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PRIMITIVE PROGRAMING ALGEBRA: GENERAL APPROFCH 

TO A PROBLEM OF FUNCTIONAL COMPLETENESS 

P.O. YAHANOV, D.I. REDKO, I.V. REDKO, T.L. ZAKHARCHENKO 

The goal of the research is development of scientific foundations of programming 
problems solutions genesis. Investigations carried out are based on algebraic re-
search methods of programs and compositional programming methods. Basis of the 
last ones consists of program algebras with special classes of functions as carriers, 
and compositions that represent abstractions from program synthesis tools as opera-
tions. Problems of completeness in classes of computable functions that took one of 
the most important places in programming problems are well defined and solved in 
the context of program algebras. Universal method for the problem of completeness 
solution in primitive program algebras (PPA) on different classes of computable 
functions proposed in the article. Results achieved are presented as series of original 
statements, lemmas and theorems. The results can be applied in algebraic charac-
teristics research of different computable functions classes in problems of program-
ming language semantics formalization 

INTRODUCTION 

Today’s posture in IT field and, particularly, in programming, considerably de-
fined by process of more and more vast it’s penetration in all aspects of human’s 
life. Naturally, with every step taken in that direction, requirements made to qual-
ity of product produced and effectiveness of its production are constantly increas-
ing. Despite of impressive and speaking for theirselves results achieved with pro-
gramming activity (PA) today, it becomes more obvious that the results in 
majority are extensive, so sustainment of this tendency becomes more problem-
atic and impossible in foreseeable future. The reason is typical for nowadays un-
derstanding of PA, particularly, programming, its excessive simplicity, which is 
not corresponding level of complexity of problematic indicated. 

As for programming, simplicity of its understanding led to the fact, that, 
mainly, attention paid to results of programming without consideration of proc-
esses, which made that results possible. It makes process of programming prob-
lems solution too subjective, regarding intuitive principles of paramount impor-
tance. These facts are not allowing us seriously discuss problems of software 
quality management, effectiveness of its production and preservation of invest-
ments. An avalanche-like increase of number of such facts stimulated discussions 
about development of crisis in programming, depression in IT industry etc [1–3]. 
Now, not a crisis of the field should be discussed itself, but crisis of its ways of 
development! Statements, made above, one more time demonstrate that contem-
porary programming, and the overall field can not effectively develop now exclu-
sively on objectively-intuitive basis, which is the source of different concepts of 
PA. Long ago, problems of the field became so significant and so complex, that 
intuitive considerations must be objectified adequately and supplemented with 
precise researches and developments as far as possible. The matter is in the main 
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intuition carrier of PA — programming as process of software creation. Questions 
connected with revelation of programming languages semantic play here vital 
role. That is why research of following problematic is objective of the paper. 
Paramount role here plays compositional paradigm [4–8], as methodological con-
sideration basis of whole diversity of general as well as particular software crea-
tion methods. Namely that methods, to be more precise, their explications in the 
form of different classes of compositions build up the object of the research. The 
subject of the research is problem of computable functions characteristics classes 
creation. The functions are on different carriers in primitive programming alge-
bras (PPAs) [9–11]. The main attention is paid to search of such algebra’s genera-
tive sets and bases. In process of research, along with general results, description 
of computable functions class on records also received. It supplements analogical 
results for natural numbers tuples, graph transformers and multi-sets [10–15].  

All undefined generic mathematical conceptions and designations are inter-
preted in sense [16], and concepts of numerations theory and theory of algorithms 
interpreted as in [17, 18]. 

GENERAL STATEMENTS 

The carrier of PPA are n-ary functions and n-ary predicates (or simply functions 
and predicates) .),2,1( n  The signature of PPA (denoted as  ) consists of 
superposition, branch, loop operations, which are represent adequate specifica-
tions of the main methods of software or computational hardware design, which 
are peculiar to majority of high-level programming languages [1, 4–7, 9]. Let us 
make formal definitions of the operations. Termal, rather then operator notation of 
functions will be preferred for convenience and compactness [18]. Usage of spe-
cific notation form in every individual case conditioned by the fact that different 
notations present fundamentally different viewpoints on the entity they describe. 
In other words, operator notation used in cases when it is important to reveal 
genesis of entity described, termal notation is important for description of result 
genesis. Although, those forms are interchangeable like texts in certain senses, 
those keypoints arrangement is important because it presents completely natural 
dominant of genesis relatively to its result. 

