

 P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko, 2015

Системні дослідження та інформаційні технології, 2015, № 4 83

UDC 519.683.8

PRIMITIVE PROGRAMING ALGEBRA: GENERAL APPROFCH

TO A PROBLEM OF FUNCTIONAL COMPLETENESS

P.O. YAHANOV, D.I. REDKO, I.V. REDKO, T.L. ZAKHARCHENKO

The goal of the research is development of scientific foundations of programming
problems solutions genesis. Investigations carried out are based on algebraic re-
search methods of programs and compositional programming methods. Basis of the
last ones consists of program algebras with special classes of functions as carriers,
and compositions that represent abstractions from program synthesis tools as opera-
tions. Problems of completeness in classes of computable functions that took one of
the most important places in programming problems are well defined and solved in
the context of program algebras. Universal method for the problem of completeness
solution in primitive program algebras (PPA) on different classes of computable
functions proposed in the article. Results achieved are presented as series of original
statements, lemmas and theorems. The results can be applied in algebraic charac-
teristics research of different computable functions classes in problems of program-
ming language semantics formalization

INTRODUCTION

Today’s posture in IT field and, particularly, in programming, considerably de-
fined by process of more and more vast it’s penetration in all aspects of human’s
life. Naturally, with every step taken in that direction, requirements made to qual-
ity of product produced and effectiveness of its production are constantly increas-
ing. Despite of impressive and speaking for theirselves results achieved with pro-
gramming activity (PA) today, it becomes more obvious that the results in
majority are extensive, so sustainment of this tendency becomes more problem-
atic and impossible in foreseeable future. The reason is typical for nowadays un-
derstanding of PA, particularly, programming, its excessive simplicity, which is
not corresponding level of complexity of problematic indicated.

As for programming, simplicity of its understanding led to the fact, that,
mainly, attention paid to results of programming without consideration of proc-
esses, which made that results possible. It makes process of programming prob-
lems solution too subjective, regarding intuitive principles of paramount impor-
tance. These facts are not allowing us seriously discuss problems of software
quality management, effectiveness of its production and preservation of invest-
ments. An avalanche-like increase of number of such facts stimulated discussions
about development of crisis in programming, depression in IT industry etc [1–3].
Now, not a crisis of the field should be discussed itself, but crisis of its ways of
development! Statements, made above, one more time demonstrate that contem-
porary programming, and the overall field can not effectively develop now exclu-
sively on objectively-intuitive basis, which is the source of different concepts of
PA. Long ago, problems of the field became so significant and so complex, that
intuitive considerations must be objectified adequately and supplemented with
precise researches and developments as far as possible. The matter is in the main

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Archive of Kyiv Polytechnic Institute

https://core.ac.uk/display/47236205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 84

intuition carrier of PA — programming as process of software creation. Questions
connected with revelation of programming languages semantic play here vital
role. That is why research of following problematic is objective of the paper.
Paramount role here plays compositional paradigm [4–8], as methodological con-
sideration basis of whole diversity of general as well as particular software crea-
tion methods. Namely that methods, to be more precise, their explications in the
form of different classes of compositions build up the object of the research. The
subject of the research is problem of computable functions characteristics classes
creation. The functions are on different carriers in primitive programming alge-
bras (PPAs) [9–11]. The main attention is paid to search of such algebra’s genera-
tive sets and bases. In process of research, along with general results, description
of computable functions class on records also received. It supplements analogical
results for natural numbers tuples, graph transformers and multi-sets [10–15].

All undefined generic mathematical conceptions and designations are inter-
preted in sense [16], and concepts of numerations theory and theory of algorithms
interpreted as in [17, 18].

GENERAL STATEMENTS

The carrier of PPA are n-ary functions and n-ary predicates (or simply functions
and predicates) .),2,1(n The signature of PPA (denoted as ) consists of
superposition, branch, loop operations, which are represent adequate specifica-
tions of the main methods of software or computational hardware design, which
are peculiar to majority of high-level programming languages [1, 4–7, 9]. Let us
make formal definitions of the operations. Termal, rather then operator notation of
functions will be preferred for convenience and compactness [18]. Usage of spe-
cific notation form in every individual case conditioned by the fact that different
notations present fundamentally different viewpoints on the entity they describe.
In other words, operator notation used in cases when it is important to reveal
genesis of entity described, termal notation is important for description of result
genesis. Although, those forms are interchangeable like texts in certain senses,
those keypoints arrangement is important because it presents completely natural
dominant of genesis relatively to its result.

