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MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS 

Andrzej Kolinski,* Jeffrey Skolnick t and Robert Yaris 
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ABSTRACT 

We present preliminary results of Monte Carlo studies on the dyna- 
mics of multichain diamond-lattice systems at considerably greater 
densities than those done previously. Chain dynamics were simulated 
by a random sequence of three and four bond kink motions. The single 
bead autocorrelation function exhibits "slow" mode relaxation behavior 
with a g(t) - t B. There is a smooth crossover from Rouse-like dyna- 
mics, B = I/2, at low density to smaller values of B at higher density 
and B = 0 at the glass transit ion density (r ~ 0.92). The simulation 
provides a self-dif fusion coefficient D ~n-2,  with ~ the  number of 
beads, in agreement with experiment. A phenomenological model, d i f -  
ferent from the widely accepted reptation picture, is proposed. 

INTRODUCTION 

The presently accepted model for polymer dynamics in a melt is the 
"reptation" model of de Gennes.1 The model assumes Rouse-like motion 
of the chain along a "tube" formed by entanglements with other chains. 
The tube renewal time is believed to be much longer than the relaxa- 
tion time of the local "defects" along the chain. Within the rep- 
tation framework the self-diffusion coefficient (D) depends on chain 
length (n) as D ~ n-2, the melt viscosity n - n-3 and the single bead 
autocorrelation function g(t) should exhibit a "slow" relaxation mode 
giving a g(t) ~ tl/4, connected with the reptation of the chain within 
the Gaussian tube. 

Numerous Monte Carlo (MC) simulations 2-7 have been performed to 
check the validity of reptation. To date no evidence for reptation 
has been found i f  all the chains are mobile, but reptation is observed 
when a single chain moves in a network of fixed obstacles.2-7 

The present simulations were performed on diamond latt ice systems 
containing long chains packed at densities substantially higher than 
in previous papers2,4 which employed a very similar model of the dyna- 
mics (see for example, ref. 2). 

MONTE CARLO MODEL 

Simulations were performed on_N chains containing~beads confined 
to a tetrahedral lat t ice subject to multiple exclusion of lat t ice 
sites but no attractive interactions (an athermal system). ~Periodic 
boundary conditions were employed on the MC box of volume L__ ~, where 
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was considerably greater than the root-mean-square radius of gyration 
of the polymer chains. We define the polymer volume fraction r as the 
fraction of occupied lat t ice sites. In i t ia l  configurations were 
obtained from very carefully equilibrated systems.8 A random sequence 
of 3- and 4-bond conformational jumps 2 was used to simulate the dyna- 
mics and the time unit was assumed to be that required for one (on the 
average) attempt of these micromodifications per polymer bead. 

RESULTS AND DISCUSSION 

We computed various autocorrelation functions for model polymers, 
e.g. the single bead autocorrelation function g(t) = <(r i ( t ) - r  i(o))~> 
where r i ( t )  is the coordinate of polymer bead_i at time t ,  and the 
averaging was performed on the n-20 middle units of all N chains. For 
the center of mass autocorrelation function, gcm(t), all--the bead 
coordinates were counted. Figures 1 and 2 show the behavior of g(t) 
for various chain lengths (at constant @) and densities r (at constant 
n) respectively. Inspection of Fig. 1 suggests that the "slow" d i f -  
f--usional regime (where g(t) = t0.33 at this particular concentration) 
is rather insensitive to chain length and seems to be connected with 
the local relaxation of the subcbains. Figure 2 shows the crossover 
from Rouse-like motion (g(t) = tl/2) to very slow diffusion regime where 
g(t) ~ t B, where B is concentration dependent. 
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Fig. 1. Log-log plots of g(t) versus time for various chain lengths. 
= 0,75. 
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Figure 2 

Log-log plots of g(t) versus 
time for various volume frac- 
tions of polymers, n = 98. 

The plateau (B = O) regime in g(t), where there are no long 
distance motions, can be achieved either by an increase in concentra- 
tion or by the exclusion of 4-bond motions (the source of new orien- 
tations of the chain segments) at intermediate concentration. 
(However, we point out that the exponent B is rather insensitive to 
the particular values of the a priori probabilities of 3- and 4-bond 
jumps employed provided that both are considerably greater than zero.) 
In Fig. 3, we extrapolate the ratio of the fraction of four to three 
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Figure 3 

f(4-bond)If(3-bond), 
plotted against In 
(i-r with n = 98. 
The subplot shows 
the difference be- 
tween l iquid- l ike 
and glass-like beha- 
vior of g(t) at ~ = 
0.75 as an example 
(glass-like motion 
results from a 
priori  exclusion of 
4-bond jumps). 
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bond motions (f(4-bond)/f(3-bond)~zero. The predicted glass- 
transit ion density ~G = 0.92 • 0.01 is in agreement with that pre- 
viously found.9 
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Figure 4 

Log-log plots of D 
versus n at constant 
r = O.TT. The 
subplot shows the 
gcm(t) used for the 
estimation of the 
relative values of 
D. 

From the long time value of gcm(t) shown in Fig. 4, we estimated 
the self-diffusion coefficient of the polymer and obtained D ~ n -a 
with a = 1.8 • 0.2, in qualitative agreement wi~h experiment. 10 

The analysis of other correlation functions (such as the d i f -  
fusion of holes or kinks) shows that the local conformational 
"defects" diffuse faster transverse to the local chain axis than down 
the chain contour. The defects diffuse like particles in a collection 
of boxes. At short times there is free diffusion within a box, 
followed by a pausing time that reflects the wait before hopping to 
the next box. Finally, at longer times, jumps between the boxes domi- 
nate and diffusive behavior reemerges. The net result of this trans- 
verse defect motion is that the dynamics of the melt resembles that of 
a bowl of amoebas. This is graphically depicted in Fig. 5 where we 
show a representative example of a single chain in the melt whose in i -  
t ia l  and final states are separated by 45,000 time steps. No evidence 
for reptation is seen. 

CONCLUSION 

The relaxation process of polymers in a melt is seen to be a 
cooperative phenomenon involving amoeboid-like motion of blobs. Our 
present view on long distance polymer motion in a melt is that i t  is 
in t r ins ica l ly  a many-body problem requiring back flow between chains 
to maintain constant density. 
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Figure 5 

Two superimposed 
snapshots of a 
polymer chain 
separated by T = 
45,000 time steps. 
T is sufficently 
large so that g(t) is 
on the order of the 
radius of ~ration. 
Note that some parts 
of the chain have 
remained stationary. 

= 0.75 and n = 98. 
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