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CHAPTER I 

INTRODUCTION 

Given a function. f(x) defined and continuous on a closed and 

bounded set S contained in E m and a set of linearly independent 

functions f,« *. c <, f also continuous on S, it is desired to deter-

mine numbers a.* a which minimize i" J n 

ri 

max |f(x) - ) a. f.(x)| . 
x e S . A 

1 = 1 

This problem., usually referred to as the uniform approximation 

problem,, was first extensively treated by P. L. Tchebycheff C l H • Since 

the advent of high-speed digital computers,, various algorithms for the 

numerical solution of this problem have appeared in journals. The pri­

mary objective of this investigation Is to review some of these algo­

rithms and relate and classify them whenever possible* 

To facilitate the presentation a brief development of notation 

as well as some elementary properties of normed linear spaces and con­

vex sets will be given* 

Definition 1; A set. L, of elements f, g 3 is called a linear 

space over the real field if, and only if, it forms an abelian group 

with respect to addition, and multiplication is defined between elements 

of L and scalars a9 p . <.«•><; such that 
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1) cc(f + g) = af + ag 

2) (a + p)f = af + pf 
3) a(pf) - (ap)f 
4) 0 • f = 0 

Definition 2 s The linear space L Is called a "normed linear space" if 

there exists a nonnegative function. || ||̂  which satisfies the follow­

ing % For every f-g, contained in L and any scalar a 

1) |i f || = 0 if, and only if, f = 0 

2) 11 af II - I a | II f II (1-1) 

3) Ii f + 9 II < II f II + II 9 II 
Such a function will be called a norm. 

As a consequence of 2) and 3) It follows that 

II f - 9 II > III i II - II 9 II I (1-2) 

s mce 

and hence 

f - 9 + g | | < I f - g I + g 

f - g II > II f II - II g II • 
But 

II f - g. II = II g - f II > II g 
a:.d thus (1-2) is established. 



Examples of normed linear spaces. 

1) Euclidian n-space. Let E be the set of n-tuples of real 

numbers 

x = (x±, x n) , y = (y±, y n), ... . 

Define x = y if, and only if, x^ = ŷ  for i = 1,2, ..«, n. Define 

a norm on EP" by 

x |ls I 4 • (1-3) 
i=i 

2) The lP spaces (l < p < oo ) . Let lP denote the set of all 

sequences of real numbers 

x — -̂̂k * k — 1,2,1 . . • ^ 

which satisfy 
oo 

I |x k l " < + * • 

k = i 

Define a norm on tP by 
l/p 

P 
\k = i 

3) The space C(S). Let C(S) be the set of all real-valued 

continuous functions defined on a closed and bounded subset S of E . 

Let the norm on C ( s ) be given by 

]| f || = max |f(t) | . (1-5) 
°° t e S 
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This .norm is commonly referred to as the "uniform norm" (or Tchebycheft 

norm] <> 

4^ T h e l P spaces (1 < p < oo). Let L P be the set of all £> 

tions which are Lebesque-summable over the interval [-1.l]. so that 

l 
| f j P dm < +oo „ 

-l 

Define a r.orm on L^L-1. l] by 

Vp 
f l|p = lflP dm ) (1-6) 

Here it is tacitly assumed that f = g if, and only if, f(x) ~ g(x) 

for all x in [-1,1] except perhaps on a set of measure zero» 

Definition 3s A vector g is said to be a convex linear combination of 

the vectors g..* g0« °o0? g if there exist scalars al9 cu. ° ° ° * a 
i- *5' n n 

such that a- > 0, i = 1,2, n 

n I a i = 1 

ir_l 
and 

g = a lg 1 + a gg 2 + + . 

A set 2 is called a convex set if, and only if., for g , g F 2 any 

co*-vex i in ;-ar .tombi' •i'io''-. of the form 

9 = a1g1 + a2g2 

is also contained in 2 „ 



From a geometric point of view, a convex set in E" is any subset 

2 of E"" for which the line segment joining any two vectors q±} g 2, 

e 2 is also in Z, Thus the examples 2 and 2 g in Figure 1 are con­

vex sets while 2_ and 2 are not. 
3 4 

Figure lo Illustration of Text 

A very useful example of a convex set is a closed sphere In a 

normed linear space,, L 0 Let f e L and let P > 0 . Then a closed 

sphere about the point f is defined by 

N(f ,P) = [f : f e L and || f - f || < P] 0 

The sphere N(Cnl) will be called the unit ball of L. 

To see that N(f ,P) is convex, let f,g be any two elements 

in No Then the inequality 

11 XF + (L - X)G - F J < II X(F - F Q) II + II (L - \ ) (G - FQ)|| 

= \\\ • II F - F0LL + U - XL II G - FJL < i 

shows that the line segment {\f + (1 - \)g : 0 < \ < l] is also in N< 

Definition At A normed linear space is strictly convex if, and only if. 

when 
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|| f + g || = || f || + || g ||, for f,g =f= 0 

holds then there exists a nonnegative number a such that 

f = ccg . 

Geometrically the concept of a strictly convex linear space, L, 

implies that the surface of any closed sphere contained in L cannot 

contain a line segment. This property is established in the following 

theorem. 

Theorem 1; A linear space, L, is strictly convex if, and only if, the 

surface of the unit ball, N(0,l), does not contain a line segment. 

Proof; We shall prove first that strict convexity implies that the sur­

face of a unit ball cannot contain a line segment. Let us assume that 

f and g are any two distinct elements on the surface of the unit ball 

for which the line segment [\f + ( l - X ) g : 0 < X < l } is also on the 

surface of the unit ball* Thus 

1 = || Xf + (l - X)g || < X || f || + (l - X) || g || = 1 . 

In particular, setting \ = l/2 we have 

II f + 9 II = II f || + II 9 II . 

If L were strictly convex, then f - ccg for some a > 0 or 

1 = || f || = a I] g || • This in turn implies f = g, which is a con­

tradiction* 



7 

To prove the converse we must show that if the surface of the unit 

ball contains no line segment then L is strictly convex. Let us assume 

the contrary, that is. that there exist vectors f± and f for which 

I! f1 + FALL = I! FJL + II FA II 

and ± ± £ af for all A > 0. We may also assume without loss OF GEN­

ERALITY that 1 ]| FJ |< H f || . Thus 

II F J I + II F2H = H F I + F

2 H < II F I + ~ I I 

II 2 II 

1 
+ (1 - • ) II f 

II F

2 I' 

2 

OR 
T 11+ L L < II F, + - ^ -

LLFJL II F

2 

f. 

f

2 

f„ 
Letting F„ ' — — — we have 

II FFIN 

f + f = f A + f A 
with || f1|| = || f3|| = 1 and f± £ ccf3 for all cc > 0 . 

Since the surface of the unit bail contains no line segment we have 

Vf^ + (1 - \)f3|| < X || fj| + (1 - X) || f. 
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for 0 < X < 1 0 A contradiction is obtained when X - l/2 «, 

Of the examples of normed linear spaces given thus far, the ZP 

and lP spaces for p > 1 are strictly convex, A proof of this is 

given by Clarkson [2] by proving they satisfy an even stronger condition-

namely, that of being uniformly strictly convex. 

The spaces L 1 and C(S) need not be strictly convex. To show 

this the following examples are given. Consider first the space L 1o 

Let 
rl if - 1 < x < 0 

f(x) = \ 
^ 0 if 0 < x < 1 

and define 

g(x) = 1 - f(x) c 

It is easy to verify that 

and that the line segment {\f + (l - X)g = 0 < X < l} is also contained 

on the surface of the unit ball. Hence L 1 is not strictly convex., 

To show that C ( s ) is not strictly convex consider C ( s ) where 

S — [0,l] and let f and g be given by 

f(x) = 1 

and 

g(x) - x . 
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Then 

f + f - max 1 + x = 2 
CO 

xe [0,1] 

and 

Therefore 

f II = II 9 II = 1 
OO ! ^ 00 

f + g = f + g 
J 1 1 00 " " c o " J 1 1 00 

B'-.t f 4= ag for every x £ [0,1] for any a > 0 ; thus C(s) is not 

strictly convex„ 

Definition 5 s Let M be a subset of a normed linear space, L. which 

is closed (topologically)o If for every f,g £ M and any scalars a? ]3 

af + pg £ M 

the:-'. M is called a "subspace" of the space L. 

The subspace M is said to be of finite dimension if there exists 

a set of elemen.ts f , f f of M which form a basis for M c 

l' 2' ' n 
Then for every g £ M there exists a unique set of numbers ai;, a 2 f ° n ° .1 

a such that n 
g - a 1f 1 + a 2 f 2 + + a f n n 

The set of elements f 1 ? f g, . <,», f is said to span the subspace., M 0 

The fundamental problem of approximation theory can now be con­

sidered in the following framework. 
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Let M be a linear subspace of a normed linear space L and 

let f be an element of L - M 0 Define the deviation (or distance) 

of f from M by 

Problem Is Under what conditions is 2^(f) nonempty? 

Problem 2% Under what conditions will 2^(f) consist of a single elemeit? 

Figure 2 below gives a geometric interpretation of these problems0 

The quantity Pjŷf) ^ s the minimal deviation of f from M and this 

deviation is the same for every element of 2^(f). While this illustra­

tion is of value in interpreting the problem it must be pointed out that 

the geometry of a normed linear space is not always Euclidean and in fact 

S (f) can be void, 

pM(f) = min || f - g 
g eM 

Define the set of best approximations by 

[g : g e M and p (f) = || f - g ||} . 

f 

Figure 2 



1 1 

These problems will be considered in the following chapter via 

existence and uniqueness theorems. 



