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SUMMARY

In this work, we have developed a new approach to the problem of a
simple system interacting with a quantum reservolr when the interaction
can be described by V = AB, where A is an operator for the simple system,
B is an operator for the reservoir. After defining a cumulant expansion
of the reduced density operator ps(t) for the simple system, we show that
the second cumulant is the only non-vanishing cumulant for a reservoir of
non-interacting bosons. A scheme for obtaining successive approxima-
tions to the equations of motion for ps(t) is found in which the nth ap-
proximation is obtained from the (n-l)th approximation by the addition
of a term roughly proportional to the (Zn-l)th power of the probability
that the system makes a transition in a time interval of length tc’ the
reservoir relaxation time, In these equations, reservoir variables occur
only as correlation functions of bilinear combinations of reservolr oper-
ators in the interaction picture.

The first order approximation to the density operator equation of
motion is applied to the case when the simple system is an harmonic os-
cillator. Two cases are treated, the damped harmonic oscillator and the
oscillator with an external driving force. Comparison is made between
these results and those obtained in other treatments.

There are two applications for which this formalism may be par-
ticularly suited. If we consider only binary collisions between the

small system and reservoir, the second cumulant describes all the possible
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scattering events a single particle could undergo while traversing a
system of scatterers. Thus our technique may prove useful in multiple
scattering theory. The other potential use is in the calculation of
linewidths and lineshapes. These quantities are needed in fields such as

quantum optics.



CHAPTER I

INTRODUCTION

In this work, we develop a new method for treating the time
evolvement of a small system interacting with a larger, more complex
system. By '"small," we intend to describe a system which, when isolated
from all external forces, may be treated in an exact way by the rules of
quantum mechanics. That is, we can find the stationary solutions to the
Schrodinger equation of the isclated small system. The complexity of
the large system makes it impractical to attempt solving the Schrodinger
equation of the combined system. We further restrict our attention to
those cases where the interaction between the two systems has the form
V = A.B where A and B are operator representations of dynamic variables
belonging to the small system and the large system, respectively. For
convenlence, we refer to the small and large systems as the system and
the reservoir, respectively.

The experimental situation we are trying to model is the typical
one in which only part of a physical system is precisely prepared and
the rest only partially controlled. As an example, one may think of an
experiment performed on a velume of gas. By cooling the gas, one can
insure that most of the molecules are in their electronic ground states,
On the other hand, the gas interacts with the surrounding radiation field
and the complete system must be considered to include both gas and radia-

tion field. It is impossible to prepare the radiation field in a pure



state and our knowledge of it is restricted to those average values
appropriate to the temperature of the system., Further, all measurements
taken in the course of the experiment are designed to test for changes
in molecular states rather than in the radiation field. Thus, we would
like to develop a method for calculating the expected value of these
measurements in as exact a manner as possible and in which the reservoir
variables enter as averaged quantities corresponding to our actual
knowledge of its initial state. We should not forget to mention that
our work actually applies to the example of the gas interacting with the
radiation field since the interaction term of the total Hamiltonian for
a system of charged particles and a radiation field in the Coulomb gauge

is proportional to §;A(ri)-pi where r.,p; are the position coordinate and
i
momentum of the ith particle and 2 is the vector potential of the radiation

field. 1If we treat only radiation modes with wavelengths much longer than
molecular dimensions, we may imagine A to be constant over a volume that
on the average contains just one molecule and the interaction takes on

the simple product form we require.

The mathematical framework we use in our investigation is that of
the density operator developed by John von Neumann.1 The main advantage
of the density operator formalism lies in the efficient way it enables
us to handle quantum systems about which we have less than complete in-
formation. The density operator and some of its properties are briefly
discussed in Chapter II. Since knowledge of the full density operator,
p(t), at a time t enables us to calculate the expectation value of any

operator at that same time, it still contains more information than we



need. We are interested in the expectation values of systems operators
rather than those of the reserveir., Thus, in Chapter III, the reduced
density operator, ps(t), is defined as the trace of the full density
operator over reservoir states,

To this point, we have followed a rather standard approach, The
rest of this work is new although we make contact with standard results
from time to time. Our stated purpose is to determine the dynamical
history of the small system given its initial state and the initial sta-
tistical description of the reservoir. (We specify that the reservoir
is distributed canonically over its energy states but this could easily
be generalized.) Naturally, this is quite difficult and we finally re-
sort to approximations but we are able to make approximations which seem
to be much more appropriate to the problem than the standard perturbation
theory treatments. Our final result will be a scheme for generating ap-
proximations to the equation of motion for pS(t) where the n® approxima-
tion is obtained from the (n—l)th one by the addition of a term roughly
proportional to the (2n—l)th power of the first order pertﬁrbation theory
probability that the system will make a transition in a time interval of
length t. where t. is the reservoir relaxation time., For systems that
may be reasonably described as reservoirs, we expect t. to be very short
compared to the time required for the system to make a transition. There-
fore, we expect the equation of motion finally derived in Chapter V to be
an accurate description of a small system interacting with a larger one
with many more degrees of freedom.

We now outline the steps that lead to these results., As mentioned



above, we define ps(t) in Chapter IlI by taking the trace of p(t) over
reservoir states. One hopes that the act of taking the trace over reser-
voir states will lead to the replacement of reservoir operators by aver-
aged quantities. How this is to be achieved is not obvious and different
workers have employed different strategems. In some treatments, the full
density operator is imagined to be factorizable into the form p = PP, at
arbitrary times as it is at t=0.2 Others have restricted their work to
apply to times short on the system scale so as to be able to relate p(t)
to its exactly factorizable form at t=0 through low order perturbation
theory.3 In Chapter III, we take the unorthodox but exact step of in-
troducing two disjoint system spaces. These spaces are labeled Sl and SZ’
respectively, and are spanned by eigenkets of the Hamiltonlans H, and H, .

1 2
Hy and H; are identical in form to the unperturbed system Hamiltonian

°1 2
but since the spaces Sl and S2 are independent, all operators labeled with
the index 1 commute with those labeled with 2. The advantage of this
slightly complicated formalism is that, in the process, all reservoir
operators are replaced by known averaged quantities, Our ability to cal-
culate these averages stems from the fact that, in our development, the
reservoir operators are first replaced in an exact way by their inter-
action picture representations. Since we know the initial distribution
of reservoir states, we may in principle determine the average value of
any interaction picture operators at an arbitrary time. This allows us
to avoid making the almost universal assumption that the reservoir ex-
pectation values are unaffected by the interaction with the system.z-5

The steps discussed above result in equation (III-36) for the

reduced density operator p (t). The difficulty in dealing with operator



quantities such as we obtain there arises for the most part from the non-
commutivity of operators. In our treatment, the ordering of the various
operators is dictated by the time ordering operators T and T_ of equation
(ITI-36). By introducing the factorized form T=TATB, we are able to
treat system operators as c-numbers while taking reservoir averages.

This turns out to be a great simplification which makes the rest of the
work possible,

At the end of Chapter III, we have achleved our goal of obtaining
an expression for the reduced density operator in which all reservoir
operators have been replaced by averaged quantities. It must be admitted
that these averages are not simple to compute and equation (III-37) is
hardly more amenable to use than the original full density matrix. To
proceed, we define an expansion for ps(t) in which these unwieldy terms
will, in tum, be replaced by functions of system operators and bilinear
averages of reservoir operators in the interaction picture at different
times. These bilinear averages, < B(t)B(t') >, are called correlation
functions in the 1iterature2’5 and contain important information about
the statistical properties of the reservoir.

The motivation of the particular expansion we make is discussed in
Chapter IV. We want an expansion that preserves the exponential charac-

ter of the exact expression, equation (III-37), and the cumulant expan-

sion of equation (IV-1) has that virtue. Later, we concentrate upon find-
ing an equation of motion for ps(t) and it is commen experience that expo-

nential forms lead to simple differential equations.

The work of Chapter IV contains at least two original developments.



The first 1s that by factoring the time ordering operator, we may treat
the system operators in equation (IV-1) as c-numbers lor algebraic pur-
poses. The second is that we discover that, for non-interacting boson
reserveoirs, only the second cumulant term is non-vanishing. For such
reserveoirs, there is no need to appeal to arguments about the weakness
of the interaction strength.6 For other reservoirs, one may use the
second cumulant form in an analogy to the way that calculations based
on small deviations from stable equilibrium are performed. 1In this
chapter, we also establish that our expansion preserves probability and
that ps(t) remains Hermitian.

At the end of Chapter IV (see equation (IV-19)), we obtain an ap-
parently non-homogeneous equation of motion for ps(t). The seemingly
non-homogeneous term fl-f is defined by equations (IV-17) and (IV-18).
The bulk of the remaining work is devoted to finding an expansion for

A~ ~

Fl-F2 in terms of ps(t) so that we may obtain a local in time, linear in
ps(t), first order equation of motion.

We pause in Chapter V to demonstrate that a first approximation of
our results does reproduce the behavior of a harmonic oscillator in con-
tact with a reservoir as found in other treatments. It turns out to be
relatively easy to work out the shift in oscillator energy and the rate
at which the oscillator reaches thermal equilibrium with the reservoir.

In addition, there are two minor contributions from our approach that are
missing from previous attempts. The first follows from the fact that we
3,7,8

do not make the rotating wave approximation that is commonly invoked.

Thus, we obtain an oscillating factor multiplying the exponentially damped



term in equation (V-69) for < n(t) > the average occupation number for
the operator. As this factor effects the spectral decomposition of
< n(t) >s’ it may produce more accurate line width calculations based on
the oscillator model. The second contribution is the rigorous addition
of a classical driving force which results in equation (V-8l). In per-
turbation theory treatments, the driving force temm is simply added.8
An example is worked out; the driving force is taken to be an impulse.
The work of Chapter V emphasizes a difficulty often overlooked in
the oscillator problem when the reservoir is also taken to be a collec-
tion of oscillators, A standard method is to diagonalize the total
Hamiltonian and to find the equilibrium condition in terms of the normal.

8,9,10,11 The sticking polnt is that it is

modes of the entire system.
impossible to write out the transformation from bare states to normal
modes In closed form. Hence, if the oscillator is initially in one of
its bare states, the density matrix evaluated in this basis will describe
the oscillators approach to equilibrium. But since the transformation
that takes us from a basis in bare states to the normal mode representa-
tion is unknown, there is no way to show that these approaches give
identical results,

In Chapter VI, we derive the method for generating the successive
approximations to the equation of motion for ps(t). We explicitly write
out the equation of motion for pS(t) correct to second order in our ap-
proximation, As discussed above, the second order form is obtained from
the first order approximation by the addition of a term proportional to

the third power of the probability that the system will undergo a transi-

tion in a time interval t. as calculated by first order perturbation



theory. Consequently, this last result should be applicable to cases
where tc approaches the lifetime of system states., We demonstrate in
equation (VI-30) that we may recast the second order result in the form
of the first order approximation by defining the effective reservoir
correlation function < B(t)B(t') 3. Thus, it seems possible to recover
from our work the change in the reservoir due to the interaction with the
system, Clearly, this would be an advantage over those treatments that
assume that the reservoir correlation functions remain the same for all

times.



CHAPTER II

THE DENSITY OPERATOR

Introduction

The concept of '"state'" is basic to any mathematical description of
a physical system. When we say that a system is in a particular state,
we mean that we have enough information to predict its behavior in future
experiments. If we are able to specify the system's future behavior as
completely as it is possible to do without violating the principles of
quantum mechanics, we say that the system is in a pure state. In this
case, we may represent the system uniquely by some vector in the Hilbert
space spanned by the eigenvectors of a complete set of commuting observ-
ables appropriate to the system. In practice, however, we rarely have
such complete information and we describe our system as being in a mixed
state. A mixed state cannot be represented in a unique way by a particu-
lar vector in Hilbert space. Fortunately, another formalism exists that
describes both pure and mixed states equally well; it is the density
cperator theory introduced by ven Neumann.1 In this chapter, we briefly
discuss some of the more useful properties of the density operator.

In practice, the pure states of a system are the result of a some-
what artificial abstraction. One imagines that the system in question
is isolated from the rest of the universe s¢o that a manageable complete
set of commuting system operators, {Qi}, can he chosen and the simultaneous

eigenstates of these operators, {]m >}, found to an acceptable order of
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accuracy. The index m represents the set of quantum numbers that differ-
entiate between the eigenvectors of the {Qi}. These eigenstates and
their linear combinations constitute the pure states of the system. In

the most general form, a pure state can be written as
i £}
P> =1 C > 11-1
m

A central premise of Dirac's formulation of quantum mechanics is
that the result of any measurement upon the system is represented by the
mean value of some dynamic variable of the system, Consider the measure-
ment that corresponds to the dynamic variable R. If the system is in the
(1)

pure state |¢ >, the result of making the measurement is

CAY =<y ALY = %“C?*Cﬂ An,m II-2

where

An,m"-" {nl Alm) I1-3

The Mixed State

The difficulty in transferring the results of the study of the
pure states of a system to the laboratory lies in the impossibility in
some cases of preparing the system in a state characterized by a unique
set of {ci} in equation (II-1). Indeed, since the model of a system used
in theoretical analysis never takes into account every contributing fac-
tor, it is not possible to specify an exactly complete set of system

observables in non-trivial cases. This problem is commonly solved by
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averaging in an appropriate way over the pure states Iw(k)> of the system

so that one replaces equation (II-2) by

<;\\/ =), Wy :\*C(:\‘ An.m 1I-4

MK

where w is the probability that the system is in the pure state repre-

k
®),

sented by |¢ . When equation (II-4) cannot be reduced uniquely to

equation (II-2), we say that the system is in a mixed state.

The Density Matrix

2
As RomaﬁL points out, the formalism that treats mixed states on a
different footing than pure states is aesthetically lacking. The den-
sity matrix method removes thils drawback.

If we define the density matrix by

Pm,n =Z_Cf":*(‘.$\‘ Ii-5
",

equation (II-4) becomes

<:B\>=Z‘ An)m Pm,n II-6

nm

As desired, we recover the simple form of equation (II-2) by setting

wk=6ki. Then,

W¥

Lo
Pmn = Can Cm I1-7
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Lquation (II-6) may be rewritten as

RY= (L. Ann P

The quantity within parentheses has the form of the product of the matrix
representations of two operators, A and p; therefore, we take equation

(11-6) as the definition of the density operator, p, and write

I

<'A> L (A P)r\.\r\ I1-6a

i

tr‘A(D

where tr denotes the trace., A useful representation of p is

(3 = Z__ > Wi C"::*C.::‘ <n\ II-8

mnK

where Wk is the probability that the system is in the state

|\Puﬁ> = 25_ C::? i

™

At this point, one may do away with the distinction between pure
and mixed states. OSuppose that the system in question can possess N in-
dependent pure states. As shown by R.oman,l2 g is completely determined
by specifying the expectation values at some time of N2-1 independent

system variables < Ai >, by measurement or as an initial condition. This
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is possible because the N X N matrix (pnm) has at most Nz-l independent
real parameters and the < Ai > and equation (II-6) give us a system of
N2-1 independent equations by which they may be determined.l’z’12
The power of the density matrix formalism lies in 1its lack of

ambigulty regardless of the completeness of our knowledge of the state of

the system.

