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CHAPTER I
INTROCDUCTIGN

The motivation for this work is a statement by M. A, Naimark in
[13] to the effect that cne of the most important problems in the theory
of differential operators is the question: In what way does the spec-
trum of selfadjoint extensions of symmetric operators depend on the
behavior of the coefficients of the corresponding differential expres-
sions? The nature of the spectrum, deficiency indices, and the expan-
sion of functions with respect to eigenfunctions for singular differen-
tial operators are closely related subjects, and each will be
investigated.

The initial development of the theory of singular differential
operators can be found in the famous papers by H., Weyl in 1809 [20] and
1910 [21]. Included in these papers are the fundamental results for
the singular cperateor of order two concerning the deficiency indices and
the corresponding limit-point (Grenzpunktfall) and limit-circle (Grenz-
kreisfall)} cases, the nature of the spectrum, and the expansion theory
with respect to eigenfunctions.

Since the appearance of Weyl's papers the second order case has
been the subject of researches by many authors. E. C. Titchmarsh has
assembled many of the results prior to 1950 in a two-volume monograph
[19]. More recent studies concerning the spectrum have been conducted

by P. Hartman, C. R. Putnam, and A. Wintner [11,12,15,16,23].



Most of the above work has been centered on the operator

2

T = - £L§-+ q(x)
dx

on the interval [0,»). Weyl showed that if q{x) - = as x + = then the
spectrum is discrete. An extension of this result to operators of
higher order obtained by 1. M. Glazman is included in Chapter V.

In [12] the operator

T = c‘lj—xE(x)ad_;| + q(x) 0sx<» (1)

is considered and a necessary and sufficient condition for a peint to
be in the continuous spectrum based on the behavior of g(x) is obtained.
In [15] the connection between an operator being oscillatory and
the discrete part of the spectrum is used to extend a theorem in [19].
In [16] a result concerning the independence of the continuous spectra
and the boundary condition for the operator (1) is obtained.
Also in [19, Chapter 16] is included the following criterion

concerning an operator with a weight funetion. For the coperator

2

_ 1 d -

T o 5 |- T3 + q(x) 0<x<
dx

it is shown that if q(x)/m(x) + = as x + = then the spectrum is

discrete.



In 1953 A. M. Molchanov [13, page 245] found a necessary and
sufficient condition for the discreteness of the spectrum for the

operator

d2
T = - ——=+ g{x) R ST
2
dx
namely that
xta
lim f gq(t)dt = =
x+riw x

for each fixed a > 0.

The theory {expansion in eigenfunctions and nature of the spec-
trum) for differential operators of order higher than two has been
investipgated since 1950 by many mathematicians including M. S. P.
Eastham [5], J. V. Baxley [2], M. A. Naimark [13], and I. M. Glazman
[9,106]. Eastham compares operators with the Euler operator and his
work is restricted to cases with singularity at infinity. Baxley
utilizes the Friedrichs extension to study integer pcwers of the

operator

T = _IKJ;?T |:— % [P(x)dd_x] + q(xi’ D<x<l.

He concludes that the spectrum is discrete if

1 1
f m(x) f 1/p(t)dtdx = M < =,
Q X



a test which does not depend on q(x) as did the pre-1950 studies listed
above. Alsoc a weight function m{x) is included which makes the results
more general.

The problem which we consider here is tc find conditions on the
coefficients of differential expressions of arbitrary even order, 2n,
and on arbitrary intervals, which ensure a compact inverse for the cor-
responding selfadjoint operators. In particular, the objective is to
find conditions which apply to a class of operators for which neither
Eastham's nor Baxley's tests yield results.

Similar to the approach adopted by Baxley, we use the Friedrichs
extenslion to attack this problem, and hence, our work is restricted to
semi-bounded operators.

In Chapter II we define the terminology to be used and present
the basic properties of the spectrum, deficiency indices, and boundary
conditions of formally selfadjoint differential operators. Also we
present the splitting technique for studying the spectrum and a
description of the Friedrichs extension.

In Chapter I1I the fundamental results of the paper are estab-
lished by showing that if any one of the ccefficients hehaves according
to certain criteria then the Friedrichs extension has a compact inverse.
Also, in this case, the Friedrichs extension of any integer power of
the symmetric operator will have a compact inverse,.

In Chapter IV we obtain a boundary condition description of the
Friedrichs extension for a class of operators which have a compact

inverse. Also we present a class of operators of order 2n which



illustrates the fact that the deficiency iIndices can take on any value
between n and 2n inclusive.
In Chapter V we compare our results with those of Friedrichs,

Baxley, and Eastham, and present some questions for further study.



CHAPTER II
BACKGROUND

It is well known [13, page 48] that any formally selfadjoint
formal differential operator with real coefficients can be written in

the form

k dk

n
1 k d
T = Z (-1)" —— p (x) — (1)
m(x) ) 2, ax® T ax”

The formal operator T will be considered on an interval I with left
endpoint a and right endpoint b. The coefficients pk(x), k =0,...,n
are assumed to be real and have sufficient differentiatility on I,
pn(x) > 0 for x in I, and the functions l/pn(x),pn_l(x),...,po(x) are
required to be Lebesgue-integrable on any closed subinterval [a,B] of
(a,b). The function m(x) is the weight function and hence must be

positive and continuous on I.

Definition 2.1. The left endpoint a is regular if a > -= and if the
functions l/pn(x),pn_l(x),...,po(x) are Lebesgue-integrable in every
interval [a,8],8 < b; otherwise we say the endpoint a is singular.

Similarly we define the regularity and singularity of the right end-

point b.

Definition 2.2. The expression 1 is regular if and only if both end-

points, a and b, are regular. Otherwise 1 is said to be singular.



Theorems that establish the discreteness of the spectrum and
the expansion of an arbitrary function in a Hilbert space with respect
to the eigenfunctions of a regular ordinary differential operator may
be found in many texts such as [3, Chapter 7] or [4, Chapter XIII].

The follewing treatment is concerned with singular operators,

In order to apply the abstract Hilbert-space theory of unbounded
operators, we will require the domains of the operators which correspond
to the formal operator T to be subsets of a Hilbert space H.

Due to the lack of a commonly accepted terminology we present
here the definitions of the terms used to describe the spectrum of a

closed linear operator T, defined on the Hilbert space H.

Definition 8.3. A complex number A is called a regularity peint of
the operator T if (T--)\I)_l exists and i1s bounded on all of H, The set

of all regularity points 1s called the resclvent set,

Definition 2.4. The spectrum is the complement of the resolvent set

relative to the complex plane.

Definition 2.5, The discrete spectrum is the set of pecints, i, of the
spectrum such that the closure of the range of (T-XI) 1s net all of H;

i.e. the set of all eigenvalues.

Definition £.6. The continuous spectrum is the set of points, A, of

the spectrum such that the range of (T-AI) is not closed.

Femark 2.1. The continuous spectrum as defined above is the same as the

essential spectrum as defined by Dunford and Schwartz [4].



We will use P(+) and R(*) to denote the subsets of the Hilbert

space H which are the domain and range, respectively, of an operator,

d

and (+,*} and to denote the inner product and norm, respectively,

on H.

Definition 2.7, If Tl and T, are linear operators, Tl is said to be an
extension of T,, and denoted by T, < T, s if and only if D(TQ) < D(T,)

and T,f = T, f for every fED(TQ).

Definition 2,8, If D(T) is dense in H, then we define the Hilbert space
adjoint of T to be the operator T*, where D(T*) consists of all g such
that (Tf,g) is continucus for feP(T), and T*g = g*, where g* is the
unique point in H such that (Tf,g) = (f,g*) for every fel{T)}. In other

words (Tf,g) = (f,T*g) for fel(T), gsD(T*).

Definition 2.9. A linear operator T defined on a Hilbert space H is
said to be symmetric if
(a) D(T) is dense in H, and

{(b) £, geD(T) implies (Tf,g) = (£,Tg).
Definition 2.10. T is said to be selfadjoint if T =T .

Remark £.2. The spectrum of a selfadjoint operator is a subset of the
real numbers. For a selfadjcint operator the continuous spectrum is the

collection of nen-isolated points of the spectrum.