CHAPTER II 

EXISTENCE AND UNIQUENESS THEOREMS 

The first theorem given establishes the existence of best approxi­

mations when M is of finite dimension and is usually referred to as 

"the fundamental theorem of approximation theory" [ 3 ] . 

Theorem 2; Let L be a normed linear space and let M be a finite 

dimensional linear subspace of L. Then for every f e L the set ^ ( f ) 

is nonempty,. 

Proofs The proof is given in three parts. 

i=i 

This portion of the proof will show that <p is continuous. 

By definition 

q>( a i, a n) - c P(b 1, b n ) | = | || f - £ a.f.H - || f - £ b.f.|| | 

l) Define a function f in E by 
n 

a ) n 

and applying (l-2) above 

M l f - I V i H - H f - E b i f i i M *JI 

l 
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But 

£ || F. II = A < CO . 

Therefore 

|«P(A1 - AN) - CP(B±, . . . , BN) | < max IB-^-A-J A 

which implies that cp satisfies a Lipschitz condition of order one which 

in turn implies continuity of cp . 

2) Define 

IKXI , \) = II ̂ N + ••• + \ N F N H . 

Then by Part 1 above ij) is continuous,. 

Consider Y on the set K given by 

K = .... X p : I |X ±| S = 1} . 

Since K is A closed and bounded set it follows that \jj assumes A 

minimum on K„ Denote this minimum by jj, » By definition of the norm, 

p, > OO Furthermore, since f ± ? 0 „ „ f form a basis for M, p, 4' 

Hence jj, > 0O 

3) Let P > 0 be the greatest lower bound of CPCA.̂, .... a )« 

This portion of the proof will show that in seeking A minimum it suffices 

to consider «p defined on A closed and bounded subset of E n
0 

From (l-2) above it follows that 
n 

cp^,.. O.U, A ) - II f - V a.f.|| > || a.f. + ... + a f || - || f || „ 

Y - i - n " Lj I i" - " I I n n 
i =i 
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Then 

* ( a , , a ) > (J I a . I s ) * 1 1 - 7 = = + • • • + 

1 1 ' 1 

for 

* 0 . 

Now, 1et 
a.f. a f 

, \ n ) = II 1 1 + • • • + n n 

where 
s/z |a. | 2 / v / e I a . I 2 

a. 
X, = 1 1 , (i = 1,2, n) 

a.|2 

1 

and hence. 

i=i 

Therefore by Part 2) ^ ( X ^ X ) assumes a minimum, jj,, on 

the unit sphere of E n. Thus 

<p(a,, a ) > s/z |a. | 2' 
t v 1 ' ' n — 1 

jl - f 

Recall that p > 0 is by definition the greatest lower bound of 

cp(a , <-.., a
n ) * F o r a H vectors {a±, a 2, a ) which satisfy 

n 

i=i 
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we have 

<p(ai, an) > ^ (p + 1 + || f - II f II 

or 

cp(a , an) > p + 1 . 

Hence it suffices to consider cp only on the closed sphere 

{(a l ? a2, a ) : £ |a.|2 < ^ (p + 1 + || f || )} , 

and on this set cp assumes a minimum. This completes the proof* 

Corollary 1; Let f e C(s) and let M be a finite dimensional linear 

subspace of C(s). Then the set of best approximations /̂[(f) ^ s n o n ~ 

empt y„ 

Theorem 3s Let M be a finite dimensional linear subspace of a normed 

linear space, L. If f e L - M then 

l) ^(f) i-s a convex set. 

1) ^(f) consists of a single point if L is strictly convex. 

Proof; l) Let N(f, p̂ (f)) be a closed sphere in L. Then 2^(f) 

satisfies 

yf) = N(f, pM(f)) n m . 

Therefore ^(f) ^ s convex since N(f ,̂p^(f)) and M are convex and 

the intersection of two convex sets is convex. 

2) Assume that L is strictly convex • and let fJL, «.*, f form 

a basis for the subspace M. Suppose there exist two vectors g , g,, in 



Then 

1 = 1 
and 

n 

IIf - I Vi" = IIf - gj = pM(f) 
1 = 1 

Combining these last two equations yields 

i ^ - p H ^ i i i * i i i f - 9 j i + | i i f - 9 2 i i = p„(f) • 

Hence 
a. + b 

f 

a. + b. 
for otherwise 1 ^ — w o u l d be a better approximation to f , tha 

Now,, since L is strictly convex and 

a. + b. 
-Ii-V^i" = iii f-IViii^ii f-IVi 

it follows that 

I a.f. = a{f-l b.f. } . 

I f a ̂  1 then f can be expressed as a linear combination of 

the f ^ contrary to the assumption that f e L - M, This implies 

cc = 1 giving in turn 

V (b. - a.) f . = 0 

L i i i 
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or 

= b , (i = 1,2, .«„, n) . 

Thus ^(f) consists of a single vector. 

In Theorem 3 above it was established that /̂j(f) w a s nonempty 

if L was a normed linear space. Now, as a result of Part 2), Theorem 3 

we have a sufficient condition that ^j(f) consists of a single vector g, 

the condition being that L is strictly convex. Thus in this case a 

sufficient condition is obtained for uniqueness of a best approximation 

to fo However, as seen earlier, the class of norms which are strictly 

convex includes the LP norms for 1 < p < «>, but does not include the 

uniform norm. But the uniform norm is the one most often used for numer­

ical approximations since it gives an upper bound to the maximum devia­

tion of f from M. Hence, the remainder of this paper will be con­

cerned only with the uniform norm* 

In order to have uniqueness for best approximations in the uniform 

norm further restrictions on M are needed. 

Definition 8s Let M be a finite dimensional linear subspace of a 

normed linear space C ( s ) , so that there exists a set of vectors 

f„. o o . . f which form a basis for M. Then the function l " n 

P(x5a) = a.f . M + a pf ?(x) + ••• + a f (x) 

will be called a "generalized polynomial" or simply a "polynomialo" 

A polynomial in 2M(f) G(S) will be called a "polynomial of least 

deviation from f." 
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Definition 9t A set of functions f...... f in C(S) is said to be 
_ _ _ _ _ — — l ' 7

 n 

"unisolvent" on S if, and only if, for every set of n-distinct points 

of S, the matrix 

(t x >f 2, fn) = 
R f i ( x i } f

2
( x i } — fn ( xi> 

F I ^ 2 ) F

2 < X

2 > W 

"-f(x ) fix ) ••• f (x H 

l n 2 X n n n 

is nonsingular. 

A set of functions which are unisolvent on a set S are sometimes 

called a "Tchebycheff system" with respect to the set, S. For future 

use denote the determinant of the matrix given in (il-l) by D(x1, x , 
o • o 3 X / • 

n 
Theorem 4; If M is the span of a unisolvent set of functions f , 

f , then any other basis for M wil also be unisolvent, 
n 

Proof: Any two bases f, f . f and G . G . g of M 
•—-—• 1 l ' 2' ' n L 2P n 

are related by 

(f-^fg* fn) a = (G1»G2* •--> 9 n) 

where A is a nonsingular n x n matrix. If ^i9^29 ^n ^s un^' 
solvent then the identity 

FL(XG) M X

2 ) 

' \ : > F 2 ( X

N ) 

f n ( x 2 } 

fnK>" 

9l ( X I ) 9 2 ^ X L) 9n^xi) 
g i(x 2) G2(X2) GN(X2) 

• 9 9 
O • C 
• • * 

LGI(X ) G 2(X

N) ••• 9n(^n) 
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implies that 9i_?92> 9n l S also unisolvent* 

Definition 10; If M has a basis which is unisolvent then M will be 

said to be a unisolvent subspace* 

The following result, due to A. Haar [4], gives a necessary and 

sufficient condition for uniqueness of the polynomial of least deviation 

from f o 

Theorem 5 (Haar's condition); The best approximation in the uniform 

norm is unique for every f e C ( s ) if, and only if, M is a unisolvent 

subspace* 

Proof; The first portion of the proof will show the necessity of Haar's 

condition. Assume M is not unisolvent* Then there exist n distinct 

points xH,x . „„*. x in S such that 

D(x,,x_, *.*, x ) = 0 . 

