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SUMMARY

The purpose of this study is to extend the theory of singular
self-adjoint boundary value problems for scalar differential equations

to systems of first order differential equations.

Let the n-by-n matrices Po and Pi be continuous for
a< t<b., Moreover, let P; be continuous and det Po(t) # 0. Let

x Dbe a vector with n components and let
Lx = P x' + Plx .
el

Let P* denote the adjoint of P, that is, the transposed conjugate,

and let

L¥x = - (P* x)}! + P*x x ,
0 1

If u and v are vectors with components uj, Vj’ let

It is shown that

Lu°v - u-L¥y = (Pou'v)'.

Let L=1% thatis, P +P*¥=0; P’ =P -P*. Let M and N be
o o 0 1771
n-by-n constant matrices and let Bx = Mx(a) + Nx{(b). Suppose M and

N are such that for any u,v € ¢'[a,b] and satisfying Bu = Bv = O



Agsuming that the eigenfunctions {xj} of the nonsingular self-adjoint
problem

Lx = 4x Bx = O

form a complete orthoncrmal set, theory for the singular prcblem is
developed. The singular problem refers to the problem resulting from
either the finite interval [a,b] becoming infinite or the coefficients
in the differential operator having a sufficiently singular behavior at
a or b,

Special attention is given the real Z2-by-2 case. For this case
the idea of limit-point and limit-circle is developed. Ccmpleteness
and expansion theorems analogous to those for singular self-adjcint
second-order problems are proved. The results of the development of the
real 2-by-2 case are used to prove completeness and expansion theorems
for the n-by-n complex case.

In the final chapter, as an illustration of the possible appli-
cations to physical problems of the theory previously developed, the

problem of heat conduction in an infinite composite solid is studied.



CHAPTER I
INTRODUCTION

The purpcse of this study is to extend the theory for singular
self-adjoint boundary value problems for a scalar linear differential
operator to a special class of systems ¢f linear first-order differen-
tial eguations.

If u and v are vectors with components uj, Vj’ let

UV = uv tuv +e° +tvy . (1.1)
nn

i1 2 2

Let PO and P1 be n-by-n matrices of scalar functions. Let the

operator L be defined as

L x(t) = P (1) x"(t) +P () x(t) . (1.2)

Definition l.l.--A boundary value problem on a finite interval

[a,b] with the differential equation Lx = £x is said to be self-adjoint

if for any u,v & c¢'[a,b] and satisfying the boundary conditions

IbLu.vdtzjbu-Lvdte (1.3)
a

Let P* denote the transposed conjugate of P and let

Ltx(t) = - (Pg x)! + P¥ x . (1.4)



Of special interest is the class of self-adjoint boundary value problems
is which L = L%, that is, P_+ P*=0 and P’ = P, - P¥ . There is

o] o 0
an important relation connecting L and LT known as the Lagrange iden-

tity,

Lemma 1.1(Lagrange).--If u(t) and v{(t) are arbitrary n-dimen-

sional vector functions € <¢’[a,b], then
vy - (LYv)* u = (V*Pou)' (1.5)
Proof.--The left side of (1.5) is by (1.4, 1.2, 1.1)

*p ' * *! * *y - *
vPou -I“\.fPJ_u+(P0 v+Pov') u (PIV) u

vP u' 4 vkP u + P u+ v¥'P u - VP u
(o] 1 Q Q 1

)

vP u + v¥p'u + v'P u = (vkP u)! .
o o o 0

Let PO(t) and P,(t) Dbe continuous n-by-n matrices of possibly
complex valued functions on the interval a £t £ k. It will be assumed
that Po(t) is nonsingular and P;(t) is continuous on

5: a <t <b<w., Define By, by

Bbx = Mx(a) + Nx(b)

where M and N are constant matrices, Suppose that for any u,v &

¢'[a,b] and satisfying

it is true that



b b
j Lu-.v dt = J u+ Lv dt .
a a

Let L =L%*. It has been established in [5] that the eigenfunctions

{xj} of the self-adjoint problem

form a complete orthonormal set, with the Parseval equality

b = b
: _ - .
ja £(t) - £(t) dt J zl‘n J; £(t) xJ(t) dtl
and the expansion formula
® b
£(t) = 2; (J; £(t) - x,(t) dt) x(t)

j=-oo

valid for any vector functien f satisfying
b

j £(t) - £(t) dt < e ,
a

By multiplying the differential equation Lx = £x on the left

by P;l(t) it is seen that the problem =® has the form
x'(t) = R(t) x(t) + ds(t) x(t) B,x = O

where the matrices R(t), s(t) and s’(t) are continuous and s(t)
is nonsingular. A more general problem of this form where s(t) is
Just assumed to be continucus and not identically equal to the

zero matrix is treated by a different method in [1] and [2].



In the following chapters the nature of the problem % will be
studied as the interval & = (c,d) where there is a singularity at
either ¢, d or both. The singularity may be in the form of a singular
behavior of some or all of the coefficlents in the operator L or per-
haps ¢ or d 1is infinite.

The real 2-by-2 case, where Pb and P1 are 2-by-2 matrices of
real functions, denoted by L will be given special attention and
much of the thecory for second-order scalar boundary value problems will
be extended to this case. The method used to study this case was first
proposed by Hermann Weyl. A short history of the method is given in
(6]. The theory for the real 2-by-2 case will be developed first and
the results brought out in this development will be used to treat the
n-by-n complex case.,

While the method used in this study is applicable only to self-
adjoint problems, there are methods for treating problems which may not
be self-adjoint. Such an approach is furnished by the Cauchy integral
method which depends cn the calculus of residues and general thecrems in
the theory of functions. This method i1s exploited extensively by Tilch-
marsh in [7].* Although methods of this type are applicable to self-
adjoint problems thev are generally much more difficult, less direct
and give less insight into the problem than the method that will be used
here.

Occasionally it may be desirable to make a linear transformation

of a boundary value problem either to simplify the differential operator

*This book has large bibliography listing nearly every significant
publication on the subject of elgenfunction expansions up to about 19%56.



or to obtain a new problem in which the
L = L%+,

linear transformation.

operator is now such that

The following theorems may be of use in making a suitable

Theorem l.1.--Suppose Po’ P; and ;i are continuous 2-by-2

matrices of real functions.

Let PO be nensingular.,

If P +Pi=0
o] o]

then there is a nonsingular linear transformation such that the equa-

tion

is transformed into an equation

[
Poy + Ply
where P +P° =0 and P' =P, - P,
o} o} c 1 1
Proocf.--Since P + Pt =0 and P is
E— o] 1 0
0
P () =
- P(t)

and without loss of generality it may be assumed that P(t) > 0.

sider the effect of the transformation

and T 1is a real function of the class

£x

Nn

Ly

real, PO has the form

P(t)
(1.6)

Con-

K where

i
C o

(T-2 P T)y + (T2 P T 4 174 P,T)y = dv,



' -1 T _
Py’ + (Tt P T" +P)y = Ly .

Al!l that remains is to demonstrate there is a function T

¢’ such that

! _ -1 I ~ - -1 4 jhe t
P (T PT + P_) (T PT + P,)

Let

-~ Pis Pis

P1 = H

Pay Paz
then {1.7)} is equivalent to
/ 2pT’
0 P 0] T + P12 - P
! - 2pT’
- F 0 T t Py - Py O

of the class

(1.7)

By choosing T as a solution of the first order linear differential

aguation

{1.7) is satisfied and the theorem is proved.

Theorem 1.2.--1f the boundary value problem

n: Lx = 4xs Bbx = Mx(a) + Nx(b) = O

is self-adjoint then the boundary value problem

X Ly = 2y, B, = MU(a) y(a) +NU(b) y(b)



resulting from applying the linear transformation x = Uy, where U
is a unitary matrix of functions of class c’, is self-adjoint. More-

over if L 1is such that L =17 then L = Lt.

Proof.--Let Lx = Pox' + P,x and suppose the problem m 1is self-

~

adjeint. It must be shown that for any functions R and S satis-

fying B,R = Ebs =0 that

b L A Earla¥ ] ~y
f (S*LR - (LS)* R) dt = O . (1.8)
a

~ ~

Suppose R and S satisfy BR = B,S5=0 and let R=UR, S=US,
then R and S satisfy BbR = BbS = 0 and since ® 1s assumed to be

self-adjoint
b
j (S*LR - (LS)* R) dt = O . (1.9)
A

Applying the transformation x = Uy results in

Ly = (U*POU)y' + (U*POU’ + UFP, U)y

Pl N P b P~ I~ o~ )
f S*LR dt = j s*[(u*pOU)R’ + (U*POU')R + (U*PIU)R] dt
d a

Ea AN L Y W ] b
J S*¥LR dt = j (s*uu*pou[u* 'R+ UFR’] + S*UU*P, UlU*R + S¥UU*P_UU*R) dt
a a
[ b
j S*LR dt = j (s*p R’ + s*p [UU*' + U'UXIR + S*P R) dt
a a

b b b

j S*LR dt = J (s*g)n’ + S*¥,R) dt = j S*LR dt (1.10)
a “a a ‘

Similar calculation yields



b b
J (IS)* R at J (LS)* R dt . (1.11)
a a

Since (1.9, 1.10, 1.11) imply (1.8) ® 1is therefore self-adjoint and
the first part of the theorem is proved.