Let m  functions mff ,...,1  of the same arity (for example, k ) of type 

BAk   be defined on certain set A  with values from set B  (it is no need to pre-
serve  BA , moreover  BA  is acceptable case too). Also, let m -ary 
function f  with values in certain set C  be defined on set B . Consider k -ary 

function CAg k :  with value ),,...,((),...,( 111  kk aaffaag  

))),...,(, 1  km aaf  on argument  kaa ,...,1 . In this case function g  is the 

result of a )1( m -ary superposition application, denoted as 1mS , to m -tuple of 

functions  mfff ,...,, 1 , i.e. ),...,,( 1
1  

m
m fffSg . Hereinafter in this 

document the designation “ ” means the generalized equality [19]. 

Now, additionally let function h  of type BAk   and m -valued function 

},...,2,1{: mB   be defined. k -ary function BAg k :  is built from func-
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tions mffh ,,, 1   by (m+1)-ary parametric branch operation 1m
  if for any ar-

gument k
k Aaa  ,...,1  the value of function ),...,( 1  kaag  defined as: 

 ),...,(),...,( 11  krk aafaag ,  if   ,)),...,(( 1 raah k   ( mr 1 ). 

Note, that described parametric branch operation represents adequate speci-
fication of well-known method of software design — ._ ofcase  Ternary branch 

operation  , which puts in correspondence to two functions 2,1 ,:  iBAf k
i  

and one predicate },{: FTAp k   a k -ary function ),,( 21  ffpg  with 

values defined on any argument k
k Aaa  ,...,1  as: 

 








Faapaaf

Taapaaf
aag

kk

kk
k ),...,(),,...,(

),...,(),,...,(
),...,(

112

111
1  

may be useful partial case. 
Finally, let us complete our list of definitions with k -ary predicate 

},{: FTAp k  . Consider k -ary function BAg k :  with value 

),...,( 1  kaag  on arbitrary argument k
k Aaa  ,...,1  equal to the first compo-

nent of the first tuple from sequence of tuples ,...2,1,01 ],...,[  i
i
k

i aa , where 

,0
jj aa   kj ,...,2,1  and kjaafa i

k
i

j
i
j ,...,2,1),,...,( 1

1  , for which (denote 

it as  s
k

s aa ,...,1 , for example) Faap s
k

s  ),...,( 1  in case if for all sr  , if 

such argument exists, value of Taap r
k

r  ),...,( 1 . Function g  built by applica-

tion of )1( m -loop operation to functions of )1( m -tuple  mffp ,,, 1  , i.e. 

),,,( 1
1  

m
m ffpg  . Thus, according to statements made before, 

s
k aaag 11 ),...,(  .  

Note, previously, in order to denote introduced operations, we used exclu-
sively operator notation. By using termal notation of operations from PPA signa-
ture, we will evidently denote only variables with considerably used values. For 

instance, for loop operation notation like   


,),,(*,, 1
1

1
11

1
1 m

kyy
m zzfxxp   

),,(, 1
k

km
k

m zzf   will be used with those variables denoted, on which 

functions and predicate considerably depend. At the same time, function 

),,( 1
j

jm
j

j zzf   changes variable jy , kj ,...,2,1  and variable 1y  considered as 

an “output”. Operator notation can be easily reconstructed from this notation. 
Let us declare certain countable set D  and for any natural number 0k  

consider classes k  of partial k -ary functions and predicates of types: DDk   

and },{ FTDk   accordingly, and ...,3,2,1,  k
k

k  of partial multiplace 

functions and predicates on set D . Further, functions and predicates on D  will be 
denoted as D -functions ( D -predicates) and will belong to set  . Computability 
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on D  is defined as numeric computability [17, 20]. PPA with carrier formed from 
partial recoursive functions (computable functions, pr-functions) and partial 
recoursive predicates (computable predicates, pr-predicates on D will be denoted 

as pr
DA . Generative set of pr

DA  will be defined as its comlete system (CS). 

Complete system of PPA will be its n
mI -basis, if any system produced by 

exclusion of any elements from the CS, except selective function, will not be 
complete. 