Remark 2.3. T 4is a closed operator. If T is symmetric, T < T  and

a o,
- Wil

the closure of T, T, is given by T = T .



8ince ocur operators are differential operators, and therefore
unbounded, the choice of domain of our operators is quite crucial. We
will denote by Ck(a,b) the class of all functions with k continuocus
derivatives on (a,b) and by Cz(a,b) the class of all functions in
Ck(a,b) which also have compact support in {a,b).

Given a formal differential operator T on (a,b) we denote by TO
the operator defined by Tou = Tu, where uED(To), and D(To) z Cg(a,b).
We will refer to TO as the minimal differential operator defined by 7.
(The closure of To is referred to as the minimal operator by some
authors).

Cur goals are two-fold. TFirst, find general conditions under
which every selfadjoint operator T in Hilbert space, H, constructed
from 7 has a compact inverse. From this result will follow qualitative
properties of the spectrum; i.e. it consists only of eigenvalues which
accumulate only at infinity, and, in addition, the knowledge that the
eigenfunctions are complete; i.e. every fecH can be expanded in a series
of eigenfunctions and the series converge in the metric of H. Also,
since T is a differential operator, each eigenvalue has finite multi-
plicity at most equal to the order of the operator.

Our second goal is, given the selfadjoint extension T, to

describe D(T) in terms of the boundary conditions applied to D(T;).

Deficiency Indices and Selfadjcint Extensions

The formal operator, 1, which we are studying has order 2n and
will be defined on the interval [a,b). We assume that the left endpoint

is regular and the right endpoint is singular.



1¢

Definition 8.11, Let T be a symmetric linear operator. Let Rk denote
the range of (T-AI) and let NA = H - RA for a complex number A, For

A = 1, the dimension of Ni, d+, is called the positive deficiency index
and, similarly, the dimensicn cof N_i, d”, is called the negative defi-
ciency index. They are written in the form of an ordered pair (d+,d_).

The following known results are presented for completeness, and
may be found in [4] and [13].

A closed symmetric linear operator T is selfadjoint if and only
its deficiency indices are (0,0).

A symmetric operater T has selfadjoint extensions if and only if
its deficiency indices are equal.

A symmetric differential operatcr with real coefficients has
equal deficiency indices. Also, since the dimension of the manifold
Ni is at most the order of the operator, the deficiency indices are
finite,

The specific formal differential operator (1) which we will con-
sider is such that To’ defined above, is of order 2n, symmetric, and
has real coefficients. Therefore the deficiency indices are equal,

d" =4 =d, and finite, d £ 2n, and hence, TO has a selfadjoint
extension.

Also, for the case of one singular endpoint as considered here,

it is true that n < 4 (see [1, page 172]).
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Boundary Conditions on Selfadjoint Extensions

In the general theory of selfadjoint extensions of symmetric
differential operators, an arbitrary selfadjcint extension, T, of the
symmetric operator To is characterized and described as a restriction
of the adjoint operator Tz to a linear manifold D(T) such that
D(TO) c P(T) < D(Tj). The functions in D(T) are specified by applying

appropriate boundary conditions to the functionrs in D(T;).

Thecrem 8,1 (4, Page 1238], Let T_be a symmetric operator with egqual

e
and finite deficiency indices d = at = d, and let T be a selfadjoint

&

extension of TO. Then T is the restriction of To to the subspace of
%
D(TO) determined by a family of d linearly independent boundary

conditions.

Continuous Spectrum of Selfadjoint Extensions

Let M and N be two subspaces of the Hilbert space H such that

Mc N.

Pefinition 2.12. The dimension of the subspace N modulo M, denoted by
dimN(modM), is the largest number of linearly independent functions in

N such that neo non-trivial linear combination of them belcngs to M.

Lemma 2.2. 1If T_ is a symmetric operator, U(T;), N,» and N__, are
closed orthogonal subspaces of (TZ) such that D(T;) = D(TO) @ Ni & N—i

(see [4, page 1227]).

ol
Now, if T is a selfadfoint extension of T_, then T) < D(To).

Therefore dimD(T) (modD(T )] < dim(N,) + aim(N_) = 4" + &,
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It is c¢lear that the continuous spectrum of TO is a subset of
the continuous spectrum of T. However, we make further cenclusicns in

the case d° and 4~ are finite.

Theorem 2.3. All selfadjoint extensions of a closed symmetric operator
with equal and finite deficiency indices have the same continuous spec-

trum.

Proof, It is sufficient to show that if A is not in the continuous
spectrum of TO then A is not in the continuous spectrum of T. Suppose
A 1s not in the continuous spectrum of To' Let Moh be the subspace of
eigenvectors of To associated with A, and let Tol be the restricticn of

TO to H - Mok for each A. Note that if A is a regular point of To then

T = To' Then it fellows that (To -3I) has an inverse for all . TFor

oA A

the selfadjocint operator T, define Mk and T, similarly.

A

In order to complete the prcof we need the following lemma.

Lemma 2.4, The set of all i such that (TO)\--AI)_l is not bounded is
the continucus spectrum of To' Similarly for (T)\-)\I)"l and T (see

{10, page 91).

The proof of the theorem will follow from the fact that the
operator (TOA—AI)—l is bounded if and only if the operator (TA—XI)_l is
bounded, which we now demonstrate.

First, it is clear that if (T)\-)\I)“l is bounded then (TO}\-)\I)_l
is also. Now assume (Toh_kl)_l is bounded and let h be an element in

the range of (T-AI), Then h = £ + g where feR(TO—AI) and g is in the

finite dimensional complement of this range. Therefore,
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1

H(TA-AI)"th H(TA_AI)_lf + (TA_AI)_lgH

IA

et -0 + fem,n gl

Now, let P be the projection operator onto the subspace H - MA; hence,
(TA—AI)_lf = P(TOA—AI)-lf. Since g is in a finite dimensional subspace,
(TK—AI)_l is bounded there; i.e. there exists a number A such that

Jcr, -1 He] < algl.  Therefore
-1 -1
(T, =20 7wl < (T, A1) £f + alg]

and (TK—AI)—l is bounded followzs from (TO —)\I)“l is bounded.

A

Splitting Technique

Let 1 be a formally symmetric formal differential operator
defined on an interval I with endpoints a and b. Let T0 be the minimal
differential operator defined by 1t on I.

Let ¢ be any point in the interior of I, a < ¢ < b. Let Fl and

F, be the minimal differential operators defined by T on I, = In [a,c]

and I2 = In [e,b], respectively. Let FO = Fl ] FQ, then

Let Fi and Fé be selfadjecint extensions of F, and F,, respectively, and

let F = Fi @ Fé. Then clearly F is selfadjoint and FO cF. IfTis a

then F ¢ T, Therefore F,. < T and both F

selfadjoint extension of Tys 0



1u

and T are selfadjoint extensiocns of F Hence, by Theorem 2,3, [ and T

0°
have the same continuous spectra.

But, the discrete spectrum of F is the union of the discrete
spectra of Fi and Fé and the continucus spectra of F is the union of the
continucus spectra of Fi and Fé. Now suppose the interval I = [a,b) so
that Il = I n [a,c] = [a,c]. Then Fi is a regular selfadjoint operator
and hence, has a discrete spectrum; i.e. the continuous spectrum is
empty. Therefore the continuous spectrum of T equals the continuous
'

spectrum of F which is egual to the continuous spectrum cf F2

From this we see that if F.

5 has a compact inverse and hence a

discrete spectrum, then so does T. We conclude then that the discrete-
ness of the spectrum of a selfadjoint operator is determined by the
behavior of the coefficients in a neighborhoecd of the singular end-
point(s).

Also, if I = (a,b) (i.e. both endpoints are singular), we can

pick a point ¢, a < ¢ < b, and consider the operators on I. = (a,c] and

1
12 = [ec,b) separately. Hence, it is sufficient to consider only the
half-open, half-closed intervals in studying the relationship of the

spectrum to the behavior of the coefficients of the formal differential

operator.

Friedrichs Extension for Semi-Bounded Operators

We have seen that symmetric operators with equal and finite defi-
ciency indices have selfadjoint extensions and by Thecrem 2.1 the self-

adjoint extensicnsg can be described in terms of boundary conditicns. We



15

further characterize the class of operators which we study by the

fellowing definition.