Suppose L = L+3 then

* = ! = - *
P, + P* o) P P, - P¥, (1.12)

Using (1.11) it follows that

(kP U) + (U¥p U)* = UP U + WFPXU = (P + P*) U = 0,
o] o] O C Q 2
(Pkp U}’ = ‘P U+ UP‘U + U*P U/,
0] 0 o] o}
L / * - £ 3 Y
(U*POU) P U+ UXP U - *PYU + U*POU . (1.13)

* ! k - i * *
(U pou + U Piu) (U*POU + U piu)

1t

UkP U’ + U¥P U - UK'P U - U¥P*U ,
o o]

e f * - 4 *k *
(U PU+U PIU) (U*POU + U PlU)

UkP Uf + U*P U + Uk’P U - U*PxU . (l.14)
0 1 0 1

Comparing (1.13) and (1.14) observe that

L L _ ¢ .
(U*POU) = (U*POU + U*Plu) (U*POU + U*PlU)*

Thus L = LT and the second part of the theorem is proved.



Let (M:N) denote the matrix

If L =LY and the rank of (M:N) is the same as that of P a suffi-

cient condition for the problem m +to be self-adjocint is that

M g;l(a) ME = N g;l(b) N* (1.15)

A proof of (1.15) may be found in [3]. If L = L%, since it has already
been shown that L = E*s a sufficient condition for X to be self-

adjoint is that

Mu(a) [ux(a) P_(a) U(a)l-* (M u(a) J

= N U(b) [U*(b) P {b] U(L)]™" (N U(0) )*, (1.16)

Clearly (1.18) implies (1.16). If L = L+, the rank of (M:N) is the
same as that of Po and % 1is self-adjoint, then another proof that
x is self-adjoint has been given.

Chapters II through V deal with the real 2-by-2 problem, Lo
Since in this case P_ has the form (1.6) the Lagrange identity (1.5)
yields the following important formula known as Green's formula

b
f (LU-V) - U-LV) at = [uv](b) - Luv](a) (1.17)
a

where

Luvl(t) = P(t) (uy(t) ¥ (t) - u (¢) v (t)).
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The treatment of a problem in which there is singular behavior
of some or all of the coefficients in the cperater L at b, the end
point of the finite interval [a,b], is completely analogous to the
treatment of a problem in which there is no singularity in the coeffi-
cients in L but the problem is considered on the semi-infinite inter-
val [O,Gao It should be noted that all results obtained on [O,m)
are valid in the case of an interval [a,b) where the coefficients in
L have a singular behavior at b. Similar remarks hold concerning the

case where coefficients are singular at a and b,



CHAPTER II

THE LIMIT-POINT AND LIMIT-CIRCLE CASES

Definition 2.1.--An operator is said to be of the limit-circle

type at infinity if every solution of Lx = ﬁcx satisfies

o

J‘ o9 dt < w (2.1)
0

for some complex number {O; otherwise L is said to be of the limit-
point type at infinity.

The nex* thecorem shows that the classification depends only on
L and not on the choice of £0u

Theorem 2.1.--If every solution of Lx :- £Ox is of class
L2(0,0), that is,satisfies (2.1) for some complex number %O, then,

for arbitrary complex %9 every solutich of Lx = Ix is of class

LE(0,0) ,

Proof.--5Suppose every solution Lx = £Ox is of class L*R{Qy@). Let
9 and ¢ be two linearly independent solutions of Lx = ﬂcx and let

X be any sclution of Lx = Ix which may be written as
= + -
Lx £0x (% ﬂo)x 3
or equivalently

Px"+P x = L1x+ (4 -2 )1x.
0 1 0 o]
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By the variation of constants formula [3], considering ({4 - ﬁO)P'lx

to be the inhomogeneous term it is seen that

t
x(t) = o(t) K + o(t) j o7H(s) (L - 4) Pri(s) x(s) ds  (2.2)

os(tid) 4y(t,)
D =
and K 1is a constant matrix. Equation (2.2) may be written as

SEACEEERO 0 - (b= N /x(s)\ (2.3)
j) (i :)ds
~o,(s) o (s) t-4) o %, (s)

2

where

x(t) = o(t) K+d(t)

Lo () b, (s) - v (s) 9,(s)] p(s)

e/ C

Notice that

Pls) Log(s) () - 4;(s) o, (s)] = L[o F] (s) ,

By Green's formula (1.17) it can be shown that [¢ §1(s) is a constant.
Thus it may be assumed ¢ and ¢ are such that [o y1(s) =1 and {2.3)

becomes
t

Py(s) ~vg(s) 0 - (- E N ls)
x(t)=0(t)K+® (t) > ( > > ds
-9,(s) o, (s) (% - £o) 0 x,(s)

C
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Define
t
Iallg= ([ ix2 at)?
where )

Xl = lxgl + Ixl

Since @ and ¢ are of the class L%(0,0) to each M > O there is a

C > 0 such that ||q>|ngM and |I¢IL5M for all t > C.

hols) - 9 (s) o - (-4
MI(S} = )s M2 = ‘ >,
9,(s)  o,(s) (4-4) o

t
< [ IS Ml 1x(s)] s

C

t
[ omy(s) myx(s) as

t
[ ng(s) myx(s) ds

t
< 210-2 ] [ Uelsd +19(s) D) [x(s)] ds. (2.4)
C

The Schwarz inequality used on the right side of the inequality (2.4)
yields
t

[ M, (s) Myx(s) ds
c

2[4 -2 [Te I () + 1l I TN x (e (2.5)

Using (2.5) in (2.3) gives

x| < Jo(e)|iK] + le(e)] 2 [4-£ |C]l o Il (e)

el )T [ xll (s)
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or

x(s)| < KICp()] + 1)) + aml2- £ [(la(s)]  (2.6)

1)) x5

From (2.6) and the definition of | xllc it is clear that

t .
Ixl, < {LUmuw@|+wunJ+mu-%uwun (2.7)

+ [(s)|] || xllc(s))2 ds }% .

The Minkowski inequality applied to (2.7) gives

Il

I~

t
{] camz-z iclol + 19D x|I2 s}t
c

L] DRIel + 14D el

N

Dl < famtl=2 Ll <l + IxI} lle + ol

bl

I

oufam| L= £1 [ x|l + |K[}

Il

2 - :
aM? | £ {’,ol I x‘|[C+ 2M[K|

Let C be sufficiently large so that |4 - £0|M2 < 1/16; then
P
Ixll, < 5 IhxIl, +2mK] ,

Ixll, s amixi .
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Since the right side of this inequality 1s independent of t and since

t t
jc (Jx, 12 + |x,[2) ot = jc xexdt <l xll,,

the thecrem is proved.

In the next theorem the geometric significance of the terms limit-

point and limit-c¢ircle becomes apparent.

Theporem 2,2.--1f Im L#0 and ¢ and 1 are linearly inde-

pendent sclutions of Lx = dx satisfying

M||—'

1]

P%(O) ¢1(09£) cos a (2.8}

sin Q 3]

If

(©) 4,(0,4)

sina ,

M

P%(o) ¢i(03£) = - cos O P2 (0) ¢2(o,£)

]

then the solution x = ¢ + m) satisfies the real boundary condition

xi(b) cos B - xg(b) sinB = 0, (2.9)

if and only if m 1lies on a circle Cb in the complex plane whose
equation is [xxJ(b) = 0. As b > o either C, = C, a limit-circle,
or Cb > m_ as limit-peint. All solutions of Lx = dx are L2(0,m)
in the former case, and if Im L= Q, exactly one linearly independent

solution is LZ®(0,0) in the latter case, Moreover, in the limit-circle

case, a point is on the limit-circle C_ if and only if [xx](e) = 0.