This implies that the row vectors of the matrix given in (il-l) are 

linearly dependent* Therefore, there exists a nontrivial set of numbers 

c . c y *«* c such that v 2 n 

for j - 1,2, ***, n* Then 

Eaj [ I ci = ° 

for any set a , a , •••.a * 
1 i9

 2, ' n 
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Interchanging the order of summation gives 

n n 
£ c . fj(x.)] = 0 
i=i j=i 

or in other words 

£ c. P(xi3a) - 0 (II-2) 

holds for any polynomial P(x$a) • 

The assumption D(x1,xg« x ) - 0 implies the existence of 

a nontrivial polynomial, P(x;b), such that P(x^jb) - 0 for i 

1,2, o o * , no The n since P(x$b) is continuous on S there exists a 

constant X ̂  o for which 

|X P(x|b)| < 1 o 

It is now possible to use X P(xjb) to construct a function 

f £ C(s) and then show that there exist infinitely many polynomials 

which are best approximations to f0 The construction of f is as 

foilows* 

Let h(x) be any continuous function on S satisfying 

1) max |h(x)| = 1 
x 8S 

2) h(x^) = sign c^, (i = 1,2, n)• 

The function 

f(x) = h(x) { 1 - |X P(xjb)|} , 

will also satisfy properties l) and 2)« 
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Hence 

P M ( f ) < II f ( x ) - X P ( x | b ) | L - 1 

s m c e 

|f(xi) - X P(x1sb)| = 1, (i = 1,2, .„., n) 

and 

|f(x) - X P(xjb)| < |f(x)| + |X P(x;b)| 

= |h(x) } 1 - |X P(xjb) |}| + |X P(xfb) | 

< 1 - |X P(x|b)| + | x P(x|b)| = 1 o 

If on the other hand there exists a polynomial PCxjj'a) such that 

P M(f) < 1 then 

|.f(x.) - P(x?a)| = |h(x.) [l - |X P(x.jb)|} - P(x.;I)| < 1 

must hold* 

But from P(x^|b) 0 and h(x^) = sign ĉ , it follows that 

|sign - P(x^|a)[ < 1 • 

This implies that 
sign c^ = sign P(x.j"a) 

which contradicts (II-2)P Therefore, p C f ) = 1 a nd X P(x$b) Is a 

polynomial of least deviation from f on S. 

Next let | e| < 1 and consider eXP(xxb) as a candidate for a 

polynomial of least deviation from f on S„ 
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Then 

|f(x) - e\P(x*b)| < |f(x)| + |e\p(xjb)] 

= \P(x|b)| + |e| | \P(x;b)| 

- 1 - (1 - |e|) | \P(x;b)| < 1 . 

Thus any polynomial of the form 

eXP(xjb), | e| < X 

is a best approximation to f on S . 

2) The proof of the sufficiency of Haar's condition follows*. 

First consider the following lemma which is of interest in itself since 

it shows that a polynomial of least deviation form f on S assumes its 

maximum deviation Pj^^) o n a"t least n points of S. 

Lemma 1; Suppose f } f satisfy Haar's condition on S and 

let P(x|a") be a polynomial of least deviation from f e C(S). Then 

pM(f) - |f(x) - P(x,-I)| 

holds for at least n points of S„ 

The proof is by contradiction. , Suppose (II-3) holds only for 

x„o x„, . •<>, x where m < n* Then choose m - n points of S l' 2' m 
xm+i ? 0 < , c? xn s u c n that the combined set x • x^? . x^ constitute 

n distinct points of So Then by Haar's condition, the nonhomogeneous 

system of equations 
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c. f«(x.) + c 9 fP(x.) + 0 0 0 + c f (x.) = f(x.) - P(x.;a) , 

(i 1,2. o . o . n) has a unique nontrivial solution for c
1 > c

2 * * 0 0^ c
n ° 

Let 

R(x) = f(x) - P(x;a) 

and choose a closed neighborhood about each point x^ (k - I«2,„9„,m) 
such that 

A N A 

Let 

|i, ~- min |R(x) | > 0 
xeN. k 

P M ( f ) 

min |P(x|c)| > — 
C F. N, 2 

k 

A ~ max |P(x|c)| , 
k x e N. 

k 

A - max IP(x;c)|, 
x eN 

and 

p(f) •- max |R(x) I 
x e N 

where M 
N = S - U N . 

k-i k 

Then 

U. = p M(f) - p(f) > 0 

Now, choose £ such +hat 

C < c. < min j_ - o o . , ~ j and let b = a +• e 
1 m 
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m 
For each x e U N, the following hold, 

k=i K 

|f(x) - P(x$b)| = |f(x) - P(xsa) - e P(x|c)| 

- |R(x) - £ P ( X | C | 

< |R(x)| [ i 
R(x) 

< pM(f) [1 - f ] < P M (f) . 

When x £ N 

|f(x) - P(x|b| = |f(x) - P(x;a) - £ P(x$c)| 

= |R(x) - £ P(x$c)] 

< |R(x)I + e|P(x;c| 

< p(f) + £A < p M(f) . 

Therefore, 

max |f(x) - P(x;b)| < p M(f) 
X £ S 

which is a contradiction to the hypothesis that P(x:¥) is a polynomial 

of least deviation from f on S. 

Now return to the proof of the sufficiency of Haar's condition* 

Suppose there exist two polynomials P(x;a"), P(xjb) of least deviation. 

Then 

|f(x) - P(xj A£S) | < \ |f(x) - P(x,a)| +||f(x) - P(x;b)l 5 
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a i b 

which implies that P(x,* — ) is also a polynomial of least deviation.. 

Hence, by Lemma 1 there exist n points of S where 

|f(x.) - P(x.j ^ ) | = p M(f), (i - 1,2, n) , 

or 

\ |f(x.) - P(x.;I)| + ^ |f(x.) - P(x.$b)| = p M(f) , 

which implies that 

f(x.) - P(x$I) = f(x.) - P(x.;b) = ± P M(f). 

But this yields 
P(x i^ a-b) = 0 , (i = 1,2, n) 

which contradicts Haar's condition. This completes the proof. 

Thus far S has been defined as a compact set in E n . As a 

result of Haar*s condition it is now important to characterize those 

compact sets, S ? of E n for which C ( s ) contains a T-system con­

taining two or more functions. 

When S is a finite interval in E 1 , say S = {-%,%] the func­

tions 1, cos x, sin x, cos nx, sin nx will form a T-system with 
? n 

respect to S. Likewise the monomials 1, x, x , ... x form a T-system 

on any set S which contains more than n points. Hence, for every 

compact set Sc_E y there exists a set of functions in C ( s ) which 

form a T-system with respect to S. 

The following example illustrates the difficulties which arise 

when S C_E" for r > 1. The example is an adaptation of one given 

by R 0 Co Buck [6] . 
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Let SCZE2 be defined by 

s = l i U l 8 U l s 

where 

L ± = {(x,y) : 0 < x < 1, y = 0 } 

L 2 = [(x,y) : -1< x < 0, y = 0 } 

L 3 = {(x,y) : x = 0, 0 < y < 1 } . 

Choose a set of n points u , .... u such that u ,u £ L 

v ' n l' 2 3 
and |u | > |u | and the remaining points are contained in L» and L . 

1 2 1 2 
Suppose now that u is moved down on L and to the left on L„ and 

2 3 2 that u is moved down on L and to the right on L„. Next return l 3 3 l 

u. and u 0 to L so that I u„ I > \uA . This process amounts to an 
1 2 3 1 2 1 1 1 1 R 

exchange of two rows of the determinant, D(u., u ) without any 
n 

two points uj/ uj coinciding and therefore the sign of D(u1, u^) 

must change* But since the function D is continuous this implies that 

there exists a set of points v ±, v^ of S such that D ( v 1 , v ) 

= 0 and v^ ̂  v̂  for i ̂  hence, Haar's condition is not satisfied 

on S by any set of continuous functions f±, f • 

From the above example, and the fact that S is a closed set, it 

follows that the r-dimensional set S cannot contain any interior points 

for r > 2 . 

This discussion will be concluded with the statement of a theorem 

of Mairhuber [7] which gives a necessary and sufficient condition on S 

such that f , ».., f form a T-system on S# 
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Definition 11; A set is homeomorphic to a set if there 

exists a function cp with domain S ± and range S g such that 

1) cp is a continuous mapping of Ŝ^ onto S g • 

2) cp"1 exists and is continuous on its domain S . 

Theorem 6; A compact subset S of E containing at least n points, 

n > 2, may serve as the domain of definition of a set of real-valued con­

tinuous functions f±} f which satisfy Haar's condition on S if, 

a n d only if, S is homeomorphic to a closed subset of a finite interval. 

If n is even then S may also be the homeomorphic image of the circum­

ference of a circle. 

In Lemma 1 it was shown that the error function, R(x) = f(x) -

P(xja), assumed its maximum value for at least n points of S when 

P(x|a") is a polynomial of least deviation from f e C ( s ) . Another use­

ful property of P(xja) is that of oscillation in sign of the error 

function* Before proving a general theorem on oscillation a related 

idea is given in the following lemma. 

Lemma 2; Let f±f ..„, f form a T-system with respect to the closed 

interval [A,B]. Then for each set of n - l distinct points 

X l <

 X2 < ... < X in [A,B], the function 

D(x) = 

-f^x) f 2 (x) ••• fn(x) 

f 1(x 1) fgUi) ••• f n(x ±) 
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satisfies 

1) D(x i) = 0 , (i = 1,2, n-l) 

2) D(x) changes sign in passing through x^ if x^ is an 

interior point of [A,B] . 

Proof; The proof of l) follows directly from the fact that two rows of 

the determinant defining D(x) are the same for x = x^ when i e 

[l?2, n-l}. 