Let m functions mff ,...,1 of the same arity (for example, k) of type

BAk  be defined on certain set A with values from set B (it is no need to pre-
serve  BA , moreover  BA is acceptable case too). Also, let m -ary
function f with values in certain set C be defined on set B . Consider k -ary

function CAg k : with value ),,...,((),...,(111  kk aaffaag

))),...,(, 1  km aaf on argument  kaa ,...,1 . In this case function g is the

result of a)1(m -ary superposition application, denoted as 1mS , to m -tuple of

functions  mfff ,...,, 1 , i.e.),...,,(1
1  

m
m fffSg . Hereinafter in this

document the designation “ ” means the generalized equality [19].

Now, additionally let function h of type BAk  and m -valued function

},...,2,1{: mB  be defined. k -ary function BAg k : is built from func-

Primitive programing algebra: general approfch to a problem of functional completeness

Системні дослідження та інформаційні технології, 2015, № 4 85

tions mffh ,,, 1  by (m+1)-ary parametric branch operation 1m
 if for any ar-

gument k
k Aaa  ,...,1 the value of function),...,(1  kaag defined as:

),...,(),...,(11  krk aafaag , if ,)),...,((1 raah k  (mr 1).

Note, that described parametric branch operation represents adequate speci-
fication of well-known method of software design — ._ ofcase Ternary branch

operation  , which puts in correspondence to two functions 2,1 ,:  iBAf k
i

and one predicate },{: FTAp k  a k -ary function),,(21  ffpg with

values defined on any argument k
k Aaa  ,...,1 as:









Faapaaf

Taapaaf
aag

kk

kk
k),...,(),,...,(

),...,(),,...,(
),...,(

112

111
1

may be useful partial case.
Finally, let us complete our list of definitions with k -ary predicate

},{: FTAp k  . Consider k -ary function BAg k : with value

),...,(1  kaag on arbitrary argument k
k Aaa  ,...,1 equal to the first compo-

nent of the first tuple from sequence of tuples ,...2,1,01],...,[ i
i
k

i aa , where

,0
jj aa  kj ,...,2,1 and kjaafa i

k
i

j
i
j ,...,2,1),,...,(1

1  , for which (denote

it as  s
k

s aa ,...,1 , for example) Faap s
k

s ),...,(1 in case if for all sr  , if

such argument exists, value of Taap r
k

r ),...,(1 . Function g built by applica-

tion of)1(m -loop operation to functions of)1(m -tuple  mffp ,,, 1  , i.e.

),,,(1
1  

m
m ffpg  . Thus, according to statements made before,

s
k aaag 11),...,( .

Note, previously, in order to denote introduced operations, we used exclu-
sively operator notation. By using termal notation of operations from PPA signa-
ture, we will evidently denote only variables with considerably used values. For

instance, for loop operation notation like   


,),,(*,, 1
1

1
11

1
1 m

kyy
m zzfxxp 

),,(, 1
k

km
k

m zzf  will be used with those variables denoted, on which

functions and predicate considerably depend. At the same time, function

),,(1
j

jm
j

j zzf  changes variable jy , kj ,...,2,1 and variable 1y considered as

an “output”. Operator notation can be easily reconstructed from this notation.
Let us declare certain countable set D and for any natural number 0k

consider classes k of partial k -ary functions and predicates of types: DDk 

and },{ FTDk  accordingly, and ...,3,2,1,  k
k

k of partial multiplace

functions and predicates on set D . Further, functions and predicates on D will be
denoted as D -functions (D -predicates) and will belong to set  . Computability

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 86

on D is defined as numeric computability [17, 20]. PPA with carrier formed from
partial recoursive functions (computable functions, pr-functions) and partial
recoursive predicates (computable predicates, pr-predicates on D will be denoted

as pr
DA . Generative set of pr

DA will be defined as its comlete system (CS).

Complete system of PPA will be its n
mI -basis, if any system produced by

exclusion of any elements from the CS, except selective function, will not be
complete.

Some terms, designations, properties and associated results, showed below,
may be useful during study of PPA complete systems [10].

Property 1. n -ary function f preserves set ,DL  L , if

LLLf
n

)(  . Here  nn

n

aaaafLLf ,...,|),...,({)(11 

} 
n

LL  .

Now, let D be set of composite objects (composed from certain compo-
nents). Assume that universal set of such components is countable. Denote it as

B . Lets declare surjective map BD 2:  , where B2 is set of all finite subsets

of set B . Hence, for any Dd  Bd 2)( is set of elements from ,B which d
composed of. Those elements are called denotates of d .

