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ABSTRACT 
In this paper, a wide variety of high dielectric constant (k) composite materials which 
have been developed and evaluated for embedded capacitor application are reviewed. 
Current research efforts toward achieving high dielectric performance including high-
k and low dielectric loss for polymer composites are presented. New insights into the 
effect of unique properties of the nanoparticle filler, filler modification and the 
dispersion between filler and polymer matrix on the dielectric properties of the 
nanocomposites are discussed in details.  

   Index Terms — Dielectric materials, capacitors, nanocomposites, nanotechnology. 
 

1   INTRODUCTION 

HIGH dielectric constant (k) materials have received increasing 
interest recently for various potential applications including gate 
dielectrics, high charge-storage capacitor and electroactive 
materials [1-3]. For instance, materials with high dielectric constant 
and low dielectric loss are imperative for real applications of 
embedded passives, specifically capacitor, which is one of the 
emerging and important technology for microelectronic system 
integration to provide the size reduction and performance 
enhancement advantage of many electronic systems [4,5].  

Driven by ever growing demands of miniaturization, increased 
functionality, high performance and low cost for microelectronic 
products and packaging, new and unique solutions in system 
integration, such as system-on-chip (SOC) and system-in-
package (SiP), have been hot topics. Despite the high level of 
integration, the number of discrete passive components (resistors, 
capacitors or inductors) remains very high. Embedded passives, 
an alternative to discrete passives, can address issues associated 
with discrete parts, including substrate board space, cost, 
handling, system performance, assembly time and yield. Figure 1 
schematically shows an example of realization of embedded 
passive technology by integrating resistor and capacitor films 
into the laminate substrates [4,5]. 

By removing these discrete passive components from the 
substrate surface and embedding them into the inner layers of 
substrate board, embedded passives can not only provide the 
advantage of size and weight reduction, but also have many other 
benefits such as increased reliability, improved performance and 
reduced cost, which have driven a significant amount of effort 
during the past decade for this technology.  

However, embedded passive technology has not been 
commercialized for electronic packages yet due to materials and 
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Figure 1. Schematic illustration of embedded passives integrated into the laminate 
substrate. 
commercialized for electronic packages yet due to materials and 
process issues. Therefore, it is necessary to develop materials that 
satisfy the requirements of fabrication as well as electrical and 
mechanical performances to enable embedded passive 
technology [2,6]. Requirements for real applications of 
embedded capacitors include high k low dielectric loss, low 
leakage current, high breakdown voltage and sufficient stability. 
Materials challenges include dielectrics with k above 1000 [6], 
and low dielectric loss. Generally, a dissipation factor under 
0.1% is considered to be quite low and 5% is high [4]. Very low 
dissipation factor is desired for RF applications to avoid signal 
losses, but much higher values can be tolerated for decoupling 
applications.  

In this paper, a wide variety of high-k composite materials 
which have been developed and evaluated for embedded 
capacitor application are reviewed and discussed. Current 
research efforts toward achieving polymer composites which 
fulfill the balance between sufficiently high k and low 
dielectric loss are presented. Manuscript received on 19 October 2007, in final form 24 March 2008. 
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2  HIGH-k MATERIALS FOR EMBEDDED 
CAPACITORS 

From a dielectric property point of view, dielectric constant and 
dielectric loss are the two most important parameters that dictate 
the performance of a candidate material for embedded capacitors. 
To meet the stringent materials requirements, considerable 
attention has been devoted to the research and development of 
the candidate high-k materials. A wide variety of materials have 
been studied and evaluated for this application.  

In the beginning, ferroelectric ceramic materials with 
permanent dipole moment which gives these materials high-k 
in the thousands, including BaTiO3 (barium titanate), 
BaSrTiO3 (barium strontium titanate), PbZrTiO3 (lead 
zirconate titanate) etc., have been used as dielectric materials 
for decoupling capacitors [4, 8]. However, very high 
processing temperature (>600 °C) required for sintering is 
unsuitable for the embedded capacitor applications in the low 
cost organic PCB industry. 

