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Electron energy loss spectroscopy in a high-resolution transmission electron microscope has recently been
used with success to characterize the electronic properties of closed cage nanometer-size graphitic particles. In
the plasmon region, the experimental data reveal interesting size-dependent variations, which are not yet fully
understood. The difficulties encountered in the interpretation of the spectra are principally due to the lack of a
complete theoretical treatment of the anisotropic dielectric response in nanometer-size particles. In order to
obtain a better understanding of the experimental data we propose a model based on nonrelativistic local
dielectric response theory for electrons penetrating through a nested concentric-shell fullerene or the so-called
‘‘carbon onion.’’ The anisotropy of the electronic properties of the sphere is taken into account via the
frequency-dependent dielectric tensor of graphite. The model can be applied to simulate electron energy loss
spectra as well as line scans through energy filtered images and allows thus a direct comparison to experimen-
tal data.@S0163-1829~98!04724-9#
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I. INTRODUCTION

Since the discovery of the fullerenes by Krotoet al.1 a
great variety of molecular carbon structures such as m
shell carbon nanotubes,2,3 multishell fullerenes~also called
nested concentric-shelled fullerens or ‘‘carbon onions’!,4

and single shell carbon nanotubes5,6 have been synthesized
The study of the physical properties of the fullerenes
rapidly developed into an important field of research, mai
because it is possible to produce macroscopic quantitie
pure samples.7 The investigation of the properties of carbo
nanotubes and multishell fullerenes has in contrast pro
more difficult. Even though important progress has be
made recently,8–10 samples always contain small amounts
impurities, which hamper the characterization of the p
material by methods using macroscopic amounts of samp
In spite of this problem, a lot of effort has been put into t
determination of the physical properties of carbon nanotu
and multishell fullerenes, stimulated by theoretical calcu
tions which predict interesting geometry-depend
magnetic11,12 or electronic properties.13–23

For samples containing impurities, experimental meth
allowing the investigation of the physical properties on
nanometer-scale are of interest. With methods such as
emission,24 atomic force,25 or scanning tunnelling
microscopy,26 some insight into the band structure of carb
nanostructures has recently been achieved. Another pow
method allowing the investigation of the electronic prop
ties of very small amounts of unpurified samples is elect
energy loss spectroscopy~EELS! in a high-resolution trans
mission electron microscope~HRTEM!. The high spatial
570163-1829/98/57~24!/15599~14!/$15.00
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resolution of the HRTEM allows one to select one particle
interest and to determine its shape and dimension. Furt
more, since the electron probe can be focused to a very s
diameter, the electronic properties of one single particle
be measured, even as a function of the impact parameter.
technique gives complementary information on those t
can be obtained by local probe microscopy. Low loss spe
~losses between 5 and 40 eV! contain information on the
collective excitation of the valence electrons~plasmons! and
core loss spectra~losses between 40 eV and several ke!
contain information on the excitation of the core electron

Several experimental studies27–32 on carbon nanostruc
tures by means of EELS have been reported so far and s
dependent variations of the electronic properties have b
observed. By comparison with band structure calculation
was possible to relate the variations in theK-edge spectra of
nanotubes of different size to the curvature of the graph
layers.32 In the plasmon loss region, however, size-induc
variations are still not well understood. Even though seve
models have been proposed, the comparison of the exp
mental data with simulations remains difficult. Simulatio
based upon a hydrodynamic model for tubes and multis
fullerenes17,18,33give information about the plasmon dispe
sion relation, which cannot be measured with EELS in
conventional HRTEM. Density functional theory calcul
tions have been carried out for spherical particles22 as well as
for tubes,13–16,23but simulations for more than two concen
tric layers have not been reported yet, and furthermore
excitation of the plasmon modes by electrons has not b
treated. Finally, classical dielectric response theory19–21 has
been used to calculate the excitation probability of plasm
15 599 © 1998 The American Physical Society
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15 600 57THOMAS STÖCKLI et al.
excited by electrons, however, only for a special ca
namely, for nonpenetrating electrons.

We present here a complete treatment of the excitatio
plasmons by high-energy electrons in multishell fulleren
based on classical dielectric response theory. The m
takes into account the local anisotropy of the dielectric pr
erties of such particles and will allow a detailed comparis
with experimental data. Models developed within the fra
of classical dielectric response theory34 have been used with
success to interpret plasmon losses in electron energy
spectroscopy. Such models predict correctly the resona
energies and the intensities of the surface and volume p
mon excitations for different geometries such as thin slab35

spheres,36–39 layered spheres,38,40,41spheres halfway embed
ded in a supporting medium,42,43 and cylindrical
channels44–47 and explain size-dependent variations of t
peak position. The electronic properties of the material co
posing the nanoparticle are taken into account via
frequency-dependent dielectric function. For the case
nested concentric-shelled fullerens, the existing calculati
for penetrating electrons39 cannot be used directly since th
dielectric function was taken to be isotropic. Multishe
fullerenes, however, are composed of concentric spheric
curved graphene sheets and it must be assumed that the
tronic properties in the directions parallel or perpendicula
the sheets are different, as in the case of planar graphit
the following sections, the basic ideas of the classical die
tric response theory taking into account this anisotropy
presented~Sec. II! and the expression of the plasmon ex
tation probability is derived~Sec. III!. In Sec. IV simulations
of different experiments that can be carried out in a tra
mission electron microscope equipped with an energy fi
are presented and discussed.

II. CLASSICAL ELECTRON ENERGY LOSS THEORY

A. General considerations

Due to the Coulomb interaction, the electrons of a TE
probe are subject to both elastic and inelastic scatterin
they pass through the sample. EELS consists in measu
and analyzing the energy loss of the inelastically scatte
electrons. In this paper, we focus on the analysis of low l
EEL spectra~up to 40 eV!, in which the energy loss can b
attributed to the excitation of plasmons, either in the bulk
at the surface of the particle.