Proof.--Assume x = ¢ + mp and satisfies {2.9), then

[p,(0) + mp (b)] cos B - [¢2(b) + m¢2(b)] sin B = O. (2.10)

1 ()
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Expanding (2.10) and solving for m it is seen that

L 9,(b) cos B - g,(b) sin P _ 9,(b) cot B - g,(b)
$;(b) cos B - ¢2(b) sin P ¥, (b) cot B -~ Y,{k)
Define
A CPi(b)g cC = ¢1(b)9
z = cot P ;
B = qbg(b)ﬂ D :-d‘)g(b)’
then
— Az + B _ 2 + Dn
mT "cz+Dp’ 2 % "2 % Cm *

Setting Im z =0 to obtain the image of the real axis the equation

‘A +Cm){B+Dm} - (A+Cn){(B+Dm) = 0 (2.11)

is obtaired, which is the equation for the circle Cb. It follows

that the center of Cb is

(2.12)

=2

AD - BC
TD

and the oadius is
|aD - BCl

e ———— 2,13
"o |To - cD| (2.13)

P(b) (AD - BT)

1l

[ov1(k) = P(b)[oy(b) F,(b) - o, (b) F,(b)]

[4p1(b) = Po)Lw (b} $,(0) - 4, (b) F,(b)] = P(b) (CD - IX) .
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Green's formula gives

LeP]1(b) - [eP](0) = O

[o31(p) = P(O}[p,(0) ¥ (0) - 9 (0} $,(0)] = 1 = P(b) (AD - BC),
so that
o Leed() .
b [99](6) b | Cyw1(b) |

Substitution of x =g + m in [xx](b) shows that the equation of

co (2. i
p b2 11) is

[xx]{b) = 0. (2.14)
from (2912), and r

Setting Im - Ebl <7 substituting for m

b* b
from (2.13), and comparing the resulting inequality with (2.11) it

b

fcllows that the interior of C_  is given by

b
[xx](b)
) O (2-15)
By Green's formula
b
20 In 4 [ (poy) at = [9p](b) - [w1(0) . (2.16)
o

The initial conditions imply [¥$](0) = 0 and [xx](0) = -21 Im m.

Green's formula used on x gives

b
2% Im ” (x+xdt = [xx](b) - [xx](0) . (2.17)
e



18

Thus {2.15) becomes

b

j (x.x) dt < Ilzi’ Imf £0, (2.18)
o]

and the equation of C (2.14) becomes

J (x.x) dt = o8 ImL#£0. (2.19)
Im £

The remainder of the proof 1s ildentical to that for the second order
scalar case given in [3] and will be omitted.

Since the treatment of a problem differs considerably depending
on whether the given coperator L 1s in the limit-point c¢r limit-circle

case, 1f is important tc know if an operator is in a particular case.

Thecrem 2.3.--IT

oo

Proof.--Suppose ¢ and ¢ are two linearly independent sclutions of
Lx = £x where { 1is real and where ¢ and Y satisfy the initial
conditions (2.8). ¢ and % are linearly independent. Now suppose

¢ and 1 are of the class L2(0,®).

t t -
J ocv-pmb) ar = [ Tho-¥) - o 9)Iat = 0
o

(o]

[ (Lo - g Ly) dt = [evl(b) - [pv](0) = O .

o]
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From the initial conditions that ® and Y satisfy (2.8) it is seen

that [e¥](0) = 1; thus

P(t)lo (t) ¥ (8} -9 (t) ¥ ()] = 1,

pp(t) $,(t) - o (t) 4(t) =

oc =]

JC g lt) ¥, (t) dt - JC 9,(t) ¥ (t) dt

1
P(t) ’
“ 1
= = dt 2,20
I # (2.20)
The Schwarz inequality and the fact that ¢ and ¢ are of the class
L?(0,e) implies the left side of (2.20) is finite, but this contradicts

the hypothesls that




CHAPTER 1II

COMPLETENESS AND EXPANSION THECREMS

IN THE LIMIT-POINT CASE

Consider the boundary value prcblem

Lx = {x (331)

with boundary conditions

{
o

w
L

xl(O) cos a - xz(O) sin g

ti
Q

xiib) cos P - xa(b) sin P

Assume u, v are of the class ¢’ and satisfy (3.2). Then by using
Green's formula it will be shown that [uv]{Q) = 0O and [uv](b) =0

and hence that the boundary value problem (3.1), (3.2) 1is self-adjoint.

- sin B Tlb) Lu (b) cos B - uy(b) sin Bl = O (3.3)
cos B u,(b) [T {b) cos B - T,(b) sin ] = O . (3.4)

Adding (3.3) and {3.4) gives
v, (b} u () - [V (b) u (b) + 0 (b) Vv (b)] sin B cos B = © (3.5)

- cos B Va(b) [ul(b) cos B - uz(b) sin Bl = 0. (3.6)
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sin P ul(b) [Vl(b) cos B - Vg(b) sin B] = C . (3.7)
Adding (3.6) and (3.7) gives
- v, (b) u,(b) + [ul(b) v, (b) + u{b) v (k)] sin B cos B = 0. (3.8)

Adding {3.5) and 3.8) gives

Vitb) uz(b) - Vz(b) Ui(b) = 0

which implies [uv] = O. By letting b = O in the above calculations
it is seen that [uv]{C) = 0.

Since the problem (3.1),(3.2) is self-adjoint the eigenfunctions
{ebn} with corresponding eigenvalues {hn} form & complete orthonormal
set. For a proof see [5].

The function ¢ defined on page (15} satisfies
3 - 4 -
PE(0) ¢1(o,£) = sina, P2(0) ¢2(o,£) = cos
hence ¢(0,f) satisfies

b, (0,4) cos a - ¢2(09£) sina = 0, (3.9}

and no solution of Lx = £x independent of 1 can satisfy condition
(3.9). To see this, suppose there exists a solution of $ of Lx = {x

independent of 1 and satisfying (3.9). Then

{2.10)

II
O

¢1(09£) cos a - ¢2(03£) sin «

~

¢1(09£) cos a - $2(09£) sin a

1t
o}

(3,11)
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Assume a # 0, mn/2 and ¥(0,1) £ O, ¢1(O,£) # 03 then there is a

number % # O such that

v (0,2) = $1(03£) . (2.12)

Equations (3.10), (3.11) and (3.12) imply

b¢1(0,£) cos @ = $1(O,£) cos @ = 6¢2(O,£) sina = $é(03£) sin a

and therefore

9, (0,0)

1

T,00,4) .

Thus it is seen that ¥ and & are both scluticns of Lx = 1x satis-
fying the same initial conditions. The uniqueness theorems of differen-
tial equations imply $ = &), This is a contradiction since it was
assumed ¥ and Y were linearly independent, Similar arguments take
care of the cases a =0, wn/2.

The eigenfunctions {ebn} may be written as ebn = rbq¢(tgkbn)
where Thn is a constant and {kbn} is the sequence of eigenvalues
corresponding to the complete set of eigenfunctions {¢(tykbn

The completeness theorem (l.1) applied to any continuous vector

function f defined on 0 < t < e which vanishes outside 0 <t £ C

where 0 < C < b vyields

= b
J' f+fdt = Z: lrbn|2 | Jo £(t) - ¢(t3xbn) at |2 {3.13)

o} n=1
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Let the transform of { with respect to ¢ be g, that is, let

o) = [ ) el at
o]
and let Ph be a monctone non-decreasing step function of A having
Jumps of Irbn|2 at each eigenvalue qu and ctherwise constant.

Assume further that p, (A + 0) = p (A} and p_(0) = 03 then the Par-
b b b

seval equality (3.13) may be written as
f fofdt = ‘[ [9(0) [*dp, (N) (3.14)

Definition 3.1.--Let L®{p) denote the set of all functions h

which are measurable with respect to the Lebesque-Stieltjes measure

defined by the monotone non-decreasing funciion p and such that
o0

[ 1n)zaet) < =

- 00

Theorem 3.1.--Let L be in the limit-pocint case at . Than
(i) There exists a monotone non-decreasing function p on

-w < % <o such that

p() - plp) = lim Lp (A - p ()] (3.15)

E—» o

at points of continuity X, p of po

(ii) If f e L2{0,0) there exists a function g & L2{p)

such that
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oo 3
im [ e - [ s uen) el g = 0, (3.18)
a2 oo -owo 0
and
co [es] P
Jotenar = [ 101 g0 (3.17)
Io] - 0o
{i1i) The integral
oo
[ atn) vt dp(n) (3.18)
cenverges in  L2{0,%) +to f, that is,
o v
lim j' |£(t) - j' g(n) w(t,n) de{n) |2 dt = 0.  (3.19)

(.u_}\”) - (\—00300) Q

(iv) If M, 1is the limit~-point, considered as a function

of E,

lim 1 »

{4 i :
e O+ Imm_ (v + ig) av (3,20)

p(n) - plp) =

aft points of continuity Ak, p of p and inversely

oo

n ) en (8) = [ o o) ) s ol - £) (3.21)
. ;

where C 1is a nonnegative constant, and Im ﬂo # 0.

