УДК 621.317

АВТОМАТИЗОВАНИЙ ВИМІРЮВАЧ КОЕФІЦІЄНТА ВІДБИТТЯ У СМУЗІ ПОГЛИНАННЯ

¹⁾Скрипник Ю.О., ¹⁾Шевченко К.Л., ²⁾Іващенко В.О., ²⁾Яненко О.П., ¹⁾Київський національний університет технології та дизайну, м. Київ, Україна, ²⁾НДЦ КМ "Відгук" МОЗ України, м. Київ, Україна

В статті розглянутий спосіб та пристрій для вимірювання коефіцієнта відбиття, що забезпечують підвищення точності в широкій смузі частот НВЧ-діапазону

Вступ. Постановка задачи

Вимірювання коефіцієнта поглинання та відбиття є актуальною задачею для наукових і технічних досліджень об'єктів живої і неживої природи в зовнішніх електромагнітних полях, в тому числі в біології, медицині, фізиці, технологічних вимірюваннях властивостей матеріалів і речовин.

У діапазоні НВЧ радіохвиль у вологих матеріалах спостерігається сильне поглинання електромагнітної енергії в області дисперсії комплексної провідності. Максимум поглинання має місце на частотах релаксації, коли частота зовнішнього поля співпадає з власною частотою диполей, які створені молекулами води. Коефіцієнт відбиття, який має мінімальне значення на частоті релаксації, збільшується в процесі сушіння матеріалів і виробів в НВЧ полі. Тому по коефіцієнту відбиття визначають остаточну вологість матеріалу, який висушується. Таким чином, коефіцієнт відбиття в смузі поглинання є важливим технологічним параметром, що дозволяє оптимізувати процес сушіння матеріалів і виробів в НВЧ-печах і іншому надвисокочастотному технологічному електрообладнанні.

Відомі способи та засоби вимірювання коефіцієнта відбиття, наведені, наприклад, в [1, 2, 3] мають значні похибки та не забезпечують зрослі вимоги технічних та наукових досліджень.

Метою даної роботи є створення способу і пристрою визначення коефіцієнта відбиття в смузі поглинання, що здійснюють автоматичний вимір відношення мінімальної амплітуди відбитих НВЧ-коливань до амплітуди падаючих НВЧ-коливань. Це підвищує точність виміру коефіцієнта відбиття в центрі смуги поглинання [4, 5].

Опис технічного рішення

На рис. 1 зображено структурну схему пристрою, який реалізує розроблений спосіб, а на рис. 2 – частотні залежності коефіцієнта відбиття у смузі поглинання і відповідні епюри низькочастотних сигналів.

Початкові НВЧ коливання генератора 19 (рис. 1) поділяються по фазі на 90° квадратурним фазорозчеплювачем 20, створюючи на його виході два ортогональних коливання:

$$U_1(t) = a_1 \cos(\omega_1 t + \varphi_1),$$
 (1)

137

$$U_2(t) = a_1 \sin(\omega_1 t + \varphi_1),$$
 (2)

де a_l, ω_l і φ_l – амплітуда, частота і фаза НВЧ коливань.

Коливання (1) і (2) модулюються по амплітуді в НВЧ модуляторах 21 і 22 низькочастотними коливаннями генератора 26, які також розділяються по фазі на 90° квадратурним фазорозчеплювачем 24:

$$U'_{3}(t) = A\cos(\Omega t + \Phi_{1}), \qquad (3)$$

$$U_4'(t) = A\sin(\Omega t + \Phi_1), \qquad (4)$$

де: A_1 , Ω_1 і Φ_1 – амплітуда, частота і фаза низькочастотних коливань.

Низьку частоту Ω_l обирають рівній половині смуги поглинання $\Delta \omega$ середовища, що опромінюється (рис. 2, а), тобто частота модуляції $\Omega_1 = \Delta \omega / 2$.