Definition 2.13. A symmetric operator T is bounded below if there is a
real number c¢ such that (Tu,u) = c{u,u) for all ueD(T), and bounded
above if there is a real number ¢ such that (Tu,u) £ c(u,u) for all
ueP(T). If T is bounded below or above we say that T is semi-bounded.

Cur studies are confined tec symmetric operators bounded below by
zero; i.e. (Tu,u) =2 0. However, it is clear that if T is semi-bounded
below, then for some censtant a, (T+al) is bounded below by one; i.e.
((T+aT)u,u) = (u,u).

For the case of a symmetric semi-bounded operator, a particular
selfadjoint extension having the same bound has been constructed by
Friedrichs {6]. It is this extension, called the Friedrichs extension,
that we will use in the following chapters. We present here Fried-
richs' result and the description of the extension in terms of limits.
Later we need this description to prove that the operator we study has

a compact universe and to establish the boundary conditions.

Theorem 2.5, Every semi-bounded symmetric cperator To’ with domain
D(TO) dense in the Hilbert space H, has a semi-bounded selfadjoint

extension T, with the same bound.

Indication of Proof. The proof may be found in [4,6,17], but we out-
line the proof here in order to describe the extension.
We assume withcut loss of generality that TO is semi-bounded

below by one,
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(T_u,u) = (u,u) > 0 wed(T ). (2)
Define a new scalar product on D(TO), L+,+] by
[u,v] = (T u,v) = (u,T v),
and a new norm [[*]] by
[[ul] = Cu,ul? 2 (u,wt’? = ). (3)

Thus D(TO) is a normed linear space which in general is not complete.

Let {un} be a Cauchy sequence in U(TO); that is
[[un—um]] + 0 for m,ne,

If {un} has no limit in D(TO) assign an ideal limit element u. If we
assign the same ideal limit element to equivalent Cauchy sequences, u
is well-defined.

Let G be the space consisting of D(TO) and the ideal limit
elements. We now extend our scalar product and norm to all of G and
hence, make G a Hilbert space.

If {un} and {vn} are two Cauchy sequences such that uw o*u and
v,V where either u, v, or both may be ideal elements of G, then
lim[un,vn] exists and we define [u,v] to be this limit. Similarly we

e
extend the definition of [[+]] to G by
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[[u]] = lim[[un]].

n> e

It is clear that G is a complete normed linear space, i.e. a Hilbert
space, and D(TO) is dense in G.

It follows from (3) that a Cauchy sequence in the new metric is
also a Cauchy sequence in the original metric and, hence, converges to
a well-defined element in H. Thus we can assign to each ideal element
of G an element in H and consider G as a subspace of H. Then
D(TO) c G c H.

Now define T by letting D(T) = G n D(TZ) and
Tu =Tu = Tu for uel(T).

Note that if‘weD(TO) then wsD(T;) and wel3; therefore, wel(T) and T is
an extension of T , T < T.
o "o

For usD(T), VED(TO), there exists a sequence {un}ED(TO), u > u

such that

fu,v] lim[un,v] = lim(Toun,v)

n-w n>x

= llm(un,TOv) = (u,Tov)
o

= (Thu,w) = (Tu,v) ()

Also, for uel(T), veD(T) and by continuity of the inner product
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[u,vl = (Tu,v).

Hence, for u, veD(T)

(Tu,v) = [u,v] = [vyul = (Tv,u) = (u,Tv)

and, therefore, T is symmetric.
Also (Tu,v) = 1im{T u_,v ) 2 lim(u ,v_ )} = (u,v) implies that T
e O R’D nae DD
is semi-bcunded below by one.

It remains to show that T is selfadjoint. Let v be an arbitrary
element of H. Then (+,v) is a continuous linear functional on G.
Hence, by the Riesz Representation Theorem there exists an element weG
such that (u,v) = [u,w] for all ueG. But [u,w] = (Tou,w) for

7 %
ueD(TO) c G and therefore weD(TO). Hence welD(T) = G n D(T;). We have

therefore,
(u,v) = [u,w] = (T u,w) = (u,Tw)

for all u in D(TO) which is a dense subset of H. Therefore, Tw = v and
the range of T is the whole space H.

We conclude that the null space of T* consists only of the zero
element and hence T* is one-to-one with range the entire space H, and,

therefore D(T) = D(T“) and T is selfadjoint.
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Corollary 2.6, 1f T is the Friedrichs extension of TO and uel{T) there
exists a sequence {un}, uneD(TO) such that

(a) Ju -ul + 0 and

(b) (Tu yu ) > (Tu,u)

as noe,

Proof. Note that

lim(fu -u 1] = [[u-u_1]]
m n n
hiigattl
and
lim[[um+un]] = [[u+un]].
oo
Alsc, from the parellelogram law
(Clu -u ID? + ([lw +u 117 = 2(CCu 11° + [Lu_17°). (5)

Now, we see that

lim ([[um+un]]) = 2[[u]l]

m,n—)oc

which implies that

1im[lut+u J] = lim(lim[lu +u 11) = 2{Eull.
n m n
N0 - e

Now letting m>~ in (5) we obtain
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[Lu-u 37% + [Lurn 10° = 2(C[u])” + [0u 11%)

from which it follows that lim[[u-u ]]2 = 0. From (3) we see that
n-e n

lim|lu-u ” = 0 also.

n-e n

Now from (4) we see that lim(Toun,V) = (Tu,v) for all VED(TO), where
n-ee

u o+ u, {un}ED(TO). In particular it is true for v equal to each of

the u, . Using a diagonalization argument we see that lim(Toun,un) =
T

(Tu,u).
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CHAPTER III
SUFFICIENT CONDITIONS FOR A COMPACT INVERSE

It can be shown [13, page 48] that any real formally selfadjoint
formal differential operator is of even order 2n, and the general form

of such an operator is
_973 pk(x) — (1)

where the coefficients pk(x), 0 € k £ n, and the weight function m(x)
are real.

In what follows we will consider 1 on an interval a £ x < b,
where b may be finite or infinite, pk(x) is non-negative and in
C(k)[a,b) for 0 £ k £ n, and, for xela,b), pn(x) > 0 and m(x) > 0. The
endpoint b is possibly a singular endpoint. Qur objective is to define
linear operatcrs corresponding te the formal operator T and to study
their adjoints and selfadjoint extensions. In particular, we wish to
find answers to the question stated by Naimark (13, page 208): In what
way does the spectrum of selfadjoint extensions depend on the behavier
of the coefficients of the corresponding differential expression t.

As noted earlier the choice of a domain for an unbounded opera-
tor, and in particular for a differential operator, can be quite crucial
te the nature of the spectrum., Accordingly we denote by L2(m) the col-

lection of all measurable functions, u, defined on {a,b) for which
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b 2
[ uG) " m{x)dx < =,
a

We define a scalar product (-,*) on L2(m) by

b
(u,v) = [ u(x)v(x)m(x)dx
a

-

by |u| = (u,u)l/z. It then follows that

and the corresponding norm
Lz(m) is a Hilbert space. The operators which we consider here will
have as their domain a subset of L2(m).

Let To be the linear operator defined by Tou = tu for u in the
domain D(TO) which consists of those functions in L2(m) which are also
in C:(a,b); i.e. each function in D(To) vanishes outside some compact
subset of (a,b) where the compact subset may vary with the function.
It follows that D(TO) is dense in L2(m), and hence TO is symmetric,

Since the coefficients of T are real, TO has equal deficiency
indices and, since TO is a differential operator, the deficiency
indices are finite. Thus, TO has a selfadjoint extension,

In addition, for ueD(TO), we see that

b

(Tou,u) = f m(x)[tulx) Ju(x)dx
a

and, using integration by parts repeatedly, that

b n 5
(Tou,u) =f pk(x)|u(x)| dx., (2)
a =

k=1
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Hence, that To is semi-bounded below by zero, (Tou,u) 2z 0, follows from
the assumption that pk(x) 20 for 0 £ k € n. Therefore, TO has a Fried-
richs extension.

