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ABSTRACT 

A novel approach for the computation of optical flow 
based on an L1 type minimization is presented. It is 
shown that the approach has inherent advantages since 
it does not smooth the flow-velocity across the edges 
and hence preserves edge information. A numerical 
approach based on computation of evolving curves is 
proposed for computing the optical flow field and re- 
sults of experiments are presented. 

1. INTRODUCTION 

Optical flow field is defined as the velocity vector field 
of apparent motion of brightness patterns in a sequence 
of images [5]. In their pioneering work, Horn and Schunk 
[5] use a quadratic smoothness constraint. The imme- 
diate difficulty with this smoothness constraint is that 
at the object boundaries such a smoothness constraint 
will have difficulty capturing the optical flow. 

In this paper, we propose a novel method for com- 
puting optical flow based on the theory of the evolution 
of curves and surfaces. The approach employs an L1 
type minimization of the norm of the gradient of the 
optical flow vector. It can be shown that the equations 
diffuse in a direction orthogonal to the intensity gradi- 
ents i.e., in a direction along the edges. This results in 
the edges being preserved. The equations can be solved 
by following a methodology very similar to the evolu- 
tion of curves based on the work of Osher and Sethian 
[ll] and Rudin e2 al. [15]. 
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2. L1 MINIMIZATION 

Intuitively, it is desired that the “geometry” of the op- 
tical flow dictated by the sharp intensity gradients in 
the images should be captured by the regularization. 
An L1 type opt,imization problem is successful in sa- 
tisfying this intuition and the solution makes contact 
with non-linear geometric scale-space ideas. 

We use the following L1 norm smoothing error to  
develop insights into the optical flow problem: 

ts = p w +  & T & i c 1 2 .  (2.1) 

c2 
Consider the reg,ularization of the optical flow using the 
following cost-functional: 
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The Euler-Lagrange equations in this case are 
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The “curva,ture terms” in these equations can be 

I G ~  - a 2 E x ( E , u  + E,v + E t )  = 0,  (2.4) 

tcv - a 2 E y ( E x u  + E,v + E t )  = 0,  ( 2 . 5 )  

easily identified and the equations rewritten as 

where the curvatures tcu and are given by 

IGu = ~ ux2uyy -- 2uxuyuxy + uyzuxx = div (>) 
( uxz + u,2)3’2 IlVUll ’ 
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and 

K v  = vx2vyy - 2vxvyvxy + vy2vx2: = div (&) . (2.7) 
(vx2 + vy2)3‘2 

K~ and K ,  given in these equations are precisely the 
curvatures of level sets as we show now; see also [l, 3, 

Consider the level set of the differentiable function 
111. 

Q ( X 7  Y) 
C k  = {(X, Y) : @ ( X I  3’) = I C } ,  (2.8) 

where IC is a constant. An arc-length parametrization 
for C k  is chosen by 

C k  = Y(S)) : s E [O, L(Ck)Il, (2.9) 

where L ( . )  denotes the length of the curve. The level 
set is given as 

fIf(x(s), y(s)) = IC = constant. (2.10) 

Differentiating twice, solving for the various derivatives 
w.r.t the arc-length and then simply substituting in: 

(2.11) 

we may write the curvature of the implicitly defined 
curve C k  as follows: 

Q X X Q $  - 2 Q x y Q x Q y  + QYVQ$ 

(Q2 + QIzy)3/2 

VQ 
= div( -). 

