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Image Segmentation Using Active Contours
Driven by the Bhattacharyya Gradient Flow
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Abstract—This paper addresses the problem of image segmenta-
tion by means of active contours, whose evolution is driven by the
gradient flow derived from an energy functional that is based on the
Bhattacharyya distance. In particular, given the values of a photo-
metric variable (or of a set thereof), which is to be used for classi-
fying the image pixels, the active contours are designed to converge
to the shape that results in maximal discrepancy between the em-
pirical distributions of the photometric variable inside and outside
of the contours. The above discrepancy is measured by means of the
Bhattacharyya distance that proves to be an extremely useful tool
for solving the problem at hand. The proposed methodology can be
viewed as a generalization of the segmentation methods, in which
active contours maximize the difference between a finite number
of empirical moments of the “inside” and “outside” distributions.
Furthermore, it is shown that the proposed methodology is very
versatile and flexible in the sense that it allows one to easily ac-
commodate a diversity of the image features based on which the
segmentation should be performed. As an additional contribution,
a method for automatically adjusting the smoothness properties of
the empirical distributions is proposed. Such a procedure is cru-
cial in situations when the number of data samples (supporting a
certain segmentation class) varies considerably in the course of the
evolution of the active contour. In this case, the smoothness prop-
erties of the empirical distributions have to be properly adjusted to
avoid either over- or underestimation artifacts. Finally, a number
of relevant segmentation results are demonstrated and some fur-
ther research directions are discussed.

Index Terms—Active contours, Bhattacharyya distance, image
segmentation, kernel density estimation.
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I. INTRODUCTION

THE quintessential goal of image segmentation is to parti-
tion the image domain into a number of (mutually exclu-

sive) subdomains over which certain properties of the image ap-
pear to be homogeneous. The homogeneity, however, turns out
to be a somewhat vague notion when applied for characterizing
localized regions of natural images, and, therefore, it should be
used with a precaution whenever the problems that involve such
images are dealt with. Thereupon, it is usually more convenient
to look at image segmentation from a more practical perspective
and think of it as a way to decompose an image into a number
of its fragments, each of which can be associated with a distinct
class. The latter is usually distinguished on a semantic basis and
assumed to be either an object or a background. Thus, for ex-
ample, the object may be associated with a diseased organ in
medical imaging [1], [2], an intruder in surveillance video [3],
[4], a moving part of a machine in robotics [5], [6], a maneu-
vering vehicle in traffic control [7], [8], or a target in navigation
and military applications [9], [10].

A multitude of diverse image segmentation methods have
been proposed over the last few decades. In spite of this
diversity, however, the majority of these methods seem to
follow a similar algorithmic pattern. The latter involves making
hypotheses regarding the structure and properties of the image
to be segmented, defining a set of the image features based
on which segmentation classes are discriminated, and finally
applying a decision threshold in either explicit or implicit
manner [11]. Thus, for example, an image feature (or a collec-
tion thereof) can be considered as a random variable described
by a set of conditional likelihood functions. Consequently, the
Bayesian decision theory [12] could be used to determine the
Bayesian decision threshold as a minimizer of the posterior
probability of misclassification error.

Although the above segmentation approach is by no means
generic for all types of segmentation methods proposed hith-
erto, it espouses an “ideology” that seems to be common
for many problems of this kind. In particular, independently
of whether the segmentation is based on a local [13], [14]
or global [15], [16] analysis, whether it utilizes deformable
contours [17], [18] or polygons [19], [20], the most successful
segmentation methodology will be the one that minimizes the
probability of misclassification error. Hence, this probability
appears to constitute a universal criterion, based on which
image segmentation methods may be designed.

Unfortunately, in many practical settings, little is usually
known about the statistics of segmentation classes, and, as a
result, an explicit definition of the probability of misclassifica-
tion error is either very complicated or even impossible. In such
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situations, it is tempting to find alternative criteria, which are
simpler to formulate, and based on which one could perform the
segmentation with accuracy comparable to that of the methods
based on explicitly minimizing the error probability.

It is worthwhile noting that, long before the problem of seg-
menting digital images has become an indispensable part of
modern image processing and computer vision, the quest for
the aforementioned criteria was undertaken in the fields of com-
munication and radars [21]. Similar to the case of segmenta-
tion/classification, suitable criteria were sought there to be used
as substitutes for the probability of detection error. In this con-
nection, it was found that some useful choices for such criteria
can be based on the notion of a distance between probability
distributions [21]. The latter, for instance, could be the distri-
butions of observations in a binary hypothesis testing, in which
case it can be shown that the further apart one can make these
distributions, the smaller will be the probability of mistaking
one for the other [22].

In order to define a distance between probability distribu-
tions, a number of information-theoretic measures can be used
[23]. Some standard choices (which are also involved in basic
results of information theory) include the Fisher ratio, the Kull-
back–Leibler (KL) divergence [24], [25], and the Bhattacharyya
distance [22] (which is a special case of a more general distance
introduced by Chernoff [26]).

When comparing the above distances in application to the
problem of signal selection, it was observed in [21] that, in a
number of practically important cases, the Bhattacharyya dis-
tance turns out to give better results as compared to the KL
divergence. Furthermore, there is also a “technical” advantage
of using the Bhattacharyya distance for its having a particu-
larly simple analytical form. Specifically, the Bhattacharyya dis-
tance between two probability densities and , with

, is defined as , where is the Bhattacharyya
coefficient given by

(1)

It is interesting to note that the functions (with
) belong to the unit sphere of , and, thus, in (1)

can be thought of as a direction cosine between two points on
the sphere. For this reason, the values of are always confined
within the interval .

Lately, the exceptional properties of the Bhattacharyya dis-
tance have shown its worth for applications in computer vision.
Thus, for example, in [27], it was shown that for detection, lo-
cation, or segmentation algorithms based on the maximum like-
lihood (ML) or on the minimum-description length principle,
and for realistic cases where the object and background statis-
tical parameters are unknown, the Bhattacharyya distance can
characterize the image difficulty for a large family of proba-
bility laws. Particularly, it was shown that, for a wide spectrum
of distributions under test, the average number of misclassified
pixels is a monotonously decreasing, bijective function of the
Bhattacharyya distance between the probability densities of the
object and of the background.