The General Properties of the Density Matrix

The following properties of the density matrix are demonstrated
by von Neumannl

(1) The density operator is Hermitian., That is

p= P* II-9

Hence

fﬂn,n = fj:hrn

(i1) Since the unit operator must have expectation value 1,
trF = 1 11-10

(1i1) The diagonal element, pn,m’ represents the probability that
the system is in the pure state |n >,

(1v) The variations in time of the density operator depend upon
the physical laws that govern the system; its value at any time may be

obtained from its value at the reference time t=0 from
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_ifpHt e Ht
’D(ﬂ--— c ‘D(o\ e II-11

where H is the system Hamiltonian., From equation (II-11), it follows

directly that the mean values of observables vary in time according to

(@) =tr { QP } = tr {Q(t\ P(o\} I1I-12

This brief review of the density matrix contains all that we need

for later use,
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CHAPTER III

THE REDUCED DENSITY OPERATOR

Introduction

We consider the case of a small system Interacting with a much
larger one. By "small," we iIntend to describe a system which, when iso-
lated from all external forces, may be treated in an exact way by the
rules of quantum mechanics. The complexity of the large system makes it
impractical to attempt to describe the combined system in terms of known
stationary states. Our purpose is to set forth a procedure for determin-
ing the dynamical history of the small system in Interaction with the
large system t(henceforth called the system and the reservoir, respectively)
in which we represent the reservolr by the averaged values of suitable
reservoir cobservables,

We begin by specifying the density operator of the entire system
at the initial time, To obtain p(t) at arbitrary times, we transform it
from its value at t=0 by the time evolvement operator, U{(t) = e*th/ﬁ,
where H is the total system Hamiltonilan. 8Since p(t) contains more infor-
mation than we need, we define the reduced density operator, ps(t), as the
trace of p(t) over reservoir states. By introducing a doubling of sys-
tem space, we are able to replace reservolr operators in ps(t) by reser-
voir averages of operators in the interaction picture, Finally, by fac-
toring the time ordering operator into parts that either act on system

operators alone or on reservolr operators alone, we obtain a form in which



16

we are able to treat system operators as ordinary functions.

The Combined System

We begin by introducing some necessary symbols, When isolated
from one another, the two systems are represented by state vectors whose

time evolvements are determined by

v %_‘Elw’,} = Hr |'\|}r> (reservoir), ITI-1

and

R "%?N)!) = Hs \‘*s) (system). I11-2

We denote the stationary states of the isolated systems in the following

way :

H IE>= E. ‘E) (reservoir), III-3
rlCi & L

and

HelSy = ELISO (system). 11T-4

When the two systems are combined, the total Hamiltonlan becomes
H= H, +H+ V¥V III-5

where V describes the interaction between system and reservoir, For now,
we take V to be time independent; later, we allow V to include a classi-
cal driving force that operates on the system alcone,

In principle, all measurable quantitlies of the combined system can
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be calculated if only we know the density matrix operator, p(t), for all
times. If we have p(t) at time t=0, we may obtain its value at all other

times from the equation

~i(H, MVt LMy + M eV Ty
P(t) = F(o\ e I11-6

At time t=0, the interaction has suddenly been 'turned on" and we can
write p(0) as the product PePy where Pq is the appropriate density matrix
operator for the isolated system at t=0Q and P describes the initial state
of the reservoir, Our ability to prepare the reservoir in a given initial
configuration is limited and we make the modest assumption that it is in

a canonical distribution of reservolr states consistent with a measured

temperature, T = é; , where k is Boltzmann's constant. Thus,

Pty = ;ls,} ' e E)

where Z is the reservoir partition function. The most general form for

Pg (see equation (II-8)) is

Pt = 2 ISOR;ISD 111-8
03
whtere

Z_ P”=1 1II-9

For our purposes, we imagine that initially the system was in the ith

eigenstate of HS so that
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f” = 19 <5.| III-10

This assumption is for convenience only and all subsequent results can be

immediately generalized,

Substituting p(0) = PP s We obtain from equation (III-6)

— (A HetV) EiR =68 (Re s Heav)h

pwy=) € IS;)IE,)—%- <E;Ks € 1111
3

The motivation for the next step is provided by the practical no-
tion that the most interesting quantities are those that describe the
system at later times with reservoir eiffects averaged over all possible
reservolr states, Such a quantity is usually the expectation value of
some observable whose operator representation is a function of system

coordinates alone. Consider just such an observable, Os' At time ¢,

its expectation value is given by

oYy = try, LOs po) 111-12
= ;‘ (5,1 CEN Bs PIONED S
= 3.5 & LCEA pOIEDIS)

where we have used the fact that 0s operates on system states only. We

are then led to define the reduced density operator2
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Pste) = ; {E«\ F(ﬂl&) III-13

which enables us to write equation (III-12) in the formally simpler way

(G, = Zj_( S, O, Ps) S III-14

= trs [0 pstt)]

Using the definition of the reduced density operator and equation (III-11),

we have

-t (“ri' Hyarv )t Iy

Fs(t\=z_. {E\ € | SOIE I1I-15

LY

xZ 85 ¢E51 <5 €T e D

At this point, we digress to establish an equivalent way of express-

ing the operator

O = (Bl FLgs, QISP IED LE4IKS) F(§er Q) 1By 11I-6

where F is an arbitrary function of system operators ﬂs and reservoilr

L)

operators Qr' Since the reservolr operators are replaced by matrix ele-

~

ments, we call O a system operator, The matrix elements of the system

operator are given by
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Oemun = < mi<Enl Fl4n, GNENISD 1117

x <SN LB F (G, QMEDISW

Thus, 0m a is the product of the two commuting complex numbers
»

cn = LomlI<E ) F(fi)-,,f,).-) VeSS

and
cn = <S|,\<E] \ F*(%s ) é.h\ Eﬁ»\%n)
Hence,
am n = cmcn =c

Now for the crucial step: We imagine that the subspaces spanned by the
system states of < and c (S2 and Sl’ respectively) are disjoint.14

Consequently, we introduce subscripts to distinguish between the two in-

dependent subspaces Sl and 52‘ Then

Ca=< ‘5;‘|<€]-‘ FT(‘C‘{,S\) AMNNEINISAY I1I-18
and
Cm= <5m,_|<E|«\ F(GT,‘;) ér \Ej> i Si.-,_) III-19

Clearly, this procedure does not affect the numerical values of <, and cn
But now that the subspaces spanned by the lSm > and the |Sm > are disjoint,
1 2

we can say that the operators q, commute with the operators as . Hence,
1 2
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we can write

ém,n =ChCpm I1I-20
= <SLU<EH FT(4s, Q) lEDISnY

x LSm) KEu) FlGs,, QIEDISY
={S5m 1 S )B4} Fs s ONEQELF(G5, QNEDISIS

We have used the independence of the S1 space from the 82 space
to move the ket Sn > past F(qs ’Qr) and the bra < szl F(qS ’Qr)'

1 . 2 1
A definition of O equivalent to equation (III-16) is

6=<s;,|<sj| Fi(45,), QNED BN F(3s,  IEPISYy  111-21

Equation (III-21) makes sense only if we use it in the following way.
Suppose we are to find 6|Sn>. Then we label ISn> as a vector in S1 space
and proceed with S1 vectors and operators regarded as being independent
of 82 vectors and operators. If we are to find < sm|6, we label < Sml as
a vector in 82 space and proceed as before,

Returning to equation (III-15), we see that the quantity being

sumned over,

—t{R,+H +V)
€

-0E4 Y UL o
z¢° el FeolEpE e e
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L

has the same form as the reduced operator O in equation (III~12) with

" - ~((Me+ W +VIT/R
F(‘LHQA= c

and

((Me +HerVIE/R

+ A ~
F (‘Ls «,Qr)':c
Thus, we can write equation (III-15) in the equivalent form

_, —OE; i(ur+|-h.l+\{)(-/
Prev=T 2" @S KES € "

IT11-22

—I-.(“r+ ”g‘i' \4)‘:}5

x1ELY{Ex} € eSS

where, as before, the system operators in Hs and Vl only act on states
1
labeled with the subscript 1 and a corresponding relation exists between

HS s V2 and states labeled with the subscript 2.
2
Now the strategy becomes apparent; we can perform the sum over the

complete set |Ek> {complete in the space of the reservoir) and obtain for
equation (LII-22),

$H VI R

_, —e&y _ ((u,
Psley = pr ‘e 1<5L.l<t3’\ Q I11-23
3

~(Ha v MYV TR

" € \E'i> | Si,>

5 6€j (Mt HgrVI Eh —iHer R OYR
=<Sb'l21‘_.§._ Ejle 5N C kY

= { ENSY
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QOur desire to represent the reservolr by averaged quantities has
apparently been satisfied. 5Still, equation (III-23) is only a formal
restatement of equation (III-15) and is no more amenable to use in cal-
culations., To make progress, we must manipulate equatlion (III-23) a
little more.

We employ the identities15

t
v(Het Be v V)t LSV eydey SR WK
e ) = (—' ; g’ e ) C

rC I1I-24
and
ot
MR a VI = ClH el Y ( -wf,"ace'sae')
e = e T C III-25
where
({He + He YE/ (g +He)Ef
Vi () = - V, & III-26
and
{(Rg v B ER ~L (g W) B4
V—_tj_tt'\ = € z I11-27
The operator T_ orders the product VI (tl)VI (t2) . . . VI (tn) in the
1 1 1

t

‘ .

2™ term of the expansion of T_ exp[i;idtf\&!f\] so that operators at
o

earlier times are always to the left of operators at later times. Simi-

larly, the operator T orders the product V_ (t )V_ (t,) . . . V_ (t ) in
12 1 12 2 12 n
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the expansion of T ¢!P[-""/*gt‘\&‘({')] so that operators at later times are
always to the left of operators at earlier times. Equatiomns (III-24) and
(I1I-25) are certainly true at t=0 since both sides of either equation
reduce to unity then. It is fairly easy to show that, if we assume the
equations are true at arbitrary times, then the first derivatives with
respect to time of both sides of either equation (III-24) or (III-25) are
equal. When two quantities are equal at some time and both satisfy the
same linear, first order, differential equation at arbitrary times, then
they are equal at all times.

Since both Hs and Hs commute with Hr’ we may write
1 2

(how W)t Motk (Mot
—c e

C

I11-28

and . .
~dHs+ HYtG  —iHeth SCHs TR

- II1-29

Substituting equations (II1-24), (I1I-25), (II11-28), and (TII-29)

into equation (III-23) and using the identify

CHetpr  —(R th

1

we find
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III-30

C
-BEL %‘ c.VI'( )dt, ‘I'H‘i-t/
prler=<sy) 5,27 € ’<Eé\(T_e_9 HeR) g
3

t
- -i/,\(a«:,v LAY LN
I MR ) B sy

The next step 1s to move the operators exp@}géﬁa and exPjSHsJ%a) to
the extreme right and left, respectively. We recall that this is pos-

sible because the space S; is independent of the 82 space and, therefore,

L

Hs commutes with everything labeled with a 2 and Hs likewise commutes
1 2
with everything labeled with a 1. Hence,

H

. t
pfae Ve )
II1-31

=t He by ~-0E,
Psly= € " <S;.IZ;7:'€ E°<Ea'\(T_€

L/,_Glt' Vr, (£)

LHs thy
(Te JIENISLY €

If at this point, we were to content ourselves with expanding the
various exponentials, we would merely recover perturbation theory. We
wish to do more than that of course but in order to do so, we must sacri-
fice some of the general nature of the discussion. Therefore, we specify
that the interaction between the system and reservoir to be described

by16

V=3 ALG) BilGI=AB 11132

L=\
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where the quantities A, are functions of the system variables alone; the

i
quantities Bi are likewise functions of reservoir variables alone. Since
by hypothesis V is time independent, we extend that restriction to the
terms AiBi' Further, we suppose that the operator expressions AiBi are

Hermitian,.

We obtain the interaction picture form of V

((HorH ) 94 - Hy+ B YA,
v, = € Ve
by substituting

': H" t‘/’\ "L “‘ t’/‘R

abs(ﬂ = C %s c II1-33

and

Lnrt'/ﬁ ~ -LHft.fR

Q-— W= C Q- & III-34

for q and Qr in equation (III-32). Since HS and Hr are Hermitian, VI
remains Hermitian at all times. For convenience, we introduce the short-

hand notation

V)= Ax("%‘,lt‘)) B (Qr ) 1T1-35

= Al BWH
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Substituting equation (III-35) into equation (III-31), we obtain

—CHs:t/
Pste) = e R(S;,.\ III-36
t ) c
! Y (de AeIBIDY, 7 SRlitARBY |
5. £ &\ (e )(Te )“‘-D
3

i
X [‘5;) e hohe

We note that the time ordering of the B operators may be carried
out independently of the ordering of the A operators since the spaces

involved are disjoint. Hence we are justified in decomposing T and T_
A A A

into T 2TB and T_lT?, respectively, where, for example, T 2 orders the

Az(t') operators alone and TB orders the B(t') operators.17 Then, we

again appeal to the commutivity of S1 operators with respect to S2
A A
operators to draw T_lT 2 to the left of the bra < Ej]. That 1is,

’o,m = e {54 AT III-37

T . /T
5984 i faT AN BN [ ik A B
o3 & ey (e SN TR e
b
;.Hsltlﬁ
x lf);:)'éi
—iHe g CHst /g

(S TN pw IS C

i

where
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-BEi

QS(t\ =L E'C I1I-38
?

t t
it ALl Bl - efde AL YBIY
ek(‘, )(TBC 3 -alad)

JED

u.<Iii(fE?

We stress that the quantity on the left hand side of equation (III-37) is
not a scalar product. The notation requires that we expand a(t) into a
sum of products of various numbers of A1 and A2 operators at different
times, operate upon |Si > and < Sill by the A2 and A1 operators, respec-
tively, to obtain ]¢2> and < ¢i| (|¢2> is the result of operating upon
'Siz> by the A, operators and < ¢i| is the result of operating upon < Sill
by the Al operators), and finally forming the operator |¢2> < ¢{|.

This last step 1s important in the development of the method.

AL A
Since the order of an A product is ultimately determined by the TﬁlT 2
operator, we can perform any intermediate algebralec manipulation of @ (t)

ag 1if Al(t') and Az(t') were merely functions and not operators.18

Summary
By doubling the system Hilbert space and introducing the factored
form of the time ordering operator, we arrive at equations (ITII-37) and
(III-38). These equations involve of necessity only averages of reser-
voir operators but these averages are still far too complicated to calcu-
late. 8ince we are now free to treat the A operators in the expression
for a(t) as c-numbers, we look for an expansion of a(t) that will convert

the average over reservoir states of an exponential into another exponen-

tial form in which the averaged quantities appear in the exponent.
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CHAPTER IV

THE CUMULANT EXPANSION

Introduction

A cumulant expansion of a(t) is defined. The explicit expressions
for the first two cumulants are written in equations (IV-2) and (IV-4).
By truncating the expansion at the second cumulant, we arrive at an ap-
proximation (exact in the case of a reservoir of free bosons) for ps(t),
given by equation (IV-7), in which reservoir variables appear only as
correlation functions. We demonstrate that this approximation to ps(t)
is Hermitian and conserves probability. Finally, we derive an equation

of moticn for ps(t) which forms the basis of all subsequent work.

