
In presenting the dissertation as a partial fulfillment of 
the requirements for an advanced degree from the Georgia 
Institute of Technology, I agree that the Library of the 
Institute shall make it available for inspection and 
circulation in accordance with its regulations governing 
materials of this type. I agree that permission to copy 
from, or to publish from, this dissertation may be granted 
by the professor under whose direction it was written, or, 
in his absence, by the Dean of the Graduate Division when 
such copying or publication is solely for scholarly purposes 
and does not involve potential financial gain. It is under
stood that any copying from, or publication of, this dis
sertation which involves potential financial gain will not 
be allowed without written permission. 

7/25/68 



THE SPECTRUM OF CERTAIN SINGULAR 

SELFADJOINT DIFFERENTIAL OPERATORS 

A THESIS 

Presented to 

The Faculty of the Division of Graduate 

Studies and Research 

by 

Laddie Wayne Rollins 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

in the School of Mathematics 

Georgia Institute of Technology 

April, 1972 



THE SPECTRUM OF CERTAIN SINGULAR 

SELFADJOINT DIFFERENTIAL OPERATORS 

Approved; 

Chairman 
^ \ X I I 

T " 
7<-

Date approved by Chairman: Jtfdyf J/, /f?Zl 



ii 

ACKNOWLEDGMENTS 

The subject of this dissertation evolved from readings suggested 

by Professor F. W. Stallard. The author would like to express his 

appreciation to Professor Stallard for his suggestions and guidance. 

The author would also like to express his appreciation to Pro

fessor J. V. Herod for his assistance and for his overall interest in 

the progress of graduate students. Appreciation is also extended to 

Professor S. Wan for reading the dissertation and for the use of his 

personal library. 

Finally, the author would like to express his deep appreciation 

to his wife, Becky, for her encouragement and understanding, and to his 

parents, Mr. and Mrs. A. S. Rollins, who have helped in ways that will 

never be fully known or understood. 



iii 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS ii 

Chapter 

I. INTRODUCTION 1 

II. BACKGROUND 6 

III. SUFFICIENT CONDITIONS FOR A COMPACT INVERSE 2 1 

IV. BOUNDARY CONDITIONS 4 0 

V. DISCUSSION OF RESULTS 4 8 

BIBLIOGRAPHY 5 6 

VITA 5 8 



1 

CHAPTER I 

INTRODUCTION 

The motivation for this work is a statement by M. A. Naimark in 

[13] to the effect that one of the most important problems in the theory 

of differential operators is the question: In what way does the spec

trum of selfadjoint extensions of symmetric operators depend on the 

behavior of the coefficients of the corresponding differential expres

sions? The nature of the spectrum, deficiency indices, and the expan

sion of functions with respect to eigenfunctions for singular differen

tial operators are closely related subjects, and each will be 

investigated. 

The initial development of the theory of singular differential 

operators can be found in the famous papers by H. Weyl in 1909 [20] and 

1 9 1 0 [ 2 1 ] . Included in these papers are the fundamental results for 

the singular operator of order two concerning the deficiency indices and 

the corresponding limit-point (Grenzpunktfall) and limit-circle (Grenz-

kreisfall) cases, the nature of the spectrum, and the expansion theory 

with respect to eigenfunctions. 

Since the appearance of Weyl's papers the second order case has 

been the subject of researches by many authors. E. C. Titchmarsh has 

assembled many of the results prior to 19 50 in a two-volume monograph 

[19], More recent studies concerning the spectrum have been conducted 

by P. Hartman, C. R. Putnam, and A. Wintner [11,12,15,16,23], 
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Most of the above work has been centered on the operator 

T = - + q(x) 
dx' 

on the interval [0,°°). Weyl showed that if q(x) 0 0 as x -> 0 0 then the 

spectrum is discrete. An extension of this result to operators of 

higher order obtained by I. M. Glazman is included in Chapter V. 

is considered and a necessary and sufficient condition for a point to 

be in the continuous spectrum based on the behavior of q(x) is obtained. 

In [15] the connection between an operator being oscillatory and 

the discrete part of the spectrum is used to extend a theorem in [19]. 

In [16] a result concerning the independence of the continuous spectra 

and the boundary condition for the operator (1) is obtained. 

Also in [19, Chapter 16] is included the following criterion 

concerning an operator with a weight function. For the operator 

In [12] the operator 

+ q(x) (1) 

1 d" , , 
T = mTxT " T T + ^ ( x ) 

0<x<°° 

it is shown that if q(x)/m(x) 0 0 as x 0 0 then the spectrum is 

discrete. 



In 1953 A. M. Molchanov [13, page 245] found a necessary and 

sufficient condition for the discreteness of the spectrum for the 

operator 

d 2 , x 
T = + q(x) _oo< x <oo 

dx 

namely that 

x+a 
lim / q(t)dt = °° 

X -v+oo x 

for each fixed a > 0. 

The theory (expansion in eigenfunctions and nature of the spec

trum) for differential operators of order higher than two has been 

investigated since 1950 by many mathematicians including M. S. P. 

Eastham [5], J. V. Baxley [2], M. A. Naimark [13], and I. M. Glazman 

[9,10]. Eastham compares operators with the Euler operator and his 

work is restricted to cases with singularity at infinity. Baxley 

utilizes the Friedrichs extension to study integer powers of the 

operator 

T = T <L f p ( x ) | - | + q(x7| 0<x<l, m ( x ) dx dxj J 

He concludes that the spectrum is discrete if 

1 1 
/ m(x) / l/p(t)dtdx = M < °°, 
o x 



4 

a test which does not depend on q(x) as did the pre-1950 studies listed 

above. Also a weight function m(x) is included which makes the results 

more general. 

The problem which we consider here is to find conditions on the 

coefficients of differential expressions of arbitrary even order, 2n, 

and on arbitrary intervals, which ensure a compact inverse for the cor

responding selfadjoint operators. In particular, the objective is to 

find conditions which apply to a class of operators for which neither 

Eastham's nor Baxley's tests yield results. 

Similar to the approach adopted by Baxley, we use the Friedrichs 

extension to attack this problem, and hence, our work is restricted to 

semi-bounded operators. 

In Chapter II we define the terminology to be used and present 

the basic properties of the spectrum, deficiency indices, and boundary 

conditions of formally selfadjoint differential operators. Also we 

present the splitting technique for studying the spectrum and a 

description of the Friedrichs extension. 

In Chapter III the fundamental results of the paper are estab

lished by showing that if any one of the coefficients behaves according 

to certain criteria then the Friedrichs extension has a compact inverse. 

Also, in this case, the Friedrichs extension of any integer power of 

the symmetric operator will have a compact inverse. 

In Chapter IV we obtain a boundary condition description of the 

Friedrichs extension for a class of operators which have a compact 

inverse. Also we present a class of operators of order 2n which 
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illustrates the fact that the deficiency indices can take on any value 

between n and 2n inclusive. 

In Chapter V we compare our results with those of Friedrichs, 

Baxley, and Eastham, and present some questions for further study. 
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CHAPTER II 

BACKGROUND 

It is well known [13, page 48] that any formally selfadjoint 

formal differential operator with real coefficients can be written in 

the form 

The formal operator T will be considered on an interval I with left 

endpoint a and right endpoint b. The coefficients p^(x), k = 0,...,n 

are assumed to be real and have sufficient differentiability on I, 

required to be Lebesgue-integrable on any closed subinterval [a,3] of 

(a,b). The function m(x) is the weight function and hence must be 

positive and continuous on I. 

Definition 2.1. The left endpoint a is regular if a > - 0 0 and if the 

functions 1/p (x) 9p ^(x),...,p o(x) are Lebesgue-integrable in every 

interval [a,3],3 < b; otherwise we say the endpoint a is singular. 

Similarly we define the regularity and singularity of the right end-

point b. 

Definition 2.2. The expression T is regular if and only if both end-

points, a and b, are regular. Otherwise T is said to be singular. 

1 ? 
T " k=0 

(1) 

p (x) are 
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Theorems that establish the discreteness of the spectrum and 

the expansion of an arbitrary function in a Hilbert space with respect 

to the eigenfunctions of a regular ordinary differential operator may 

be found in many texts such as [3, Chapter 7] or [4, Chapter XIII]. 

The following treatment is concerned with singular operators. 

In order to apply the abstract Hilbert-space theory of unbounded 

operators, we will require the domains of the operators which correspond 

to the formal operator T to be subsets of a Hilbert space H. 

Due to the lack of a commonly accepted terminology we present 

here the definitions of the terms used to describe the spectrum of a 

closed linear operator T, defined on the Hilbert space H. 

