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SUMMARY

We use an integral equation-variational procedure to characterize
important quantities occurring in two distinct mixed boundary value prob-
lems of elastodynamics. In the first probiem we obtain a Tow frequency
approximation for the displacement of a flat rigid punch of elliptic
cross-section undergoing vertical oscillations on the surface of an
elastic half-space. In the second problem we construct a stationary
functional for the scattering cross-section for the diffraction, by a
plane Tongitudinal wave, of a fiat crack of arbitrary shape situated in

an infinite elastic medium. Results are obtained for a circular crack.



CHAPTER 1
INTRODUCTION

We consider two mixed boundary value problems in elastodynamics
and approximate their solutions by a variational technique. The first
problem utilizes an established variational formula, whereas in the
second problem we develop a new variational formula.

Both of our mixed boundary value problems can be analyzed in
terms of a linear, homogeneous, isotropic, elastic medium occupying a
half-space D, z > 0, with the plane z = Q0 as the boundary B. The
boundary will be divided into two parts, B, and BZ' The portion B1 will
be a bounded region, and 82 =B - B]. Each part will have different
boundary conditions prescribed.

Our first problem will be referred to as a “punch" problem, in
which a rigid punch, of elliptical cross-section and with flat base, is
forced to oscillate in contact with the boundary region B]. The oscilla-
iwt

tions will have harmonic time dependence e~ Keeping the load on the

punch of the form Poe-mt

» where P0 is constant, we approximate the
amplitude of oscillation of the punch by means of a variational technique.
We describe this problem more precisely in Chapter III.

Previously in three dimensions, punch problems, for several dif-
ferent modes of excitation, have been successfully attacked only when

the punch is circular and flat-based. A brief summary of this work is

given in {12].



Our second problem will be referred to as a "crack" problem,
in which two half-spaces of the type described are attached at the
unbounded portion 82 of the boundary B. In the region By, there is
an infinitesimal separation, called a crack. We allow a plane longi-
tudinal wave, which is normally incident on the crack with harmonic
time dependence e'in to be scattered by the crack, and we calculate
an approximation to the far-field scattering cross-section [1], again
using a variational technique. More details will be discussed in Chap-
ter IV. Previously, in three dimensions, the only dynamic crack prob-
lems that have been successfully attacked are those for the circle
involving some kind of symmetry.

Mixed boundary value problems lead to integral equations. 1In
the problems for the circular punch and the circular crack so far
discussed, the inherent symmetry has enabled the two-dimensional integral
equations to be reduced to those of one-dimension. By means of various
devices, it has also been possible to obtain one-dimensional (finite)
Fredholm integral equations of the second kind which have either been
solved numerically or approximately in terms of expansions involving an
appropriate non-dimensional frequency parameter. However, when the shape
of the punch or crack is an ellipse the corresponding two-dimensional
integral equations cannot be further reduced. For this reason we do not
attempt an analytic attack directly on the integral equation, but rather

we obtain an approximate solution through a variational technique.



CHAPTER 11
BASIC PRELIMINARIES

For our elastodynamic problems the governing equations of
motion of the half-space D is a system of elliptic partial differen-
tial equations. In order to motivate the initial steps of our attack,
we indicate some comparisons with a more familiar elliptic partial dif-
ferential equation, namely the Helmholtz equation in an exterior domain.
We then develop some preliminaries that are common to both our problems.

In cartesian coordinates, the wave equation has the form

8(P) + 0, (P) + 0, (P) - o (P) =0, PeD, (M)

y A
C

where P = (x, y, z) is position, t is time, and ¢ > 0 is a constant.
Assuming a solution with harmonic time dependence

¢(X,¥,Z,t) = U(P)e'imt, (2)

the wave equation in D, that is in the half-space z > 0, becomes

2 .
N -jwt _
L (P) + uyy (P) + uy, (P) + 27 u(P)1e™™™" = 0, (3)
which yields the Helmholtz equation
v2u(p) + kzu(P) =0, PeD, (4)

2. = : =
where v©u Uy s + uyy + Uy zs the Laplacian of u, and k = c When

the frequency w > 0, i.e. k> 0, we will henceforth refer to this



problem as the dynamic problem.

A fundamental singularity of the Helmholtz equation (4) is a
function S(P,Q), for the source point P £ D, where
(i) S(P,Q) satisfies (4) in D, with respect to Q, except at P, and

(ii) S{P,Q) has the form Eiﬁ-eikR + s(P,Q),

with R = R{P,Q) denoting the distance between P and Q, and s(P,Q) any
regular solution of {4). A regular solution is understood to satisfy
an appropriate radiation condition,

The following Green's identity [4, p. 270], which holds for

regular solutions of (4), is the basis for all that follows:

u(P) = J'BI:S(P,Q) g:_(()gl - u(Q) g—iéﬂu] dhy P D, (5)
where S(P,Q) is an arbitrarily chosen, but fixed, fundamental singu-
larity of the Helmholtz equation. We note that the imposition of an
appropriate radiation condition on u will guarantee the uniqueness of
certain classes of boundary value problems.

By specifying particular types of behavior on the boundary, we
can produce particular fundamental singularities, called fundamentai
solutions, which generate alternative representations for solutions of
(4) satisfying specific boundary conditions. To this end, we define the

fundamental solutions G(P,Q) and N(P,Q), called the Green's function

and Neumann function, respectively, to satisfy the boundary conditions

G(P, Q) =0, QeB, PelD, (6)



and

aNP.Q) _ g, QcB, PeD. (7)

an

Q

It can be shown [4, pp. 14, 50] that these fundamental solutions are
symmetric in P and Q; i.e. G(P,Q) = G(Q,P), etc. Inserting the Green's

function into (6), we obtain

u(py = - [ 26(P:Q) yeg) 4a, P o, (8)

g én Q
Q

for the dfsp1acement u{P} when u is known on the boundary B. This is

called the Dirichlet problem. The Neumann function in {6) yields the

solution of the Neumann problem, where the normal derivative of displace-

ment gﬁ-is known on the boundary. This solution is

u(Py = | N(P,Q)g—‘;égL dA, , PeD+B , (9)
B

qQ°
where we are able to extend the range of P to include the boundary, due
to the weak singularity in N(P,Q) when P ¢ D » P, € B.

If we let k > 0 in the Neumann problem for the Helmholtz equation
in an exterjor domain, the solution is still given by (9). This simi-
larity in integral representations for the Neumann problem associated
with the Helmholtz and Laplace's equations in exterior domains led
Stallybrass [23] to suspect that the corresponding integral representa-

tions associated with the dynamic* and equilibrium equations of

*We will henceforth refer to a dynamic elasticity problem as one
in which the time dependence is e~ 1¢t,



elasticity would have a common structure.

An integral representation due to Simigliana [24] was available
for the displacement field for the equilibrium, or elastostatic, case.
That representation, in rectangular cartesian coordinates, is

Ue(P) = [ Ul (P Q)T (Q)dA), PecD+B, (10)
B .

for the displacement field uu(P) generated in an elastic medium occupy-
ing a semi-infinite domain D, by tractions T;{Q} applied on the bounding
surface B of the region, where Q is a point on B and T; = TijNj> i3
being the components of the stress tensor, and n; being the components
of the outward unit normal to B. We can interpret the singular function
uL(P, Q) as the component of displacement in the xa-direction at P, due
to a concentrated surface force of unit magnitude in the xi-direction

at Q. Using the Betti Reciprocal Theorem, the analogue in elasticity of

the appropriate Green's Theorem for the Helmholtz equation, Stallybrass
[23] was able to show that in the dynamic case, if the fundamental singu-
larities u;(P,Q) are interpreted properly and the time factor e_itlJt is
omitted,” the displacement components ua(P) have the same form as in (10).
He interpreted u;(P,Q) as the component of displacement in the xa-direction
at P, due to a concentrated harmonically oscillating surface force of unit
magnitude in the xi-direction at Q, together with an appropriate radiation
condition. In this representation the fundamental solutions play the role

of the Neumann function for the Helmholtz equation in an exterior domain.