An incident electron is treated as a classical particle. I
typical EELS configuration, an electron flux of about 1012

electrons per second passes through the sample. Give
high speed of the electrons, the distance between succe
electrons is large enough that the interaction between suc
sive scattering events can be neglected.48 Plasmon losses ca
therefore be treated as a single electron scattering proc
As the electron moves along its trajectory, it loses parts o
kinetic energy since the potential distributionV(r ,t) in the
system probe-electron particle generates an electric
E(r ,t) which tends to slow down the electron. The potent
can be determined from the Maxwell equations so that
work done by the forceF(r ,t) acting on the electron, an
thus the energy loss can be evaluated:
;
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DE5E
trajectory

F~x,t ! dx5E
trajectory

~2e!E~x,t ! dx. ~1!

For the solution of the Maxwell equations the pheno
enological relation between the electric fieldE(r ,t) and the
displacement fieldD(r ,t) must be written. Within this mac-
roscopic formalism, the electronic properties of the differe
media of the system are taken into account via their comp
dielectric tensor. The dielectric tensor is known as a funct
of frequency and wave vector so that it is necessary to so
the Maxwell equations in frequency space. For this rea
the Fourier transform of the electric field is introduced in E
~1!.

DE52
e

2pEtrajectory
S E

2`

`

e2 ivtE~x,v! dv D dx ~2!

Note that we adopt the following convention for the Four
transform from frequency into time space and from time in
frequency space:

A~r ,t !5
1

2pE2`

`

e2 ivtA~r ,v! dv, ~3a!

A~r ,v!5E
2`

`

eivtA~r ,t ! dt. ~3b!

Since the relative change in energy and momentum follo
ing the interaction with the sample is very small, the electr
with a kinetic energy typically higher than 100 keV can
assumed to move at constant velocity on a straight line
that the path integral in Eq.~2! can be evaluated. The wor
done by the electric field is equivalent to the energy loss
the electron and can be related to the excitation probab
via the relation

DE5E
0

`

\v
dP~v!

dv
dv. ~4!

B. Determination of the potential V„r, v…

In classical dielectric theory, the response of a noniso
pic medium to an external electric field is described via
dielectric tensorẽ(r ,v):

D~r ,t !5e0E
2`

`

dt8E
2`

`

d3r 8 ẽ~r2r 8,t2t8!E~r 8,t8!.

~5!

This homogeneous description of the medium is valid if t
wave length of the excitation generated by the probe e
trons is greater than the interatomic distance. This condi
is generally satisfied for plasmons, since their resonance
ergies are located at energies below 40 eV.

For mathematical convenience, most of the analysis
low loss EEL spectra in terms of classical dielectric theory
done assuming local response of the dielectric medium
spite of this simplification the model has had considera
success in explaining energy loss spectra of small particle
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57 15 601PLASMON EXCITATIONS IN GRAPHITIC CARBON SPHERES
different geometries. For this reason, we assume local
sponse in the following calculations. The dielectric tensor
this case takes the form

ẽ~r2r 8,v!5d~r2r 8!ẽ~v! ~6!

and Eq.~5! written in frequency space becomes

D~r ,v!5e0E
2`

`

d3r 8 ẽ~r2r 8,v!E~r 8,v!5e0ẽ~v!E~r ,v!.

~7!

In the simpler isotropic case, the Maxwell equations
gether with the phenomenological relation between the e
tric and the displacement field@Eq. ~7!# and with the defini-
tion of the electric potentialE(r ,v)52¹V(r ,v) lead to the
following expression for the potential distribution34,35 which
is needed to calculate the electron energy loss probab
@Eq. ~2!#:

¹2V~r ,v!52
1

e0e~v!
r~r ,v!. ~8!

If the medium is anisotropic, Maxwell equations lead to t
following expression determining the electric potential:

¹•@e0ẽ~v!¹V~r ,v!#52r~r ,v!. ~9!

In Eqs. ~8! and ~9!, e(v) and ẽ(v) are the dielectric
function and the dielectric tensor, respectively.r(r ,v) is the
charge density due to the probe electron written in freque
space. If the electron is moving at constant velocityv at a
given impact parameterx0 along thez axis,r(r ,v) is given
by

r~r ,v!52
e

v
d~x2x0!d~y!eivz/v. ~10!

The general solution of Eqs.~8! or ~9! is a linear combi-
nation of the homogeneous and of the particular solution
the equation. In EELS problems, the particular solution r
resents the direct potential and is therefore responsible
the volume plasmon, whereas the homogeneous term re
sents the induced potential and is responsible for the sur
loss. In our approach, the two contributions to the ene
loss probability are treated separately. First, we calculate
induced potential and the surface excitation probability~Sec.
III B !. In this case, Eqs.~2! and~4! can be combined to yield
the following expression for the surface plasmon excitat
probability:34

dPsurf~v!

dv
5

e

p\v2E2`

`

dz8E
2`

`

dz

3Im$eiv~z82z!/vVind~r ,r0!ur5~x0,0,z8!%.

~11!

Vind(r ,r0) is the induced electric potential at positionr
caused by a stationary electron located at positionr0
5(x0,0,z). In other terms,Vind(r ,r0) is the homogeneou
part of the solution of
e-
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¹2V~r ,r0!5
e

e0e~v!
d~r2r0! ~12!

if the electron is traveling in a isotropic medium and of

¹•@ ẽ~v!¹V~r,r0!#5
e

e0
d~r2r0! ~13!

if it is in an anisotropic medium. It is important to note th
Vind(r ,r0) depends onv. The potential distribution in spac
is a quasielectrostatic potential for each point along the
jectory of the incident electron and the integral overz is a
sum over the contributions of all the points along the traj
tory of the incident electron.