Later on, the Bhattacharyya distance was employed in [28]
for image segmentation and tracking. In this study, tracked ob-

jects were characterized by model distributions over some pho-
tometric variable. Consequently, a tracked object was identified
as the region of image whose interior generates a sample distri-
bution which most closely matches the model distribution. As a
possible measure of the match, the Bhattacharyya coefficient
was used in [28] with apparent success.

This paper takes the idea of [28] a few steps further by ex-
tending its applicability to the cases when the model distribu-
tions of tracked objects cannot be defined beforehand. In partic-
ular, the segmentation method described in this paper identifies
the object as the image region whose interior generates a sample
distribution that maximizes the distance to the sample distribu-
tion generated by corresponding exterior. In order to assess the
above distance, we use the Bhattacharyya coefficient as given
by (1).1

It should be noted that virtually all practically important prob-
ability distributions can be uniquely represented by (either finite
or infinite) sets of their moments. In such cases, the discrep-
ancy between two (or more) distributions could be “translated”
into the discrepancy between their corresponding moments, and
comparing the empirical distributions of a photometric variable
inside and outside of the “object region” could be superseded by
comparing the corresponding empirical moments. Thus, for ex-
ample, in the seminal work by Chan and Vese [29], the object of
interest is identified as the image region, whose interior and ex-
terior differ the most in terms of their corresponding mean inten-
sities. In the case when both the object and the background have
(approximately) identical mean values, second-order moments
can be involved into an analogous procedure [30]. Obviously,
the chain of statistical moments can be extended unlimitedly,
progressively increasing the “discrimination power” of resulting
segmentation algorithms on one hand and complicating their
implementation on the other. Needless to say, working with the
moments also raises the dilemma of determining their number
and orders which would be appropriate for specific data at hand.
On the other hand, the method proposed in this paper is free of
the above limitations, since it takes into consideration the en-
tire shapes of probability distributions, thereby being capable
of “sensing” the discrepancy between virtually infinite number
of empirical moments.

Apart from providing the explicit formulas necessary for
implementing the proposed segmentation method, the current
study extends its contribution in an additional direction. Since
the proposed method works with empirical distributions (which
are functions of the data samples, whose number varies in
time as the segmentation converges), the issue of estimation
consistency and its preservation during the iterations should
not be overseen. Consequently, in this paper we also introduce
a computationally efficient procedure which allows one to
automatically control and adjust the smoothness properties of
the estimated distributions.

In concluding this introductory section, it should be men-
tioned that the proposed segmentation method exploits the tech-
nique of active contours that has become very popular over the

1Since log is a strictly monotone, increasing function, maximizing the Bhat-
tacharyya distance is equivalent to minimizing the corresponding coefficient.
For this reason, we prefer using the coefficient instead of the distance, as it leads
to simpler analytical expressions.
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last few decades [31]. This methodology is based on the uti-
lization of deformable contours which conform to various ob-
ject shapes. The contour deformation is typically driven by a
gradient flow stemming from minimization of an energy func-
tional, which can be dependent on either local (e.g., gradient
field) or global (e.g., mean intensity) properties of the image.
In the latter case, the resulting active contours are referred to as
region-based, and this is the group of methods to which the ap-
proach reported in this paper belongs.

The paper is organized as follows. Section II briefly revises
some fundamental aspects of the level-set framework and
introduces the Bhattacharyya energy functional, as well as the
related gradient flow. The statistical assumptions underpinning
the proposed approach are discussed in Section III. Some
possible choices of the discriminative features are summarized
here, as well. Section IV deals with the problem of automati-
cally controlling the smoothness of empirical distributions and
describes a simple method to perform this control. Section V
discusses a number of possible ways of extending the results
of the preceding sections to multiobject scenarios. Several
key results of our experimental study are demonstrated in
Section VI, while Section VII provides examples of practical
cases in which the proposed methodology can be advantageous
over some existing techniques. Section VIII finalizes the paper
with a discussion and conclusions.

II. BHATTACHARYYA FLOW

A. Level-Set Representation of Active Contours

In order to facilitate the discussion, we confine the derivations
below to the case of two classes (i.e., when the problem to be
dealt with is that of segmenting an object of interest out of its
background), followed by describing some possible ways to ex-
tent the proposed methodology to multiobject scenarios.

In the two-class case, the segmentation problem is reduced to
the problem of partitioning the domain of definition of
an image (with ) into two mutually exclusive and
complementary subsets and . These subsets can be rep-
resented by their respective characteristic functions and ,
which can, in turn, be defined by means of a level-set function

in the following manner. Let be the Heaviside
function defined in the standard way as

if
if

(2)

Then, one can define and
, with .

Given a level-set function , its zero level set
is used to implicitly represent a curve—active con-

tour—embedded into . For the sake of concreteness, we asso-
ciate the subset with the support of the object of interest,
while is associated with the support of corresponding back-
ground. In this case, the objective of active-contour-based image
segmentation is, given an initialization , to construct a
convergent sequence of level-set functions (with

) such that the zero level-set of coin-
cides with the boundary of the object of interest.

The above sequence of level-set functions can be con-
veniently constructed using the variational framework [32].
Specifically, this sequence can be defined by means of a gra-
dient flow that minimizes the value of a properly defined cost
functional [31]. In the case of the present study the latter is
derived in the following way. First, the image to be segmented

is transformed into a vector-valued image of its local
features .2 Note that the feature image ascribes to
every pixel of an -tuple of its associated features, and,
hence, it can be formally represented as a map from to .
Subsequently, given a level-set function , the following
two quantities are computed:

(3)

and

(4)

where , and and are two scalar-valued
functions with either compact or effectively compact supports
(e.g., Gaussian densities). Provided that the kernels and

are normalized to have unit integrals with respect to the
feature vector , viz. , the
functions and given by (3) and (4)
are nothing else but kernel-based estimates of the probability
density functions (pdfs) of the image features observed over the
subdomains and , respectively [33], [34].

The core idea of the preset approach is quite intuitive and it is
based on the assumption that, for a properly selected subset of
image features, the “overlap” between the informational con-
tents of the object and of the background has to be minimal.
In other words, if one thinks of the active contour as of a dis-
criminator that separates the image pixels into two subsets, then
the optimal contour should minimize the mutual information be-
tween these subsets. It is worthwhile noting that, for the case at
hand, minimizing the mutual information is equivalent to maxi-
mizing the KL divergence between the pdfs associated with the
“inside” and “outside” subsets of pixels. For the reasons dis-
cussed below, however, instead of the divergence, we propose to
maximize the Bhattacharyya distance between the pdfs. Specif-
ically, the optimal active contour is defined as

(5)

where

(6)

2In the section that follows, we will elaborate on some possible choices of
the feature space. Meanwhile, in order to clarify the meaning standing behind
of this operation, suffice it to note that J could be, for example, the image I(x)
itself or the vector-valued image of its partial derivatives.
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with and being given by the (3) and
(4), correspondingly.