In the probiems we will discuss, the half-space D: z > 0 will

have no tangential stress on its boundary B, so only T3 in (10) will

*The time factor e-iwt will be omitted in subsequent expressions.



be non-zero, and the outward unit normal to B is n = (0, 0, -1).

Since TB(Q) = -133(0), our only interest is with the displacement u3(P)
and the fundamental solution ug(P, Q). For notational convenience, we
replace u3(P) by w(P), and 133(0) by 17(Q). The fundamental solution
ug(P, Q), for harmonic time dependence, is derivable from Ewing,
Jardetzky, and Press [9], who quote the classical result given by Lamb

[13]. For P = (x,y,z) and Q = (X, ¥, 0), this is given by

[T 12 .2
-1 f(»g éZ_hélij_ng)e-z £c-h + 2g2e_z E--k

B, 0 = = Loy (er)ae (1)

F(g)
2 _ w? 2 _  wl
where h© = Po T3 7 k= = Po o
Fle) = (262 - k8)% ae? A2 n2 f2 2, (12)

R is the distance from P to Q, Po is the density of the medium, and A
and u are the Lame constants, which define the material properties of
the medium. Then the vertical displacement w(P), for P ¢ B, i.e. z = 0,

becomes

W( ) = f U3( Q)E(Q)d Q d
or

w(P) = 8—:-; fB[j M(£)J_(KER) dt] <(Q)dA, (13b)

where we let ¢ = kt, vy = h/k < 1, and



Yy

M(t) = t; - Y . (14)
(2 hjz_) Y s v

We show in Appendix I that for axially-symmetric problems, representa-

tion (13b) reduces to the form
w(r) = =& J [jm M(t)d (ktr)d (ktp)dt]r(p)dA (15)
8mu B Lo 0 0 Q

where P = (r, 6, 0) and Q = (p, ¢, 0) in cylindrical coordinates.

It is obvious that there is ambiguity in the integral represen-
tations (13b) and (15) due to the square root functions in M(t) and the
fact that M(t) has simple poles on the real axis at s, where s > 1 [20].
Furthermore, to interpret the infinite integral properly, we must satisfy
an appropriate radiation condition. To guarantee convergence of the
integral in (12), we need the square roots to be positive for £ large
and positive, since z > 0.

Thus, we take the branch cuts for M(t) from the branch points
+y and t1 along the real axis outward to infinity, as shown in Figures

1 and 2.

-s -1 -y 0 Y 1 s
—_———— emp— . . . ———— — — —
Figure 2. Branch Cuts for (t2 - 1)1/2.



The mathematical analysis of wave propagation associated with
the Helmholtz equation must necessarily allow for both incoming and
outgoing waves. However, when a source point is located within the
domain D and there is no reflection of waves at infinity, a means of
eliminating the incoming waves in the general mathematical solution must
be introduced. In the case of the Helmholtz equation in an exterior
domain, Sommerfeld [21, p. 189], motivated by physical considerations,
developed conditions to be imposed on the solution which would accom-
plish that. This has come to be known as the Sommerfeld radiation con-
dition. 1In dynamic problems in elasticity, an appropriate radiation
condition which generalizes that of Sommerfeld is the choice of the proper
Riemann surface for contour integration.

The principle of limiting absorption [22, p. 261] expediates this
choice. By allowing a small, positive viscosity in the medium in which
the waves propagate, the energy of the wave decreases as the wave proceeds
away from the source. This is distinct from the natural decay in amplitude
of the wave due to increased surface area of the wave front. Mathematically,
this viscosity moves the branch points and poles off the real axis, so that
integration along this axis can be carried out with no ambiguity. Then
we allow the viscosity to decrease to zero, and it becomes apparent how
the contour must be deformed to avoid the branch points and pole and
maintain the radiation condition. We illustrate this technique with the

Helmholtz equation where the function requiring interpretation is

/x? -kz. Upon completion, we will simply present the analogous result

for dynamic elasticity problems.
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The wave equation with positive viscosity in the medium takes

the form

2
3¢ 4 . 0 50, (16)

25 =

vee = —
2

It ot

1
2
where e is a measure of the viscosity. Upon separating variables,

~Twt

¢ = u(P)e , we again get

2
Wu+ keu=0, K°= (&) + icu. (17)

We let k = k] + ikz, with k] > 0, and require that the fundamental

singularity %—e1kR, where R is the distance from the source of the

waves, produce outgoing waves and diminish as R gets large. Since

i + 4 : “kaR =i -
o (k] 1k2)R e_1mt _ 1 o 2 o i(wt k1R)

]
R R (18)

we require k2 > 0. The term wt - k1R characterizes outgoing waves.

Thus, the branch point is shifted up, off the real axis, and the con-
tour of integration proceeds along the real axis, below the branch
point, as in Figure 3. Now letting the viscosity factor ¢ go to zero

forces the branch point down onto the real axis. To avoid it and main-

?o

Figure 3. Shifted Branch Cut.

tain the necessary properties of the solution, we must deform the contour
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to go helow the branch point and along the lower edge of the branch

cut, as in Figure 4,

'——_——_—-—— — ——— —— —
Fd

o/

Figure 4. Deformed Contour for Helmholtz Equation.

-

In a similar fashion, the principle of limiting absorption is also
very convenient in connection with dynamic problems of elasticity asso-
ciated with exterior domains. We choose our contour from Q0 to « below
the branch points and pole, as in Figure 5, and interpret integrals of

the sort [ M(t)E(t)dt, for continuous functions E{t), as follows:
0

v

86
S
35S

Figure 5. Deformed Contour for Elastodynamic Problems.

o Y- 1-¢
[ M(t)E(t)dt = Tim [ M(t)E(t)dt + lim [ 2 M(t)E(t)dt (19)
0 €,70 O £1:€ -0 yte
] 2 1
S—€3 o
+ lim | M(t)E(t)dt + R(s) + lim [  M(t)E(t)dt
€93€370 '|+s:2 £4970 S+€3

1 (=]
- 1 MOE(R)AE + [ M(DE(t)dE + P [ M(E)E(t)dE + R(s)
0 Y 1

where R{s) is the contribution of the pole, and all other contributions

from detours are zero.
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In order to evaluate the last infinite integral in (19), we
will integrate over a contour in the lower half-plane, and a proper
continuation of our square root functions ¢t2 - 72 and /ég—:—T is
necessary. As previously mentioned, for t positive and large, the values
of these functions must be positive. The analytic continuation of

these below the branch cuts, for t real, becomes

- 4
A2 2 <oy AP DY, e -]
a(t) = {147, qtl <y a(t) = B RN
B2 2, ot sy L/tz-l,t‘»].

We define the following convenient notation for t in the lower half-plane.

Let
“0 o, t < -y -B, t<-]
a(t) = {-a, ltl <y g(t) = ¢ -8, )t| < 1 (21)
oo t >y B s t>1

In line with this notation, we define the Rayleigh function

2
f(t) = (2 - %J - t2a(t)e(t) (22)

and use the abbreviations

(23)
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We consolidate these definitions in the following diagram:

-1 -y 0 Y 1
! ! * T T

-G -0 | -a | a | a
‘ | ! |

-B I I -8 | B B
I . I

f : f | f | f | f

Figure 6. Square Roots and Rayleigh Function.

These definitions will be used in connection with the contour T
in Figure 7 for evaluation of the infinite integrals that occur subse-

quently.

Figure 7. The Contour T.

Our method will be to obtain approximate solutions to problems
by means of a variational technique. The fact that an integral equa-

tion can be associated with a variational principle was stated as early
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as 1884 by Volterra [25].

Consider the integral equation

w(P) = [ K(P, Q)T(Q)dAQ, P e B, (24)

B
where w(P) is a known continuous function, t{(Q) is an unknown integra-
ble function, and the kernel K(P, Q) is an integrable function, sym-
metric in P and Q. This Fredholm integral equation is the Euler-Lagrange
equation for the problem of finding a stationary value for the linear

functional

Frlz] = 2 [ 2(Qw(Q)dAg - [ | K(P,Q)F(P)F(Q)dAdA, (25)
B B B

where T is an arbitrary integrable function having a singularity of the
same order as t [6]. We shall refer to 1 as an admissible or trial
function.