Property 2. n -ary function f  -preserves denotates, if finite set BB f 

exists and for any fddd n dom,...,1  expression )),...,((1 nddf

fi

n

i

Bd )(
1=

 is correct.

Note that described properties of D -functions are preserved in signature 
[10]. This allows to form several simple and essential conditions of completeness

of pr
DA CS [10].

Statement 1. Any complete system of pr
DA contains at least one D -function

that does not preserve set L for any non-empty set) ,( LDLL .

Statement 2. Any complete system of pr
DA contains at least one

D -function, which does not  -preserve denotates.

THE CONCEPT OF COMPLETENESS IN CLASSES OF PR-FUNCTIONS AND

PR-PREDICATES

Consider general method for PPA of D -functions and D -predicates complete
systems finding. It will be represented by series of interconnected results, intro-
duced as proved lemmas and theorems. First, let us define some notions, useful
conventions and denotations.

Let two countable sets 1D and 2D be defined. Assume that for every of

those sets exists effective numeration 11 : DN  and 22 : DN  . Also, PPAs

Primitive programing algebra: general approfch to a problem of functional completeness

Системні дослідження та інформаційні технології, 2015, № 4 87

pr

1DA and pr

2DA are defined. Elements of sets 1D and 2D designated with lower-

case letters: ,..., 11 ba and ,..., 22 ba , may be with subscript. Let complete system

1D of PPA pr
1DA is defined and injective constructive mappings 12: DD  and

21: DD  are given. Sets }|)({)(22 DddD   and )(1D

}|)({ 1Ddd  are recursive [18]. Consider approach to solution of complete-

ness problem for algebraic structure pr
2DA .

To designate 1D - and 2D -functions, lowercase (,..., gf) and uppercase

(,...,GF) letters accordingly will be used. Letters ,...,rp and ...,, RP are used for

designation of 1D - and 2D - predicates accordingly. When using termal notation,

variables for 1D -functions and 1D -predicates are designated with lowercase ro-

man letters ,...,, zyx , and 2D -function and 2D -predicates — with lowercase

Greek letters ...,,,  , subscripts and superscripts may be used in both cases.

Definition 1.)(2D -function),...,(1 nxxf is 1D -image of 2D -function

),...,(1 nF  , if for any 2
22

1 ...,, Daa n  expression ))(,...),((22
1 naaf 

))...,,((22
1 naaF is true.

Definition 2.)(2D -predicate),...,(1 nxxp is 1D -image of 2D -predicate

),...,(1 nP  , if for any 2
22

1 ...,, Daa n  expression ))(...,),((22
1 naap 

)...,,(22
1 naaP is true.

Lets show that relations «to be an image of function» and «to be an image of
predicate», declared with definitions listed, preserve property of partial recursive-
ness. In other words, listed theorem below is true.

Theorem 1. 1D -image of 2D -pr-function (2D -pr-predicate) is 1D -pr-

function (1D -pr-predicate).

Indeed, it is easy to check that  , as mapping of numerated set  22 ,D to

numerated set))(()(,...2,1:)(:,),(222222 kkkDND  

is pr-equivalence ([21], p. 150–160), because of constructiveness of mapping 

and effectiveness of numerations 1 and 2 . Hereinafter in this document the

designation  2 means standard multiplication of functions 2 and  :

)(dom)(dom 22   ,)(ran)(ran 2   and for any)(dom 2  d

value of this function)).(()(22 dd  

After application of theorem 2.1.5 [17], lemma 1 will be true.
Lemma 1. 1D -image of 2D -pr-function (2D -pr-predicate) is)(2D -pr-

function ()(2D - pr-predicate).

Hence, recursiveness of set)(2D results.

Lemma 2. Any)(2D -pr-function is 1D -pr-function. The same for)(2D -
pr-predicates.

This lemma results truth of theorem 1.

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 88

Definition 3. 2D -function),...,(1 nF  is 2D -model of 1D -function

),...,(1 nxxf , if expression))...,,(())(...,),((11
1

11
1 nn aafaaF  holds for any

1
11

1 ...,, Daa n  . 2D -model of 1D -predicate defined in the same way.