Polymer dielectric materials are compatible with PCB 
manufacturing, but the k value of general polymers is too low 
(<5) to achieve high capacitance density. To raise the k of 
polymer-based materials, polymer composite materials 
provide an ideal solution. The methodology of this approach is 
to combine the advantages from the polymers which meet the 
requirements for the low cost organic substrate process, i.e. 
low temperature processibility, mechanical flexibility and low 
cost, with the advantages from the fillers, such as desirable 
dielectric and electrical properties.  

2.2 FERROELECTRIC CERAMIC/POLYMER 
COMPOSITES 

Ferroelectric ceramic/polymer composites that adopt 
traditional ceramics as fillers, e.g. BaTiO3, BaSrTiO3, 
PbZrTiO3, have been actively explored as a major material 
candidate [2,7,9-15]. Some challenging issues in these 
polymer composites for high k applications still exist, such as 
limited dielectric constants, low adhesion strength and poor 
processibility. Most of the k values of polymer-ceramic 
composites developed to date are below 100 at room 
temperature. By employing the relatively high k polymer 
matrix, the k values of ceramic/polymer composites can be 
effectively enhanced because the k of polymer matrix shows 
very strong influence on the k of the final composites [2,12]. 
For instance, poly(vinylidene fluoride-trifluoroethylene) 
(P(VDF-TrFE)) copolymer, a class of relaxor ferroelectric, 
can have a relatively high room temperature k (~40) after 
irradiation treatment [16]. Bai et al. prepared 
Pb(Mg1/3Nb2/3)O3-PbTiO3/P(VDF-TrFE) composites with k 
values above 200 at 10 kHz [2]. Rao et al. reported a lead 
magnesium niobate-lead titanate (PMN-PT, 900 nm)+BaTiO3 
(50 nm)/high-k epoxy system (effective k: 6.4) composite with 
k value about 150 at 10 kHz, in which ceramic filler loading 
as high as 85% by volume [17]. A major concern for 
ceramic/polymer composites lies in that the high filler loading 
of ceramic powders will lead to some technical barriers for 
real application in the organic substrate, including poor 
dispersion of the filler within the organic matrix, and poor 
adhesion of the dielectric layer to other layers in PCB. 

2.3 CONDUCTIVE FILLER/POLYMER COMPOSITES  
Conductive filler/polymer composite is another approach 

towards high-k materials for embedded capacitor application, 
which is a kind of conductor-insulator composite based on 
percolation theory [18]. Ultra-high k can be expected with 
conductive filler/polymer composites when the concentration 
of the conductive filler is approaching the percolation 
threshold. Sometimes the effective k of the metal-insulator 
composite could be three or four magnitudes higher than the k 
of the insulating polymer matrix. And also this percolative 
approach requires much lower volume concentration of the 
filler compared to traditional approach of high-k particles in a 
polymer matrix. Therefore, this material option represents 
advantageous characteristics over the conventional 
ceramic/polymer composites, specifically, ultra-high k with 
balanced mechanical properties including the adhesion 
strength. Various conductive fillers, such as silver (Ag), 
aluminum (Al), nickel (Ni), carbon black, have been used to 
prepare the polymer-conductive filler composites or three-
phase percolative composite systems [18, 20-25]. For 
instance, Dang et al. [23] and Rao et al. [18] reported k value 
of 400 and 2000 in Ni/PVDF composite and Ag flake/epoxy 
composite, respectively. Although these composites were 
reported with high k values, they still cannot be considered as 
effective materials for embedded capacitor applications due to 
the accompanied high dielectric loss tangent and conductivity. 
Currently, much work has been focused to develop dielectric 
materials which fulfill the balance between sufficiently high k 
and low dielectric loss, and satisfy the requirements to be a 
feasible option for embedded capacitor applications. The 
approaches to control the dielectric loss will be discussed in 
details in session 3.2. 