Definition 2.3. A complex number A is called a regularity point of 

the operator T if (T-AI) ^ exists and is bounded on all of H. The set 

of all regularity points is called the resolvent set. 

Definition 2.4. The spectrum is the complement of the resolvent set 

relative to the complex plane. 

Definition 2.5. The discrete spectrum is the set of points, A, of the 

spectrum such that the closure of the range of (T-AI) is not all of H; 

i.e. the set of all eigenvalues. 

Definition 2.6. The continuous spectrum is the set of points, A, of 

the spectrum such that the range of (T-AI) is not closed. 

Remark 2.1. The continuous spectrum as defined above is the same as the 

essential spectrum as defined by Dunford and Schwartz [4]. 
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We will use V(•) and R(•) to denote the subsets of the Hilbert 

space H which are the domain and range, respectively, of an operator, 

and (•,•) and || »|| to denote the inner product and norm, respectively, 

on H. 

Definition 2.7. If and T 2 are linear operators, is said to be an 

extension of T 2 , and denoted by T 2 c T if and only if Vil^) c ViT^) 

and T f = T f for every f e P ( T 2 ) . 

Definition 2.8. If P(T) is dense in H, then we define the Hilbert space 

adjoint of T to be the operator T , where P(T ) consists of all g such 

that (Tf,g) is continuous for f e P(T), and T g = g , where g is the 

unique point in H such that (Tf,g) = (f,g ) for every f e P(T). In other 

words (Tf,g) = (f,T"g) for f e P(T), geP(T"). 

Definition 2.9. A linear operator T defined on a Hilbert space H is 

said to be symmetric if 

(a) V(T) is dense in H, and 

(b) f, geP(T) implies (Tf,g) = (f,Tg). 

Definition 2.10. T is said to be selfadjoint if T = T ' \ 

Remark 2.2. The spectrum of a selfadjoint operator is a subset of the 

real numbers. For a selfadjoint operator the continuous spectrum is the 

collection of non-isolated points of the spectrum. 

Remark 2.3. T is a closed operator. If T is symmetric, T c T and 

the closure of T, f, is given by f = T " ' \ 
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Since our operators are differential operators, and therefore 

unbounded, the choice of domain of our operators is quite crucial. We 

will denote by C (a,b) the class of all functions with k continuous 

derivatives on (a,b) and by C Q(a,b) the class of all functions in 

C (a,b) which also have compact support in (a,b). 

Given a formal differential operator T on (a,b) we denote by T Q 

the operator defined by T u = TU, where ueP(T ), and P(T ) = C (a,b). r o o o o 

We will refer to T q as the minimal differential operator defined by T . 

(The closure of T q is referred to as the minimal operator by some 

authors). 

Our goals are two-fold. First, find general conditions under 

which every selfadjoint operator T in Hilbert space, H, constructed 

from T has a compact inverse. From this result will follow qualitative 

properties of the spectrum; i.e. it consists only of eigenvalues which 

accumulate only at infinity, and, in addition, the knowledge that the 

eigenfunctions are complete; i.e. every feH can be expanded in a series 

of eigenfunctions and the series converge in the metric of H. Also, 

since T is a differential operator, each eigenvalue has finite multi

plicity at most equal to the order of the operator. 

Our second goal is, given the selfadjoint extension T, to 

describe P(T) in terms of the boundary conditions applied to P ( T Q ) . 

Deficiency Indices and Selfadjoint Extensions 

The formal operator, T, which we are studying has order 2n and 

will be defined on the interval [a,b). We assume that the left endpoint 

is regular and the right endpoint is singular. 
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Definition 2.11. Let T be a symmetric linear operator. Let denote 

the range of (T-AI) and let = H - for a complex number A. For 

A = i, the dimension of , d +, is called the positive deficiency index 

and, similarly, the dimension of W , d , is called the negative defi-
- i 

ciency index. They are written in the form of an ordered pair (d +,d ). 

The following known results are presented for completeness, and 

may be found in [4] and [13]. 

A closed symmetric linear operator T is selfadjoint if and only 

its deficiency indices are (0,0). 

A symmetric operator T has selfadjoint extensions if and only if 

its deficiency indices are equal. 

A symmetric differential operator with real coefficients has 

equal deficiency indices. Also, since the dimension of the manifold 

is at most the order of the operator, the deficiency indices are 

finite. 

The specific formal differential operator (1) which we will con

sider is such that T , defined above, is of order 2n, symmetric, and 

has real coefficients. Therefore the deficiency indices are equal, 

d + = d = d, and finite, d < 2n, and hence, T q has a selfadjoint 

extension. 

Also, for the case of one singular endpoint as considered here, 

it is true that n < d (see [1, page 172]). 
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Boundary Conditions on Selfadjoint Extensions 

In the general theory of selfadjoint extensions of symmetric 

differential operators, an arbitrary selfadjoint extension, T, of the 

symmetric operator T q is characterized and described as a restriction 

of the adjoint operator T to a linear manifold P(T) such that 
o 

P(T ) c p(T) c P ( T " ) . The functions in t?(T) are specified by applying o o ^ i. i. ^ » 

appropriate boundary conditions to the functions in P(T ). 

Theorem 2.1 [4, Page 1238]. Let T q be a symmetric operator with equal 

and finite deficiency indices d = d + = d , and let T be a selfadjoint 
A 

extension of T . Then T is the restriction of T to the subspace of o o 

P(T ) determined by a family of d linearly independent boundary 

conditions. 

Continuous Spectrum of Selfadjoint Extensions 

Let M and A/ be two subspaces of the Hilbert space H such that 

M c W. 

Definition 2.12. The dimension of the subspace W modulo M , denoted by 

dimAKmodM), is the largest number of linearly independent functions in 

/V such that no non-trivial linear combination of them belongs to M. 

Lemma 2.2. If T q is a symmetric operator, P ( T Q ) , A L , and N , are 
A A 

closed orthogonal subspaces of (T") such that D ( T " ) = D ( T ) « N . $ N . 
to ^ o o o 1 - 1 

(see [4, page 1227]). 

A 

Now, if T is a selfadjoint extension of T q , then P(T) c P(T^). 

Therefore dimP(T) fmodr>(T )] < dim ( W . ) + dim ( W .) = d + + d". 
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It is clear that the continuous spectrum of T is a subset of 
o 

the continuous spectrum of T. However, we make further conclusions in 

the case d + and d are finite. 

Theorem 2.Z. All selfadjoint extensions of a closed symmetric operator 

with equal and finite deficiency indices have the same continuous spec

trum. 

Proof. It is sufficient to show that if A is not in the continuous 

spectrum of T q then A is not in the continuous spectrum of T. Suppose 

A is not in the continuous spectrum of T . Let M . be the subspace of 
o oA r 

eigenvectors of T associated with A, and let T .. be the restriction of o oA 
T to H - M . for each A. Note that if A is a regular point of T then o oA o 
T = T . Then it follows that (T ,-Al) has an inverse for all A. For oA o oA 
the selfadjoint operator T, define M, and T similarly. 

A A 

In order to complete the proof we need the following lemma. 

Lemma 2.4. The set of all A such that (T ,-Al) 1 is not bounded is 
oA 

the continuous spectrum of T . Similarly for (T^-AI) 1 and T (see 

[10, page 9]). 

The proof of the theorem will follow from the fact that the 

operator (T ,-Al) 1 is bounded if and only if the operator (T.-AI) 1 is oA A 
bounded, which we now demonstrate. 

First, it is clear that if (T - A l ) " 1 is bounded then (T - A l ) " 1 

A oA 
is also. Now assume (T ,-Al) 1 is bounded and let h be an element in 

oA 
the range of (T-AI). Then h = f + g where feR(T -AI) and g is in the 

o 
finite dimensional complement of this range. Therefore, 
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( T A - A I ) = | | ( T A - A I ) 1f + ( T A - A I ) 1 g 

< || (TX-AI)_:L±7|| + ||(T A-AI) _ 1g 

Now, let P be the projection operator onto the subspace H - M ; hence, 
A 

(T-AI) = P(T ,-AI) ̂ f. Since g is in a finite dimensional subspace, 
A OA 

(T-AI) 1 is bounded there; i.e. there exists a number A such that 
A 

||(TA-AI)_1g|| <A||g||. Therefore 

(TA-AI)'1h|| < ||(T o A-AI) + A|| 

and (T-AI) 1 is bounded follows from (T .,-AI) 1 is bounded. 
A oA 

Splitting Technique 

Let T be a formally symmetric formal differential operator 

defined on an interval I with endpoints a and b. Let T Q be the minimal 

d i f f e r e n t i a l o p e r a t o r d e f i n e d by x on I. 