Рисунок 1 – Структурна схема вимірювача коефіцієнта відбиття

Внаслідок модуляції НВЧ коливань утворюються ортогональні тричастотні коливання вигляду:

$$U_{5}(t) = a_{H} \{ \cos(\omega_{1}t + \varphi_{1}) + 0.5m \cos[(\omega_{1} - \Omega_{1})t + \varphi_{1} - \Phi_{1}] + 0.5m \cos[(\omega_{1} - \Omega_{1})t + \varphi_{1} + \Phi_{1}] \},$$
(5)

$$U_{6}(t) = a_{H} \{ \sin(\omega_{1}t + \varphi_{1}) + 0.5m \cos[(\omega_{1} - \Omega_{1})t + \varphi_{1} - \Phi_{1}] - 0.5m \cos[(\omega_{1} - \Omega_{1})t + \varphi_{1} + \Phi_{1}] \},$$
(6)

де: *a_H* – амплітуда несучих коливань; *m* – коефіцієнт глибини амплітудної модуляції.

Коливання різницевої частоти $\omega_2 = \omega_1 - \Omega_1$ з фазою $\varphi_2 = \varphi_1 - \Phi_1 \epsilon$ коливаннями нижньої бокової частоти відносно несучої частоти ω_I , а коливання сумарної частоти $\omega_3 = \omega_1 + \Omega_1$ з фазою $\varphi_3 = \varphi_1 + \Phi_1$ - це коливання верхньої бокової частоти.

Тричастотні коливання (5) і (6) складаються та віднімаються в подвійному хвилеводному трійнику 4. Внаслідок цих операцій на виходах подвійного хвилеводного трійника формуються модульовані НВЧ коливання тільки з одною боковою частотою.

При складанні модульованих коливань утворюється НВЧ сигнал з нижньою боковою частотою

$$U_{7}'(t) = a_{H}'[\cos(\omega_{1}t + \varphi_{1} + \pi/4) + m\cos(\omega_{2}t + \varphi_{2})],$$
(7)

і в результаті віднімання - НВЧ сигнал з верхньою боковою частотою

$$U_8'(t) = a_H''[\cos(\omega_1 t + \varphi_1 - \pi/4) + m\cos(\omega_3 t + \varphi_2)],$$
(8)

де a_{H} і a_{H} – амплітуда несучих коливань модульованих сигналів.

Глибину модуляції НВЧ коливань обирають невеликою у межах 5...10% (m = 0,05...0,1), щоб потужність НВЧ коливань була зосереджена в основному у несучих коливаннях частоти ω_l , які впливають на неоднорідне середовище. Сумарні НВЧ коливання (7) з одного виходу подвійного хвилеводного трійника надходять до приймально-передаючої антени 1, а різницеві НВЧ коливання (8) з другого виходу подвійного хвилеводного трійника через дільник потужності 5 надходять на балансні НВЧ змішувачі 6 і 7. За допомогою направлених відгалужувачів 2 і 3 виділяються падаючі на неоднорідне середовище і відбиті від нього НВЧ коливання. Амплітуда відбитих коливань пропорційна коефіцієнту відбиття середовища, який в смузі поглинання істотно залежить від частоти опромінюючих коливань (рис. 2, а і б). Мінімальне значення коефіцієнта відбиття має місце при збігу частоти збуджуючих коливань ω_i з частотою ω_P релаксації молекул води вологого матеріалу ($\omega_P = \omega_i$).

Модуль коефіцієнта відбиття в залежності від співвідношення частот ω_P і ω_i можна показати як

$$\Gamma_{i} = \sqrt{4\Gamma_{P}^{2} + (1 - \Gamma_{P})^{2} \varsigma_{i}^{2}} / \sqrt{4 + (1 + \Gamma_{P})^{2} \varsigma_{i}^{2}}, \qquad (9)$$

де $\Gamma_P = \Gamma_{\min}$ – коефіцієнт відбиття при збігу частот $\omega_{P=}\omega_i$; $\varsigma_i = 2Q\Delta\omega_i / \omega_P - y_{3a-}$ гальнена розстройка НВЧ сигналу відносно частоти релаксації ω_P ; Q – еквівалентна добротність у смузі поглинання; $\Delta \omega = \omega_i - \omega_P - p_0$ стройка на частотах ω_i модульованих коливань.