Proof.-~Let mb(ﬁ) be a point on the circle Cb where 1Im £ > 0.
Then the completeness theorem {3.14) applied on [a,b] to the sclution

X, =@ + mb¢ of Lx = dx with

x. (b) cos B - x

" (b) sin B = ©

b2
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b
Bk IJO x (£) - (o0, ) at] . (3.22)

Green's formula gives

b
(B -y [ oxm et = Dxpd(o) - [xhl(0)

Because of the boundary conditions satisfied by Xy and 1,
[xb¢](b) = 0 and [xb¢](0) = 1, Using this in equation (3.22} it

becomes
2

Jﬂb (Xb" 'Xb) dt = z L

. (3.23)
0 n1l I'?’ - }‘-bnl2

Taking into account the way p, was defined (3.23) may be written as

b oo dpb(k)
jo (Xb. xb) dt == J_m m . (3,24)
Since m is on Cb
b Im mb(g)
j (xb axb) dt = ——E;—Z- s Im £ # Q. (2.19)

o]

From {3.24) and {(2.19) there results

oo dpb(K) Im mb(i)

SR , mi#o. (3.25)
—-00 |)\ - AE|2 Im 'f; " ié

The procf of the Parseval equality follows from the use of the Helly

selection theorem to establish the existence of a limiting function p



26

and the subsequent use of an integration theorem in essentially the
same manner as in the proof of the second order scalar case. For a
proof of the selection and integration theorems see [4].

To prove the expansion formula (3.19) the following is needed.

Lemma 3.1.--If f;, f, € LE(O,m) and g4y 9y are the

corresponding transforms, then

oo o0

J' £of, dt = j 9,3, dp(n) . (3.26)

v} - 00

Propf.--Let f_ , f and f_ , f be the components of
11 12 21 22 1

and fz respectivelyv,

4f -f, = 4f £ +4f £ . (3.27)

The scalar identity

ﬂ"' - 2 _ 2 . . 2 _ s 2
4ff |fa+fb| |fa fb| +1|fa+1fb| 1\fa 1fb| (3.28)

applied to the right side of (3.27) vields

4f of = |f +f |2 -|f -f |2+i|lf +if |2 (3.29)
1 2 11 21 11 21 11 21
- 3 - 2 2 _ - 2
e, ity 1B le, 4 12 -0f -]
+ilf 4+ if |R - i]f - if |2,
12 22 12 22

Equation (3.29) may be written
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4 £, of, = (f1-+f2) -(f1-+f2) - (f1 -fa) -(f1 -fa) (3.30)
+ 1(f1-+1f2)- (f1+-1f2) -1(f1 -1f2)- (fi- 1f2).
Integrating both sides of (3.30) from O to ® gives
o0 o0
j; 4f £ dt = J; (£, +£,) - (£, + 1)) at (3.31)
oo
- [l - g) e (g - £y) at
o]
o
+%fo (£, +1f,) ~ (£, + if,) dt

+
Let g bhe the transform of le1 sza and 9,5 9, the

transforms of f1 and f2 respectively.

[+a]

ab) = [ e e+ ce, 1) - 9lt,n) dt

-0

oo

o) = ¢ [ £ (1) blt,n) dt +C, [ ) e e, at

-0

g(n) = Cg,(x) +Cg,(0) . (3.32)

Now (3.32), (3.31) and (3.17) imply

(=]

4J“O )£ (8) dat = [ Jg (0 + g, (012 ()

-0

- [ Te ) - g, (012 de(n) +
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+ i I lg, (W) + ig, (M2 dp(2)

- 00

==}

f la, (\) - 19, ()| dp(N) ,

1
[N

4]0 £(t) £, (1) dt = 4[_00 9,5,0p(A) .

With {3.26) established the remainder of the proof follows that given

for the second order scalar case in [2].



CHAPTER IV
THE LIMIT-CIRCLE CASE

If L 1is in the limit-circle case at infinity, the circles
Cb(i) converge to a circle qm(ﬁ) as b= for each 4, Im L #0,
A point ﬁw(ﬁo) on the circle Qw(t) is the limit point of a sequence

m(fﬂpbjgﬁj),j-‘:l;;&,e”y with bj-’oo as j > w.

Let ms denote the function of 4 given by mj{ﬁ) = m(ﬂ,bj,ﬁj).

Let Pj denote the step function p,  associated with the condition

. at Db..
BJ J
Theorem 4.1.--Let mw(!io) be a point on meo) and {bj’ﬁj) a
sequence such that m(%o,bj,ﬁj) = mj(ﬂo) tends to mm(ﬁo) as j * e,

Then for all 4

lim o .
i mj(f,) = m (4) (4.1)
and
pON) - Blp) = 1lim Loy (0 - o ()] (4.2)
jo> o ]

at points of continuity X, p of ﬁu ﬁn is a meromorphic function of
3, real for real £, and with poles and zeros that are real and simple.
ﬁ is a step function discontinuous at the poles, L= lkg k=1,2, +.4
of ﬁw only and with a jump at N, equal to minus the residue of @n

at X,. the functions 4, where ¢k(t) = {(t, hk), form a complete
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orthegonal family in Lz(O,m)n If %m is the function defined by

5.0 =9t ) + A (2) $(e,d ), then

I
o

N
&

9,5, (=)
for all k. On the other hand, for ¢{5 where ¢£(t) = $(t,4),
[ px ] (o) # 0, AN, k=1, 2 o

Preoof.--Let

xj(t,£) = o(t,4) + mj(ﬁ) Yty L) s (4.4)

then Green's formula yields

b,
J
IO Eij(t,ﬁ) . X (tsio) - xj(tyﬁ)- Lij(tsﬁo)] dt

]
= Dxg ) % (80 10k,) - [xj(%) X (4 0100) . (4u5)

Since xj(tyﬁ) and Yj(tgﬂo) satisfy the same boundary conditions
at b,
J

[xj(tg{) ?j(t9£o)](bj) = 0,

Therefore {4.5) becomes

b,
-t [ T e Filad) dt = - Dylad) 5562010, (4.6)
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- D) %,(4)1(0) = P(0)({p,(0,2) + ms(4) 4, (0,4)} (4.7)

x

{¢I(O,£O) + mj(%o) ¢I(O,%o)}
- {900, 4) + m,(4) 4 (0,4 }{o,(0,4)
+m (2 $,(0,4)3)

Since 4 and g satisfy the initial conditions (2.8), (4.7} becomes

J 0

- D) %8 ))1(0) = mj(ﬁ) - m. (4 )
Using this in (4.6) it is seen that

b.
() - m(d) = (- 1) j T xs(t,d) %y (2,2) at (4.8)

O

Putting [4.4) in (4.8) results in

b.
mj(ﬁo) + (- 1) j I oty L) x;(t,2,) dt

m. (L) = o —

J b,
1- (8- 2) [ 7 g0 xy(t,2,) at

o}

The remainder of *he proof, except for the orthogonality of the ¢ﬁs
which will be proved later, is essentially the same as in the proof for
the second order scalar case given in [3].

et D denote the set of all functions wu such that

(i) u is differentiable on 0 <t £ b for all b <e,
(1i) u and Lu e L3(C,m) ,
(iii)‘ul{O) cos d - uE(O) sina =0,

(5v) [u¥ =) =0 .
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Let
Eﬁi{t,ao> oy (1l) 4y (1) gngor,ﬁo)) .
t
¢2(t,£0) %xi(T:EO) wz(tgﬂo) %nzor,ﬁo)
é(‘tgﬂ[:,'ﬂo) = < (4.9)
s (mh ) Sogbmd) 4 (o) gwicw,ﬁo)) .
N T
Dol Rl gl S )
Let
Gl(tﬂ:,'go) = é{t,r,%o) t <1,
Gz{tﬂ:,'ﬂo) = é{‘tp'r;,'go) t>2T.

For any f & L23(0,o) let

1l

J'w é(t,1,£o) f(t) dt - (4.10)
o]

a(t) £(¢)

The integral in {4.10) is absolutely convergent since f, v and %n

are in L2(0,»).

Theorem 4.2.--For any f & L2(0,®) the function
u = a(%o)f eD and (L - ﬁo)u = f. Conversely, if u € ﬁ, then

f = (L - £O)u e L2(0,%) and u = aiﬁo)f.

