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Electron energy loss spectroscopy in a high-resolution transmission electron microscope has recently been
used with success to characterize the electronic properties of closed cage nanometer-size graphitic particles. In
the plasmon region, the experimental data reveal interesting size-dependent variations, which are not yet fully
understood. The difficulties encountered in the interpretation of the spectra are principally due to the lack of a
complete theoretical treatment of the anisotropic dielectric response in nanometer-size particles. In order to
obtain a better understanding of the experimental data we propose a model based on nonrelativistic local
dielectric response theory for electrons penetrating through a nested concentric-shell fullerene or the so-called
“carbon onion.” The anisotropy of the electronic properties of the sphere is taken into account via the
frequency-dependent dielectric tensor of graphite. The model can be applied to simulate electron energy loss
spectra as well as line scans through energy filtered images and allows thus a direct comparison to experimen-
tal data.[S0163-182€08)04724-9

[. INTRODUCTION resolution of the HRTEM allows one to select one particle of
interest and to determine its shape and dimension. Further-
Since the discovery of the fullerenes by Kragoall a  more, since the electron probe can be focused to a very small
great variety of molecular carbon structures such as multidiameter, the electronic properties of one single particle can
shell carbon nanotubé&s, multishell fullerenes(also called be measured, even as a function of the impact parameter. The
nested concentric-shelled fullerens or “carbon oniors” technique gives complementary information on those that
and single shell carbon nanotub8fiave been synthesized. can be obtained by local probe microscopy. Low loss spectra
The study of the physical properties of the fullerenes haglosses between 5 and 40 e¥ontain information on the
rapidly developed into an important field of research, mainlycollective excitation of the valence electrofasmong and
because it is possible to produce macroscopic quantities afore loss spectrdlosses between 40 eV and several keV
pure sample$.The investigation of the properties of carbon contain information on the excitation of the core electrons.
nanotubes and multishell fullerenes has in contrast proven Several experimental studfés®? on carbon nanostruc-
more difficult. Even though important progress has beeriures by means of EELS have been reported so far and size-
made recentl{; 1° samples always contain small amounts of dependent variations of the electronic properties have been
impurities, which hamper the characterization of the pureobserved. By comparison with band structure calculations it
material by methods using macroscopic amounts of samplesas possible to relate the variations in the=dge spectra of
In spite of this problem, a lot of effort has been put into thenanotubes of different size to the curvature of the graphitic
determination of the physical properties of carbon nanotubelayers®? In the plasmon loss region, however, size-induced
and multishell fullerenes, stimulated by theoretical calculavariations are still not well understood. Even though several
tions which predict interesting geometry-dependentmodels have been proposed, the comparison of the experi-
magneti¢t*2 or electronic properties 22 mental data with simulations remains difficult. Simulations
For samples containing impurities, experimental method¥ased upon a hydrodynamic model for tubes and multishell
allowing the investigation of the physical properties on afullerenes’'8*3give information about the plasmon disper-
nanometer-scale are of interest. With methods such as fielsion relation, which cannot be measured with EELS in a
emissiort® atomic force® or scanning tunnelling conventional HRTEM. Density functional theory calcula-
microscopy?® some insight into the band structure of carbontions have been carried out for spherical partides well as
nanostructures has recently been achieved. Another powerftdr tubest*~1%2but simulations for more than two concen-
method allowing the investigation of the electronic proper-tric layers have not been reported yet, and furthermore the
ties of very small amounts of unpurified samples is electrorexcitation of the plasmon modes by electrons has not been
energy loss spectroscogiFELS) in a high-resolution trans- treated. Finally, classical dielectric response thtbR} has
mission electron microscopéHRTEM). The high spatial been used to calculate the excitation probability of plasmons
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namely, for nonpenetrating electrons. AE=
We present here a complete treatment of the excitation of

plasmons by high—engrgy e!ectrons in multishell fullerenes . e solution of the Maxwell equations the phenom-

based on classical dielectric response theory. The model,,ngical relation between the electric figdr,t) and the

tak_es into account.the local amsotropy of thg dielectric ProPgisplacement field(r,t) must be written. Within this mac-

erties of such particles and will allow a detailed comparisonygscopic formalism, the electronic properties of the different

with experimental data. Models developed within the framemegia of the system are taken into account via their complex

of classical dielectric response thettpave been used with  gielectric tensor. The dielectric tensor is known as a function

success to interpret plasmon losses in electron energy 10$$ frequency and wave vector so that it is necessary to solve

spectroscopy. Such models predict correctly the resonangBe Maxwell equations in frequency space. For this reason

energies and the intensities of the surface and volume plaghe Fourier transform of the electric field is introduced in Eq.

mon excitations for different geometries such as thin sfabs, (1).

spheres®~%layered sphere¥:***1spheres halfway embed-

ded in a supporting mediuf%*® and cylindrical e =

channel$—" and explain size-dependent variations of the AE=-o— trajectorl Jioce "E(X,0) do |dXx  (2)

peak position. The electronic properties of the material com-

posing the nanoparticle are taken into account via itfNote that we adopt the following convention for the Fourier

frequency-dependent dielectric function. For the case ofransform from frequency into time space and from time into

nested concentric-shelled fullerens, the existing calculationfequency space:

for penetrating electroA$cannot be used directly since the

excited by electrons, however, only for a special case;
j F(x,t) dx=J (—e)E(x,t) dx. (1
t t

rajectory rajectory

dielectric function was taken to be isotropic. Multishell 1 (= .