B. Gradient Flow

In order to contrive a numerical scheme for minimizing (6),
its first variation should be computed first. The first variation of

(with respect to ) can be easily shown to be given
by

(7)

Differentiating (3) and (4) with respect to , one obtains

(8)

and

(9)

where is the delta function, and and are the areas
of and given by and , respec-
tively.

By substituting (8) and (9) into (7) and combining the corre-
sponding terms, one can arrive at

(10)

where

(11)

Assuming the same kernel is used for computing the
last two terms in (11), i.e., , the latter
can be further simplified to the following form:

(12)

where

(13)

Finally, introducing an artificial time parameter , the gradient
flow of that minimizes (6) is given by

(14)

where the subscript denotes the corresponding partial deriva-
tive, and is defined as given by either (11) or (12).

From the viewpoint of statistical estimation, the cost func-
tion (6) can be thought of as accounting for the fidelity of es-
timation of the optimal level-set function to observed features
of . However, this cost function does not take into consid-
eration some plausible properties of the optimal solution, and,
as a result, minimizing (6) alone could be too sensitive to mea-
surement noises and/or errors in the data. In order to alleviate
this sensitivity, one can attempt to filter out the spectral compo-
nents of the solution which belong to the noise subspace. For the
case at hand, one can regularize the solution via constraining the
length of the active contour, in which case the optimal level-set
function is given by

(15)

where denotes the operator of gradient, is the Euclidean
norm, and is a regularization constant, which controls the
compromise between fidelity and stability. The gradient flow
associated with minimizing the cost functional in (15) can be
shown to be equal to

(16)

where is the curvature of the active contour given by
. The form of (15) suggests that

the gradient flow (16) will converge to a (local) solution of min-
imal curvature, which results in the maximal distance between
the empirical distributions and as measured by
the Bhattacharyya coefficient (1). All the segmentation results
reported in the present study have been obtained via numerically
solving (16) with the value of set to be equal to 1.

Finally, it should be noted that the gradient flow (16) would
change the level-set function over a set of zero measure, if
the formal delta function was exploited in computations.
In order to overcome this “technical” difficulty, it is common
to extend the numerical support of the level-set evolution via
replacing the delta function by its smoother version that
could be defined as given by, e.g., [29]

otherwise.
(17)

Note that the support of is finite and it is controlled though
the user-defined parameter .

III. STATICAL FRAMEWORK

A. Assumptions and Limitations

The proposed model for evolving the active contours is based
of the notion of discrepancy between the empirical densities

and of the feature vector associated with the
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object and background classes, respectively. We note that using
pdfs for estimating the optimal shape of the active contour is also
supported by the well-known likelihood principle [35], which
states that in making either inferences or decisions about a pa-
rameter of interest after data is observed, all relevant experi-
mental information is contained in the likelihood function of the
observed data.

However, before we turn to describing some additional
aspects related to solving (15) by means of the gradient flow
(16), the statistical assumptions, based on which the solution
is computed, should be underlined. First of all, it has been
assumed that, for the case of two segmentation classes, the
samples of can be characterized by the two conditional
densities and , which describe
the distribution of the feature vector in the object and in the
background class, respectively. Moreover, it has been assumed
that the pixels of the feature image that pertain to the
object class are independent and identically distributed (i.i.d.)
copies of obeying , whereas the samples of
representing the background are i.i.d. copies of distributed
according to .

An obvious disadvantage of using the above statistical as-
sumptions is the fact that they do not allow one to take into
consideration the dependency structure between the samples of

(or between those of , for that matter). It goes without
saying that ignoring the interpixel dependency is a simplifica-
tion, which has been mainly used to make the proposed segmen-
tation method feasible from the viewpoint of its practical imple-
mentation. Undoubtedly, the precision of the method could be
improved, if the above dependency was accounted for by means
of, e.g., the theory of Markov fields [36]. However, such a more
rigorous modeling would have necessitated the estimation of the
dependency structure, thereby substantially increasing the com-
putational cost of the overall segmentation process. Hence, in a
certain sense, assuming the interpixel independency “trades” the
model precision for the practicability of the resulting numerical
scheme.

It should also be noted that the kernel density estimates (3)
and (4) exploit the assumption of ergodicity, which allows one
to estimate the densities based on “spatial” averaging rather than
on ensemble averaging. Assuming the ergodicity could also be
viewed as a limitation, though somewhat less critical one as
compared to the assumption of interpixel independency.

Finally, a few comments should be made regarding the form
of the velocity as given by (12). One can see that the
latter consists of two terms. The first of these terms is indepen-
dent of the spatial coordinate , and it results in either incre-
ment or decrement of the mean value of the level-set function

by a constant amount depending on the ratio between the
areas and . On the other hand, the second component of
the velocity is coordinate dependent, and it can be viewed as a
smoothed version of the function defined by (13), whose
form deserves a special attention. Specifically, is defined
as a difference between the square roots of the likelihood ratios

and weighted by corresponding
areas. This fact immediately connects the proposed curve-evolu-
tion model to the hypothesis testing by means of likelihood ratio
tests [37]. As a matter of fact, at each iteration, the gradient flow

(16) “performs” a likelihood ratio test so as to alter the contour’s
shape by the forces, which make it include into its interior the
image pixels, which are likely to belong to the object class. The
existence of such an interpretation, as well as its connection to
the classical theory of hypothesis testing, further supports the
reasonability of the proposed variational framework.

B. Examples of Discriminative Features

In this section, a number of possible definitions of the feature
vector are discussed. The set of examples given below is by
no means complete, but it rather represents the features most
frequently used in practice.

Formally, the transition from the data image to
the vector-valued image of its features can be
descried by a transformation applied to , viz.

. Hence, the question of selecting a useful set of image
features is essentially equivalent to the question of defining a
proper transformation . Perhaps, the simplest choice here is
to define the feature image to be identical to , which
corresponds to the case of being identity and .3 In this
case, the features used for the classification are the gray levels
of , and the resulting segmentation procedure is essentially
histogram based [38].