The Cupulant Expansion
If the interaction between the system and reservoir is correctly
described by equation (III-35), then ps(t) is given exactly by equation
(III-37). How do we best utilize this expression? In most non-trivial
cases, one resorts to some sort of an expansion and the success of such
a procedure depends upon the suitability of the expansion chosen. Taking
note of the exponential character of the operator quantities in equation

(I11-38) and realizing that we can treat the A operators as functions
A, A

since T_lT 2 will not be applied until we substitute equation (III-38)

back Into equation (I1I-37), we try an expansion of the cumulant type14:
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t
A dT AL BE)

P (t) = %. 2" éosi<Ei[ (T*¢€ ) Iv-1

T
- ig Al ItAL ) Bt
B
”n (T

NESD

The parameter A has been inserted for calculational convenience and will
be set to unity in due time., The expansion defined in equation (IV-1)
has the chief virtue of retaining the exponential character of the exact
form of a(t).

One obtains expressions for the Wn's by taking an appropriate
number of derivatives with respect to ) on both sides of equation (IV-1)
and then setting A equal to zero. In particular, by taking the first
derivative and setting A to zero, we find:

. -O€; t t.
Wh=xZ2.C ‘[<e,-\ gac Ate) att')~§dt AVBOEY]  mv-2
1 o °

) T
«_-_;_‘-gdt'[A.(t-s - ALtY] <B)

o

where

(Y= Z" Z{' e—-OE,- <Eil Bl Ej) Iv-3

=25 e R e T e
3

(continued)
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z's, €7 E) €7 M e
3

z's. € " ey BIE

We have used equations (ILI-3), (III-26), and (III-34) in obtaining
equation (IV-3). In the same way, taking the second derivative of both

gsides of equation (IV-1) results in the expression:

t t

€y
5 ©53 [ <Ej | TP S:!t.‘[clt' A BLIIA () B

zw1+w.‘=—-l- Z Z. e

t t

+ TP [At’ [dt“ A &) BEYAL ) BEY

t €

_2 §a ¢ Saf:- A B A, 1) B IE )

-4

Hence,

r ,t
W, =~ [ [dt‘[dt"{ AlE) A (TR B B ) ~®y) e

+ AL ALY (KT BB - < BY)

~LA A KB BEY — <E>>"\}]

where

~8E,;
BBED =Y 27 € gl BrerBu)Ey 1v-5
?
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In the work that follows, we retaln only wl and w2 in the cumulant

expansion of Gl(t). Then setting i=l,

W)+ W,
o = € * V-6

In Appendix A, we show that if the reservoir is composed of free bosons,
and if B(t) is a linear combination of reservoir creation and destruction
operators, all cumulants except w, vanish. Thus, 1f our reservoir is a
radiation field, a system of non-interacting oscillators or a phonon bath,

the truncation is exact. No approximation at all has been Introduced.

Equations (I11-37) and (IV-6) combine to give us

o\,

~ iy L Hg:
sty = c tﬁu(S.’.J—l_..h'-l_""' c l5¢‘> C h IV-7

At this point, it is probably wise to inquire whether the trace
of ps(t) over system states is unity as it should be. At t=0, equation

(IV-7) becomes

P =L5,1115,>
tr, pPuloy= Zr €95l Sl LIS D154
= Z{ <31';l Sy <SL.\ Si\)

=Z‘5—§ii = 1.
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as required. WNote that in evaluating the trace, we followed our rather
unorthodox prescription for obtaining matrix elements. It is also worth

pointing out for later use that

CSLI LIS,y = 15:5<5¢)

= \S£><‘5¢\

Thus, once a vector or operator has been positioned so that its function
is no longer ambiguous without the subscripts, the subscripts may be

dropped.

Now differentiate both sides of equation (IV-7) with respect to

time

dps ity _

3 =~k ML Ao+ e W e

-LH’S té\ Wit t“sth‘
T Y § VT . *

+ € LN TH T (e (wrw)e ISC

We have dropped the subscripts of HS in the first two terms on the right
hand side since, as we have just discussed, there is no ambiguity as to
what HS operates upon, Using equatioms (IV-2) and (IV-4),

(AEY = A1) <BY V-9

d o=
dtw‘ *

and
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t

t
d.d.; W, =~ t gdt AE) AR Beye — L2 g:it”At(t\A,(t“) Bepe 1V-10

t T
+ '.I‘T gd e AL ALY ﬁ)t”,t + '.I,C\T Sd £ AL ¢ A /bt R

o

where

B = BB - (B Iv-11

and

s
Lrar = (Bl BW"Y) - <B> Iv-12
Together, equations (IV-8), (IV-9), and (IV-10) lead us to write

dopun= - & LH,, o]

—I.Hstl

" . ‘:“‘5-
++C <. TR T AW - AN C Klsage t/“

y T W oy (M J
-L C ““%‘(‘x.\‘rf"TM{Sde' IO e € flsye

) iH,
-1 ¢ R LT T "‘{(dt" AU ALY [Beer e } e

=Rty

ST T {ga e AU AL Bere € """} Is;y¢ "%

+..!._
g

t

+Jﬁetﬂs‘tk<s \T TA;{L e AL A %) ’3": }lSPC

This last expression may be somewhat simplified. The A2 operators
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with time argument t can be placed to the extreme left by operating with

A -iH t/h -iH t/A

T 2 and using e s Az(t) = A2 e ° where A2 is in the Schrodinger

plcture. Similarly, the Al operator can be moved to the extreme right and

put into the Schrodinger picture. Then,

ngO,(t\ =-— —%—[’_H-,, P,u-.\'_\ - "-i\' L A, Ps (tf] IV-13

- i ¥ t/ t VA My
- L €T TA T AW € IS €A,

—in t YWy K
+ -.}:" C s'”‘(S;.IT.“T“‘{ Pt"A., +) pt,t" € v } lS,_Pe ‘M‘A

t .
=(H Wi i“‘\
""‘ki,Al_e htlﬁ(S{,"T-MTA‘ glt“Ai{t")pt,t"e l}\stbe i

t

~iHq b w.eW, ‘“"t
AL “’“<sa.\1:“‘1“{84c"A.< 3 e isy e

We now take the trace of both sides of equation (IV-13). Since

the trace is invariant under cyclic permutations,

try [H,, (),u;\] =tRLAAKW]=0

and
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&/ ]
nfi?ﬂs P&y = -J.£<<,“\ e He it/ IV-14

|+W;

{(s.,.\'r.. T {S ALY Bee € IS

~<s TN g:lt-'A,,(t") PeC ‘N’}&sg}é""%A. EAN

-LE<s, AL g' "k

%'I.

t
s T (e A e €7 sy

t I*\J; LW '
- <5, T_"“‘T'“‘{(dt"A.(t“) ﬁ>t~,t Cw }\S.'.. € “I‘lsjb

By inserting a complete set of S1 states, the first term on the right

hand side of equation (IV-14) can be written

):,<s“\e R o TN T gA €Bex € sy

1"‘

Lt e/

« € 1Sy {SMALS Y

But

(qsuq\ ‘\q\ EBS:) = <:€H&Ll!\4 €5j13>
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and since < Sk lAzlSj > is merely a c-number, we can rearrange the first

2 2

term to read

.
% g-"-‘ LS )ALISD

LB e/R

= LHs b/, * Wity
I<S1LI e * ‘<S“_. I ‘T:.A'T‘:'{ gd t" A-(t"’pt’;tc }I S“)e ISK)
= — 5 T <51, &
W4 W,

t .
x <S;‘l T-NTA;[ [G'“"A,(t") fﬁt".te t}lS.} éﬂs.th'\ IS‘)

Thus, the first term on the right hand side of equation (IV-14) exactly
cancels the third term of the right hand side. Similarly, the second

term cancels the fourth. Hence,

g'_t Tt Fs(‘t) =0

and this combined with the initial condition
tr, Q=1 Iv-15

insures that

tr, Pslt)= 1 IV-16
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holds at arbltrary times.
Returning to equation (IV-13), we Introduce the operators Fl and

A

F2 where

~ ~tHgt N e\, K
8= NG [0 e A €7 Isn ™

and

=t “1.t/f\ ¢ H‘lthi

o t Wit W,
FR=€ <5, lT,."'TA‘{ (dt" Pee ANC ] 15>€ IV-18

We can then express equation (IV-13) in the compact form
4 psto=- L LHup ) - & <ry LA, Aw)] Iv-19

~ o] 1 -]
"]ti‘fi\,"’q%z/\mFi 4"%ﬁ-txzﬁ§ *'TEF‘E.‘\t

= -,; LHs, puted) - %(Bvu,p‘(t\] +-‘,F3[AJ:'. -5

where we have again dropped subscripts on the Schrodinger operator A,
Equation (IV-19) is as far as we can go in the exact treatment.

The operator quantity §1-§2 is extremely complicated and we examine 1t

with more care farther on (see Chapter VI). For now, we argue as follows:

As before, we suppose that Bt,t" represents a reservoir whose relaxation

time, t.s is much shorter than the inverse of any natural frequency of

the system. We then assume that A(t') changes so little from its wvalue
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at t in the interval t = t" = E-t, that, with negligible error, we can

make the approximations

—iHs‘th

e <5L.‘ T_A. TAL ew.‘wz ‘:“s.t/ﬂ

15> € IV-20

R

F,
€
. gc’t“ (e AlE'-t)

<
= Psie) gdt" [Pee Ale-0

and t

F, = gdt" Pra Al Ps(6) Iv-21
[+]
In this approximation, the equation of motion for ps(t) becomes
=_L1 - i i
g;c—(%tts = L, puo] - £ (B LA, o] 1v-22

t
+ T;‘i [ A, P‘.Uﬁ g&t" ﬁ)t_",t A(t“—"c)]

t
- '-‘l::t [.A ) Et“(bt,«t“ A(t”‘t\ PS &{,\

Summary

In this chapter, we have Introduced a cumulant expansion for Pg (t).
The equation of motion, equation (IV-19), 1s still exact if the reservolir
is made of non-interacting bosons. Equation (IV-22) is our first attempt

tc make an approximation based on the shortness of the reservolr relaxa-
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tion time. This procedure is to be Investigated more fully in Chapter VI
but first we shall apply this first approximation to an example, an har-
monic oscillator interacting with a reservoir. This problem has been ap-
proached by many others and we would like to see if our method produces

sensible results.
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CHAPTER V

APPLICATIONS

Introduction

As a demonstration of the usefulness of the theory developed in
the preceding chapters, we investigate the case of a quantum harmonic
oscillator interacting with another system designated as the reservoir,
We then treat the slightly more complicated case of an oscillator inter-
acting with a reservoir while being subjected to a classical driving

force.

The Damped Harmonic Oscillator

We apply the results of Chapter IV to the case of a quantum har-
monic oscillator interacting with an unspecified reservoir. The inter-

action term of the Hamiltonian is taken to have the form
qu-B

where ¢ is the position coordinate of the oscillator and B is some fume-
tion of reservoir variables.

For convenience, we begin by summarizing some of the known proper-
ties of the free oscillator.21 The evolution of the free oscillator is

determined by the system Hamiltonfan

Ho= 54 Pl + Ml V-1
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where the operators p and q correspond to the oscillator's momentum and
position, respectively. The oscillator's mass and frequency are denoted

by m and @ . The non-hermitian operators a and a' are related to q and

p by
y, .
2=(%RY (3 ma.p)
and
o= m&h"i( _ - p) V-3
=(2x) (4 ma. P

The commutation rule
_.J; = V-4
wlppl=1
and equations (V-2) and (V-3) lead directly to
La,a*]l=1 V-5

By taking the product a+a, we form the useful hermitian operator known as

the number operator. We denote the eigenvectors of a'a as |n> where
+
aainy=niny, n=o,t, V-6
(h\ h’> 3 Sf\,h' v-7

and
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z IN<nt = 1 V-8

=0

Equations (V-1), (V-5), (V-6), and (V-7) are all that one needs to demom-

strate the following:

Holn) = R, (n+ L) Iny V-9
+ v
ain> = (n+1) 2 n+d V-10
and
ainy = (lr\\’/l In-1> v-11

How do we characterize the dynamical history of the oscillator in
contact with a reservoir? There are various ways of course, but the ex-
pectation values at time t of the operators n = a+h and q, denoted by
< n(t) >s and < q(t) >, respectively, seem particularly revealing. 1In
the process of finding solutions to the equations of motion for these
quantities, we will discover the equilibrium distribution of oscillator
energy eigenstates, the shift in the frequency of the free oscillator due
to the reservoir and the rate at which the system approaches equilibrium.

As a preliminary to the above program, let us use the perturbation
theory and our Intuition to obtain an i1dea of the correct oscillator
behavior.

Suppose Pn(t) is the probability that, at time t, the oscillator



44

is in the nth unperturbed oscillator state and that wif;?j is the rate at
which the oscillator makes a transition from the n'th oscillator state
to the nth state while, simultaneously, the reservoir makes a transition
from a state with energy Ej to a state with energy Ek' We assume that

Pn(t) obeys the Paulil master equation,4
d By _ BOZ'S. 5 0€4 (€)W V-12
dt ~ = it 2 JE.\dE; C g(e..\g SF) ARV

+z" L:_, gcl Ex EC‘Ea' e eEig(E;\g(Eﬂ Wf,'}'\:ei P.®

where g(Ej) 1s the reservoir density of states function. That is,
dEjg(Ej) is the number of reservoir states with energy between E_. and

J

Ej+dEj, We have averaged over Initial reservoir states and summed over
final reservoir states because we are only interested in the change in
occupation of system states. The reservolr is assumed to be distributed
over 1ts energy states according to the weighting function Z'-1 e-eEj
where Z is the reservoir partition function and & = é%; and T is the tem-
perature. Despite its complicated form, equation (V-12) has a reasonable
interpretation. Pn(t) decreases due to transitions out of the nth oscil-
lation state to any other oscillator state, If the nth oscillator state
is certainly occupled, the rate at which transitions are made from the

th
n  to, say, the n'th state is given by

Z" gde‘ JE; E'BE%(E%(E,\\J::\E‘



45

As mentioned above, we are not interested in the final reservoir state,
hence we integrate over Ek' We average over initial reservoir states,
The rate at which transitions are made to any oscillator state is ob-
tained by summing over n'. But this is the rate of transitions out of
the nth state vhen it 1is certainly occupied; to obtain the general result
we multiply by Pn(t) and obtain the first term of equation (V-12); the
rate at which Pn(t) decreases, The second term, the rate at which Pn(t)
increases 1s found by a similar argument.

»E

We approximate W_ n'J by Fermi's golden rule,22
?