In the second step, we calculate the volume excitat
probability~Sec. III C!. It would be possible to derive it from
the inhomogeneous part of the solutions of Eqs.~8! and ~9!
eliminating DE in Eqs. ~2! and ~4! and using the fact tha
E(r ,t)52¹V(r ,t). It has, however, turned out to be easi
to adapt the results of Wessjohann,49 who calculated the en
ergy loss probability for uniaxial crystals, to our geometry

III. DETERMINATION OF THE SURFACE AND VOLUME
PLASMON EXCITATION PROBABILITY

A. Modeling the dielectric properties of multishell fullerenes

The multishell fullerenes that we want to model consist
concentric spherical graphene shells with a central cavi4

For mathematical convenience we make abstraction of
inner hollow and assume that the shells continue to the c
ter of the sphere. Surface excitations on the inner surface
coupling modes between the inner and the outer surface
therefore ignored. This is an approximation which is reas
able at least for large multishell fullerenes with a small inn
cavity, since due to screening, the effects of the inner surf
can be expected to be small. A second consequence of
simplification is that the volume contribution to the plasm
excitation probability is overestimated for electrons pass
through the center of the sphere. This overestimation co
however, easily be corrected by adapting the integration o
the electron trajectory~see Sec. III C!.

The model of the dielectric response of a multish
fullerene is based on the dielectric tensor of planar graph
This tensor takes the form of a diagonal matrix with tw
different components along the natural cristallographic dir
tions as shown in Fig. 1~a!:

ẽ~v!5e'~v!exx1e'~v!eyy1e i~v!ezz. ~14!

e'(v) ande i(v) describe the dielectric response of graph
for an electric field perpendicular and parallel to thec axis,
respectively. Several possible ways of describing the die
tric properties of nested concentric-shelled fullerenes ba
on the dielectric tensor of planar graphite have been p
posed and discussed by Lucas.20,21 From purely geometric
considerations, the projection of the dielectric tensor of p
nar graphite into spherical coordinates

ẽ~v!5e i~v!err 1e'~v!euu1e'~v!eww ~15!

is most convenient for multishell fullerenes@Fig. 1~b!# and is
therefore used in the following calculations.
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B. Surface plasmon excitation

The problem consists in finding the solution of Eqs.~12!
and ~13! for the geometry shown in Fig. 2. The sphere
radiusa is at the origin of the Cartesian coordinate syst
xyz. The probe electron, located at positionr0, is param-
etrized in spherical coordinatesr 0, u0, andw0. Due to sym-
metry,w0 can be chosen to be equal to 0. Since it is assum
that the electron is moving on a straight line at an imp
parameterx0 from thez axis, r 0 andu0 can be expressed a
a function of the impact parameter andz: r 05(z21x0

2)1/2

and cos(u0)5z/r0.
For the determination of the potential, the case where

electron is outside the sphere and the case where the ele
is inside the sphere need to be treated separately. The p
tials for either case are denoted asVin(r ,r0) andVout(r ,r0),
respectively.

FIG. 1. Dielectric tensor for~a! planar graphite and~b! for the
model of a multishell fullerene. For the latter case, the dielec
tensor of graphite is projected into spherical coordinates.

FIG. 2. Geometric definitions for the multishell fullerene geo
etry. The electron, located at positionr0, is traveling at constan
velocity at an impact parameterx0 from the origin in the negativez
direction. In spherical coordinates, its position is given by the
rametersr 0, u0, andw0.
f

d
t

e
ron
en-

1. Potential distribution for probe electron outside the sphere

The equations that determine the potential distribution
an electron traveling outside the sphere are

¹2Vr .a
out ~r ,r0!5

e

e0
d~r ,r0! ~16a!

for r .a, and

¹•@ ẽ~v!¹Vr ,a
out ~r ,r0!#50 ~16b!

for r ,a. The general solution of Eq.~16a! can be written as
the sum of homogeneous solutionVout ,ind(r ,r0) ~induced po-
tential! and a particular solution of the inhomogeneous eq
tion Vout ,p(r ,r0) ~direct potential!

Vr .a
out ~r ,r0!5Vr .a

out,ind~r ,r0!1Vr .a
out,p~r ,r0!. ~17!

Equation~16a! with the inhomogeneous term representing
point charge located atr0 is frequently encountered in clas
sical electrodynamics and its particular solution is

Vr .a
out,p~r ,r0!52

e

4pe0ur2r0u
. ~18!

For our problem, this solution is rewritten in terms of sphe
cal harmonics.50,51 For r ,r 0

Vr .a
out,p~r ,r0!52

e

4pe0r 0
(
l 50

`

(
m50

l

Nl ,m~22d0,m!S r

r 0
D l

3Pl ,m@cos~u!#Pl ,m@cos~u0!#cos~mw!, ~19!

where

Nl ,m5
~ l 2m!!

~ l 1m!!
.

If r .r 0, r andr 0 are exchanged.Pl ,m in Eq. ~19! denotes the
associated Legendre function.

The homogeneous solution of Eq.~16a! is written in the
form of an expansion into spherical harmonics with coe
cientsAl ,m that will be determined by the boundary cond
tions

Vr .a
out,ind~r ,r0!5(

l 50

`

(
m50

l

Al ,m~22d0,m!

3S a

r D l 11

Pl ,m@cos~u!#cos~mw!. ~20!

The solution of the homogeneous equation describing
potential in the anisotropic medium@Eq. ~16b!# can also be
written in the form of an expansion into spherical harmon
similar to Eq.~20!. In fact, in spherical coordinates, the ra
dial equation is found to be

r 2
d2

dr2
V~r !12r

d

dr
V~r !2

e'~v!

e i~v!
l ~ l 11!V~r !50.

~21!

If the effective azimuthal quantum numberu defined by

c

-
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u~u11!5
e'~v!

e i~v!
l ~ l 11! ~22!

is introduced, Eq.~21! becomes identical to the radial equ
tion in the isotropic case. The solution of the homogene
equation in the anisotropic case can therefore
obtained from the solution of the isotropic case@Eq. ~20!#
by replacing the orbital numberl in Eq. ~20! by ul

1(v)
51/2$211@114l ( l 11)e'(v)/e i(v)#1/2%,20,21 so that
Vout, ind(r ,r0) becomes

Vr ,a
out,ind~r ,r0!5(

l 50

`

(
m50

l

Bl ,m~22d0,m!

3S r

aD ul
1

~v!

Pl ,m@cos~u!#cos~mw!. ~23!

As in Eq. ~20!, the coefficientsBl ,m are unknown and are
going to be determined by the boundary conditions.