Although the above choice has proven useful in numerous
practical settings, it is definitely not the best possible for the
cases when both object and background have similar intensity
patterns. In this case, it seems reasonable to take advantage of a
relative displacement of these patterns with respect to each other
via transforming to the space of its partial derivatives. This
transformation is performed by setting , in which case
the feature space becomes two-dimenational, i.e., .

As a next logical step, one can smooth the above gradient
using a set of low-pass filters with progressively de-

creasing bandwidths. This construction brings us directly to the
possibility to define to be a wavelet transform [39]. Note that,
in this case, each pixel of the resulting carries informa-
tion on multiresolution (partial) derivatives of . It should be
noted that using the wavelet coefficients as discriminative fea-
tures for image segmentation has long been successfully used in
numerous applications [40].

The dependency structure between the partial derivatives of
can be captured by the structural tensor defined as given

by

(18)

with , and and denoting the cor-
responding partial derivatives. In this case, the feature
space is 3-D, as for each is defined to be equal to

. Note, however,
that this choice of the feature space should be treated with
precaution, since the latter is no more a linear space. This is
because the structural tensor (18) is positive definite, and, there-
fore, the pixels of defined as above are no more elements
of an Euclidean space, but rather of a nonlinear manifold. For-
tunately, the availability of kernel-based methods for estimating

3It should be noted that, even though in the definitions above the data image
I(x) is scalar-valued, it should not be necessarily so. I(x) may be a color image,
as well.
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probability densities defined over nonlinear manifolds makes it
possible to apply our approach in this situation, as well [41].

Another interesting choice of can be followed in the sce-
narios, in which appears as an element of a sequence of
tracking images. In this case, can be defined
to be the vector field of local displacements of the gray levels
of . Specifically, let denote the temporal (partial)
derivative of . Let also be a 2-D column vector with
its first and second components equal to and

, respectively. Then, the gray-level constancy
constraint [42] can be shown to result in the following least
square solution for the local displacement field

(19)

with being the structure tensor given by (18).4 Conse-
quently, in the case when the motion of the tracked object is
independent of that of its background, the feature image can be
defined by setting . We note that this choice seems
to be reasonable for many tracking scenarios, where the back-
ground motion is either negligible or associated with the ego-
motion of camera, which rarely correlates with the dynamics of
tracked objects. It is also worthwhile noting that motion-based
segmentation [43] represents an independent field of research,
which embraces many powerful segmentation techniques. Thus,
the method presented in this study becomes a specific instance
of this class of approaches, when is related to motion-based
features of .

The local moments of [44], multiresolution versions
thereof [45], and the local fractal dimension [46] are among
many other image features, which could be used for the seg-
mentation. Note that a combinational use of all the features men-
tioned above is also possible. Thus, for example, by letting the
feature vector (whose specific realization at
is given by ) be composed of the intensity and local
velocity components ( ), one can perform the segmenta-
tion based on both gray-scale and motion information, thereby
bridging the gap between the segmentation approaches, which
utilize these features separately. It should be noted that in this
case, it is reasonable to assume that the intensity is independent
of the motion. Consequently, the pdf of can be factorized as

so as to reduce the com-
putational complexity of segmentation.

IV. UPDATING THE EMPIRICAL DISTRIBUTIONS

A. Kernel-Based Estimation

In the current study, the conditional densities
and are estimated using the kernel estimation
method [33], [34]. In this section, we consider the subject of
properly defining the kernel’s bandwidth, which should be con-
sistent with the data size for the estimates to be reliable [47].
Before we start, it should be noted that the continuously-defined
form of the kernel estimates in (3) and (4) was used merely for
the convenience of derivation of the gradient flow (16). In what

4Note that, strictly speaking, the tensor T(x) has rank one, and, hence, it is
not invertible. To overcome this technical difficulty, it is common to average the
values of the tensor over a small (e.g., 3� 3) neighborhood of x.

follows, however, we resort to the discrete form of these esti-
mates, as it is more appropriate to the practical case, where data
images are represented by their samples over .

In the discrete setting, the kernel density estimation amounts
to approximating the (unknown) pdf of an -dimensional
random vector by

(20)

where are independent realizations of . In (20), the
kernel is parameterized by a vector and has a unit in-
tegral, i.e., .

A number of possible definitions of the kernel are
possible [34], among which the most frequent one is to de-
fine to be a Gaussian pdf, and this is the choice fol-
lowed in the current study. Moreover, to facilitate the numerical
implementation of the density estimation, we use a separable
(isotropic) form of the Gaussian pdf, in which case is
defined as

(21)

where are the coordinates of , and the standard
deviations control the extension of along
corresponding directions. It should be noted that the separability
of the kernel in (21) does not imply the separability of the esti-
mate that is now given by

(22)

with .
The kernel method of density estimation has proven valuable

in numerous applications. It is well known, however, that effec-
tive use of this method requires proper choice of the bandwidth
parameters . When insufficient smoothing is done (i.e., the
bandwidth parameters are too small), the resulting density es-
timate is too rough and contains spurious features that are ar-
tifacts of the sampling process. On the other hand, when ex-
cessive smoothing is done, important features of the underlying
structure are smoothed away. Consequently, to optimize the ac-
curacy of the estimates in (3) and (4), the bandwidth parameters

should be properly defined. This can be done using the
procedure we describe in the next section.

B. Defining the Bandwidth

In order to avoid unnecessary mathematical abstraction, we
confine the discussion below to the case of . Note that
such a reduction of dimensionality can by no means be consid-
ered as a limitation, as the kernel [as given by (21)] is sep-
arable. Consequently, the results derived below can be straight-
forwardly applied to each 1-D component of indepen-
dently.