2.4 All-ORGANIC POLYMER COMPOSITES 
The composites fabricated by dispersing an organic filler 

material possessing very high dielectric constant in a polymer 
matrix can exhibit high-k as well. Zhang et al. selected 
copper-phthalocyanine (CuPc) oligomer, a class of organic 
semiconductor materials with k as high as 105, as high-k filler 
and dispersed in P(VDF-TrFE) matrix. The composite showed 
a k of 225 and a loss factor of 0.4 at 1 Hz [3]. The high 
dielectric loss is due to the long-range intermolecular hopping 
of electron. Wang et al. further chemically modified CuPc and 
bonded to P(VDF-TrFE) backbone to improve the dispersion 
of CuPc in polymer matrix. Dielectric loss was reduced and 
dielectric dispersion over frequency was weakened for 
chemically modified CuPc/P(VDF-TrFE) composites [26]. A 
k value above 1000 (at 1 kHz) has been achieved by Huang et 
al in an all-polymer high-k percolative composite material, 
fabricated by a combination of conductive polyaniline (PANI) 
with a poly (vinylidene fluoride-trifluoroethylene-
chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] terpolymer 
matrix (k > 50) [27]. Lu et al. reported a PANI/epoxy 
composite prepared by in-situ polymerization with a high 
dielectric constant close to 3000, a dielectric loss tangent less 
than 0.5 at room temperature and 10 kHz [28]. The possibility 
of all-organic composites as candidate high-k material for 
embedded capacitor requires further investigation and 
demonstration.  
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Table 1. Composition and dielectric properties of high-k nanocomposite materials.

Materials K Tan δ Filler Size Filler Loading Ref. 
BaTiO3/epoxy 40  (1 Hz) 0.035 (1 Hz) 100-200 nm 60 vol% 11 

Pb(Mg1/3Nb2/3)O3-PbTiO3/P(VDF-TrFE) ~200  (10 kHz) 0.1 (10 kHz) 0.5 μm 50 vol% 2 
bimodal BaTiO3/epoxy 90 (100 kHz) 0.03 (100 kHz) 916 nm+60 75 vol% 16 

PMN-PT+BaTiO3/ high-k epoxy ~150 (10 kHz) N/A 900nm/50 nm 85 vol% 17 
BaTiO3/ P(VDF-HFP) 37 (1 kHz) < 0.07 (1 MHz) 30-50 nm 50 vol% 31 
Carbon black/epoxy 13000 (10 kHz) 3.5 (10 kHz) ~30 nm 15 vol% 25 

Ag/carbon black (CB)/epoxy 2260 (10 kHz) 0.45 (10 kHz) Ag: 13 nm Ag: 3.7 wt%, 
CB: 20 wt% 21 

Al/Ag-epoxy 160 (10 kHz) 0.045 (10 kHz) Ag: <20 nm  Al: 80 wt% 33,34 
Ag/epoxy ~300 (1 kHz) 0.05 (1 kHz) 40 nm 22 vol% 20 

Ag@C/epoxy >300 (1 kHz) < 0.05 (1 kHz) 80-90 nm core 25-30 vol% 32 
 

3  RECENT ADVANCES IN HIGH-K 
NANOMATERIALS 

 3.1. NANOPARTICLE-BASED HI-k COMPOSITE 
MATERIALS 

During recent years, great efforts have been made towards 
the synthesis and application of nanoparticles because of their 
unusual physical and chemical properties. Polymer composite 
materials based on nanoparticles provide a potential solution 
to meet the present and future technological demand in terms 
of the good processibility and mechanical properties of 
polymers combined with the unique electrical, magnetic or 
dielectric properties of nanoparticles [29]. Additionally, nano-
sized particles are preferred for high-k dielectric composite 
materials because they could help achieve thinner dielectric 
films leading to a higher capacitance density. Therefore, more 
nanoparticles of ceramic, metallic or even organic 
semiconductor have been introduced to prepare high-k 
dielectric materials recently. It is anticipated that as-prepared 
nanocomposites are highly promising nanodielectrics, which 
is a new class of dielectric material [30]. Some of the 
examples are summarized in Table 1. 