Let  (gf  is standard function multiplication, i.e. such function
for which)(dom)(dom fgf  ,)(ran)(ran ggf  and which any

)(dom gfd  maps to value)),(()(dfgdgf  if)(dom)(gdf ). Obvi-

ously, that 2222))(()),((: DDDD   — bijection. Thus, it is possible
to assume that mapping, which inverse mapping to  , exists. Some mapping ex-

tension 22
1))((: DD   will be designated as 22: DD  . In other words,

2D -functions ψ and χ are playing roles of coding and decoding functions accord-

ingly. Let
2D is designator for set of 2D -functions and 2D -predicates for which,

firstly, 2D -model of 1D -function (1D -predicate) from CS
1D may be built

from 2D -functions and 2D -predicates of set
2D by finite number of application

of operations from signature  and, secondly, 2D -functions ψ and χ may be built

from 2D -functions and 2D -predicates of
2D in analogical manner.

Definition 4. Sextuple   ,,,,,
2121 DDDD is called allowable

system (AS) and tuple 
1

,1 DD  is its basis.

Obviously, that in context of coding and decoding function lemma 3 true.
Lemma 3. Let),...,(1 nF  is D2-pr-function, and),...,(1 nH  is

2D -model of 1D -image of function),...,(1 nF  , then )...,,(22
1 naaF

)))(...,),(((22
1 naaH  is true for any 2

22
1 ...,, Daa n  .

Lemma 4. Let),...,(1 nP  be D2-pr-predicate, and),...,(1 nR  be

2D -model of 1D -image of predicate),...,(1 nP  , then )...,,(22
1 naaP

))(...,),((22
1 naaR  is true for any 2

22
1 ...,, Daa n  .

Hence, theorem 2 is true.

Theorem 2.
2D is CS of PPA pr

2DA .

Considered, that there are few as general as possible requirements to sets

21, DD and to its elements the nature of our constructions are maximally general.
This allows to formulate simple, but effective condition of completeness of func-
tions system in PPA.

So, if  ,,,,,
2121 DDDD are objects, mentioned above, then theorem 3

is true.

Theorem 3. If  ,,,,,
2121 DDDD is AS, then

2D is CS of PPA pr

2DA .

Results gained are giving complete enough idea about building method of
complete systems for PPA of partially recursive functions and predicates on
countable sets. This method will be applied below in order to solve problem of
PPA completeness in class of pr-functions and pr-predicates on pragmatically
significant in programming data type — set of records.

Primitive programing algebra: general approfch to a problem of functional completeness

Системні дослідження та інформаційні технології, 2015, № 4 89

PPA OF PR-FUNCTIONS AND PR-PREDICATES ON SET OF RECORDS

Number of different intuitive interpretations of term «record» exists in informa-
tion technologies and programming. Despite the fact that some interpretations of
«record» significantly differ one from another, all of them tend to use adequately
a concept of named structures to describe complex aggregated entities. Often,
those interpretations burdened with minor partial details, blurring significance of
naming mechanisms. However, as experience shows, named structures form
«common denominator», through which all other aspects of problems solved
should be considered. Namely, this tendency is basis for all following construc-
tions.

Let V and W are non-empty countable sets of elements, interpreted as sets
of names and values (denotates) accordingly. In general case it is allowed, that
some names may play role of values and vice versa, i.e. it is possible that

WV .
We need to define some denotations, introduce main and auxiliary defini-

tions in order to go further. Some of definitions will be given now, others — later,
as may be necessary. All undefined terms and designations are given in [7].

One of the main concepts of this section is record. Set of all records on sets

of names V and values W designated as),(WVZ . Now, introduce definition of
record.

Definition 5. Record on sets of names V and values W (or simply record, it
is clear from context what do V and W mean) is finite functional binary relation
between set of names V and set of values W .

To designate record uppercase letters ,...,, KJI will be used. Lowercase let-

ters ,...,, wvu are used to designate names of record elements, letters ,...,,, dcba

are their values and letters ,...,,  are elements of records. In all cases sub-
scripts may be used. Left subscripts and (or) superscripts may be used to desig-
nate names and (or) values of elements of record may be used. For example, let

),(av . Then such designations jf this element of record as v , a and va
may be used,

Hereinafter in the article so called «schemes», which represent name tem-
plates of correspondent records, may be used along with records.

Definition 6. The scheme of record K is finite set of names },...,{ 1 nvv ,
which represent projection of the record by the first component, i.e.

)(pr},...,{ 11 Kvv n  , where ipr is function of projection by i -th component of

m -ary relation (mi 1) [7].
Scheme of the record I is designated as },...,{)(1 nvvIsh  , and record itself

named for compactness as)(Ish -record or record of)(Ish type. In case when

type of record I must be defined explicitly, designation)(IshI will be used. Set
of all records of },...,{ 1 nvv type designated as }],...,[{ 1 nvvZ . Couple particular

cases of those notations take place: I and }{][ IZ . As follows from

above, it is obvious that 
VV

WV VZZ
2

),(][


 .