To prove 2) consider D(x) on the open subintervals (A,x ), 

(x i,x 2), (x n_ 1,B). D(x) £ 0 for x e (xk_±,x ) by virtue of 

Haar's condition* Suppose there exists an i g [l,2, n-l] such 

that D(x) does not change sign in passing through Xj_ . Then, either 
o 

D(x) > 0 or D(x) < 0 for every x £ (xi _ ±> + i ) a n d x £ *i • 
o o o 

Assume D(x) > 0 and let 

D(x) — D ( X , X^, .«., x^ y, x^ •«., *^_^) 

o o 

where here also y =|= x i Q but y £ (x^ _ 1 } Xj_ + i ) m If is easy to verify 

that D(x) is also nonnegative for all x in (x^ _i, X j + i). Thus 
o o 

there exists an £ > 0 such that 

D(x) - £ D ( X ) 

has at least n-zeros in [A,Bj* But this implies a contradiction to 
Haar's condition* Here, D(x) must change signs in passing through 
x^ * A similar result holds for D(x) < 0 . 
o 
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Theorem li Let f̂ , „„«,, f form a T-system with respect to the interval 

[A,B] and let f £ C[A,B]. Then if X = {x±, ..., x n + 1} is a set of 

n + 1 points of [A,B], the polynomial, P(xja), of least deviation 

from f on X satisfies 

1) |f(x.) -P(x i;I)| = p x(f), (i = 1,2, n+l), and 

2) sign R(x.) = - sign R(x ), (i = 1,2, n). 
l i+i 

Proof; The proof which follows is similar to that given by S. Karlin 

To prove l) suppose there exists an x^ £ { x
1> x

2> **'>
 xn+i3 

such that 

|f(x1 ) = P ( X i ;a)| < p (f) (II-4) 
o o 

Then for j = 1,2, «•., n+l but j ̂  i Q construct a polynomial Dj( x) 

as Lemma 1f i,e», 

D (x) — D(x,x1, • »•, x. _ x . j^^, x. ĵ , x._j_1, x
n_j_i) 

J o~ o J J 

and 

D.(x1) = 0 for i = 1,2, n+l, 

but i ̂  i a n d i ̂  J• Note also that it is possible to construct 
D.(x) such that J 

D.(x.) > 0 . 
J J 

Next let £. be chosen so that J 
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sign e = sign - p(^,'a)] . 

Then by (II-4) above it is possible to choose |£^| so small that 

|f(xi ) - P(x1 ja) - £ D (Xi ) | < p (f) . 
o o ^ J o 

From which it follows that 

|f(x.) - P(x.;a) - e. D (x.)| < p (f) J J J J J A 

while 

|f(x.) - P(x.;a) - E. D j(x i)| 

= |f(x.) - P(x.;a)| < px(f) . 

Therefore' 
n+i 

|f(x.) - P(x.;I) - )T e. D.(xi)\ < p 

j=i 

for (i = 1,2, n+l) . 

But this contradicts the assumption that P(x;a") is a polynomial 

of least deviation; hence l) is established. 

To prove 2) let x^ , x^ be two consecutive points of x.̂  
o o x o 3 x . and assume that 2y > n+i 

R ( X i ) > 0 and R(xi + 1 ) > 0 . 
1o Xo 

Define 

D- (x) = D(x, X l, x 1 _ v x 1 + 2 , x n + 1) 
o o o 
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so that D. (x) > 0 for x e (x. , x. . J . Then for e > 0 suffi-
1 1 - 1 1 " r ^ 

0 0 0 

ciently small the polynomial 

P(x$a) - £ (x) 
o 

will yield the same absolute maximum for the error function 

R(x) = f(x) - P ( x j a ) - £ D. (x) 

o 

since D. (x.) = 0 for i £ {l,2, ..., n+l] but i ̂  i and i ^ 
o 

i + 1. 
o 

But 

R ( x i ) < px(f) and R ( x i + 1 ) < px(f) 

o o 

contradicts Part l) of the theorem. This completes the proof. 

This development will be concluded with a generalization of a 

well-known theorem due to P. L. Tchebysheff. 

Theorem 8: Let f , f̂  form a T-system with respect to the 

interval L~A,B] and let f £ C[A,B] . Then the polynomial, P(x;a~), 

of least deviation from f on L~A,B] is uniquely characterized by 

the property that the error function, R(x) = f(x) - P(x;a), assumes 

its maximum value, pr^ ~ P> o n a't l 6 3 5 ^ n + l points of [A,B] 

and alternates in sign on these n + l points. 

Proof: (Note that the existence and uniqueness of P(x;a) follows from 

Theorems 2 and 5). To prove the sufficiency of the condition let 
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x i < x g < ••• < * n + 1 be n + 1 points of [A,B] and let P(x;a) be 

a polynomial defined on [A,B] such that 

|R(xi)| = p , (i = 1,2, n+1) 

and R(x) alternates in sign on x , ..., x
n4-1« Suppose there exists 

a polynomial P(x;T5) with 

|f(x) - P(x;b)| < p 

for every x £ [A,B] . Then between each pair of points x^, xi c+ 1 

two polynomials P(x ;a i ) , P(x;b) intersect. Hence, the polynomial 

[f(x) - P(x;a)] - [f(x) - P(x5b)] = P(xjb) - P(xja) 

has at least n distinct zeroes in [A,B] which contradicts the 

assumption that f^ . f formed a T-system on [A,B] . 

Next consider the necessity of the condition. Let P(x;a) be 

the polynomial of least deviation and suppose it does not satisfy the 

given property. Then there exist k points (k < n), y 1 < yg < ••• 

< at which |R(y^)| = p Q and R(y^) alternates in sign. There 

then exist k - 1 points x.,x_, x, at which R(x.) = 0 
1 2 K — 1 1 

with 

A < y, < x± < y 2 < ••• < x k. 1 < y k < B 

and so that the inequalities 

- p < f(x) - P(xja) < p - u 

- p - u < f(x) - P(x;a) < p 
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are satisfied in cyclic order in the intervals 

[A,x ±], [ x 1 , x 2 ] , ... [xk_±,B] 

and for some u satisfying 0 < u < p/2 . 

If k = n then define 

P(x;b) = D(x,x±, x k_ ±) 

and choose the sign of e such that 

sign [e P(x;b)] = sign [f(y±) - P(y±;a)]. 

Then for je| sufficiently small 

|f(x) - P(x,-I) - e P(x,-b)| < pQ 

for every x e [A,B] . But this contradicts the assumption that 

P(x;a) is a polynomial of least deviation. 

If k < n, then let 

m = n - k . 

If m is even, choose a sufficiently small neighborhood, N, about 
xk-l s 0 ^hat 

]f(x) - P(x,-I)| <P~f 

for all x e N. Then choose m points of N, x^, x^ + 1> •••> x
n-± • 

If m is odd, choose m - 1 points x,, x, , x in N 
K. lC"r J_ FI ™ *c 

and let x . = B. n-i 
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When m is even, there exists an £ for which 

|f(x) - P(x;a") - £ P(x;b) | < P q 

for every x £ [A,B]. When m is odd it is possible that at x = B 

|f(B) - P(B;a) - £ P(B;b)| = P q 

However, if another polynomial P(x;"c) is used where 

P(Bjc) [f(B) - P(B;a)] > 0 , 

then for both e, e sufficiently small 

|f(x) - P(x;a) - £ P(x;b) - e^xjc)| < P q 

for x £ [A,B]. In either case a contradiction is obtained. This com­

pletes the proof. 



CHAPTER III 

BASIC ALGORITHMS 

The first algorithm given is a variation of the second method of 

Remez as presented by E. L. Stiefel [9, 10] and called by him "the ex­

change method." It includes as a special case the method of E. N. Novod-

varskii and I. Sh. Pinsker [l2] as given by A. Schenitzer [13], 

The outline of the theory, in particular the proof of the exchange 

theorem, given by Stiefel is constructive in the sense that it is a pro­

cedure for the solution of the uniform approximation problem. For this 

reason the theory will be developed first. 

Let f̂ , f form a T-system with respect to the closed and 

bounded set S and let f e C[S]. Then the problem is to develop an 

algorithm which will determine a set of coefficients a^ a^ which 

minimize 
n 

max |f(x) - a, f,(x)| . 
x e S i = 1 

Let X = [x±, Xp+jJ be a set of n + 1 distinct points of 

S and let P(xja) be a polynomial on S. Then there exists a set of 

numbers {a±, a
n+i} such that 

a1P(x1;a) + a2P(x2;a) + ••• + cc n + 1 P(x n + 1:a) = 0 (ill-l) 

This follows from the fact that f 1 ? f satisfy Haar's con­

dition on S and is easily verified by expanding the determinant 
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^ ( X - L ) ••• f^x^ P{x±ia) 

f i ^ x n + i ) p ( x n + i 5 a ) 

by the elements of the last column. Since the last column is a linear 

combination of the first n columns, the determinant is zero. Further­

more, each OL is different from zero since the coefficients of Equation 

(ill-l) as obtained by the expansion are the signed cofactors of the 

elements in the last column, which by Haar's condition must be nonzero. 

Note also that the ou are independent of the polynomial P(x;a*). 

Hence, (ill-l) is satisfied for every P(xja"). 

Definition 11; A polynomial P(x$a") is called a reference function with 

respect to the reference set X if the deviation = f(x^) - P(x̂ ja") 

corresponding to the elements x^ £ X satisfy 

or (III-2) 
sign p ^ = sign 

sign p ^ = - sign cu-

for i ~ 1,2, n+l. 