If we define the inner product <u,v> = | u(Q)v(Q)dAQ and the
linear operator L[7] = jB R(P,Q)%(Q)dAQ, then ezuations (24} and (25)

become

w = Lit] (26)
and

F1[%] = 2<w,T> - <L[1].1> . (27)

By the stationary principle [22, p. 357], F1 has a unique stationary

value at t = 1, and

F-| [t] = <w, 1> (28)
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Furthermore, if © - t = 0(e), then Fy[t] - Fyl7] = 0(e?). That is,
when the error between 1 and t is small, say of order 0(e), then the
error between F][%] and F1[1] is of order 0(52).

Consider the trial function

* x (29)

- >
n
O
—

where t* is a fixed, but arbitrary, admissible function and ¢* is a
parameter. Since F-I is stationary at the exact solution 1, we deter-
mine the best value for c* by setting the first derivative of F] with

respect to c* equal to zero. We have

Filc¥c*] = 2<w, c*c*s - <L[c*"], ¢*™> (30)
1

2c <w,t> - (¢¥)2<L[7], <>

and g—; F][c*r*] = 0 when

[
* W, *>
c = <L[T*], T*> . (31)
So,
% ok <W *>2
= T 2
Fle™"] = S (32)

If we define a second functional by the right side of equation (32)

~ 2.
FZ(%) = W, T> T£0, (33)

<L[t], 1> °

we see that F2 is scalar invariant, in that FZ[C%] = Fz[%] for any

scalar ¢ # 0, and that F2 has the same stationary value as F]‘
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Using the notation {<w, r>} as the variational approximation

to the exact value of <w, >, we have

* &

< >
{<w, ] = —L‘:—*]—*- (34)
for any admissible ¥, Recall that we will require ¥ to have singu-
larities of the same order as those possessed by . We now seek a
systematic method for determining good admissible functions for use in
our functional. Since the order of singularity in the dynamic problem

is the same as that in the corresponding equilibrium problem, we will

use 1 = Tgs the exact solution of (24) when the frequency w = 0, omit-
ting any unnecessary multiplicative constants. For this trial function,
we will call (34) our first variational approximation.

This variational method was used by Stallybrass [23] to set up
approximate solutions to a class of punch problems. He used the torsion
problem for the circular punch as a test case, since there is an exact
solution available [16], and found his first approximation to be accurate
in a range of the non-dimensional parameter ka from 0.0 to 2.0. We

mention in passing that his second variational approximation was

extremely accurate even beyond this range.
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CHAPTER III
THE PUNCH PROBLEM

We first consider the punch problem in which a rigid punch,
with elliptical cross-section and flat base, is forced to oscillate
in contact with an elastic medium occupying a half-space. Using our
variational principle (34}, we have a scalar invariant functional
whose stationary value will be shown to be proportional to the ampli-
tude of oscillation of the punch.

With reference to rectangular cartesian coordinates, the govern-

ing system of partial differential equations is

(A +wu; <o +pwlu; =0 in D (35)

. ..+
M55 i,ji

(i, = 1,2,3), where D is the domain, uj is the jth component of dis-
placement, » and u are the Lamé constants, po 15 the density of the
medium, w is the frequency of excitation,* commas indicate partial
differentiation, and a repeated subscript indicates summation over the
range 1, 2, 3. The boundary z = 0 of the half-space z > 0 will be
denoted by B, which is divided into two parts B] and 82 such that
(i} on B1, the region under the punch, we prescribe all tangential
stresses to be zero, which corresponds to the idealized case of

no friction under the punch, and the normal component of displace-

ment w{P) = u3(P) = C, and

*Recall that the time dependence e 19t js omitted in all subse-

quent expressions.
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(ii) on BZ’ the remaining portion of B, all components of surface

traction will vanish.

The integral representation (13a) for P ¢ By> using the boundary

conditions (i) and (ii) and the notation 1{(Q) = 133(0), gives

C= - 3tp, Q)r(Q)dA 36
[ S0 Ontek, (36)

which is an integral equation for T(Q), Q ¢ B]. Set

<u, v> = | u(Q)v(Q)dA, (37)
B1
and
LI = -] 3Py Q)E(Q)eAG (38)
1

Then based on (34) and (36), with (37) and (38), we can obtain a vari-
ational approximation for C. If we use = Tes the exact static solu-

tion, our first variational approximation becomes
2
[C [ tg(Q)dA ]
B, Q

{CI r(o)dA}= (39)
: B 3 T T
5 IB] [IB] u3(P,Q) (Q)dAg] =g (PR,

where

3 - kT
u3(P, Q) = =" ﬂ) M(t)Jo(ktR)dt, P, QeB (40)

1

The integral -f r(Q)dAQ is the Toad P, on the punch, which will be
B
1
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maintained constant.

The exact static-case stress was obtained by Green and Sneddon
{11] in their investigation of the distribution of stress due to the
indentation of a half-space by a flat-ended elliptical punch. To

within a multiplicative constant, it is

2 2 ] -1/2
T=1-(L+L):| (41)
> [ al b
x4 2
for the ellipse B,: =t 15 < 1 with 0 <a <b. This yields
a b
jB TS(Q)dAQ = 2mab . (42)
1

We obtain our first variational approximation to C from (39) as

-k P o ~ s
C = ._____ftg f81{:jB][:£) M(t)Jo(ktR)dg] rs(x,y)dxd{} 1 (x,y)dxdy (43)

32n pa

where R = /?x-i)z + (y-§)2 . Interchanging the order of integration,

we have
-kpo o . n A
C = ;;;3;;555 {) M(t)dt_%]jglJo(ktR)rs(x,y)rs(x,y)dxdydxdy. (44)
Consider
I(t) = IB IB Jo(ktR)Ts(i,_\})rs(x,y)didf(dxdy. (45)

171
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Realizing that
Jo(ktR) = Re{i(1) (ktR)} (46)
and [see Appendix II]

e e iIv(x-R) +wly-5)]
H1) (ktR) = VA ot Vix®) vy dvdw , (47)

2 e e 202 - 22

we see that upon interchanging orders of integration

I(t) =Re|=L f [T dvdw g TIVOERIMIL (g o (v )dRag dxdy| -
2.2 ,2+2 S S
~o -y +w _k t B_I B_I

(48)
We let
L={ [ e:'[V(x—x)+w(y-y)]rs(i,S!)Ts(x,y)did)?dxdy (49)
B,y B
171
; -1 (vX+wy ~n
= f e1(VX+wy)TS(x,y)dxdy | ( y) ( .y )dxdy
B B
_ JI e1(vx+wy)rs(x,y)dxdy 2
W4 2
where Ts(x,y) = ¢4 - §§-+ ﬁz-) . 0<ac<hb,
Introducing elliptic polar coordinates (£, ¢), defined by
X = at cos ¢ and y = bg sin ¢ , (50)

we have
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i(vx+wy) 1 21 . .
| e dxdy = ab | £ dg | e1(Acos¢ + Bs1n¢)d¢ (51)
T IRAREE
2y

where A = vat and B = wbg. Now

. . 2m A
f o (Rcose + BS1”¢)d¢ =.% e' COS¢[cos(Bsin¢)-+isin(Bsin¢)]d¢,

(52)
and
Zm iA cos ¢
[ e sin (Bsing)de = 0 (53a)
0
since the integrand is odd about ¢ = . From [2, p. 82 (17}],
2n s
J e!ACOS Y oo (Bsine)de = ZwJO(/A24-BZ). (53b)
Thus, from (49}
ool 1 Edg(e/a2ve +p22) 2
L = 4ra bz‘f dg‘ (54)
0 2
1-¢
- 42222 sin2(/a2v2 + b2w?)
22 + bo2
using [3, p. 7 (5)].
We then require, from (48)
s el iaaln2 ¢ T Sinzf/a2v2-+b2w2)dvdw
I(t) = Re[-i4ab” [ | B AN A N b (55)
o~ (yT WS - k“tT)(a"v" +b W)
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The value obtained from this integration is complex, since we must
deform the contour to avoid the pole. This deformation must be similar
to that indicated in Figure 4, in accordance with the radiation condi-
tion. Furthermore since we require the real part in (55), we need only
the purely imaginary part of the double integral, which comes from the

deformation. Letting

av = gcose and bw = gsinse , (56)

then dvdw = ;%-gdgde, and

27 2 o . 2
© 1-¢"sin"e 0 g{g"-gr)
2,2.2
2 k™t
where €2 =1 - (3)° is the eccentricity of the ellipse, and g2 =-jL————§—:
b ¢ ]—ezsin 0