fullerenes, however, are composed of concentric spherically Alr,H)= ﬂj_we A(r,o) do, (33
curved graphene sheets and it must be assumed that the elec-

tronic properties in the directions parallel or perpendicular to -

the sheets are different, as in the case of planar graphite. In A(r’w):J e'“tA(r,t) dt. (3b)

the following sections, the basic ideas of the classical dielec-

tric response theory taking into account this anisotropy Aince the relative change in energy and momentum follow-

presentedSec. I) and the expression of the plasmon exCI'ing the interaction with the sample is very small, the electron

tation probability is derivedSec. Ill). In Sec. IV simulations h L . .
of different experiments that can be carried out in a transy\”th a kinetic energy typically higher than 100 keV can be

L . . : .. —assumed to move at constant velocity on a straight line, so
mission electron microscope equipped with an energy fIIte{hat the path integral in Eq2) can be evaluated. The work
are presented and discussed. :

done by the electric field is equivalent to the energy loss of
the electron and can be related to the excitation probability

via the relation
Il. CLASSICAL ELECTRON ENERGY LOSS THEORY

i i »  dP(w
A. General considerations AE=f b ()

. io dow. (4)

Due to the Coulomb interaction, the electrons of a TEM
probe are subject to both elastic and inelastic scattering as
they pass through the sample. EELS consists in measuring B. Determination of the potential V(r, &)
and analyzing the energy loss of the inelastically scattered _ ) ) _
electrons. In this paper, we focus on the analysis of low loss _ [N classical dielectric theory, the response of a nonisotro-
EEL spectra(up to 40 eV, in which the energy loss can be PIC medium to an external electric field is described via the
attributed to the excitation of plasmons, either in the bulk ordielectric tensoke(r,):
at the surface of the particle.

An incident electron is treated as a classical particle. In a R , , L
typical EELS configuration, an electron flux of about'30 D(r,t)=eojiwdt fﬁxd re(r=r’ t=tHE(r,t).
electrons per second passes through the sample. Given the (5)
high speed of the electrons, the distance between successive
electrons is large enough that the interaction between succe$his homogeneous description of the medium is valid if the
sive scattering events can be negleéftBllasmon losses can wave length of the excitation generated by the probe elec-
therefore be treated as a single electron scattering procegsons is greater than the interatomic distance. This condition
As the electron moves along its trajectory, it loses parts of it§s generally satisfied for plasmons, since their resonance en-
kinetic energy since the potential distributidf{r,t) in the ergies are located at energies below 40 eV.
system probe-electron particle generates an electric field For mathematical convenience, most of the analysis of
E(r,t) which tends to slow down the electron. The potentiallow loss EEL spectra in terms of classical dielectric theory is
can be determined from the Maxwell equations so that thelone assuming local response of the dielectric medium. In
work done by the forcd=(r,t) acting on the electron, and spite of this simplification the model has had considerable
thus the energy loss can be evaluated: success in explaining energy loss spectra of small particles of
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different geometries. For this reason, we assume local re- )
sponse in the following calculations. The dielectric tensor in VaV(r,rg) =
this case takes the form

oc(@) S(r—rgp) (12

if the electron is traveling in a isotropic medium and of

e(r—r' w)=8(r—r')e(w) (6)
~ e
and Eq.(5) written in frequency space becomes V- [e(w)VV(r,ro)]=—4(r=ro) (13
0
_ T~ b if it is in an anisotropic medium. It is important to note that
b(r.w) eoffwd M e(r=r\w)E(r', )= ce()Er,w). Vi"d(r r,) depends onw. The potential distribution in space

(7) is a quasielectrostatic potential for each point along the tra-
jectory of the incident electron and the integral oxeis a
In the simpler isotropic case, the Maxwell equations to-sum over the contributions of all the points along the trajec-
gether with the phenomenological relation between the eleaory of the incident electron.
tric and the displacement fie[dEq. (7)] and with the defini- In the second step, we calculate the volume excitation
tion of the electric potentidk(r,w)=—VV(r,w) lead to the  probability (Sec. Il O. It would be possible to derive it from
following expression for the potential distribut®r®which  the inhomogeneous part of the solutions of E@.and (9)
is needed to calculate the electron energy loss probabilitgliminating AE in Egs.(2) and (4) and using the fact that

[Eq. (2)]: E(r,t)=—VV(r,t). It has, however, turned out to be easier
L to adapt the results of Wessjohatinyho calculated the en-
VAV(r )= — — (o). ) ergy loss probability for uniaxial crystals, to our geometry.
0

IIl. DETERMINATION OF THE SURFACE AND VOLUME

If the medium is anisotropic, Maxwell equations lead to the PLASMON EXCITATION PROBABILITY

following expression determining the electric potential:

A. Modeling the dielectric properties of multishell fullerenes

V-[eoe(@)VV(r,0)]=—p(r, o). © The multishell fullerenes that we want to model consist of

~ . _ concentric spherical graphene shells with a central cvity.
In Egs. (8) and (9), €(w) and e(w) are the dielectric o mathematical convenience we make abstraction of the
function and the dielectric tensor, respectivgl{r,w) is the  jnner hollow and assume that the shells continue to the cen-
charge density due to the probe electron written in frequencygy of the sphere. Surface excitations on the inner surface and
space. If the electron is moving at constant veloaitat a  ¢oypling modes between the inner and the outer surface are
given impact parameteq, along thez axis, p(r,) is given  therefore ignored. This is an approximation which is reason-
by able at least for large multishell fullerenes with a small inner
cavity, since due to screening, the effects of the inner surface
p(r,w)=— Eé(x_xo)é(y)eiwzlv. (10) can pe_ ex.pec_ted to be small. A secqnd consequence of this
v simplification is that the volume contribution to the plasmon
excitation probability is overestimated for electrons passing
The general solution of Eqs8) or (9) is a linear combi-  through the center of the sphere. This overestimation could,
nation of the homogeneous and of the particular solution ohowever, easily be corrected by adapting the integration over
the equation. In EELS problems, the particular solution repthe electron trajectorysee Sec. Ili G
resents the direct potential and is therefore responsible for The model of the dielectric response of a multishell
the volume plasmon, whereas the homogeneous term reprgyjlerene is based on the dielectric tensor of planar graphite.
sents the induced potential and is responsible for the surfacgnis tensor takes the form of a diagonal matrix with two

loss. In our approach, the two contributions to the energyjifferent components along the natural cristallographic direc-
loss probability are treated separately. First, we calculate th§ons as shown in Fig. (&):

induced potential and the surface excitation probabfigc.
[11 B). In this case, Eq€2) and(4) can be combined to yield