The existence of reference functions is easily established. In 

fact, if p ^ is the deviation of a polynomial P(x;a) at the point 

x^ £ X, then a reference function can be obtained by solving the systems 

of equations on the following page for b±, b . Then P(xjb) is 

a reference function with respect to X. 
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f (x ) l l f (x ) n I 
| p i l s i g n a i 

* • * 

a » • 

f i < x n + i ) f

n

( x n + i ) I P n + J s i 9 n
 a n + i 

f(x ) 

f(x n + 1) 

( n i - 3 ) 

Definition 12i A reference function P(x$75) is called a levelled ref­

erence function if the deviations p ^ have the same absolute value at 

each point x^ £ X. The absolute value of p at these points is called 

the reference deviation* 

A levelled reference function can be obtained from (III-3) by 

setting | p ^ | = p for i = 1,2, n+1 and solving the resulting 

system for b , b^, p • 

Suppose now that the equation 

p . = f(x.) - P(x.;a) Ki I i' (III-4) 

is solved for P(x.|a) and substituted into (ill-l). The result is 

n + i 

0 

or 

I a, [ f ( x p - p . ] = 

i=i 

n + i n + i 

I a i P i = I a i f < x i > • 

(III-5) 
i=l i=i 

Then if P(xja) is a reference function (III-5) becomes 

n+i n+i I l a . | | P i l = ± I a . f(x.) (III-6) 
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From this we may conclude that the deviations of all reference functions 

corresponding to a fixed reference set (and function f) form a bounded 

set „ 

Thus the value of the reference deviation for the levelled reference 

function can be obtained using (III-7) and polynomial interpolation. 

Note that the levelled reference function is not dependent on a particu­

lar reference function* 

If (lH-4) is solved for f(x^) and the result substituted into 

(HI-7), one obtains 

For a levelled reference function let 

p. = p sign a . 

in (III-5) and solve for p„ Then 

2 cc. f(x.) 
1 1 (III-7) p -

2 a.[pi + P(x.ja)] 
P 

or 

Pi = 
2 |cc ' i1 I r i 

2 l a . l 
(III-8) 

But this implies that |p| is a weighted average of the p. and 
thus 

min Ip.I < [p] < max | p. | 
i 1 i 1 

(III-9) 
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Therefore, if P(x:a) is any reference polynomial with reference 

deviations then from (III-8) it follows that 

|p | < max |p I . (III-IO) 
i 1 

Let P(x?a) be a levelled reference function with reference de­

viation p on the reference set X, and let y £ S be such that 

lf(y) - P(y;a)| = max |f(x) - P(x$a)| > p . 
x £ S 

Then there exists an x^ £ X such that if x^ is "exchanged" for y 

in X, P(xsa') will be a reference function on the new reference set 

X* = X - {x^} + {y} e The proof of this will be given later in Theorem 9. 

It follows from (III-8) that the new levelled reference functions 

P(xjb) obtained by levelling P(x;a) on the reference set X* will have 

a reference deviation p* which is strictly greater than p. Thus this 

process can be repeated and a sequence (which might terminate) of devia­

tions [p̂  : j - 1,2, «.o] will be obtained that satisfy the inequali-

t ies 

p* < p* < p* < . 

Now suppose S is a discrete set of points x^Xg, • x m 

where m > n + 1, Then by Theorem 5 there exists a polynomial P(x;°c) 

of least deviation from f on S. Furthermore, S being a discrete 

set implies that the sequence {p*} will terminate, since there are 

only a finite number of distinct reference sets X* and a reference 
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set cannot be repeated since p* < p* . Hence the last element X 

of the sequence {p*} will satisfy 
j 

^ < PM(f) (HI-ll) 
where 

pM(f) = max |f(x) - P(x;c)| . 
x e S 

If X < P^(f) then there exists a levelled reference function 

P(x|"a) such that 

max |f(x) - P(x;a)| = X (111-12) 
x £ S 

since otherwise it would be possible to obtain a p* > X. But (111-12) 

would imply that P(x$c) was not a polynomial of least deviation from 

f on S, Therefore, X = p^(f) and the iterative procedure used to 

obtain X converges to the polynomial of least deviation from f on S, 

subject of course to the proof of the exchange theorem. 

This procedure applies equally well when S is a finite interval 

(see E o N. Novodvarskii and I. Sh. Pinsker [12]), but for the development 

of algorithms for numerical application the discrete case is sufficient. 

For S a countable compact set in E the proof has been given by 

E o W. Cheney and A. A, Goldstein [14]. 

The exchange theorem follows. 

Theorem 9: Let P(xja") be a levelled reference function with reference 

deviation p on a reference set X. Suppose there exists a y £ S such 

that 

|f(y) - P(x;a)| > p . 
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Then there is an x^ £ X such that, if y is exchanged for x^, 

P(x$"a") will be a reference function on the nonreference set X* = 

X - [x.} + [ y } . 

Proof; Since P(x;a~) is a levelled reference function on {x 1, x g, 

x^} there exist numbers a^, ..., ct n + 1 which satisfy 

a1 P(x 1 ; a ) + ••• + a n + 1 P(x n + 1$a) = 0 (111-13) 

and 

sign CL = ± sign [f (x^) - P C x ^ a " ) ] 

for i = 1,2, ..., n+1 . 

Next consider the set of points {x 1 ? x , y} . P(x;a) is 

a polynomial on S and hence there exists a set of numbers (3̂ , 

satisfying +"0(i = 1,2, n+l) and 

Pi P C x ^ a ) + + P(x n ; I ) + p ^ + 1 P ( y j a ) = 0, 

for all polynomials. Then dividing by P^ + 1 gives 

P ± P ( x 1 ; a ) + • • • + p n P(xn;a") + 0 • P(x n + 1;a) + P ( y j a ) = 0 . 

(111-14) 

( P ± - 9a1) P(x 1 , I ) + • • • + ( p n - 9a n) P(x n ,-a) 

- 9 a P(x . a ) + P ( y : a ) = 0 
n+i n+i 

by subtracting from 111-14, 0 times 111-13. 
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" f(y) - P(y;a) > 0 and sign a. = sign (f(x.) - P ( x . ; I ) } 

or if f(y) - P ( y J a ) < o and sign a --sign ff(x.) - P(x :a ) l 
i i i' ' J 

then define 

. h . 
m i n — » i = 1.2 n ) = m m o (111-15) 

0 

If 0 q = 0 then sign = sign cu and replace x
n + 1 by y. If 

0 = S. /cc. then o ^i ' 1 o o 

Q / L I < — for i = 1,2, n a. a 
I I . i . 

o 1 f 1 
o 

and sign (6. - 0 a . ) = sign a . , i i i with 8.-0 a. = 0. Thus 
^ ^ 1 0 1 I o r i o 1 

replace x. by y< 
o 

On the other hand if f(y) - P(yja) > 0 and sign a i = - sign 

{f(x i) - P(xi,*a)} or if f(y) - P(y;"a) < 0 and sign cu = sign {f(xi) -

P(x^a)} then define 
Pi max — , i = 1,2, .... n cc. 

I 
= max ^ (111-16) 

o 

If 0 q = 0 then sign = - sign and replace x
n + 1 by y. If 

9 = 8. /cc. then o r i 1 
o o 

h p. > — for i = 1,2, .,., n a. a l l o . I . i ^ i 1 o 
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and sign a. = - sign [8.-9 a.] with 8. - 9 a. = 0. Thus in 
1 3 *-"i 0 1^ ri 0 1 o o 

this case replace x. by y. This completes the proof, 
o 

It was assumed earlier in the proof of the convergence of the 

sequence {p^} that S was a discrete set of points or had been re­

placed by a discrete set. In what follows it will be assumed that S 

is a discrete set of points unless stated otherwise. 

In order to give an algorithm based on the exchange theorem, a 

starting procedure is needed to obtain a levelled reference function and 
the numbers The first step is to select a set of n + 1 v ' n+i r 

points of S„ The best choice of these n + 1 points would be a set 

which yielded the largest reference deviation p for the starting ref­

erence function. In general a method of determining such a reference 

is not known. However, a good _a priori choice when S is an interval 

is given by the local extreme points of the Tchebysheff polynomial 

T^(x) on S. For the internal [-1,1] these are defined by 

x. = - cos •i2E, i = 0,1, n . (iii-17) 
I n 

A heuristic motivation for such a choice can be made when f (x) = 1, 

f (x) = x, f (x) = x n - 1 . Suppose f(x) is a polynomial of degree 

n (or at least can be closely approximated by such a polynomial). Then 

the error function at least deviation 

R(x) = f(x) - P (x) 
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is proportional to the Tchebysheff polynomial of degree n which assumes 

its maximum value at these n + l points. However, it must be pointed 

out that for S a discrete set this choice may not be possible. In 

this case choose those points nearest the Tchebysheff abscissae. 

This choice was used by W. Fraser and J. F. Hart [l5] In their 

work with rational approximations using an algorithm similar to Stiefelfs 

exchange theorem. They reported that good results were obtained even 

though the above argument does not apply for rational functions. 

With the initial x.*s chosen the cc.'s can be obtained by set-
1 1 1 

ting a

n + 1 = 1 a n c l solving the system of equations, 

f (x.) f.(x ) 

f (xj f (x ) n l n n 

CC H 1 
* 

a 
n 

fi( xn+i) 

" f
n
( xn+i) 

(111-18) 

for a n . 

Equation (III-18) has a unique nontrivial solution since f , 

f is a T-system on fx,, x ] . Furthermore each cc. £ Oj hence 

n+l 

i=i 

Next let X = sign (i = 1,2, n+l) and consider the 

system of equations on the following page. 
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1 1 
— - 1 

• 
• 

• 
• 

• 

— 

0 

• 
• 

• 

X , f n ( x j 

• 

\ f ( x , J 
n + i n n + i Y n + i 

• 

0 

L e t t i n g 

Y i = n + I 

2 a . 
i = i 1 

i t f o l l o w s t h a t 

j = i 1.2 | c c . |J 
= 1 . 