Let c be any point in the interior of I, a < c < b. Let and 

be the minimal differential operators defined by T on 1^ = I n [a,c] 

and I 2 = I n [c,b], respectively. Let F Q = F 1 ® F 2, then 

Fo c T o c
 To c Fo 

Let F^ and F 2 be selfadjoint extensions of F^ and F 2, respectively, and 

let F = F^ e F^. Then clearly F is selfadjoint and F Q c F. If T is a 

selfadjoint extension of T Q , then F c T . Therefore F Q c T and both F 
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and T are selfadjoint extensions of F Q. Hence, by Theorem 2.3, F and T 

have the same continuous spectra. 

But, the discrete spectrum of F is the union of the discrete 

spectra of F^ and F^ and the continuous spectra of F is the union of the 

continuous spectra of F| and FJJ. Now suppose the interval I = [a,b) so 

that I 1 = I n [a,c] = [a,c]. Then F| is a regular selfadjoint operator 

and hence, has a discrete spectrum; i.e. the continuous spectrum is 

empty. Therefore the continuous spectrum of T equals the continuous 

spectrum of F which is equal to the continuous spectrum of FJJ. 

From this we see that if F^ has a compact inverse and hence a 

discrete spectrum, then so does T. We conclude then that the discrete

ness of the spectrum of a selfadjoint operator is determined by the 

behavior of the coefficients in a neighborhood of the singular end-

point(s). 

Also, if I = (a,b) (i.e. both endpoints are singular), we can 

pick a point c, a < c < b, and consider the operators on 1^ = (a,c] and 

12 ~ Cc,b) separately. Hence, it is sufficient to consider only the 

half-open, half-closed intervals in studying the relationship of the 

spectrum to the behavior of the coefficients of the formal differential 

operator. 

Friedrichs Extension for Semi-Bounded Operators 

We have seen that symmetric operators with equal and finite defi

ciency indices have selfadjoint extensions and by Theorem 2.1 the self

adjoint extensions can be described in terms of boundary conditions. We 
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further characterize the class of operators which we study by the 

following definition. 

Definition 2.IS. A symmetric operator T is bounded below if there is a 

real number c such that (Tu,u) ^ c(u,u) for all ueP(T), and bounded 

above if there is a real number c such that (Tu,u) ^ c(u,u) for all 

ueP(T), If T is bounded below or above we say that T is semi-bounded. 

Our studies are confined to symmetric operators bounded below by 

zero; i.e. (Tu,u) ^ 0. However, it is clear that if T is semi-bounded 

below, then for some constant a, (T+al) is bounded below by one; i.e. 

((T+aI)u,u) > (u,u). 

For the case of a symmetric semi-bounded operator, a particular 

selfadjoint extension having the same bound has been constructed by 

Friedrichs [6]. It is this extension, called the Friedrichs extension, 

that we will use in the following chapters. We present here Fried

richs' result and the description of the extension in terms of limits. 

Later we need this description to prove that the operator we study has 

a compact universe and to establish the boundary conditions. 

Theorem 2.5. Every semi-bounded symmetric operator T , with domain 

2?(T ) dense in the Hilbert space H, has a semi-bounded selfadjoint 

extension T, with the same bound. 

Indication of Proof. The proof may be found in [4,6,17], but we out

line the proof here in order to describe the extension. 

We assume without loss of generality that T q is semi-bounded 

below by one, 
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(T u,u) > (u,u) > 0 ueP(T ). (2) o o 

Define a new scalar product on P ( T q ) , [*,•] by 

[u,v] = (T u,v) = (u,T v ) , 

and a new norm [[•]] by 

CEu]] = [ u , u ] 1 / 2 > ( u , u ) 1 / 2 = ||u||. (3) 

Thus V(T ) is a normed linear space which in general is not complete, o 
Let (u^} be a Cauchy sequence in P ( T q ) ; that is 

[[u -u ]] •> 0 for m,n-*». 
n m 

If {u } has no limit in V(1 ) assign an ideal limit element u. If we n o 

assign the same ideal limit element to equivalent Cauchy sequences, u 

is well-defined. 

Let G be the space consisting of P(T ) and the ideal limit 
o 

elements. We now extend our scalar product and norm to all of G and 

hence, make G a Hilbert space. 

If {u^} and {v^} are two Cauchy sequences such that u^ u and 
V n V w ^ e r e either u, v, or both may be ideal elements of G, then 

lim[u ,v ] exists and we define [u,v] to be this limit. Similarly we n n J 

n-*o° 
extend the definition of [[•]] to G by 
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[[u]] = lim[[u ]]. 
n 

It is clear that G is a complete normed linear space, i.e. a Hilbert 

space, and P ( T ) is dense in G. 

It follows from (3) that a Cauchy sequence in the new metric is 

also a Cauchy sequence in the original metric and, hence, converges to 

a well-defined element in H. Thus we can assign to each ideal element 

of G an element in H and consider G as a subspace of H. Then 

P ( T ) c G c H. 
o 

Now define T by letting P(T) = G n P ( T " ) and 
o 

Tu = T u = T U for u e P ( T ) . 
o 

Note that if w e P ( T ) then w e P ( T ) and w e G ; therefore, w e P ( T ) and T is o o 
an extension of T , T c T. 

c r o 
For u e P ( T ) , v e P ( T ) , there exists a sequence {u }eV(T ) , u -> u o n o n 

such that 

[u,v] = lim[u ,v] = lim(T u ,v) n' o n n-*» n-x» 

lim(u ,T v) = (u,T v) 
n o o 

( T Q U , V ) = (Tu,v) (4 ) 

Also, for u e P ( T ) , v e P ( T ) and by continuity of the inner product 
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[u,v] = (Tu,v) 

Hence, for u, veP(T) 

(Tu,v) = [u,v] = [v,u] = (Tv,u) = (u,Tv) 

and, therefore, T is symmetric. 

Also (Tu,v) = lim(T u ,v ) > lim(u ,v ) = (u,v) implies that T 
n-x» n-+°° 

is semi-bounded below by one. 

It remains to show that T is selfadjoint. Let v be an arbitrary 

element of H. Then (•,v) is a continuous linear functional on G. 

Hence, by the Riesz Representation Theorem there exists an element weG 

such that (u,v) = [u,w] for all ueG. But [u,w] = ( T Q U , W ) for 

ueP(T ) c G and therefore weP(T ). Hence weP(T) = G n P(T ). We have o o o 
therefore, 

(u,v) = [u,w] = ( T Q U , W ) = (u,Tw) 

for all u in P(T Q) which is a dense subset of H. Therefore, Tw = v and 

the range of T is the whole space H. 

We conclude that the null space of T consists only of the zero 

element and hence T is one-to-one with range the entire space H, and, 
A 

therefore P(T) = P ( T " ) and T is selfadjoint. 



19 

Corollary 2.6. If T is the Friedrichs extension of T q and U E P ( T ) there 

exists a sequence {u }, u eV(T ) such that 
n n o 

(a) IIu —uII •+ 0 and 
II N " 

(b) (T u ,u ) + (Tu,u) 
o n n 

as n-*». 

Proof. Note that 

lim[[u -u ]] = [[u-u ]] 
m n n 

and 

lim[[u +u ]] = [[u+u ]] m n n m-*» 

Also, from the parellelogram law 

(CCu -u ] ] ) 2 + ( [ [ u + u ] ] ) 2 = 2 ( [ [ u ] ] 2 + C[u ] ] 2 ) . (5) m n m n m n 

Now, we see that 

lim ([[u +u ]]) = 2[[u]] m n m,n-x» 

which implies that 

lim[[u+u ]] = lim(lim[[u +u ]]) = 2[[u]]. n m n 

Now letting m-*00 in ( 5 ) we obtain 
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CCu-u ] ] 2 + CCu+u ] ] 2 = 2 ( [ [ u ] ] 2 + [ [u ] ] 2 ) n n n 

2 from which it follows that lim[[u-u ]] = 0 . From (3) we see that n n-*» 
lim||u-u II = 0 also. 

II N II 

n-x» 

Now from (4) we see that lim(T u ,v) = (Tu.v) for all veV(T ) , where o n o n-x» 
u -*• u, {u }eP(T ). In particular it is true for v equal to each of n n o u 

the u.. Using a diagonalization argument we see that lim(T u ,u ) = 
I o n n 

(Tu,u). 
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CHAPTER III 

SUFFICIENT CONDITIONS FOR A COMPACT INVERSE 

It can be shown [13, page 48] that any real formally selfadjoint 

formal differential operator is of even order 2n, and the general form 

of such an operator is 

, n , k ,k 
T = T T I (-D k n-p.(x) ±rr (1) m(x) , u , k ^k , k k=o dx dx 

where the coefficients p, (x), 0 < k < n, and the weight function m(x) 
k 

are real. 