In the scalar case, the kernel estimate of is given
by , with being

observations of and being a scaled version of
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the normal density , viz.
. In this case, a standard way to de-

termine the optimal value of the bandwidth parameter is
via minimization of the asymptotic mean integrated square
error between the original pdf and its estimate . This
optimal value can be shown to be given by [47]

(23)

where denotes the -norm of the second derivative
of . Substituting the Gaussian kernel in (23) results in

(24)

An exact computation of the above optimal value is obviously
impossible, since it requires knowing the derivative of an un-
available quantity, i.e., of . In order to overcome this diffi-
culty, it is standard to use an approximation of the above deriva-
tive instead of its exact value. Constructing approximations of
this kind has long been an intense research topic in statistics,
where all such methodologies proposed so far can now be cat-
egorized into the first and the second generation methods [47].
Although, in general, the second generation methods are more
accurate, their implementation often requires iterative solution
of nonlinear equations, which makes these methods difficult to
integrate into the segmentation procedure under consideration.
On the other hand, a considerable gain in computational ef-
ficiency (on account of insignificant loss in accuracy) can be
achieved by exploiting the first generation methods. One of the
methods of this kind (which seems to be first proposed in [48])
is based on assuming the unknown to be Gaussian. In this
case, the resulting optimal bandwidth is given by

(25)

where is the second moment of , which can be effort-
lessly estimated as the sample variance of . Although
assuming to be Gaussian may be an oversimplification, this
assumption has been observed to work quite satisfactory in nu-
merous cases of practical interest. For this reason, in the present
study, we choose to define the optimal bandwidth according to
(25).

In the case of two segmentation classes, the active contour di-
vides the image domain into two subdomains. As a result, the
total number of pixels of can be expressed as the sum of

pixels belonging to the object class and pixels belonging
to the class of background. Moreover, as the shape of the active
contour constantly changes in the course of its evolution, so do
the numbers and . As a result, the optimal bandwidths

and corresponding to the object and its background, re-
spectively, become functions of the iteration time , as they are
given by

(26)
where and are the standard deviations associated with
the conditional densities and ,
respectively. In order to estimate the constant factors and

, one can first classify the image features using some simple,
“course-level” algorithm, followed by computing the standard
deviations of the classes thus obtained. Alternatively, one can es-
timate these constants by means of the expectation maximization
algorithm assuming a Gaussian mixture model [49] for the (un-
conditional) likelihood of . Yet even simpler method for com-
puting and would be to set them both equal to the stan-
dard deviation of the entire (i.e., unclassified) data set. Though
trivial, the latter approach has been observed to work reliably in
practice, and, for this reason, it was used to derive all the results
reported in the experimental part of this paper.

The variability of the optimal bandwidths in (26) creates the
need for constantly recomputing the kernel density estimates (3)
and (4). It goes without saying that such “re-estimations” are
very undesirable from the practical point of view, as they could
considerably increase the overall computational load. Thus, it
is tempting to find a way to update the density estimates in a
computationally efficient manner. A possible solution for this
problem is proposed next.

C. Bandwidth Adjustment via Isotropic Diffusion

To simplify the presentation, let us consider first the problem
of estimating the pdf of a random variable given a time-
varying set of its independent observations . Suppose
that, at time , the set consists of observations,
and, hence, the kernel estimate of is given by

(27)

where is the optimal bandwidth corresponding to
and is an appropriately scaled Gaussian kernel. Sub-
sequently, suppose that at a latter time , some of the obser-
vations are excluded from . Let the subset of the in-
dices of these “excluded” observations be denoted by

. Then, the density estimate can be up-
dated according to

(28)
where with being the size of .5

It should be noted that computing (28) is “cheap,” as normally
. Denoting the new set of observations by ,

the updated density estimate (28) can be alternatively repre-
sented as given by

(29)

The above estimate could be considered as optimal, if the
kernel in (29) was replaced by , with being
the optimal bandwidth corresponding to . Consequently,
in order to restore the optimality of (29), the kernel in

5If the set fz g had “gained” some observations, the sign in (28) should
have been changed to plus and n(t ) would have been equal to n(t ) + k�k,
with � being the indices of the “gained” observations.
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(29) should be “substituted” by . In the current paper, we
propose to do this via the process of isotropic diffusion [50].
Specifically, is transformed into by means of the
following diffusion equation:

(30)

where denotes the diffusion time (which should not be con-
fused with the “iteration” time ). The closed form solution to
(30) can be readily shown to be given by

(31)

where denotes, as before, the Gaussian density with its
standard deviation equal to , and stands for the operator of
convolution. Moreover, the semigroup property of the diffusion
implies that

(32)

where . Consequently, by setting ,
we obtain

(33)

The above expression suggests that the kernel can be
transformed into by diffusing the former for the period of
time equal to . As a result, assuming
that the optimal bandwidth depends on data size according to
(25), the time interval necessary for the above diffusive density
update is given by

(34)

Needless to say, the diffusion process can be applied directly
to (29), since the latter is formed as a linear combination of
mutually shifted versions of . Thus, the entire process of
updating this estimate consists of two steps. First, provided that
the difference has exceeded a predefined
threshold, the estimate is recomputed according to (28) (or using
an analogous formula for the case when increases). Subse-
quently, the resulting density is subjected to the process of diffu-
sion for the time duration of defined by (34). We note that,
in practice, the diffusion can be implemented either via direct
convolution with or by means of solving a discrete ap-
proximation to (30).

D. Forward versus Backward Diffusion

In the case when the number of data samples decreases, the
update procedure described above leads to the well-posed oper-
ation of direct (forward) diffusion. In this case, however, when
this number increases, the time interval in (34) becomes neg-
ative, and, as a result, the diffusion needs to be performed in
the backward direction in time. Unfortunately, such an inverse
diffusion is well known to be an ill-conditioned, unstable oper-
ation.

The above instability makes it impossible to “run” the in-
verse diffusion for relatively long time intervals. However, the
fact that it usually takes some time for the inverse diffusion to

Fig. 1. Graph of the function y[n] = n .

blow-up can be used to “regularize” the process of density es-
timation in the following way. When the sample size increases,
one can propagate the diffusion in the backward direction till
the first signs of instability start to show up. At this moment,
the diffusion is terminated and the kernel density estimate is
re-estimated by mean of, e.g., the fast Gauss transform [51]. In
practice, however, it was observed that such re-estimations al-
most never have to be done. This is because, the optimal band-
width given by (25) is proportional to , which is a very
slow-varying function of for relatively large values of the latter
(see Fig. 1). As a result, for , substantial variations in
the number of data points result in only negligible variations of
corresponding bandwidth. It should be noted, however, that the
situation changes cardinally when, for example, the active con-
tour converges on a small target represented by relatively small
number of image samples. In this case, the variability of is
significant, and, as a result, the optimal bandwidth is very “sen-
sitive” to variations of . Thus, for the case of decreasing ,
updating the smoothness properties of kernel density estimates
becomes crucial. Fortunately, it can be done via the well-posed
and computationally efficient process of forward diffusion as
described in the preceding section.