Proof.--To prove the first half of the theorem let u = §(£o)f; then

wo= L] Stmd) fa) ar = L] o (tmd) fx) oo
o t

+

L fo ’-Gz(t,'r,'go) f(t) dt F)
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= =]

Lu = j; 16, (t,m,d,) £(x) dr + j LG, (tyw,d) £(7) dv

+ Po(t) [- GI(t,t+o,£o) + Gz(t,t-o,ﬂo)] £(t) ,

= =]

ﬁo( It Gi(tm,ﬁo) f{r) dr + jot Gz(ts'ﬂ'"ﬁo) f{t) d'c)

{1

Lu

+ Po(t)[Ga(t,t-o,£o) - Gi(t,t+o,£o)] £(t) . (4.12)

From {(4.9) it may be seen that

G2(t9t,£o) - GI(tyt,ﬁo)

// 0 - Otoalts ) b (t,8) - % (t,4) wg(t,ﬁo):>
0

oot ) (T2 ) - %y (8,4 ) 9, (8,2 )

o - 1/P(t)[x $(t)
G(tyt,d) - G lt,t,d) = . :)
1/P(t)[x 31(t) 0

Green's formula gives
[ 31(t) - [xT1(O) = o,

From the boundary condition that ¢ and ¢ satisfy [x §$1(0) may be

calculated.
[x §)(0) = P(o)({¢ (0) + mgp, (0} }y (0)-{e, (O -+n&#1(0)}¢2(0)) ,

[x $3(0) = P(0){p,(0) ,(0) -g,(0) $(®)} = 1.
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Therefore

- = -1
Gz(t,t,)&o) Gl(t,t,ﬁo) P- (t) . (4.13)
By using (4.13) in (4.12) it is clear that
Lu = du+f.
0

To see that u & D observe that (1) has already been shown.
u 1is in L2(0,») since ¢ and x are in L2(0qo). Since Lu = %;r+f

and f g L2{0,o) then Lu & L2(0,») and u satisfies (ii).

6 (0 = [ 9,04 5,610 £ @) (4.14)
o]
[0,k ) £ (@) v,
u(0) = jo $,(0) 3_,(x) £, () de (4.19)
[T ,00) R0 £ () ar

From (4.14) and (4.15) and the fact that 1 satisfies (iii) it is

clear that u must also satisfy (iii).

u (=) = jo b (1) Xy (=d) £,(0) o (4.16)
—j byltst,) Qmiﬁm,ﬁo) f,(g) dv
o}
U2(°°) = fo 1131(1:) 3\<m2(°°,£0) £,(1) dr (4.17)

- [ amd) Rl ) £ (x) or
0]

2
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u@) = ) [[ o (md) £ ar - [ aylnd) f0) o,
0 o]
u®) = C g (=) . (4.18)

From (4.18) it is clear that

1]

[ (=) = [Cixx]1 = cli3 le.

0 and consequently u satisfies (iv).

M

By theorem 2.2 [x x J(e)
The second half of the theorem will now be proved. Let u € )

and let f = Lu - %ou. Then f € L®(0,®) and from the first part of

the theorem a(ﬁo) f is of the class D. Thus if w=u - §(£o) £

then w g ) and

Lw = Lu-L §(£O) f = Lu - %Oa(ﬁo) £ -f,
Lw = Lu = ﬂoé(go) f-Lu+t £OU P

o= 2u-250) ¢ = Llu-588) ¢ = Lu.

Hence w = Cu + 02%” for some constants C; and C,. Since w

satisfies {(iii)
[Cpp (0) + Cpx  (0)] cos a - [Cp,(0) + C % (0)] sina = O,
and since % satisfies (iii) there results

CBEQWI(O) cos o - 3&,2(0) sin a] = 0.
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il

Unless c2 O then %n satisfies (iii). If %n satisfied (iii) then

since %m =¢+m Y, ¢ and ¢ would satisfy (iii), but this is not
possible since ¢ and Y are linearly independent. Thus Ca = 0.

Since w satisfies (iv)

[k 1) = [ d(=) = C[¥k](=) = 0.

From the proof of theorem 2.2 it follows that, if ﬁx ig the

center of the circle qm(ﬂo), then

[pvl(e) + m_ Luylle) = ©

and the reciprocal of the radius of qn(ﬂo) is

|Cpyl()| > O

[yx 1) = [ple + m, $)]()

[p% D) = [yod(ew) + m_ Cypl(e)

3r]

Lok 1) = -8 Lypd(e) + m Copdleo)

0

Thus [¢§w](m) # 0 and therefore 01 = 0 and the theorem is proved.

Theorem 4.3.--The boundary value problem
Lx = 4x, cos a x,(0) - sin a xz(O) = 0, [x QMJ(M) = 0

is self-adjoint; that is, for all u and v of class D
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J (Lu «v dt = j u-{Lv) dt . (4.19)

Progf.--

(4.20)

f
(@]

- v, (0) [cos a u {0} - sin a uy(0)]
u(0) [cos a v 10) - sina vz(o)] = 0. (4.21)

Addition of {4.20) and (4.21) gives

which implies [uv](0) :- O so that Green's formula implies (4.19) is

equivalent to

[uv]{e} = 0O - (4.22}

From thecrem 4.2 there exists f, g & L2{(0,) such that u=g(L) f

o]
and v == 6(%0) g .
s = 3@ [ 9w 0 e - [ 90 50 o)
(0] e}
u(oo) = Cl;(m(OO) . (4.23)
Similarly
vim) = Cok [w) . (4.24)

From {4.23) and (4.24) it is clear that

[uv](e) = [Cl§mp2%w](m) = Clazfan%n](m) = 0.
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Thus (4.22) which is equivalent to (4.19) is established and the theo-
rem is proved.

Since ¢k satisfies (4.3), ¢k is of class D and (4.19)
shows the ¢k's are orthogonal, thus completing the proof of theorem

4.1.



CHAPTER V

SINGULAR BEHAVIOR AT BOTH ENDS OF AN INTERVAL

In this chapter the coefficients in L will be assumed to be con-
tinuous and the nature of the problem, as both ends points of the interval

under consideration approach infinity, will be sutdied.

Ix satisfying

I

Let wl(tyf) and ¢2{t9£) be solutions to Lx

the initial conditions

P2(0) 9,,(0,4) = 0,  P#(0) 9,,(0,d)

"
—
Ll

(5.1)

1
@]

1

P%—(O) :Plg(os‘g) 1, P%(O) @22(0,*&)

Let &: a £t < b by any finite interval containing zereo, and

consider the self-adjcint boundary value problem on b:

Lx = 4fx
cos a xi(a) - sin a xz(a) = 0
cos B x,(b) =~ sin B x,(b) = 0 {5.2)

where 0 < q,B <.
From [5] it may be seen there exists a sequence of real eigen-
values {kbn}s n=1,2,... and a complete orthonormal set of eigen-

functions {hbn}° For any f & L2(a,b) the Parseval equality holds.
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2
[ o) s e = | e ng(0) at] (5.3)
n
b n=1 &
If f ., f, € L2(a,b) then by (3.26)
o0
f £(t) - £,(t) ot = Z (f £ oh, dt) (j £+ hy at) (5.4)
5 N/ 5
Since P59, form a basis for the solutions of Lx = {x
hbn(t) = Toni q)i(t’)\bn) * Tyng q)2(t’}‘t’n) (5.5)
where r, . and Tang ATE complex constants. Placing (5.5) in (5.3)
the Parseval equality may be written
o 2
J" FL.of dt = j Z Gy () 9y, (M) dpy (M) (5.6)
o) -0
Jak
where
gbj = Ib f(t) °q)j(t9?\) dt, J= 1,2 (507)

The matrix p, = (pbjk)’ called the spectral matrix associated with

the problem (5.2), consists of step functions with jumps at the eigen-

values Kbn given by
PoikPon TO = Ppjklhe, -0) = E:rbmj Tamk, (3,k) = 1,2 (5.8)
where the sum is taken over all m such that xbm = kbn since there

may be more than one h correspending to A

bn 5n’
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Let Pb(x +0) = Pb(x) and Pb(O) be the zero matrix. P,

possesses the properties:

(i) P, is Hermitian,

&

(11) P, (&) =P, (n) - P, (u) is positive semidefinite if

b
Ao (b= (-0,
(1ii) The total variaticn of ijk is finite on every

finite A interval.