A l s o 

n + l 

V y X - * • ( * . ) 

Z-j J J i J 

i = i i 

n + i 

, 2 ' a k l 
k = i K 

< V \ . | a . | f . ( x . ) 
3 3 

( 1 1 1 - 1 9 ) 

, ( j = 1 , 2 , n + 1 ) ( I 1 1 - 2 0 ) 

= 0 . 

T h e r e f o r e 

J 1 

? IAIL 
i s a s o l u t i o n t o ( 1 1 1 - 1 9 ) . 

I t c a n n o w b e s h o w n t h a t t h e ^Yi+i a r e u n ^ - c l u e a n c ^ t h e r e ­

f o r e t h e m a t r i x i n ( 1 1 1 - 1 9 ) i s n o n s i n g u l a r . T o d o t h i s a s s u m e p , 

PN+1 i s a n o t h e r s o l u t i o n t o ( 1 1 1 - 1 9 ) s u c h t h a t a t l e a s t o n e P̂, s a y , 

P̂  s a t i s f i e s 
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h * n • 

0 0 

Substituting p ^ , into ( 1 1 1 - 1 9 ) gives 

£ p . [\i P(x.;a)] = 0 ( 1 1 1 - 2 1 ] 

and 
£ Y i t X i P ( x . j a ) ] = 0 ( 1 1 1 - 2 2 ] 

for any polynomial P(x;a~) . 

Then multiplying ( I I I - 2 1 ) by y i and ( H I - 2 2 ) by and sub-
o o 

tracting one obtain 

( Y i P i " Y i U ^ U ^ a ) ) + • • • 
o o 

+ (Y D + 1 P I 0 - N 0 P N + 1 ) ( X n + l P ( x N + L J D ) = 0 . 

Note that the coefficient of Xj_ P(x^ ;"a) is zero in this equation. 
o o 

Therefore all the coefficients must be zero since otherwise f., .... f 
i n 

would not be a T-system on [x , .... x I . Thus 
v i n r 

P i = —° Yi » d = 1>2, n+l) 
1o 

and hence 
n+i P . n+l P _ 

I P i = 7^ I Y i = 7 ^ ' 

Y i h 1 Y i 

1 = 1 o 1 = 1 o 
n+i 

But 
i = l 

^ P ^ = 1 by Equation ( 1 1 1 - 1 9 ) from which it follows that 

p . = Y i» (i = 1 * 2 , n+l) . 
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From this it is easily seen that the matrix 

B = 

1 ••• 1 
XI FI^I} NVTI FI(W 

L 
is nonsingular. 

It would be possible now to present an algorithm based on the 

Exchange Theorem. However, for notational purposes the Exchange Theorem 

will be reformulated before giving the algorithm. 

Let a = sign £f(y) - P(y,a)} and let T 1?Y 2* Y n + 1 ke " t n e 

solution of the linear system 

X 4 -1 f l ( X 

N+I L n+I 
X1 f (x.) \ f (x , J L n I n+I n n+L 

r 2 

LTN+1J 

a f^y) 

a f (y) n 

where X^ - sign Thus 

Y^Ptxja) + - + Y n + 1X n + 1P(x n + 1j,a) = a P(y^) (111-23) 

holds for all polynomials, in particular for P(xja). Equation (111-13) 

can be written in the form 

ccj X^ix^a) + + |a n + 1| X n + 1P(x n + 1ja) = 0 . (111-24) 
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N o w c h o o s e i s o t h a t 
o 

o Y i 

= m a x f : i = 1 , 2 , n + l ] 

a . i i i 
i a . 

o i 

M u l t i p l y i n g ( 1 1 1 - 2 4 ) b y y i a n d ( l H - 2 3 ) b y a . a n d t h e n s u b s t i t u t i n g 

o o 

t h e r e s u l t i n g e q u a t i o n s g i v e s 

( y . \a±) - | a . I Y l ) X ^ U ^ ) + " ' + ( Y i K - J 

O O 0 0 

- l a . | Y _ ) X i P ( x . _ + a X i P ( x 1 $ 1 ) 

o o 1 0 O 0 0 

+ (Yi + - l a . I Y 1 + 1 ) p ( x

1 + i ; B ) + . . . 
0 0 0 0 

F r o m 

+ ( Y i | a n + 1 | - | a . l Y n + i ) ^ n + i p ( x n + i ^ ) 

+ a | a . | P ( y , a ) = 0 . ( 1 1 1 - 2 5 ) 

o 

Y i Y i l a ± l " Y i K 
0 < 0 1 - 0 

a . 
i 

o 
a . | a . | . l y . 

i i 1 i 

i t f o l l o w s t h a t 

- Y-l \ a % \ - y . a . f o r i = 1 , 2 , n + 1 . 

o i ' 1 1 1 1 7 

o 

S i n c e 1 1 1 - 2 5 h o l d s n o t o n l y f o r P ( x $ a " ) , b u t f o r a l l p o l y n o m i a l s w e s e e 

t h a t 

0 < V - I c x - I - Y - | c c . I f o r i 4= i 
' i 1 1 1 1 1 1 i 1 1 o 

o o 
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It follows that P(x$a) is a reference polynomial on the reference set 

X* = X - {x. } + [y] , by observing that the coefficients of P(x.jcT) 
o 

in (III-25) have the proper signs. 

An algorithm based on the Exchange Theorem follows. 

Algorithm 1 : 

Input: X « X 9 » • • • X 9 

v 2 n r 

m > n 

f(x±),f(x2), f(xj 

I = £l±, i , ..., in+i} which we shall for sim­

plicity denote by {l,2, n+l} 

cu for k = 1,2, n+l 

Step 1.. Set x , = sign a. (k = 1,2, n+l) and compute 
K 1 

p , a , a using Ko l n 3 

(po,a1,...,an) 1 1 

XJ^xJ X n + 1f ±(x n + 1) 

i m i • • • X f (x ) 
V n n^ n + i ' 

- (X ±f(x 1),...,X n + 1f(x n + 1) ) 

Step 2.. Determine j such that 

|R(x. )| 
J 0 

If 

m a x | R ( x . ) I , ( j = 1,2, . . . , m ) . 

j J 

|R(xj )l = ip0 
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then the polynomial obtained in Step 1 is the polynomial of least de­

viation from f on {x 1 5 ..., x m] and the algorithm stops. 

Otherwise proceed to Step 3. 

Step 3.. Set a = sign R(x. ) and compute Y n+i using 
Jo 

1 1 Yi 1 

X f (x ) 

1 1K V 
• 

V h i f i^ xn+i^ 
• 
• 

o f1(x. ) 
Jo 

• 

_ 
V h l fn^ xn+l^ Y n + i a f ( x . ) 

- n Jo_ 

Step 4 .. Select i so that — o 

T ' 

9 = — = max { — — : (i = 1,2, n+l) } 
la. I | a . | 

o 

Step 5.. Replace i by j in I, and compute 

and 
a. = a 0 • 

Jo 

Then return to Step 1. 

A close examination of Algorithm 1 with the simplex procedure 

of linear programming in mind leads one to believe that it might be 

simply a special case of the linear programming formulation of the uni­

form approximation problem. It was for this reason that the Exchange 
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Theorem was reformulated before giving the algorithm. In order to pursue 

this idea further the development of the simplex algorithm will be given 

next. It is assumed here that the reader is familiar with the theory of 

linear programming as it is presented in S. Gass [16]. 

Let f , ..., f̂  form a T-system with respect to a finite point 

set S = [x 1, x g, ..., x m ] , and let f £ C(S). Then the uniform approxi­

mation problem is to determine numbers a , ..., a n such that 

p(f) - max |f( X j) - P{x.;a)\ (111-26) 

is minimized. 

Now, (111-26) can be replaced by the inequalities 

p < f (x . ) - P(x.;a) < p, (j = 1,2, m) 

or 
p + P(x j;i) > f( X j) 

P - P(x j;a) > -f(x j) 
(j = 1,2, m) (111-27) 

With the use of (HI-27) the problem can be expressed in the 

standard linear programming form. 

Form 1; Minimize p subject to the constraints 

1 - f ^ i ) 

1 f - (x ) 

i -f,U) 
l m 

-f n(x,) 

f (x ) n nr 

n m 

p 

a l 

A
l 

• • • (111-28) 

f(x ) x m 
J a 

i_ n -
-f(x ) 



52 

The dual of this program is: 

Form II: Maximize 2 a . c. subject to the constraints 
1 1 J 

cu > O, (i = 1,2, ..., 2m) (111-29) 

and 

f (x ) l l 

f (x ) n l 

f (x ) l l f (x ) -f (x ) l m l m 

f (x ) f (x ) - f (x ) n l n m n m 

a 

L _ " R A J 

(111-30) 

where 

c = [ f U ^ - f ^ ) , f(x m ) , - f(x m)] 

The standard simplex algorithm will be applied to Form II of the 

linear program. 

Definition 13: A feasible solution to the linear programming problem is 

a vector a which satisfies the constraints; i.e., a is a feasible 

solution if it satisfies (111-29) and (III-30). 

Definition 14: A basic feasible solution is a feasible solution with 

no more than n + 1 nonzero elements. 

In order to use the simplex procedure a basic feasible solution 

must be known; i.e., a starting procedure is needed just as in Algo­

rithm 1 to obtain a basic feasible solution. Such procedures are well 

known and may be found in S. Gass [l6]. The most general of these is 

the one using an "artificial basis." 
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Since the principal concern here is the algorithm, i t is assumed 

that a basic feasible solution is given. 