Finally, we note that, in the current study, the velocity in
(16) was computed using the simplified expression (12), which
utilizes a single kernel function [as opposed to
and in (11)]. This simplification, however, is allowed by
the fact that the second component in (12) is always estimated
using a fixed number of data samples, which is defined by the
support of . In summary, the proposed algorithm can be
summarized in the form of the pseudo-code shown in Table I.

V. MULTIOBJECT CASE

In order to extend the applicability of the proposed method to
the case when images contain more than one object of interest,
its multiclass version should be addressed next. In particular,
in such a scenario, the image domain is considered to be a
union of (mutually exclusive) subdomains , each
of which is associated with a corresponding (conditional) pdf
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TABLE I
PSEUDO-CODE OF THE PROPOSED SEGMENTATION METHOD

. Consequently, the first step to be done is to generalize
the definition of the Bhattacharyya coefficient (1) to the case
of densities. Such a natural generalization is known as the
average Bhattacharyya coefficient and it is given by [21]

(35)

with . The above coefficient represents a cu-
mulative measure of discrepancy between all the possible pairs
of the densities under consideration. Note that the normaliza-
tion constant guarantees that the coefficient (35)
takes its values in the interval .

The additivity of the construction in (35) makes it trivial to
derive the corresponding gradient flow. In fact, each additive
term of the cost functional can be differentiated independently
so that the resulting gradient flow is given as a sum of the gra-
dient flows related to the additive components in (35). In order to
complete the multiclass formulation of the Bhattacharyya flow,
however, a few words need to be said regarding the definition of
the level-set function.

Obviously, in the multiclass case, using only one level-set
function would be insufficient to solve the problem at hand.
Consequently, we follow the multiphase segmentation formula-
tion of [52] that uses level-set functions , which are
capable of segmenting the image into (up to) regions.
The idea standing behind the above approach is as simple as
brilliant. In particular, since one level-set function partitions the
image domain into two subdomains, level-set functions can
partition into subdomains, each of which is labelled by the
signs of the level-set functions in that subdomain.
For example, when , we obtain four subdomains, viz.

, and .6 For the reason of space limitation, the
formulas for the multiphase gradient flow corresponding to the
case of (35) are not provided in this paper. However, these for-
mulas can be easily obtained by “plugging” the results of Sec-
tion II into the “templates” derived in [52], mutatis mutandis.

6It should be noted that, in the case when 2 > M , any of the unnecessary
2 �M phases simply remain idle.

Fig. 2. (Upper row of subplots) Intensity-based segmentation of Zebra. (Lower
row of subplots) Corresponding empirical densities of Zebra and its background.

VI. RESULTS

A. Intensity-Based Segmentation

The experimental study of the present paper consists of three
parts, each of which aims at demonstrating different characteris-
tics of the proposed segmentation method. In the current section,
the test images are segmented based on their intensities alone.
The first example here is the image of Zebra, which is consid-
ered to be relatively hard to segment due to the multimodality
of the pdf related to the object class. The segmentation results
obtained for this image are shown in Fig. 2, the subplots A1–A4
of which depict the initial, two intermediate and the final shape
of the active contour, respectively. The corresponding empirical
densities of the object and background classes are shown in the
lower row of subplots in Fig. 2. We note that the initial position
of the contour was chosen to be such that the number of data
samples in both segmentation classes were equal. One can see
that the algorithm results in a useful segmentation, which well
agrees with the true shape of Zebra. It should be noted, however,
that the final segmentation ascribes a portion of the shadow near
Zebra’s hoofs to the object class. It is because that the intensity
levels of the shadow are very close to those of the stripes on
Zebra’s skin. In this case, the intensity information is insuffi-
cient to achieve the ideal result.

Our next example is much more challenging than the previous
one. This is a synthetic image generated according to the seg-
mentation mask shown in the leftmost subplot of Fig. 3. This
image is referred below to as the image of Cat, since its object
class resembles the silhouette of a sitting cat. The corresponding
data image is shown in the middle subplot of the same figure.
To generate this image, its “object” samples were drawn as in-
dependent realizations of obeying the Rayleigh distribution.
At the same time, the samples of the corresponding background
were drawn as independent realization of another random vari-
able , which was related to according to with

being the mean value of . It should be noted that the proba-
bility densities defined in this way have the same even (central)
moment, while their odd moments are identical up to the sign.
These densities are shown in the rightmost subplot of Fig. 3.

The segmentation results obtained for the Cat image are
demonstrated in Fig. 4. One can see that, even though the cat
is virtually indistinguishable from its background to the eye
of a human observer, the proposed algorithm is capable of
providing a useful segmentation in this case. Note also how
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Fig. 3. (Right) Segmentation mask of Cat. (Middle) Realization of Cat.
(Left) Original densities of Cat and its background.

Fig. 4. (Upper row of subplots) Intensity-based segmentation of Cat. (Lower
row of subplots) Corresponding empirical densities of Cat and its background.

well the estimated class-conditional densities agree with the
original densities shown in Fig. 3.

B. Segmenting Vector-Valued Features

The object and background classes of the image shown in
Subplot A of Fig. 5 have the same intensity distributions, and,
hence, their discrimination based on gray-level information
alone is by no means possible. It should be noted, however, that
the image pattern is defined to be homogeneous all over the
image domain, except for a round central region (to be under-
stood as the object), which is rotated with respect to its exterior
by 45 . In this case, one can take advantage of the relative
displacement of the object with respect to the background via
defining the feature image to be the gradient of the
test image . The partial derivatives of in the row and
the column directions are shown in Subplots B and C of Fig. 5,
respectively, while Subplot D of the figure shows the phase

of the gradient . It is interesting to observe
that the distributions of the phase values within the object and
background classes appear to be very similar. This fact implies
the impossibility to segment the object of interest based on the
“orientation” information alone. However, using both partial
derivatives as discriminative features makes the segmentation
easily achievable as shown by Subplots E-H of Fig. 5. One
can see that, in this case, the active contour is also capable of
correctly identifying the true object shape.

An additional segmentation result is shown by Subplots A-D
of Fig. 6. In this case, the vector-valued features are composed
of the monochromatic component of the test image of Surfer.
Once again, one can see that the active contour succeeds well in
finding the correct shape of the object of interest.