The homogeneous and particular solutions of Eqs.~16a!
and~16b! being known, the general solutions can be writt

Vr .a
out ~r ,r0!5(

l 50

`

(
m50

l

Al ,m~22d0,m!

3S a

r D l 11

Pl ,m@cos~u!#cos~mw!

2
e

4pe0r 0
(
l 50

`

(
m50

l

Nl ,m~22d0,m!

3S r

r 0
D l

Pl ,m@cos~u!#Pl ,m@cos~u0!#cos~mw!,

~24a!

Vr ,a
out ~r ,r0!5(

l 50

`

(
m50

l

Bl ,m~22d0,m!

3S r

aD ul
1

~v!

Pl ,m@cos~u!#cos~mw!. ~24b!

The boundary conditions, namely, that the potential a
the normal component of the displacement field must be c
tinuous at the sphere surface

Vr .a
out ~r ,r0!ur 5a5Vr ,a

out ~r ,r0!ur 5a ~25a!

and

dVr .a
out ~r ,r0!

dr
U

r 5a

5e i~v!
dVr ,a

out ~r ,r0!

dr
U

r 5a

~25b!

lead to the following expression for the coefficientsAl ,m and
Bl ,m :

Al ,m5 f l ,m

l 2e i~v!ul
1~v!

e i~v!ul
1~v!1~ l 11!

, ~26a!
s
e

d
n-

Bl ,m5 f l ,m

2l 11

e i~v!ul
1~v!1~ l 11!

, ~26b!

where

f l ,m52
e

4pe0r 0
Nl ,mPl ,m@cos~u0!#S a

r 0
D l

. ~26c!

2. Potential distribution for probe electron inside the sphere

The equations that govern the potential distribution wh
the electron is traveling inside the sphere are

¹2Vr .a
in ~r ,r0!50 ~27a!

for r .a and

¹•@ ẽ~v!¹Vr ,a
in ~r ,r0!#52

1

e0
r~r ,r0! ~27b!

for r ,a. The solution of the homogeneous Eq.~27a! can be
written in terms of spherical harmonics with coefficien
Cl ,m that are determined by the boundary conditions

Vr .a
in ~r ,r0!5(

l 50

`

(
m50

l

Cl ,m~22d0,m!

3S a

r D l 11

Pl ,m@cos~u!#cos~mw!. ~28a!

The solution of Eq.~27b! can, as before, be written as th
sum of the homogeneous and the inhomogeneous soluti

Vr ,a
in ~r ,r0!5Vr ,a

in,p ~r ,r0!1Vr ,a
in,ind~r ,r0!

5Vr ,a
in,p ~r ,r0!1(

l 50

`

(
m50

l

Dl ,m~22d0,m!

3S r

aD ul
1

~v!

Pl ,m@cos~u!#cos~mw!, ~28b!

where we have directly introduced the spherical harmon
expansion for the homogeneous term. At this point it has
be noted that it is not necessary to know explicitly the e
pression ofVin,p(r ,r0) to determine the surface plasmon e
citation probability@Eq. ~11!#. In fact, only the induced po-
tential is needed for the evaluation of Eq.~11!. The
coefficientsCl ,m andDl ,m which determine the induced po
tential can be calculated most easily via the electric fi
rather than the potential. In terms of the electric field t
solution of Eqs.~27a! and ~27b! are

Er .a
in ~r ,r0!52¹Vr .a

in ~r ,r0! ~29a!

and

Er ,a
in ~r ,r0!52¹Vr ,a

in ~r ,r0!

52¹Vr ,a
in,p ~r ,r0!2¹Vr ,a

in,ind~r ,r0!

5Er ,a
in,p ~r ,r0!2¹Vr ,a

in,ind~r ,r0!. ~29b!
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Er ,a
in,p (r ,r0) is the electric field of a point charge in a infinit

anisotropic medium described by the dielectric tensor gi
in Eq. ~15!. For r .r 0 it can be found to be~see Appendix!

Er ,a
in,p ~r ,r0!5

e

4pe0
(
l 50

`

(
m50

l

Nl ,m~22d0,m!Pl ,m@cos~u0!#

3H 2
l 11

e i~v!

r 0
l

r l 12
Pl ,m@cos~u!#cos~mw!er

1
1

e'~v!

r 0
l

r l 12

]Pl ,m@cos~u!#

]u
cos~mw!eu

2
1

e'~v!

r 0
l

r l 12

1

sin~u!

3Pl ,m@cos~u!#msin~mw!ewJ . ~30!

The boundary conditions involving the explicit expressi
of the potential can now be replaced by the continuity of
tangential component of the electric field and the continu
of the normal component of the displacement vector

Er ,a
in ~r ,r0!•euur 5a5Er .a

in ~r ,r0!•euur 5a , ~31a!

Er ,a
in ~r ,r0!•ewur 5a5Er .a

in ~r ,r0!•ewur 5a , ~31b!
r
ia
ac
n

e
y

e i~v!~Er ,a
in ~r ,r0!•er !ur 5a5Er .a

in ~r ,r0!•er ur 5a ,
~31c!

whereE
r
.
,a

in
(r ,r0)•er , E

r
.
,a

in
(r ,r0)•eu andE

r
.
,a

in
(r ,r0)•ew are

the components in spherical coordinates of the electric fi
inside and outside the particle, respectively. Using th
boundary conditions, the coefficientsCl ,m andDl ,m that de-
termine the homogeneous solution of the problem are
duced:

Cl ,m5gl ,m

e i~v!ul
1~v!1~ l 11!e'~v!

e'~v!@e i~v!ul
1~v!1 l 11#

,

Dl ,m5gl ,m

~ l 11!~e'~v!21!

e'~v!@e i~v!ul
1~v!1 l 11#

, ~32a!

where

gl ,m52
e

4pe0a
Nl ,mPl ,m@cos~u0!#S r 0

a D l

. ~32b!