In what follows we will consider T on an interval a ^ x < b , 

where b may be finite or infinite, p v(x) is non-negative and in 
K 

(k) 

C [a,b) for 0 < k < n, and, for xe[a,b), P (x) > 0 and m(x) > 0. The 

ENDPOINT B I S POSSIBLY a singular ENDPOINT. OUR OBJECTIVE I S TO DEFINE 

linear operators corresponding to the formal operator T and to study 

their adjoints and selfadjoint extensions. In particular, we wish to 

find answers to the question stated by Naimark [13, page 208]: In what 

way does the spectrum of selfadjoint extensions depend on the behavior 

of the coefficients of the corresponding differential expression T . 

As noted earlier the choice of a domain for an unbounded opera

tor, and in particular for a differential operator, can be quite crucial 
2 

to the nature of the spectrum. Accordingly we denote by L (m) the col

lection of all measurable functions, u, defined on (a,b) for which 



22 

b 2 

/ |u(x)| m(x)dx < 

2 
We define a scalar product (•,•) on L (m) by 

(u,v) = / u(x)v(x)m(x)dx 
a 

II n II II 1/2 and the corresponding norm || *|| by ||u|| = (u,u) . I t then follows that 
2 

L (m) is a Hilbert space. The operators which we consider here will 
2 

have as their domain a subset of L (m). 

Let T q be the linear operator defined by T Q U = TU for u in the 
2 domain P(T ) which consists of those functions in L (m) which are also o 

in C~(a,b); i.e. each function in P(T ) vanishes outside some compact 

subset of (a,b) where the compact subset may vary with the function. 
2 

It follows that P(T ) is dense in L (m), and hence T is symmetric. 
o o 

Since the coefficients of T are real, T q has equal deficiency 

i n d i c e s a n d , s i n c e i s a d i f f e r e n t i a l o p e r a t o r , t h e d e f i c i e n c y 

indices are finite. Thus, T^ has a selfadjoint extension. 
In addition, for ueP(T ), we see that ' o 

(T u,u) = / m(x)[xu(x)]u(x)dx 

and, using integration by parts repeatedly, that 

b n 
(T u,u) = / I p (x)|u(x)| zdx. (2) 

° a k=l k 
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Hence, that T is semi-bounded below by zero, (T u,u) ^ 0, follows from ' o o 
the assumption that pn (x) ^ 0 for 0 ^ k ^ n. Therefore, T has a Fried-

k o 
richs extension. 

Let k be an integer, 1 ^ k < n. For this k define a sequence of 
k 

functions {h.} as follows: 
1 1 b 

If, for each y in [a,b) it is true that / 1/p (t)dt is finite, 
k 

y 
then 

h ^ x ^ ) = / l/p,(t)dt 
1/2 

for xe[a,b). (3a) 

Otherwise 

h ] [(x,k) = / l/p,(t)dt 
1/2 

for xe[a,b). (3b) 

If i is any integer 1 < i < k - 1, and if, for each y in [a,b), 
b 

it is true that / h.(t,k)dt is finite, then 
y 

h. n(x,k) = / h.(t,k)dt, for xe[a,b). l+l I 
(4a) 

Otherwise 

h. ,(x,k) = / h.(t,k)dt, for xe[a,b) l+l I 
(4b) 

Theorem 3.1. Let T be the Friedrichs extension of T . If 
o 

/ m(x)[h k(x,k)] dx = M < 0 0 

a 
(5 ) 
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for at least one integer k, 1 < k < n, then T has a compact inverse, 

and in this case, every selfadjoint extension of T q has a discrete 

spectrum. 

Proof. We first prove two lemmas. 

Lemma 3.2. If u e P ( T Q ) and (5) is satisfied for some k, 1 < k < n, then 

for a < x^ < x 2 < b, 

u(x_) - u(x.) | < ( T u,u) 
Z 1 O 

1/2 
X , 

/ 1/ P 1(t)dt 
X , 

1/2 

if k=l 

and 

u(x 2) u ( x 1 ) | < ( T Q U , U ) 
1/2 

x. 
/ h k_ 1(t,k)dt if k>l, 

Proof. For ueP ( T ) , it follows from the Schwartz inequality 

x. 2 "2 
< / p (t)[u ( k )(t)] 2dt • / 1/p, (t)dt 

X . 

< ( T Q U , U ) / l/p k(t)dt. 
X l 

Now if k = 1, the lemma is proven. If k > 1, set x^ = x and = b, 

or x^ = a and x 2 = x < b depending on whether h^(x,k) is defined as in 
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(3a) or (3b), respectively. Since u is zero in a neighborhood of a and 

b, we get 

u ( k _ 1 ) ( x ) | 2 < ( T u,u)[h n(x,k)] 2 
1 o 1 

U(k-1),..M . /n, .. ..xl/2 (x)| < ( T u,u)- L / Zh 1(x,k) (6) o 1 

Using (6) above, we obtain 

X 2 , (k-2). . (k-2). , I I r ( k - l ) , . v , . i |u (x 2) - u (^ 1)| = |J u (t)dtj 
X l 
X 2 

< / ( T u,u) 1 / 2h n(t,k)dt ; o 1 
x i 

x 2 
= ( T o u , u ) 1 / 2 / h 1(t,k)dt. 

x l 

Setting x 1 = x and x 2 = b, or x 1 = a and x 2 = x < b for h 2(x,k) defined 

as in (4a) or (4b), respectively, 

u ( k " 2 ) ( x ) | < ( T u , u ) 1 / 2 h_(x,k). 

Continuing by induction, we get the inequalities 

u ( K " j ) ( x ) | < ( T Q U , U ) 1 / 2 h . ( x,k), j=l,...,k-l 

In particular for j = k - 1 
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u'(x)| < ( T o U , u ) 1 / 2 h k _ 1 ( x , k ) . 

Integration of both sides after multiplying by m(x) leads to the con

clusion of the lemma for k > 1. 

Lemma 3.3. Let T be the Friedrichs extension of T . If ueP(T) and (5) 
o 

holds for some k, 1 < k < n, then for a ^ x^ < x^ < b, 

(i) |u(x 2) - uCx^l < (Tu,u) 

and 

1/2 / l/p^t) dt 

1/2 

if k=l, 

u(x 2) - u ( x 1 ) | < ( T u , u ) 1 / 2 / h k_ 1(t,k) dt if K k < n . 

(ii) (u,u) < (Tu,u)M. 

Proof. For ueP(T) we see from Corollary 2.6 that there exists a 

sequence {u } with u eP(T ) , m=l,2,.... such that IIu -u|| -> 0 and ^ m m o ' ' ' ' 11 m 11 

(T u ,u ) (Tu.u) as m «. 
o m' m 

Since (T u ,u ) is a convergent sequence it is bounded, that is o m m 
(T u ,u ) ^ C for some positive number C, and all m=l s.... From Lemma o m m r J 9 

3.2 

u (x 0) - u ( x . ) | < ( T u , u ) m 2 m l o m m 
1/2 / 1/ P l(t) dt 

1/2 

if k=l, 

and 
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u (x.) - u (x_)| < (T u ,u ) 1 / 2 / h -(t,k) m 2 m l ' o m m J k-1 ' dt if k>l. 

In either case the functions {u } are equicontinuous and uniformly 

bounded on compact subsets of [a,b). By the Ascoli Theorem there is a 

subsequence of { u
m} which converges uniformly on compact subsets of 

[a,b). Restricting attention to this subsequence and taking limits in 

the last inequalities we get (i) for both k = 1 and k > 1. 

Now if h (x,l) is defined as in (3a) and h, (x,k) is defined as 1 k 

in (4a) for k > 1, let x^ = a, and x^ = x in (i) to obtain for k = 1 

or 1 < k ^ n, 

u(x)| < ( T u , u ) 1 / 2 h k(x,k). 