It will now be shown that as & = (-m,0) there exists a limit-
ing matrix p having the properties (i) through {iii).
Let x =@ +me, bea solution of Lx = Ex {(Im £ # 0)

satisfving the boundary condition
cos @ x (a) - sina x,(a) = O {5.9)

and similarly let A + mb¢2 be a solution of the same equation

satisfying

cos B x {b) - sin B x,(b) = O . (5.10)

Green's matrix for the problem {5.2) is given by

2

G, (t,1,4) =
r_ 1 (xal(t"g) Xbl(’ﬂ,'ﬁ) Xal(ty‘g) ng(T)£)> ¢ <
W N ) s s (60 (b
\ (5.11)
1 (Xal(ng) Xbi(tsg) xaa(ng) xbl(t’£)> -
a8 - w40 x (6,0 x () x, (£,4)
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(" x_(t,2) x,__(0,4)

i b1
om0 S
fi(t) = <
xb(ty’g) Xal(O,fa) -
o t
- m, (4) - my(£)
(ty4) (0,2)
X xbz ¢ <o
m (2) - m_({)
f{t) =
Xb(ts'ﬁ) Xaztoﬂ'{'/) 9 £ >0
m (1) - mb(ﬁ)

Note that f2 are the first and second columns of Gb(t,O,ﬁ).

1.‘3

The completeness relationship (5.4) applied to the functions fj and

f vields
Ib firfdt = ngl (J; £y - hydt) (Ib i+ by, dt) (5.12)
£, 08 = 9 (0) ¥m 5 (0) = n_ /P#(0)
x,(0st) = 9 (0) +m o (0) = 1/P2(0)
% (0,1) = ¢, ,(0) +m g (0) = m /F¥0)
%, (0,0) = 9,(0) +m g, (0 = L/6% (0)
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[x,%,0(0) = P(0) [x,_(0) %,,(0) = x,,(0) %,(0)]
[x,x.1(0) = p(0) { S, ) =-(m_-7,)
b p8(0) ¥%(0)  p2(0) PE(0) b
[x x,3(0) = P(0) [ (0) X, (0) - x, (0) X_ (0)]
[x x J(0) = P(0) (—i-i) = - (m - 7)
a’a p(0) p(0) a a

Using the above formulas and Green's formula the integrals in {5.12) can

be evaluated.

1 mb o}
‘Jlfl-fzdt':— T — T J x_ « % dt
3 B2 (0)lm_ (£) - m_(£)] P2(0)(m_(£) -m (D] Ta 2 2
m b
+ _%_ . T = J Xb Xb dt
PE(0)Im_(£) = m (2)] PE(O)Im,(4) - m (£)] "o
f 1 ( a b )
f, - f dt = - ° dt+ . dt ).
5 1 2 P(O) |ma(£)rmb(£)[g mb J\O xa xa ma jo xb xb
2i Im 4 f ) X 0 X dt = [xaxa]{a) - [xaxa](O)
0
a
23 Im&f x tx dt = - (@ -m)
o :

a
2i,1m£j x +x dt = 2iImm .
o a A a



Jo X%, dt = — A (5.13)
b Im m
JO X, %, 4t = T (5.14)
[ fg- fpat = - = m Imm -mImm (5.15)
5 P(O) |m (&) -m (4| m & ° o b T8
1 o b
fbfi ‘hy, dt = P%(O)[ma(fﬂ) Y (mb fa x7hy dttm fo X, hy  dt )
[x h, 3 (0) = P(0) [xaz(o) hbnl(o) - xaI(O) hbnz(o)]
= 1 ?bnz _ M Ebm. _ = _ -
[Xa hbn](o) = Pp(0) (P%(O) P%(O) P%(O) P%(O)) = Tenr T My Tang
[xb hbn](o) = ?5’12 - my ?bni
o]
(4 -5y fa x, o hyodt o= [x by 20) = T, - T,
Ao-ng) jb fivhy,, dt
1
= W { -
e [n (2) ~mb{£}]) (mglry a0} = m, L, g 100))

m o o-m ) T
W I
(L - ;\br) I fI hbq dar = %a b na
oy p2{0) (m, - m )
T
‘&ni
f h d* -
1
Jy e 20) (4 - a,) (5.18)
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2 -l
P(0) |ma - mb| Im { N

T
bng
f f - h, dt = - (5.17)
y 2 on pE(0) (4 - M)
Using (9.15), (5.16) and (%.17) in (5.12) with j - 1, x = 2 results
in
I _ I o0 -—
ma n mb Ty A0 ma Z: Tont Tang
=1

p(o} |4 - xbnla

Im M

iz ® __EEEE__
Im 'ﬁ " j‘-oo \7\ - %le
where
M12 = é‘ [ma('ﬂ) + mb('ﬂ)][ma(’ﬂ) = mb(»g)]-l M

Further similar calculation shows that

J % dpy .\ (M) ) Im M, . (£) (5.18)
-0 % - 2|2 im £

where
M -

s = [ () - m (D]
My, = 5 Im (8 + M (D)Im (4) - m ()11
sog = My(4) m()m (£) - m ()17,

Using formulas (5.13) and (5.14) it may be argued exactly as in the

scalar second order case that
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w |dp, . {0 |
Peait
- o 1+ hz

where K 1is some constant. The Helly selection theorem may be applied

since on any finite interval is of bounded variation and hence

Pyik
may be written as the difference of two non-decreasing functions. As
in the proef of theorem 3.1 it follows that there exists a sequence of

b ], & = {-e,0), and corresponding boundary con-

intervals & = La
n C n?¥ “n n

ditions prescribed by a ., B s such that pbnjk(k) tends to a limit
pjk(kl as n = o, The matrix p = (pjk) possesses the properties (i)
through {iii).

If L is in the limit-point case at =-o and e, p is unique
since 1n this situation koth m, and my tend to points m_ . and
m_ and we have the following theorem,

Thecrem 5.1.--Let L be in the limit-point case at =-e0 and

® ., There exists a non-decreasing Hermitian matrix p = ( whose

ij)
elements are of bounded variation on every finite A intervaly and

which is essentially unique in the sense that
Pagit™ " P T oy (N e lu)s (82 (o) )

at points of continuity A, p of Pk Further

A
L0 - g, = 1im 4 Im M, (v + ig)d
Psk ) ka(p) s':+0 - Ip m Jk(v ig) dv

where


http://in.te.ival
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In () + m_(0)10m (&) - = (1)1

N =

=
A4
1

n B m () [ () - m (D]L.

Since the existence of 4 limiting matrix has been established a
completeness and expansion theorem analcgous to that of theorem 3.1 may
be proved by an argument which parallels that in the proof of theorem
3.1

The spectrum associated with a problem for which p is uniquely
determined is the set of all nonconstancy points of p. The pecint
spectrum is the set of all discontinuity points of p; and the con-
tinuous spectrum is the set of continuity points of p which are in
the spectrum. Points in the point spectrum are called eigenvalues and
solutions of the problem for such points are called eigenfunctions,
Everv eigenfunction is of class L2(C y0) for a boundary value problem
on '0,0) and L2{-ew,c0} for a boundary value problem on (-oo,e0),

Consider a boundary value problem on O <t < e which has a
spectral function p and let X be in the point spectrum. Define

£l) = p(t,h) for t < a and f:= 0O for + > a, Let
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[ s s ae > 19 G012 [ + 0) - ol - 0)]
a

Q
j (£(t) « £{t) dat > j

0 o)

3

£(t) « w(t,X) dt’z T (5.19)

where T 1is the Jump at %. Because of the way f  was defined (5.19)

becomes

e~

I plt,%) - ple,X) at 2 T (J a]xp(t,,')l') cp(£,R) dt)2
0

A
_f Bt N) = p(t,X) dt <

o]

(5.20)

H =

Since a is arbitrary (5.20) implies ®{t,\) is of the class L2(0,00).
Now consider a boundary value problem on - < t < o where the
limit matrix p has a discontinuity at A = N. Let the discontinuities

of prys Prgy Ppg ANd py, at A obe d ., d oy d, . and d

respectively. From (5.5) it mavy be seen that a solution to the problem

is
- T o~
hm(t) ma Qiﬁtykg tr, ¢2(t9x)
and that s
~ _ ro ) _ {N _ _ . _
dpy V) = py (N v 0) - p (R - 0) ) T3 Tk -
m=1

~

The sum over m 1is necessary since corresponding to A there mavy be
two linearly independent solutions of Lx = nx satisfying the given
boundary conditions at infinity. Thus in general the matrix

p(i + Q) - p(i - 0) may have the form
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N N dyy  9gs
p(h+0) - p(h -0) = (5.21)
d d
21 22
Ti1T11 ¥ Ta1Te; TisTio ¥ TaiTas
T .+ T r.. T, +tor . T
T12T11 ¥ TapTag 1212 © Ta2Ta2
Since % 1s real and the boundary conditions that hi’ LI
?, satisfy are real 1t may be assumed that the Ty are real and
{ i i Fhs .
from (5,21) it is seen that d12 d21
2 ot d ' b *
dis T TipT13711%12 Y ToaTo1T11Tee T T1aT11%21T22 T TaeTarTa1Tas
d;,d,, T Ty1Ty1T12T12 T 1171175070 T To1Tp1T1pT1g ¥ To1To1TosTop
2 . - r -
dig9 "9 ™ T1iT11Tee e T T22T12721T12 T TeeT11Te1T1z T Ta1T12T21T1s
2 _ — o 2
411959 7 dip (ri47gp = Tp1T1g)% 2 O (5.22)
Thus
42