3. Surface plasmon excitation probability

In the preceding section, the potential was calculated
any possible configuration. Now, the expression for the
citation probability@Eq. ~11!# needs to be evaluated. Takin
into account the different functions of the potential in t
different space regions, the following expression is obtain
dPsurf~v!

dv
5

e

p\v2
ImF H E2`

2z0
dz e2 ivz/vS E

2`

2z0
dz8 eivz8/vVr .a

out,ind~r ,r0!1E
2z0

z0
dz8 eivz8/vVr .a

in,ind~r ,r0!

1E
z0

`

dz8 eivz8/vVr .a
out,ind~r ,r0! D 1E

2z0

z0
dz e2 ivz/vS E

2`

2z0
dz8 eivz8/vVr ,a

out,ind~r ,r0!1E
2z0

z0
dz8 eivz8/vVr ,a

in,ind~r ,r0!

1E
z0

`

dz8 eivz8/vVr ,a
out,ind~r ,r0! D 1E

z0

`

dz e2 ivz/vS E
2`

2z0
dz8 eivz8/vVr .a

out,ind~r ,r0!1E 2z0

z0 dz8 eivz8/vVr .a
in,ind~r ,r0!

1E
z0

`

dz8 eivz8/vVr .a
out,ind~r ,r0! D J U

r5~x0,0,z8!
G , ~33!
where the integration limitz0 is given byz05(a22x0
2)1/2 if

x0,a andz050 if the electron is passing outside the sphe
(x0.a). After substitution of the expressions of the potent
and some algebra, the excitation probability of the surf
plasmon becomes

dPsurf~v!

dv
52

e2

4p2e0\v2a
(
l 50

`

(
m50

l

Nl ,m~22d0,m!

3Im@Ql ,m~v!#. ~34a!

For l 1m even,Ql ,m(v) is given by
e
l
e

Ql ,m~v!54a l ,m~v!~Re@F1,l~v!#!2

12b l ,m~v!Re@F1,l~v!#F2,l~v!

12g l ,m~v!Re@F1,l~v!#F3,l~v!1s l ,m~v!

3@F2,l~v!#F3,l~v!, ~34b!

and for l 1m odd

Ql ,m~v!54a l ,m~v!~ Im@F1,l~v!#!2

22ib l ,m~v!Im@F1,l~v!#F2,l~v!

12ig l ,m~v!Im@F1,l~v!#F3,l~v!1s l ,m~v!

3@F2,l~v!#F3,l~v!. ~34c!
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The expression of the surface plasmon excitation pr
ability @Eq. ~34a!# incorporates the termsa l ,m(v), b l ,m(v),
g l ,m(v), ands l ,m(v) containing the different components o
the dielectric tensor. They are defined as

a l ,m~v!5
l 2e i~v!ul

1~v!

e i~v!ul
1~v!1 l 11

, ~35a!

b l ,m~v!5
2l 11

e i~v!ul
1~v!1 l 11

, ~35b!

g l ,m~v!5
~ l 11!e'~v!1e i~v!ul

1~v!

e'~v!@e i~v!ul
1~v!1 l 11#

, ~35c!

s l ,m~v!5
~ l 11!~e'~v!21!

e'~v!@e i~v!ul
1~v!1 l 11#

. ~35d!

The different integrals appearing in Eq.~33! can be simpli-
fied so that onlyF1,l(v), F2,l(v), and F3,l(v) defined in
Eqs.~36a!–~36c! remain:

F1,l~v!5E
2`

2z0
dzS a

r D l 11

Pl ,m@cos~u!#e2 ivz/v, ~36a!

F2,l~v!5E
2z0

z0
dzS r

aD ul
1

~v!

Pl ,m@cos~u!#e2 ivz/v,

~36b!

F3,l~v!5E
2z0

z0
dzS r

aD l

Pl ,m@cos~u!#eivz/v. ~36c!

It is worth noticing that whene i(v)5e'(v) ~isotropic case!
we find from Eqs.~34a!–~36c! the results of Bausell39 ~elec-
tron passing through an isotropic sphere! and Ferrell38 or
Echenique37 ~electron passing close to an isotropic spher!.
Furthermore the polarizability of a nested concentric-she
fullerene calculated by Lucas20,21is obtained from our results
if one assumes that the electron passes outside the sph

C. Volume plasmon excitation

EELS measurements on uniaxial optical systems suc
planar graphite have been carried out by Venghaus52 and
independently by Zeppenfeld.53–55 The interpretation of the
measurements, reviewed by Danielset al.,56 is based on the
work of Hubbard,57,58 Tosatti,59 and Wessjohann.49 For the
determination of the volume plasmon excitation probabi
of an electron passing through an uniaxial crystal, the m
mentum transferred from a probe electron to the sam
plays an important role. In typical TEM geometry, with a
uniaxial crystal oriented in a way that itsc axis is inclined by
an anglea with respect to the optical axis of the microscop
the transferred momentum\q can be expressed as a functio
of the scattering angleu and the polar anglew ~see Fig. 3!.
The differential excitation probability as a function of th
anglesu andw can then be calculated. Since only electro
scattered within a angle smaller than the cutoff angleuc
-

d

e.

as

-
le

,

s

~Ref. 60! contribute to the energy loss spectrum, the exc
tion probability per unit path length along the incident bea
direction can be written as

d2Pvolume~v!

dvdz
5

e2

4p3e0\v2E0

uc
uduE

0

2p

dw

3ImS 2q0
2

qp
2e'~v!1qc

2e i~v!
D . ~37!

qc andqp are the projection ofq onto the coordinate system
in which the dielectric tensor is diagonal, i.e., on the u
vector parallel to thec axis of graphite and onto the plan
perpendicular to thec axis, respectively~see Fig. 3!. The two
projections can be expressed in terms of the anglesu, w, and
a:

qp
25q0

2$@uEsin~a!2ucos~w!cos~a!#21@usin~w!#2%,

~38a!

qc
25q0

2$@uEcos~a!2ucos~w!sin~a!#2%. ~38b!

uE in Eqs.~39a! and ~39b! is given by

uE5
v

2pvq0
. ~39!