Ew,E,
Wi T2 2T § (8 ~Ewr b tnon) Knl<E 1 g BIE D I

= 2T § (€4 —Enrhwuln-n) Kniq Io|* 1< BIE Y1

By using equations (V-2), (V-3), (V-7), (V-10), and (V-11), it is easy to

verify that

1 <ni Cb| h’)\z = ("‘E_\ [_(h'-l- V) Sn,h‘ﬂ +n én,r\'-':]

PR, VAN

Thus

WEE = T (B e S WG] v

< §(E4- B+ hiooln-n)) IEd BIEN
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Substituting equation (V-13) into (V-12), summing over n' and integrating

over Ek’ we find

g . N} = ©OEj -
e ALO T T

mdo

. Lj(Ej"f\ ) (n+DKE; -kl BIE 1.\,\’+ ql€; +m.\n\<ei+m.\e;\ep\']]
+ 3 (755 R ) ngi €% q(&;)

[ qlEj+Rhw.) (n+) IKEj+hwo 1B e\’ ]

+ (B R-.(ﬂSa ;27 € TqE)

«[g(ej-kwo) n KEj-h o BIEP]

We obtaln an equation for g—s—%éEl—zﬁ by multiplying both sides of equa-

tion (V-14) by, and then suming over, n:

d<ney - > %% (€
= - T () 2 Joei €7 g

« [ 9ej+RaIKE} rRwABIENI

~ G &~ RWNKE § - Res B E3>\z] <neey,

(continued)
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-1 -8
"’%(m‘z. Z ngjC 33(53‘)
196 -%00) 1<gj- Rl miED ]
Aw

By making the change of variable Ej - Ej - —2£ , We can write

-QE,
= z“_f‘fd E;C 'ca(e,-\ §(Ej+heon) [<Ej R BIEN" -6

R,

= C% T(w.)

where
- 5 ©Fi B Beh
Iwy= T & gae‘- € "qle+32)q(ei—F") vur

A l(E.j+3iq‘\BlEi"‘?"iq'>\z

(Note that I(wo) is an even function of wo.) In the same way, letting

- - z
Tz Sd Ei 6851 %(E:’) %(Ej—'ﬂu@ \(Ei—'ﬁw.lﬁlﬁj)l v-18

= e3* Ty

Using equations (V-17) and (V-18) in equation (V-15}, we obtain
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. o v-19
d%“;—t}-}= -2 (—r—“%) T(Wo) Sth-Q-B%)— (n(t\)s
_eha,
-+ E‘E\(S; 1(‘00\ e, z

We have found that first order perturbation theory and the Pauli
master equatlon lead us to expect that < n(t) >, exponentially decays
from its initial value at t=0 and asymptotically converges to the equi-

1ibrium value

e_g%b _

Lim  dn(t))y = - = v-20
‘Lm {nl 35‘, 3 S oszﬁ. eﬁau:_ !
2h Shwg
at a rate determined by —— I(w ) Sinh 7 -
e o

We also expect that the frequency of the oscillator will be shifted
from its unperturbed value by the interaction. In that case, the oscil-

lator will experience a restoring force proportional to -wzq where
W= O, +§fw v-21
and &w is the shift in frequency. Then, keeping only terms linear in &w,
W =wt+2ud0 v-22

For a free oscillator,‘ﬁw0 is the separation of adjacent enerxgy levels,

€,-€ 1 Of €0tl 6" We will estimate 6w by calculating the second order
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shifts (first order corrections vanish) in the differences en-en-l and

e

'+l Cn? averaging them, and then dividing by f. That is,

Son= (562, - §E0 + 5€% - SR

S (SER., — SE
where from perturbation theory,22
l—eEc
= @ngELSdEi 2'C 9EIG(ED
"

\4&\5\&;)\ 1<n ) i)
(r\ )7\‘-)0 +E; E

Once again, we have averaged over reservolr states Ei since we are cal-
culating the shift in the n'th oscillator state while the reservoir is
distributed canonically. The symbol ¢ denotes that the principal value
of the integrals is to be taken.

As before,

|<n ‘%l n“)\ ( \ ( (n'+1) S \,n" rn Sn'-l,n") V=24

Consequently,

—0E;
et = (zho) Pliafi 21 € qENgE) s

- Al
e KE: \b\e.v\ n \ENBIEDT \
E(~Ej—-RWe Ei —E4 +RWe
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Equations (V-23) and (V-25), lead us to

)
S, = —7_'-;" (S€2., — 82, V-26

(zmw) P{de g&&ze 3(6 )g(E,\Z

JEABEDL KE;ie\EszL‘]
E.‘,-—Ei ~fw, E.-Eq+RO,

Then by equations (V-22) and (V-26), the harmonic restoring force to

second order is proportional to

-0E;
(w + m (?[JE JE z Ce g(EJg(EJ’\ v-27

“[KE;\B\EJ’)LI + Jedmienl)
E.-Ej-Rw, BEi—E +hed.

Equations (V-19) and (V-27) must be approximately correct; there-
fore, the results of our more careful treatment should reduce to them in
the proper limit,

With these results in mind, we turn our attention back to equa-

tion (IV-22)
%}T Psle) = — —-f;\—- LH,, P,u:\] - —:— (55[‘[,1 Pf(tﬂ v-28
¢
+ 3 1q,p mg at” e ‘[,(t""tﬂ
t
- ‘4:‘5 L‘b) gd t (Bep Qe P’Lﬂ]



51

where q has been substituted for A. With no loss of generality, we can
assume that < B > = 0 since, in any case, we may write the interaction
part of the Hamiltonian as q.-(B - < B >); the total Hamiltonian would re-
main the same if the system Hamiltonian is redefined as HS + <B >q' The

effect of all this is merely to shift the origin of the oscillator coor-
dinates in phase space.

By defining the operators

Ol )= jdt" pt".t ab(t""'t‘ v-29

[ ]

and

t
Q)= Sa € B, %(t‘-t\

v-30
equation (V-28) reduces to
%; Palt) =- LHs, puer] + =3z L%, pite) Qo] v-31

~ 45 Lgs Qutty ot}

We now demonstrate that, as a consequence of our assumption, the
reservoir relaxation time, t.» is very much less than wo-l, the quantities
Ql and Q2 are time independent for t very much greater than wo-l. Actu-

ally, since

Q= QF v-32
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it 1s sufficient to treat Q1 alone.
We recall that the operator q(t'-t) appearing in equation (V-29)

is in the interaction picture. Hence, by equations (V-2) and (V-3),

(z—:B:Y‘ (a(t"-t\ * a( t”-t\) v-33

Y% ~ L. (t'-t) (W, (k' e)
= ( L ) ((2_(2 +-CifC: )

1(t"—t)

muo,

+ . o .
where a and a are now in the Schrodinger picture.

The other quantity in the integrand of equation (V-29), B g2 18
]

t”
defined by equations (IV-5), (IV-11), and (IV-12) with < B > set to zero.

Hence,
Pee = <BRHBIEY V-34
~1 -'eE-‘ ) " ]
= Z Sd g; C ‘Q(Ei\ {Ejl Bl IBIOIE
By inserting a factor of unity in the form

SJE.‘. 3(6-‘\ lELEN=1

and using the relations

L“rt/ﬂ ‘L“rt/ﬂ

Bloy=C
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and

we can write

(51.’;1_ =z gJEJ' IJ Ew éeajg(ﬁ'ﬂ ﬁ(E.‘,\ V-35

(e —EE-t

Igjimted’ €

We define the Fourier transform of Bt" ¢ by
?

dw C p(w) v-36

— 0

\ e - Lea(t"-t)
Pee = 72T

Then
oo C(ehe)
(b(w\ = g d{t'~t) € Pf.",t. v-37
~ 0D

Equations (V-35) and (V-37) combine to produce the result

Al =21 Z"SclEi g% 9lENGE RIKE BIE; R

ohw

A p—————

=2€ & T(w)

where equations (V-16) and (V-17) and the identity
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© i(E; -Ek-vhw\(t"-t)/n
2WE(E; -En +hw) = gd(t"-t\ e

have been used.

Inserting the Fourier expansion of Et” into the expression for
b ]

t
Ql(t), we have

i
=4 [B_\* V-39
Q'(t‘ ' . (Zrmo.)
t d Lo lt’= &) . v 3
-t - - ituhirie) il ('t
x gdt" aw € Bua@e™ o €47

-] - 0D

Interchanging the order of integratiom,

Q) = —5_-‘-; (-_‘,_—:-B).’I gjiwp(w)[a e dr V-40

¥ iw-wNt’
(€]

o

* .
{ (Wr)t

where we have substituted t' for t-t". The time integration is elemen-

tary,
y 00 é'(m-u.\c + i -wat
_ +_\? c 4 —1
Qe = 2 (755 gm purfadz + qg__..m_mj

If the reservoir relaxation time is tc’ it is well known that the trans-

form, B(w), of the correlation function, B

proportional to tc-1.23 Since tc-1 >> W by hypothesis, then b4, > w .

£ e has a bandwidth, Aw,

Consider the integral
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el {-wWHt
M :—Sdu poy 1 — &
- L(f-\) ""4-)0\
oo (- -]
— Sin(w-wWt . | —Cosl-w)t
= de P(w\ RETRR 4+ ¢ \dw [5(!.0\ o> — oo
. o o
On the .'r:ight, let w' = w-w_. Then,
M -:-_fdw' Plarwy 2ot | [a,.,-p(mw,\ I=Cosele (4
-o0 - <o
€ . 23 et
'—'-gdw' Q—‘%%—"’i) Sinw'e 4+t de'——‘J—.) (l- Cosw't')
- 00 - o0

€ §
+gdw'f5i~::_}>.9)§.:nw'c +Lgdw'-———¢)-m“;‘:“’ (1= Cos'e)

-§ -§

© ad ,
+Sw§_t%«z.1 Sinwe +i faur B0 (|~ Cosurd)

5 §

This last expression is correct for arbitrary §, of course, but we choose
£ such that B(w'+w0) does not change appreciably (that is, B(w'+wo) does
not differ from B(wo) by more than a predetermined fraction of B(wo)) in
the interval ~ = @' = €, € may be as large as CX since our discussion
of the reservoir bandwidth guarantees that W, is well within that fre-

quency interval, In any case, we may approximate M as follows:
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§ 5 ,
+ pcw.\Kd“,:Sa.nng: yi gdw' l—Cz,wt]

-
-

+SJM'M 5an't + (, Séw'%‘:_a)’).(\—Cosu‘t)

(78

S 1

a-l(\

2
Riemann's theorem from advanced calculus states 4: If F(x) is sectionally

continuous in (a,B), then

N <
Lim gdx F(x) tntkl - O

t-—veo0 Cos tx

If we assume that B'(w'-H.UO) is sectionally continuous in the intervals
{(=<,~-E) and (E,»), it 1is reasonable to apply the theorem to the first
and third lines on the right hand side of equation (V-43) 1if we require

2
that t >> ?n . Further,

do' (\-Cosw'fi - O
L ¢ w’
since the integrand is an odd function of w'. Hence,
§ -§ ® A
~~ 1 H o . u
M = p(uo\ 3w —-———S":)‘,‘” + L de' M‘;’“” +J '——-—(‘“’* o)

-€ -®
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By assumption Et >> 217, so with small error we can replace

S e st
gdwl St'ﬂ&)t = Sd‘ QL;\K
X g

by
SdX.-£§%}5-=; ™
- 00

If we take the limit € — 0 (keeping the product &t >> 2r1), the quantity
in brackets is identical to the principal value of the integral.25

Therefore
= T AW + ¢ @g M V-l

This result could have been obtained directly from equation (V-40)

26
by using the sumbolic identity

Lim
Tt —»00

t HOAIARY 3
gdt' c =T (w-w)+( £ —csl._—;_,o V45

Instead of repeating the steps leading to equation (V-44), we therefore

write

Lim — TTE(D+) + ¢ F——— V-46

t —boo

T t.(t..:i-&.\t
Sdt w -+ We
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and it follows from equations (V-45) and (V-46) that

Q_—...-?-_!-—-(-i‘--) [ Trp(-w,\+c63[ M) V-47

‘
- 00

a' (T N+ ¢ ¢ fdw' -é%*ﬁ‘-’))}
Then by equation (V-32),

Q=75 (z:u..&[ (W(btwo\—tﬁ’-’j —@—(3—*—9’1) v-48

+a (TT JRICTAN —L@[ Lw-' )1

If we use equation (V-38) to replace B(w) by 2e Q%g I(w), we can

show that

TREC0N + i (Pga‘.,- Blo-o) ‘-’S,‘-’
 ou .y
oRw, e * I(w u.]

me * [I(w\’*—“@[ Ry

i

where we have used the fact that I{w) is an even function of w. In the

same way,

T AN+ & @S,;wa_ﬁ_(a:)_fw_,)

G

R e .
=27 e'e'_zg [ I_(wo o+ ..-..-."T-i_— G) gdw I(w-i-“‘"l)-]

-an
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Hence

S
= (-;E;,; ’ [a € (1@,\ + ——;I—,—E’ (dw I“‘"““‘)) V-49

ohw, oo R
Y @ F JToaw')
va € (I(w-\-&—.:.'?@[éw I )]
.

and

Q.= (zm w.\ [ (I(wo\ — —1%:' % g_ Q%Q;Iogw"’w)) v-50

oo 9-52' ,
6 (I(wo\ ~ '%r" g L@ )}

88

Equations (V-31), (V-49), and (V=-50) are all we need to calculate
< n(t) >y and < q(t) > The expectation value at time t of any function

of oscillator operators is given by
<Ostt\> = trs (O$ P\‘-Lt)) V-51

vhere 0S is in the Schrodinger picture. Then,

‘3—;— <O; L’t\» == tr‘s(os A—ed‘és-‘)

dp, (t)
dt 2

Using equation (V-3) for
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—2‘443‘:“ =— tr, (0 LK, Ps wl) v-52
- trs (O, L%) { Qi Palt) — Ft) Ql}])

By using the identity

tr AB = tr BA,
it is easy to demonstrate that
trO[A,B]) = tr([0,A]B). v-53
Hence,
o> . L tr, (L0, i1 pute)) v-54

- = th(Logq] (Qp©-AOR])

We will now use this formula to obtain the equation of motion for
< q(t) >g the average position coordinate of the oscillator., Putting q

in place of O_ in equation (V-54) and using
[q.H] = 45 P

and
r%s ‘b] =0

we obtain

HD = L e (PA®) =7y <P v-55
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Repeating this operation with p substituted for 0S in equation

(V-54), we find

Jd{Pid

g =-meltn(q e + + £ ((@-aNpe) V-6

It follows from equations (V-49) and (V-50) that

Q.—Ql-—-(—z-?.,—w)"‘ (AN (i ) (a-dt) v

+— ZmU\ [ g eef(w,-m)]:(w“_w)

w'’
-] -2% G—Q')
+0",Sd w' € T I(“’O‘U')]
- ®© w'’

Equation (V-57) can be simplified by combining the two principal part
integrals. To this end, we make the change of variables wo-i-w' = w 1in the

first integral and wo-m' = w in the second. Then,

oo ok
¢ (dw' CT

(> ')

Toerw) , (0 EF " L w0m)
W' - w’

= S:w (eqi'_«g —ée{y)i(“)

- W,
ghw -dhw
Shw 2 2 .
Then substituting 28inh Ho=e -e , we find
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Q.= 2 (735 LD Sinh 88@. (o gt} 5

L + \% = Tl Sinh @R +
+"31?(‘“_"zmw.,\lpgd“’ L o:-w,, (a+a)

But since

and

it follows that

Q-Q, = i 210 ¢, | ok,

", 5 P V-59

o
L 20 @jdw T(w)Sink 20
-~

w-w b
- a0
Then,
d {PitY) _ 2 2 X (w,)

dt = T M <Cltﬂ> — ™ R g Sink%(?(ﬁ:\) V=60

-z pgdw T()Sink Qe

-, (‘L(ﬂ>

(continued)
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27T(W .
~ ZIlal Sinh 882 (peyy

mRA W,

W

N T) Sink &R
- ['““’ * i © S_m Do ]“L(t»

Equations (V-55) and (V-60) combine to produce the desired equa-

tion of motion,

dz(ﬂlt\)_ : d4q.lerd v-61
dt = MR, 2 t

_ [‘-Jc} - m e gdw T(w) Su:nkwa.;? ](%(t))

Equation (V-6l) shows that the interaction between the oscillator
and reservoir produces a change in the restoring force of the oscillator
as well as a velocity dependent damping force. The change in oscillator
frequency required to give the second term on the right of equation (V-61)
i1s precisely that predicted by the perturbation method of equation (V-27).