£ d a4
1z = 11 22

2 Y oz .
If d12 < dlld22 (5.22) implies that r,, and r,, are not
both zerc and therefore two linearly independent soluticns correspond
to A. To show that the sclution or solutions are in L2(-eo0) it will
ke assumed that only one solution corresponds to N The proof for the

case where twc solutions correspond to A 1is similar. (5.21) now be-

comes
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2

~ ~ d11 diz 11 T11T12
p(A +0) - p(x -0) = =

2

diz 9 TieP1s  Tip

ryy 0 ftoA e (BN

Let f{t) = h{t) for [t| <a and f£:=0 for [t| > a; the

Parseval equality applied to f vyields

o) o) 2
Jofw s e = [ ) 500 9,00 dpy (V)
- -0 jsk:j_
where
=]
ain) = [ (1) "y (t:n) dp(n)
-co
o 2 o N N
f £(t) - £{t) at > E: gj(k} g, (M) [pjk(h +0) - pjk(k - 0)]
-0 jﬁk:l N
a a
2
j £(t) = £{t) dat 2 d, (j £.g, dt)
-d -3
a . a a 2
+2c&2(£af°¢1dﬂ(jlaf-¢ dﬂ'+¢g<J' £ ¢2dQ .
a 3 a
2 n
2 J_a @0y Ot +2 1 T, f 99, dt + 12, jl 9, 9, dt (5.23)
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. a Aa
T2 Tyy (I_a Tyg 9@y dt I_a T1g P20 Py dt)

a a
x (f_a Tyg Py 9y dt f_a T2 P27 %y dt)

4 a 2
T (.J- Tyq g @, dt j_a Tig P57 93 dt) .

By carrying out the operations indicated in {5.23) it may be seen that

f i £(t) « £(t) dt > (J : £(t) - £(t) dt)2

-a -a

which implies by the definition of f{ that

and since a 1is arbifrary h is therefcre in the class L2(-oo,),



CHAPTER VI

SYSTEMS OF N EQUATIONS

Consider the problem

0

A
=
=
"
=t
=
o
or
=
il
=
=
P
o
+
=
=
P
(o2
S
it

where

% denotes the interval [a,b], P0 and P1 are n-by-n matrices of con-
tinuous functions on a £t £ b. Assume L = Lt, that is, Po + PE =0,

Pé =P - P?. Assume M and N are n-by-n constant matrices such that

for any u, v € c¢'[a,b] satisfying Bu = Bv = 0

It has been shown in [5] that the eigenfunctions {xbj} of the self-

adjoint problem 1 form a complete orthonormal set.

)

Suppose that the interval under consideration is ({c,d] where
either ¢ or d or both are infinite or else the coefficients in L
have sufficiently singular behavior at one or both end pcints so that
the treatment given in [5] does not apply. The Parseval equality for

i
Ty LS

Ib u(t) «ult) at = i
k=

=

f u{t) - Xy, CIt (6.1)



where u & L%(3). Let ¢j (j = 1,2, +.., n) be solutions of Lx == Lx

which for some fixed ¢, a < c < b1 satisfy

¢jk(c9£) = Biys (35k = 1,2, ouuy 1)
where Ajk is the Kronecker delta. Since the P are independent
solutions
n
{ ) I . a’
X Z Tysi P3ltadgy) 6.2)
j=1

where the r are complex constants. Using (6.2) in (6.1) Par-

bkj

seval®s equality becomes

12
va

b o
Y oy [ . a {
j. uft) «ult) dt j: Ej gbj(x) T (M) dpbjkkl)
E w
Jsk=1
where
{ . [+ . (t,
gbj‘?\) J‘b u\ﬂ) l\.j.tﬂ\) dt

) consists of step functions with discon-

and the matrix Py = (pbjk’

tinuities at the eigenvalues. The jumps at the eigenvalues are given

by

Ceii Iy o—0Q) = Vo T
Posklhy © 00 = pygihy - O) ). sm3 Tomk

=%\, - The matrix

where the sum is taken over all m such that 3p

bm
Py has the properties (1) through {1iii). The following theorem estab-

lishes the existence of at least one limiting matrix p as & = (c,d).
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Theorem 6,1 .--Let {b} be a set of intervals tending to (ng}

and {Bbx = O} a corresponding set of self-adjoint beoundary conditions.

Then {b} contains a sequence {bj} tending to (¢,d} as j = @ such

that
p(\) = Lim pbj(x)

J7e

exists on ~o < x <. Moreover, the limit matrix p satisfies {1)
through [iii).

Proof .--Taking into account the way Paik is defined
" lapy,,l = Famerl = V) Imgl 15
Jl g E:Z:‘rbmjg Tomkd' ZJEI Tomid! ' Tomkd
K {m 2 m

where the first sum is taken over all 4 such that

-p < ;\b,ﬂ<p‘9

{ - |7 2 N

Therefore

2lrbmj£l [fbmk£| S (rbmj£12 * lfbmkﬁ\zo {6.4)

Using (6.4) in {6.3) gives
B H B
/ .
2 Jln ldpypl < jlu dpyysin) Jl“ dpak M) (6.5)

In view of the Helly selection theorem it suffices to show there exists

a continuous noanegative function H{\) such that



loggn € HOV

and because of {6.5) it may be assumed j = k in (6.6)

The functions ¢, are continuous in (t,n) and at t

are equal to Thus, given p, there is an h > 0 such that

jk*

( - L .3

for ¢ S t<c+h and x| < p. Let f be a nonnegative scalar

function of class ¢’ on (cy;d) wvanishing outside of (c, c+h)

normalized so that

n

Jc+h
f(t) dt = 1, J

c l;, csoy n

Define the vector function fm to be

fm(t) = f(t) b
where

o)
mi

5 =

m

o)
mn

The Bessel inequality applied to f£ gives

c+h boo
jc fpe fpdt 2 j_ Z gj(k) g, (V) dpbjk(k)
s Jsk=1

55

(6.6)

(6.7)

and

(6.8)
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where
cth
gkU\) = j f£ P dt .
C
From {6.7) and {6.8)
cth c+h
g M) - 8y = f £ 0, dt-j £y 6, dt
Cc C
o, (N - a5l < T EE - by < g0 (6.9)
Using (6.9) in (6.8)
cth " n 1 1
IC fp-fp ot 2 I_p L (g=- bj%) (52 - 2) Ao 5 (M)
Jsk=1
cth i) n. 1 -
IC fprfpdt 2 f_ ‘éér?{ Z g3 - EoF Z ISR
ik k=1
n
l 31%5 Z dpysgM) + dpypp(V)
j=1
cth 0 K 1 n
AT N
¢ B B k=1
“' n “ n
-2 [T ) a1 g [ ) ldpygpa)]
“H k=1 T j=1

cth B T n
[ e 2 f_p WPppp " Eélﬁf_p 2r J-Zl dPrys T



o7

m B

il B'rl?f ndpypg Bﬁ"' .r_ Z IPokk

=1
L ok T
B -é-ﬂ-EJ. ndpb'u’/ T 6n j_p Zu dpb_‘jj
cth 1 ® L L 1 boT
fc fprip ot 23 f_p W0 - (o2 * a7 * &0) f_p J_Zi %533
c+h 1 ,,p, 1 p, n
JC fpfpet 2 g ) dny ] ) P
o poJ=t

Summing from L=1 to £=n gives
n

n o2 Zlibru Z oyl
W L=

Thus it has been shown that given a | > O there exists a M(p) <

not depending on & such that for [k[ <1

To obtain a continuous nonnegative function H(\) such that

(] ¢ =Y .

|"z>jj

Choose p = 1,2,3, ... and construct a continuous function H(\) such

that H(A) increases as |A| increases and such that
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H(O) = M(1)
H{x1) = sup {M(l), M(Q)}
H(xn) == sup {M(k), k= 1,2, 200y ntl}

Defire the space Lg(p) as the set of all vector functions

g = (gj) 3 =1y »..5 0y which are measurable with respect tc p

and such that

lol = [ .;1 9,0 T, () 9, 0) < .
Jg K=

Since the existence of a limiting matrix p has been established
it is possikle to prove the following expansion and completeness theorem

in the same maaner as the covwresponding 2-by-2 theorem was proved.

Theorem 6.2.--Let p be any limit matrix given by Theorem 6.1.