Fig. 5. (Subplots A–D, left-to-right) Image of rotated pattern to be segmented,
the row partial derivatives of the image, the column partial derivative of the
image, the phase of the image gradient. (Subplots E–H) Gradient-based seg-
mentation of rotated pattern.

Fig. 6. Color-based segmentation of Surfer.

C. Combined Intensity-Motion Segmentation

The main objective of our last example is to demonstrate the
value of image segmentation based on both “static” and “dy-
namic” image features. In particular, in this case, the first com-
ponent of the feature image is set to be equal to the image
intensity , whereas its two last components are set to be
equal to the local displacements (velocities) of the gray levels
of due to the motion of both object and camera.

The subplots A1–A4 of Fig. 7 show the result of segmenting
the image of Leopard using the intensity information only.
Obviously, the similarity between the intensity patterns of
Leopard’s fur and of the surrounding terrain, implies a sim-
ilarity between the intensity distributions within the object
and background classes. Consequently, the intensity-based
segmentation fails to discriminate between the object and
background in a satisfactory manner. In this case, the active
contour converges on the part of the object that differs the most
from the background, while failing to “catch” the whole object.
On the other hand, combined intensity-motion segmentation
provides quite satisfactory results, which are shown in Subplots
B1–B4 of the same figure. Note that the local velocities (dis-
placements) were computed using two successive images of the
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Fig. 7. (Subplots A1–A4) Intensity-based segmentation of Leopard. (Subplots
B1–B4) Joint intensity-motion-based segmentation of Leopard.

Fig. 8. Local displacement field of Leopard.

original sequence according to (19). A subsampled version of
this velocity field is depicted in Fig. 8 (where the subsampling
has been done for the sake of clarity of visualization). There-
fore, we conclude that motion-based features are quite useful
in dynamic scenarios, in which image intensity cannot provide
sufficient information to perform the image segmentation in a
satisfactory way.

VII. COMPARATIVE STUDY

In the preceding section, the viability of the proposed seg-
mentation method was demonstrated experimentally via its
successful performance on a number of examples of prac-
tical interest. Unfortunately, little can be deduced from these
examples as to what advantages are offered by this method
as compared to existing segmentation techniques. In partic-
ular, the Bhattacharyya distance is only one instance out of a
number of possible definitions of distances between probability
densities. Perhaps, the most famous among such distances is
the KL divergence that could have been used instead of the
Bhattacharyya coefficient to derive a level-set evolution [53].
Hence, it is tempting to identify conditions under which the
KL divergence would result in an inferior segmentation as
compared to the proposed approach.

If the KL divergence had to be used instead of the Bhat-
tacharyya coefficient, then in (15) would have to be

replaced by , where the symmetrized KL divergence
is given by

(36)

In this case, the corresponding velocity (which is to be
substituted in the flow (16) can be shown to be equal to

(37)

where

(38)

Apart from its being more complicated to compute as com-
pared with the Bhattacharyya velocity (12)–(13), the KL ve-
locity (37)–(38) has an additional drawback that stems from the
properties of the functions involved in its computation. In par-
ticular, the logarithm function used in (36)–(38) is known to be
very sensitive to variations of its argument in vicinity of rela-
tively small values of the latter. Moreover, the logarithm is un-
defined at zero, which makes computing the KL velocity sus-
ceptible to numerical errors which should be expected when the
densities and approach zero. The above properties of the
logarithm are obviously disadvantageous, as they make the KL
divergence prone to the errors caused by inaccuracies in esti-
mating the tails of probability densities. On the other hand, the
square root is a well-defined function in vicinity of zero. More-
over, for relatively small values of its argument, the variability
of the square root is considerably smaller than that of the log-
arithm. Consequently, the Bhattacharyya flow should be much
less susceptible to the influence of the inaccuracies mentioned
above.

Alternatively to the information-based formulation of [53],
the active contours can be propagated using the ML formula-
tion as suggested in [54]. In the notations of this paper, the ML
optimal level-set function is sought as a minimizer of the nega-
tive log-likelihood of observed features that is defined as given
by

(39)

where and denote a priori known probability den-
sities corresponding to the object of interest and its background.
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It is interesting to note that, in this case, the velocity is
given by the log-likelihood ratio

(40)

Thus, for example, in the case when the feature image is
formed by image intensities (i.e., ), and the densi-
ties and are Gaussian with their mean values equal
to and , and their variances equal to and , respec-
tively, the velocity (40) becomes

(41)

where the estimates

(42)

are supposed to be recomputed at each iteration.
In addition to its being well founded from a theoretical per-

spective, the ML formulation is also advantageous in providing
a way to predefine an optimal value of the regularization param-
eter in (15)–(16). Specifically, the minimum description length
principle allows one to preset this value to be equal to ,
as in [54]. Unfortunately, this advantage of the ML formula-
tion seems to be counterbalanced by its dependency on a priori
knowing the class conditional likelihoods and , as
well as by its being sensitive to inaccuracies in defining the
latter. The problematic character of the above properties of the
ML approach is demonstrated through the example that follows.

The leftmost subplot of Fig. 9 shows the original segmen-
tation mask (template) that defines the object of interest as a
circle over uniform background. The test image shown by the
center subplot of the same figure was synthesized according
to the above template with both object and background densi-
ties defined to be Gaussian pdfs with zero means and variances
equal to 1 and 2, respectively. In parallel, another test image
was synthesized in similar manner except for the fact that 4%
of its (randomly picked) pixels were replaced by independent
realizations of a Gaussian random variable with zero mean and
variance equal to 16. This image is depicted in the rightmost
subplot of Fig. 9. Note that the “substituted” pixels of the latter
image can be thought of as outliers which are expected to in-
troduce errors in estimation/modeling of the class conditional
densities.

The results of intensity-based segmentation of the test im-
ages of Fig. 9 are demonstrated in Fig. 10, subplots A1–A3 of
which show the final active contours obtained by using the ML
velocity (41), KL velocity (37), and the Bhattacharyya velocity
(12), respectively. In order to compare these results in a quan-
titative manner, for each method, the probability of misclassi-

Fig. 9. (Left) Original template. (Center) Outliers-free image. (Right) Image
contaminated by outliers.