Assuming local response, the energy loss of an elec
penetrating through a graphitic carbon sphere can be ca
lated using Eq.~37!. On each unit path lengthdz of the
trajectory, the electron travels through a infinitely thin plan
graphitic crystal with itsc axis oriented radially at the posi
tion of the electron, as shown in Fig. 4.

FIG. 3. Momentum transfer components for a TEM electr
passing through a uniaxial crystal Thec axis of the crystal is tilted
by an anglea with respect to the incident electron beam. Before t
scattering event, the electron has a momentum\q0. During the
scattering event, it transfers a momentum\q to the crystal and is
deviated by the scattering angleu with respect to its incident direc
tion and by the azimuthal anglew.
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The anglea between thec axis of the oriented piece o
graphite and the trajectory of the electron depends on
position of the electron. If the position is parametrized byz,
then

cos~a!5
z

Ax0
21z2

, ~40a!

and

sin~a!5
x0

Ax0
21z2

. ~40b!

The volume plasmon excitation probability of an electr
penetrating a multishell fullerene can be obtained from
~37! by numerical integration over the trajectory of the ele
tron:

dPvolume~v!

dv
5E

2z0

z0
dzS d2Pvolume~v!

dvdz D , ~41!

where z0 is given as before byz05(a22x0
2)1/2. With the

explicit expression of the surface and volume plasmon e
tation probabilities@Eqs.~34a!–~34c! and~41!# the total plas-
mon excitation probability is known:

dPtotal~v!

dv
5

dPvolume~v!

dv
1

dPsurf~v!

dv
. ~42!

IV. RESULTS

A. General considerations

The expression of the plasmon excitation probability o
tained in the previous paragraphs allows us to simulate
kinds of measurements that can be performed in an
equately equipped TEM. First, EEL spectra can be calcula
for electrons passing at a given position when the imp
parameter is kept fixed. Second, line scans across en
filtered images recorded at a given energy can be obta
when the energy loss probability is integrated over an ene
window.

Excitation probabilities have been calculated using
MATHEMATICA software package of Wolfram Research In
We took into account neither the beam profile nor the ene
spread of the probe electrons. Depending on the performa
of the microscope, experimental spectra will therefore

FIG. 4. Model for the determination of the volume plasm
excitation probability of an electron penetrating a multish
fullerene. On the infinitesimal path intervaldz the electron travels
through a uniaxial graphitic layer with itsc axis oriented radially at
the position of the electron. The orientation of the graphitic layer
shown for two different positions of the electron.
e
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broadened in comparison to our results. The simulati
have been carried out for 100 keV beam electrons and f
cutoff angleuc of 50 mrad. The summation over the excit
tion modes has been carried out up tol 510. Contributions of
higher order modes turned out to be very small and did
significantly change position or intensity of the plasmon lo
peaks.

The dielectric tensor of planar graphite needed for
description of the electronic properties of the multish
fullerene is taken from Ref. 61. There is, however, so
discrepancy between the dielectric response of planar gr
ite for an electric field parallel to thec axis obtained from
optical measurements62,63and from EELS measurements.52,62

In Figs. 5~a! and 5~b! we compare EEL spectra of plana
graphite for two orientations simulated using Eq.~37! and
the different sets of data of the dielectric tensor. In Fig. 5~a!
the graphite is oriented with itsc axis parallel to the optica
axis of the microscope (a50). The dotted line is obtained

l

s

FIG. 5. Volume plasmon excitation probability per unit pa
length of planar graphite oriented with thec axis~a! parallel and~b!
perpendicular to the optical axis of the microscope. The solid~dot-
ted! curve is obtained from the dielectric tensor using EELS~opti-
cal! data. Graph~c! represents the volume plasmon excitation pro
ability using an effective dielectric function as explained in the te
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57 15 607PLASMON EXCITATIONS IN GRAPHITIC CARBON SPHERES
from optical data and the solid line from EELS data. T
peaks at 7 and 27 eV are due to the collective excitation
the p electrons and thes1p electrons, respectively. It ca
be seen that for this orientation, the simulations with the t
sets of data give almost identical results. In Fig. 5~b! the
graphite is oriented with itsc axis perpendicular to the elec
tron beam (a5p/2). Again, the dotted line is obtained from
optical data and the solid one from EELS data. The abso
tion that can be observed between 15 and 20 eV is attrib
to the excitation of interband transitions involving the thr
s electrons per carbon atom.64 For this orientation, there is a
significant difference between the curves obtained from
different data. The peak at 11 eV that is present in the sim
lations with optical data is completely absent in the cu
obtained from EELS data.

As a starting point for the discussion of our results
have simulated the excitation probability of an isotrop
sphere assuming that the electronic properties of a multis
fullerene can be described by an effective dielec
function65 eeff(v)5(1/3)e i(v)1(2/3)e'(v) ~Sec. IV B 1!.
Figure 5~c! shows the volume plasmon excitation probabil
per unit path length obtained from Eq.~37! using e i(v)
5e'(v)5eeff(v) with optical and with EELS data. In eithe
case, three absorption peaks can be distinguished. Due t
mixing of the two components of the dielectric tensor
graphite, it is, however, not possible to associate them w
any precise excitation mechanism. The main difference
tween the curves obtained from the two sets of data is
the absorption at 6.5 eV is less pronounced for EELS dat
compared to optical data and that the small resonance at
eV in the case of EELS data is more intense and shifted to
eV in the case of optical data.

The simulated spectra presented in Secs. IV B 1
IV B 2 have been calculated using optical data. Howev
since the disagreement over the dielectric tensor has not
settled up to now, we have also simulated spectra us
EELS data~Sec. IV B 3!.