Рисунок 2 – Розподіл коефіцієнта відбиття в смузі поглинання

Відбиті від середовища сумарні <u>НВЧ</u> коливання (7) з урахуванням коефіцієнта відбиття набувають вигляду

 $U'_{9}(t) = a'_{H}[\Gamma_{1}\cos\{\omega_{1}t + \varphi_{1} + \pi/4 + \Delta\varphi'_{1}] + \Gamma_{2}m\cos(\omega_{2}t + \varphi_{2} + \Delta\varphi_{2})],$ (10) де Γ_{1} і Γ_{2} – модулі коефіцієнта відбиття неоднорідного середовища на частотах ω_{1} і ω_{2} ; $\Delta\varphi'_{1}$ і $\Delta\varphi_{2}$ – додаткові фазові зсуви коливань на відповідних частотах.

При змішуванні виділених направленим відгалужувачем 3 відбитих НВЧ коливань (10) з різницевими НВЧ коливаннями (8) у балансному змішувачі 7 формуються низькочастотні коливання з різницевими частотами $\omega_3 - \omega_1 = \Omega_1$ і $\omega_3 - \omega_2 = 2\Omega_1$. З спектру цих коливань вибірковим підсилювачем 9 виділяють коливання з подвоєною частотою модуляції

$$U_{10}'(t) = S_1 \Gamma_2 K_1 m^2 a'_H a''_H \cos(2\Omega_1 t + \Phi'_2), \qquad (11)$$

де S₁ – крутість балансного змішування; K₁ – коефіцієнт вибіркового підсилен-

ня; Ф₂ – фаза низькочастотних коливань при опромінюванні середовища сумарними НВЧ коливаннями.

Аналогічним образом у балансному змішувачі 6 змішуються сумарні падаючі НВЧ коливання (7), виділені направленим відгалужувачем 2, з різницевими НВЧ коливаннями (8). На виході вибіркового підсилювача 8 виділяються також низькочастотні коливання з подвоєною частотою модуляції

$$U_{11}(t) = S_1 K_1 m^2 a'_H a''_Y \cos(2\Omega t + \Phi'_3), \qquad (12)$$

де Φ'_{3} – фаза низькочастотних опорних коливань.

Низькочастотні коливання (11) і (12) детектуються амплітудними детекторами 10 і 11. Постійні складові сигналів виділяються фільтрами нижніх частот 12 і 13 і надходять на входи блоку ділення 14, де здійснюється операція ділення. На індикатор 15 надходить сигнал напруги, пропорційної частці від ділення означених напруг. З виразів (11) і (12) випливає, що частка від ділення амплітуд низькочастотних напруг пропорційна коефіцієнту відбиття опромінюємого середовища, тобто

$$U_{12}' = S_2 \Gamma_2(\omega_2), \tag{13}$$

де S_2 – крутість результуючого перетворення коефіцієнта відбиття в напругу; Γ_2 (ω_2) – коефіцієнт відбиття середовища на частоті ω_2 .

Коефіцієнт відбиття на нижній боковій частоті ω_2 має вигляд

$$\Gamma_{2}(\omega_{2}) = \sqrt{4\Gamma_{P}^{2} + (1 - \Gamma_{P})^{2}\varsigma_{2}^{2}} / \sqrt{4 + (1 + \Gamma_{P})^{2}\varsigma_{2}}, \qquad (14)$$

де $\zeta_2 = 2Q\Delta\omega_2 / \omega_P$ – узагальнена розстройка на нижній боковій частоті ω_2 ; $\Delta\omega_{2=}\omega_2 - \omega_P$ – розстройка відносно частоти релаксації неоднорідного середовища ω_P .