Let k be an Integer, 1 £ k £ n. For this k define a sequence of

functions {hi}i as follows:

b
If, for each v in [a,b) it is true that f l/pk(t)dt is finite,
¥
then
b 1/2
hl(x,k) = |f l/pk(t)dt for xela,b). (3a)
X
Ctherwise
x 1/2
by (3, = f 1/p, (t)dt for xela,b). (3b)
a
If i is any integer 1 = i £ k - 1, and if, for each y in La,b)},
b
it is true that [ h, (t,k)dt is finite, then
y
b
hi+l(x,k) = £ hi(t,k)dt, for xela,b). (4a)
Otherwise
x
hy  (xk) = £ h, (t,k)dt, for xela,b) (4b)

Theorem 3.1. Let T be the Friedrichs extension of TO. if

b 2
f m(x)[hk(x,k)] dx = M < = (5)
a
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for at least cne integer kX, 1 £ k £ n, then T has a compact inverse,
and in this case, every selfadjoint extension of TO has a discrete

spectrum.
Proof. We filrst prove two lemmas.

Lemma 3.2. If usD(TO) and (5) is satisfied for some k, 1 < k £ n, then

for a £ x, < x, <b,

1 2
X2 1/2
]u(x2) - u(xl)| < (Tou,,u)l/2 f l/pl(t)dt if k=1
*1
and
%5
|u(x2) - u(xl)| < (Tou,u)l/2 xf h, _y (t.k)dt if k>1.
1

Proof. Tor usD(TO), it follows from the Schwartz inequality

X

2
- - 2 2
W Py - V) < 1w oar
1
X X
2 (k) 2 2
s/ p OO0 ()% « [ 1/p (t)dt
xy %,
2
< (T_u,u) f 1/p, (t)dt.
1
Now if k = 1, the lemma is proven. If k > 1, set % =% and Xy = b,
or x = a and Xy = X< b depending on whether hl(x,k) is defined as in
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(3a) or (3b), respectively. Since u is zerc in a neighborhood of a and

b, we get

|u(k_l)(x)|2 < (Tou,u)[hl(x,k)]2

|u(k_l)(x)| < (Tou,u)l/zhl(x,k) (6)

Using (6) above, we obtain

X

i 2 KU DI

*1

f ’ (T u u)l/zh (t,k)dt
o’ 17

X

Iu(k—z)(xz) _ u(k—z)(xl)'

X

A

X

1/2 f

X

2
hl(t,k)dt.

(Tou,u)
1

Setting X, =X and x, = b, or X, = a and x, = x < b for h2(x,k) defined

as in (4a) or (4b), respectively,
W 20 < (Tou,u)”2 h, (%K) .
Continuing by induction, we get the inequalities
lu(k-j)(x)l < (Tou,u)l/2 hj(x,k), j=1,...,k-1.

In particular for § = k - 1
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Iu’(x)l < (Tou,u)l/2 hk_l(x,k).

Integration of both sides after multiplying by m(x} leads to the con-

clusion of the lemma for k > 1.

Lemmg 3.3. Let T be the Friedrichs extension of To' If uel(T) and (5)

holds for seome k, 1 £ k £ n, then for a £ %x. < x, <b,

1l 2
x, 1/2
(1) |u(x2) - u(xl)[ < (Tu,u)l/2 J l/pl(t) dt if k=1,
*1

and
%2

|u(x2) - u(xl)| < (Tu,u)l/2 i hk_l(t,k) dt if l<ksn.
1

(i1) (u,u) < (Tu,u)M.

Proof. Tor uel(T) we see from Corollary 2.6 that there exists a
sequence {u_} with u eD(T ), m=1,2,..., such that |u_-u|| + 0 and
m m o m

(Toum,um) + (Tu,u) as m » =,

Since (Toum,um) is a convergent sequence it is bounded, that is

(Toum,um) = C for some positive number C, and all m=1,.... From Lemma
3.2
% 1/2
1/2 |, 2
|um(x2) - um(xl)| < (Toum,um) i l/pl(t) dt if k=1,
1

and
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*5

1/2 .
lum(xz) - um(xl)l < (Toum,um) / f hk_l(t,k) dt if k»1.

%1

In either case the functions {um} are equicontinuous and uniformly
bounded on compact subsets of [a,b), By the Ascoli Thecrem there is a
subsequence of {um} which converges uniformly on compact subsets of
La,b}. Restricting attention *to this subsequence and taking limits in
the last inequalities we get (1) for both k = 1 and k > 1,

Now if hl(x,l) is defined as in (3a} and hk(x,k) is defined as
in (#a) for k > 1, let x, = a, and %, = x in (i) to obtain for k = 1

1 2

or 1 <k =n,

/2

luGo| < (Tu,w % n G0,

If hl(x’l) is defined as in (3b) and hk(x,k) is defined as in

(4b) for k > 1, then note that for each u in the subsequence there is

a4 X, < b such that um(xz) = (0. Setting X, = X we obtain for k = 1

2

lu, G = u_(x,)-u (%) |

% 1/2

1/2 f

X

2
l/pl(t) dt

1A

(T u ,u)
o m m

1/2

IA

b
1/2
(Tu_,u) / £ 1/p (t) dt

1/2

11

(Toum,um) hl(x,l),
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and for k > 1

|um(x)| = |u (%)) - um(x)|
*2
1/2
< (T u ,u ) i h, _, (t,k)dt
172
< (Tou ,u )™ [ b (t)de

X

1/2
(Toum’um) hk(X,k).

1

Now take limits to obtaln for this case also,
1l/2
|u(x)| < (Tu,u) hk(x,k).
Hence, in either case
2 2
[u(x)}[* = (Tu,u)lh, (x,k)1°. (7)

Multiplying by m(x) and integrating the above we get (ii).

Proof of Theorem 3.1. Let X be an eigenvalue of T associated with
eigenvector u. Then (Tu,u) = (Au,u) 2 (1/M)(u,u). Hence, x = 1/M > O,
Therefore all eigenvalues of T are positive and T_l exists,

Let {Tun} be a bounded sequence in the domain of T-l and K be a
number such that ”Tun" < K <e«, n=1,.... Then uneD(T) and, from Lemma

3.3 (ii),
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2
ol = o) = mera ) = Hlma
from which follows HunH < MK, and (Tun,un) < MK?,

From Lemma 3.3 (i)

X
2
2)1/2 f

X

[un(xz) - un(xl)' < (MK h _(t,k) 4t

1

and, hence, {un} is uniformly bounded and equicontinuous on compact
subsets of [a,b). Using the Ascoli Theorem we get a subsequence {vn}
which converges uniformly on compact subsets of [a,b) to a limit func-
tion u.

It remains to show that {vn} converges in L2(m). From (7) above

ms0 |v, ()]

1A

2
(Tvn,vn)m(x)[hk(x,k)]

1A

Msz(x)[hk(x,k)]2 n=l,....

The right side is integrable by hypothesis, The lLebesgue Dominated

. 2
Convergence Theorem yields uelL”(m) and ”vhH -+ "u . Hence, ”vn—uH + 0,
Hence, T—l is compact, and T has a discrete spectrum. It follows
from Theorem 2.3 that every selfadjoint extension of TO has a discrete

spectrum.

m

Bemark 3.1. Theorem 3.1 provides a test for a selfadjoint operator T to

have a compact inverse and a discrete spectrum based on an analysis of
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the coefficients pk(x), 1 £k £n. For a test based on po(x) We pre-

sent the following result found in [12, page 210].

Theorem 3.4, If pn(x)>0,pn_l(x)20,...,pl(x)zo and if

lim p (x) = =,
o)
X-+b

then every selfadjoint extension of TO has a discrete spectrum.

If a formal operator 7 is formally selfadjoint, then cbviously
so 1s any positive integer power of the operator. I1f 7 is of order 2n,
then t° is of order 2nr. Hence, t¥ can be written in the form of (1)
with n changed to nr, where the coefficients are obtained from the
coefficients of ©. However, if the coefficients for T, pk(x),
k=0,1,...,n, satisfy the criteria stated at the beginning of this
chapter, it does not follow that the coefficients for 17 will neces-
sarily satisfy these criteria.