The damping term in equation (V-61) will eventually lead to a
condition of equilibrium between the oscillator and reservoir. To de-

termine its properties, we calculate

<Yy =t (Al s ) v-62

+ .
Now, the Schrodinger operator a a has as eigenstates the unperturbed

energy states of the free oscillator Hamiltonian. We expect any shift in
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the oscillator frequency to complicate matters since any equilibrium dis-
tribution of states will involve the renormalized states. Equation (V-61)
tells us that it is the principal part contributions to Q1 and Q2 that
produces this frequency shift. So that our results may be more easily

Interpreted, we will ignore the principal parts and write instead:

Q= ,_,w) T(w) (a S 2 N C%‘H.) V-63

and

%_“‘_JO + - m‘

Qz;( 5 I(Uo\(ae s € F ) V-64

imid,

With these approximations, we substitute a+a for 0S in equation (V-54) to

obtain

d(n(t)> i + [ Y
dt = —";\-trs(tﬁﬁ,“;-lp‘(t' +-E-‘_(‘i—-r§a°\l

«Twity{(a e T, r ety La'e,q] Putt)]

- —' (zw\qu
-9_"1_

ijiL)Q\t:f {ia\a; 1;](CKGZ—1?L+-CQ C )leH?}

It is a simple matter to verify that
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Ca'a,HI=0
and
+ — [ x5 2 +
Laa,q1= (zmw.) (a-a)
Thus,
d{n( . .
-'—dtL\}-: —_— ﬁao I(Uo) Sbnh—e%.ﬂ’ (n(t)) V-65

T MR, L{We) Sinh 9%‘:” Laie) + et iy

8kw,

S——

+ -.;'ﬁ:, Tw. € *

where we have used
tr, (L4 @] puo) = <o+t

and t Y‘s Ps(t) = 1

We can now calculate j%-< az(t)+a+2(t) >S by returning to equation

2

(V-54) and substituting a2+a+ for 65. Using the same approximation for

Ql and Qz, we obtain
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1 +1
d4attr+G (Y 4 1)) Sinh 8hW. LNt V-66
dt Rmo, z
- Rzr;'lw. T (W) Sinhe_i‘:’: datiey +of ey
. 1 T '?_5"_..
— 2wt L ity — afu:)‘) -2 Ty *

Rmal,

The same procedure applied once again provides the needed rate

equation for 1 < az(t) - a+2(t) >

T +1
i éAﬁ—‘—%‘f‘—‘m = 2Wo {GHEY + & UYY V-67
_ 2

oo, Lo Sinh 9__’52_“&4&‘&\ -

Equations (V-65), (V-66), and (V-67) form a system of coupled,
linear, first order differential equations in the variables < n(t) > ,
< az(t)+ a+2(t) >, and 1 < az(t)-a+2(t) > . One needs only to specify
the initial values of these variables to uniquely determine their values
at all times. Since the oscillator is initially in a pure state of the

unperturbed oscillator Hamiltonian, we have the initial values:

LNy

=n; V-68
tzo

{aliey +offtb| =0
Teg

and

i<ale) - a @d=0
T=0
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The solutions of the differential equations that satisfy the initial

conditions are:

<n(f)> = Ng V-69

-Kt
+ —{—‘-"é—r,_‘-’— C  [wi—(uE-tNCoradt]

—2K,¢
1 +2 2 K. . ~ -
Laty+a &) =—a_)-—-(n,;—n9\€ Sinz2dt v-70
and
PR t? 2K, &) STkt —~
L{C\Lﬂ—&(t\)-:—a,-;—i-"- (ni—ne)e (l—Cos zwt) v-71
where
Mi = the initial occupation number of the oscillator;
M, = —t , the average occupation number for an oscillator dis-
] chw,,
e -1 1
tributed among its free states at temperature T = %o ’ v-72
~ 2 2
& =+v{w, - X)) v-73
Ofw
and o
Kl = mﬁwo I(wo) Sinh 5 - v-74

We demonstrate the method used to find these solutions in the next section.
Equation (V-69) shows that, In the infinite time limit, the aver-

age occupation number approaches the expected constant value appropriate

for an oscillator in equilibrium at the temperature of the reservoir.

From the same equation, we see that the rate of approach to equilibrium
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eﬁwo
7 .

. , _ 1
is determined by Kl = EEG; I(wo) Sinh

Comparing these results to those obtained by perturbation theory
(c.f. equations (V-19) and (V-20)), we see that this more careful treat-
ment differs only in the inclusion of a damped oscillatory factor in the

time evolvement of < n(t) > .27 The oscillatory factor is a result of

not having made the "rotating wave' approximation3’7’8

and presumably
could be obtained via perturbation theory as well. 1In our formalism,
dropping the < az(t)+a+2(t)-> term of equation (V-65) would be equivalent

to making the rotating wave approximation,

The Driven Oscillator

We add to the interaction term of the full Hamiltonian a term

representing a classical driving force. That is,
VIn=q:-8 +q.-vie) = q. B (t) v-75

where v(t) is an ordinary time dependent function and, as before, B is a
time independent function of reservoir coordinates. The fact that the
full Hamiltonian, Hr + Hs + V(t) is now time dependent requires that we
change equation (I111-7) to read

€
~i(We v uOE - L\ viedde

i . Lt
t(H + H‘\% + iﬁ- govlt')d-t '

xT_C

The equation for the reduced density matrix operator is changed slightly
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from equation (III-11) so that

{’slt\ =<{S,; \Z.{Z e (Ea v-77
Te"&[(“ﬁ“;\tddt V(eﬂ| )}‘$‘>

We need the following theorems2
) . .t
+ L—S ' '] v-78
T exp[“Ht+K gt. Vie)

=T CXPH; {VI(t')dt'] Cxp -‘ﬁ Ht
and ®

_ .t
T exp [—-:- Ht - —;\‘h Sdt‘ V(t'\] v-79

ot
=CxXp- j--PH: ICXP['?SAt'VI(t')]

where VI(t') = ei/hﬂt| v(eh) e‘i/ﬁﬂtt.
Hence
- YWy € , O V.R(Jc Vi ()
Pty = € K3y 12{2' € <glTe v-80
5ot Vet o
«Te 1£55) 15> € +F

Equation (V-80) is exactly of the same form as equation (III-31l}. We may
then define a cumulant expansion just as before. The classical forcing

function, v(t), will appear in the resulting expression for W, but not in
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the equation for W This is easily seen from equation (IV-4). The inte-

2l
grands on the right hand side of that equation contain factors of the type

Bt B (YY) = (B (e < B (£
= (BRI BEDS - {BUN B +<BIY ()
FUTRIB(E) + VY U(t") — L BlE)SV(EY)
— V) By — V(e u(¢”)

= {BUIB(ED — <BIEYD (BE)S

where we have used equation (V-75) and the fact that v(t) is an ordinary
function of time., Hence, the contributions due to v(t} in W2 exactly

cancel,
Retracing the work of Chapter IV and assuming that < B > = 0, we

would arrive at the equation of motion for ps(t):

é.%:é‘.‘l = - + [H,puo] - [%,[J«.m—] i) . yesy
= [, @ psio]

- —11',\'1‘. [C‘l)\ Ps(t'\ Qz.-]
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and for any oscillator variable

d(%.:t(t\B - — _;_:. tr‘ (Loh Thy P‘(t)) - --#— vie)tr, ([0;,“;]/’:“]) V-82

+ Jﬁ‘- tr (LO-,;‘L.] {st)‘“\"— Pstt) QL])

Repeating the calculations of the first section of this chapter, we
easily obtain equations of motions for < q(t) > , < p(t) > , < n(t) >,
< az(t)+a+2(t) >, and i < az(t)-a+2(t) > . Ignoring principal part con-

tributions, they are:

1
)
dLQe> _ 2k, 2L g (6> — v (¢) V-83
dt dt CE
P> =m dLU00 V-84
nity
‘Kd: > = —ZK Nty + K, Lal (&) + C:Et\> V-85
‘ _etk
+ Mo I (w"\ e’ - V—“Ia_aﬁav-(t) < Ptt‘>
d 1 +2
La (tl:a ©>_ 4, dn)d — 2 KAty v a6y v-86
2 . 2 -8Rl
=260, LBty - ariey) — maw lwae = +-m—21-a-a VPO
and
¢d (Q.-l(t;- G:tt\>= 200, <d‘.‘t) + O:ll't‘)> v-87
t

— 2K, Ly - oty + —i— vt) <Cb(t‘l)
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where

Ki= frem, TWa Sinh 254 v-88

and

Twd=Tr z"jaa,- qlE;+ 1) g(e, - hek) [CE;+ Eigel B E,'-%)lz V-89

The solution to equation (V-83) is well known from elementary

mechanics.29 In the most general form, it is

¢ "“c (t-t‘)

<1u\> =<quv)y ~ a—';‘- gét' € Sin S(t-t) v (&) v-90
[+

where < q(t) >¢ is the solution in the absence of the driving force.

Equations (V-85) through (V-87) can be written in the form

.3;)(;(0= zj‘ Aij Xj(t\-i—D( ) v-91
where
<n(t))
X = <d.z(t\ + Cttt\> V.92

Kalwy — G )

""Z.Kt K| O
4 Ki -ZKn -LW), V-33
O Z‘A)o -2— Kl

A
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and

— gha
mﬁ MRS, VO PN + mﬁ‘c.J Tw) e *

D= ( v(t\{Plt%wmﬁwIwo\e Q_ikb ) V-94

mnw,

.
z a3 04 %(t»

One may decouple the equations (V-91) by finding the matrix § that di-

agonalizes A. Multiplying (V-91) by Ski and summing over i, we obtain
-g?- {; Ski Xi(®) “4;. )L; Sui A;,i Xa‘(t) +Z_5K;_ D,: ) V-95
L

We may insert unity in the form

1=5.5, S,

ol ARG

into equation (V-95) so that

_ -1
g-;c- (.;Zs"" X;(ﬂ) = },; 21; (Z;bsm’. Aaa' Sjn) V-96

*S5 Xi) + 2.5 Do

Then by hypothesis,

Z— 5&:'. AL“ 5;1 = )\&S&L

2
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where lk is the kth eigenvalue of the matrix A, Therefore,

‘d-'?(zé.sﬁ X, @®)) = )\K(ZS\(J (t\) +Z S5 00 V-97

Defining the functions
Uult) = Z;; Sk X (B) V-98

equation (V-97) becomes

g Unle) = Unlt) + % Sy Dilt) o900

This equation is an elementary type30 and has solution

= ile-t)

Uk lt) = Ch"tuu(oﬁ +§‘;Sm8clt € D) v-100

Then from equation (V-98),

X6y = 2. Sy Unld) v-101

t
=anlt-t)

= 557 [ U + 5 (o € Bt

It is a matter of some algebra to show that
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A =-ZK, v-102

S = K? -%_-JK, ~4 WK V-103

and
l ) \
5t T L 20
-\ __ L L v-104
S = o K. D KW
7 ¥, D _ e
Wo W* Kb KW
where

OF= W: —KE Vv-105
By imposing the boundary conditions,

{ny| =N

t10

and



76

(0\"lt§+cn+ltt\>[ = 6405'(1:\—0\*?&)\)\ = 0O V-106
tro

t=o

we find

. o ak(e-t)
mey =<neyy - — f

!
B V-107
matRa, :t €

X [ Wo= K, Cos 203 (t-t)+Q K, Sin2d (t'—t\} Ve <plen>

a K t , 2Kile-t)
- o et € (1= Cas 255 (&'-6)) v'(t')<z(t')>

-]

where < n(t) >f is the solution when v(t) = 0.
As an example, suppose the combined system is subjected to a pulse

at time tc' Then,

6= AS(t~O v-108

-“-(t'tl)
Sinlt-ty, TOXL

A
{qy)y = — == v-109
1» wm o, v te
-ktlt_t‘.) " g -~
(K Sind te—t) + 3 Cosh (t-Q))
{PLYy = — % e ' tye, . V-l10
C> TLT,

and
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—2¥, (£-te)
e (Wo — K Cos2G LE-E)
L AL L 200
5 Al - K Sin zw(t-ca),tﬂc. v-111
nieYd = <nleN 406;:3‘ﬁJJ.
o, te b,
Summary

We have shown that by using the approximate equation of motion
(IV-22), our method produces results that agree with less rigorous treat-
ments based on perturbation theory. We have not used the rotating wave
approximation as is commonly done and the damping terms of equations
(V-69) and (V-111) are multiplied by oscillating factors absent from other
treatments,

In the next chapter, we investigate the significance of the approxi-
mation used here. It turns cut that equation (IV-22) is the result of

truncating an expansion of the exact equation of motion for p(t) im which

(2n-1)

th
the n term is proportional to t,

where tc is the reservoir relaxa-
tion time, Thus, the results of this chapter and those of perturbation
thecry are valid only for reservoirs which relax quickly. Just how ome

decides whether a given relaxation time is short emough for a given ap-

proximation is also discussed in the next chapter.
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CHAPTER VI

FURTHER DEVELOPMENTS

Introduction

The work of Chapter IV produced an equation of motion for the

reduced density operator,

‘i%‘é—t):—- %—LH‘)Psltﬂ +#[A1ﬁ_ﬁ] V-1

where

-~ -iH;ttI t wi{t} LM
F=e ™ %l T_’“T“‘{[«"(stt"m(t\»A.(t')e }‘&)C “h

We have again made the assumption that < B > = 0. By comparing equations
{IV-17) and (IV-18), it can be demonstrated that ﬁz is obtained by taking
the Hermitian adjoint of %1 and interchanging the subscripts 1 and 2,
W(t) is the second cumulant defined in equation {(IV-4).