При зміні положення контактів комутатора 23 відбувається взаємне заміщення низькочастотних модулюючих коливань U_3 і U_4 :

$$U_3'' = A\sin(\Omega t + \Phi_1), \qquad (15)$$

$$U_4'' = A - is(\Omega t + \Phi_1).$$
(16)

Внаслідок заміщення на виходах подвійного хвилеводного трійника 4 відбувається також заміщення сумарних НВЧ коливань різницевими і навпаки:

$$U_{7}''(t) = a_{H}'[\cos(\omega_{1}t + \varphi_{1} - \frac{\pi}{4}) + m\cos(\omega_{3}t + \varphi_{3})], \qquad (17)$$

$$U_8''(t) = a_H''[\cos(\omega_1 t + \varphi_1 + \frac{\pi}{4}) + m\cos(\omega_2 t + \varphi_2)].$$
(18)

При цьому контрольоване середовище починає опромінюватись різницевими модульованими НВЧ коливаннями, а на опорні входи балансних змішувачів 6 і 7 починають надходити сумарні модульовані НВЧ коливання з виходів дільника потужності 5. Відбиті від середовища різницеві НВЧ коливання (16) набувають вигляду

$$U_{9}''(t) = a_{H}''[\Gamma_{1}\cos(\omega_{1}t + \varphi_{1} - \frac{\pi}{4} + \Delta\varphi_{1}'') + \Gamma_{3}m\cos(\omega_{3}t + \varphi_{3} + \Delta\varphi_{3})], \quad (19)$$

де Γ_3 – модуль коефіцієнта відбиття середовища на частоті ω_3 ; $\varphi_1^{"}$ і $\Delta \varphi_3$ – додаткові фазові зсуви коливань на несучій і боковій частотах. Коефіцієнт відбиття на частоті ω_3 має вигляд

$$\Gamma_{3}(\omega_{3}) = \sqrt{4\Gamma_{P}^{2} + (1 - \Gamma_{P})^{2} \varsigma_{3}^{2}} / \sqrt{4 + (1 + \Gamma_{P})^{2} \varsigma_{3}^{2}}, \qquad (20)$$

де $\zeta_3 = 2Q\Delta \frac{\omega_3}{\omega_P}$ – узагальнена розстройка на верхній боковій частоті ω_3 ;

 $\Delta \omega_{3=} \omega_3$ - ω_p – розстройка відносно частоти релаксації ω_{P} .

Змішують відбиті від середовища модульовані НВЧ коливання (10) з сумарними НВЧ коливаннями (17). У вимірювальному каналі виділяють із змішаних коливань низькочастотний сигнал з подвоєною частотою модуляції, аналогічний (11).

$$U_{10}''(t) = S_1 \Gamma_3 K_1 m^2 a'_H a''_H \cos(2\Omega_1 t + \Phi_2''), \qquad (21)$$

де $\Phi_2'' - \phi$ аза низькочастотних коливань при опромінюванні середовища різницевими НВЧ коливаннями.

В опорному каналі на виході вибіркового підсилювача 8 виділяють аналогічні (12) опорні низькочастотні коливання

$$U_{11}''(t) = S_1 K_1 m^2 a'_H a''_Y \cos(2\Omega_1 t + \Phi''_3).$$
⁽²²⁾

На виході блоку ділення 14 внаслідок ділення амплітуд сигналів (21) і (22) утворюється напруга

$$U_{12}'' = S_2 \Gamma_3(\omega_3).$$
 (23)