Some terms, designations, properties and associated results, showed below, 
may be useful during study of PPA complete systems [10].  

Property 1. n -ary function f  preserves set ,DL   L , if 

LLLf
n

 )(   . Here  nn

n

aaaafLLf ,...,|),...,({)( 11   

} 
n

LL  . 

Now, let D  be set of composite objects (composed from certain compo-
nents). Assume that universal set of such components is countable. Denote it as 

B . Lets declare surjective map BD 2:  , where B2  is set of all finite subsets 

of set B . Hence, for any Dd   Bd 2)(   is set of elements from ,B  which d  
composed of. Those elements are called denotates of d . 

Property 2. n -ary function f   -preserves denotates, if finite set BB f   

exists and for any fddd n dom,...,1   expression  )),...,(( 1 nddf  

fi

n

i

Bd  )(
1=

  is correct.  

Note that described properties of D -functions are preserved in signature   
[10]. This allows to form several simple and essential conditions of completeness 

of pr
DA  CS [10].  

Statement 1. Any complete system of pr
DA  contains at least one D -function 

that does not preserve set L  for any non-empty set ) ,(   LDLL . 

Statement 2. Any complete system of pr
DA  contains at least one 

D -function, which does not  -preserve denotates. 

THE CONCEPT OF COMPLETENESS IN CLASSES OF PR-FUNCTIONS AND 

PR-PREDICATES 

Consider general method for PPA of D -functions and D -predicates complete 
systems finding. It will be represented by series of interconnected results, intro-
duced as proved lemmas and theorems. First, let us define some notions, useful 
conventions and denotations.  

Let two countable sets 1D  and 2D  be defined. Assume that for every of 

those sets exists effective numeration 11 : DN   and 22 : DN  . Also, PPAs 



Primitive programing algebra: general approfch to a problem of functional completeness 

Системні дослідження та інформаційні технології, 2015, № 4 87

pr

1DA  and pr

2DA  are defined. Elements of sets 1D  and 2D  designated with lower-

case letters: ,..., 11 ba  and ,..., 22 ba , may be with subscript. Let complete system 

1D  of PPA pr
1DA  is defined and injective constructive mappings 12: DD   and 

21: DD   are given. Sets }|)({)( 22 DddD    and  )( 1D  

}|)({ 1Ddd   are recursive [18]. Consider approach to solution of complete-

ness problem for algebraic structure pr
2DA . 

To designate 1D - and 2D -functions, lowercase ( ,..., gf ) and uppercase 

( ,...,GF ) letters accordingly will be used. Letters ,...,rp  and ...,, RP  are used for 

designation of 1D - and 2D - predicates accordingly. When using termal notation, 

variables for 1D -functions and 1D -predicates are designated with lowercase ro-

man letters ,...,, zyx , and 2D -function and 2D -predicates — with lowercase 

Greek letters ...,,,  , subscripts and superscripts may be used in both cases. 

Definition 1. )( 2D -function ),...,( 1 nxxf  is 1D -image of 2D -function 

),...,( 1 nF  , if for any 2
22

1 ...,, Daa n   expression ))(,...),(( 22
1 naaf   

))...,,(( 22
1 naaF  is true. 

Definition 2. )( 2D -predicate ),...,( 1 nxxp  is 1D -image of 2D -predicate 

),...,( 1 nP  , if for any 2
22

1 ...,, Daa n   expression ))(...,),(( 22
1 naap   

)...,,( 22
1 naaP  is true. 

Lets show that relations «to be an image of function» and «to be an image of 
predicate», declared with definitions listed, preserve property of partial recursive-
ness. In other words, listed theorem below is true. 

Theorem 1. 1D -image of 2D -pr-function ( 2D -pr-predicate) is 1D -pr-

function ( 1D -pr-predicate). 

Indeed, it is easy to check that  , as mapping of numerated set  22 ,D  to 

numerated set ))(()(,...2,1:)(:,),( 222222 kkkDND    

is pr-equivalence ([21], p. 150–160), because of constructiveness of mapping   

and effectiveness of numerations 1  and 2 . Hereinafter in this document the 

designation  2  means standard multiplication of functions 2  and  : 

)(dom)(dom 22   , )(ran)(ran 2    and for any )(dom 2  d  

value of this function )).(()( 22 dd    

After application of theorem 2.1.5 [17], lemma 1 will be true. 
Lemma 1. 1D -image of 2D -pr-function ( 2D -pr-predicate) is )( 2D -pr-

function ( )( 2D - pr-predicate). 