In the past decade, a great deal of effort has been devoted to 
the development of ceramic/polymer (0-3 connectivity) 
composites, but most of the ceramic fillers used are in the 
micron size range. Although finer particle size is required to 
obtain a thin dielectric film and to increase the capacitance 
density, extremely fine ceramic particles may lead to the 
change of crystal structure from tetragonal, which results in 
the high permittivity, to cubic or pseudo-cubic. Generally 
speaking, the tetragonality and hence the permittivity of 
ceramic particles decreases with the particle size. Cho et al. 
prepared BaTiO3/epoxy composite embedded capacitor films 
(ECFs) with average particle size of 916 nm and 60 nm, the k 
values of ECFs made of 916nm particles were higher than 
those made of 60 nm particles. So the coarser particle is more 
useful than the finer particle to obtain high k of ECFs using 
unimodal powder. But by adopting bimodal fillers, fine 
nanopariticle can effectively enhance the k values by 
maximizing packing density and removing the voids and pores 

formed in the dielectric films. A dielectric constant of about 
90 was obtained at a frequency of 100 kHz using these two 
different size BaTiO3 powders [15].  

Conductive filler/polymer nanocomposites have been 
identified as a promising method to fulfill the material 
requirements for embedded capacitors. However, the 
dielectric loss of this type of materials is very difficult to 
control, because the highly conductive particles are easy to 
form a conductive path in the composite as the filler 
concentration approaches the percolation threshold. Therefore, 
high dielectric loss and narrow processing window of this 
system have plagued the metal/polymer composites from real 
applications. To solve the problems of the conductive 
filler/polymer composites, currently much work has been 
directed to the control of the dielectric loss of this system to 
overcome the above-mentioned drawbacks. A wide variety 
approaches to achieve high dielectric performances including 
high-k and low dielectric loss for these material systems are 
discussed in the following section 3.2. 

3.2. PERFORMANCE ENHANCEMENT OF HIH-K 
NANOCOMPOSITES 

 
3.2.1. CONTROLLED DISPERSION 

Uniform dispersion of nanoparticles in nanocomposite 
materials is required because nanoparticle agglomerates will 
lead to undesirable electrical or materials properties. 
Therefore, dispersion of nanoparticles is an extremely 
important contributor for achieving improved dielectric 
properties and reproducibility.  Addition of surfactant or 
dispersant such as phosphate esters can improve the dispersion 
of nanoparticles in polymer matrix and thereby the overall 
film quality and dielectric performance of the nanocompsites 
[35]. 

Chemical modification of nanoparticles is a useful approach 
to facilitate the dispersion of nanoparticles as well. For 
instance, Kim et al. reported that surface modification of 
BaTiO3 and related perovskite-type metal oxide nanoparticles 
with phosphonic acid ligands leads to well-dispersed 
BaTiO3/polymer nanocomposite films with high dielectric 
strength [31]. This methodology is straightforward and 
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easily adapted to a wide range of systems by choosing 
appropriate ligand functionality. Another example is related 
with CuPc as discussed in 2.4. Chemically modified CuPc 
can improve the dispersion of CuPc in polymer matrix. 
Compared to the simple blending method, the CuPc 
oligomer particulates in grafted sample are of relatively 
uniformly size in the range of 60-120 nm, which is about 5 
times smaller than that of blended composite. Furthermore, 
dielectric loss was reduced and dielectric dispersion over 
frequency was weakened [26]. 

 
3.2.2 CORE-SHELL HYBRID FILLER 

The direct contact of the conductive metal fillers will lead 
to high dielectric loss or even conduction for the conductive 
filler/polymer composites at or above percolation threshold. 
Therefore, core-shell structured filler was proposed and 
studied to be utilized as fillers instead of using conductive 
filler directly because the non-conductive shell could serve 
as electrical barriers between the conductive cores to form a 
continuous interparticle-barrier-layer network and thus 
achieve high-k and low loss. The core/shell structure can be 
formed either pristine or by synthesis. Xu et al. developed 
high-k polymer composite materials using self-passivation 
Al as the filler. The self-passivated insulating aluminum 
oxide layer on the Al metallic core showed significant 
effects on dielectric properties of the corresponding 
composites. For composite containing 80 wt.% Al, a k of 
109 and a low dielectric loss tangent of about 0.02 (@10 
kHz) were achieved [22]. Most recently, Shen et al. reported 
a new polymer composite using synthesized core/shell 
hybrid particles, metal Ag cores coated by organic dielectric 
shells, as fillers. The organic dielectric shells act as 
interparticle barriers to prevent the direct connection of Ag 
particles and facilitate the dispersion of fillers in the 
polymer matrix as well, leading to stable high-k (>300) and 
rather low dielectric loss tangent (<0.05) for the polymer 
dielectric [32].    