“(w)=¢€, (o +e (w +e(w . 14
the following expression for the surface plasmon excitation (@)= (@Bt e (w)tytelw)e; (19

probability3* €, (w) ande|(w) describe the dielectric response of graphite
for an electric field perpendicular and parallel to thexis,
dPU(w) e = [ respectively. Several possible ways of describing the dielec-
do :wﬁvszdz fﬁmdz tric properties of nested concentric-shelled fullerenes based

on the dielectric tensor of plan:ilr graphite have been pro-
X Im{eel? ~Dvind(p p ) o posed and discussed by Luéas! From purely geometric

0 considerations, the projection of the dielectric tensor of pla-
(1D nar graphite into spherical coordinates

ViNd(r r,) is the induced electric potential at positian ~
' = + €got € 15
caused by a stationary electron located at positign c(w)=€w)er e (@)t e (w)e, 9
=(X0,02). In other termsV"™(r,ro) is the homogeneous is most convenient for multishell fullerengBig. 1(b)] and is
part of the solution of therefore used in the following calculations.
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1. Potential distribution for probe electron outside the sphere

The equations that determine the potential distribution for
an electron traveling outside the sphere are

e
VAP (r,ro)=—5(r,ro) (169
X €0
Planar graphite: for r>a, and
g(w) = £ (w)e,, +£ (0)e, +g(w)e,, ~ out
V'[e((‘))vvr<a(rvr0)]=0 (16b)

b . .
®) z for r<a. The general solution of E§16g can be written as

the sum of homogeneous solutivf"* "{r,r,) (induced po-
tentia) and a particular solution of the inhomogeneous equa-
tion VOU'Ar,r,) (direct potentigl

VU (1) = V21 1) + VO AT ro). (17)

Equation(16a with the inhomogeneous term representing a
point charge located at, is frequently encountered in clas-

Multishell fullerene:

E(0) = g(®)e,, +2,(®)ege +,(D)eg, sical electrodynamics and its particular solution is

FIG. 1. Dielectric tensor fofa) planar graphite an¢b) for the e
model of a multishell fullerene. For the latter case, the dielectric V?gt'ap(r,ro)z T Amedr—ri” (18
tensor of graphite is projected into spherical coordinates. meo|r o

B. Surface plasmon excitation For our problem, this solution is rewritten in terms of spheri-
o _ cal harmonics®! Forr<r,

The problem consists in finding the solution of E¢E2)
and (13) for the geometry shown in Fig. 2. The sphere of e o | .y
radiusa is at the origin of the Cartesian coordinate Systemy/outh )= — 2 > > Nim(2- 50’m)<_)
xyz The probe electron, located at positiop is param- el g =0 m=0 )
etrized in spherical coordinateg, 6y, and¢,. Due to sym-
metry, ¢, can be chosen to be equal to 0. Since it is assumed X Py m[cod 6)]P| m[cog 6p) Jcogme), (19

that the electron is moving on a straight line at an impact, e

parametex, from thez axis, ry and 6, can be expressed as

a function of the impact parameter aad ro=(z2+x3)*? (1—m)!

and cos(p)=2iro N my
For the determination of the potential, the case where the ’

electron is outside the sphere and the case where the electriy >r, r andr, are exchanged®, , in Eq.(19) denotes the
is inside the sphere need to be treated separately. The potesssociated Legendre function. '

tials for either case are denoted\&8(r,ro) andV°“(r,ro), The homogeneous solution of EQ.63 is written in the
respectively. form of an expansion into spherical harmonics with coeffi-
. cientsA, ,, that will be determined by the boundary condi-

tions

o |
V?i‘;i“"(r,ro>=go mE:O A m(2— Som)

I|+1
P mlcog ) Jcogme). (20)

=l

X

The solution of the homogeneous equation describing the
potential in the anisotropic mediufiq. (16b)] can also be
written in the form of an expansion into spherical harmonics
similar to Eq.(20). In fact, in spherical coordinates, the ra-
dial equation is found to be

FIG. 2. Geometric definitions for the multishell fullerene geom- 2 d? d € () _
etry. The electron, located at positiop, is traveling at constant r dr2V(r)+2r drV(r) EII(“’) I(1+1)V(r)=0.
velocity at an impact parametgyg from the origin in the negative (21)
direction. In spherical coordinates, its position is given by the pa-
rametersr, 6p, and ¢q. If the effective azimuthal quantum numberdefined by




57 PLASMON EXCITATIONS IN GRAPHITIC CARBON SPHERES 15603

u(u+1)=

€ () 21+1
” (26b)

I(1+1) (22 _t
e)(@) Bium "Mt (@) +(1+1)]

is introduced, Eq(21) becomes identical to the radial equa- where
tion in the isotropic case. The solution of the homogeneous
equation in the anisotropic case can therefore be e a\!
obtained from the solution of the isotropic cddgy. (20)] fim=—7——N, nP; n[cog 60)](—) X (260
by replacing the orbital numbedr in E/q.2(02201) by u" (w) 4méolo Fo
— 1 s
VOJL-‘{'Zii‘d(r],-r—;)[ tgfcl)r(‘rl]g—sl)q(w)/eu(w)] 2}' so  that 2. Potential distribution for probe electron inside the sphere
The equations that govern the potential distribution when