Hence, recursiveness of set )( 2D  results. 

Lemma 2. Any )( 2D -pr-function is 1D -pr-function. The same for )( 2D -
pr-predicates. 

This lemma results truth of theorem 1. 
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Definition 3. 2D -function ),...,( 1 nF   is 2D -model of 1D -function 

),...,( 1 nxxf , if expression ))...,,(())(...,),(( 11
1

11
1 nn aafaaF   holds for any 

1
11

1 ...,, Daa n  . 2D -model of 1D -predicate defined in the same way. 

Let   ( gf   is standard function multiplication, i.e. such function 
for which )(dom)(dom fgf  , )(ran)(ran ggf   and which any 

)(dom gfd   maps to value )),(()( dfgdgf   if )(dom)( gdf  ). Obvi-

ously, that 2222 ))(()),((: DDDD    — bijection. Thus, it is possible 
to assume that mapping, which inverse mapping to  , exists. Some mapping ex-

tension 22
1 ))((: DD    will be designated as 22: DD  . In other words, 

2D -functions ψ and χ are playing roles of coding and decoding functions accord-

ingly. Let 
2D is designator for set of 2D -functions and 2D -predicates for which, 

firstly, 2D -model of 1D -function ( 1D -predicate) from CS 
1D  may be built 

from 2D -functions and 2D -predicates of set 
2D  by finite number of application 

of operations from signature   and, secondly, 2D -functions ψ and χ may be built 

from 2D -functions and 2D -predicates of 
2D  in analogical manner. 

Definition 4. Sextuple   ,,,,,
2121 DDDD  is called allowable 

system (AS) and tuple 
1

,1 DD   is its basis. 

Obviously, that in context of coding and decoding function lemma 3 true. 
Lemma 3. Let ),...,( 1 nF   is D2-pr-function, and ),...,( 1 nH   is 

2D -model of 1D -image of function ),...,( 1 nF  , then )...,,( 22
1 naaF  

)))(...,),((( 22
1 naaH   is true for any 2

22
1 ...,, Daa n  . 

Lemma 4. Let ),...,( 1 nP   be D2-pr-predicate, and ),...,( 1 nR   be 

2D -model of 1D -image of predicate ),...,( 1 nP  , then )...,,( 22
1 naaP  

))(...,),(( 22
1 naaR   is true for any 2

22
1 ...,, Daa n  . 

Hence, theorem 2 is true. 

Theorem 2. 
2D  is CS of PPA pr

2DA . 

Considered, that there are few as general as possible requirements to sets 

21, DD  and to its elements the nature of our constructions are maximally general. 
This allows to formulate simple, but effective condition of completeness of func-
tions system in PPA. 

So, if  ,,,,,
2121 DDDD  are objects, mentioned above, then theorem 3 

is true. 

Theorem 3. If  ,,,,,
2121 DDDD  is AS, then 

2D is CS of PPA pr

2DA . 

Results gained are giving complete enough idea about building method of 
complete systems for PPA of partially recursive functions and predicates on 
countable sets. This method will be applied below in order to solve problem of 
PPA completeness in class of pr-functions and pr-predicates on pragmatically 
significant in programming data type — set of records. 
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PPA OF PR-FUNCTIONS AND PR-PREDICATES ON SET OF RECORDS 

Number of different intuitive interpretations of term «record» exists in informa-
tion technologies and programming. Despite the fact that some interpretations of 
«record» significantly differ one from another, all of them tend to use adequately 
a concept of named structures to describe complex aggregated entities. Often, 
those interpretations burdened with minor partial details, blurring significance of 
naming mechanisms. However, as experience shows, named structures form 
«common denominator», through which all other aspects of problems solved 
should be considered. Namely, this tendency is basis for all following construc-
tions. 

Let V  and W  are non-empty countable sets of elements, interpreted as sets 
of names and values (denotates) accordingly. In general case it is allowed, that 
some names may play role of values and vice versa, i.e. it is possible that 

WV .  
We need to define some denotations, introduce main and auxiliary defini-

tions in order to go further. Some of definitions will be given now, others — later, 
as may be necessary. All undefined terms and designations are given in [7]. 