If h (x sl) is defined as in (3b) and h^(x,k) is defined as in 

(4b) for k > 1, then note that for each in the subsequence there is 

a x_ < b such that u (x_) = 0. Setting x n = x we obtain for k = 1 

u ( x ) = u (x 0)-u (x) 
m m 2 m 

< (T u ,u ) 
o m m 

1/2 / l/ P j L(t) dt 

1/2 

< (T u ,u ) o m m 
1/2 / l/ P j L(t) dt 

1/2 

= (T u ,u ) 1 / 2 h.(x,l) 9 o m m 1 5 
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and for k > 1 

u (x)I = |u ( x 0 ) - u (x) m m l m 

X 2 
< (T u ,u ) 1 / 2 / h, n(t,k)dt o m m J k-l x 

< (T u ,u ) 1 / 2 / h, n(t,k)dt o m m ; k-l ' x 

= (T u u ) 1 / 2 h, (x,k). o m m k 

Now take limits to obtain for this case also, 

u(x)| < ( T u , u ) 1 / 2 h k(x,k) 

Hence, in either case 

u(x ) | 2 < (Tu,u)[h k(x,k)] 2. (7) 

Multiplying by m(x) and integrating the above we get (ii). 

Proof of Theorem 3.1. Let X be an eigenvalue of T associated with 

eigenvector u. Then (Tu,u) = (Au,u) > (l/M)(u,u). Hence, A > 1/M > 0 

Therefore all eigenvalues of T are positive and T 1 exists. 

Let {Tu } be a bounded sequence in the domain of T 1 and K be a n 

number such that HTû f < K < 0 0, n=l,.... Then u^eV(T) and, from Lemma 

3.3 (ii), 
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u 2 = (u ,u ) < M(Tu ,u ) < Ml Tu I I u I, n n ' n n ' n 1 n M n " 

II II 2 from which follows u ^ MK, and (Tu ,u ) < MK . 11 n" ' n' n 
From Lemma 3.3 (i) 

X 2 
|u n(x 2) - u n ( x 1 ) | < ( M K 2 ) 1 7 2 / h k 1(t,k) dt 

X l 

and, hence, {u^} is uniformly bounded and equicontinuous on compact 

subsets of [a,b). Using the Ascoli Theorem we get a subsequence {v^} 

which converges uniformly on compact subsets of [a,b) to a limit func

tion u. 
2 

It remains to show that {v } converges in L (m). From (7) above 

m(x)|v n(x)| 2 < (Tv n,v n)m(x)[h k(x,k)] 2 

< MK 2m(x)[h, (x,k)] 2 n=l, 

The right side is integrable by hypothesis. The Lebesgue Dominated 
2 II II II II II II Convergence Theorem yields ueL (m) and ||v || -*• ||u||. Hence, ||v -u|| -> 0. 

Hence, T 1 is compact, and T has a discrete spectrum. It follows 

from Theorem 2.3 that every selfadjoint extension of T q has a discrete 

spectrum. 

Remark 3.1. Theorem 3.1 provides a test for a selfadjoint operator T to 

have a compact inverse and a discrete spectrum based on an analysis of 
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the coefficients p^Cx), 1 < k ^ n. For a test based on P Q(x) we pre

sent the following result found in [12, page 210]. 

Theorem 3.4. If p (x)>0,p _(x)>0,....p.(x)>0 and if n n-1 1 

lim p (x) = °°, 
x->b 

then every selfadjoint extension of T q has a discrete spectrum. 

If a formal operator T is formally selfadjoint, then obviously 

so is any positive integer power of the operator. If T is of order 2n, 
r r then x is of order 2nr. Hence, x can be written in the form of (1) 

with n changed to nr, where the coefficients are obtained from the 

coefficients of x. However, if the coefficients for x, p^Cx), 

k=0,l,...,n, satisfy the criteria stated at the beginning of this 
. r . 

chapter, it does not follow that the coefficients for x will neces

sarily satisfy these criteria. 
r 

For r a positive integer, define T q by 

T r u = x ru, u e D ( T R ) o o 

r 2 Where P ( T ) is the collection of functions in L (m) which are also in o 
OO 00 

C [a,b). We shall also require p, (x)eC (a,b) for 0 < k ^ n, to be 
O K 

assured that x is well defined. 
r 2 It follows that P ( T q ) is dense in L (m). Also, it is routine 

P 
to show by using integration by parts repeatedly that T Q I S symmetric 
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and semi-bounded below by zero. Hence, T has a Friedrichs extension 
J ' o 

which we denote by T . (Note: r is placed as a subscript rather than 

a superscript to distinguish from T which would denote the rth 

power of T.) 

For each integer k, 1 < k < n, define the sequence of functions 

{h i(x,k)} J i=l,...,k, as in (3a), (3b), (4a), and (4b). 

Theorem 3.5. If for at least one integer k, 1 < k < n, it is true that 

/ m(x)[h^(x,k)] dx = M < °°, 
a 

(8) 

then has a compact inverse, and, in this case, every selfadjoint 
r 

extension of T has a discrete spectrum, o 
We first prove some lemmas for ueP(T^), which is the same as the 

domain of T , P(T ) , and for ueP(T ). 
o' o r 

Lemma 3.6. If ueP(T r) and (8) holds for some k, 1 < k < n. then for 
o 

a < x^ < x^ < b 

(i) |u(x)| 2 < M r' 1(T ru,u)[h, (x,k)] 2 and 
O K 

(ii) |u(x_)-u(x 1)| 2 < M r" 1(T ru,u) 
1 2 1 o 

x. 
/ l/ P j L(t)dt if k=l, 

and 

u(x_)-u(x.)| 2 < M r" 1(T ru,u) 
2 1 1 o 

/ h (t,k)dt if k>l 
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Proof. From Lemma 3.2 we have for ueP(T Q) 

u(x 2)-u(x 1)| < (T u,u) 

X , 

and 

u(x 2)-u(x 1)| < (T u,u) 

/ 1/ P l(t)dt 
x. 

/ h ] <_ 1(t,k)dt 

if k=l, 

if k>l. 

By appropriate choice of x^ and x 2 depending on the definition of 

h k(x,k) we obtain 

u ( x ) | 2 < ( T Q U 9 u ) [ h k ( x 9 k ) ] 2 . (9) 

Multiplying by m(x) and integrating we get 

(u,u) < ( T Q U 9 U ) M (10) 

and from the Schwartz inequality 

u < M T u . 
o 1 

(11) 

If T u has meaning then T ueP(T ) for s < r. In particular if r o o o 

is an even integer T r / 2 u e P ( T ), and if r is odd T ( r + 1 ) / 2 u and T ( r " 1 ) / 2 u to o o ' o o 

are in P(T ) . 
o 

Hence, from (10) and the symmetry of T q 9 we obtain for r even 
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(T ru,u) = ( T r / 2 u , T r / 2 u ) < M ( T ( r / 2 ) + 1 u , T r / 2 u ) 

r+1 
= M(T^ U , u ) . 

Similarly for r an odd integer and using (11) 

(T ru,u) = ( T ( r + 1 ) / 2 u , T ( r - 1 ) / 2 u ) 
o o o 

£ llT ( r + 1 ) / 2u|| | | T ( - 1 ) / 2 u 

£ M||T (- + l ) / 2u|| 2 

= M ( T r + 1 u , u ) . 
o 

Therefore for consecutive values of r 

(u,u) < M(T u,u) < M 2(T 2u,u) < ... < M r ( T P u , u ) . (12) o o o 

Using the second and last terms of the inequality we get 

(T u,u) < M r~ 1(T ru,u) o o 

which when combined with (9) proves part (i) and when combined with 

Lemma 3.2 proves part (ii) of Lemma 3.6. 
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Lemma 3.7. If ueV(T^) and (8) holds for some k, 1 < k < n, then for 

a < x 1 < x 2 < b 

(i) |u(x 2)-u(x 1)| 2 < M r" 1(T ru,u) / l/p 1(t)dt if k=l, 

and 

and 

1 

/ h,(t,k)dt if k>l. u( x 2 ) - u ( x 1 ) | 2 < M r" 1(T ru,u) 

(ii) (u,u) < (T ru,u)M . 

Proof. For ueP(T^), it follows from Corollary 2.6 that there is a 

sequence {u } in V{T°) such that llu -ull 0 and (T ru ,u ) (T u,u) ^ n o 11 n 11 o n ' n r 9 

as n 0 0. From Lemma 3.6 (i) it follows that {u } is uniformly bounded 
n 

and equicontinuous on compact subsets of [a,b). Hence, by the Ascoli 

Theorem there is a subsequence of iu^} which converges uniformly on 

compact subsets of [a,b). Restricting attention to the subsequence and 

taking limits in the inequalities of Lemma 3.6 (i) and (ii) we obtain 

u ( x ) | 2 < M r _ 1 ( T u,u)[h, (x,k)] 2 

r K 
(13) 

and part (i) of Lemma 3.7. Multiplying (13) by m(x) and integrating we 

obtain part (ii) of Lemma 3.7. 