При періодичній роботі комутатора 23 з більш низькою частотою Ω_2 порівняно з частотою модуляції Ω_1 ($\Omega_2 < \Omega_1$) на виході вибіркового підсилювача 9 почергово виділяються пакети низькочастотних сигналів $U'_{10}(t)$ і $U''_{10}(t)$, амплітуди яких пропорційні коефіцієнтам відбиття Γ_2 і Γ_3 . При їх нерівності виникає огинаюча амплітуди низькочастотних сигналів, період повторення якої рівний періоду перемикання комутатора 23. У результаті детектування цього сигналу на виході фільтру 13 нижніх частот поряд з постійною складовою утворюється змінна складова частоти комутації

$$U_{13}(t) = K_2 \frac{U_{10}' - U_{10}''}{2} \cos(\Omega_2 t + \Phi_4) =$$

$$= 0.5S_1 K_1 K_2 m^2 a'_H a''_H (\Gamma_2 - \Gamma_3) \cos(\omega_2 t + \Phi_4),$$
(24)

де К₂ – коефіцієнт перетворення низькочастотних коливань.

Напруга (24) частоти комутації посилюється підсилювачем 16 частоти комутації, спрямлюється синхронним детектором 17 і змінює частоту НВЧ генератора 19. Процес регулювання частоти генератора 19 здійснюється до отримання нульової напруги частоти комутації (24). При досягненні рівності коефіцієнтів відбиття на бокових частотах ω_2 і ω_3 (рис. 2, б) має місце рівність

$$\Gamma_2 = \Gamma_3 \operatorname{afo} |\omega_2 - \omega_P| = |\omega_3 - \omega_P|$$
(25)

Позаяк бокові частоти $\omega_2 i \, \omega_3$ модульованих НВЧ коливань змінюються синхронно із зміною несучої частоти ω_l , рівність (25) задовольняється за умовою

$$|\omega_{l} - \Omega_{1} - \omega_{P=1}| |\omega + \Omega_{l} - \omega_{P_{\bullet}}|.$$
(26)

З останнього видно, що в цьому випадку несуча частоти ω_1 модульованих коливань, на якій зосереджено більшу частину енергії опромінюючих НВЧ коливань, починає співпадати з частотою релаксації ω_{P_1}

$$\omega_1 = \omega_m = \frac{2\pi}{\tau_m}, \qquad (27)$$

де τ_P – час релаксації диполей води неоднорідного середовища.

При цьому на виході блоку ділення 14 утворюється сигнал постійного струму, пропорційний (рис. 2, б)

$$U_{12}'' = U_{12}' = S_2 \Gamma_2(\omega_2) = S_2 \Gamma_3(\omega_3) =$$

= $(S_2 / \sqrt{2}) \Gamma_{\min}(\omega_4) = S_2' \Gamma_{\min}(\omega_P),$ (28)

де $S'_2 = S_2 / \sqrt{2}$ – нормована крутість перетворення.

Висновки

Таким чином, частота опромінюючих НВЧ коливань точно настроюється на частоту релаксації ω_P , наприклад, частоту релаксації диполей молекул води вологого матеріалу, що відповідає максимуму поглинання електромагнітної енергії вологим матеріалом. Коефіцієнт відбиття приймає мінімальне значення, котре однозначно зв'язане з вологістю матеріалу. На співвідношення (26) не впливає неминуча нерівність амплітуд опромінюючих НВЧ коливань ($a'_H \neq a'_H$), нестабільність і нерівність параметрів змішувачів, підсилювачів, детекторів, фільтрів і інших елементів вимірювального і опорного каналів. Це пояснюється тим, що зникнення напруги частоти комутації має місце тільки при рівності коефіцієнтів відбиття ($\Gamma_2 = \Gamma_3$) на бокових частотах (ω_2 і ω_3) незалежно від значень параметрів перетворювальних ланок і амплітуд почергово опромінюючих коливань.

Використання розглянутих способу і пристрою дозволяє, наприклад, в процесі сушіння матеріалів автоматично перестроювати частоту опромінюючих НВЧ коливань за максимумом поглинання, що значно прискорює процес сушіння. Об'єктивний контроль вологості за мінімальним коефіцієнтом відбиття дозволяє з високою точністю витримувати технологічний регламент сушіння і підвищити, завдяки цьому, якість волого-теплової обробки матеріалів.