If f & L%(c,d)} there exists a vector g & L2®(p) such that if

9%y = Ia flt) » ¢j(t9x) dt, b < (c,d)
then

Il g - gb||* 0 as &= (c;d) .
In terms of this g, the Parseval equality

2
~fdt = flall®,

—
"h

and expansion



- jyk:l

¢j(tsx) g, () dpjk(k) .
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CHAPTER VII
HEAT CONDUCTICN IN A COMPOSITE SCLID

Let Figure 1 represent a scolld consisting of n long slender rcds

of the same unidorm cross section joined at a common point O.

Figure 7.1

Ag an illustration of the possible applications to physical preblems
of the theory just developed, the problem of heat fiow in the solid
described by Figure 7.1 will be considered. A number of other physi-
cal problems involving a boundary value problem for systems of differ-
ential equitions mav be found in [8], [9], and [10].

Let the temperature in the solid be given by the vector function

Ul x,t) where
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. .t .
U (xgt) = +the temperature in the J'h rody, J 77l wooy N

and x 1s the distance from the point O. Consider first the case
where the rods are of length bk and let the ends and lateral surfaces

of the rods be insulated. This gives the boundary condition
du A
Ay (byt) = O. (7.1)

Since the rods meet at 0O, the femperature in all the rods at this

point willl be assumed to be the same and the second boundary condition
U (0,1} = U {0,t), kyj = 1y vowy T (7.2)

is obtained. The last boundiarv condition arises from assuming the
Junction at 0O holds no heat; therefore the to*al flow of heat into

the jdunction must be zero and thus

n

Ou
Z - kA= (0,t) = © (7.3)
j;z::l

where k 1is the thermal conduciivity and A the cross sectional area
of the rods.

Assuming the Initial temperature of the solid fo be given by
Ulx,0) = f(x), 0<x<bh
fj.(O) = fk(O):, kg = 1y wuway n

and asking what is the temperature at any point in the solid at any
fime t; leads to the mathematical problem of solving the system of

partial differential equations
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2
oGy -
T TR 3= 1, wuey n 7.5

subject to the initial and boundary condifions

au.
8u . — _
A% (byt) = 0, 2: -k A Ax (0,t) = 0O,
j=1
(7.6)

U].{O,t) = Uk(opt),, Kgd = 1y nooey 1

p is the density of the rods and C 1is the specific heat of the recds.
ps C, and k will be assumed constant and the same for all the rods.
Separating variables in (7.5) leads to the problem of solving

the system of ordinary differential egquaticns

x] + £2x]. = 0, 3= 1y aney N (7.7)

subject to the initial and boundary conditicns

n
{ =T =
Z x,(0) = o, x,(0) = x(0),
=
(7.8)
x%ib) e x;(b}g ok = 1y waey N
Now let
Ya3-1 = st gyzj = x}i 35 1y aeey
and there results the problem
Py = dy, My(0) + Ny(0) (7.9)
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where PO is a nonsingular 2n-by-2n skew Hermitian matrix and M and

N are constan® 2n-by-2n matrices.

2]
&

The problem of heat conduction in the sclid of Figure 7.1 where
n = 2 c¢ertainly reduces to the problem of heat conduction in a single
rod. However, this problem will be studied in detail since it adequately
illustrates the method withou* being unnecessarily complicated. Con-

sider the problem of heat conduction in the solid depicted by Figure 7.2.

-1
’J_— -:7

it X ]

Figure 7.2

The solid may have any cross section; as has been mentioned before;
however, a sguare cress sectlon has been drawn in order to provide a
simpie illustration.

From what has already been done it is clear that the mathematical

problem consisting of the system of partial differential equations

du. Cp 82
= = — — = 1,2 (7.10)
a.t k a“( Y %] 9 “
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subject to *the ini*tial and boundary conditiocns
6u1 6u2
P (0,t) +aT(oyt) = 0, U,(x,0) = £,(x]
U o,t) = U 0,t) {7.11)
duy 6u2 ,
e ‘b,t) = ™ (byt) = 0 Uz(ng) = fa(x)

results f-om considering the problem of heat conductlon in the solid

shown in Figure 7.2. Assuming
Ui(xyt) = x 0x) T(t)

U {x,t) = xz(x) T(t)

and separating variables in (7.10) leads to the system of ordinary

differential equations

N 2 i 2 [ CP£2 - {
o+ BB = 0, x; + 3%, = 0, T'+—F—7T1 =~ 0 (7.12)
subjecht to the initial and boundary conditions
«' (0) + x,(0) =0, x,(0) = %,(0) =0, xi(B) = x(b) = 0. (7.13)

Now let y, = xg, £y2 = xi 5 Yg & Xg £y4 = x; and there results

the probliem

Py =y My(0) + Ny(0) = O (7.14)

where



0-1 00 0 1 0 1 (c 0 0 0O
1 00 0O 1 C-1 © C 0 0 O
Po “lo 0 0 -1 M= 10000 ¥ = lo 10 0
0 0 1 O 00 0 0 0 0 C 1

To show that the problem (7.11) is self-adjoint let R and §
be vector functions of the clsss ¢ on 0< t <b and satisfy the

boundary cenditions of {7.11). Green's formula gives

b b _ _
‘f LR «S dt = j ReLS dt = Rl(t) Sa(t) - Ra(t) Sl(t)
[0} Q
_ _ b
- Rylt) 5, () - R (1) S,(t)
0
Rz(b) = R4(b) = Sg(b) =S,(b) = 0

which implies

R1§2 - Re§l + R3§4 - R4§3 !b = 0
R,(0) + R, (0) = 0O, R,{0) - R {0} = 0
s,(0) +s,{0) = o, s,{0) - 540} = o,
- RS, -RS, = 0 R,S, -RS, = O
RS, + R3§4 = 0, R4§1 - R4§3 = 0.
Addition of the abcve equations yields
R,S, - RS, + RS, ~ RS, | .
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Therefore the problem (7.11) is self-adjoint.
The first two equations of (7.10) imply that the solution of (7.11)
has the form

y, = C, sin Ix + Cy cos £x

y, = C, cos Ix - C, sin £x
Yg = CS sin 4dx + C4 cos 4x
y, = C, cos bx - C, sin Ix .
The boundary cenditions give
1 0 1 0 C1
cosoﬁb -sinlﬁb g -; z: =0 (7.15)
C 0 cos £b -sin {b Cyq

The determinant of the matrix of coefficients in {7.12) is
2 sin 4b cos £b. By setting this determinant equal to zero the eigen-

values 4 are easily seen to be
{ = oh n=0;+1,42, ..

If n 1is even then C, =C_ =0 and C2 = C, so that corresponding

1 3 4

o %% there is one eigenfunction ¢na
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cos T

N n
= 51N . X

If n 1s odd then Cp =C, 0 and Cy :: - Cgy so that corresponding

ng . . .
+o b there is the eigenfunction

. n
- 81ln 7T X

Cov-esponding to each eigenvalue 4 = S Y F %1y £2, ... there is
the eigenfunction xn(x) where

nx .o
xn(x) = cos o ¢n(x) +sin @n(x) .

Completeness of the sequence {xh[x)} in the space of vector func-
tions with four components implies completeness of the sequence

{;q(x)}y where
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~9 _ ﬂ L . QT—[
xn(x) = Co0s 5 ¢n(x) + sin 5 ¢n(x)
co oz X in ax X
> 2p St oy
b (x) = g () =
cos oz X - sir LU X
2b " 2b

in the space of vecter functions with two components.

The seclution for the finite interval may be written as

= Cp?\zt
Ut = [ e Tk g, 00 Flxh) dpy,(0)
-0
2
o Cet t
+ Jlm e 95 (0) 9060) dpy(n)
where
COs AX - sin Ax
$(Xsl) = { 3 ¢(Xsk) =
cos AX - sin Ax
b b ~
a0 = [ £ - F0on) ax, g = [ Ex) Bl ax
o} 0

and pp, 1s an increasing step funcilon with a jump of /b at

A= 2% s N =0, 2, 4, ..., and Pba is a step sunction with a
jump of 1/b at = %% s N = 1y % 3, 5, ..., pbj(O) =0, and

pbj(x +0) = pbj(x)o As b > it is easily seen that p,. > p.

where pj(K) = % » As b >0, gp,* g, and gpg * gy where
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o oo

g,(\) = J‘ £(x) < $(x,n) dx g,(A) = I £{x) » 3(x,0) dx .

o] o]

Let f be of the c¢lass LE(O,m) then in view of theorem 6.2 U(x,t)

for the semi-infinite interval may be written

(xs\)

<

U(x,t) = i J e k [( j f '$(x,k) dx)
+ ( I (x k dx) ;(X,K)] .
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