Proof of Theorem 3.5. The proof parallels that of Theorem 3.1. Lemma 

3.6 (ii) shows that T^ has only positive eigenvalues and hence, has an 

inverse. Suppose {T^u^} is a bounded sequence in the domain of T^", and 

K is a number such that IIT u II < K < 0 0 for n=l,2,.... Then 
II r n i i 
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and 

u 2 = (u ,u ) < M r(T u ,u ) n n ' n r n n 

< M T u u , II r niin nii» 

u < M r T u < M rK, n r n 

Using the Schwartz inequality we obtain 

(T u ,u ) < M r K 2 

r n' n 

Hence from Lemma 3.6 (i) 

( \ ( \ 12 .,r-l.,r1/2 u (x_)-u (x, ) < M M K n 2 n 1 ' / 1/ P l(t)dt if k=l, 

and 

u (x 0)-u ( x , ) | 2 < M r _ 1 M r K 2 

n 2 n J - 1 
/ h k_ 1(t,k)dt 
X . 

if k>l, 

Therefore, { u
n} is uniformly bounded and equicontinuous on compact sub

sets of [a,b), and, by the Ascoli Theorem, there exists a subsequence 

{v } which converges uniformly on each compact subset of [a,b) to a 

limit function u. 

From (13) we have for each v 
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m(x) v (x) 2 < M r "^T v ,v )m(x)[h, (x,k)]' n r n n k 

< M 2 r 1K 2m(x)[h k(x,k)] 2. 

2 

The Lebesgue Dominated Convergence Theorem yields ueL (m) and 

[Iv || lu||. Hence IIv -u|| 0 as n 0 0. 

We conclude that T. ̂" is compact and, hence T^ has a discrete 

spectrum; again, using Theorem 2.3 it follows that every selfadjoint 
p 

extension of T has a discrete spectrum, o 

The requirement that the domain of T q consist of functions with 

compact support on (a,b) is quite strict. Also, since the elements of 

the domain of the Friedrichs extension are limits of elements in V(T ) , 
o 

the boundary conditions on P(T) are quite strict at both endpoints as 

will be shown by some examples in the next chapter. 

It is also true that we have been liberal in our hypotheses con

cerning the coefficients P^Cx) in arriving at Theorems 3.1 and 3.5. In 

particular, with respect to defining the functions tu(x,k), if inte

grating toward the singular endpoint is not defined then we integrate 

away from the regular endpoint. 

The question arises whether we can enlarge our domain of T q and 

still obtain a compact inverse for the Friedrichs extension. And, if 

so, in what way and to what extent? 

Our first step will be to relax the restriction on the functions 

in P(T ) at the singular endpoint but maintain the restrictions on all 

their derivatives. 
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Let T be the formal operator defined as in (1). Define T q by 

T u(x) = T U ( X ) for u(x)eP(T ) o o 

2 where P(T ) is the collection of functions in L (m) which are also in o 
00 

C (a,b) and such that u'(x) has compact support in (a,b) and vanishes 

in a right neighborhood of x = a. Then u(x) is "free" at the right end-

point b. 

It can be easily shown, by integration by parts, that T q is semi-

bounded below by zero and is symmetric. (Note that the domain of T Q 

contains the domain defined for Theorem 3.1, and hence is dense in 
2 

L (m).) Therefore T q has a Friedrichs extension, T. 
k 

As before we define a sequence of functions {hu(x,k)}^ for each 

integer k, 1 < k < n. 
b 

If it is true that for each y in [a,b) / l/p^(t)dt is finite, 
y 

then 

h 1(x,k) = / l/p,(t)dt 
1/2 

for xe[a,b). 

Otherwise 

h 1(x,k) = / l/p,(t)dt 
1/2 

for xe[a,b). 

If i is any integer 1 < i < k-2, and if it is true that for each 
b 

y in [a,b), J h.(t,k)dt is finite, then 
y 1 
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b 
h i + 1 ( x , k ) = / h i(t,k)dt for xe[a,b). 

x 

Otherwise 

x 
h i + 1 ( x , k ) = / h i(t 5k)dt for x [a,b). 

a 

Finally, if i = k - 1, and it is true that for each y in [a,b), 

/ h (t,k)dt is finite 

x 
h i + 1 ( x , k ) = h k(x,k) = / h (t,k)dt for xe[a,b). 

a 

Otherwise h k(x,k) is undefined. 

Note that there is only one possible way to define h k(x,k) while 

h.(x,k) for i < k there are two ways. In particular, h..(x,l) is defined 

The statements of Theorem 3.1 and Lemmas 3.2 and 3.3 remain the 

same as before. Also the proofs of Lemma 3.2 and Theorem 3.1 remain the 

same, but the proof of Lemma 3.3 must be modified only slightly as 

follows. 

After taking limits in the results of Lemma 3.2 to obtain Lemma 

3.3 (i) we have only one way to substitute for x^ and x^. Since 

u (a) = 0 for all u eP(T ) , u(a) = 0 for all ueP(T). Setting x = a m m o ' & 1 
and x 0 = x, we obtain inequality (7) again 

l only if / 1/p (t)dt is finite for each y in [a,b). 
a 

u ( x ) | 2 < (Tu,u)[h k(x,k)] 2. 
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Integrating the above with the weight function m(x), we obtain (ii) 

(u,u) < M(Tu,u). 

We have shown that the results of Lemma 3.3 and inequality (7) remain 

valid for functions in our modified domain P(T). Therefore Theorem 3.1 

and its same proof hold. 
J. 

The result of easing the conditions on P(T ) is that P(T ) 
o o 

becomes smaller. The question arises as to whether the Friedrichs 

extension of the new operator is different from the Friedrichs exten

sion of the old operator. 

Now suppose we enlarge our domain of T q still further as follows: 
2 

let P(T ) consist of those functions u(x) in L (m) which are also in o 

C (a,b) and such that u ^ \ x ) has compact support on (a,b), where j is 

an integer, j < n, but u and all its derivatives vanish in a right 

neighborhood of x = a. Note that the cases j = 0 and j = 1 have 

already been examined. 

Then, in order for the same proof of Theorem 3.1 to go through, 
] < 

the functions {h.(x,k)}._ . can be defined in only one way, namely 

x 
h i(x,k) = / h i_ 1(t,k)dt. 

a 

Also, in the proof of Lemma 3.3 (ii) we must select x 1 = a, and x^ = x 

since we can be certain only that u(a) = 0 for u in P(T). 
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CHAPTER IV 

BOUNDARY CONDITIONS 

In this chapter we will consider a class of differential opera

tors which satisfy the criteria for a compact inverse and hence, have a 

discrete spectrum. First of all we will demonstrate that each of the 

class of 2nth order differential operators has deficiency indices (d,d) 

where d can assume each of the possible integers, n < d < 2n, depending 

on the choice of m(x). Then the boundary condition description of the 

Friedrichs selfadjoint extension will be given for each case. 

We have shown earlier that for a real symmetric differential 

operator of order 2n and one regular endpoint the deficiency indices 

must be equal, (d,d), and n < d < 2n. In 1921 W. Windau [22] and in 

19 38 D. Shin [18] concluded that the only possible value for d is n or 

2n, corresponding to the limit-point and limit-circle cases of Weyl for 

the second order operator. In 1944 errors in these results were dis

covered and in 1950 I. M. Glazman [8] demonstrated by examples that any 

integer value of d between n and 2n can occur. In 1953 S. A. Orlov 

[14] presented other examples. 

Consider the formal differential operator of order 2n 

n p(x) dx 
d 
n 1 < x < °° 

where p(x) = x and m(x) = x . 
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Applying the definition of h^(x,k),...,h k(x,k) in Chapter III, 

we see that the definitions are significant only for k = n, and h 1(x,n) 

is finite for x in [l, 0 0) if r > 1. Similarly, h k(x,n) is finite for 

x in [l, 0 0) if r > 2k-l. In particular h n(x,n) is finite for x in [l, 0 0) 

if r = 2n - 1+a where a satisfies a > 0. Now applying Theorem 3.1, 

which requires that 

/ m(x)[h (x,n)] dx < °°, 
1 n 

we see that m(x) = x must be such that s < a-1. 

Define T by the method of Chapter III for Theorem 3.1. Then T o J o 

is symmetric and semi-bounded below by 0 and, for the restrictions on 

p(x) and m(x) above, T q has a selfadjoint extension T, which has a com

pact inverse. 

It then follows that zero along with the entire negative semi-

axis belongs to the same connected subset of the field of regularity of 

T Q and, hence, the deficiency indices are equal, (d,d), and equal to the 

dimension of the null space of T q (see [1, page 92]). 