By making the approximations contained in equations (IV-20) and

(Iv-21), ﬁl-ﬁ was replaced by an operator quantity whose asymptotic value

2
is time independent, The results obtained in Chapter V by this approxi-
mation are almost identical to those obtained by others using first order
perturbation theory together with the assumption that the reservoir re-

mains at all times in a canonical distribution of states at the initial

temperature, Our approach is less dependent upon intricate comparisons
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of the various time scales involved than some other treatments but, up to
this point, we share with these workers the concept referred to in the
literature as the Markoff approximation.31 In our case, this simply means
that the change in the density matrix at time t does not depend upon its
value at any other time but t. It was this notion that led us to equa-
tions (IV-20) and (IV-21). 1In this chapter, we treat our problem with
more care in the hope of discovering a more precise criterion for impos-
ing the Markoff apptroximation than the vague statement about the shortness

of t, in comparison to the inverse of the system's natural frequencies.

The Earlier-Later Expansion

By defining

U, e) = TTAg e vi-2
where
c t

F AL )AL TEREI B ~Z A.(f.bA4t.»<att.xam}

we may write

~A -iRgtg t (Hythy,
Fo= e v sy faencaien Biod utsen Is,> € V-4

OQur method of attack is to develop an expansion for U(t,t") in which the
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kth term Is smaller than the (k-l)th term by a factor proportional to the

reservolr relaxation time. To this end, we make the decomposition

WIEEY = WL + W o (t,e7) + W, (tt”) VI-3
where
t” tﬂ
Wit == 35 Sa::.]at;{ A(t) A (£ <TE BIBIEDY vi-6
TAEMA TP B BIEIY - ZA (L) A,_ltﬂ(B(t.\Blt,D}
v
We,glt,t) =~ s gd t-sdtz{A.(t.\A. JCBHBIEY) +A (VA LIBIIBILY  VI-7
= AEMALEMSBEN BIEY) — A ()AL N (B () F.':lt.b}
and
< t
Wyt ey =— EL'R* jd t. jat,{A. L)AL T2 BIB) VI-8
" e

FALE)A N TEB () B - 2A6)A, 1)) B(t.))}

To obtain equation (VI-7), we have carried out the ordering on the B
operators since the integrals over t and t, do not overlap. Also, there
has been a change of variables to obtain a simpler result.

Substituting equation (VI-5) into equation (VI-2) we find
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WILD Wi g (8,1 + Welte) )

Uee)=T."T™ (A.(t") e

WW W
We may factor e ? since we may treat LA and wﬂ as ordinary func-
A AL’
1
tions until we apply the operators T_ and T, . In the same vein, we may
LA
expand e 7’ to obtain

)
Ute =2 o TAT (e o) AN E™7} s

This last form is the desired expansion if we can show that the series
converges. We have no rigorous proof that it does in fact converge but a
qualitative investigation of the oscillator problem of Chapter V leads

one to be optimistic (see Appendix B). The result of that investigation
implies that the condition for convergence of the series in equation (VI-9)

is that

!
*® :
Zmu, B.:; «A VI-10

That is, the combination of the shortness of the reservoir relaxation time
and the weakness of the interaction strength must be such that the proba-
bility that the system will make a transition in a time interval comparable
to t. is small.

Under the assumption that the above comment actually applies in our

case, we return to equation (VI-9) and write
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w LY
)

ety = T (A e

VIi-11

w(.:ﬂ)

PTETN AL E YT T AT W € )

r
Since t" is the latest time in ew(t ), the first term is simply equivalent

(T T E AR

The second is more complicated. Substituting for Wy from its definition,

equation (VI-B), we obtain

THTh (A, ") W, ewt.t")) VIi-13
t ¢
N A ~ S L W(t“)
= zs~§dt.§!tz{<1‘_ BAYBEDD T TR (A (VA EIAKC )

Wi
F{TPBREIBEN T THARIA I ALDE ’)

w{t"”
2BEIBRMEYD T TR AW AAGYE ¢ ’)}

In this case tl’tZ > t"; therefore,

w(t)
THETMA YA GNAEDC ) VI-14

w Lt“’

— (T-A. T™E ) A '(t_") T:"(A.(t) A(t.\\



But
ALY TN ALALD) = ARIALE) AL Ok~

ALY AL (B ALED) Ol ~ty)

= LAY, A ()] Olt- A (&)

+ ALY DA WY, AN Ot -t

+LA ), A ()] O(t-t) Al)
+ A LA WY ARY] O (t-t)

F TMA Y ALLLD) Al

where

e(t.-t,)'—'-'{ 1, >t

O, t<t,

Then,

TATA (ALY ALY ALY € )

= (TMT™e” “"'){ LAY, A)] BE~T) A, (€))

{continued)

83

VI-15

VI-16
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F ALY LAY AL (t)] OLt,-t) + LA, AL D] BT ALY

)
* AN LAY, A, )] e(t.-m} + (TNTRAEIA, (LD e YAt
Since {Al(t),Az(t')] =0,
\ e
" TA‘( ALEYA RN AL ) ew i ) VI-17

=TT (AUA, ) ) A

In a similar way,

T:‘TM(A.(’&") AL AL Em ) VI-18
= T T (A AL €A 1)

F TR (Aen €A AL )]

Substituting equations (VI-16), (VI-17), and (VI-18) into equation (VI-13),

we obtain

Wiy VI-19

T (AW, €

=TT (W, Y'Y AL

(continued)
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< T
Wty
hs[dt. [a t, (BB [ Bt -t ) (T T € )

t 13 til

(LAY, ALENTA(L) +A.(t‘\[A.(t“\,A.(t.\__|)}

T 1
Wt
+h jdt.[dcx BEABUEY TNTA (A€ LAY, AL
" t”

Repeating this procedure, we find that

AR ALY We i 7)) vi-20

- T-A.TA,,(WC,! eww )

t t"

| e
iy Sdt. EAtL<B(t,\BLt.b ThT™(A kD Gw )) LAY, A

5 o

t t”
1_\,. Sdt.(d LABENBW)) T, Aohe (Alley C_ ) LA.(e."x,A.(tS\
t" ‘o

Using these results in the equation for U(t,t") and after a sequence of

straightforward manipulations,
u(t'tﬂ) VIi-21

. L0+ W+ Wy ew“ ‘] A.(t1)

t t Wi
= Sdt.‘dt; (TPReBEN T T AR E T ) [AW), A
v

(continued)
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ot t "

+ Jt.qu (BEIBUIY [TA T A ) €7F) LALe, A )]

" ‘o

T t "

+ = Jt, Sdt" (BRI BLL)) 6 (-t (T_"" TA‘é"“t ))[A.(t.\,(A.lt"),A.(t,ﬂ]
v

Consistent with the approximations already made, we are justified in re-

A A " A A
placing T_lT 2[(1+we+we£) eW(t )] by T_lT 2ew(t). Also, equation (VI-2)
shows that
A, N wit") a
TTHA@Y € = ULt
and

wi (&™) +
TATRAME T = Wity

But these quantities appear in terms already considered small and we may

write

t“

TTHAR € (T T

(e
)

AL,

and

Wl.t"\)

™™ A e = A (TR T E

Therefore,
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U{t,e VI-22
= (AT M) A
N ¢ wi(t"
™ [dt. SJt,(T_BBLt.}BLt,)) (2 TheT DALYkt TARY, A
t ,t w e
= Idt.Idt, {BRYBUED AN (T THE “YY oe,-e) [Ade) Aute]
Tt
+-‘,3[ét at, <Bleysley (T e )eu:.—m o(t~t)[A, te.\,[A.zr-)Mt,ﬂ]

o

We use this expression for U(t,t") in equation (VI-4) to obtain

n t
F = gdf." {BEI B Pslt) A(t'-t) VI-23

t t t
- J{;Sdt"gd t.[dt;[( BlLE)BEY) {TRR) BIED

o -]

-uH, (e-eYe i u. le-¢ )h'\

€ Fg.(t") At,-t) Bt -t Y LAt Ale- tﬂ}

t ,t (T
t:.j“—' Edt [&-1{( BB 1Y) BE) B, »

© o
- L Mg {e~T"Y/R l. [ Helt -tk

x Alt,-1) € [Ps ) C e(t,-t") LA(&"—-t),A(t.-ti]z

t

M Sdt j&t Sdt.{( BILYB (Y (BIE B

~iHy {6~ eV R lt-t"Ve

x€  pun € Biterdate e [Ae-tlae-o, Akt ﬂ]J
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Since the positions of the A operators are now fixed, the subscripts have
been dropped. Again there has been much tedious rearrangement to arrive

at this result, but the essential feature is the commutivity of Al and A2
operators, Equation (IV-7) has been used to obtain the density operators

that occur. 8Since we suppose that reservoir correlation function 1s zero

for |t-t"| > t_, we may obtain a local-in-time equation by setting

-iH_(e-t DY, iHB(t-t")/‘H
e ps(t") e = ps(t)' This 1s consistent with our

previous approximations and clearly points out that we imagine that tc is
go short that the system hasn't time to interact with the reservoir and

propagates freely during the interval. Thus,

~

t T t .t

F, = Xd " {B(t") BlLY) Pstt) Alt-t) - -',ﬁ—‘ fdt"fdt. dt,_{( BUBRY)  vI-24
- o o o

T EBIEBIED st Alt,-t) Ole-t [Alt"-t\,Nt.-tﬁ}

t ot Lt
+ .# dt” dt.JAt. [(Bkt")B(t»(b(t.\B(t:\\)

(] © o
» Alty-t) Al B (-t LA, A(t‘-t\]}

t t t
+ *;';:. Sdt” Jt, Jt,{( B ") B B BEND

[ -] o [»

X O(t,~t) Blt,-t") Psle) [P\Lt.—t\,‘_ALt"—t\,A(t,_—t)]]]

It cannot have escaped the reader that the derivation of equation

(VI-24) is a tortuous sequence of rearrangements. Sometimes this is a
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clear signal that there is a better way to arrive at the same result, 1In
this case, H. A, Gersch has found an integral equation for U(t,t') which
can be solved by an iterative process. The only additional assumption is
that [A(t),A(t")] 18 a c-number. Besides its ease of application, it has
the advantage of producing at all orders a local-in-time equation for
ps(t). The awkward approach contained here is presented in order to in-
clude the case when [A(t),A(t')) is an operator.

For the rest of the discussion, we suppose that the commutator of
the operators is a c-number. Then the last term of equation (VI-24)

vanishes, We then find ﬁz by taking the adjoint of Fl. Thus,

- At
F-"ez. = Ps () Lgdt"{< Bt B IO A (t"-¢) VI-25
o rt
- SJ t.1de, B BLeY) TR BBt O(8,-t") A Ak)] Al t)

+

L
-]

t t " H
-1 J’dt.Idtt B BT3B Bl) OE-D A, NeilAt)

r ot
o dt.IJt LB BIEIS L BIE) BLEY) 6(t-t7) LA™, ALt.\'lA(t;—t)]]

|

t
Sa ._"{ (B BN Al t)
(-]

x
t

t
+klde, gdt,_(Blt") B <BEIBILY B(6,~t") LAY, Alt)) Atfrﬂ}]

x Ps(t)
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We can recast this last expression in a more suggestive form by appro-

priately relabeling integration variables; we find

ﬁ: _ ﬁ; Vi-26
t

= pult) { Sa e Al "—ﬂ( {BEM BV
o

t ,t
" gdt. dt, <BUENBWON TR Bl Dot ~t) TAE),A)]

o Jp

t (¢
+ -,‘;, Sdt‘ dt, {BOYBEN (B BEND 6 (t - eMAKY, Mt.i\}]

o Yy
t

- [ gd ¢ Alt'-0) {( B() B

-]

t rt
+ fa t.[dt; (BB (T2 BB, ottt ), Ak

t .t
- “;‘Sdt-sauau.s BN BUIBAD (L ._qus,m.ﬂ}] pste)

By defining

t

€
(E}lﬂ BL‘t")»d = < BEYB (t")> + J“—‘ Sdt |fdtt{<b(t) BLtb) Vi-27

o

t .t
x<TeBENB(EY BlE~tMALlLY, Mt.\']} ~ '1‘{‘ SJ t.jdt,_{(&&.\&(a)

x { BBt OLlE-t 2 LAY, A(t.ﬂ}

and
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(BUEIBIY, = <BW BEMN,' VI-28

we recover the simple forms of the Markoff approximation:

t
F-F= Puld) Jdt" Al {BIEBIEY, VI-29
t o
- [J t" A=Y {BR) Btt")§d PslO)

In this case, the integrals will exhibit, in general, a time dependence
even in the asymptotic limit. The most obvious interpretation of equation
(VI-27) is that it describes the effect of the system upon the dynamical
behavior of the reservoir.

Using equation (VI-29) for Fl-FZ, equation (VI-1) becomes

t
480 L[, paei] L (A Pueofie Aea<B0Br) 1z

c

- \at A< BE Y At
®

With this result, we are prepared to begin an analysis similar to
the work done in Chapter V but now the reservoir is allowed to have memory.
The effect on the reservoir due to its interaction with the system is not
so quickly distributed over the reservoir degrees of freedom and, as a
result, the system experiences an interaction which is modified by its
recent history. Investigation of these memory effects represents a pro-

gram for future investigation.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATTIONS

Our work has shown that the cumulant technique provides an
efficient and accurate way to determine the dynamic history of a simple
system as it interacts with a reservoir. The customary delicate discus-
sion of an hierarchy of time scales has been replaced by considerations
of a more physical nature. We choose the proper approximation to the
equation of motion of the reduced density matrix by estimating the change
in the system during a time interval equal to the reservoir relaxation
time. If this change is small, we will obtain good results by considering
only the lower order approximations to the equation of motion. The equa-
tion of motion itself has been cast in a relatively simple form. The re-
duced density operator appears in a linear way, evaluated at the same time
throughout.

There are a number of ways that these results could be used in
future investigations. The effective correlation functions defined at
the end of Chapter V need to be interpreted more precisely. It may be
that a diagrammatic method could be developed so as to describe the higher
order approximations to the equation of motion in terms of physical pro-
cesses similar to the interpretation given to the diagrams of standard
perturbation theory. The density matrix formalism is extensively used in
laser theory and since our work is more accurate than the usual perturba-

tion treatment, our results could lead to a better understanding of the
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variocus processes. Finally, since the cumulant is & resummation of the
perturbation theory, each cumulant represents many interactions, Thus,
it would seem natural to apply our technique to multiple scattering prob-
lems.