One of the main concepts of this section is record. Set of all records on sets 

of names V  and values W  designated as ),( WVZ . Now, introduce definition of 
record. 

Definition 5. Record on sets of names V  and values W  (or simply record, it 
is clear from context what do V  and W  mean) is finite functional binary relation 
between set of names V  and set of values W . 

To designate record uppercase letters ,...,, KJI  will be used. Lowercase let-

ters ,...,, wvu  are used to designate names of record elements, letters ,...,,, dcba  

are their values and letters ,...,,   are elements of records. In all cases sub-
scripts may be used. Left subscripts and (or) superscripts may be used to desig-
nate names and (or) values of elements of record may be used. For example, let 

),( av . Then such designations jf this element of record as v , a  and va  
may be used,  

Hereinafter in the article so called «schemes», which represent name tem-
plates of correspondent records, may be used along with records. 

Definition 6. The scheme of record K  is finite set of names },...,{ 1 nvv , 
which represent projection of the record by the first component, i.e. 

)(pr},...,{ 11 Kvv n  , where ipr  is function of projection by i -th component of 

m -ary relation ( mi 1 ) [7]. 
Scheme of the record I  is designated as },...,{)( 1 nvvIsh  , and record itself 

named for compactness as )(Ish -record or record of )(Ish  type. In case when 

type of record I  must be defined explicitly, designation )(IshI  will be used. Set 
of all records of },...,{ 1 nvv  type designated as }],...,[{ 1 nvvZ . Couple particular 

cases of those notations take place: I  and }{][  IZ . As follows from 

above, it is obvious that 
VV

WV VZZ
2

),( ][


 .  
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In unfolded notation record is designates as )}.,(),...,,{( 11
},...,{ 1

nn
vv dvdvI n   

For correct usage of numeric computability on set of records, it is required to 

prove existence of effective numeration of set ),( WVZ . Given the countability of 
sets ,, WV  as well as the fact that in this case is not so much important form of 
presentation names and values, how important their fundamentally different role, 
without limitation of subsequent constructions generality, we can assume that 

.NWV   It can be deduced from a context which of the roles meant in every 
single case. Therefore, any further formal constructions will be carried out on set 

,),( NNZ  which is special case of .),( WVZ  

Few steps need to be done to construct the numeration. Firstly, we need to 
take in account that for any non-empty record )},(),...,,{( 11 mm dvdvI   its num-

ber concur with number of finite set },...,{ 1 mI nnM  , where in  is number of 

named element of record ),( ii dv  (effective numeration of set 2N  defined in 

[12]). Number (unique identifier) for set IM  itself defined, for example, as 

  1
1

11
...32 21





 mjjj n

m
nn

I pM , where 
mjjj nnn  ...

21
, ,Mn

sj
  

ms ,...,1 , and ip , ...,2,1,0i  is i -th prime number 2( 0 p , 31 p , 

52 p , …). Than numeration ),( NNZ
  of set ),( NNZ  defined through piecewise 

scheme  

  








,else),(

,,1
),(

K
Z M

Iif
KNN 

  

where K  is certain record. Namely, 1)( ),(),(
 NNNN ZZ

 .  

Now, consider to find of complete system of PPA pr
),( NNZ

A  itself. From the 

results gained above, conclusion followed that the solution of this problem re-
duces to the corresponding AS construction. Refer to concept of multi-set, men-
tioned in [14, 15]. Let U  be some finite, may be empty, set. 

Definition 7. Multi-set   with U  basis is finitely defined function of 
 NU:  type, where ,...}3,2,1{}0{\  NN . If designation of   basis is 

necessary, notation U  will be used. 
It would not be a great loss of generality, if we would assume that .NU   

Collection of all multi-sets with basis U  designated as UM . Then, obvious, that 


NU

UMM
2

  is set of all multi-sets (on N ). 

Elements of set M  are designated with lowercase Greek letters ,...,,  , 
may be with subscripts and superscripts. Element of multi-set will be designated 
as tuple  da, , every component of which may be with subscript and super-
script. Here a  as the first component of tuple, its argument, the second is d  — 
value (denotate, multiplicity). Two terms are related to multi-sets for convenient: 
characteristics   and full image ][f . The first one is parametric function 

ND :  with values defined with piecewise scheme: 
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

 


,else,0

,dom),(
)(




aifa
a  for all Na . 