Дослідження показали, що режим сушіння НВЧ коливаннями капілярнопористих матеріалів (шкіра, тканини, папір тощо) у діапазоні частот 3...10 ГГЦ з настройкою на частоту релаксації дозволяє скоротити час сушіння у 1.5-2 рази, а похибку виміру вологості знизити до 0.2-0.5%. При цьому на 30-40% зменшуються витрати НВЧ енергії через поглинання відбитих від матеріалу НВЧ коливань конструктивними елементами апаратів для сушіння.

Перспективою подальшого розвитку є використання запропонованого технічного рішення для потреб практичної медицини і діагностики стану шкіри людського організму та оцінки життєздатності органів та фрагментів трансплантації.

Література

- 1. Тишер Ф. Техника измерений на сверхвысоких частотах. Пер. с нем. / Под ред. В.Н. Сретенского. М.: Издательство физико-математической литературы. 1963. С. 272-276.
- 2. Чернушенко А.М., Майбородин А.В. Измерение параметров электронных приборов дециметрового и сантиметрового диапазона волн. – Под ред. А. М. Чернушенко. – М.: Радио и связь. – 1986. – С. 191-196.
- 3. Абубакиров Б.А., Гудков К.Т., Нечаев Э.В. Измерение параметров радиотехнических цепей. – Под ред. В.Г. Адрущенко, Б.П. Фатеева. – М.: Радио и связь. – 1984. – С. 129-133.
- 4. Патент № 44328 (Україна). Спосіб вимірювання коефіцієнта відбиття в смузі поглинання і пристрій для його здійснення / Скрипник Ю.О., Шевченко К.Л., Іващенко В.О. Бюл. № 2. Опубл.15.02.2004.
- 5. Скрипник Ю. А., Яненко А. Ф., Манойлов В. Ф. и др. Микроволновая радиометрия физических и биологических объектов. Житомир: Волынь. 2003. 406 с.

Скрипник Ю.А., Шевченко К.Л., Иващенко	Skripnik Yu.A., Shevchenko K.L., Ivaschenko
В.А., Яненко А.Ф. Автоматизированный	V.A., Yanenko A.F. Automatic measurer of
измеритель коэффициента отражения в	reflection coefficient within the band of ab-
полосе поглощения.	sorption frequencies.
В статье рассмотрен способ и устройство	The method and device for measurement of reflection
для измерения коэффициента отражения,	coefficient ensuring the accuracy improvement within wide hand of UHE frequency range are considered in
обеспечивающих повышение точности в	the paper.
широкой полосе частот СВЧ-диапазона.	

Надійшло до редакції 10 квітня 2004 року

УДК 621.397.3

ПІДВИЩЕННЯ ВІЗУАЛЬНОЇ ІНФОРМАТИВНОСТІ ТЕРМОГРАМ ПРИ ОНКОЛОГІЧНИХ ЗАХВОРЮВАННЯХ МОЛОЧНИХ ЗАЛОЗ

¹⁾Бехтір О.В., ¹⁾Сизов Ф.Ф., ²⁾Чешук В.Є., ²⁾Носко М.М., ²⁾Олійниченко Г.П. ¹⁾Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України, м.Київ, Україна; ²⁾ Київська міська онкологічна лікарня (кафедра онкології Національного медичного університету ім. О.О. Богомольця), м.Київ, Україна

Розглянуто особливості інтерпретації термограм молочних залоз. З урахуванням законів зорового сприйняття інформації, з метою покращення інформативності візуалізації термограм запропоновано алгоритм обробки теплових зображень. Наведено приклади обробки та дослідження термограм обстежених онкологічних хворих

Вступ

На сьогодні рак молочної залози (РМЗ) займає перше місце в структурі онкологічної захворюваності жінок, причому показники захворюваності за останні 20 років збільшилися на 40%. Слід зазначити, що в першій стадії РМЗ діагностується лише в 30% випадків, а кількість помилок на поліклінічному етапі сягає 38% [1].