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 90

In unfolded notation record is designates as)}.,(),...,,{(11
},...,{ 1

nn
vv dvdvI n 

For correct usage of numeric computability on set of records, it is required to

prove existence of effective numeration of set),(WVZ . Given the countability of
sets ,, WV as well as the fact that in this case is not so much important form of
presentation names and values, how important their fundamentally different role,
without limitation of subsequent constructions generality, we can assume that

.NWV  It can be deduced from a context which of the roles meant in every
single case. Therefore, any further formal constructions will be carried out on set

,),(NNZ which is special case of .),(WVZ

Few steps need to be done to construct the numeration. Firstly, we need to
take in account that for any non-empty record)},(),...,,{(11 mm dvdvI  its num-

ber concur with number of finite set },...,{ 1 mI nnM  , where in is number of

named element of record),(ii dv (effective numeration of set 2N defined in

[12]). Number (unique identifier) for set IM itself defined, for example, as

  1
1

11
...32 21





 mjjj n

m
nn

I pM , where
mjjj nnn  ...

21
, ,Mn

sj


ms ,...,1 , and ip , ...,2,1,0i is i -th prime number 2(0 p , 31 p ,

52 p , …). Than numeration),(NNZ
 of set),(NNZ defined through piecewise

scheme

  








,else),(

,,1
),(

K
Z M

Iif
KNN 



where K is certain record. Namely, 1)(),(),(
 NNNN ZZ

 .

Now, consider to find of complete system of PPA pr
),(NNZ

A itself. From the

results gained above, conclusion followed that the solution of this problem re-
duces to the corresponding AS construction. Refer to concept of multi-set, men-
tioned in [14, 15]. Let U be some finite, may be empty, set.

Definition 7. Multi-set  with U basis is finitely defined function of
 NU: type, where ,...}3,2,1{}0{\  NN . If designation of  basis is

necessary, notation U will be used.
It would not be a great loss of generality, if we would assume that .NU 

Collection of all multi-sets with basis U designated as UM . Then, obvious, that


NU

UMM
2

 is set of all multi-sets (on N).

Elements of set M are designated with lowercase Greek letters ,...,,  ,
may be with subscripts and superscripts. Element of multi-set will be designated
as tuple  da, , every component of which may be with subscript and super-
script. Here a as the first component of tuple, its argument, the second is d —
value (denotate, multiplicity). Two terms are related to multi-sets for convenient:
characteristics  and full image][f . The first one is parametric function

ND : with values defined with piecewise scheme:

Primitive programing algebra: general approfch to a problem of functional completeness

Системні дослідження та інформаційні технології, 2015, № 4 91



 


,else,0

,dom),(
)(




aifa
a for all Na .

The second one is creates multi-set)(][Uff  from multi-set U and given func-
tion NNf : , where)(Uf is full image of set U relatively to function ,f
and characteristics of arbitrary argument a of this multi-set defined as:

   



)(1

)()(
afa

f
aaUf 

 . Here)(1 af  is full image of element a relatively

to function f . In case of empty set of summarands, sum assumed to be 0.

Now consider PPA pr
MA of M -pr-functions and M -pr-predicates. Follow-

ing collection M of M -pr-functions and M -pr-predicates is of interest for us.

It includes predicate of equality   :))()((aaNaa    ;

function of unification All , which from two multi-sets  and  produces such

multi-set  All , that for any argument a its characteristics equals to

))(),(max(aa   , i.e.))(),((max)(aaa
All    ; function of direct

junction  , which from two arbitrary multi-sets U and U
 produces new

multi-set   UUUU )(, characteristics of arguments  21,aa defined as:

Naaaaaa UU  212121 ,),()(),( 
 ; functions of addition  and

subtraction  , defined with expressions][  and  

][ 


 accordingly (here «

 » — truncated distinction [18, 19]); constant

functions)}(1{ 1  and)(m , which produce multi-sets }1,1{  and  m
accordingly; function of multiplicity  which produces from two multi-sets

}1,{  n and }1,{  r multi-set },{  rn ; and selection functions n
mI . The sig-

nificance of collection M described above is in the truth of.

Theorem (about multi-set PPA completeness). Collection M
,...3.,2,1

,...,1
1 },,},1{,,,,{ 

 n
nm

n
mmAll I is complete system of PPA чр

MA [14, 15].