Fig. 10. (Subplots A1–A3) Segmentation of the outliers-free image of Fig. 9
by the active contours maximizing the log-likelihood, KL divergence, and Bhat-
tacharyya distance, respectively. (Subplots B1–B3) Segmentation of the out-
liers-contaminated image of Fig. 9 by the active contours maximizing the log-
likelihood, KL divergence, and Bhattacharyya distance, respectively.

fication error was estimated as an expected number of misclas-
sified pixels normalized to the total number of pixels, with the
expectation being approximated by averaging the results of 200
independent trials. Specifically, the empirical error probabilities
for the ML, KL, and Bhattacharyya segmentations were found
to be equal to 0.83%, 1.07%, and 0.88%, respectively. One can
see that, in this case, the ML segmentation has the lowest error
due to its using the correct models for the class conditional like-
lihoods. On the other hand, the KL segmentation appears to be
the worst performer here, because of the numerical errors dis-
cussed in the beginning of this section. One can also see that the
error of the proposed method closely approaches that of the ML
segmentation.

As a next stage, the segmentation methods under considera-
tion were applied to the outlier contaminated image shown in
the rightmost subplot of Fig. 9. For this case, typical segmenta-
tion results are shown in Subplots B1–B2 of Fig. 10. One can see
that the lack of correspondence (caused by the outliers) between
the assumed and actual class-conditional likelihoods makes the
ML segmentation converge to an incorrect solution (see Subplot
B1). The error probability of this segmentation was found to be
equal to 10.2%. Moreover, the outliers induce relatively small
deviations at the tails of the kernel density estimates. These de-
viations, in turn, are “translated” into sizable errors in estimation
of the KL divergence (as well as of the related gradient flow) due
to the high sensitivity of the logarithm in vicinity of zero. Conse-
quently, the KL segmentation results in an erroneous solution, as
well (Subplot B2). For this case, the error probability was found
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to be equal to 9.7%. On the other hand, the Bhattacharyya gra-
dient flow succeeds to converge to a useful solution with 0.91%
error (as shown by Subplot B3), thereby exhibiting remarkable
insensitivity to both model errors and the influence of outliers.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, a method for image segmentation by active con-
tours has been proposed. As in most of the methods using a
similar classification mechanism, the derivation of the proposed
approach is based on a variational analysis, in which the active
contour is driven by the forces stemming from minimization of
a cost functional. In the current work, the latter is formulated
based on the discrimination principle that seems to be intrinsic
in the way the human visual system functions [55]. In particular,
the cost functional is defined as a measure of dissimilarity be-
tween the informational contents of segmentation classes, and
as a result, the active contour is forced to converge to the shape
that minimizes the “overlap” between these contents.

In the heart of the proposed segmentation method is the no-
tion of a distance between probability densities. In particular,
the active contours have been evolved to maximize the Bhat-
tacharyya distance between nonparametric (kernel-based) esti-
mates of the probability densities of segmentation classes. In
this case, it would be conceptually analogous, if one tried to
minimize the mutual information shared by the classes via max-
imizing the KL divergence between the corresponding proba-
bility densities. Yet, in the experimental study of Section VII,
it was demonstrated that this alternative criterion may result in
the performance inferior to that of the proposed method due to a
relatively high sensitivity of the KL divergence to inaccuracies
in estimation of the tails of the class conditional densities.

Using the nonparametric estimates of probability densities al-
lows one to apply the proposed segmentation method in the sit-
uations when little is known on the distributions of image fea-
tures within different segmentation classes. However, if the in-
formation on distributions was a priori available, the segmenta-
tion could have been achieved by means of the ML approach of
[54], [56], which has an advantage of providing a way to prede-
fine an optimal values of the regularization parameter in (16).
Unfortunately, the availability of the above information seems
to be rare in practice considering the vast diversity of possible
images and their related features. Moreover, the errors in mod-
eling the class conditional densities are capable of substantially
degrading the performance of the ML segmentation, as it was
demonstrated in Section VII.

As a possible extension, the method proposed in this paper
can be easily modified to incorporate shape priors as it is sug-
gested, e.g., in [1]. In this case, the principal component anal-
ysis (PCA) is used to represent the optimal level-set as an ele-
ment of a finite-dimensional vector space spanned by the mean
value and a predefined (relatively small) number of the principal
components which correspond to a given set of training shapes.
An alternative way to impose smoothing constrains on the seg-
mentation can be by using the Sobolev active contours recently
proposed in [57].

In this paper, kernel density estimation [33], [34] was
employed to compute the class conditional densities in a
nonparametric manner. In order to increase the computational

efficiency of the estimation, the kernel functions were defined
to be isotropic Gaussian densities. It is well known, however,
that better density estimation is possible using anisotropic ker-
nels, as it is shown, e.g., in [58]. Unfortunately, in this case, the
computational load should be expected to grow considerably.
Moreover, using the isotropic kernels is also advantageous, as
it allows further increasing the computational efficiency via
updating the kernel bandwidth through the process of isotropic
diffusion, as it is shown in Section IV. This scheme would not
be possible, if anisotropic kernels were used.

It is also interesting to point out the similarity between the
problem of image segmentation by means of active contours and
the problem of blind source separation [as a specific instance of
independent component analysis (ICA) [59]]. The latter is a re-
construction problem, in which a number of unknown source
signals have to be recovered from measurements of their al-
gebraic mixtures. This problem has inspired the proposal of
numerous solutions, many of which are based on finding the
directions—independent components—in the multidimensional
space, along which the mixtures (or, better to say, the projec-
tions thereof) are as independent as possible. In this connection,
in order to access the above independency a number of infor-
mation-based criteria, like the KL divergence, have been inten-
sively used. Returning to the problem of segmentation, one can
think of a data image as a geometric mixture of sources, i.e., of
segmentation classes. In such a case, the active contour acts akin
an independent component when trying to separate the image
into a number of as independent regions as possible. It is quite
interesting to note that the method proposed in the present study
employs the concept and tools, which are very much similar to
those used in ICA.

Finally, we note that the proposed approach constitutes a nat-
ural generalization of the segmentation methods, which classify
the image samples based on a finite number of low-order em-
pirical moments. Moreover, the simplicity of the proposed vari-
ational formulation allows one to accommodate and use an ar-
bitrary number of diverse image features. Thus, for example,
in Section VI-C, images are segmented using both “static” and
“dynamic” features. It is also possible to extend the applica-
bility of the method to segmenting the data defined over non-
linear manifolds. This subject well deserves more ample treat-
ment, which defines one of the directions of our future research.
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