Denote Equation ( I I I - 3 0 ) by 

A a = b 

t h ' and let Â  be the j column of A. Let the nonzero elements of the 

given basic feasible solution be given by the vector 

P 0 = (pi> p 2 , Pn+ i ) T 

t h 
where p, corresponds to the i, column of A. Let 

A. A. ••• A. i 1 1 1 i l . 
1 2 n+i 

Thus 
B" 1 b . 

The simplex algorithm follows. The objective function w i l l be changed 

to: Minimize - 2 a. c . 
I I 

Algorithm 2: 

Input: c = C - f ( x 1 ) , f ( x 1 ) , . . . , - f ( x m ) , f ( x m ) ] 

j = 1,2, 2m 

= f i j i j "n+i 
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Step 1.. For each j f I compute 

B" 1 A 

n+i 

Step 2«. Compute - c. for j £ I where 

n+l 
: j = I P:k c i , 

k=i 
th 

and c. is the i, component of the vector c. 

Step 3.. If - < 0 for j = 1>2, 2m then P q is the 

minimum feasible solution. Otherwise proceed to Step 4. 

Step 4„. Determine a i such that e — o 

z . - c. max [z. - c.) 
j J J 

Step 5.. Determine an i such that — o 

Pi 
- min 

6. i 6. • 
H J „ o * j i 

th where p^ is the i component of {3 

Step 6.. Replace i by j In I and A. by A. , and return 
0 0 o Jo 

to Step 1. 



55 

The comparison of Algorithms 1 and 2 is now possible. Assume 

that a set of n + 1 points [x1, . x
n + i } is given and that the 

cu are computed using (111-18). If the indices I = [i 1,i g,..., 1
n+ 1} 

are chosen so that 

A 
i m = { l , \ j f ^ x j ) ^ • • •> Vj f

n

( x j ) } T ' ( j = l f 2 > n + l ) ' 

then the matrix 

B = X 1 f ^ x ^ . . . \ n + 1 f ^ x ^ ) 

\ ± f n ( x ± ) • • • \ n + 1 f n ( x n + 1 ) 

is the same as the matrix used in Step 1 of Algorithm 1, Furthermore, B 

is nonsingular and 

= B" 1 b 

is a basic feasible solution of the linear program. This follows from 

the development of the solution of Equation (111-19). Hence both pro­

cedures determine the same polynomial P(x;"a). 

Next consider the selection of j . In the linear programming 

algorithm j is determined by 

where 

z . - c. = max (z . - c.) , 
Jo Jo J 3 3 

n+i 
- c . = V s . 

k=i ^ 
c. - c. 



c k = - \ k f ( x k ) , ( k = 1,2, n+l) , 

a n d n+i 

I Pj x k P ^ x k ; a ^ = ° p ( > y a ) 
k=i k 

In this last equation a = ± 1 depending on the selection of 

A = ( 1 , a f ± ( x . ) , a f ( x j ) ) r . 

Thus 

or 

. - c . = - I * X k f ( x k ) - o ( - f ( X j ) ) 

k k 

k k 

But 

and 

where 

Hence 

X k f ( x k ) - X k P(x k , -a) = p > 0 

f ( x . ) - P ( x . j a ) = a P j > 0 , 

p . = | f ( x ) - P ( x ^ a ) | . 

z. - c. = - £ p.. [p + X k P ( x k ; a ) ] + a [ a P j + P( X j .$ 

= -p I p j k - I P j k
 x k p< v s ) + Pj + ° p ( x j 

n+i n+i 
Now, V p = 1 and V p. \ P(x ;a) = a P ( x . ; a ) 

k=i J k kTi J k k k J 

therefore 



57 

or 

z . - c. = -p - a P(x.:a) + p. + cj P(x .: a) 
J J K J J J 

z . - c. = p. - p 

Hence, 

max (z. - cj = max (p.. - p) 
j 

where 

Pj = UCXj) - P ( x . . ; a ) | . 

Thus j"o is the same in both algorithms. 

The comparison will be complete if it can be shown that the deter­

mination of i is the same in both algorithems. To see this, multiply 

Equation (lH-25) by l/ŷ  to obtain 
o 

(|aj - e * n ) X i P U i j a ) + + (ki - J l - 0*y_. -±) X. ^ P ( x . - ̂ a) 

o o xo 0 
+ ( l a . + J - e*Y. + 1 ) X. + 1 P (x . + 1 , a ) + . . . + ( | a n + J 

0 o o o 

- 0*rn+1) X n + i P C x ^ j a ) + o 9* P(y;a) = 0 , 
where l i 

let. I 
0* = 1 q 

Y i 
o 

It should be noted that t 0 because of the requirements 

Y l o Y i 
^ Yj_ = 1 a n c l ° = max 1 
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Next, comparing the equations of Step 1 of the two algorithms and observ­

ing the starting procedures, it is seen that 

and 

Thus 

max 

a j = p . 

Yi = Pj i . 

Yi . f P i 
= m i n { P j i > 0 } j p j i Jo a . . 

i o 

I o c ± 1 

= min \ : Y- > 0 } 
j 1 n 1 ; 

and hence i is the same in both algorithms. 

A close examination of the Exchange Theorem will show that the 

choice of j by 

|R(x )| = max |R(x )| 
Jo j J 

does not necessarily yield the maximum increase in the reference devia­

tion p. But in view of the equivalence of the two algorithms this is 

to be expected since 

max [z. - c.) 

i 3 3 

does not yield the maximum increase in the objective function for the 

simplex algorithm. If the two algorithms were modified to obtain this 

maximum increase the resulting algorithms would still be equivalent, but 



the number of computations necessary during each iteration would be 

sharply increased. Experience with the simplex procedure indicates 

that this modification does not, in general, decrease the number of 

iterations sufficiently to be of much practical value, Gass [16]. 



CHAPTER IV 

MODIFICATION OF THE BASIC ALGORITHMS 

The first modification considered concerns the starting procedure 

for Algorithm 1. It is due to E. W. Cheney and A. A. Goldstein [l4]. 

The procedure which they use chooses a set of points {x^ x n] and 

adds an "artificial vector" constructed from these n points to complete 

the basis. It does not require the initial computation of the cc^ •••> 

a ,A . The matrix used is n+l 

i=l 

f (xj ••• f (x) - y f (x.) 

n l n n u n j 
j=i 

(IV-1) 

the artificial vector being 

n+i 
11 

- [1, -][ f (x ) , ^ ( ^ J ] 1 . (IV-2) 

Associated with this artificial vector is a number b which takes the 

place of f(x n + ), so that if the algorithm converges with the artificial 

vector still in the basis then b is increased and the algorithm is 

started over. This process is repeated until the algorithm converges 

with the artificial vector removed. The paper shows that if b is 
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increased indefinitely then the max |R(x)| is unbounded and no solu-
x e S 

tion exists. 

While this starting procedure has the advantage that the program­

ing necessary to compute a±, ..., cc n + 1 is not needed, additional compu­

tation would be needed to remove the artificial vector. Furthermore, if 

it becomes necessary to increase b, then the additional computation 

would exceed the computation to obtain a , .... cc n + i, since then the 

algorithm must be started over from the first step. 

The second modification is obtained by restricting the set S to 

be a finite interval, [c,d]. Then the set of points [ x . ..«• X c 
l m 

may be indexed so that 

c < x < x < • • • < x < d . 
— 1 2 — 

Thus applying Theorem 8 it follows that the polynomial of least deviation 

from f on S is characterized by the property that the error function 

R(x) alternates in sign on n + 1 points of S and assumes its maximum 

on these n + 1 points. Furthermore, if [x^ .... x
n + 1 } is a n Y ordered 

set of n+1 points of S, then the polynomial of least deviation from 

f on [x^ x
n + 1 } is uniquely characterized by the same properties 

(see Theorem 7). 

Thus for every ordered set of n + 1 points { x

± > x
n+ 1}j 

the polynomial of least deviation from f on these n + 1 points 

satisfies 

sign R(x.) = - sign R(x 1 + 1) (IV-3) 
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and 

But 

R(x^)| = constant, (i = 1,2, «.., n+l) . 

sign CĈ  = X^ = ± sign R(x i), (i = 1,2, n+l) 

and hence Equation (lV-3) implies 

sign cu = - sign CL . 

Therefore the matrix given in Step 1 of Algorithm 1 becomes 

f,(x. ) - f,(x. ) ... (-l)nf1(x. ) 
xi xi+i "n+i 

f (x. ) - f (x. ) (-l)nf1(x. ) 
2i n xi+i 1 xn+i 

Hence it is no longer mandatory to have a starting procedure to compute 

V an+i ' 

In addition, the determination of the i to be replaced by j Q 

as In Step 4 can be changed to the selection of an i such that when 

j is replaced by i Q the error function R(x) alternates in sign on 

the resulting set of points. 

The algorithm which results from these changes is a modification 

of the one given by A, Shenitzer [l3]. 
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Algorithm 3: 

Input: x 1, f(x 1), (i = 1,2, m) 

I = (1,2, n+l) 

Step 1.. Solve 

(p,a±,.. .,a ) 1 - 1 

f 1(x 1) fi(x2) 

f (xj f (xP) 
n 1 n *=• 

(-l)n 

fi(xn+i) 

f (x ,J n n+i' 

= [f(x1)...f(xn+1)] 

for p, a 1, 

Step 2.. Determine j so that — o 

lR(x. )I = max |R(x.)I . 
Jo j 3 

Step 3.. If |R(x. )| = max {|R(x.)| i j E ij, then P(xja) is 
Jo J 

the polynomial of least deviation from f on Otherwise 

proceed to Step 4. 
Step 4.. For convenience in notation assume I = [l,2, n+l}. 