The choice of multi-sets caused by relative simplicity of injective mappings

MZ NN ),(: and),(: NNZM  nature and obvious recursiveness of sets

)(),(NNZ and)(M . These facts are creating reliable basis for solution com-

pleteness problem of PPA чр

Z NNA),(. Injective mapping of set of records to multi-

sets MZ WV ),(: is defined as















 . if ,

,)},(),...,,{(if

 },1,,...1,,1,{

)(
),(

11

2211

K

ZdvdvK

dvdvdv

K
NN

mm

mm





Inverse mapping),(: NNZM  is defined analogically

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 92















. if ,

,},,...,,{ if

)},1,),...(1,(),1,{(

)(11

2211



 Mdada
dadada

mm

mm

Lemma 5. M -image of),(NNZ -pr-function (),(NNZ -pr-predicate) is

)(),(NNZ -pr-function)((),(NNZ -pr-predicate).

From the lemma 5 it can be concluded that any)(),(NNZ -pr-function is

M -pr-function. Analogical conclusion may be done for)(),(NNZ -pr-predicates.
Thus consequence 1 is true.

Consequence 1. M -image of),(NNZ -pr-function (),(NNZ -pr-predicate) is
M -function (M -predicate).

Consider following),(NNZ -pr-functions and),(NNZ -pr-predicates with
simple, but representative examples for some of them. Beforehand let us define
auxiliary parametric operation of record projection },...,{ 1 kii vvpr , which maps any

record),(NNZI  to new record)},...,({)(
11 },...,{ NvvIIpr

kkii iivv  . So,

predicate of equality Z is analogical to predicate of equality for multi-sets; dele-

tion by example Z :)(pr)(pr\)(pr 11
IJI JI

Z  , particularly if )(pr)(pr 11 JI

 , then IJI Z  , for example:  (3,7)}(2,5),{(1,1),(5,7)}(2,10),{(1,3), Z

{(5,7)} ; {(5,7)}(3,7)}{(6,5),{(5,7)} Z and {(6,5),(3,7)}{(6,5), Z

7)}(3, ; records overlapping  : for any),(, NNZJI  JI

)(pr)(pr\)(pr 11
IJ JI , particularly,   IJIIII ; , and in case if

)(pr)(pr 11 JI IJIJJI  , for example, {(1,1),(5,7)}{(1,3), 
(5,7)}(3,7),(2,5),{(1,1),(3,7)}(2,5),  ; append to record



U :







 



,)},0,0{(

,)},0,1))(({(max
)(1

IIif

IIifIprI
IU


 for any .),(NNZI 

For example, for (2,10)}{(1,3),I and  IJ , function will result 


)(IU

(3,0)}(2,10),{(1,3), and {(0,0)})(


JU accordingly; selection by maximal

name max :)()(max))(pr(max 1
IprI I ,   II)(max ; zeroing of values

}0{ : JI )}(0{ , where }0{)(pr&)(pr)(pr 211  JIJ . For example,

 2,0)}({(1,0), (2,10)})1,3),({ {0}( ; increment  : maps any non-empty record
),(NNZI  to record)(I , }),()1,{()(IavavI  . decrement  :

maps any non-empty record),(NNZI  to record)(I , which





















0,0

,0,1
:&),(:),()(

a

aa
bbIavvbvI . In case if  II ,

  III)()(.

Primitive programing algebra: general approfch to a problem of functional completeness

Системні дослідження та інформаційні технології, 2015, № 4 93

Designate set of),(NNZ -pr-functions and),(NNZ -pr-predicates described as

...,2,1
...,,1,,,},0{max,,,,,),(














 n
nm

n
m

Z
ZZ

IUWV .

Analogically to previous section, consider),(NNZ -functions  and  —

coding and decoding functions, accordingly.  and  is certain extension

of mapping 1 .

Therefore lemma 6 takes place.

Lemma 6.),(NNZ -model of M -function (M -predicate) from set M may

be created from functions of),(NNZ
 set with PPA operations.

