would be necessary

on n+z’
here. However, if it is assumed that f(x) is differentiable and that
its (n + l)SJC derivative does not change sign, the endpoints of the

interval must be contained in the set {yo, sres Yn+1} which maximizes
p (see Hart and Fraser [15]). Thus the special treatment at the end-

points is not necessary. It must be emphasized that this assumption is
not necessary and that it is being made in order to simplify the state-

ment of the algorithm.

Let v 4y wwsy v

s be n + 2 distinct elements of {xl, reey xm}

nt2
and define

pk(x) s p(yl’ se vy yk"l’ X yk+l, ey Yn+2)
where

Yoy S 0% < Yy
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for k =2,3, .40, ntl. With this definition the algorithm can now

be given.

Algorithm 4:

Input: X f(xi), (1 = 1,2, euu, m)

I = (1,2, ..., nt2) so that Yi = X5

(1:1,2, LN ] n+2).
Step 1l.. Set k= 2,

Step 2.. Determine jO such that X5 is contained in {xl, 2oy xm}
0

and i1 < xjo < Yiet1 and X

3 maximizes ka(x)| .

0

A4

Step 3.. If |pk(xjo| ka(yk)l, replace y, by xjo. Ctherwise

proceed to Step 4.

Step 4., Set k= k+ 1., If k=nt2 go to Step 5. Otherwise rsturn

to Step 2.

Step 9., If n 1iterations occur without any change in Yor wees Yopps
then vy , eeey v determine P(x;a) and a halt cccurs. Otherwise
1 ntza
reset k to 2 and return to Step 2.

At first glance this algorithm appeared to be quite different
from that given by Shenitzer and viewed strictly as a computational
procedure it is different. However, it is possible in theory at least
to reformulatie Algorithm 3 so that the results obtained during each

iteration for these two methods are identical. The principal difference
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noted in the two algorithms is that in the latter the error function is
maximized over each subinterval rather than the entire interval., But ch-
serving the results of Stiefel's Exchange Theorem {Theorem $) and Equa-
tion {III-9) one sees that it is possible to modify Algorithm 3 to deter-
mine jO in a subinterval. Then an exchange could ke made in each sub-
interval similar to the procedure of Steps 2 and 3 of Algorithm 4.

Now, in the one case |pk(x)l is maximized over each subinterval
and in the other case |R(x)| is maximized over each subinterval. As
was pointed out earlier, choosing Jj_ by IR(x. )| = max |R(x)| does

Yo xeS
not necessarily yield the maximum increase in p. However, in the special

case of Algorithm 3 each Iai| = 1 sc that
z lagl [p;l z |p,

|p*\ = = .
Ziai| n+1

Hence choosing max |R(x)| yields the maximum increase in p . Thus the
two algorithms would yield the same result during each iteration.

A most interesting and practical medification of the simplex
algerithm {Algorithm 2) has been given by J. B. Kelly [18]. Given an
error bound € > O this azlgorithm determines the smallest integer n

and a polynomial

_ n
P(x33) = a +ax+tax®+ «os+a x
0 1 2 n

of nth degree, such that

|R(x)| = [£f(x) - P(x;3)| < ¢

for every x € S,
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The basis for the modification is the equation of Frobenius [19]
which determines the inverse of & matrix A, when A 15 formed from
ancther matrix B by the addition of one row and one column vector.

A revised algorithm will not be given. Instead, 1t will be shown
how the equation of Frobenius could be used with Algorithm 2, Let
€ 2 O be the required error bound and let P{x3;3) be the nzh degree

polynomial obtained using Algorithm 2 s¢ that
[£(x) - P53 | < p

for every x & S.
if Po < &, P(x;a} is the desired polyncmial. Otherwise set

n=n + 1 and add a new function, f to the set fl, sasy T

n

n +1’
o o

thus adding a new constraint to the linear program. Then the matrix of
Step 1, Algorithm 2, is augmented by one row and c¢cne coclumn vector and
the inverse can he obtained by the equation of Frobenius. Actually this
modification can also be used with Algorithm 1.

In the paper by Kelly n_ was initially set to zero and the
best straight line fit was then obtained., This eliminated the necessity
for a starting procedure.

While this mecdification is extremely practical since it deter-
mines automatically the degree of the polynomial necessary to satisfy
the given error bound, it may result in more computations. This results
for the choice of the starfiing reference set which is used each time the

degree of the polynomial is increased; i.e., the new reference set
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consists of the n peints used to obtain the previcus polynomial plus
one additional point. This reference set would be quite different from
the one suggested in (III~17}. Thus it might be better to simply add a
new point and restart the algorithm.

A few remarks concerning numerical results obtained using the
various algorithms will be given next.

In the paper by Schenitzer [13] numerical results are given for

the approximations of sin x, cos x by a function of the form Eﬁfi%l,
gX

where g(x) # G over an internal S, and P(x3;3) = ao + a,x + eee

+ anxn. The maximum error obtained was as high as 1072 in some cases.
Thus the algorithm did not appear to be suited for practical applicaticns.
This was also pointed out by H. H. Denman [2C] in a paper on nearly op-
timized computer sukroutines using Tchebysheff polynomials. However, in
the more recent papers by Fraser and Hart [13] and Curtiss and Frank [17]
excellent results were obtained using algorithems given above. Fraser
and Hart used a variation of Algerithm 1 for the approximations sin x,

cos x over the intervals (-0.3,0.3) and (-1.3,1.83), respectively,

using reticnal approximations of the form

a + a.x° &
0

1 + apX

1+bx®+bx*
2 4
for cos X

3
a,x% + agX

2
1+ b2 X



for sin x. The
and 6.8 x 10°°
both cases. The
using a computer

word size in the
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maximum errors obtained were 7.2 x 107%° for cos x
for sin x. Doukcle precision arithmetic was used in
authors point out that when computing these coefficients
of a given word size, it is necessary to use iwlice the

computations in order to preserve single word length

significance, Furthermcre, the small interval over which the approxima-

tions were made can lead to an ill-conditioned matrix due to the differ-

encing of small numbers., But this can also be overcome by the use of

multiple precision arithmetic.
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