) > the electron is traveling inside the sphere are
VREMrr) =2 2 By (2 Som) |

o VAVIL,(1,r0) =0 (278

U (o)
X P\ nlcog6)lcogmg). (23 forr=aand

As in Eq. (20), the coefficientsB, , are unknown and are V-[€(w)VV(r,19)]=— i10(”0) (27b)
going to be determined by the boundary conditions. €0

The homogeneous and particular solutions of E§§a  for r<a. The solution of the homogeneous Eg7a can be
and(16b) being known, the general solutions can be writtenyyritten in terms of spherical harmonics with coefficients
C, m that are determined by the boundary conditions

o |
VEa(rro)= 2, 2 Aum(2- dom) A ©
- VI (L) =2, 2 Cim(2— 8om)
1+1 I=0 m=0
X Py, cog 6) Jcog me)

I+1

X P mlLcog 6) Jcogme). (283

o I

e
> > Nim(2— 8om)

B Aaregl (<0 m=0 The solution of Eq(27b) can, as before, be written as the
sum of the homogeneous and the inhomogeneous solution:

[
X| —| Py mlcog 8)]P, n[coq 6y) Jcogme), i i in,i
ro I,m[ S )] I,m[ i 0)] i (P) Vlrn<a(r,ro):V:'n<,pa(r'ro)+vlrn<,ll;d(r’ro)
(249 ' w |
| =VIL(rro+ 2 2 Din(2=om)
VPda(riro) =2y 2 Bim(2= dom) LU )
N X\ P ml cog 6)Jcosme), (28b)
r\4 (w)
X a P mcod 6)Jcosme). (24D where we have directly introduced the spherical harmonics

expansion for the homogeneous term. At this point it has to
The boundary conditions, namely, that the potential andre noted that it is not necessary to know explicitly the ex-

the normal component of the displacement field must be corRression ofV*®(r,ro) to determine the surface plasmon ex-

tential is needed for the evaluation of E@ll). The
VU (r ro)l =V (rro)] 25 coefficientsC, , and D, ,, which determine the induced po-
a(T1To)lr=a=Vr<a(fro)lr-a (259 tential can be calculated most easily via the electric field
and rather than the potential. In terms of the electric field the
solution of Eqs(273 and(27b) are
dVe¥ (r,rq) dVe (r,ro) . 4
— =g — (25D ErLo(1.ro) =~ VViL4(1,ro) (299
r=a r=a
) ) o and
lead to the following expression for the coefficiess,, and
Bim: Er.a(r.fo)=—VV{Lo(r o)
|- e()u;" (o) =~ VV{R(r,ro) = VV{IR(r 1)
Al,mzfl,m (26@

(@i (@) +(1+1)’ =EMN(rro) - V(). (29
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EMP (r,ro) is the electric field of a point charge in a infinite eH(w)(E,<a(r ro)-€)r—a=Em (r,ro)-€lr—a,
anisotropic medium described by the dielectric tensor given (310
in EQ. (15). Forr>rg it can be found to bésee Appendi i i i
a- (19 0 ¢ PP X WhereE'rn>a(r,r0)~e,, E'rn>a(r,r0)~e9 andE'rn>a(r,r0).e¢ are
< < <

L3 |

P (rr the components in spherical coordinates of the electric field
Erda(r.ro) =m0 : : inside and outside the particle, respectively. Using these
boundary conditions, the coefficien®; ,, andD, , that de-
[+1 r'0 termine the homogeneous solution of the problem are de-
aPTen) r|—+2P|,m[COS( 6)]Jcosme)e; duced:
1 rh 9P, [cog6)] g e||(w)u|+(w)+(l+1)q(w)
. C I,m— YlI, ’
Tel@ 2 as  coimee T e (o) @)Uy (0)+1+1]
1 rg 1 (I+1)(€ (w)—1)
- 0 - DI,m:gI,m T ) (323)
e (w) (1+2 sin(6) e (@) e@)u (©)+1+1]
where
X Py m[cog #)]msin(me)e, | . (30) |
gm=— dreg aNI mP m[COE(GO)]( ) . (32b)
The boundary conditions involving the explicit expression
of the potential can now be replaced by the continuity of the 3. Surf | itat babilit
tangential component of the electric field and the continuity - Suriace plasmon excitation probabiity
of the normal component of the displacement vector In the preceding section, the potential was calculated for

0 0 any possible configuration. Now, the expression for the ex-
Erea(riro)-€li—a=Eria(rro)-€li—a, (318  citation probability[Eq. (11)] needs to be evaluated. Taking
into account the different functions of the potential in the

Era(rro)-eli—a=EfLa(r.ro)-€li—a, (310 different space regions, the following expression is obtained:
dP(w e -z . -z 2
dw( ): 2Im [J’ OdZ e—|wZ/v(J Odz/ eIwz /le?gtellnd(r,ro)_i_f dz' eIwZ /Uv;n;r;d(r’ro)
whv —o —o

-z

” oy sout,
+f dz' e ?/ovoutindr o)
20

~74
+f dz e IwZ/v< Jl dz € iwz /UV?it;nd(r rO)""f dz' eIwZ /UV'rn<'gd(l‘,I’o)

o]
+J; dz’ eIouz lvvsitellnd(r’ro)
0

® . ) . .
+j dz e"”z’”(f dz' el“z /vyoutingy ro)+f Z_OZOdz’ glez foy/inindcp p )
ZO —

+f dz' eIouz /uVoutlnd(r ro)) , (33)
0 r=(x002')
|
where the integration limig, is given byz,=(a?—x3) Y if Qi m(®)=4a) n(0)(REF(w)])?
Xo<a andzy=0 if the electron is passing outside the sphere
(xo>a). After substitution of the expressions of the potential 2B m(w)REFy (@) ]F2)(w)
;Ir;dsnsqgwieaclg?n%s’ the excitation probability of the surface + 29 m(@)REF 1, (@) ]Fa)(0) + 0 ol @)
X[Fa)(w)]F3)(w), (34b)
4P ) o2 o | and forl+m odd
To = acieqota 2 & N2~ dom) Qi () =4at (@) (IM[F () ])?
0 =6 A=
MO, ()] (343 21 B m(@)IM[F1() F ()
I,m .