IIVQII 
K q  = 

(2.12) 
We will use gradient descent to solve equations (2.4, 

2.5). We introduce a new time (or scale) variable t’, 
and derive the following nonlinear parabolic evolution 
equations: 

iLtr = W, - a2EX(ExB + E y 6  + Et), (2.13) 

iItt = K $  - cy2Ey(ExiL + Ey6 + Et), (2.14) 

for U = G(x, y,t, t’) and similarly for 6. The steady- 
state solution of the system (2.13, 2.14) is precisely 
the solution of the Euler-Lagrange equations (2.4, 2.5). 
Note that in the limit that a + 0,  we get the equations: 

3. NUMERICAL IMPLEMENTATION 

A straightforward finite-difference approach to nume- 
rically solve for the optical flow from equations (2.13) 
and (2.14) does not work very well. The two main 

problems which can arise are the development of sin- 
gularities and topological changes as the curve evolves. 
After the singularity develops an entropy condition is 
imposed on the evolution to pick out the correct solu- 
tion. The entropy condition employed here is that for a 
propagating flame: a particle once burnt remains burnt 
and has been used in the work of Osher and Sethian 
[11] on which our numerical implementation are based. 

Osher and Sethian in [ll] show that by embedding 
the curve in a two dimensional surface and then evol- 
ving the surface rather than the curve, one derives ro- 
bust , stable, and reliable evolution algorithms which 
also incorporate the changes in topology. 

We apply the aforementioned numerical methods of 
Osher and Sethian to  the optical flow equations (2.13, 
2.14) given in Section 2. cy is assumed to be a fixed 
small positive number and the choice is problem de- 
pendent. The numerical algorithm we use is similar to 
the one developed in Rudin e t  al. [15]. The complete 
set of discretized equations have been given in [8]. 

4. RESULTS OF EXPERIMENTS 

In this section results are presented for three (two syn- 
thetic and one real) sets of images taken from Barron 
et al.,  [2]. 

Sinusoidal sequence 
The sinusoidal sequence is a synthetic image se- 

quence and consists of the superposition of two sinusoi- 
dal plane-waves Figure 4(a). The correct velocity field 
has all vectors v’= ( 1 , l ) .  

Diverging Tree sequence 
This is a synthetic image sequence in which the ca- 

mera is moved along the line of sight and the focus 
of expansion is taken as the center of the image, Fi- 
gure 4(b). The flow field is primarily dilational. 

Rotating Rubik Cube Sequence 
This sequence shows a Rubik’s cube rotating counter- 

clockwise on a turntable see Figure 4(c). The motion 
field is primarily rotational. 

It is observed that the L1 minimization approach 
based on curve-evolution is sensitive to intensity gradi- 
ents and is less diffusive in its computations of the flow 
fields. For the real image sequence of the Rubik’s cube 
placed on a rotating turntable the flow field computed 
shows sensitivity to the intensity gradients (due to the 
local patterns on the turntable’s edge and also on the 
faces of the cube) while a t  the same time reproducing 
the global motion of the turntable, see Figure 3(a). 
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For the synthetic image sequences we have tried to  
produce the most smooth fields globally by increasing 
the a parameter. Recall that varying the value of Q in 
the evolution equations gave a scale space with varying 
degrees of smoothness in the flow field. Larger values 
of a produces smoother fields while smaller values will 
capture the edges in the images. Thus for example we 
are able to  capture the divergent field in the diverging 
tree sequence, see Figures (2), and the translational 
field in the sinusoidal sequence, see Figures (1). 

5. CONCLUSIONS 

In this paper we have developed a novel approach for 
the computation of optical flow from sequence of ima- 
ges. We motivate the use of an L1-norm minimization 
of the flow vectors based on the ideas of scale spaces 
and the geometric heat equation. This approach has 
inherent advantages since it does not smooth the flow 
velocity across the edges. The numerical approach to  
solving the resulting equations is implemented using 
numerical approaches from the theory of evolution of 
curves and it has been found to work quite well. 
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Figure 1: Curve Evolution computed flow field for the 
sinusoidal synthetic sequence. 

Figure 2: Curve Evolution computed flow field for the 
diverging tree synthetic sequence. 
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Figure 4: Frames from (a) Sinusoidal (b) Diverging 
Tree (c) Rubic Cube. 

Figure 3: Curve Evolution computed flow field for the 
rubik’s cube sequence. 
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