For r a positive integer, define Tz by
r _ r r
Tu= Tu, uED(TO)

Where D(Tz) is the collection of functions in L2(m) which are also in
C:[a,b). We shall also require pk(x)ecm(a,b) for 0 £ k £ n, to be
assured that 1t is well defined.

It follows that D(TZ) is dense in L2(m). Alse, it is routine

to show by using integration by parts repeatedly that Tz is symmetric
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and semi-bounded below by zero. Hence, Tz has a Friedrichs extension
which we denote by Tr' {(Note: r is placed as a subscript rather than
a superscript to distinguish Tr from T' which would denocte the rth
power of T.)

For each integer k, 1 £ k = n, define the sequence of functions

{hi(x,k)}, i=1,...,k, as in (3a), (3bk), (4z), and (4b).
Theorem 3.5, 1If for at least one integer k, 1 £ k £ n, it is true that

b 2
[ mG)Ih (x,k)1%dx = ¥ < o, (8)
a

then Tr has a compact inverse, and, in this case, every selfadjoint
extension of Tz has a discrete spectrum.
We first prove some lemmas for ueD(Tg), which is the same as the

domain of T, D(To), and for ueD(Tr).

Lemma 3.8. If ueD(TE) and (8) holds for some k, 1 € k £ n, then for

(1) |u(x)|2 < Mr_l(Tzu,u)[hk(x,k)]2 and

*2

Mr-l(Tzu,u) f l/pl(t)dt if k=1,
*1

A

(15)  Julxy)-ulx)|?

and
-1, X2
MT(T u,u) J hy _j(t,k)dt|  if kol

X

]u(x2)-u(xl)|2

IA
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Proof. From Lemma 3.2 we have for uED(Tz)

X

2
2 .
|u(x2)—u(xl)| < (Tou,u) f l/pl(t)dt if k=1,
®
1
and
2
2 XQ
[ulxy)~ulx; [ < (T_u,u) i B, (t,k)dt if k>1.
1

By appropriate cholice of Xy and X, depending on the definition of

hk(x,k) we obtain
|u(x),2 < (Tou,u)[hk(x,k)]z. (9)
Multiplying by m(x) and integrating we get
(u,u) = (Tou,u)M (10)

and from the Schwartz inequality

lul

1A

M|IT jall- (11)
o]

If Tzu has meaning then TiueD(To) for s < r. In particular if r

r/2 (r+l)/2u and_T(r—l)/2u
o] o]

is an even integer To

uED(TO), and if r is odd T
are in (T ).
o

Hence, from (10) and the symmetry of To’ we obtain for r even
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(Tzu,u) = (Tr/2u,TZ/2u) < M(Tir/2)+lu,Tz/2u)
= M(Tr+lu,u).
o
Similarly for r an odd integer and using (11)
(Tou,u) = (Tgr+l)/2u,Tér—l)/2u)
(r+1)/2 (r-1)/2
< 7P 2 P |
(r+l)/2 2
< it ull

M(Tz+lu,u).

Therefore for consecutive values of r
2.2 r,. T
(w,u) < M(T u,u) < M(T u,u) < ... < M (T u,u). (12)
Using the second and last terms of the inequality we get
r-1l,.r
(T u,u) <M (T u,u)
o o

which when combined with (9) proves part (1) and when combined with

Lemma 3.2 proves part (ii) of Lemma 23.6.
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Lemma 3.7. 1If ueD(Tr) and (8) holds for some k, 1 £ k £ n, then for

as< =X <X%X.<5b

1 2
X
. 2 r-1 2 \
(i) |u(x2)—u(xl)| <M (Tru,u) i l/pl(t)dt if k=1,
and 1
x2 2
2 r-1 .
]u(xz)-u(xl)| <M (T _u,u) }j{ hy (t,k)dt if k>1.
1

and

(ii) (u,u) < (Tru,u)Mr.

Proof. For ueD(Tr), it follows from Corcllary 2.6 that there is a
sequence {u } in D(TZ) such that ”un-uH -+ 0 and (Tzun,un) > (T _u,u)

as n > ., From Lemma 3.6 (i) it follows that {un} is uniformly bounded
and equicontinuous on compact subsets of [a,b). Hence, by the Ascoli
Theorem there is a subsequence of {un} which converges uniformly on
compact subsets of [a,b). Restricting attention to the subsequence and

taking limits in the inequalities of Lemma 3.6 (i) and (ii) we obtain
) |2 < 77N u,u) [ (2,077 (13)

and part (i) of Lemma 3.7. Multiplying (13) by m(x)} and integrating we

obtain part (ii) of Lemma 3.7.

Proof of Theorem 3.5. The proof parallels that of Theorem 3.1, Lemma
3.6 (ii) shows that Tr has only positive elgenvalues and hence, has an
1

inverse. Suppose {Trun} is a bounded sequence in the domain of T; , and

K is a number such that “Trun” < K <= for n=1,2,.... Then



35

2 r
<
n" (un,un) <M (Trun’un)

1A

¥ il I,
and

lu_|| < M7t u || < M"K.
n rn
Using the Schwartz inequality we obtain
r 2

<
(Trun,un) < MK".

Hence from Lemma 3.6 (i)

2 r-1.r. 2 2
lun(xz)-un(xl)| s M MKTf l/pl(t)dt if k=1,
X
1
and
%, 2
lu_(x.,)-u_(x )|2 < M0 InTK? [ h_ (t,K)at if k>l
n "2 n-1 - " k-1""? )
1

Therefore, {un} is uniformly bounded and equicontinucus on compact sub-
sets of [a,b}, and, by the Ascoli Theorem, there exists a subsequence
{vn} which converges uniformly on each compact subset of [a,b) to a
limit function u.

From (13) we have for each v,
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IA

m(x)|vn(x)|2 Mr_l(Trvn,vn)m(x)[hk(x,k)]2

1A

Mzr—lem(x)[hk(x,k)]Q.

The Lebesgue Dominated Convergence Theorem yields ueLQ(m) and

an" + |ul|. Hence ”vn-uH +0 asn > ™.

We conclude that T;l is compact and, hence Tr has a discrete
spectrum; again, using Theorem 2.3 it follows that every selfadjoint

. r .
extension of TO has a discrete spectrum.

The requirement that the domain of TO consist of functions with
compact support on (a,b) is quite strict. Also, since the elements of
the domain of the Friedrichs extension are limits of elements in D(To),
the boundary conditions on P(T) are quite strict at both endpoints as
will be shown by some examples in the next chapter.

It is also true that we have been liberal in our hypotheses con-
cerning the coefficients pk(x) in arriving at Theorems 3.1 and 3.5. In
particular, with respect to defining the functions hi(x,k), if inte-
grating toward the singular endpeint is not defined then we integrate
away from the regular endpoint.

The question arises whether we can enlarge our domain of To and
still cbtain a compact inverse for the Friedrichs extension. And, if
so, in what way and to what extent?

Our first step will be to relax the restriction on the functions
in D(TO) at the singular endpoint but maintain the restrictions on all

their derivatives.
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Let T be the formal operator defined as in (1). Define TO by
Tou(x) = tu(x) for u(x)eD(TO)

where D(TO) is the collectiocn of functions in L2(m) which are also in
Cm(a,b) and such that u'(x) has compact support in (a,b) and vanishes

in a right neighborhood of x = a. Then u(x) is "free" at the right end-
point b.

It can be easily shown, by integration by parts, that TO is semi~
bounded below by zero and is symmetric. (Note that the domain of TO
centains the domain defined for Theorem 3.1, and hence is dense in
L2(m).) Therefore TO has a Friedrichs extension, T.

As before we define a sequence of functions {hi(x,k)}i for each

integer k, L £ k £ n,

b
If it is true that for each y in [a,b) f l/pk(t)dt is finite,
y
then
- 1/2
hl(x,k) =[f l/pk(t)dtJ for xela,b).
X
Otherwise

X 1/2
hl(x,k) = [£ l/pk(t)dtJ for xela,b).

If 1 is any integer 1 < 1 < k-2, and if it is true that for each
b
y in [a,b), f hi(t,k)dt is finite, then
y
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b
hy (%K) = i n, (t,k)dt for xela,b).
Otherwise
X
hi+l(x,k) = £ hi(t,k)dt for x [a,b).