+ 21y m(w)IM[F (o) ]F3)(w) + 01 (o)
Forl+m even,Q, n(w) is given by X[Fy(w)]F3 (). (340



57

The expression of the surface plasmon excitation prob-

ability [Eq. (34a] incorporates the terms (w), B m(w),
7 m(w), andoy (w) containing the different components of
the dielectric tensor. They are defined as

B |—e”(w)u|+(w)
a"m(w)_e”(w)ur(w)+|+1’ (359
_ 21+1 (35
B"m(w)_e”(w)ur(w)+|+1’
|+1 +
7|,m(w)=( + )fi(w)+f\\(w)u| (w)' (350
€ (o) eow)u (0)+1+1]
o1 )= (I+1) (e (w)—1) (350)

€ (o)) (o) +1+1]

The different integrals appearing in E@®3) can be simpli-
fied so that onlyF i (w), F;(w), and F3;(w) defined in
Egs.(368—(360 remain:

—Z

I+1
Fu(o)= [ dz(?) Pl alcog )Je™'?, (363

Z9 r\u (@) -
FzJ((.U)ZJ ZOdZ(a) P|’m[C030)]e_|wZU’
(36b

P m[cog 0)]'“?". (360

F3'|(a))=J7Zi dz(%

It is worth noticing that wher(w) = €, (w) (isotropic casg
we find from Eqs(34a—(360) the results of Bauséefl (elec-
tron passing through an isotropic spheend Ferref® or
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Incident beam

c-axis

Sample

Spectrometer
aperture

Qy

Ox

FIG. 3. Momentum transfer components for a TEM electron
passing through a uniaxial crystal Theaxis of the crystal is tilted
by an anglex with respect to the incident electron beam. Before the
scattering event, the electron has a momenturg. During the
scattering event, it transfers a momentég to the crystal and is
deviated by the scattering anglewith respect to its incident direc-
tion and by the azimuthal angle.

(Ref. 60 contribute to the energy loss spectrum, the excita-
tion probability per unit path length along the incident beam
direction can be written as

dZonlume(w) _ e2 f@cadajzﬂ.d
dodz _47T3eohv2 0 0 ¢
2
—do )
X1m . (37
(QSEL((‘))+Q§6(0))

qc andq,, are the projection ofj onto the coordinate system
in which the dielectric tensor is diagonal, i.e., on the unit

Echeniqué (electron passing close to an isotropic sphere Vector parallel to thee axis of graphite and onto the plane
Furthermore the polarizability of a nested concentric-shelle®@rPendicular to the axis, respectivelysee Fig. 3 The two

fullerene calculated by Luc&*!is obtained from our results

projections can be expressed in terms of the angles and

if one assumes that the electron passes outside the sphere?:

C. Volume plasmon excitation

EELS measurements on uniaxial optical systems such as

planar graphite have been carried out by Vengffaasd
independently by Zeppenfetd->° The interpretation of the
measurements, reviewed by Danietsal,>® is based on the
work of Hubbard"8 Tosatti>®® and Wessjohanf?. For the

q5=g5{[ Oesin( ) — Ocog ) cog ) 12+ [ Bsin(¢) 1%},

determination of the volume plasmon excitation probability

of an electron passing through an uniaxial crystal, the mo-
mentum transferred from a probe electron to the sample
plays an important role. In typical TEM geometry, with an

uniaxial crystal oriented in a way that itsaxis is inclined by

an anglex with respect to the optical axis of the microscope,

(389
2= 05{[ fecog @) — fcog p)sin(@) 1%} (38D)

g in Egs.(39a and(39b) is given by
O = 27:; o (39)

Assuming local response, the energy loss of an electron

the transferred momentufig can be expressed as a function penetrating through a graphitic carbon sphere can be calcu-

of the scattering anglé and the polar angle (see Fig. 3.

lated using Eq.37). On each unit path lengtdz of the

The differential excitation probability as a function of the trajectory, the electron travels through a infinitely thin planar
anglesd and ¢ can then be calculated. Since only electronsgraphitic crystal with itsc axis oriented radially at the posi-

scattered within a angle smaller than the cutoff angle

tion of the electron, as shown in Fig. 4.
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1.0)(10'3 '"'I""I""I""I""I""l"_:
E — EELS dat 3
---- Optical gaata @) E
_ 0.8F 3
£ E
c 3 ]
N E 3
g 04f 3
& 3 . 3
© X, q
FIG. 4. Model for the determination of the volume plasmon 02f \\ E
excitation probability of an electron penetrating a multishell 3
fullerene. On the infinitesimal path intervak the electron travels R
through a uniaxial graphitic layer with itsaxis oriented radially at Energy [eV]
the position of the electron. The orientation of the graphitic layers is AR AR R L LR AL Y
. , 4 [ — EELS dat 1
shown for two different positions of the electron. 40x10* [ Optical sl , W) .
The anglea between thec axis of the oriented piece of E
graphite and the trajectory of the electron depends on the 2
position of the electron. If the position is parametrizedzby N
then g
o
%
qa) ‘ (409
cofa)=———,
\/x02+ z
and
6x10* L — EELS data 3
. Xo ---- Optical dat (©7
sm(a)= T (40b) = 5 ploslcaa ]
\ XO+ A c F 3
> ]
The volume plasmon excitation probability of an electron = M1 E
penetrating a multishell fullerene can be obtained from Eg. § 3f 3
(37) by numerical integration over the trajectory of the elec- = » ]
tron: % ] E
"3 3
d onlume(w) 20 dZonIume(w) \ ]
— dZ , 41 1 1 1 1 1 1
T e— f_zo “deodz (41) 0 5 10 15 20 25 30