Another aspect of our work should be mentioned; the cumulant ap-
proach has pedagogical value, The formalism is particularly suited to
discussions of reservolr memory. The effect of the reservoir's relaxa-
tion time on the system's approach to equilibrium is clear and the relaxa-
tion time is, in turn, shown through the correlation functions to depend

on the number of reservoir degrees of freedom.
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APPENDIX A

PROOF OF VANISHING OF FOURTH CUMULANT

FOR FREE BOSON RESERVOIRS

In this appendix, we demonstrate the condition for which the
fourth cumulant W4 of the expansion of equation (III-1) vanishes. As it
turns out, all cumulants, Wn for n > 2, vanish under the same condition.32

As discussed in Chapter V in regard to Wl, we assume that all
cumulants W2n+1 =0 for n =0,1, . . .. Thus, according to the prescrip-
tion given in Chapter III for calculating a given cumulant,

t ot (¢ (%

Wy + 5 Wy = *4—.'-;3 Sdt. fdt,[ét, dty {A.(t.\A.(c;\A,(t,\Ai(t,,\ A-1
[

(TP B Bt Bt Blea)Y
FALEN AEDA (£ Ay L TP B BLL) B, BlEL)
A LA A DAL TS, BB Ta Bt B

-‘lﬁuktﬁ\ﬂ\;lt{)F\;Uﬁ)l\;ffi\<E5(t;§_‘;5:¢§E50t£5f5(i1;)55ﬂ2£i>

—AAEN A A DA NS, A BEY B B‘ts\w-l\)}

B B B B
In equation (A-1), the operators T-l,Z’ T3’4, T2’3,4, and T-1,2 act only
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upon the operators with the corresponding time arguments. TB and T? order

all four B operators that occur., We wish to compare equation (A-1) to

% W; obtained by squaring equation (IV-4).

t ,t pt rt
z
J'Z- wz, = \1;\4 g&t‘gé tu{dtgjdtq { A.(tdf\l (t) A.(t-a A‘U.'...\ A-2
° o

o o

% {0 BLEVBIE ) (T2 BLEN BIEN
+ AL VAN ALEN A () T 2 BB (T Bt B

LAY AL AL (6D AN <T S, BMBIENC T4 BB

FAAEA DA, E)A LN BIENBED (BN BN

AL, (L) AU A, N TS, BB BltHBLES)

— A AL ) AN BN B (T B Lt,\ts(t.»}

By relabeling the dummy indices in equation (A-2) and treating the A's as

¢c-numbers, it is easy to obtain
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t

t ,t rt
L Wi = 4\ “4 Sét [&t;jdt,{dq (A-3)
{A.(t\l\ EIAL)A, tt.\[( T BEABEN T Bt BN

AT, BLEABRY TS BIBEY) TS BOBENTo blyBi)
F A AOALEN AeKTS BIBE) ST BUENBIEY
+(T3 BIE) B4 TS BB +<T. o B Bd<{Ts B(tawaﬂ
+CAQIAE ARG AN (TR BEBED ChA BB
(BEDBIED<BRIABILN) + (BRIB(tNYB(E,) B(t,b]

A NALA LA TS BB <Bit) Bl

+(T8, BUNBENBIENBILY ~{BLeABEN TS BEI DY

~AARMAA A (5[ (BEIBEN <RI Bl BIEN

+BIBEN TN BENBLEN) + (BEIBENSTS BB -
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By comparing equations (A-1) and (A-3), we see that W4 =0 {f

CBIYBEIBIBLENY = <BI) B (BB N> A-4

+(BRIBIEN{BIE) Bltd) + BIENBLH BB

We now show that such a relation is satisfied if B is the position coordi-

nate of a single harmonic oscillator. As mentioned above, if this condi-

tion is met for a single oscillator, it is also satisfied for a collection

of an arbitrary number of oscillators.

We express B in the language of second quantization,

—(wt W

By = (785) (@€ v’ €7) A-s

Then since

-1 = '.!.5".9
{BEYBIEYBIt)BILY = Z %‘.e T BRYB) Bty Bltyind

we see that of all the possible products of creation and destruction
operators, only those where the number of creation operations is equal to

the number of destruction operators actually contribute. Thus

'“"ti -y . (wst it
{BRIBl) Bity Bt = (mw){@ s e T
+ (a8 Tt g Gt U @E T €T T e

{continued)
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' LWty =t - FLWE,  -l0Ty 4 Wy ~iwT
wde e e ma e H+lae ae tae ag Y
e, Wk -iwt ity
+{dfeae ae ‘de >}

(T T -Ty-Ty)
- _ii_:y' { (2 Wit +Ty~T <(cx¢;_¢§fcg*j>

mid
TR LT S0 AP N | ~ (Wt -T - Cytty) +

+ € T el ary € (o aloy
Lt + -t~ Ty) Lw(t -t +t;-L)

+€ lactaony +€ (e oltad

iw(t-t,~tyrty)

+€ <af'a.acf>}

We now use the commutation relations,

La,d =4

La,al =l =0

to write

toacat = (flaplaaly +ala,atlady +adla,at]) vadded a7

= 24ach) +{addad

But
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iy
ladfatay =27 tf'(e 0-0\1-0:‘0:‘

= Z“tr{aé”’“o\of o

- L)
= Z"tr{e'w( o€ )aofcf}, =

BH -BH _ -phw

and since e  ae = e a, we can write

-Ah
addioy =€ Laaady A-8
Substituting equation (A-7) into (A-8), we find
* + + ;- BRw + +
{aaaad=2{60d> v+ {aaaa )y

Then,

{aG, c:'c:') = _\—'gzﬁ_u Loody A-9

The other thermal averages in equation (A-6) can be simplified in this

way. We obtain

(aofadly = *l-?ﬂ, ((G«f) +<c\*a>) A-10
<erdt'a> = \__'Z-éTK:) <Q+0\> A-11

2 +
{alat o) =— - o ea'x"‘u“\ﬁO A-12
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(Bodko) =~ —r_-'—e-T;;.,, ((al"o.\, x <a.o(">) A-13
n Z
e daady=— oo {add

A-14

+ . . s .
Now < a a > is the average occupation number of anm oscillator in thermal

equilibrium. Thus,

|
C‘““i\ = <0t0~> A-15
and
AY¥ L)
\ =& -'.'-_-—-—" +\‘-"—-"<d-6\)'\‘ | A-16
|- EPRS T BN ePry

Substituting equations (A-15) and (A-16) into (A-9) through (A-14), we

have

aaadld) = 2<anry {aa™) A-17
{aatao) = (A’ ((Ckol"\ + <0irob) A-18
Ladfa’ad = 2{aad><dtad A-19
{ddaad = 2{Xa) {aod A-20

{ladta) = (e (<atay +< acty) A-21
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and

(faad) = 2atad aaty A-22

Using these results in equation (A-6), we obtain

Lu ('tl'i t" "t;-tQ\

LBl Blt._\%lt-,)BltqD (ﬂ) {?. LaHcadtd € A-23

Lt~ €yt Ey—T) ~(t, 1 -G+ Ty

r{aay (Cad +¢atoy) € + 2l €

Lt + - Ty -Ty) (wle,~T,+6-Ty)

Y ZEN N TONNT 4 +{aloy (4ot o) +Haa >)

LWt ~C,~T, 4T
L Ltodcadt> e i “x]

It is this last form that we wish to compare to

<BIL) B (BUIBED + (HEIBEY) (BRIBILY)  4-24
+ BB BB

The first term can be written

—LWT, l..wt‘_

(___)(<+ u.n: - tg>+<&c e

. - Wt

{continued)



102

LWt =Ty +Ty—1Cy) ((C- T3 -TyeTy)

-
= (‘,;&';l (<a+a><d-&>e oo {adSH e

Lot ~C -ttty

+adyddod €

—cw(e-ty +ty -
+ ladylady @6

Similarly, the second term of equation (A-24) is equivalent to

2 LWt ty bty L@t~ ty-tyrty)
(355) (cetaddday €775, Lataycaals € '
-l {t -y~ T ty) ~Llt- =
Hady ey e dadtsadly € TR

The last term of equation (A-24) is equal to

LW -ty rta-ty) Ll -Ty - et

(S5 (¢dtar<aod € +<alor{ache
+lad HLaar SNt aat<ady éiw(t'-t‘+tl+t‘))
Thus,
CBEYBIEY) (BUD BN + < B BN (BRIBIGY) A5

+ {BIEY BN Bl Blts)

& 2 + . -é'.w(.‘u*tz"t'\‘t*)
= (m\{z<aa><aa>

!

{continued)
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bt ku( tl‘tt"‘t‘-tﬂ)

+ (a0t (Caoty +<aad) €

—LwE, - Ca—Ty+ L) (WL, +8,-T5-Ty)
*2aayiday € + 24dledao) € ’

(Wt -t + Ty =ty

LAY ((c:'o\> +<aay) e

W (E,~ Ty + Ty)
+2 {fay<adty € ’ }

By comparing equation (A-23) to (A-25), we see that the desired
decomposition equation (A-4) has been proven. This result is a special

. . 33
case of Wick's theorem for finite temperatures.
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APPENDIX B
ESTIMATE OF RATE OF CONVERGENCE OF EARLIER-LATER EXPANSION

The usefulness of the earlier-later expansion of Chapter V depends
upon the accuracy involved in the truncation of the series expansion of
U(t,t") (equation (VI-9)). While no rigorous criterion for convergence
has been developed, we can make a rough calculation using the oscillator
as our system which may serve as a basis for comparing the relative im-
portance of the k=1 term of equation (VI-11) to the k=0 term.

The calculation we have in mind is as follows:

i) Approximate equation (VI-9) by neglecting terms for which k > 1.

That is, we let
ULty = t“T“‘{A.w') (1 + W, +\Weg) c"‘“‘"’} b1

We then make some rather crude approximations concerning the reservoir
correlation function < B(t)B(t') > to further simplify U(t,t").
i1) The resulting expression for U(t,t") is substituted into equation

(VI-4) to obtain

B-2

. .
A —iH yHse
F=e "t"‘<s;,,\[At%btt")sm)U(t,t“)lsa)6 A

o

Using our assumptions concerning the reservoir, we may perform the time

integrations and find F2 by taking the hermitian adjoidnt of ﬁl'
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-~

iii) The quantity Fl-ﬁz is substituted into equation (V-1),

i‘-%’=-{-[ih,‘°«.(t\] "“.il,\—z_LA\ﬁ\'a:.l B-3

Upon taking diagonal matrix elements of this result using free oscillator
states, we may compare the contributions to the oscillator tranmsition
rates of the k=0 term of equation (B-l) to the k=l terms.

In order to proceed with the calculation, some specification of

the reservolr correlation function must be made, Our cholice is

B, lt-ti<te
LBEYBWRY) = B-4
o 1 le-t'\2t.

where t, is sufficiently small that system operators may be considered
constant over comparable time intervals, This representation of the
reservoir correlation function may be the weakest part of this discussion,

In general, < B(t")B(t) > is not real but satisfies

(BB = (B Bi'+iho))

and

CBEDYBIY = <BE) BT

whereas in our case,

{BRHBE = B B
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and is real.

The factor < B(t")B(t) > in equation (B-2) allows us to consider
values of U(t,t") only slightly removed from U(t,t). Since by hypothesis
we imagine that system operators are essentlally constant over this inter-

(t)

1
val, we replace A and Al(t") by e and Al(t), respectively.

Further, although we require that t be much greater than tc, we also imag-
ine that t 1is small enough that the system is still in its inltial state.

That is,
Fs Y= |5;’><Sg\
But from equation (IV-7),

-3 tHe t),
pio=€ “"‘“"(s;,\ T e\‘“ﬂ"’ﬁ(} e

Thus, ew(t) = 1 and we can write equation (B-1) as

U2 (1 TAT™ We + T T W) AlD) B3

This is to be substituted into the expression for Fl' After replacing

Wl and We 1 by equations (VI-7) and (VI-8) and performing the now trivial
>

time ordering, we obtain

<
F= jf"t" {BLEN B 15, Y<S L At B-6
t t t,
—L [dt" {BUIBLOY Sd t.[«lt;{( B L) BLeY) 1$5<sil
L ° { NN {continued)
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t (T
t
* ALY Alt,-t) Mt.-t\] -+ Sclt" <BLI BV ga . {at‘ (BB
> tl!

.
x Al -TYA L - 15 <S ALo\}
T t t,
+ J’FT" gdt" (3“.'\13(,1:\') }Jt. (Jt;% Bit) Bltl.\> Attt—t) lst»<st ‘
© s

tl.

t t
x Ale) A(.tct\} - -%-;, gJ t, XAc,,[®(t:) Bl 18y <s:)
L 4

o

KA Alt-t) Att‘-t’)]

t t ot
"= Sdt" (B BEY gat.(dt,_{asce.us(m» ACE-DA (6t
o [ A o

t ot
* 15,5 <l A(o\z + 'Ir? Sdt.(&t,_[(B(t.‘t By Alt,-t)

t [

x 15:5<5:1 Ao A(t.—t]}

T t i
“:Ffd £ (BB gdt. Sdtt{< Bt BEYY Alt-t)
L

o

« 1S5 (Sl Al A(:t?:‘t\}

We have followed our practice of dropping subscripts when a final order

is obtained. The changed time arguments are a result of manipulating the

tiH t /A
e factors. The next step is to recognize that the correlation
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functions combined with the limits of integration will restrict the pos-

gible valuaes of t. and t

1 2 to within tC of t so that we make the approxi-

mations

Alt,-t) = ALY,  t-tedtiit

and

Alt-t) £ Ald) y t-t <ttt

Then using < B(tl)B(tZ) > =« B(tz)B(tl) >, we write

t
f-ﬁ = Sdt" (R BEY)Y 15345 A(0) 37
o . ¢ t,
-k gdtﬂ (dt. Jt,_{(fb(t“) BUEY) {BILIBLEN
L S

x(\sa><s;l Koy + KV I50y ik Ao~ Z A SIS A‘tos)}

t“

t t
- J{ ‘dt" gdt, (d t, {BEYBREYLBIL) (e
° L4 o

(1505 (5l Ao + A 19 <5 Ale) — Z Ao 15545 Ptlo\)]

L]

t t ,t ot
= gdt" {BEY B 1855 Ao —_ttgdt"git.ptgkﬁ(t") B
° t

o o

LGN B(t.\$(|s¢><s;\ﬁ?m4-ﬁtos 1S5l ALY - 2 ALIS¢s A‘m)}

We find F by taking the hermitian adjoint of F

2 After a reordering of

lo
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t x t,
the variables of integration so that SJ{_" Sdt‘ g dt, 1is replaced
() b o
t t. t,
by gdtl 5 dt” S'dt,_ , we have
° o >
t
f-f = [af_" {BIEIBEY { 159 <51 AW = Al ISy <s;\] B-8
o

t ,t, t,
- -‘t-‘; Sdt. (dt" Sdr.., {( BB {BEDBIEN

o -] (-]

o (ISQ {SiAATN = RIS\ + 3AMS »<5: L Alo) ~ 3 ALD) \scxs.-\nfw\)}

By using equation (B-3), we may perform the integrations to obtain

[ o
fdt" BEIBEYS = Bt

-]

and
t tl tl
Sdt. Sdt"gdq(B(t") BEN{BUIBEY = —;,:- Bit?
o o o
Hence,
a A ¢ 3
F-§ = F.,zt‘,{ 19:Y <& ) Ale — Alo) |$c><$£|1 - QZ_E_; B-9