Finally, if 1 = k - 1, and it is true that for each y in [a,b},

y
f hk_l(t,k)dt is finite
a
X
hi+l(x,k) = hk(x,k) = £ hk_l(t,k)dt for xela,b).

Otherwise hk(x,k) is undefined.
Note that there is only one possible way to define hk(x,k) while
hi(x,k) for i < k there are two ways. In particular, hl(x,l) is defined

y
only if f l/pl(t)dt is finite for each y in [a,b).
a

The statements of Theorem 3.1 and Lemmas 3.2 and 3.3 remain the
same as before. Also the proofs of Lemma 3.2 and Theorem 3.1 remain the
same, but the proof of Lemma 3.3 must be modified only slightly as
follows.

After taking limits in the results of Lemma 3.2 to obtain Lemma
3.3 (i) we have only cne way to substitute for Xy and X, Since
um(a) = 0 for all umED(TO), u(a) = 0 for all ueD(T). Setting X, = a
and %X, = X, we obtain inequality (7) again

2

|u(x)|2 < (Tu,u)[hk(x,k)}Q.
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Integrating the above with the weight function m(x), we obtain (ii)
(u,u) < M(Tu,u).

We have shown that the results of Lemma 3.3 and inequality (7) remain
valid for functions in our modified domain D(T). Therefore Theorem 3.1
and its same proof hold.

The result of easing the conditions on D(TO) is that D(Tz)
becomes smaller. The gquestion arises as to whether the Friedrichs
extension of the new operator is different from the Friedrichs exten-
sion of the old operator.

Now suppose we enlarge our domain of To still further as follows:
let D(To) consist of those functions u(x) in Lz(m) which are also in
Cw(a,b) and such that u(j)(x) has compact support on (a,b), where j is
an integer, j < n, but u and all its derivatives wvanish in a right
neighborhood of x = a. Note that the cases j = 0 and j = 1 have
already been examined.

Then, in order for the same proof of Theorem 3.1 to go through,

the functions {h.(x,k)}%_ .., can be defined in only one way, namely
1 i=k-J+1
%
h; (2,k) = £ h,_,(t,kat.

Also, in the proof of Lemma 3.3 (ii) we must select x, = a, and x, = x

1 2

since we can be certain only that u(a) = 0 for u in (T},



Lo

CHAPTER IV

BOUNDARY CONDITIONS

In this chapter we will consider a class of differential opera-
tors which satisfy the criteria for a compact inverse and hence, have a
discrete spectrum. Tirst of all we will demonstrate that each of the
class of 2nth order differential operators has deficiency indices (d,d)
where d can assume each of the possible integers, n < d $ 2n, depending
on the cheoice of m(x). Then the boundary condition description of the
Friedrichs selfadjoint extension will be given for each case.

We have shown earlier that for a real symmetric differential
cperator of order 2n and one regular endpeint the deficiency indices
must be equal, (d,d), and n £ d < 2n. In 1921 W. Windau [22] and in
1938 D. Shin [18] concluded that the only possible value for 4 is n or
2n, corresponding to the limit-point and limit-circle cases of Weyl for
the second order operator. In 1344 errors in these results were dis-
covered and in 1950 I. M. Glazman [8] demonstrated by examples that any
integer value of d between n and 2n can occur. In 1953 S, A, Orlov
[14] presented other examples.

Consider the formal differential operator of order Zn

n bl g

T=1(-1) 4d d
G PO — 1<$x<w

mix dxn dxn

where p(x) = x" and m(x) = x".
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Applying the definition of hl(x,k),...,hk(x,k) in Chapter III,
we see that the definitions are significant only for k = n, and hl(x,n)
iz finite for x in [1,®) if r » 1. Similarly, hk(x,n) is finite for
x in [1,%) if r » 2k-1. In particular hn(x,n) is finite for x in [1,®)
if r = 2n - l+o where o satisfies a > 0, Now applying Theorem 3.1,

which requires that

oo

f m(x)[hn(x,n)]2dx < w,
1
we see that m(x) = x° must be such that s < a-1.

Define T0 by the method of Chapter III for Theorem 3.1. Then TO
is gymmetric and semi-bounded belew by 0 and, for the restrictions on
p(x) and m{x) above, TO has a selfadjcint extension T, which has a com-
pact inverse.

It then follows that zero along with the entire negative semi-
axis belongs to the same connected subset of the field of regularity of
TO and, hence, the deficiency indices are equal, (d,d), and equal to the
dimension of the null space of To (see [1, page 9217).

To determine the number of solutions to Tou = 0 we examine the
solutions to tu = 0, and obtain the following set of 2n linearly inde-
pendent solutions:

n-r n-r+l 2n-r-1 n-1
X 4 s e aX I R .

Note that the requirement r = 2n - 1 + a, a > 0 implies that the first

n functions have negative exponents.
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The number of these soluticns which are in Lz(m), and hence, the

deficiency indices of To» depend on the exact value of s as follows:

-l £5 < g-1 d=mn

-3 <5 < =1 d=n+1

-5 £ 85 <« -3 d=n+ 2
s < -{(2n-1) d = 2n.

Since the deficiency indices depend on the weight function,
m(x) = xs, we are actually changing the Hilbert space in order to effect
the change in the deficiency indices.,

Using the values of r and s as restricted above we cbtain the

following boundary condition description of T.

Theorem 4.1. Let T be the Iriedrichs extension of To defined as above.
Then ueD(T) if and only if uED(T;) and u satisfies the following bound-

ary conditions
(a)  u(l) = u'(l) = ... = u(n_l)(l) = 0

{b) u(n_l)(x) = O(X(l_r)/2) as X > o

u(n—Q)(x) = O(x(_r-l)/z) as x » @

* .
. »
- »

O(x(—r—2n+3)/2

ulx) = ) as x > =,
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Proof., First we prove the necessity of the boundary conditions. From
the description of the Friedrichs extension in Chapter II, we know that
ue(T) implies that there exists a sequence {uk}, ukED(TO) such that

”uk-u” + 0 and (Touk’uk) + (Tu,u) as k + =,

From the proof of Lemma 3.1, we know that for 1 = X< %y < @

and k=1,2,....

X
2
-1 {(n-1} 2
o P ) )] < (1) [ /p(E)a
1
%2
<c¢ [ 7 1/p(t)at (1)
X

1

where C dces not depend on k since (Touk’uk) is a convergent sequence.

Also,
X 2
[P w2 (1)) s e[ nyCeinat
b4
1
x2 2
2
luk(XQ)_uk(xl), < C i hn_l(t,n)dt
1

Hence, each of the sequences {uk},{uﬁ},...,{uin—l)} is uniformly
bounded and equicontinuous on compact subsets of [1,#). Using Ascoli's
Theorem and a diagonalizaticn argument we find a subsequence of {uk}
which converges, together with its derivatives up to and including order
{n-1)

(n-1), uniformly on compact subsets of [1,»). Hence, ueC [1,=)



uy

(1), (1)

and uk

on compact subsets of [1,%).

to the subsequence) uniformly

as k + = (restricting uil)

Since uil)(l) = 0 fer k=1,2,..., i=0,1,...,{n-1), it follews that
u(l)(l) = ¢ for i=0,1,...,(n-1). This proves part (a) of the theorem.

From (1) above, since p(x) = xr, it follows that

X
2
-1 - 2 -
lu]En )(xQ)-uin l)(xl)) <cf 77 at.
X
1
For each k, there is a point X, < ® such that uin_l)(XQ) = 0. Hence,

X

2 (=]
|u](<n_l)(x1)|2 ccf <Farscf 77 ar.
x) =t
Or
o
|u£n-l)(x)|2 <c [ t7 dt for x in [1,=).
X

Taking limits as k » = (agaln restricting u to the subsequence) we see

that for uel(T)

C x-r+l
r - 1 -

WP P02 <cf ¢ at =
X

'x(—r+l)/2, and repeated integration yields

Therefore |u(n_l)(x)| <C
the boundary conditions of part (b) at the singular endpoint.
We now prove that the boundary conditicons are sufficient. Since

zero is not an eigenvalue of T, the image of T, R(T), is the entire

space L2(m).
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Suppose ueD(T:) and satisfies the boundary conditions (a) and
(b). Then there exists veD(T) < D(T:) such that Tv = Tzu. If we can
show that u = v then it follows that ueD(T).