Energy [eV]
where z, is given as before by,=(a?—x3)Y2 With the
explicit expression of the surface and volume plasmon excir,,
tation probabilitie§ Egs.(343—(34¢) and(41)] the total plas-
mon excitation probability is known:

FIG. 5. Volume plasmon excitation probability per unit path
gth of planar graphite oriented with theaxis (a) parallel andb)
perpendicular to the optical axis of the microscope. The olid-
ted curve is obtained from the dielectric tensor using EEb§ti-
cal) data. GrapHhc) represents the volume plasmon excitation prob-
d P o) _ d PYolume ¢y N dP(w) (42)  ability using an effective dielectric function as explained in the text.

dw dw dw

broadened in comparison to our results. The simulations
IV. RESULTS have been carried out for 100 keV beam electrons and for a
cutoff angle#, of 50 mrad. The summation over the excita-
tion modes has been carried out up +010. Contributions of
The expression of the plasmon excitation probability ob-higher order modes turned out to be very small and did not
tained in the previous paragraphs allows us to simulate twsignificantly change position or intensity of the plasmon loss
kinds of measurements that can be performed in an adpeaks.
equately equipped TEM. First, EEL spectra can be calculated The dielectric tensor of planar graphite needed for the
for electrons passing at a given position when the impacdescription of the electronic properties of the multishell
parameter is kept fixed. Second, line scans across energyllerene is taken from Ref. 61. There is, however, some
filtered images recorded at a given energy can be obtainediscrepancy between the dielectric response of planar graph-
when the energy loss probability is integrated over an energite for an electric field parallel to the axis obtained from
window. optical measuremerits®*and from EELS measuremertts®?
Excitation probabilities have been calculated using thdn Figs. 5a) and %b) we compare EEL spectra of planar
MATHEMATICA software package of Wolfram Research Inc.graphite for two orientations simulated using E87) and
We took into account neither the beam profile nor the energyhe different sets of data of the dielectric tensor. In Fig) 5
spread of the probe electrons. Depending on the performandbe graphite is oriented with its axis parallel to the optical
of the microscope, experimental spectra will therefore beaxis of the microscopea=0). The dotted line is obtained

A. General considerations
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from optical data and the solid line from EELS data. The
peaks at 7 and 27 eV are due to the collective excitation of
the 7 electrons and the + 7 electrons, respectively. It can -
be seen that for this orientation, the simulations with the two 25)
sets of data give almost identical results. In Figh)5the I
graphite is oriented with its axis perpendicular to the elec-
tron beam @ = 7/2). Again, the dotted line is obtained from
optical data and the solid one from EELS data. The absorp-
tion that can be observed between 15 and 20 eV is attributed
to the excitation of interband transitions involving the three
o electrons per carbon atoffiFor this orientation, there is a [
significant difference between the curves obtained from the 10
different data. The peak at 11 eV that is present in the simu-
lations with optical data is completely absent in the curve
obtained from EELS data.

As a starting point for the discussion of our results we
have simulated the excitation probability of an isotropic
sphere assuming that the electronic properties of a multishell
fullerene can be described by an effective dielectric
functior® eeu(w) = (1/3)ej(w) +(2/3)e, (w) (Sec. IVB . T T
Figure 5c) shows the volume plasmon excitation probability 14x10° | \,/—/\/_/
per unit path length obtained from E37) using €)(w) ]
=€, (w) = e.(w) with optical and with EELS data. In either 12 \K—/\/I 1nm
case, three absorption peaks can be distinguished. Due to the E E
mixing of the two components of the dielectric tensor of 10F
graphite, it is, however, not possible to associate them with :
any precise excitation mechanism. The main difference be-
tween the curves obtained from the two sets of data is that
the absorption at 6.5 eV is less pronounced for EELS data as
compared to optical data and that the small resonance at 11.5
eV in the case of EELS data is more intense and shifted to 10

eV in the case of optical data. 4F W 5nm
x3

30x10° [

20f

15[

dP*{w)/dw [1/eV]

(@ [,

5 10 15 20 25 30 35
Energy [eV]

dP*“f(w)/dw [1/eV]
w
3
1

The simulated spectra presented in Secs. IVB1 and

IV B 2 have been calculated using optical data. However, 2F 6 nm
since the disagreement over the dielectric tensor has not been /\/Xs\/\ 7 om
settled up to now, we have also simulated spectra using (b) E.L T T 3'0'-"3'5-'

(&)}

EELS data(Sec. IV B 3.

Energy [eV]
B. Simulation of EEL spectra FIG. 6. (a) Total and(b) surface excitation probability for a
) ] sphere with a radius of 5 nm obtained with an effective dielectric
1. Isotropic case (optical data) function (optical data for an isotropic sphere.

Figure 6 shows the plasmon excitation probabilities ob-

tained for electrons passing at different impact parameterghe volume contribution and to the increase of the surface
through an isotropic sphere of 5 nm radius described by theontribution. The consequence is a further broadening of the
effective dielectric function(optical data. In Fig. 6@) the 6.5 eV volume resonance peak and an increase of the inten-
total excitation probability which can be compared to experi-sity of the 17 eV surface peak. Finally, when the electron

mental data is displayed. In order to better understand thgasses outside the sphere, only surface excitations remain.
effect of the surface excitations, the surface plasmon excita-