B. Simulation of EEL spectra

1. Isotropic case (optical data)

Figure 6 shows the plasmon excitation probabilities o
tained for electrons passing at different impact parame
through an isotropic sphere of 5 nm radius described by
effective dielectric function~optical data!. In Fig. 6~a! the
total excitation probability which can be compared to expe
mental data is displayed. In order to better understand
effect of the surface excitations, the surface plasmon exc
tion probability is shown separately in Fig. 6~b!. It can
be seen that the surface contribution is negative at cer
energies. These negative contributions represent sur
corrections to the bulk excitation probability47,61

~Begrenzungseffect66!. The negative terms naturally disap
pear when the electron passes outside the particle. Two
tinct surface modes, one at 5.5 and the other at 17 eV,
excited @Fig. 6~b!#. When the electron passes through t
center of the sphere, surface excitation induces two chan
to the volume excitation@Fig. 5~c!#. The volume peak at 6.5
eV is broadened and a broad absorption feature at 17
appears. As the impact parameter is increased, the tota
citation probability@Fig. 6~a!# changes due to the decrease
of
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the volume contribution and to the increase of the surf
contribution. The consequence is a further broadening of
6.5 eV volume resonance peak and an increase of the in
sity of the 17 eV surface peak. Finally, when the electr
passes outside the sphere, only surface excitations rema

2. Anisotropic case (optical data)

Figure 7 shows the total~a! and surface~b! excitation
probabilities for a sphere of 5 nm radius taking into acco
anisotropy~optical data!. When the electron passes throug
the center of the sphere, it crosses graphitic layers orien
with the c axis parallel to the optical axis of the microscop
and the total excitation probability@top curve of Fig. 7~a!#
resembles the one of planar graphite oriented the same
@Fig. 5~a!#. The only noticeable difference is the broad fe
ture at 17 eV which is due to surface excitations@compare to
Fig. 7~b!#. When the impact parameter is increased, sev
important changes can be observed. Thes1p electron vol-

FIG. 6. ~a! Total and ~b! surface excitation probability for a
sphere with a radius of 5 nm obtained with an effective dielec
function ~optical data! for an isotropic sphere.
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ume plasmon resonance at 27 eV for an electron pas
through the center appears to shift to 17 eV for an elect
passing outside the particle. This shift can be explained
the combined action of several phenomena. First, there
continuous change of the orientation of the graphitic lay
towards the case where the electron only crosses grap
layers oriented with thec axis perpendicular to the optica
axis of the microscope~impact parameter approachin
sphere radius!. The excitation probability for an electro
passing close to the interface through the particle resem
therefore the excitation probability shown in Fig. 5~b! with a
resonance at 19 eV due to interband transitions of thes
electrons. Second, at the same time as the orienta
changes, the path length inside the particle, and hence
intensity of the volume contribution, decreases and the
face contribution becomes more important@see Fig. 7~b!#.
Overall, this leads to an apparent shift of thes1p electron

FIG. 7. ~a! Total and ~b! surface excitation probability for a
sphere with a radius of 5 nm obtained with the dielectric tenso
graphite measured by an optical method.
ng
n
y
a

s
tic

es

on
he
r-

volume plasmon from 27 to 19 and finally to 17 eV when t
electron passes outside the sphere.

The second feature that changes with the impact par
eter is thep electron volume plasmon peak. It is shifted fro
7 eV when the electron is passing at 0 nm impact param
to 6 eV when the electron is passing close to the surfac
the particle. At the same time the width of the loss peak
significantly broadened. The shifting and broadening of
p electron volume plasmon peak are due to the same p
nomena described above, namely, the change in orienta
of the graphitic layers, the shorter path inside the sphere,
the increase of the intensity of the surface excitations as
impact parameter is increased.

Compared to the simulations carried out within the isot
pic restriction ~Fig. 6!, the simulations with the complet
anisotropic formalism are different in two important aspec
First, in the isotropic case, the volume plasmon resona
peak at 23 eV remains at the same energy for any elec
passing trough the sphere. In the anisotropic case, howe
there is an apparent shift from 27 eV when the elect
passes through the center of the sphere to 17 eV for an e
tron passing close to the surface. Second, in the anisotr
case, thep electron volume plasmon at 7 eV is broaden
and shifted to 6 eV with increasing impact parameter. In
isotropic case the resonance at 6 eV is broadened, but
shifted.

In Fig. 8 the excitation probabilities for a sphere of 10 n
radius are shown. The difference between the simulations
the spheres of 5 nm and of 10 nm radii is the importance
the surface excitation probability as compared to the volu
excitation probability. It turns out that the volume contrib
tion of the sphere of 10 nm radius is twice the volume co
tribution of the sphere of 5 nm radius. At the same time
surface contribution is only increased by a factor of about
@Fig. 8~b!#. In Fig. 8~a! this is reflected in the fact that th
surface resonance at 17 eV is weaker and that the broade
of the p plasmon resonance peak is less pronounced a
Fig. 7~a!. Figure 8 gives therefore an impression of how t
spectrum changes as a function of the impact param
without hardly any surface effects.

3. Anisotropic case (EELS data)

If EELS data is used for the dielectric tensor, the simu
tions of the excitation probability for a sphere of 5 nm radi
~Fig. 9! differ in one important aspect from the simulate
spectra obtained from optical data~Fig. 7 and Fig. 8!. The
broad absorption figure at 11.5 eV that is visible for a
impact parameter if optical data is used is much less p
nounced. In the spectra resulting from simulations w
EELS data the peak can only be seen if the electron pa
close to the center of the sphere. When the electron pa
close to the interface, the resonance is completely absen

C. Simulations of energy filtered images

The second type of experiments that can be simula
with our model are energy filtered images. In such imag
the intensity recorded at a given position is the integral of
excitation probability over the experimental energy windo
at a given impact parameter. In Fig. 10 line scans simula
for an multishell fullerene of 5 nm radius are shown for

f
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57 15 609PLASMON EXCITATIONS IN GRAPHITIC CARBON SPHERES
energy window of 3 eV centered at 7, 17, and 27 eV, resp
tively ~optical data!. The simulations show that thes1p
electron volume plasmon at 27 eV is dominating in the c
ter of the sphere~graphitic planes oriented with thec axis
parallel to the incident electrons!. The intensity at 27 eV
decreases when the impact parameter is increased becau
both the change in the orientation of the graphitic planes
the diminishing thickness as discussed in Sec. IV B 2. At
eV the intensity inside the particle remains almost const
Again, this is due to the effect of a continuous change
orientation of the graphitic layers and the decrease in th
ness as the sphere surface is approached. At this en
however, the decrease in thickness is approximately com
sated by the increasing intensity of surface excitations wh
explains the almost even intensity inside the sphere. Out
the particle the excitation probability at 17 eV drops le
rapidly to zero than at 27 eV. This reveals the presence