X [ 15 £ 5¢) A%0) = Aio) 160451 + DAY ISH SN A L3 Ato\lS;S(Sa\A'l.\]
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To get an idea of the relative importance of the term linear in tc
compared to the term proportional to tg, we return to the oscillator

problem. We wish to calculate the contributions to the transition rate

. . . th
due to these terms at a time when the oscillator is certainly in the n

free state., That is, when

ol P31 Y = & Son

The transition rate out of this state at time t is given by equation (VI-1l},
~ LY
2PN — L. <n [cl,‘ F-f]In B-10
dt w

= ) &l > nlE-Fded> — ol B-Rmd Gl
= -11.-\-1_ (ﬁjﬁ' [(n«p-l\k‘((n-ﬂ‘ é. - aa.l '\) - <“\ l-°. = ‘?l.\'“' ‘>)
rnt(¢n-i\§ - Finy —<niF - ?,_\ “_b)]

where we have used equations (V-6) through (V-11). It is easily shown

that ﬁl'ﬁz is anti-hermitian. It follows that

(DR =B > = — nn| B - R Syl

Therefore,



i1

dinlpind _ (—--—1"‘ YL Re{(hu\"‘(nﬂlﬁ.-ad") B-11
dt ® \Zmubs

[} S
~ A" {nlE-R) r\-b}
The job, then, is to evaluate

(n\ﬁ—ﬁ,\n-b

and

il B-Bind

Replacing Si> and A(Q) by In > and q, respectively, equation

(B-8) becomes

~ . "
F-F = Tsltf,{ \M(hlcs - %In)(nl} - 137_—-5

x {m)(n\ CI: - CEM><M + 31?'\n><nl% -3 ‘LIH) <nl}

Hence,

il B-Blny = - Bt <n+\\1ln$

¥ f-’%&; ((m-t\cl:‘ln) +3<n+ \i\'\><“\f‘“>)

and
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4,3

A A _ al Bt
(MF-Bin-D = Bt;(n\iln-b - g3t

x (<n|4’61"|n-|$ + ";.{n\tf\fb (n\%lﬂ-b)

But

7

(m-\\cllh} (ne)2 ™ w

<nigin-iy = ne (2 Y‘

mids

<n|°L‘l "y = (Zni) (—Z-E——w‘)

3
<l Py = Ered (et [

and

{n) fln-\)=3n n’ ( £ Y"

Imu,

Thus,

A A K “ —-——-1.‘ g
el F-Flny = — B tc(ne)? (zmwoj

4,3
Er\'- (ne )t (‘ln+(b(

M,
and

i
‘\-A ) - r R 'I‘ ‘k 31
<nlF-Einy=BTten TN

_B'te
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Hence,
d(h\P:f\>= _ _:_1 (z.msu) Bt (zn+1) B-12
B'te ( % (3n‘+3n +l}
"[ | =3 A Zm W 2N+t ]

To obtain some insight into this result, we use first order pertur-
bation theory to calculate the probability that anm oscillator that started
out in the nth free state is still in that state at time t while the

reservolr may have made any transition possible. That is, we calculate

| -\ -BE
R1=\-T-,'NZZ{£ e

E. E4
€t :
*Sdt, JtL<E;.l<n\tht.\ RN \EfKEa'l{n' (c()(tg\BltME,} lrb}
where we average over the initial reservoir states and sum over final

reservoir and system states. Using the completeness of the EJ. and n'

states, we find

t t
Pa=\ - —‘g;_ dt.|dt, <n\cstta%Lt,.\ln§ {BIENBES
e ‘o

where we have used

ek,
BEBWY) = YL Z'C  EdBIENBLENED
E

The integration with respect to t, may be performed by using the same
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reasoning as before; < B(tl)B(tz) > 18 non-zero only for t2 close to t1

so we replace q(tz) by q(tl). Then,

trt,

t
W=l g;it. {nl ci:(t.)lrb [Jtn B

t -

i

T
| — -—;‘;5 Sdt. <n li‘u:.)lrb

iH t1/ﬁ 2 -iHStl/ﬁ

But qz(tl) =e ° q e . Hence,

L gLealmy = <nigtiny = (ane) (5)

and

B.=1\-— %%E (zn41) (z:d) Bz

Thus,

2
aPn _ ZB t‘ ( \ (1ne)
dt MW

Comparing this result to equation (B-12), we see that the k=l
terms of equation (B-1) contribute an amount roughly proportional to the
probability that the oscillator undergoes a transition in a time interval
of length t.. So long as a combination of the shortness of the reservoir
relaxation time and the weakness of the interaction strength works to make
this probability small, we may make the truncation of equation (VI-11)

with some confidence.
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APPENDIX C

RELATION BETWEEN IMPROVED APPROXIMATE DENSITY QPERATOR
EQUATION OF MOTION AND SECOND ORDER TIME DEPENDENT

PERTURBATION THEQRY

In this appendix, we show that the equation of motion for the
reduced density operator derived in Chapter VI may be obtained by second
order perturbation theory. In order to do so, we restrict ourselves to
those times of observation for which second order perturbation theory is
accurate, To obtain the greater generality of our method, one would have
to stipulate that the reservoir possesses no memory of system transitions
but that, in turn, would be contrary to the physical reality that makes
it necessary to go beyond first order perturbation theory in the first
place. The purpose of this derivation then, is not to confirm our pre-
vious work which is correct for arbitrary times, but to demonstrate that
the physical processes considered in the first approximation to the
earlier-later expansion are just those involved in second order perturba-
tion theory.

Since we are considering the problem where the cumulant expansion
of Chapter IV is valid, we imagine that the reservoir variables obey the

decomposition rule (see Appendix A)
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<RI B Bity) BIE)D = (BIIBEYY Bt BED C-1

+ LB VB (B BIEN) BV BED BB

For convenience, we introduce the interaction picture representa-

tion of the reduced density operator

(J:(t\ =€ ,Os(t) € C-2

To second order in perturbation theory, pi(t) may be obtained from its

value at t=0 by evaluating

t
();‘(t-) =Pl -4 Sdt. tr, LAty Ble, plo] c-3

dt.[ t, tr, [A(t.\ B(t.\,LA(ta BT, Pco\ﬂ
ot

dt.gd t,_gdt; ARBIE), \_A(ta B, LA B, P (o\-m
o o

+ -1':\- tl{d thg‘gq tv; [ At B [_Altz) Bit) ,[At)BIty,

6 % o

L Alt) B, [fco)]] H

I . .
where p (0) is the full density operator of the combined system, reser-
voir plus system, at t=0 and tr_ denotes the trace over reservoir states,
As in Chapter IV, we specify that, at t=0, the full density operator has

the form
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\ ~OH,

Pto\==/°s(o‘12 ‘e C-4

where I(O) = lS.> < S,l; Z-l is the reservoir partition function; H is
Ps i i T

. . . 1
the reservoir Hamiltonian, and § = KT °
We assume that B(t) is a linear function of reservoir creation and

destruction operators so that

-1, -1

ZHn € Blh)=Z 'tr, € BEBI)BIL)=O0

and equation (C-3) simplifies to
t,

o
LI = Potoy - gdt.gclt‘tr‘, (A B, TARBL, 6| ©

(>

C t:, ts
+J1r?‘ Sdt Sdtlgdt,gdt.. Ly, {A(t.\'ﬁlt\,[h(t;\-ﬂt,))
(-] 2y o

ALEIB ) LAY B, ()‘Eoﬂ]]]

We obtain the equation of motion by taking the time derivative of both

sides of equation (C-5):

b 4 t
! d‘.ffﬂ =- -L;-' “tl tr, {A(t\Bl{—\ y LAWY B, 'Orto\ﬂ c-6

t t ]
+ -tl\;th.,S Sdt.q ty, [Nt\Blt\ [Nt.)B(t,\ ,[Mt,\btt;\ AL B, f,m]]]]

o
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By defining

~-@H,
BENBUEY = 27t & BBt

and using the cyclic invariance of the trace, it is a straightforward

exercise to show that

tr, LAY B, LA Ev(t;\, (J"(osﬂ Cc-7
= [ ALY, Al PIOY<BIIBIEDS - ATOARNBI) B+ ]

Similarly, by defining

- - O,
CBRIBIL) Bty BiEYY = Z27'EY, € BIB)BiE)B ty)

we can show that

£, (A0 B, A B, [ Aen Bty LAk B, P ]| ¢
= B Bt IBlty) B(t:h)[mts YA Alty) Alty) f’s"(o)]
~<BLE) BIE Bl Ble Y LAE ) Alt At r-'f(o) AL

~<BitdBIO BBt [AE), AL AL £ Alt,)]

(continued)
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+<BIE) BIE) BIOYBIENY LA, AlE) PI6Y AlEDALY ]

-{BILHBE) BLE) BltY LAWY, Alt) Alty) ﬂf(ov A(t..\]

(BN Bt BIOBIED [AD, AlL) pIo) A At

+{Blt) Blty) BIEBIO> LA, At ﬁ’ O A(tY) A(t,ﬂ

~{ Bty Bty Bt B LAW, ()Z‘m Ale) Alty) A(t,\]

Substituting equations (C-7) and (C-8) into the expression for dpi(t)/dt,

we find

dAS _ ! \ c-9
T v [ Al

ot €
Ps @ 9t Bt BLOYAlL) — KJ t.{BIOYBIL) Al P;I (o)

t rtt t,
+ -T-:; SJ t, Jtsgdtq {4&&\ BUIBINBIED Alt,)A () Aled f’?(o)

~CBIENBO BIEN BIE) Alt)Alt) i > Alty)

=~ { Bty Bt BEOBED A Alty) ﬁ’m Alty)

+{BUE) BB Bt Alty) A 16) At AL,)

{(continued)
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= (Bt BIOBIELIBAN) ARIAlL) F VAL
+<Bl) B BlY) BE)Y Aley) A ARNAKL)

+<Blt) Bt B BIEN Al Po AltIAL)

~ SRt Blty) Blt) B A0 ALt A(t,\Nt.\H

We concentrate upon the integrand of the triple integral, Substituting

the decomposition of equation (C-1), it becomes
(BB {<w;. Blea | ALY Al AIL) P - ADAKY  c-lo
<O Alt)] + <BlE) B[ - Ale) Alty) PROYAES)
+ Alt) P}(o\ Alty) Nta\]} * (B(t,\B(t))[(l}(t,)B(t&
(- AN A P AL + Ak AT Alt)AL) ]
+ (BN BUEM AL AIOALIAEN— 56 A(f.p\A(t;)A(tz\]]
H{BLOBEN B BEM AL A AT — Ak A

*PLAALLY] +<BlENBLEND |- At Al ATALL)

(continued)
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+ A PI0Y ALED Attg]} (BB BB
TA) PFDALDAL) — ALALD PO ALE)
BN BLEN AL PO AIAR) - P;I (p\A(u\A&QA(tD]}
+{BED Btt»{«uta B [ALDAI A D) ~ ADAR 5 DAL
v {Bit) BILYHL Al (J‘I (0) ALt ALY — ALL) Alty)
X (J?(o\ ALt.)]} + Bty B&t)){ <BUYB(t)Y)
(AL PEOA AL - ALY AL FOAlLN]

+<6Lt333(t,)$[Mt1\ {f O AltdAlL) — (’sI GY Aty A(tzDA(tz\]f

The next step is not obvious from a strategic point of view but it turns
out that we need to factor from each term an A operator whose time argument
is coupled to t in the correlation functions, For example, in the terms
proporticonal to < B(t)B(tz) >, we factor A(tz) to the left, In the terms
proportional to < B(tz)B(t) >, we factor A(tz) to the right. In the pro-
cess, we add whatever commutators that are needed to take into account the

non-commutivity of the A operators at different times., We obtain
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<BY BN A(t;\{ (Bt Bl [Alt), Al pilo]
- {BLEH BN AL, f?to\]}
FLBIDB ) A(ts\[ <BlENBLEN LAY, Ale) 5 9]
~< Bl BiLY) [ALL,), p?zo) ALt«h]}
B BLEY ALtq\{< BILA Bt [ALL), Alty [’f(oﬂ
~<BUIBUEN AL, AW A(t.)]}
H<Branleny [Awy, PEALLY]
~CBit BEM LA M AL FR0T [ BIBIE> ALt
HeBle) BlED AL, AFeALL)]
=Bt BN AL, Alty) fi‘@]}( Bit,) B Alty)
fceeasDd (A, pfo At

- BN BUED LA, A A eeaBi) AL

+ B B> < B it) Bty LAY, Alt] At [’:(o\ — BBl

{(continued)
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xCBEABIE) LA, Att)] PG ALL) — B BUD BBt
xLALL),ALEN] AlL) PTG + Bt BIEN < BB [ALL),AlY]
* P51 At +<BEV B <BI Bl LAIES), Altd] Alty) Fio

+ B BUtO> {BED BIED AL, A Alt A T0) = <BEYB(E)

x<BIABLENY [ALe), AED] P50 Ale) +<BIOBIN (Bit)BILY

x[Alty, Alt] ()}@ Alty) - (BB BB A, AEJ Al A7)
~ (B LIBLEN<BU)BILY) [Alt AIALD f56) + (BIENBEDLBENBIEY

<A, AL B +(BEABEDBENBIY AL Al A Al

This expression 18 to be substituted for the integrand of the triple
integral term of equation (C-9). The resulting complicated form may be
considerably simplified by judiciously relabeling variables of integra-

tion and combining terms where possible, The end product is

d s (o \ -
Jt =3 [A(t\, c-11

t

t T :

t
—{BItNBIENA(LD /{’@]}(ch BN At —{Ac BOYBIEAI)

{continued)
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e G
¢ ‘o

t (vt (b
-1 P g&ttgdtggdtq Att) {( BB LT Bl BENAL)AlL)

o o

B B (B BLEN TAED, A(e,ﬂ]

t (5
- JE (’sI(o\ fd t ,_S:Jt-, SJ ty Alt) { {BHYBENCT BB LA AL
-{Bkw B(‘ﬂ)( BOBtY) LA(t'b)Akgﬂf PsTEO\

But
Lo

t (%
th {a t;jdt., [Alt), <BIBILY ﬂ‘m AL~ {BLEDBEN Al AltoY]

is the first order expression for pz(t) and to the accuracy desired, may
1
be replaced by ps(t). The triple integrals contain pi(O) which is the
t
Zero b order approximation to pi(t) and since these terms are already

small, we may also replace it by pi(t). Then,

d AL ("
Tl [Nt\aPslt\%t;A(‘cz\{<5ct,_\B(ﬂ> G-12

t t;
R SJ t,ja ty < BUABIEY TSRl B [ALD, Al

(continued)
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t t;
* izﬂdt‘jdt1 (BB LBIEDBLN LA(t.b,A(tsﬂ}

(]

t t o}
- jat X A(cg[«sm\a&;\\ + i-;SAt,SAt.. <{BIOBIES TR BILY (A, Attﬁ]

t tg
L S&t‘gd £ {BIENBENSBIE B LALY, A(c,j} ﬁ‘m]

which is identical to the interaction plcture representation of the equa-
tion of motion for the reduced density operator as derived by the more

rigorous treatment of Chapter VI.
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