It is easy to build),(NNZ -models for M -pr-predicate of equality and M -

pr-functions ,},1{,, 1
mAll  . Let us build model of function for multi-sets

addition  . Now, introduce few auxiliary),(NNZ -functions and),(NNZ -
predicates. Namely identically false and identically true predicates Fal and :Tru

)),(,,(1
2

1
3 IUSISFal


 and),,(11

3 IISTru  ; predicate of inequality Neq :

),),,,((21
3 TruFalIISNeq  ; constant empty record Z :),,(11 IIS ZZ  ;

selection by pattern Sel :)),,(,,(),(21
3

1
3

21 IISISIISel ZZ  ; for example,

)}2,2{()})5,4(),3,2{()},2,2(),1,1({(Sel — function «selects» from record 1I

those components, names of which are in record 2I , i.e. 2I is a kind of pattern for

selection from 1I ; maximal addition max of pair of records with same schemes:

)),(),,()),},0({,((2
2

22
1

22
2

22
2

33max ISISISINeqS  . For example, for records

)}2,2(),1,1{(1 I and)}5,2(),3,1{(2 I we will get ),(21
max II

)}7,2(),6,1{()}52,2(),51,1{( . Note, that operation of maximal addition in

general case is non-commutative, i.e.),(),(12
max

21
max IIII  . Commutative

property preserved only for records of special type, for example, for same-scheme
single-element records. For instance, if)}2,2{(1 I and)}5,2{(2 I , then

)}7,2{(),(),(12
max

21
max  IIII .

Now we can get down directly to building of),(NNZ -pr-function Z —

model of M -function  . Assume that records)},(),...,,{(111
1

1
11 11 nn dvdvI  and

)},(),...,,{(222
1

2
12 22 nn dvdvI  are given and },...,{)()(

121 srr vvIshIsh  . Z

operation «breaks» records 1I and 2I to «segments», designated as
11

I ,
21I ,

12I

and
22I with schemes },...,{\)()(

11 11 srr vvIshIsh  , },...,{)(
121 srr vvIsh  ,

)(
12Ish },...,{\)(

12 srr vvIsh and },...,{)(
122 srr vvIsh  . Thus, resulting record

 may be represented as:
2211 21213 IIIII Z . Note,)()(

22 21 IshIsh  .

As for first two items
11I and

12I , they are easily created with earlier defined

function Z . Namely, 2111
III  and 1221

III  . As for
22 21 II Z ,

21I and

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 94

22I are easily defined with usage of function Sel :),(2112
IISelI  and

),(1222
IISelI  . Now model),(NNZ -function Z for same-scheme records

21I

and
22I . It is easy to convince that Z may be represented as:

))(max,)))(max,(()((max,)),((

21

2
2

2
2

2
2

2
1

max2
2

2
1

2
2

2
1

4
    

f

Z

fp

Z IIIISelIIIINeq  .

Obviously, in case when )()(21 IshIsh , record
22 21 II Z is empty

too, i.e. 
22 21 II Z and, consequently, the result is

11 21213 IIIII Z  .

Taking in account that )()(
11 21 IshIsh , the result may be expressed as

11 2121213 IIIIIII Z  .

Lemma 7. Functions  and  may be built from functions of set),(NNZ


by finite number of applications of PPA.
Correctness of the result is obvious, because of noted similarity of records

and multi-sets, simplicity of coding and decoding mappings ( and ), and ad-
duced earlier statements. Hence, lemma 8 is correct.

Lemma 8.   ,,,,,),(
),(

NNZM
NNZM — AS with basis M .

So, theorem 4 is true.

Theorem 4. ...,2,1
...,,1,,,},0{max,,,,,),(














 n
nm

n
m

Z
ZZ

IUNN — genera-

tive system of PPA чр

Z NNA),(.

Considering given above statements 1, 2 certain conclusions respectively to
possible reducability of),(NNZ

 may be made. Equality predicate cannot be ex-

cluded from),(NNZ
 because it is sole predicate in CS. Z ()(IU


,  , max ,

}0{) — the only function in CS that does not preserve set }{\),(IZ NN

()}}0,0{{(\),(NNZ , }][{iZ
Ni



, }]1,[{ 


iiZ
Ni
 ,

Ni

iiZ


)}}0,{{(\}][{). Moreover,

)(IU


 does not  -preserve denotations with given such estimation
NNNZ 2:),( that )(I and ,,...,{)}),(),...,,({(111 nnn vvdvdv 

},,...,1 ndd ,...3,2,1n As for increment  and decrement  functions, they are

in),(NNZ
 simultaneously for convenience and symmetry, however they are

not independent. For example, decrement may be easily produced by PPA
operations from rest of the functions and predicate of),(NNZ



()),,(},0{),),,(),,(),,,(((1
1

1
1

3
3

3
2

3
1

3
3

3
2

344 IISIIISIINeqSS ). The fact that  as

well as  does not preserve denotations with given estimation : for which

)(I and ,...3,2,1},,...,{)}),(),...,,({(111  ndddvdv nnn directly results
truthfulness of theorem 5.