tion probability is shown separately in Fig(. It can

be seen that the surface contribution is negative at certain
energies. These negative contributions represent surface Figure 7 shows the totala) and surface(b) excitation
corrections to the bulk excitation probabifiP!  probabilities for a sphere of 5 nm radius taking into account
(Begrenzungseffet®. The negative terms naturally disap- anisotropy(optical datd When the electron passes through
pear when the electron passes outside the particle. Two dighe center of the sphere, it crosses graphitic layers oriented
tinct surface modes, one at 5.5 and the other at 17 eV, anith the c axis parallel to the optical axis of the microscope
excited [Fig. 6(b)]. When the electron passes through theand the total excitation probabilitjtop curve of Fig. 7a)]
center of the sphere, surface excitation induces two changessembles the one of planar graphite oriented the same way
to the volume excitatiofiFig. 5(c)]. The volume peak at 6.5 [Fig. 5a)]. The only noticeable difference is the broad fea-
eV is broadened and a broad absorption feature at 17 eXire at 17 eV which is due to surface excitatigpsmpare to
appears. As the impact parameter is increased, the total ekig. 7(b)]. When the impact parameter is increased, several
citation probability{ Fig. 6(a)] changes due to the decrease ofimportant changes can be observed. Bher electron vol-

2. Anisotropic case (optical data)
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35¢10° [ T volume plasmon from 27 to 19 and finally to 17 eV when the
[ Impact: electron passes outside the sphere.
I ] The second feature that changes with the impact param-
30 . : e
. - eter is therr electron volume plasmon peak. It is shifted from
i . 7 eV when the electron is passing at 0 nm impact parameter
251 ] to 6 eV when the electron is passing close to the surface of
g [ 0nm ] the particle. At the same time the width of the loss peak is
= ool ] significantly broadened. The shifting and broadening of the
§ r 1 nm ] 7 electron volume plasmon peak are due to the same phe-
2 153 2 nm 1 nomena described above, namely, the change in orientation
o - ] of the graphitic layers, the shorter path inside the sphere, and
C 3nm J the increase of the intensity of the surface excitations as the
101 4nm’] impact parameter is increased.
[ 5 m ] Compared to the simulations carried out within the isotro-
5[ ] pic restriction (Fig. 6), the simulations with the complete
I 6 nm ] anisotropic formalism are different in two important aspects.
(a) 7 nm ] First, in the isotropic case, the volume plasmon resonance
15 20 25 30 35 peak at 23 eV remains at the same energy for any electron
Energy [eV] passing trough the sphere. In the anisotropic case, however,
I S there is an apparent shift from 27 eV when the electron
'lmpad: passes through the center of the sphere to 17 eV for an elec-
I 0nm | tron passing close to the surface. Second, in the anisotropic
15x102 L \/\/ 1 nm- case, ther electron volume plasmon at 7 eV is broadened
1 and shifted to 6 eV with increasing impact parameter. In the
I 1 isotropic case the resonance at 6 eV is broadened, but not
= \/_/\/ znm | shifted.
2 - - In Fig. 8 the excitation probabilities for a sphere of 10 nm
s 10f 3 nm- radius are shown. The difference between the simulations for
% I 1 the spheres of 5 nm and of 10 nm radii is the importance of
5 I 4nm) the surface excitation probability as compared to the volume
S I ] excitation probability. It turns out that the volume contribu-
5-_ ’\/\/\ 5 nmd tion of the sphere of 10 nm radius is twice the volume con-
| | tribution of the sphere of 5 nm radius. At the same time the
'\)3\/\ | surface contribution is only increased by a factor of about 1.5
6nm | [Fig. 8b)]. In Fig. 8a) this is reflected in the fact that the
I 3 1 surface resonance at 17 eV is weaker and that the broadening
®) LA~ 70 of the = plasmon resonance peak is less pronounced as in

5 10 15 20 25 30 35

Fig. 7(a). Figure 8 gives therefore an impression of how the
Energy [eV]

spectrum changes as a function of the impact parameter

FIG. 7. () Total and(b) surface excitation probability for a Without hardly any surface effects.
sphere with a radius of 5 nm obtained with the dielectric tensor of . .
graphite measured by an optical method. 3. Anisotropic case (EELS data)

If EELS data is used for the dielectric tensor, the simula-
ume plasmon resonance at 27 eV for an electron passirigPns of the excitation probability for a sphere of 5 nm radius
through the center appears to shift to 17 eV for an electrofFig. 9) differ in one important aspect from the simulated
passing outside the particle. This shift can be explained byPectra obtained from optical dathig. 7 and Fig. & The
the combined action of several phenomena. First, there is @road absorption figure at 11.5 eV that is visible for any
continuous change of the orientation of the graphitic layerdMPact parameter if optical data is used is much less pro-

towards the case where the electron only crosses graphitfé‘soE“L”SC%d' Inhthe sEectra rTSLi)Iting froT hsilellations with
layers oriented with the axis perpendicular to the optical ata the peak can only be seen If the electron passes

axis of the microscope(impact parameter approaching close to the center of the sphere. When the electron passes

sphere radius The excitation probability for an electron close to the interface, the resonance is completely absent.
passing close to the interface through the particle resembles
therefore the excitation probability shown in Figbbwith a C. Simulations of energy filtered images

resonance at 19 eV due to interband transitions of ¢he The second type of experiments that can be simulated
electrons. Second, at the same time as the orientatiojith our model are energy filtered images. In such images
changes, the path length inside the particle, and hence thfe intensity recorded at a given position is the integral of the
intensity of the volume contribution, decreases and the surexcitation probability over the experimental energy window
face contribution becomes more importdsee Fig. )]. at a given impact parameter. In Fig. 10 line scans simulated
Overall, this leads to an apparent shift of ine- 7 electron  for an multishell fullerene of 5 nm radius are shown for an
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: 35x10° [ Impact

60x10° | [ ]
E 30k ]
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b 25 -
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FIG. 8 @ To_tal and (b) surfac_e excit_ation pr_obabil_ity for a FIG. 9. (a) Total and(b) surface excitation probability for a
sphere with a radius of 10 nm obtained with the dielectric tensor Ots,phere with a radius of 5 nm obtained with the dielectric tensor of
graphite measured by an optical method. graphite measured by EELS.