To determine the number of solutions to T u = 0 we examine the 
o 

solutions to TU = 0, and obtain the following set of 2n linearly inde

pendent solutions: 

n-r n-r+1 2n-r-l n-1 
X ,x ,...,x , l,x,...,x 

Note that the requirement r = 2n - 1 + a, a > 0 implies that the first 

n functions have negative exponents. 
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The number of these solutions which are in L (m), and hence, the 

deficiency indices of T , depend on the exact value of s as follows: 

-1 < s < a -1 d = n 

-3 < s < -1 d = n + l 

-5 < s < -3 d = n + 2 

s < -(2n-l) d = 2n. 

Since the deficiency indices depend on the weight function, 

m(x) = x , we are actually changing the Hilbert space in order to effect 

the change in the deficiency indices. 

Using the values of r and s as restricted above we obtain the 

following boundary condition description of T. 

Theorem 4.1. Let T be the Friedrichs extension of T defined as above, 
o 

Then ueP(T) if and only if ueP(T ) and u satisfies the following bound-
o 

ary conditions 

(a) u(l) = u'(l) = ... = u ^ ' ^ U ) = 0 

N (n-1), v (l-r)/2* 
(b) u (x) = 0(x ) as x -> » 

(n-2), . n , (-r-l)/2, u (x) - 0(x ) as x -> 0 0 

( v n f (-r-2n+3)/2. u(x) = 0(x ) as x -> ». 
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Proof. First we prove the necessity of the boundary conditions. From 

the description of the Friedrichs extension in Chapter II, we know that 

ueP(T) implies that there exists a sequence {u^K u k e ^ ^ o ^ s u c n "that 

||uk-u|| 0 and (T u ^ u ^ ) (Tu,u) as k °°. 

From the proof of Lemma 3 . 1 , we know that for 1 < x^< < 0 0 

and k = l , 2 , 

( n - 1 ) , , u, (x 0)-u ( n - 1 ) , N . 2 

2' "k (x1)\Z < ( T o u k , u R ) / l/p(t)dt 

< C / l/p(t)dt ( 1 ) 

where C does not depend on k since ( T ^ u ^ j U ^ is a convergent sequence 

Also, 

r x. 
( n - 2 ) , . ( n - 2 ) , u 2 ^ . h (t,n)dt 

u k ( x 2 ) - u k ( x 1 ) | , C / V l ( t ' n ) dt 

Hence, each of the sequences {u k} ,{u^ ,. . . ,{u£ n is uniformly 

bounded and equicontinuous on compact subsets of Cl, 0 0). Using Ascoli's 

Theorem and a diagonalization argument we find a subsequence of {u^} 

which converges, together with its derivatives up to and including order 

( n - 1 ) , uniformly on compact subsets of [l, 0 0). Hence, ueC^ n "^[l, 0 0) 
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and -> u^ 1^ as k -> °° (restricting to the subsequence) uniformly 

on compact subsets of [l, 0 0). 

Since u ^ C l ) = 0 for k = l , 2 , . . . , i = 0 , 1 , . . . , ( n - 1 ) , it follows that k 
u ^ \ l ) = 0 for i=0 , 1 , . . . , ( n - 1 ) . This proves part (a) of the theorem. 

r 
From ( 1 ) above, since p(x) = x , it follows that 

X 2 
( n - 1 ) , . ( n - 1 ) , . i 2 r -r 

\ ( x 2 ) - U k ( x l } ' J 11 dt* 
X l 

For each k, there is a point x^ < 0 0 such that u£ n "^^(x^) = 0 . Hence, 

X 2 

l u ^ ^ x ^ l 2 < C / t" r dt < C / t" r dt. 
X l X l 

Or 

00 

| u ^ n _ l ) ( x ) | 2 < C / t" r dt for x in [ 1 , ~ ) . 

x 

TAKING LIMITS AS K 0 0 (AGAIN RESTRICTING U^ TO THE SUBSEQUENCE) WE SEE 

THAT FOR ueP ( T ) 

I ( n - 1 ) , v i 2 ^ n r ,-r C - r + 1 
u (x) < C / t dt = 7- x 

1 1 * r - 1 x 

Therefore |u^ n "^(x)| < C'x^ r + l ) / 2 ^ repeated integration yields 

the boundary conditions of part (b) at the singular endpoint. 

We now prove that the boundary conditions are sufficient. Since 

zero is not an eigenvalue of T, the image of T, R(T), is the entire 

space L 2(m). 
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Suppose uePCT^) and satisfies the boundary conditions (a) and 

(b). Then there exists veP(T) c P ( T " ) such that Tv = T'*U. If we can 
o o 

show that u = v then it follows that ueP(T). 

Let w = u - v, then wePCT^). Also, by the proof of necessity 

above, v must satisfy the boundary conditions. Therefore w must satisfy 

them also. 
Now T"W = T'*U - T % = Tv - Tv = 0 . Therefore w is in the null o o o 

space of T and hence is a linear combination of the functions r o 

n-r n-r+1 2n-r-l 
X , x , . . . , x 

n-1 2 

and as many of the functions l,x,...,x as are in L (m), which in turn 

depends on the value of s. We will assume, without loss of generality, 

that all of the functions are in the null space. Then 

, \ n-r n-r+1 2n-r-l , n-1 , n-2 w(x)=c,x +c„x +... + c x + d n x +d_x +... + d n x + d . 1 2 n 1 2 n-1 n 

Applying the boundary conditions (b) first we obtain 

w ( n 1 } ( x ) = I c.[(n-r+i-l)...(-r+i+l)]x r + 1 + d (n-1)!. 
i=l 1 

w ( n " 1 } ( x ) v re n t (2i-r-l)/2 f . (r-l)/2 
(l-r)/2 ^ c i L ( n " r + 1 _ 1 ) • • • (-r+i+l)]x + d ^ n - D l x 

x i=l 

Therefore, w ^ n "*"\x) = 0(x̂ "*" r ^ ^ ) as x •> 0 0 implies d^ = 0. Similarly 

applying the other boundary conditions at the singular endpoint we get 
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d, = d_ = ... = d = 0, and 
1 2 n 

, v n-r n-r+1 2n-r-l w(x) = c,x + c^x + ... + c x 1 2 n 

Applying the boundary conditions at x = 1, we obtain the following 

homogeneous system of n equations in the n unknowns c ^ , . . . , 0 ^ . 

c. + c_ + . . . + c = 0 
1 2 n 

(n-r)c. + (n-r+1)c„ + ... (2n-r-l)c = 0 1 2 n 

[(n-r) ... (n-r-n+2)]c. + ... + [(2n-r-l) ... (n-r+1)]c = 0 
1 n 

The determinant of the coefficient matrix can be shown to be 

equivalent to the Vandermonde determinant by use of elementary row 

operations and, hence, is nonzero for all the cases considered here, 

THEREFORE THE SYSTEM HAS ONLY THE T R I V I A L SOLUTION 

c^ = c^ = ... = c^ = 0, and w = 0 . 

Hence u = v and ueP(T). 

Note that if the deficiency indices are (d,d), then only the 

first (d-n) of the functions l,x,...,x n ^ are in L 2(m) and, therefore, 

only (d-n) of the boundary conditions are needed at the singular end-

point since each boundary condition was used to force one of the 



47 

coefficients cL equal to zero. Since there are always n boundary con

ditions at the regular endpoint, there are d boundary conditions neces

sary in all. This coincides with Theorem 2.1. 
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CHAPTER V 

DISCUSSION OF RESULTS 

In this chapter we will present some known results and compare 

them to our results in Chapter III. Also, we will present some questions 

for further study. 

It will be assumed that the following operators are defined for 

the interval [a,b), i.e. the left endpoint a is regular and the right 

endpoint b is singular, b may be 0 0. 

Theorem 5.1 [ 0 ] , Let 

T = (-l) n - 2 — + q(x). 
d x 2 n 

If limq(x) = 0 0, then every selfadjoint extension of the minimal operator 
x->b 

associated with x has a discrete spectrum. 

The following result is an extension of the above theorem and is 

found in [13, page 210], 

Theorem 5.2. Let x be a formal differential operator defined by 

T = I (-l) k d d 
l T k k k k=o dx dx 

and suppose p (x)>0,p ,(x)>0,...,p,(x)>0 for x in [a,b). n rn-l 1 
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If lim p (x) = 0 0, then every selfadjoint extension of the minimal 
x+b 

operator associated with x has a discrete spectrum. 