This form has only a simple pole at g = 9,- Looping under this pole as

in Figure 4, we obtain

w sinz(g)QQ T sinz(go)
Im | f o | = 5 . (58)
© g(g"-9g) 29
g{g” -g o
0
and from (57)
2m
2rab )
1(t) = 522 | s1n2(go(e))de . (59)
K“t ‘o
From (44), (45), and (59) we have
Po AT TN L2
C=— [ de | sin“(Gt) dt (60)

16m uabk o o t?
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where G = ka{l - ¢“sin“oe To evaluate the infinite integral

in (60), we define its value as in (19) and consider the integral

f Mi%l'[l - e_izaz]dz (61)
r oz

where T is the contour in Figure 7. Since the integrand is analytic
in and on ', expression {61) is identically zero by Cauchy's Theorem.
Upon letting the radii of the indentations around zero and the branch
points qgo to zero,we see their contributions vanish; and when T + =,
the integrand on It is of order O(T'z), so that contribution also goes

to zero. The result is

-a

-s) + P f Tf F(t)dt + f F (t)dt (62)

] -
a [¢]
+ — F(t)dt + P — F(t)dt + R(s) =0
J o FF) f g P+ R(s)
_ -i2Gt 5 . .
where F{(t) = 1-e , T and f are defined in (23), and R(-s) and R(s)
are the contributions around the poles -s and s, respectively. In the

first integral, we replace t by -t and obtain

P f ﬁ% sin?(Gt)dt = _ra(s) sin(2Gs) + — sin(2Gt)dt (63)
:

2sf' (s) I tf

-1 FE(-
7 f tff [fF(t) + fF(-t)1dt ,

using some trigonometric identities and the fact that f'(-s) = -f'(s).

Now by (19)
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! i2Gt 12Gs
! —(-l"’g s1n2(Gt)dt=l]z[:j K(t){‘e }dt- {1 e } 64
0 0] t
where

4 t 42 2

t
(12 -2 L 242 2 1 -

£3(¢2 - v2) /1 - 2

(2= BB -h

nof—

We expand the function 1 - 912Gt in {64) in powers of Gt, and (60)

becomes

P {1-v) 2u
0 2 -3 5 4 7

C = f |Gl - =61 GYI G'1 .. [de (66)
8r2ubka "0 o "3 le? 15 4”357 6 "

1 6 1 .8
+1{GI -§ I GIS-'--I—S'GI7+...

s
'

where G = ka(l - 62 sinze)_]/z, v is Poisson's ratio, and

1 n
_ 1 n-1 ma(s)s _
In 200-9) [fo K{t)t dt e ] s N 0.,1,2,... . (67)
These In are the same quantities that occurred in Robertson [17] and
Gladwell [10] in connection with the oscillation of a punch with a

flat circular base.* We note that I0 =

*As observed by Gladwell, the values of I _, as given by Robertson,
are inaccurate beyond the second decimal place. They are recalculated
in Appendix III.
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We use [12] and [5, (220.00), (220.01)] to evaluate

2m n w2 2 -n/?
[ GMe)ds = 4(ka)" [ (1 - c%sinfe)  de, n=1,2,...,8. (68)
0 o

For n odd, the integrals are elliptic functions and require numerical

integration. Letting

A~ by 2 /2 2 .o \-1/2
GO(E) = ;-jo (1-¢“sin“e) de
n/2 _
6,(2) = f—z—j (1 -2 sin?e) %40
m
° (69)
é2(§0 = 2 f (l _ ¢l sinze)_S/zde
157 o0
~ b g /2 o o 172
G.(3) = 7 1-¢“sin“a do
sta) = 52/, U-e )
where €% = 1 - (a/b)z, our first variational approximation for the
ellipse is
Po(1-v) . ) ) .
= | Go(@) - G ()T, + &, ()Tt - By(a)1pe
q K-M_ll 34 93+2¢°+3¢h | 5
mo 180 = 5
+H (70)
q£5+3q2+3q4+5q611 74
5040 « T

where « = ka and q = b/a. The values of the én are given for several

ratios g in Table 1. Now let
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4ubC .
POI]_\)) - f—l + 1f2 - (7])

As a representative value of v, we use v ~ %—, i.e. YZ s %—, and

graph f] and f2 for yz = .33 for several values of q in Figure 8 and
Figure 9. We graph (2 + £5)/2 in Figure 10.
When the ellipse degenerates to a circle, we have
P (1-v)
0 2 ? 4 4 1 6+

=0 Ty L1242 1 8
¢ 4ua 1 3 12K * 157 14K 3157

2 5 1

1 1.3 7
+1{1T I1K-§-TTI3K +EISK -'31511_ I7K’ +t . .

To check this result, we use (15) for axially-symmetric problems, with

81 defined by p < a, in polar coordinates. With the static stress

1¢(p) = a(a? -pz)-]/z, p< as, (73)
we have
o ffm()()()]c) }()
C = ——/——— M{t)}Jd (ktr)Jd (ktp)dt|t.{e)pdpdepT_{(r)rdrdo
321T3“a4 B {B][o 0 0 s ]
-kP0 o a 0 2
= 5 [ M(t) [} ———————-Jo(ktp)dE] dt (74)
8mua 0 0 a2 cp
-P w . 2
= Sﬂ](jKa fo M(t) [51nt!;<t2j| dt

using [3, p. 7(5)], and « = ka. This last integral arose in equation
(60), and from (64) and (67), replacing G by k, our first variational

approximation for the circle becomes

6K “ . (72)
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P{1-v) [
-0 Ty _ 2, 2,2 1 4 _ 4 6
¢ P L o VT (75)
1 1 .3,2 .5 1 7
" {TFI]K "3 I3 v e s - gy, Kt

which is identical to (72). Furthermore, we have compared this result

for the circle with that obtained from results given by Robertson [17]

in equations (5.1) and (4.6).

term in {our) «3. Further terms were not calculated.

The results agree exactly up to the

Although we have only discussed a first variational approxima-

tion, second and higher order variational approximations for the

displacement of the flat elliptical punch could be obtained in a manner

analogous to that discussed by Stallybrass in [23] for the torsional

oscillations of a circular punch.

Table 1. Values for the én.

q 1 2 3 q
6o 1.00000 1.37288 1.60977 1.78330
Gy 21221 .65443 1.35415 2.31780
G, .04244 .35860 1.60057 4.85003
G3 .00404 .10669 1.08020 5.85811

Table 2 and Table 3 were calculated from the power series expan-

”Kn"

sion of our approximation. The column headings

indicate that terms
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in the expansion through the power <" were used. We compared the
results in an attempt to determine the range of accuracy, as is indi-
cated in Figures 8 and 9. The range for both f, and f2 for x = ka
diminishes as the ratio g = b/a increases.