The second one is creates multi-set )(][ Uff   from multi-set U  and given func-
tion NNf : , where )(Uf  is full image of set U  relatively to function ,f  
and characteristics of arbitrary argument a  of this multi-set defined as: 

   



)(1

)( )(
afa

f
aaUf 

 . Here )(1 af   is full image of element a  relatively 

to function f . In case of empty set of summarands, sum assumed to be 0. 

Now consider PPA pr
MA  of M -pr-functions and M -pr-predicates. Follow-

ing collection M  of M -pr-functions and M -pr-predicates is of interest for us. 

It includes predicate of equality   : ))()(( aaNaa    ; 

function of unification All , which from two multi-sets   and   produces such 

multi-set  All , that for any argument a  its characteristics equals to 

))(),(max( aa   , i.e. ))(),((max)( aaa
All    ; function of direct 

junction  , which from two arbitrary multi-sets U  and U
 produces new 

multi-set   UUUU  )( , characteristics of arguments  21,aa  defined as: 

Naaaaaa UU  212121 ,),()(),(  
 ; functions of addition   and 

subtraction  , defined with expressions ][    and    

][  


 accordingly (here «

 » — truncated distinction [18, 19]); constant 

functions )}(1{ 1   and )(m , which produce multi-sets }1,1{   and  m  
accordingly; function of multiplicity   which produces from two multi-sets 

}1,{  n  and }1,{  r  multi-set },{  rn ; and selection functions n
mI . The sig-

nificance of collection M  described above is in the truth of. 

Theorem (about multi-set PPA completeness). Collection M  
,...3.,2,1

,...,1
1 },,},1{,,,,{ 

 n
nm

n
mmAll I  is complete system of PPA чр

MA [14, 15]. 

The choice of multi-sets caused by relative simplicity of injective mappings 

MZ NN ),(:  and ),(: NNZM   nature and obvious recursiveness of sets 

)( ),( NNZ  and )(M . These facts are creating reliable basis for solution com-

pleteness problem of PPA чр

Z NNA ),( . Injective mapping of set of records to multi-

sets MZ WV ),(:  is defined as 

 














 . if             ,

,)},(),...,,{( if                                    

 },1,,...1,,1,{

)(
),(

11

2211

K

ZdvdvK

dvdvdv

K
NN

mm

mm



  

Inverse mapping ),(: NNZM   is defined analogically 



P.O. Yahanov, D.I. Redko, I.V. Redko, T.L. Zakharchenko 

ISSN 1681–6048 System Research & Information Technologies, 2015, № 4 92

 














. if              ,

,},,...,,{ if                                    

)},1,),...(1,(),1,{(

)( 11

2211



 Mdada
dadada

mm

mm

 

Lemma 5. M -image of ),( NNZ -pr-function ( ),( NNZ -pr-predicate) is 

)( ),( NNZ -pr-function )(( ),( NNZ -pr-predicate). 

From the lemma 5 it can be concluded that any )( ),( NNZ -pr-function is 

M -pr-function. Analogical conclusion may be done for )( ),( NNZ -pr-predicates. 
Thus consequence 1 is true. 

Consequence 1. M -image of ),( NNZ -pr-function ( ),( NNZ -pr-predicate) is 
M -function ( M -predicate). 

Consider following ),( NNZ -pr-functions and ),( NNZ -pr-predicates with 
simple, but representative examples for some of them. Beforehand let us define 
auxiliary parametric operation of record projection },...,{ 1 kii vvpr , which maps any 

record ),( NNZI   to new record )},...,({)(
11 },...,{ NvvIIpr

kkii iivv  . So, 

predicate of equality Z  is analogical to predicate of equality for multi-sets; dele-

tion by example Z : )(pr )(pr\)(pr 11
IJI JI

Z  , particularly if  )(pr)(pr 11 JI  

 , then IJI Z  , for example:  (3,7)}(2,5),{(1,1),(5,7)}(2,10),{(1,3), Z  

{(5,7)} ; {(5,7)}(3,7)}{(6,5),{(5,7)} Z  and {(6,5),(3,7)}{(6,5), Z  

7)}(3, ; records overlapping  : for any ),(, NNZJI   JI  

)(pr )(pr\)(pr 11
IJ JI , particularly,   IJIIII   ; , and in case if 

 )(pr)(pr 11 JI  IJIJJI  , for example, {(1,1),(5,7)}{(1,3),   
(5,7)}(3,7),(2,5),{(1,1),(3,7)}(2,5),  ; append to record 