Let w = u - v, then WED(T:). Alsc, by the proof of necessity
above, v must satisfy the boundary conditions. Therefore w must satisfy
them also.

Now T:W = T:u - T:v = Tv - Tv = 0, Therefore w is in the null
space of TO and hence is a linear combination of the functions

xn-r n-r+l 2n-r-1

. e egX N

and as many of the functions l,x,...,xn as are in LQ(m), which in turn
depends on the wvalue of s. We will assume, without less of generality,

that all of the functions are in the null space. Then

_ n-r n-r+l Zn-r-1 n-1 n-2
w(x)-clx X Tt X tdxs THdxt T+ 4d x+d .
Applying the boundary conditions (b) first we obtain
n .
O B R T DI ESEFAD ) AL N CE D
i=l
R CO T (2i-r-1)/2 (r-1)/2
W = .Zlci[(n-—r+i-l)...(—I‘+i+l):|x + dl(n—l)lx
X i=
Therefore, w(n_l)(x) = O(x(lur)/2) as x + @ implies d; = 0. Similarly

applying the other boundary conditicons at the singular endpoint we get
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Applying the boundary conditions at x = 1, we obtain the following

homogeneous system of n equations in the n unkncowns C 2ChareesrC
1 + 02 + . + cn =0
(n-r)c, + (n-r+l)c + ... (2n-r-l)c_ =0
1 2 n
[(n-r) ... (n-r-n+2)]cl + ..+ [(2n-r-1) ... (n-r+l)]cn =9

The determinant of the coefficient matrix can be shown to be
eguivalent to the Vandermonde determinant by use of elementary row
operations and, hence, is nonzerc for all the cases considered here.

Therefore the system has only the trivial solution

c, = ¢, = ... =cCc =0, and w = 0.

Hence u = v and ueD(T).
Note that if the deficiency indices are (d,d), then only the

n-J

first (d-n) of the functions 1,x,...,X are in Lz(m) and, therefore,

only (d-n) of the boundary conditions are needed at the singular end-

point since each boundary condition was used to force one of the
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coefficients di equal to zerc. Since there are always n boundary con-
ditions at the regular endpoint, there are d boundary conditions neces-

sary in all, This cocincides with Theorem 2,1.
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CHAPTER V
DISCUSSION OF RESULTS

In this chapter we will present some known results and compare
them to our results in Chapter III. Also, we will present some questions
for further study.

It will be assumed that the following cperatcrs are defined for
the interval [a,b)}, i.e. the left endpoint a is regular and the right

endpeint b is singular, b may be =,
Theorem 5,1 [9]. Let

2n

T = (-1) — + q(x).

dx

If limg{x) = «, then every selfadjoint extension of the minimal operator
x~+b
associated with 1 has a discrete spectrum.

The following result is an extension of the above thecrem and is

found in [13, page 2107.

Theorem 5.2. Let T be a formal differential operator defined by

and suppose pn(x)>0,pn_l(x)20,...,pl(x)ZO for x in [a,b).
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If 1im p {x} = =, then every selfadjoint extension of the minimal
xb °
operator associated with T has a discrete spectrum.

Our results in Theorem 3.1 give sufficient conditions for a
discrete spectrum based on the coefficients. However, no conclusion
was drawn based on the coefficient of the undifferentiated term,
po(x). Theorem 5.2 above provides such a test for the case of the
weight function m(x} = 1. Theorems 3 and 4 and the Corecllaries to
Theorem 4 found in [13, pp. 211-214] provide other results concerning
the continuous spectrum of differential operatcrs of order higher than
two.

In [7] Friedrichs presents a criterion for discrete spectrum of

a second order differential operator as follows.

Let L be defined as follows,

1 d d .
L = - o Ed-;p(x) e q(le for x in (a,b)

where a may be -®» and b may be +®. Require that p(x) > 0 and r(x) > 0

on (a,b).
Let X_1» X5 X be any points in (a,b) such that a < X 1 < xO <
®) < b. Define h(x) as follows.
X b
- dt : at  _
h{x) = i p(ty for x,<x<b if i SEY T
o o
b b
dt , dr
_ - -
£ Ergy for xl_x<b if i §T€Y < ®,
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o o
dt dt
= < - = —w
i ETET for a<x x_g if g NE3) 2
X %5
B dt . dt
= f 63 for a<xsx_; if - Sy
b b
Theorem 5.&, Then the spectrum of L is discrete if
rﬁ%) Iq(x) + = 2] > ® as x»*b and as x*a.
1 bp(x)[hix)] j

Friedrichs then applies the criterion to the following cperators

and concludes a discrete spectrum in each case. (Note: D = d/dx).

1. L = 0% 4 q where b = = and g(x)-»= as x-»,
2. L= -D2 +q where (a,b) is a bounded interval and g
is bounded below.

3. L = -D(1-x°)D (a,b) = (-1,1).
4. L = -e’nxe™™D (a,b) = (0,=).

1 m2
5, L =-=DxD+ — (a,b) = (0,1).

b4 2

X

6. L = - ;El Dxn—lD {a,b) = any finlite interval.

If we apply Theorem 3.1 to examples 1, 3, and 6 and Theorem 5.2
to examples 2 and 5, we conclude a discrete spectrum also. Finally, if
we make a change of variable in example 4, the Laguerre operator, to the

familiar form
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L = -DxD + (E-- %J where b=w,
then Theorem 5.2 indicates a discrete spectrum for this problem also.
A more recent result of interest is that of M. 5. P. Eastham [5].
Eastham considers the fermal operator
n k
1= ¥ (—l)k 51—-pk(x) 5f§— 0sx<o

o] dxk dx

where the pk(x) are real-valued, pk(x)ec(k)[o,m) and pn(x) > 0. Lety
dencte the least limit point of the spectrum of any selfadjoint extension

of the minimal cperator associated with .

Theorem 5.4, Let

pk(x)
lim inf 5 Qk > -
K+ x
If Rk = 0 for p+1 £ k =n and 2p # 0, we assume that pk(x) 2 0 for »

large enough and p+l £ k £ n and, if p > 0, that fp > 0. Then

2.2 2

p=[173 24_(n—l)

...(2n—1)24"n]2n+ [123 ...(2n-3) 12 .+ ...+ [124“ljzl+ .

n-1

From this result it follows that if £ is equal to = for at least

k
one k, k=0,1,...,n, then p = = and the spectrum is entirely discrete.
The proof of Theorem 5.4 is based on a comparison to the Euler

operator and requires b = =, However, the procedure used in Chapter III

does not depend on comparison with known results, and Theorem 3.1
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includes the case of a singularity at a finite endpoint. If pl(x) =
(l+x)2+a, m(x) = 1, 0 £ x < =, then it follows from both Theorem 3.1
and Theorem 5.4 that the spectrum is discrete if o > 0, However,
Theorem 5.4 indicates a discrete spectrum for pk(x) = (x+2)2klog(x+2),
0 £ x < =, and no conclusion can be drawn from Theorem 3.1,

Eastham's paper alsc contains an upper bound on u based on
1im sup(pk(x)/xzk), k=0,...,n. It is possible to construct examples of
300
zscillatory pk(x) for which lim inf(pk(x)/x2k) is finite and

: 73 S .
lim Sup(pk(x)/x } is infinite, and hence Eastham's results are incon-
—»C0
Zlusive, but for which Theorem 3.1 implies a discrete spectrum.

The question arises concerning the result of Theorem 3.3 as to
whether it is significant. Specifically, are there any formally self-
adjoint coperators which are positive integer powers of formally self-
adjoint operators of lower order such that Theorem 3.3 can be applied
to the coefficients of the lower order operator but Theorem 3.1 will not
apply to the positive integer power of it? The answer to the question
iz in the affirmative as is seen from the following example.