 
3.2.3. SURFACE-MODIFIED METAL FILLER 

Similarly, attempts have been made to reduce the 
dielectric loss of the conductive filler/polymer 
nanocomposites by introducing surfactant layer coated on 
the metal filler surfaces during nanoparticle synthesis. For 
example, Qi et al. reported a Ag/epoxy nanocomposite with 
22 vol.% of Ag possessing a k of 308 and a relatively low 
dielectric loss of 0.05 at a frequency of 1 kHz [20]. In this 
material system, 40 nm Ag nanoparticles coated with a thin 
layer of mercaptosuccinic acid were randomly distributed in 
the polymer matrix. The k and dielectric loss increase with 
the filler concentration up to 22 vol.%. The decrease of k 
after that point is not due to conduction, and this is 
attributed to the porosity as revealed from miscrostructure 
investigation. The introduction of porosity is possibly 
caused by the absorbed surfactant layer which leaves space 
between Ag particles and voids which are not occupied by 
polymer. Another contributor could be micropores formed 
from solvent residue during curing, especially at a higher Ag 

content. In addition, no rapid increase of the dielectric loss 
tangent values was observed. Therefore, the observed 
highest k value was not considered as a real percolation 
threshold and the formation of a conducting filler network 
was prevented by the surfactant coating layer. 

 
3.2.4. EFFECT OF METAL NANOPARTICLES 

Incorporation of metal nanoparticles in the high-k 
materials might bring out some interesting phenomenon   
due to the unique properties of the nanoparticles. Lu et al. 
reported that incorporation of ultra-fine sized Ag 
nanoparticles in the Ag/carbon black/epoxy 
nanocomposites increased the k value and decreased the 
dielectric loss tangent as shown in Figure 2 [21]. The 
sample with 3.7 wt.% Ag showed k of 2260 while the Df 
(dissipation factor) was maintained at around 0.45, which is 
much lower than the control sample without Ag 
nanoparticles (k: 1600, Df: 0.7). The remarkably increased 
k of the nanocomposites was due to the piling of charges at 
the extended interface of the interfacial polarization-based 
composites. The reduced dielectric loss might be due to the 
Coulomb blockade effect of the containing Ag 
nanoparticles, a well-known quantum effect of metal 
nanoparticles [36,37].  

 
Figure 2. Variation of k and Df at 10 kHz with different loading level of 
Ag nanoparticles [21]. 

In addition, the presence of the capping agent and its 
ratio with respect to the metal precursor were found to have 
great effect on the size, and their distributions of the 
synthesized Ag nanoparticles in the nanocomposites (see 
Figure 3).  In the case of R = 1 and 0.6 (see Figures 3a and 
3b), Ag nanoparticles of 1-3 nm were well-dispersed, and 
the agglomeration of the small particles formed larger 
clusters of the size ranging 10-15 nm. On the other hand, 
both small and large particles in size of 1-3 nm and 35-45 
nm, respectively, were observed in the same samples with 
smaller Rs (see Figures 3c and 3d). For Ag/CB/epoxy 
composites containing 4.2 wt.% Ag and 19.6 wt. % carbon 
black, smaller size and narrower size distribution of Ag 
nanoparticles resulted in more reduced dielectric loss as 
displayed in Figure 4 [21]. 
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Figure 3. Ttransmission electron microscopy (TEM) micrographs of Ag 
nanoparticles in the epoxy matrix in the presence of a capping agent with 
[capping agent]/[Ag precusor] ratio (a) R = 1, (b) R = 0.6, (c) R = 0.4 and (d) 
R = 0.2 [21]. 

control sample R=1 R=0.6 R=0.4 R=0.2
0

500

1000

1500

2000

2500

0.5

0.6

@ 10 kHz

  

Dfk

 

 
Figure 4. k and Df values of Ag/CB/epoxy composites with various 
concentrations of a capping agent (R= [CA]/[AgNO3]). 
 