 


U :







 



,)},0,0{(

,)},0,1))(({(max
)( 1

IIif

IIifIprI
IU


  for any .),( NNZI   

For example, for (2,10)}{(1,3),I  and  IJ , function will result 


)(IU  

(3,0)}(2,10),{(1,3),  and {(0,0)})( 


JU  accordingly; selection by maximal 

name max : )()(max ))(pr(max 1
IprI I ,   II )(max ; zeroing of values 

}0{ : JI )}(0{ , where }0{)(pr&)(pr)(pr 211  JIJ . For example, 

 2,0)}({(1,0),  (2,10)})1,3),({ {0}(  ; increment  : maps any non-empty record 
),( NNZI   to record )(I , }),()1,{()( IavavI  . decrement  :  

maps any non-empty record ),( NNZI   to record )(I , which 





















0,0

,0,1
:&),(:),()(

a

aa
bbIavvbvI . In case if  II , 

  III )()( .  
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Designate set of ),( NNZ -pr-functions and ),( NNZ -pr-predicates described as 

...,2,1
...,,1,,,},0{max,,,,,),(














 n
nm

n
m

Z
ZZ

IUWV . 

Analogically to previous section, consider ),( NNZ -functions   and  — 

coding and decoding functions, accordingly.   and   is certain extension 

of mapping 1 . 

Therefore lemma 6 takes place. 

Lemma 6. ),( NNZ -model of M -function ( M -predicate) from set M  may 

be created from functions of ),( NNZ
  set with PPA operations. 

It is easy to build ),( NNZ -models for M -pr-predicate of equality and M -

pr-functions ,},1{,, 1
mAll  . Let us build model of function for multi-sets 

addition  . Now, introduce few auxiliary ),( NNZ -functions and ),( NNZ -
predicates. Namely identically false and identically true predicates Fal  and :Tru  

)),(,,( 1
2

1
3 IUSISFal


  and ),,( 11

3 IISTru  ; predicate of inequality Neq : 

),),,,(( 21
3 TruFalIISNeq  ; constant empty record Z : ),,( 11 IIS ZZ  ; 

selection by pattern Sel : )),,(,,(),( 21
3

1
3

21 IISISIISel ZZ  ; for example, 

)}2,2{()})5,4(),3,2{()},2,2(),1,1({( Sel  — function «selects» from record 1I  

those components, names of which are in record 2I , i.e. 2I  is a kind of pattern for 

selection from 1I ; maximal addition max  of pair of records with same schemes: 

)),(),,()),},0({,(( 2
2

22
1

22
2

22
2

33max ISISISINeqS  . For example, for records 

)}2,2(),1,1{(1 I  and )}5,2(),3,1{(2 I  we will get  ),( 21
max II  

)}7,2(),6,1{()}52,2(),51,1{(  . Note, that operation of maximal addition in 

general case is non-commutative, i.e. ),(),( 12
max

21
max IIII  . Commutative 

property preserved only for records of special type, for example, for same-scheme 
single-element records. For instance, if )}2,2{(1 I  and )}5,2{(2 I , then 

)}7,2{(),(),( 12
max

21
max  IIII . 

Now we can get down directly to building of ),( NNZ -pr-function Z  — 

model of M -function  . Assume that records )},(),...,,{( 111
1

1
11 11 nn dvdvI   and 

)},(),...,,{( 222
1

2
12 22 nn dvdvI   are given and },...,{)()(

121 srr vvIshIsh  . Z  

operation «breaks» records 1I  and 2I  to «segments», designated as 
11

I ,
21I ,

12I  

and 
22I  with schemes },...,{\)()(

11 11 srr vvIshIsh  , },...,{)(
121 srr vvIsh  , 

)(
12Ish  },...,{\)(

12 srr vvIsh  and },...,{)(
122 srr vvIsh  . Thus, resulting record 

 may be represented as: 
2211 21213 IIIII Z . Note, )()(

22 21 IshIsh  . 