An approximation for the displacement of a punch of arbitrary
shape which has been used in the past is the displacement of circular
punch with an equivalent base. That is, the circular punch has the
same area as the punch being considered. In view of this, we make such
an approximation for various ellipses, and compare this with our varia-

tional approximation in Table 4. 1In equation (71) we ignore multipli-

cative constants and let

2 2,1/2
1 * )

b

« U

For an ellipse with axes of length a and b {a < b) and area mab, an
equivalent circular punch must have radius r = v/ab. We simply note
that for the range of « and b/a in Table 4 the displacement for the
circular punch is greater than that for the equivalent elliptical

punch.
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Table 2. Values for f] with 72 .33

q 2 4

terms || 6 A 6 0 A b 4

«
0.0 1.000 1.000 | 1.373 .373 || 1.610  1.610 (| 1.783 1.783
0.1 .995 .995 [{ 1.358 .358 |[1.578 1.578 || 1.730 1.730
0.2 .980 .980 1] 1.313 .313 | 1.488 1.489 (| 1.583 1.584
0.3 .956 956 || 1.241 .241 || 1.3563  1.355 (| 1.377 1.389
0.4 .923 .923 || 1.148 149 | 1.189 1.201 1.150 1.216
0.5 .882 .882 |{ 1.039 043 |(1.013 1.059 .913  1.165
0.6 .833 .834 .919 .933 .834 .973 .614  1.366
0.7 779 .780 .796 .830 644 .993 079 1.972
0.8 .720 .723 .672 .748 .404 1.182
0.9 .658 .664 .548 .704 .032  1.609

1.0 .594 .605 421 .74
1.1 .529 .549 .281 .800
1.2 .464 497 .108 .983
1.3 .401 .454
1.4 .339 422
1.5 .278 .405




Table 3.

Values for f, with

.33

30

2
terms|| 7 5 7 5 <7 <5 7 =

¢

0.0 .000  .000 || .000  .000 || .000  .000 | .000  .000

0.1 079  .079 || .157  .157 || .233  .233 | .307  .307

0.2 156 .156 || .306  .306 || .445  .445 || .568  .568

0.3 230 .230 || .441 441 || 617 617 || .749  .752

0.4 300 .300 || .556  .557 || .739  .743 || .840  .866

0.5 364 .364 || .648  .649 | .809  .826 || .846  .969

0.6 422 422 || .74 .78 || .827 .88 || .747 1.190
i 472 .473 || .753  .765 || .793  .973

0.8 514  .515 || .766  .796 || .693 1.150

0.9 547 549 || .755  .823 || .477 1.520

1.0 572 .575 || .718  .861 || .03 2.217

1.1 .587  .593 || .654  .932

1.2 593 .604 | .553 1.064

1.3 591 .610 || .397 1.293

1.4 581 .612

1.5 562 .613
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Table 4. Comparison of c* for E11ipse and Circle
of Equal Area

=1 - V7 - -3 - -2
= 2 = =
0. .687 .707 537 .577 .446 .500
0. .684 .706 .532 .576 .439 .499
0. .674 .702 518 .573 421 .496
0. .659 .695 .497 .568 .392 .492
0.4 .638 .687 467 .561 .356 .486
0. .613 .675 432 .551 311 .477
0. .582 .661 .392 .539
0. .548 .644 .341 .526
0.8 .510 .626
0. .497 .605
1. 416 .583
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Figure 8.
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Graph of f].
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q=1

I | LK

Figure 9.

7.8 .9

Graph of fz.
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Figure 10. Graph of (
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CHAPTER 1V
THE CRACK PROBLEM

When a plane wave encounters a crack in an infinite elastic
medium, the wave is scattered. A measure of the effect of this dis-
turbance is the scattering cross-section, which is defined to be the
ratio of the average rate at which energy is scattered by the obstacle
to the average rate at which the energy of the incident wave crosses
a unit of area perpendicular to the direction of propagation of the
wave. Barratt and Collins [1] have shown that this cross-section for
a plane harmonic wave 1is accessible from an appropriate far-field
amplitude of the scattered waves in the direction of propagation of
the incident wave.

We choose our crack to be in the plane z = 0, and the incident
harmonic plane wave will emanate from z = -« and proceed in the posi-
tive z-direction, i.e. normally incident on the crack. Considering the
plane z = 0 to be the boundary B, our boundary conditions become*

(i) on By, the region which the crack occupies, all tangential stresses
are zero, and the normal stress is ©{Q) = P> @ constant, and

(i1) on B,, the remaining portion of B, by symmetry all tangential
stresses are zero; also the vertical displacement is w(P) = 0,

PeBZ.

*Recall that the time dependence e'i“’t is omitted.
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Now if we write the displacement w for large positive z as

eihz
w~ g(o, ¢)|(O 0y z EvT (76)
where 6 = 0, ¢ = 0 is the angle of propagation of the wave relative to
the positive z-axis, Barratt and Collins {1, (2.25)] show that the

scattering cross-section } is
A
L = Imlg(0, 0)]. (77)

Qur technique will be to set up a variational formula which
yields a quantity proportional to g{0, 0). Furthermore, our formula
will be applicable to cracks of arbitrary shape.

From equations (10) and (11}, the vertical displacement w at

a field point P = (0, 0, z) is

2 .2 Y Z_ 2 2 -z#gz-k ]
J
0

{7 k2-2¢2)e 28 - 4 o¢%

= A Fe)

(eR)dg r(O)dAQ
(78)

where Q = (x, y, 0}, R = K+ &2 + 2° , and the infinite integral is

along the contour in Figure 5. We require the scattered displacement
for z >> 1 in the form {76). The only part dependent on z is contained

in the brackets { }. We split this into two integrals

2 2
W (Z) = J‘m EVE -'h_(k2_2€2)e-z & -h
1 o F(g)

Jo(eR)de (79)

and
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2€3¢éf‘];' ¢/~____

(g)

wy(z) = Jo(ER)dE. (80)
For the asymptotic analysis of Wy split the integral at £ = h.
For 0 < ¢ < h, replace £ by h/1- 2, and denote the integral by w}(z).

For £ > h, we denote the integral by w%(z). Then

ve 2 _ 2 2.2
W (2) = -ind [ S o 2l + onty Ly (rA-D)e ™2y (81a)

!
° F(h/1- _ve

and

o ST (k2 - 2:2 v
Wi(z) = | =% hF(é§ 20 (ry e g (81b)

where the contour for w%(z) must be as in Figure 5. The square roots
in (79) - (81) are defined as in (21) - (23).

Similarly, split the integral for w, at £ = k. For 0 < & < Kk,

replace § by k/{:v2 and call the integral w;(z). For £ > k, denote

the integral by wg(z). Then

w;(Z) = 744)fk2- h? - kP (KR 4 2 RIS 20)
F(k/1 - vz)
and
= 5.3 f2_ 2 7.7
Wolz) = A JO(gR)e_Zfér_k dr . (82b)
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We treat the integrals for w}(z) and w;(z) first. The inte-

grand in w}(z) has no poles, since F has no zeros within the interval.

Thus,

1 .
w}(z) - _ind i A(V)JO(hRJi-vz)e1hVZdv (83)
0
where

2.2 2 2.2
Ay = ¥ (k& - 2h° + 2h“v©) , (84)

F(hvi-v2)

which is real in [0, 1], and R= 42-+22, p2 = §2-+§2. Using (47), we

have

] - , = i{xp+yz)
1 .3 ihvz -7 e *
W, (2 -ih A(v)e Re] =L dxdy dv
1(2) Io ) 2 f_m I_m x2y2-p2+n2y2 y}

)

.31 . 2r o ir{pcose+zsing)
- - JIL.j A(v)e1hvz hn{? f € 5 5 55 rdrde} dv,
2 "o 0 0 r°-h"+hv

™
where X = rcose, y = rsineg,

T cos(hvz)eir(p cose+zsing)
2.2

rdadr dv
W2 o h2 e ply

1h3 1 o 2
- = fOA(v) Im fo Io

m

ir{pcose+zsina)

w 27 .
+iIm [ [ s1n(hv;)e 57 rdedr
00 rc - h® + h%

*Al1 integrals must be in accordance with the radiation condition.
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3 - 1 ihvz , -ihvz
= - i [ vB(r,z)dr | A(v%(e 2 .;ez oy
2n2 0 0 r5-h"+h%v (85)
- 1 ihvz _ _-ihvz
Alv)(e’ ™ -e”TT)

-iRe [ rB{r,z)dr [

where, by (52),

21 s -
B(r,z) = [ TP COSOFZSINO)yy o0y (v, R = AZHE,  (86)
0

Using a standard technique, as in Erdelyi [8], we have

1 +ihvz tihz
Alv)e dv = L € + 0 z'] Z >> 1 87
IO ]"2 _ h2 + h2V2 (‘I(_Z';Z') ;'I—hz— ( )s E ( )
making
ihz = J (rR)
w](z)ﬁf— 2%_ ez Im | Or dr, z >> 1, (88)
0

where v = h/k, and the infinite integral is actually over a contour
that goes below the pole r = 0.