FIG. 8. ~a! Total and ~b! surface excitation probability for a
sphere with a radius of 10 nm obtained with the dielectric tenso
graphite measured by an optical method.
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surface excitations, since only the surface resonance m
can be excited by electrons passing outside the particle.
line scan at 7 eV reflects the evolution of thep plasmon
peak. The general tendency is similar to that of the line s
at 27 eV, although less pronounced. The evolution of t
peak is mainly due to the change of orientation in the g
phitic layers of the multishell fullerene. Eventhough surfa
effects are present in this energy range, the width of
energy window is too large to see them. The corrections
the volume peak due to surface excitation and the surf
excitation itself are both in the energy window and compe
sate each other almost completely@see also Fig. 8~b!#.

V. CONCLUSIONS

Local dielectric response theory, which has proven s
cessful in explaining the plasmon losses of isotropic partic

f
FIG. 9. ~a! Total and ~b! surface excitation probability for a

sphere with a radius of 5 nm obtained with the dielectric tenso
graphite measured by EELS.
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of different geometry, has been adapted to take into acco
anisotropy as encountered in the case of nested concen
shelled fullerenes. The calculations have been carried ou
both penetrating and nonpenetrating electrons and allow
simulation of low loss EEL spectra and energy filtered i
ages of this particular form of nanometer-size carbon p
ticles. The simulations show that the inclusion of the anis
ropy into the model is essential since important change
compared to results of the isotropic model are observed

In order to obtain a result suitable for numerical simu
tions we have made several assumptions in our appro
They can be classified into two categories. First, there are
approximations made in the frame of the local respo
theory, namely, the neglection of spatial dispersion and
relativistic effects such as retardation and Cerenkov ra
tion. More detailed calculations have shown that for sphe
with radii between 2 and 20 nm the effects of retardatio67

and of spatial dispersion68,69 can be neglected. Cerenkov r
diation is negligible whene(v)(v/c)2>1, which is gener-
ally satisfied for metals~or semimetals! such as carbon. Lo
cal dielectric response is therefore adapted for multis
fullerenes with radii between 2 and 20 nm. The second
egory of assumptions arises from the description of the
electric properties of multishell fullerenes based on the
electric tensor of planar graphite. As a consequence,
effect of curvature on the local dielectric response is
glected and the possibility that the electronic properties
graphite could change if it is composed of very few layers
excluded.

The possibility to define a certain range of particle size
which local dielectric response theory has proven va
opens a way to experimentally investigate the influence
the second category of assumptions. This is highly inter
ing since they concern the intrinsic electronic properties
the multishell fullerenes. A detailed analysis of EEL data
multishell fullerenes of radii between 2 and 20 nm based
our simulations could therefore give important informati
on how the intrinsic electronic properties of this particu
form of carbon differ from those of planar graphite.
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APPENDIX

The first of Maxwell’s inhomogeneous equations relati
the displacement vector to the charge density needs to
solved:

¹ r•D~r ,r0!5r~r ,r0!. ~A1!

Using the phenomenological relation between the displa
ment vectorD(r ,r0) and the electrical fieldE(r ,r0), this re-
lation becomes

¹ r•e0ẽ~v!E~r ,r0!5r~r ,r0!. ~A2!

The charge density due to the incident electron can
expressed via a Dirac function~point charge! r(r ,r0)
52ed(r2r0). To solve this inhomogeneous differenti
equation we introduce the scalar functionF(r ,r0) defined by

ẽ~v!E~r ,r0!52¹ rF~r ,r0!. ~A3!

Equation~A2! then becomes

¹ r
2F~r ,r0!5

e

e0
d~r ,r0!. ~A4!

Formally this equation is identical to the Laplace equatio
The functionF(r ,r0), however, is not the Coulomb poten
tial, but only a mathematical construction introduced for co
venience. From Eq.~A4! it is immediate thatF(r ,r0) is
equal to

F~r ,r0!52
e

4pe0ur2r0u

5
2e

4pe0
(
l 50

`

(
m50

l

Nl ,m~22d0,m!

3Pl ,m@cos~u!#Pl ,m@cos~u0!#cos~mw!

3H 1

r 0
S r

r 0
D l

for r ,r 0 ,

1

r S r 0

r D l

for r .r 0 ,

~A5!

where Nl ,m5( l 2m)!/( l 1m)!. With this expression for
F(r ,r0), the electric fieldEin,p(r ,r0) for a point charge in a
infinitely large anisotropic medium can now be calculat
using the gradient in spherical coordinates:

S e i~v!Er
in,p

e'~v!Eu
in,p

e'~v!Ew
in,p
D 5S ]

]r

1

r

]

]u

1

rsin~u!

]

]w

D e

4pe0ur2r0u
~A6!

and therefore

ll
d
7,
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Er ,a
in,p ~r ,r0!5

e

4pe0
(
l 50

`

(
m50

l

Nl ,m~22d0,m!Pl ,m@cos~u0!#S l

e i~v!

r l 21

r 0
l 11

Pl ,m@cos~u!#cos~mw!

1

e'~v!

r l 21

r 0
l 11

]Pl ,m@cos~u!#

]u
cos~mw!

2
1

e'~v!

r l 21

r 0
l 11

1

sin~u!
Pl ,m@cos~u!#msin~mw!

D ~A7a!

for r ,r 0 and

Er ,a
in,p ~r ,r0!5

e

4pe0
(
l 50

`

(
m50

l

Nl ,m~22d0,m!Pl ,m@cos~u0!#S 2
l 11

e i~v!

r 0
l

r l 12
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1
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r 0
l

r l 12
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]u
cos~mw!

2
1
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r 0
l
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1

sin~u!
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D ~A7b!

for r .r 0.
E.

R

f-

Xu
k

la
Na

tt.

p

v.

v.

ds

ys.
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