Our results in Theorem 3 . 1 give sufficient conditions for a 

discrete spectrum based on the coefficients. However, no conclusion 

was drawn based on the coefficient of the undifferentiated term, 

P Q ( X ) . Theorem 5 . 2 above provides such a test for the case of the 

weight function m(x) = 1 . Theorems 3 and 4 and the Corollaries to 

Theorem 4 found in [ 1 3 , pp. 2 1 1 - 2 1 4 ] provide other results concerning 

the continuous spectrum of differential operators of order higher than 

two. 

In [7] Friedrichs presents a criterion for discrete spectrum of 

a second order differential operator as follows. 

where a may be - 0 0 and b may be +°°. Require that p(x) > 0 and r(x) > 0 

on (a,b). 

Let L be defined as follows, 

for x in (a,b) 

Let x , x , xi be any points in (a,b) such that a < x < x < 

Define h(x) as follows. 

b dt h(x) for x n <x<b 
pit) 

00 

X 
O 

for x <x<b if/ x 
b 

pTtl 
dt 

< o o s 
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X o X o 
= / pffT f o r a < x S x - i

 l f " / iffT = 

x b r 

x 
r * d t £ ^ r ° d t -1 f o r a<x^x-i l f - / iTty " 

Theorem 5.3. Then the spectrum of L is discrete if 

-i-r-<fq(x) + - —> -> 0 0 as x-»b and as x->a. 
, u ; [ 4 P (x)[h (x)r 

Friedrichs then applies the criterion to the following operators 

and concludes a discrete spectrum in each case. (Note: D = d/dx). 

2 
1. L = -D + q where b = 0 0 and q(x)-*» as x-*°°. 

2 
2. L = -D + q where (a,b) is a bounded interval and q 

is bounded below. 

3. L = -D(l-x 2)D (a,b) = (-1,1). 

4. L = -e XDxe" XD (a,b) = (0,»). 

1 m 2 

5. L = - — DxD + — j (a,b) = (0,1). 
x 

6. L = - — ~ - Dx 1 1 "'"D (a,b) =• any finite interval. 
n-1 ' J 

x 

If we apply Theorem 3.1 to examples 1, 3, and 6 and Theorem 5.2 

to examples 2 and 5, we conclude a discrete spectrum also. Finally, if 

we make a change of variable in example 4, the Laguerre operator, to the 

familiar form 
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L = -DxD + where b=°°, 

then Theorem 5.2 indicates a discrete spectrum for this problem also. 

A more recent result of interest is that of M. S. P. Eastham [5], 

Eastham considers the formal operator 

T = I ( - D k ^ P v ( x ) 
k=o dx k

 r k 
a* 
dx 

0£x<°° 

(k) where the p. (x) are real-valued, p, (x)eC [O, 0 0) and p (x) > 0. Let y k k n 

denote the least limit point of the spectrum of any selfadjoint extension 

of the minimal operator associated with x. 

Theorem 5.4. Let 

fp,.(x)l lim inf 
x-x» 2k 

- 0 > _ o o 

If L = 0 for p+1 < k < n and £p i- 0, we assume that p (x) > 0 for x k k 
large enough and p+1 < k < n and, if p > 0, that £p > 0. Then 

y> [l 23 2...(2n-l) 24 n]£ + [lV. . . (2n-3) 24 ( n .+ ...+ E l 2 ^ " 1 ] ^ , + A.. 
n n - 1 1 u 

From this result it follows that if is equal to 0 0 for at least 

one k, k=0,l,...,n, then y = 0 0 and the spectrum is entirely discrete. 

The proof of Theorem 5.4 is based on a comparison to the Euler 

operator and requires b = 0 0. However, the procedure used in Chapter III 

does not depend on comparison with known results, and Theorem 3.1 
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includes the case of a singularity at a finite endpoint. If p^(x) = 
2+a 

(1+x) , m(x) = 1, 0 < x < °°, then it follows from both Theorem 3.1 

and Theorem 5.4 that the spectrum is discrete if a > 0. However, 
2k 

Theorem 5.4 indicates a discrete spectrum for P^( x) = (x+2) log(x+2), 

0 < x < 0 0, and no conclusion can be drawn from Theorem 3.1. 

Eastham's paper also contains an upper bound on y based on 
2k 

lim sup(p, (x)/x ), k=0,...,n. It is possible to construct examples of 
K 

. 2k 
oscillatory P^( x) f ° r which lim inf(p k(x)/x ) is finite and 

x-x» 
2k 

lim sup(p k(x)/x ) is infinite, and hence Eastham's results are incon-
x-*» 

elusive, but for which Theorem 3.1 implies a discrete spectrum. 

The question arises concerning the result of Theorem 3.3 as to 

whether it is significant. Specifically, are there any formally self

adjoint operators which are positive integer powers of formally self

adjoint operators of lower order such that Theorem 3.3 can be applied 

to the coefficients of the lower order operator but Theorem 3.1 will not 

apply to the positive integer power of it? The answer to the question 

is in the affirmative as is seen from the following example. 

Given that T q is a symmetric semi-bounded operator (bounded below 

by zero), i.e. (T Q U , U ) ^ 0 for all ueP(T Q), it follows from equation 

(12) in Chapter III that T q is semi-bounded below by zero for all posi

tive integers r. Note that the semi-boundedness of T q in Chapter III 

results from the fact that 

(T u,u) = ^ I p (x)[u ( k )(x)] 2dx 
a k=0 
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and the fact that p Q ,p^ ,... ,p n are all non-negative in [a,b). However, 
2 

it does not follow that the coefficients of T are non-negative. 

3 

Example. Let T U = -(x u ' ) ' + xu, l<x<°°. Then p Q = x > 0 , and 
3 

p^(x) = x > 0 , on [ 1 , ° ° ) . However, 

T 2 U = ( x 6 u " ) M - ( - 4 x V ) ' + (-2x2)u 

6 4 2 
and ^>2^x^ ~ x > u » Pj^ x) = - l + x < 0 > a n d P Q ^ X ^ = ~ ^ X < ^ ^ O R X "*"N 

Then 

Now let T q be the minimal operator associated with T on [l, 0 0) 

h ^ x . l ) = 
f 0 0 , U / 2 

x t /2 

and 

/ m(x)[h ( x , l ) ] 2 d x = y < °°. 
1 

Then the Friedrichs extension of T q has a compact inverse by Theorem 
2 

3 . 1 . However, if we let L q be the minimal operator associated with T 

on [ 1 , ° ° ) then Theorem 3 . 1 does not apply since PQ(*) a n d P ^ ( X ) A R E 

2 
negative on [l, 0 0). However, Theorem 3 . 3 does apply to T , and it fol-

2 
lows that Friedrichs extensions of T q , in fact any selfadjoint operators 

2 

associated with T , have discrete spectra. 

Theorem 3 . 1 provides sufficient conditions for a selfadjoint 

operator to have a discrete spectrum based on the behavior of any one 
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coefficient provided the others are non-negative. It follows that any 

theorem which concludes that the continuous spectrum is non-empty must 

have hypotheses which place restrictions on all the coefficients to 

ensure that Theorem 3.1 does not apply. 

Also, any necessary and sufficient condition for a discrete 

spectrum must impose restrictions on every coefficient. The necessary 

and sufficient condition given by A. M. Molchanov [13, page 245] con

cerns the formal operator 

2 
T = -D + P ( / X ^ - 0 0<x<+ 0 0, 

and is based on the behavior of P Q( x) a s x tends to +°° and However, 

the other coefficient p^( x) is restricted to equal to 1. 

The results obtained lead to further questions concerning singu

lar differential operators. First, we ask whether the results of 

Chapter III can be extended to multidimensional differential operators, 

which would have application to elliptic boundary-value problems of 

partial differential equations. Some results on this subject are found 

in [10]. 

In Chapter III we changed the domain of the symmetric operator 

by eliminating some restrictions at the singular endpoint. Then by 

reducing the possible ways we define the functions tu(x,k), we obtained 

similar results concerning the compact inverse of the Friedrichs self

adjoint extension. It is an open question whether the Friedrichs exten

sions of the various symmetric operators are identical or not. The 
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answer to this question might be more accessible for those operators for 

which we can obtain a boundary condition description of the selfadjoint 

extension, as in Chapter IV. 

The boundary condition description obtained in Chapter IV is for 

operators with only one non-zero coefficient. No general results are 

known for finding the specific boundary conditions for the case of more 

than one non-zero coefficient. One type of question concerning the 

general higher order operator is how do the boundary conditions depend 

on the coefficients. For example, in specifying a particular boundary 

condition how many of the coefficients must be involved so that the 

operator is selfadjoint. 
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