Given that TO iz a symmetric semi-bounded operator (bounded below
by zero), l.e. (Tou,u) z 0 for all usD(TO), it follows from equaticn
(12) in Chapter III that Tz is semi-bounded below by zero for all posi-
tive integers r. Note that the semi-boundedness of TO in Chapter III
results from the fact that

b

(T u,u) = f
© ak

(k}

pk(x)[u (x)]de

H~3

0
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and the fact that PysPys+++sp, 3Tre all non-negative in [a,b}. However,

. < s 2 .
it does not follow that the coefficients of To are ncon-negative,

Example. Let tu = —(x3u')' + xu, l<x<=, Then Py = X > 0, and

pl(x) = x3 > 0, on [1,»). However,

T2u = (x6u”)" - (-uxuu')' + (—2x2)u

and PQ(X) = x6 >0, pl(x) = —4xu < 0, and po(x) = —2X2 < 0 for x in
[1,=).
Now let To be the minimal cperator assoclated with 7 on [1,%).
Then
hl(x’l) = [er%dtJl/Q _ 1
X t V2 x
and

f mGTh G610 1%Ax = 5 < w,

1
Then the Friedrichs extension of TO has a compact inverse by Theorem
3.1. However, if we let LO be the minimal operator associated with 12
on [1,#) then Theorem 3.1 dces not apply since po(x) and pl(x) are
negative on [1,»). However, Theorem 3.3 does apply to Ti, and it fol-
lows that Friedrichs extensions of Ti, in fact any selfadjcint operators
associated with T2, have discrete spectra.

Theorem 3.1 provides sufficient conditions for a selfadjoint

cperator to have a discrete spectrum based on the behavior of any ocne
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coefficient provided the others are non-negative. It fecllows that any
theorem which concludes that the continuocus spectrum is non-empty must
have hypotheses which place restricticns on all the ccefficients to
ensure that Thecrem 3.1 does not apply.

Also, any necessary and sufficlent condition for a discrete
spectrum must impose restrictions on every coefficient. The necessary
and sufficient condition given by A. M. Mclchancv [13, page 2u5] con-

cerns the formal operatcr
_ 2
1= -D° + po(x) —m<g<tom,

and is based on the behavior cof po(x) as x tends to += and -, However,
the other coefficient pl(x) is restricted to equal to 1.

The results cbtained lead to further questions concerning singu-
lar differential operators. First, we ask whether the results of
Chapter III can be extended tc multidimensional differential operators,
which would have application to elliptic beundary-value problems of
partial differential equations. Some results on this subject are found
in [10].

In Chapter III we changed the domain of the symmetric cperatocr
by eliminating some restrictions at the singular endpoint. Then by
reducing the possible ways we define the functions hi(x,k), we obtained
similar results concerning the compact inverse of the Friedrichs self-
adjoint extension. It is an open question whether the Friedrichs exten-

sions of the various symmetric cperatcrs are identical or not. The
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answer to this question might be more accessible for those operators for
which we can obtain a boundary condition description of the selfadjoint
extension, as in Chapter IV.

The boundary condition description obtained in Chapter IV is for
operatcers with only one non-zero coefficient. No general results are
known for finding the specific boundary conditions for the case of more
than one ncn-zeroc coefficient. One type of question concerning the
general higher order operator is how do the boundary conditicns depend
on the coefficients. For example, in specifying a particular boundary
condition how many of the coefficients must be involved so that the

operator is selfadjoint.



1.

10.

11.

56

BEIBLIOGRAPHY

N. I. Akheizer and I. M. Glazman, Theory of Linear Uperators in
Hilbert Space, Veol. II, Ungar, New York, 1953.

J. V. Baxley, '"The Friedrichs extension of certain singular dif-
ferential operators,'" Duke Math, J., Vol. 35, No. 3 (1968), pp.
452-u62.

E. A. Coddington and N. Levinson, Theory of Differential Equatioms,
McGraw-Hill, New York, 1955.

N. Dunford and J. T. Schwartz, Linear Operators, Part II, Inter-
science, New York, 1963.

M. S. P, Eastham, "The least limit point of the spectrum asscciated
with singular differential operators,'" Proe, Camb. Phil. Soe., Vol.
67 (1970), pp. 277-281.

K. O. Friedrichs, "Spektraltheorie halbbeschrankter cperatoren, I,"
Math, Ann., Vol. 109 {(1934), pp. 465-487,

., "Criteria for the discrete character of the spectra of
ordinary differential operators," Studies and Essays Presented to
R. Courant on His 60th Birthday, Jan. 8, 1948, pp. 145-160, Inter-
science, New York, 1348,

I. M. Glazman, "On the theory of singular differential operators,”
Uspekhi Mat. Nauk., Vol. 5, No. 6 (40){(1950), pp. 102-135 (Russian),
Amer. Math. Soce. Trans., No. 96 (1953).

"On the spectrum of linear differential cperators,'" Doklad.
Akad. Nauk. 555R, Vol. 80 (1951}, pp. 153-6 (Russian).

. Direct Methods of Qualitative Spectral Analysis of
Singular Differential Operators, Eng. trans., Israel Program for
Scientific Translations, Jerusalem, 1965.

P. Hartman and C. R. Putnam, "The least cluster pcint of the spec-
trum of boundary problems,' dmer. J. of Math., Vol. 70 (1948),
pp. B49-RB55,



12.

13.

14,

15,

16.

17.

18,

19.

20.

21.

22,

23,

57

and A. Wintner, "On the essential spectra of singular
eigenvalue problems," Amer. J. of Math., Vol. 72 (1950), pp.
545-552,

M. A. Naimark. Linear Differential Operators, Part II, Ungar,
New York, 1968.

S. A. Orlov, "On the deficiency indices of linear operators,"
Doklad. Akad. Nauk. SSSR, Vol. 92 (1953), pp. 483-486 (Russian).

C. R. Putnam, "A sufficient condition for an infinite discrete
spectrum,” @. Appl. Math., Vol. 11l (1954), pp. 484-487,

» '"On the continuous spectra of singular boundary value
problems," Canad. J. Math., Vol. 6 (1954), pp. 420-426.

F. Riesz and B. Sz-Nagy, Functional Analysis, Eng. trans., Ungar,
New York, 1955,

D. Shin, "On the sclutions in LE(O,w) of the selfadjoint differen-
tial equation uf(®) = 1(u), I(1) = 0," Doklad. Akad. Nauk. SSSR,
Vol. 18 (1938), pp. 519-522 (Russian).

E. C. Titchmarsh, Eigenfunction Expansions Assoctated with Znd
Order Differential Equations, Oxford Univ. Press, London, Part I
(2nd ed.), 1962, Part II, 1948.

H. Weyl, "Uber gewohnliche lineare Differentialgleichen mit
singularen Stellen und ihre Eigenfunkticnen,'" Nachr. Akad. Wiss.
Gottingen, Math.-Phys. K1. (1909), pp. 37-8L.

, "Uber gewdhnliche Differentialgleichungen mit Singulari-

titen und die zugehorigen Entwicklungen wilkurlicher Funktiomen,"
Math. Ann., Vol. 68 (1910), pp. 220-269.

W. Windau, "On linear differential equations of the 4th order with
singularities, and the related representations of arbitrary func-
tions," Math. Amnal., Vol. 83 (1921), pp. 256-279.

A. Wintner, "On the location of continuous spectra,'" dmer. J. Math.,
Vol. 70 (1948), pp. 22-30.



58

VITA

Laddie Wayne Rollins was born on July 10, 1938, in Wickliffe,
Kentucky. 1In 1961 he earned the degree of Bachelor of Electrical
Engineering from Georgia Institute of Techneclogy. From 1961 to 1964
he was employed by General-Dynamics Corporation while enrolled as a
graduate student at Texas Christian University, from which he received
the degree Master of Science in Mathematics in 1864,

In 1965 Mr. Rollins enrolled as a graduate student in the doc-
toral program in the School of Mathematics at Georgia Institute of
Technology. While there, he served from 1965 to 196S% as a Graduate
Teaching Assistant and from 1969 to 1972 as an Instructor.

On May 31, 1869, Mr. Rollins married Rebecca Ann Brown. They

have a son, Brent Wayne Rollins.