Primitive programing algebra: general approfch to a problem of functional completeness

Системні дослідження та інформаційні технології, 2015, № 4 95

Theroem 5. ...,2,1
...,,1,,},0{max,,,,,),(














 n
nm

n
m

Z
Z

I

Z
IU

n
m

NN — n
mI -basis of

PPA pr

Z NNA),(.

CONCLUSIONS

Modern IT problematic needs direct consideration of not only programming prob-
lems solutions, but processes, which lead to them. That is why researches of such
processes organization structures are of paramount importance today. A special
place in those researches takes problematic, connected with building of algebraic
characteristics of pragmatically conditioned function classes, particularly, with
solutions of completeness problems in corresponding algebras. In the paper these
questions discussed on basis of primitive program algebras. Method of generative
sets finding in PPA presented here, and applied to research of class of partially-
recursive functions on records, which is of theoretical and applied importance.
Using concepts of complete and allowable systems, and results received, espe-
cially criteria of completeness, universality of proposed method in classes of
computable functions on different carriers proved.

Results received form foundations for development of adaptive program-
ming environments. Next steps in this direction will be related with investigation
of general concept of composition and development of functions exploring reduc-
tion methods connected with it as means of pragmatically driven decomposition
of programming problems.

REFERENCES

1. Dijkstra E. A Discipline of Programming. — Prentice Hall, Inc., 1978. — 275 p.
2. Brooks F.P. The Design of Design: Essays from a Computer Scientist. — Addison-

Wesley, 2010. — 448 p.
3. Brooks F.P. The Mythical Man-Month: Essays on Software Engineering. — Addi-

son-Wesley, 1995. — 304 с.
4. Redko V.N. Fundamentals of compositional programming // Cybernetics and System

Analysis. — 1979. — № 3. — P. 3–13.
5. Redko V.N. Semantical structures of software // Cybernetics and System Analysis. —

1981. — № 1. — P. 3–19.
6. Redko V.N. Universal program logics and their application // Proc. of 4th soviet-wide

symp. — Kishenev, 1983. — P. 310–326.
7. Basarab I.A., Nikitchenko N.S., Redko V.N. Compositional databases. — K.: Lybid,

1992. — 92 p.
8. Redko I.V., Redko V.N. Existential basis of compositional paradigm // Programming

and Computer Softtware. — 2008. — № 2. — P. 3–12.
9. Bui D.B., Redko V.N. Primitive program algebras І, ІІ // Cybernetics. – 1985. —

№ 1. — P. 28–33.
10. Bui D.B., Redko I.V. Primitive program algebras of computable functions // Cyber-

netics. — 1987. — № 3. — P. 68–74.
11. Bui D.B., Redko I.V. Primitive program algebras of functions, which preserve deno-

tates // Report of Ukrainian AS. — 1988. — № 9. — P. 66–68.
12. Yershov U.L. Theory of numerations. — M.: Nauka, 1977. — 416 p.

P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 96

13. Redko I.V., Snigur N.M. Primitive program algebra of computable functions on graph
// Naukovi Visti NTUU “KPI”. — 2011. — № 4. — P. 75–80.

14. Bogatyryova Y.O. Computability on finite sets and multi-sets // Taras Shevchenko
Kiev Nation University bulletin. Ser.: phys.-math. scienses. — 2010. — № 4. —
P. 88–96.

15. Bogatyryova Y.O. Concept of multi-set. Structure of multi-sets family // Academitian
M. Kravtchuk 13th international scientific conference, proceedings of (Kyiv,
may 13–15, 2010). — K.: NTUU “KPI”, 2009. — 60 p.

16. Maltsev A.I. Algorythmic systems. — M.: Nauka. — 1970. — 392 p.
17. Maltsev A.I. Constructive algebras. 1 // Uspekhi matematicheskih nauk. — 1961. —

6. — № 3. — P. 3–60.
18. Maltsev A.I. Algorithms and recursive functions // Groningen: Wolters-Noordhoff,

1970. — 391 p.
19. Cutland N. Computability. An introduction in recursive function. — M.: Mir,

1983. — 256 p.
20. Yershov A.P. Computability in arbitrary fields and bases // Semiotics and Infor-

matics. — 1982. — № 19. — P. 3–58.
21. Maltsev A.I. Selected works // Mathematical logic and general theory of algebraic

systems. — 1976. — 2. — M.: Nauka, 1976. — 388 p.

Received 13.05.2015

From the Editorial Board: the article corresponds completely to submitted manuscript.