Then, if there exists an i, i + 1 £ I such that x. £ (x.,x.. ), 

replace i by j in I when sign R(x. ) = sign R(x.); otherwise 
0 Jo 1 

replace i + 1 by j . If x. £ [cjX^, then replace 1 by j 
0 3o 

in I when sign R(x. ) = sign R(x l); otherwise replace n + 1 by j^. 

If x. £ (x , d], then replace n + 1 by j in I when 
n+l 
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sign R(x. )= sign R(x , )} otherwise replace 1 by j . j n+i o o 
An alternate approach to the uniform approximation problem is to 

solve the system of equations of Step 1, Algorithm 3 for p in terms of 

x , ,.., x using Cramer's rule. The problem then becomes one of l n+i 

maximizing a function of n + l variables. This approach for the case 

in which f^(x) = x 1 - 1 , i = 1,2, n+l has been developed and applied 

by P. C. Curtiss, Jr., and W. L. Frank L"l7]. A restricted version of 

their method is given below in Algorithm 4 . An outline of the theory 

follows. 

Let f be a continuous function defined on a finite interval 

[c,d]. Let ~ x 1 " 1 so that f is to be approximated by the functions 

l,x,x2, x n. Then replace [c,d] by an ordered set of points 

^Xi' X2* X m ^ i»e'> x - l < x 2 < ••• < x m« Assuming i = 0,1, ...,n+l 

the system of equations for p , a , ...,a n becomes 

a + a x. + a x2. + ••• + a x] + (-l)J'p = f(x.), (IV-4) 
o i j 2 j n j J 

j = 1,2, n+2 . 

Now, suppose (IV - 4 ) is solved for p using Cramer's rule. Then 
n+i I ( - D J f ( x j ) C ( x 0 , x n + 1 ) 

p ( x 0 , x n + 1 ) = J ° 

) C.(x , x . ) 

L j o n+i 
J 

j=o 

where 
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n+l 
C.(x , x , ) = Y |x. - x. | 1 

j o 9 n+iy L i J 
i=o 

Then, if a subset y ,y , y of fx , x I is determined so 
j i Q , i ±> j n+i c l mJ 

that p(yQ^ Y n + ± ) ^ s
 m a x i m u m over all possible subsets of n + 2 

elements of [x^, * m } , solving the system of equations in (IV-4) 

using ŷ , Y n + 1 for the x^ will yield the polynomial of least 

deviation from f on {x1, x
m ] • The proof of this last result is 

given in the paper by P. C. Curtiss, Jr., and W. L. Frank [17]. 

In the exchange process of Algorithm 3 it was necessary to treat 

as a special case the exchange of j for some i < I when x- was 
o J Q 

contained in a one-sided neighborhood of an endpoint (i.e., when 

xn- £ [c,x ] or (x . , d]). A similar treatment would be necessary J 0 l n+i' 
here. However, if it is assumed that f(x) is differentiable and that 

s t 

its (n + l) derivative does not change sign, the endpoints of the 

interval must be contained in the set [yQ, Y n + 1] which maximizes 

p (see Hart and Fraser [l5]). Thus the special treatment at the end-

points is not necessary. It must be emphasized that this assumption is 

not necessary and that it is being made in order to simplify the state­

ment of the algorithm. 
Let y , y , be n + 2 distinct elements of fx . x [ l n+2 c i mJ 

and define 

P K M = p ( y 1 , Y k . ± , x, y k + 1, y n + J 

where 

V i < x < y k + i 
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for k = 2,3, ..., n+l. With this definition the algorithm can now 

be given. 

Algorithm 4; 

Input: x^, f(x i), (i = 1,2, m) 

I = (l,2, n+2) so that = x^, 

(i = 1,2, n+2). 

Step 1.. Set k = 2. 

Step 2.. Determine j such that x- is contained in [x , .... x 1 e — o J Q l? ? mJ 

and y < x. < y, and x- maximizes |p,(x)| . k-i J Q K+i J 0 K 

Step 3.. If |p, (x. | > |p.(y,)|j replace y, by x. . Otherwise k J O k k R j Q 

proceed to Step 4 . 

Step 4 .. Set k - k + 1 . If k = n+2 go to Step 5. Otherwise return 

to Step 2. 

Step 5.. If n iterations occur without any change in y , y n + 1* 

then y , y determine P(x;a") and a halt occurs. Otherwise 
1 n+2 

reset k to 2 and return to Step 2. 

At first glance this algorithm appeared to be quite different 

from that given by Shenitzer and viewed strictly as a computational 

procedure it is different. However, it is possible in theory at least 

to reformulate Algorithm 3 so that the results obtained during each 

iteration for these two methods are identical. The principal difference 
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noted in the two algorithms is that in the latter the error function is 
maximized over each subinterval rather than the entire interval. But ob­
serving the results of Stiefel's Exchange Theorem (Theorem 9) and Equa­
tion (III-9) one sees that it is possible to modify Algorithm 3 to deter­
mine j in a subinterval. Then an exchange could be made in each sub-

o 

interval similar to the procedure of Steps 2 and 3 of Algorithm 4. 

Now, in the one case | p k ( x ) | is maximized over each subinterval 

and in the other case |R(x)| is maximized over each subinterval. As 
was pointed out earlier, choosing j by |R(x. )| = max |R(x)| does 

0 Jo xeS 
not necessarily yield the maximum increase in p . However, in the special 

case of Algorithm 3 each |cu| = 1 so that 

2 |cc. | | p . | 2 | p . | 

l p * l = ; ; = • 2 cc. n + l 
1 I 1 

Hence choosing max |R(x)| yields the maximum increase in p . Thus the 

two algorithms would yield the same result during each iteration. 

A most interesting and practical modification of the simplex 

algorithm (Algorithm 2) has been given by J. B. Kelly [l8]. Given an 

error bound e > 0 this algorithm determines the smallest integer n 

and a polynomial 

P(x:*a) = a + a x + a x 2 + . . . + a x n 

0 1 2 n 
t h 

of n degree, such that 

|R(x)| = |f(x) - P ( x ; a ) | < £ 

for every x £ S. 
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The basis for the modification is the equation of Frobenius [19] 

which determines the inverse of a matrix A, when A is formed from 

another matrix B by the addition of one row and one column vector. 

A revised algorithm will not be given. Instead, it will be shown 

how the equation of Frobenius could be used with Algorithm 2. Let 
t h 

£ > 0 be the required error bound and let P(x;*a") be the n^ degree 

polynomial obtained using Algorithm 2 so that 
|f(x) - P ( x ; a ) | < p Q . 

for every x £ S. 

If PQ < £ > P(x|a) is the desired polynomial. Otherwise set 

n = n + 1 and add a new function, f . to the set f , f o 7 n +i 7 v 7
 n o o 

thus adding a new constraint to the linear program. Then the matrix of 

Step 1, Algorithm 2, is augmented by one row and one column vector and 

the inverse can be obtained by the equation of Frobenius. Actually this 

modification can also be used with Algorithm 1, 

In the paper by Kelly n^ was initially set to zero and the 

best straight line fit was then obtained. This eliminated the necessity 

for a starting procedure. 

While this modification is extremely practical since it deter­

mines automatically the degree of the polynomial necessary to satisfy 

the given error bound, it may result in more computations. This results 

for the choice of the starting reference set which is used each time the 

degree of the polynomial is increased; i.e., the new reference set 
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consists of the n points used to obtain the previous polynomial plus 

one additional point. This reference set would be quite different from 

the one suggested in (111-17). Thus it might be better to simply add a 

new point and restart the algorithm. 

A few remarks concerning numerical results obtained using the 

various algorithms will be given next. 

In the paper by Schenitzer [l3] numerical results are given for 
P(x*"a) 

the approximations of sin x, cos x by a function of the form ,\ > 
g(x) 

where g(x) ̂  0 over an internal S, and P(xja) = a Q + a ^ + ••• 
+ a x n. The maximum error obtained was as high as 10~ 3 in some cases, n 3 

Thus the algorithm did not appear to be suited for practical applications. 

This was also pointed out by H. H. Denman [20] in a paper on nearly op­

timized computer subroutines using Tchebysheff polynomials. However, in 

the more recent papers by Fraser and Hart [lb] and Curtiss and Frank [17] 

excellent results were obtained using algorithems given above. Fraser 

and Hart used a variation of Algorithm 1 for the approximations sin x, 

cos x over the intervals (-0.3,0.3) and (-1.3,1.3), respectively, 

using retional approximations of the form 

a + a.x2 + a 0x 4 

n 1 & 

for cos x 

1 + b + b x4 

2 4 

â x + a Qx 3 

1 + b s X ' 
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for sin x. The maximum errors obtained were 7.2 x 10 0 for cos x 

and 6.8 x 10 1 0 for sin x. Double precision arithmetic was used in 

both cases. The authors point out that when computing these coefficients 

using a computer of a given word size, it is necessary to use twice the 

word size in the computations in order to preserve single word length 

significance. Furthermore, the small interval over which the approxima­

tions were made can lead to an ill-conditioned matrix due to the differ­

encing of small numbers. But this can also be overcome by the use of 

multiple precision arithmetic. 
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