Now consider

Héz)(tR)

L dt (89)

where Héz) is the Hankel function of the second kind, and T is a con-
tour lTike T in Figure 7 with oniy a branch cut along the negative real

axis due to the logarithmic singularity in the Hankel function, and
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only one indentation at t = 0. Since the integrand is analytic in
and on f, (89) is identically zero, and by Jordan's Jlemma,
- w82 (rR) = 18 (rR) 0

dr+ [ 2———dr = -if  HZ)(ce'®R)d0.  (90)

r —x/? Q0

-0

Since ng)(e'1WrR) = —Hé])(rR), upon replacing r by e "¢ in the first

integral in (90), we have

(2) (1)
-¢ H R) = H, "(rR)
Im | : —Q—FEI——-dr = Im | -517:1;—-dr , (91)
-2 E
and (90) becomes
2 | Orr dr = -i [ ° Héz)(ee1eR)de. (92)
3 -n/e

Taking the 1imit as € +~ 0, and evaluating only the imaginary part, we

have

and for large positive z,
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Following similar steps, we have

w;(z)fv 0(2_1), z > 1, (95)

since, in the evaluation of an integral like (87), the integrand is

zero at both end points.

%(z) and wg(z). Both integrals require a contour

1ike that in Figure 5, however, starting at ¢ = h and § = k, respec-

We now treat w

tively. They can be handled by the method of steepest descent. In

w%(z), for z >> 1,

JO(ER)'-'JO(&Z)“-'/;%; cos (£z - o) (96)

where v¢ requires a branch cut along the negative real axis. Thus,

(81b) becomes

. . . (T2
Wy (z)~ z']/th R(g) (e (62774 4 gmT(ez-n/8) 172N g (g7)

where

VE k2-n? (K2 - 262)

Alg) = (98)
Zn F(g)
Split (97) into two integrals
by(z) = z_]/zf ﬁ(g)e'i“/4 ez(iE - ; -h )dg (99a)
Q

and
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dg {99b)

2
) Cia/a z(eic-A%h
bZ(Z) = z ]/2"' A(E;)e-lﬂ/ eZ( 15 )
94
where @ is the contour indicated in Figure 11. In (99a) the integrand

has one saddle point, £ = h/v2 , and the path P1 of steepest descent

through this point is also indicated in Figure 11, where

Figure 11. Steepest Descent Paths for w%(z).

the dashed 1ines indicate branch cuts due to square root functions in
A{c). In order to deform the contour @ into P1, we must cross two

branch points, £ = h and £ = k, and the pole £ = ks. In doing so, we
pick up contributions of order 0(2'3/2) at the branch points and the

residue from the pole, which decays exponentially as z + =. From (7],
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the saddle point contribution is

_hefLe _ e ihzv?
b (z),,_lLlE_,_h_l.. E (100)
1 2/7 F(h/vZ) Z

The integrand of b2(z) has one saddle point, £ = -h/v2, and the
steepest descent path P, is indicated in Figure 11. In order to deform
2 into P2, we cross two branch points, ¢ = 0 and £ = -h, Their con-

tributions are 0(2"3/2), and the contribution from the saddle point to

b>(z) is the negative of (100). Thus, for z >> 1,
wh(z) = o(z™") . (101)

In the same manner, we find that for z >> 1
walz) = o(z™1) . (102)

Combining (94), {95), (101), and (102), we have

e1hz

2
W(P)"’[ﬁ fB T(Q)dA(ZI , (103)

for P = (0, 0, z) and z >> 1. By (76), we can now determine that

3(0,0) = E%IB (Q)dA, - (100)

We now proceed to set up our variational approximation so that
the quantity we approximate is proportional to g(0,0) in (104). Using

the boundary conditions and (10) we have
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3 - 3
,I'BZ uz (S, Q)T(Q)dAQ =P, IB] u3(S, Q)dAg, S € By, {105)

a Fredholm integral equation of the first kind; the only unknown being

1(Q) for Q ¢ Bs.

We define

- 3
Liv]l = IBz us (s, Q)V(Q)qu, SeB,, (106)

and

VpsVp> = Iﬁzv](Q)VZ(Q)dAQ ) {(107)

Applying the variational formula (34) with (105), we obtain

{fBzT(s) Po fB] u3(s, Q)dAQdAS}

2 * 3 2
p [I = (8) [ u3(s, Q)dAQdAS]

0 BZ B'|
= 3 * . {108)
fo 5 u3(s, QT (Q)T(S)dAdA
2 2
We set
= 3

3 3
Py jB (S) J’Bu3(S,Q)dAQdAS - po_l'Bzr(S)[Bzu3(S,Q)dAQdAS.
2
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In Appendix IV, we show that jé ug(s, Q)dAQ is a constant, indepen-
dent of S. We let

e = [, u3(s. Q)dA, = %ﬁ-, (110)

and (109) becomes

V=t [ t(S)A - pof. [ u3(Q, S)t(S)dAcdA
° B, > VBB, :

Pl J, T(S)oAg - 2f f u3(s, Q) dAgdA (1)
2

where we have used the symmetry of ug(S, Q) and equation {105) and
interchanged S and Q.

In equation (104), our interest is in the integral

fBr(Q)dAQ = fBzr(S)dAS + IB] (-py)dA,

P
= —— 4 7§-fszBlug(s, Q)dAdA, - pyrarea(B)  (112)

using (111}. Furthermore,

[ ] 3 (S, Q)dAQdA

3
506 [IB - IBJIB] u3(S, Q)dAgdA (113)

2. N 3
¢ - area(B,) jB]jB]u3(s, Q)dAQdAS.

Thus, inserting (113) into (112), we have the approximation
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p
{j T(Q)dACJ = p]—c{v} =/ ug(S, Q)dAgdAs - (114)
B 0 B, B,

From (114), (109) and (108), using = 15, the exact static-case
stress, we obtain our first variational approximation
[~ 2

3
[IBZTS(S) IB1 u3(s, Q)dAQdAS]

Y
i T(Q)dA} =2
{B Y oe IBZ IBZ u3(S, Q)ry(S)rg(Q)dAdA,

L u3(S, Q)dAdA | (115)
= °1 7

which is valid for a crack of arbitrary shape.

We now specialize the problem to a circle. In the plane z = 0,

the static-case stress in the exterior of a cricle of radius a is given

by Sneddon [19]. Omitting multiplicative constants, we have

TS(S) = 92 . sin'](%d , r >a. (116)

r -a

For axially-symmetric problems, with S = (r, 6, 0) and Q = (p, &, 0) in

polar coordinates, the integrals in {115) reduce to [see Appendix I]

v, = fB 7 (S) jB] ug(S,Q)dAQdAS
2

2 2

T - T a -
= §%E'f de Ia Ts(r)rdr [ de {)pdp f M(X)Jo(er)Jo(kpx)dx

0 o 0
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= %%—f x)dxfapJ (kex)dp j t{r)rd (er)dr
0 0 a
(xx) J; (xx) . -
_ nka i 7 Y1 {kx-cos{kx) - sin{xx)}
= f M(x )[ ]{:? - + )2 ]dx mz)

where « = ka, and we used [3, p. 7(5), p. 18(5)].