3.2.5. HIGH-k POLYMER MATRIX 
As mentioned in previous section, the k values of 

ceramic/polymer composites can be effectively enhanced 
by employing the relatively high k polymer matrix. The 
high-k polymer matrix can be either intrinsic [2] or 
extrinsic by incorporation of additional reagent/filler in 
the polymer [17]. Similarly, the effective k of the 
conductive filler-polymer composite can be further 
enhanced by increasing the k value of the polymer matrix. 
Lu et al prepared polymer nanocomposite as high-k 
polymer matrix, which is composed of polymer matrix 
and an appropriate amount of conductive filler [33,34]. 
Ag nanoparticles were generated by in-situ photochemical 
reduction of a metallic precursor within the polymer 
matrix. Figure 5 displays TEM micrographs of Ag 
nanoparticles synthesized via this method in an epoxy 
resin. Nanoparticle size ranged from 15 to 20 nm with 
smaller particles down to 3-5 nm. The composition of in-
situ formed nanoparticles in the whole mixture was 
estimated at around 10 wt%. 

 
Figure 5. TEM micrographs of Ag nanoparticles synthesized within epoxy resin 
via in-situ photochemical reduction method [33]. 

Self-passivated Al particles were then incorporated in the 
as-prepared Ag-epoxy nanocomposite to further improve the k 
of Al/epoxy composites while maintaining the relatively low 
dielectric loss. Figure 6 displays the dielectric properties of 
Al/epoxy and Al/Ag-epoxy composites with different Al filler 
loading at a frequency of 10 kHz. The composites showed a 
more than 50 % increase in k values compared with an Al/ 
epoxy composite with the same filler loading of Al. Moreover, 
the dielectric loss was maintained below 0.1. The results 
suggested that the in-situ formed Ag-polymer nanocomposites 
can be employed as a high-k polymer matrix to host various 
fillers such as conductive metal or ferroelectric ceramic fillers 
to achieve both high k and relatively low dielectric loss.  
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Figure 6. k and Df (see the inset) values of Al/epoxy and Al/Ag-epoxy composites 
with different Al filler loading (@ 10 kHz) [34]. 

4  SUMMARY 

This paper reviewed recent advances and trend in the field 
of high-k materials for the embedded capacitor applications. 
Generally speaking, high-k materials which meet the 
requirements for this application should possess high 
dielectric constant, low dissipation factor, high thermal 
stability, simple processibility, and good dielectric properties 
over broad frequency range. However, no such ideal materials 
that satisfy the above-mentioned prerequisites simultaneously 
have been realized till present. Polymer composite materials 
have been studied extensively. Efforts to improve the overall 
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dielectric performance of these candidate materials have been 
devoted to maximize the dielectric constant and suppress the 
dielectric loss. New insights into the unique properties of the 
nanoparticle filler, filler modification and the dispersion 
between filler and polymer matrix have been gained in most 
recent studies. Specifically, these techniques include: (1) 
optimized formulation of dielectric materials with high filler 
loading of high dielectric constant ceramics for ceramic-
polymer nanocomposites and appropriate loading level of 
conductive fillers in the neighborhood of percolation threshold 
for conductive filler-polymer nanocomposites; (2) 
improvement in microstructure of dielectric materials 
including filler size and distribution, packing, and dispersion 
in the polymer matrix; (3) enhancement of k values of 
nanocomposites by employing high-k polymer matrix; (4) 
modification of the filler interface to facilitate dispersion in 
the polymer matrix and suppress the dielectric loss of the 
composite materials.  
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