As for first two items 
11I and 

12I , they are easily created with earlier defined 

function Z . Namely, 2111
III   and 1221

III  . As for 
22 21 II Z , 

21I  and 
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22I  are easily defined with usage of function Sel : ),( 2112
IISelI   and 

),( 1222
IISelI  . Now model ),( NNZ -function Z  for same-scheme records 

21I  

and 
22I . It is easy to convince that Z  may be represented as: 

 ))(max,)))(max,(()((max,)),((

21

2
2

2
2

2
2

2
1

max2
2

2
1

2
2

2
1

4
    

f

Z

fp

Z IIIISelIIIINeq  . 

Obviously, in case when  )()( 21 IshIsh , record 
22 21 II Z  is empty 

too, i.e. 
22 21 II Z  and, consequently, the result is 

11 21213 IIIII Z  . 

Taking in account that  )()(
11 21 IshIsh , the result may be expressed as 

11 2121213 IIIIIII Z  . 

Lemma 7. Functions   and   may be built from functions of set ),( NNZ
  

by finite number of applications of PPA. 
Correctness of the result is obvious, because of noted similarity of records 

and multi-sets, simplicity of coding and decoding mappings (  and  ), and ad-
duced earlier statements. Hence, lemma 8 is correct. 

Lemma 8.   ,,,,, ),(
),(

NNZM
NNZM  — AS with basis M . 

So, theorem 4 is true. 

Theorem 4. ...,2,1
...,,1,,,},0{max,,,,,),(














 n
nm

n
m

Z
ZZ

IUNN  — genera-

tive system of PPA чр

Z NNA ),( .  

Considering given above statements 1, 2 certain conclusions respectively to 
possible reducability of ),( NNZ

  may be made. Equality predicate cannot be ex-

cluded from ),( NNZ
  because it is sole predicate in CS. Z  ( )(IU


,  , max , 

}0{ ) — the only function in CS that does not preserve set }{\),( IZ NN  

( )}}0,0{{(\),( NNZ , }][{iZ
Ni



, }]1,[{ 


iiZ
Ni
 ,

Ni

iiZ


)}}0,{{(\}][{ ). Moreover, 

)(IU


 does not  -preserve denotations with given such estimation 
NNNZ 2: ),(   that  )(I  and ,,...,{)}),(),...,,({( 111 nnn vvdvdv   

},,...,1 ndd  ,...3,2,1n  As for increment   and decrement   functions, they are 

in ),( NNZ
  simultaneously for convenience and symmetry, however they are 

not independent. For example, decrement may be easily produced by PPA 
operations from rest of the functions and predicate of ),( NNZ

  

( )),,(},0{),),,(),,(),,,((( 1
1

1
1

3
3

3
2

3
1

3
3

3
2

344 IISIIISIINeqSS  ). The fact that   as 

well as   does not preserve denotations with given estimation :  for which 

 )(I  and ,...3,2,1},,...,{)}),(),...,,({( 111  ndddvdv nnn  directly results 
truthfulness of theorem 5. 
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Theroem 5. ...,2,1
...,,1,,},0{max,,,,,),(














 n
nm

n
m

Z
Z

I

Z
IU

n
m

NN  — n
mI -basis of 

PPA pr

Z NNA ),( . 

CONCLUSIONS 

Modern IT problematic needs direct consideration of not only programming prob-
lems solutions, but processes, which lead to them. That is why researches of such 
processes organization structures are of paramount importance today. A special 
place in those researches takes problematic, connected with building of algebraic 
characteristics of pragmatically conditioned function classes, particularly, with 
solutions of completeness problems in corresponding algebras. In the paper these 
questions discussed on basis of primitive program algebras. Method of generative 
sets finding in PPA presented here, and applied to research of class of partially-
recursive functions on records, which is of theoretical and applied importance. 
Using concepts of complete and allowable systems, and results received, espe-
cially criteria of completeness, universality of proposed method in classes of 
computable functions on different carriers proved. 

Results received form foundations for development of adaptive program-
ming environments. Next steps in this direction will be related with investigation 
of general concept of composition and development of functions exploring reduc-
tion methods connected with it as means of pragmatically driven decomposition 
of programming problems.  
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