3
u3(S, Q)TS(S)TS(Q)dAQdAS

<2
[a)
i
jox]
[ ]
;l

_ Tk f: M(x)[jm Ts(r)\r'do(er)d\rz]2

_ mkat 7 E_J1(Kx) {ix-cos(kx) - sin{kx)} 2
5 i M(x)[ ——* ™Y ] dx . (118)
Vo = [ [ u3(S, Q)dAgdA
k[ 2 ¢
= -27 fo (X)E(O (kY‘X)d] dx
Jq (x 2
Jka f "ix [1(")] dx . (119)

The evaluation of V1, V2, and V3 requires the evaluation of the

following three integrals:

w 3, (ex))?
Ay = [ M(x) lx " :] dx
0
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© J1(mx){gx-cos(nx) - sin(kx)}

A2 = [ M(x) 3 dx (120)
0 (ex)

Ay = Im M(x) | £ cos(mx) - sin KX{] dx

o]

For A], we use

J1()=§[1M1—’~1dt. (121)
o AR
Then
A"I 2 5 J’ t dt 1 T_d'r J‘m M(x)sin(kxt}sin{kxt) dx . (122)
°© A-t? A - x

We use the contour I in Figure 7 to evaluate the infinite integral.

For t < 1, we consider

i M(z)sin(ezt)e T o \ (123)
Z

which is zero by Cauchy's Theorem. Letting the radii of the indenta-

tions go to zero and T + «, and using the notation of (21) and (23),

we have

Y . .
p f —= sin(Xt)sin(xt}dx = i | i%—sin(xt)sin(XT)dx
0

'I n . .2 . . _.A
+ 1 2 qf sin(kt)e'*™ - f sin(xt)e” 1 *"}dx
2 A xff
+ I2A57 sin(St) sin (51) (124)
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where X = kx, & = xs, and f, f are defined in (23). Thus, by (19),

for t < v

- A ] . raeyoiXT
/ M(x)s1n(;t)s1n(lz)dx= - K(X)51”gft)e dx (125)
mals . fn ist
+ SF1(5) sin(st)e

where K(x) is given by (65).
In order to carry out the next two integrations, we must expand
the functions in (125) in powers of t and t, and integrate term-by-term.

The result is

A = B(-v) 666671 « - i(.61685)1x? - .355561 5k (126)
-1(.15421) 1564 + .0541814° + ...

where the I, are defined in (67).

For the evaluation of Ay, consider

M(Z)H%z)(KZ)[KZ'COS(KZ)"Sin(KZ)]
/ dz, (i27)

with H§2) chosen since it decays exponentially on I'y as T, and T
as in Figure 7 with an additional branch cut along the negative real
axis due to the logarithmic nature of the Hankel function. Similar

steps as in the evaluation of A] lead us to



50

1 KOO (R)R (R ) dx o
Ay = - :%{} 12 "“(5)) H{‘)(s)h(si] (128)

o X T sf' (s

a

where Hg]) is the Hankel function of the first kind, X = «Xx, § = xS,

and
h(X) = cos(X) - 5‘; X . (129)

Due to the logarithmic nature of Hg])(i) at x = 0, we are unable to
expand A> in a power series about x = 0. OQur expansion necessarily

contains logarithmic terms and is given by

Ay = B0 021221 1« - 10610 T, Tn (k)63 + §(.16667)1,63  (130)
K

+.08413 Ik3 - .10610 Lk + .02387 I, Tn (x)c’

[-1(.03750) ;x> - 02389 14K5 +.02387 Ly + ...

1

L, = m—}-\-}-)—[jo K(x)anm(x)dx - %?g(%g_ s 1n (s}.l, n>1. (131)

The evaluation of A3 is carried out in a manner similar to A],

and we obtain

1 R
- 1 K{x)P{x) _ na(s) 2
A3 Kz [Io xz dx o (S) P(S)] (]32)
where
P(X) = 1[1 + 52 4 2R 423 +>‘<2}:|. (133)
2x
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Expanding P(x) in a power series, we have

Ay = 200 (- 333331 c - .133331,63 - § (L11111) 1y 405714155 + ... (134)

K

The values of V], V2, and V3 then become

-

a2 (1
v, - _zg;él_zl. +.21221 T +.3927016% + 106101, Tn (k)< (135)

-.27049Tp¢% - 1(.16667) 1> + .10610L x>

~1(.09817) 14 - 0238714 Tn (k)& + 058391y
Fi(.03750)14c° - .02387L,c% + ...
cmal(1-v) [
Vo = —ﬂﬁﬁél—ﬁl- + .333331 « +1(.61685) 1% +.333331, Tn (k)6 (136)
- 3_ 3 3
136087 1p> - 1(.52360) L¢3 + .33333L,x
. 4 5 5
-1(.04310) 156" - 0750014 Tn (x)&® + .072101,«
+(.11781) 16> - .07500L4¢ + ...
—Tra21-v . 2 3
Vg = = 270191k + (.25000)11k2 - .144101,x (137)

-1(.06250)I3K4 + .0219614K5 +

Then the variational approximation (115) becomes
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ip_uk V2
u
{FBT(S)dAé} = . v, Vj (138)

and our approximation to the scattering cross-section for the circle is

chn _Ar 42
I=+ Im{g(o,O)} = g Im {fBr(S)dAS} (139)
Vi
= -2p. * Rey+— -V
0 v, "3
4p ad —
-9 _ {1+ .1273212.<2 - .0545714.<4
3(1-v%)u

+ {.05876 - .01946 1n («) - .02533 1n2(.<)}1§ <t

- {-01946 + .05066 Tn (k) }I,Lk* - .02533L5c% + . .
where we have used the fact that

|
: > 2(1 - v) . (140)
=Y

We compare result (139) with that of Robertson [18, (8.11)1" and
note that the first two terms are identical; that is, up through K2,
The results are given in Table 5, where the correction, mentioned in

the footnote, was used for Robertson's result,

*Robertson's equation was misprinted. The «*-term should read
"-108," instead of "+108."



Table 5.

The Scattering Cross-Section for

a

=1,p0=],u=]
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Scherer's Robertson's
0.0 1.990 1.990
0.1 1.996 1.996
0.2 2.014 2.014
0.3 2.046 2.045
0.4 2.094 2.088
0.5 2.164 2.146
0.6 2.259 2.218
0.7 2.383 2.308
0.8 2.542 2.415
0.9 2.737 2.544
1.0 2.969 2.694
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APPENDIX I
VERTICAL DISPLACEMENT ON B FOR AXIALLY-SYMMETRIC PROBLEMS

For axially-symmetric problems, i.e. where the stress 133(Q)
for Q on the boundary B is dependent only on the distance from Q to
the origin, we can simplify representation (13p). Letting Q = (p, ¢, O)

and P = (r, 8, 0) in cylindrical coordinates, we have from (13b)

w(P) = EIEI [j; M(t)JO(ktR)d'rE'-r(p)dAQ

2 . .
where R = /gi + p2 - 2rpcos {8 - ¢). Upon changing orders of integra-
tion, we have

® 2

w(P) = ﬁjo t{p)odp I:M(t)dt foﬂdo(ktR)dqa.

From [13, p. 21{3a)] we have

=]

Jo(ktR) = 7§ ann(ktr)Jn(ktp) cos {n{e -¢))
n=0

where €y = 1, € = 2 forn>1. Thus,

2m o 2m
9, (ktR)ds = nzoendn(ktr)dn(ktp) f_cosn(s - ¢))de .

Since
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2n 2n, n=0
fo cos{n(s - ¢))d$ =

then

2m
j Jo(ktR)d¢ = 2nd (ktr)d (kte) ,

which gives

w(P) = -é—-k—'Z'Jr J +(o)ods J’mM(t)J (ktr)J, (kto)dt

Y

Snu f do f (p)odp f M(t)Jg (ktr)dg(ktp)dt ,

since there is no ¢ dependence. We note this expression is independent
of 8. So the displacement at P is dependent only on the distance from

P to the origin. The resuit can be put in the form

wir) = ———-j [j M{t)d, (ktr)d (ktp)d{] (p)dAQ
87y
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APPENDIX 11
INTEGRAL REPRESENTATION FOR Hé1)(tR)

Consider the integral

L o iwy
1=] Vv - dw
—-co -0 Wz _ (t2 - V2)
and let
L iwy
J= | € dw .
-0 W2 _ (t2 _ V2)

The integral J has simple poles at W, = t#tz-vz . In order to satisfy

the radiation condition for the factor e'iwt, we must detour around the

poles as shown in Figure 12. For y > 0, we can close in the upper

L)
"\ 0 5>
Yo \\Jr[

Figure 12. The Contour A .