energy window of 3 eV centered at 7, 17, and 27 eV, respecsyrface excitations, since only the surface resonance modes
tively (optical data The simulations show that the+ 7  can be excited by electrons passing outside the particle. The
electron volume plasmon at 27 eV is dominating in the cenfine scan at 7 eV reflects the evolution of the plasmon

ter of the spherégraphitic planes oriented with the axis  peak. The general tendency is similar to that of the line scan
parallel to the incident electropsThe intensity at 27 eV at 27 eV, although less pronounced. The evolution of this
decreases when the impact parameter is increased becausg)efk is mainly due to the change of orientation in the gra-
both the change in the orientation of the graphitic planes an@hitic layers of the multishell fullerene. Eventhough surface
the dlmlnlshlng thickness as discussed in Sec. IV B 2. At 17effects are present in this energy range, the width of the
eV the intensity inside the particle remains almost COHStanbnergy window is too large to see them. The corrections to
Again, this is due to the effect of a continuous change ofhe volume peak due to surface excitation and the surface
orientation of the graphitic Iayers and the decrease in thiCkexcitation itself are both in the energy window and compen-
ness as the sphere surface is approached. At this energate each other almost completésee also Fig. @)].

however, the decrease in thickness is approximately compen-

sated by the increasing intensity of surface excitations which V. CONCLUSIONS

explains the almost even intensity inside the sphere. Outside

the particle the excitation probability at 17 eV drops less Local dielectric response theory, which has proven suc-
rapidly to zero than at 27 eV. This reveals the presence ofessful in explaining the plasmon losses of isotropic particles
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EELS and multishell fullerenes. This work was partially fi-

50x10° . - . !
nanced by the Swiss National Science Foundation, Grant No.
40 2100-037660.
> 30 APPENDIX
- 20 The first of Maxwell’s inhomogeneous equations relating
the displacement vector to the charge density needs to be
10 solved:
0E: - (1 il 1l 1l 1l ~ — V,'D(I‘,I’O):p(r,ro). (Al)
6 4 2 0 2 4 6 . _ _ _
Impact parameter [nm] Using the phenomenological relation between the displace-

ment vectorD(r,rg) and the electrical fieldE(r,r), this re-
FIG. 10. Line scans across energy filtered images of a multishellation becomes
fullerene of 5 nm radius simulated using the anisotropic model and
optical data. The energy window was 3 eV wide and centered at 7, A eo;(w)E(r,ro) =p(r,ro). (A2)
17, and 27 eV.

. ) The charge density due to the incident electron can be
of different geometry, has been adapted to take into accoulypressed via a Dirac functiofipoint charge p(r,ro)
anisotropy as encountered in the case of nested concentric-_ g5y —r.). To solve this inhomogeneous differential
shelled fullerenes. The calculations have been carried out fQfqyation we introduce the scalar functidrr,r) defined by
both penetrating and nonpenetrating electrons and allow the
simulation of low loss EEL spectra and energy filtered im- E(w)E(r,rg)=—V,®(r,ro). (A3)
ages of this particular form of nanometer-size carbon par-
ticles. The simulations show that the inclusion of the anisotEquation(A2) then becomes
ropy into the model is essential since important changes as
compared to results of the isotropic model are observed. V2D (r,r )=E5(r ro) (Ad)

In order to obtain a result suitable for numerical simula- PO O
tions we have made several assumptions in our approac‘g.orma” . L . .
e X . y this equation is identical to the Laplace equation.
They can be classified into two categories. First, there are th‘F

o . he function®(r,ry), however, is not the Coulomb poten-
approximations made in the frame of the local response . T
. . . . ial, but only a mathematical construction introduced for con-
theory, namely, the neglection of spatial dispersion and o

relativistic effects such as retardation and Cerenkov radia\-/emence' From Eq(A4) it is immediate thatd(r,ro) is

tion. More detailed calculations have shown that for spheregqual to
with radii between 2 and 20 nm the effects of retardation
and of spatial dispersif®® can be neglected. Cerenkov ra- D(r,ro)=—

diation is negligible whene(w)(v/c)?=1, which is gener- 4meo|r 1ol

ally satisfied for metalg¢or semimetalssuch as carbon. Lo- e =

cal dielectric response is therefore adapted for multishell = > > N (2= 8om)
fullerenes with radii between 2 and 20 nm. The second cat- 4meg S0 m=o '

egory of assumptions arises from the description of the di-

electric properties of multishell fullerenes based on the di- X P1m[ €08 6)]P| m €O o) Jcot Mep)

electric tensor of planar graphite. As a consequence, the 1(r\!

effect of curvature on the local dielectric response is ne- r_(r_) for r<rg,

glected and the possibility that the electronic properties of «{ ° Ol (A5)
graphite could change if it is composed of very few layers is 1 Mo for r>r

excluded. r 0

The possibility to define a certain range of particle size in i _ .
which local dielectric response theory has proven validVhere Nim=(l—m)!/(l +T1)!' With this expression for
opens a way to experimentally investigate the influence of?(":Fo), the electric fielde #(r,ro) for a point charge in a
the second category of assumptions. This is highly interestnfinitely large anisotropic medium can now be calculated
ing since they concern the intrinsic electronic properties ofSiNg the gradient in spherical coordinates:
the multishell fullerenes. A detailed analysis of EEL data of

multishell fullerenes of radii between 2 and 20 nm based on 3
our simulations could therefore give important information €/(w)EMP
on how the intrinsic electronic properties of this particular ” ' 19 e
form of carbon differ from those of planar graphite. € (0)ERP | = - T T (AB)
. r oo 47T€0|r_r0|
el(w)EIg'p 1 J
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