4
' 4

half-plane by A+, Figure 13, and apply Jordan's Temma to get

J=—"———, y>0.
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T

Figure 13. The Contour At

When y < 0, we enclose the Tower half-plane, and consolidate the

results for all y as

ily|w
1r‘ie|y|0

J= N,

0

giving

- ei(vx+|y||/t2 -vz)

I=1T‘if dv .
- 2 2
t -~-v

This representation for I has branch points at v = zt, and we

require a contour similar to that in Figure 12. Furthermore we need

/%2 -ve = 1/62 -t for lv] > t

so that the integral converges. Introducing polar coordinates for x

and |y|, we have

x =R sin ¢ ly| = R cos ¢
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where 0 < R < = and 0 < ¢ < n/2. We also change the variable of inte-

gration by letting
v =t sin{z)

where z = zq + izz, which maps the v-plane into any strip in the z-plane
of the form -w/2+rhriz1;1w/2+nﬂ,n an integer. We choose the strip
-n/2 < zy < n/2. Then we require a contour in the z-plane equivalent

to A, as shown in Figure 14, in order to have

Vtz - v2 = t cos{z) .

Z3

TI‘/2 Z]

-n/2 i +

Figure 14. The Contour AZ.

y

Then

eitR(sin(z)sin(¢)+cos(z)cos(¢))

\ ¥ cos(z) t cos (z)dz

. itR cos (z -
[ e (z-¢) dz

A

L]

which now has no branch points.
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Now et z = Z - ¢, and

I=ni| e1tRcos(z)d2 ’

A~
Zz

where Ai is a contour equivalent to A shifted by ¢. For convergence,

all we require is Im[cos(z)] > 0. Since
cos{z) = cos(£1-F122) = cos(i1)cosh(22) - sin(£1)sinh(22),

when z, > 0, sinh(iz) > 0, and we need sin(i]) > 0. We choose -7 < 2] <90.
When 22 < 0, sinh(iz) < 0, and we require sin(£1) > 0. Here we choose

0 < 21 < m. Thus, we can use any curve originating in the section

-1 < Zy < 0, 22 > 0 and continuing into the section 0 < 21 < 7,

22 < 0, which does not go outside these regions. In particular, the
curve A, satisfies these conditions. That is, the value of I is inde-
pendent of 4.

The result is

itRcoszdz

—
t

-Ti."ij e

A,

21 1Ry,
0
using Sommerfeld [19, p. 89] for this representation of Hé]). Therefore,

© e1(vx+wy)

1 .
Hé )(tR) = - ;%-j [ %

5 dwdv
—e -m WO+ ¥E -t

2

where R = #xz + y2 .
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CALCULATIONS OF In's AND L,
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n v¢ = 0.0 v2 = .25 v2 = .33 v& = .40 v¢ = .50
] 2.62445 2.45896 2.48021 2.53501 2.68875
2 2.35618 2.29073 2.35233 2.46090 2.74889
3 2.22035 2.26303 2.37031 2.53678 2.97081
4 2.15983 2.30028 2.45665 2.68693 3.28886
5 2.14502 2.37669 2.58571 2.88743 3.68605
2.15983 2.48100 2.74722 3.12949 4.16016
7 2.19518 2.60767 2.93660 3.41018 4.71524
8 2.24573 2.75379 3.15201 3.72940 5. 35897
L2
2 -.18909 -.07709 -.03333 .02209 .16000
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APPENDIX IV
CALCULATION OF [ ug’ (5,0)dAg
B

Method I: From (13a), the vertical displacement at S is

W(s) = ] u3 (5,Q)x33(Qkg S € 8.
We require the stress 133(Q) = -1 for Q € B. That is,
2 3
¢=) uf(S,Q)dA, , S e B
g > Q

is the displacement in the z-direction due to the stress 133(0) = -}
for all Q € B, when all tangential stress is zero.
We consider the following dynamic punch problem:* A rigid cir-
cular punch of radius a is attached to a half-space D with boundary B
where z = 0. If P = {r, 8, 0) in cylindrical coordinates, define
By = {P: 0<r f_f} and B, = B - By. The boundary conditions will be
(i) on By w(P) = cq» a constant, and all tangential stresses
are zero.
(ii) on B,, all stresses are zero.
We will show that as the frequency of oscillation w + =, the stress
distribution approaches a constant on B]. When « + «, the non-dimen-

sional parameter ka - <. We can accomplish the latter either by holding

*Recal] e'”‘"t is omitted.
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a constant and letting k - «, or by holding k constant and letting
a »~ », In both cases, the solution must be the same by uniqueness
of the solution for the boundary value problem.
We set up the first situation as a pair of dual integral equa-
tions, which we bofrow from Robertson [16, p. 548 (3.3), (3.4)], set-

ting a = 1:

2 - Y- B(y) Jo{ry)dy

" 30y
0 (yz_;_kz)Z_y242 T2 AR

; B(y)J (ry)dy = 0 r>l.
0

% N
In the first integral we use the fact that [ = 1im [ and
0 0

N-)-cn

approximate the following functions asymptotically for k >> N and

0 <y <N:

I R e R
A2 k2 = .5 A8 - 2 ik

4
1 2 k
07 - 7K AR AR~
Then, as k + =
= /y2-h? B(y) Jo(ryldy N 4in
I ~ Vim [ -7 Bly) Jo(ry)dy
(2-1 k22 - 2/F 0 S N O

2

-]

”—% [ B(y)dy(ry)dy ,
k o
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and the dual integral equations become

) _ig'l-nzkc.l , O<r<]
Y
IO B(y)Jg(ry)dy =

The stress distribution is then

which shows that 133(0) is constant, for Q c B,.
Returning to the original boundary value problem, we now hold
k constant and let a + «. Then region B1 is given by r > 0, and by

uniqueness of solutions, we must still have the stress constant on B1.

That is
Toa(r) = iﬂﬁ'c , r>0.,
33 y & z
In order to have 133(r) = -1 for r > 0, we must choose
= Iy
C‘I ]Jk’

which is the displacement in the z-direction due to the stress

133(Q) = -1 on the entire boundary. Hence,

c c] K -
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Method 1I: Since ¢ is the displacement in the z-direction due to the

stress 133(0) = -1, for Q ¢ B, using representation (15) we have

(e}
I

) -
ok jB [jo M(t)Jo(ktr)Jo(ktp)dt]pdpd¢

21‘- o o -] N 3
- T de [ ede [ M(E) (ktr)[%j de} dt
8mu 7 ¢ 0 0 0 1

x© - 1

using [13, p. 27] to replace Jo(ktp). Letting u = ktx and interchanging

orders of integration, we have

. k ¢ dx ® N
c = - M{t)J (ktr)dt sin (up)dp .
oo h g M [ sin o)y

[+:]

The interpretation of [ psin(up)dp comes from distribution
0
theory. Lletting §(u) be a delta function [20, p. 8], we have

[+ o]

J’ e-'ipu (di_u 6(U)du = _ J' g_u [e’1pu]5(u)du = ip .

-0 - 00

We apply a Fourier transform to get

d_ :-]— i ipugy
o $u) = 5 f_m e P (ip)dp

o [a]

pcos (pu)dp + 1 |

Ei?[f | psin(pu)dp] .

-0

Since p.cos(pu) is odd in p and p-sin{pu) is even in p,

d I
EJS(U) - Iop sin{pu)dp .



Recalling that u = ktx, we then have

LI M), (ktr) & s (u)at

O
I

B 2u du
VA2 ©
_L ® 1 [ 1 ! 1 ]
- 2“ J’] 2 2 {9_,_(0) + 9_(0)} dX L]
Vx© -1
using [20, p. 24], where g(u) = M(ii)Jo(%fQ and ' = gﬁ-' Since
g(u) = 0 for u < 0, g2(0) = 0; and g.(0) = - 4—;12— Thus,
k&x
¢ = i%‘f S dx
! x2¢§? -1
iy

uk °
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